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Abstract

The purpose of this thesis has been to develop methods for identification of non-
linear models to be used in ship autopilots. An accurate model is essential when
developing autopilot systems. Although a number of identification methods are
available, only a few ship maneuvers are described in the literature.

During this report a literary study on nonlinear identification methods has
been carried out and an overview over several methods is presented. A new ma-
neuvering model derived by Andrew Ross is simulated to generate measurement
data. Based on the measurements during several predefined maneuvers, an itera-
tive prediction error method is applied to identify the parameters of two different
autopilot models.

Secondly, a new ship maneuver is suggested for identification of ship steering
dynamics. Compared to the classic turning circle and zig-zag maneuver the new
maneuver shows better convergence properties and perform good adaptation of
the dynamics.

At last the identified autopilot models are verified by simulating the ship in
closed-loop using a model-based autopilot controller.
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Chapter 1

Introduction

Throughout the history of automatic control it has been known that mathematical
models and their environment seldom is known a priori. Although a number of
autopilot models are derived by means of first principles, most of the parameters
are unknown. To determine the ship steering equations predefined steering ex-
periments, such as turning circles and zig-zag maneuvers have been utilized. The
parameters are subsequently obtained using several identification techniques.

In this thesis a new ship maneuver is developed. The maneuver is developed
by trying to make maximum informative signals, when the slowly ship dynamics
are taken into consideration. By reviewing the most acknowledge methods in the
field of system identification, two different autopilot models are identified using
an iterative prediction error technique.

The simulated vessel used in this thesis is based on a maneuvering model
derived by Andrew Ross. In addition, a model of the rudder motion and dynamics
is added. To emphasize the nonlinear characteristics the vessels rudder effect is
strongly increased.

1.1 Background and Motivation

Identification of dynamic systems are well known in the literature. A number of
identification methods have been developed, such as Kalman filtering, maximum
likelihood estimation and prediction error methods. Identification of parametric
autopilot models require data from open- or closed-loop experiments. To obtain
the steering characteristics from scaled or full-scale experiments a few maneuvers
have been utilized, such as the turning circle, zig-zag maneuvers, spiral maneuvers
and pull-out tests.

The motivation behind this thesis is to make the most of already derived
nonlinear autopilot models. An accurate model is essential in feedback control
and although good identification techniques exist, few predefined ship maneuvers
are suitable for the purpose of system identification.
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1.2 Contribution

The main contribution of this thesis is a new developed ship maneuver designed to
excite the nonlinear steering characteristics for stable ships. The new maneuver
is during the thesis simulated and compared to other maneuvers. Subsequently,
the autopilot models are identified using an iterative prediction error estimation
technique to compare the convergence properties.

1.3 Outline of the Thesis

This thesis is organized into eight chapters, in which the first is an introduction
and the two last chapters are the conclusion and further research.

Chapter 2 - Mathematical Modelling

In this chapter the basic kinematics and kinetics for a marine vessel are presented.
A new maneuvering model utilized in this thesis is briefly described in section
three.

Chapter 3 - Identification of Maneuvering Characteristics

In this chapter several identification methods applied on ship autopilot models
are reviewed. The first section provide an introduction to different types of iden-
tification. In section two the different autopilot models used in this thesis are
derived. Section three gives an overview over the most known ship maneuvers in
addition to a new suggested ship maneuver. The last section briefly describes the
most acknowledged identification methods used for identification of ship steering
dynamics in the literature, followed by an introduction to parameter convergence.

Chapter 4 - Identification Results

In this chapter the identification results are presented. The simulation of the pre-
defined maneuvers is shown i section one. In section two the identification results
based on data from the single experiments are reviewed. The last section shows
the identification results based on several experiments of the ship maneuvers. For
each of the maneuvers both the first order Nomoto model and the autopilot model
derived by Ross are identified.

Chapter 5 - Autopilot Design

In this chapter the identified models are verified using a model-based autopilot
controller. The first section gives a historical overview over autopilot controllers,
while the model-based controllers are derived in the following section. Further
is the simulation environment described in section three and the final simulation
results are presented in section four.
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Chapter 6 - Discussion

In this chapter the different choices taken during the thesis are discussed. The two
autopilot models are reviewed in the first section. In section two the suggested
maneuver is compared to its competitors. Identification results and convergence
properties are discussed in section three, followed by a discussion on the utilized
autopilot controller in section four.
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Chapter 2

Mathematical Modelling

In this chapter the basic dynamics of a marine vessel is presented. The study of
dynamics can be divided into two parts: kinematics and kinetics, which is also
discussed separately in the following sub chapters. Further the final maneuvering
model will be presented. In this document kinematic and kinetic models are given
in the vectorial setting [16] using standard SNAME [53] notation.

xb

yb

zb

u (surge)

v (sway)

w (heave)

p (roll)

q (pitch)

r (yaw)

Figure 2.1: Motion variables for a marine vessel [53].

2.1 Kinematics

Kinematics treat only the geometrical aspects of motion without regard for their
causes. In the kinematic model the linear and angular velocity are specified by
a set of motion variables, which represent the vessels degree of freedom (DOF).
To deal with kinematics, the motion variable must be given relative to a specified
reference frame.
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Figure 2.2: Illustration of the ECI, ECEF, NED and BODY reference frames.

2.1.1 Reference Frames

Reference frames may be divided into two groups whereas the origin is placed. In
Earth centered reference frame the origin is placed at the Earth’s center, while it
in geographic reference frame is placed either on a specific body or at an other
reference on Earth.

Earth Centered Inertial The Earth Centered Inertial (ECI) reference frame
has its origin in the center as shown i Figure 2.2. Its axes does not rotate with the
Earth and is assumed to be a non accelerating reference frame in which Newtons’s
laws of motion apply.

Earth Centered Earth Fixed The Earth Centered Earth Fixed (ECEF) ref-
erence frame has its origin, similar to ECI, fixed to the center of the Earth. Its
axes rotate relative to ECI which is fixed in space. This causes any ECEF loca-
tion on the Earth’s surface to be time-invariant. The angular rate of rotation is
ωe = 7.2921 · 10−5 as illustrated on Figure 2.2.

North-East-Down The North-East-Down (NED) reference frame is defined
relative to the Earth’s reference ellipsoid [68] with the coordinates N,E,D as
shown in Figure 2.2. Further, the NED-frame is defined relatively to the ECEF-
frame by using two angles l and μ denoting the longitude and latitude, respectively.
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For marine vessels operating in a local area the rotational effect can be neglected
by assuming the NED-frame as inertial.

Body-fixed The body-fixed reference frame is defined fixed to a useful point
on a specified body as illustrated on Figure 2.2. The position and orientation
are described relative to an inertial reference frame while the linear and angular
velocities are described relative to the body-frame.

State Vectors

When assuming the NED-frame as sufficient inertial, the generalized position and
orientation vector η and the linear and angular velocity vector ν can be stated
as:

η �
[
n, e, d, φ, θ, ψ

]� (2.1)

ν �
[
u, v,w, p, q, r,

]� (2.2)

where (n, e, d, φ, θ, ψ) are the positions north, east, down and angels roll, pitch and
yaw respectively. The components (u, v,w, p, q, r) signifies the velocity in surge,
sway, heave, roll, pitch and yaw respectively.

2.1.2 Transformation between BODY and NED

The state vector η describes the position in NED-frame while the vector ν de-
scribes the velocity in BODY-frame. To avoid complex equations of motion it
is conventional to transform vectors between different reference system. When
analyzing the transformation properties it is advantageous to split up the state
vectors in linear and angular velocity parts according to [16] which yields:

η =
[
pn

Θ

]
, ν =

[
vb

o

ωb
nb

]
, (2.3)

where pn = [n, e, d]� is the position vector decomposed in NED and Θ = [φ, θ, ψ]�

is a vector of Euler angles, while vb
o = [u, v,w]� denotes the linear velocity vector

and ωb
nb = [p, q, r]� denotes the angular velocity vector, both decomposed in the

body-fixed frame.

Linear Velocity Transformation

The body-fixed linear velocity vector vb
o and the NED velocity vector ṗn are

related through the transformation matrix Rn
b according to:

ṗn = Rn
b (Θ)vb

o. (2.4)

In marine control the most commonly used transformation is called zyx-
convention [18]. Although the convention generally is not accepted in mathe-
matics and physics due to singularities, it is widely used in aerospace and marine
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engineering. The transformation can be written:

Rn
b (Θ) = Rz(ψ)Ry(θ)Rx(φ), (2.5)

where Rz(ψ), Ry(θ) and Rx(φ) are the tree principal rotation matrices defined in
[18]. When expanding 2.5 the final linear velocity transformation matrix yields:

Rn
b (Θ) =

⎡
⎣cψcθ −sψcφ+ cψsθsφ sψsφ+ cψcφsθ
sψcθ cψcφ + sφsθsψ −cψsφ+ sθsψcφ
−sθ cθsφ cθcφ

⎤
⎦ , (2.6)

where s· � sin(·) and c· � cos(·).

Angular Velocity Transformation

The body-fixed angular velocity vector ωb
nb = [p, q, r]� and the Euler rate vector

Θ̇ = [φ̇, θ̇, ψ̇]� are related through the transformation matrix TΘ(Θ) according
to:

Θ̇ = TΘ(Θ)ωb
nb, (2.7)

where the transformation matrix TΘ(Θ) is given by:

TΘ(Θ) =

⎡
⎣1 sφtθ cφtθ

0 sφ −sφ
0 sφ/cθ cφ/cθ

⎤
⎦ , (2.8)

where s· � sin(·), c· � cos(·) and t· � tan(·).

Complete Transformation

Finally, the 6 DOF kinematic equations can be expressed in vector form [16] as:

η̇ = J(Θ)ν (2.9)
�[

pn

Θ

]
=

[
Rn

b (Θ) 03×3

03×3 Tθ(Θ)

] [
vb

o

ωb
nb

]
, (2.10)

where Rn
b (Θ) is the rotation matrix from body-fixed to NED reference frame and

Tθ(Θ) is the angular velocity transformation matrix.

2.2 Kinetics

Kinetics deal with the forces and moments acting on objects, and explain the
accelerations caused by these. In this section a superficial presentation of the
different methods will be given and the equations will only be presented without
further derivations, which are done in [58].
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Figure 2.3: Illustration of a moving vessel (UT 731 CD). Courtesy to Farstad
Shipping.

2.2.1 Rigid Body Equation of Motion

The rigid body equation of motion can be expressed in a vectorial setting as [16]:

MRB ν̇ + CRB(ν)ν = τRB , (2.11)

where MRB is the mass matrix, CRB is the coriolis centripetal matrix and τRB

is a generalized vector of external forces and moments.

2.2.2 Hydrodynamic Forces and Moments

The equations given by (2.9) and (2.11) are sufficient to model a body moving
through water, but do not take the kinetic energy imparted to the fluid (added
mass) or friction into account. In addition a complete model also should include
hydrodynamic damping and restoring forces. These forces are only briefly pre-
sented in this subsection. Further explanation is found in [18] and [58].

Added Mass

Added (virtual) mass is pressure-induced forces and moments due to the inertia
of the surrounding fluid. The surrounding fluid has to move while the vessel is
propagating through the water. These forces act in proportion to the vessel’s
acceleration.

Hydrodynamic Damping

Hydrodynamic damping describes the damping effect caused by the fluid’s inertia.
The effect is mainly caused by potential damping, skin friction, wave drift damping
and damping due to vortex shedding.
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Restoring forces and moments

These forces arise from gravity and buoyancy, which are a result of the displace-
ment of water around the vessel. The gravitational force will act on the center of
gravity while the buoyancy will act through the center of buoyancy.

2.3 Complete Model

The maneuvering model used in this thesis is suggested by [58] to be used on calm
waters. It is derived in 4 DOF containing the linear velocity in surge and sway in
addition to the angular velocity in yaw and roll. According to [58] the model can
be expressed:

η̇ = J(θ)ν (2.12)
Mν̇ + C(ν)ν + D(ν)ν + g(η) = τ , (2.13)

where M � MRB + M̄A and C(ν) � CRB(ν) + C0
A(ν). Notice that the model

is assuming the NED-frame as inertial and does not compensate for external
disturbances as wind, waves and current.

The rigid body matrix mass MRB and the added mass M̄A are given by:

MRB =

⎡
⎢⎢⎣
m 0 0 0
0 m 0 0
0 0 Ix Ixz

0 0 Ixz Iz

⎤
⎥⎥⎦ (2.14)

M̄A =
1
2

(
MA + M�

A

)
. (2.15)

where MA is given by:

MA = −

⎡
⎢⎢⎣
X0

u̇ 0 0 0
0 Y 0

v̇ Y 0
ṗ Y 0

ṙ

0 K0
v̇ K0

ṗ K0
ṙ

0 N0
v̇ N0

ṗ N0
ṙ

⎤
⎥⎥⎦ . (2.16)

Further can the Coriolis-centripetal matrix CRB(ν) and the added mass Coriolis-
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centripetal matrix C0
A(ν) in 4 DOF be written as:

CRB(ν) =

⎡
⎢⎢⎣

0 0 0 −mv
0 0 −mw mu
0 mw 0 −Iyq
mv −mu Iyq 0

⎤
⎥⎥⎦ (2.17)

C0
A(ν) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
Y 0

v̇ v + 1
2

(
N0

v̇ + Y 0
ṙ

)
r

+1
2

(
Y 0

ṗ +K0
v̇

)
p

0 0 0 −X0
u̇u

0 0 0 0
−Y 0

v̇ v − 1
2

(
N0

v̇ + Y 0
ṙ

)
r

−1
2

(
Y 0

ṗ +K0
v̇

)
p

X0
u̇u 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(2.18)

A simplified formulation of the restoring matrix g(η) when assuming small angles
can be formulated:

g(η) =
[
0 0 ρg∇GMt sinφ 0

]�
. (2.19)

At last the damping matrix D(ν) describing hydrodynamic forces and moments
can be written on matrix formulation as:

D(ν) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−XL
uuu−XL

uuuu
2 −XL

rvurv
−XL

vvv −XL
rvr −XL

uvvuv
−XL

vvφφvφ
2 −XL

vrφφrφ

−Y L
uvφφvφ

2 − Y L
urφφrφ

2 −Y L
uvu− Y L

uuvu
2 − Y L

vvvv
2

−Y L
rrvr

2 − Y|v|v|v| − Y|r|v|r|
−KL

uvφφvφ
2 −KL

urφφrφ
2 −KL

uvu−KL
uuvu

2 −KL
vvvv

2

−KL
rrvr

2 −K|v|v|v| −K|r|v|r|
−NL

uvφφvφ
2 −NL

urφφrφ
2 −NL

uvu−NL
uuvu

2 −NL
vvvv

2

−NL
rrvr

2 −N|v|v|v| −N|r|v|r|

0 −XL
rrr −XL

urrur −XL
rrφφrφ 2

0
−Y L

uru− Y L
uuru

2 − Y L
rrrr

2

−Y L
vvrv

2 − Y|v|r|v| − Y|r|r|r|
−Kp −Kpppp

2 −KL
uru−KL

uuru
2 −KL

rrrr
2

−KL
vvrv

2 −K|v|r|v| −K|r|r|r|
0

−NL
uru−NL

uuru
2 −NL

rrrr
2

−NL
vvrv

2 −N|v|r|v| −N|r|r|r|

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.20)
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Chapter 3

Identification of Maneuvering
Characteristics

This chapter starts with an introduction to system identification followed by a
presentation of the autopilot models utilized in this thesis. In section three an
overview over the most utilized ship maneuvers is carried out in addition to a new
suggested ship maneuver. The last section briefly describes the most acknowledged
identification methods used for identification of ship steering dynamics in the
literature.

3.1 System Identification

The field of system identification is far too broad to be completely covered, so this
thesis has focused on identification techniques applied to determine ship steering
dynamics. Although, a briefly introduction to the subject is given in the following
subsection. More theory on system identification can for instance be found in
[14], [35] and [64], and more theoretical background on parametric estimation and
curve fitting can be found in [22], [24] and [75].

3.1.1 Introduction

System identification is a subject area where the goal is to determine the behavior
of a dynamic system. A more precise definition is given in [24]:

“In its most general form system identification is the process of properly
mathematically modeling the behavior of a given system.”

Further is the following formulation of the identification problem given by [78]:

“Identification is the determination, on the basis of input and output,
of a system within a specified class of systems, to which the system
under test is equivalent.”
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A priori
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estimation

Model 
validation

Yes

No

Figure 3.1: A flow diagram of system identification [28].

A natural logical flow of the system identification procedure is described in Figure
3.1. As seen in the figure a priori knowledge about the system is used in all parts
of the identification procedure. The main objective with experiment design is to
make the data maximally informative. However, the most important and difficult
choice is to find a suitable model structure. Constructing a model from data
basically involves three entities:

• a data set,

• a model structure,

• a rule to assess the quality of the models.

When standard models are employed without reference to the physical back-
ground, it is called black-box modeling. Further when physical insight is avail-
able, but still with unknown adjustable parameters, it is called grey-box modeling.
At last when deeper physical insight and prior knowledge is known it is called
white-box modeling. In any cases the models could be either linear or nonlinear.
Although almost all physical systems are nonlinear, linear models can usually be
applied in a bounded operation point.

Since the steering dynamics of a marine vessel can be modeled by means of
Newtonian mechanics, this thesis has focused on grey-box modeling. Compared
to black-box modeling, grey-box modeling has the following advantages:

• known constraints can be imposed, such as parameters and noise variance,

• potentially fewer parameters to estimate,

• couplings between parameters can be specified,

• in the nonlinear case, the dynamic equations can be specified explicitly.
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3.2 Autopilot Models

The steering dynamics of surface vessels have been derived by several researchers
based on first principles using Newton’s laws of motion such as [1], [13] and [51].
In this thesis only the linear model of Nomoto and the nonlinear autopilot model
of Ross are considered.

3.2.1 The Nomoto Model

The widely used Nomoto model derived in [49], is obtained by eliminating the
sway velocity from an earlier model derived by [13]. This results in the second
order model:

r

δ
(s) =

K(1 + T3s)
(1 + T1s)(1 + T2s)

, (3.1)

where T1, T2 and T3 are time constants and K is the gain constant.
The first order Nomoto model is obtained by defining the effective time con-

stant T = T1 + T2 − T3, in such a way that the transfer function between r and δ
can be written:

r

δ
(s) =

K

(1 + Ts)
, (3.2)

where T and K are the Nomoto time and gain constants, respectively. When
neglecting the roll and pitch modes such that ψ̇ = r, the model can be written in
the time domain as:

T ψ̈ + ψ̇ = Kδ. (3.3)

A nonlinear extension of the first order model can be done according to [50],
by adding static nonlinearities. Then, the model can be stated:

T ṙ +HN (r) = Kδ (3.4)

HN(r) = n3r
3 + n2r

2 + n1r + n0, (3.5)

where HN (r) is a nonlinear function describing the nonlinear maneuvering char-
acteristics.

3.2.2 Autopilot Model of Ross

The second autopilot model considered in this thesis is derived by [58], based on
longstanding analyses in low aspect-ratio aerodynamics. Ross suggests this model
for heading autopilot design:

(Iz −Nṙ)ṙ −NL
uvφφuvφ

2 −NL
uvuv −NL

uuvu
2v −NL

vvvv
3

−NL
rrvr

2v −N|v|v|v|v −N|r|v|r|v −NL
urur −NL

uuru
2r

−NL
rrrr

3 −NL
vvrv

2r −N|v|r |v|r −N|r|r|r|r + (X0
u̇ − Y 0

v̇ )uv

−1
2
(N0

v̇ + Y 0
ṙ )ru− 1

2
(Y 0

ṗ +K0
v̇ )p = N (3.6)

φ̇ = r. (3.7)
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This model is nonlinear and time-varying, and should not be directly compared
to the linear Nomoto model which only contain two parameters. In contrast the
autopilot model of Ross contains 20 parameters. In addition is this model also
capable of dealing with varying surge and sway velocities, which is essential for
an accurate autopilot model. The model also contain the roll motion, but that is
not covered in this research.

3.3 Ship Maneuvers

A few ship maneuvers (experimental designs) have been proposed for testing the
maneuverability and identification of maneuvering characteristics, such as [29],
[49] and [48]. In this section the most utilized ship maneuvers is presented. In
addition is a new maneuver proposed for identification of stable ship steering
dynamics.

Figure 3.2: Turning circle definition. Courtesy to [26].
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3.3.1 Standard Ship Maneuvers

A maneuvering characteristic can be obtained by doing predefined maneuvers.
The International Towing Tank Conference (ITTC) have proposed the following
standard ship maneuvers [26].

Turning Circle

The turning circle is simply to apply a rudder angle at an initial speed. It is
necessary to do a turning circle of at least 540 degrees to determine the main
parameters of this trial which are: tactical diameter, advance, transfer, loss of
speed on steady turn, time to change heading 90 degrees and time to change
heading 180 degrees.

Zig-zag Maneuver

The zig-zag maneuver is performed by reversing the rudder alternately by a rud-
der angle to either side. The rudder angle is held constant until the heading is
changed to 20 degrees, then the rudder is reversed. This is done until a total
of 5 rudder steps have been completed. Common values for the rudder angle is
20/20 and 10/10. However, other combinations can be applied. For larger ships
a rudder angle of 10 degrees are recommended to reduce the time and waterspace
required. As seen in Figure 3.3, the results of a zig-zag test are: initial turning
rate, execute heading angle, time to check yaw, heading, reach, time of a complete
cycle, angular speed and unit time. Further definitions are explained in [26]. The
zig-zag maneuver was first proposed by Kempf [29]. Hence, the name Kempf’s
zig-zag maneuver also is used in the literature.

Figure 3.3: Time trace of zig-zag maneuver parameters. Courtesy to [26].
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Spiral Maneuvers

Spiral maneuvers are applied to assess the course stability. For stable ships, both
the direct (Dieudonné’s) spiral maneuver and the reverse (Bech’s) spiral maneuver
can be used. The direct spiral maneuver starts with an initial straight course,
followed by a rudder input of about 25 degrees to starboard held until constant
rate of turn is obtained. Then the rudder angle is decreased by 5 degrees and held
until steady conditions have been achieved. This procedure is repeated until the
rudder has covered the range to 25 degrees port and back again. During this test
the steady rate of turn is registered for each rudder angle.

For unstable ships the reverse spiral maneuver is recommended within the
limits indicated by the pull-out test, described in the following subsection. In
contrast to the direct spiral maneuver the rate of turn is now held constant, while
the mean rudder angle required to produce this rate of turn is measured. Although
an autopilot is recommended it is not required. The necessary equipment is a
rate gyro and an accurate rudder angle indicator. In addition, the reverse spiral
maneuver is less time-consuming than the direct spiral maneuver, and has been
quite popular because of the simplicity and reliability of the method [18].

Pull-Out Test

The pullout maneuver is a simple test to check whether the vessel is straight-
line stable or not. A rudder angle of approximately 20 degrees is applied until
the ship achieves a steady rate of turn. Then the rudder angle returns to zero
and it can be determined whether the vessel is straight-line stable. If the ship is
straight-line stable the rate of turn will decay to zero for both port and starboard
turn. Contrary, if the ship is unstable, the steady rate of turn will reduce to some
residual yaw rate.

Stopping Test

Stopping tests or crash-stops trials can be used to determine the vessel’s maneu-
verability during emergency situations. The most common stopping trials starts
from full ahead speed, and then full astern power is given when the approach
conditions are satisfied.
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3.3.2 Suggested Ship Maneuver

Although several of the maneuvers described above can be used for the purpose of
identification, improvements can be done in sense of informative signals defined
by [35] in the following definitions, theorem and corollary:

Definition 13.1 A quasi-stationary signal u(t), with spectrum Φu(ω), is said to
be persistently exciting of order n if, for all filters of the form

Mn(q) = m1q
−1 + ...+mnq

−n (3.8)

the relation
|Mn(eiω)|2 ≡ 0 implies that Mn(eiω) ≡ 0 (3.9)

Definition 13.2 A quasi-stationary signal u(t) with spectrum Φu(ω), is said to
be persistently exciting if

Φu(ω) > 0, for almost all ω (3.10)

Theorem 13.1 Consider a set M∗ of SISO models given by (3.9) such that the
transfer functions G(z, θ) are rational functions:

G(q, θ) =
B(q, θ)
F (q, θ)

=
qnk(b1 + b2q

−1 + ...+ bnb
q−nb+1)

1 + f1q−1 + ...+ fnf
q−nf

(3.11)

Then an open-loop experiment with an input that is persistently exciting of order
nb + nf is sufficiently informative with respect to M∗.

Corollary An open-loop experiment is informative if the input is persistently
exciting.

In elucidation of Theorem 13.1 which define persistence excitation, this thesis
suggests a new ship maneuver to be used for system identification of stable ship
steering dynamics. Although the proposed maneuver has something in common
with both the turning circle, zig-zag maneuver and the direct spiral maneuver, it
excite the steering system better and give more informative signals. In addition
the suggested maneuver described below also utilize all range of rudder deflection
in one maneuver.

Rudder steps 5, 10, 20, 40 and 45 (deg)
Thrust levels 200 and 500 (rpm)
Relative period to hold the rudder deflection 2 seconds x deflection
Linear decrease of rudder deflection 0,3 deg/s

Table 3.1: Suggested adjustments employed to the proposed maneuver.
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The proposed maneuver starts at an initial course with a constant thrust
level. The rudder angle is then reversed alternately by predefined steps to either
side. But as distinct from the zig-zag maneuver, the rudder deflection is held a
predefined period relative to the angle before it decrease to zero with a linear
constant. This procedure continues for all predefined rudder steps at either sides
as shown in Figure 3.4. At last the rudder deflection is held to zero to ensure that
identified model will be stable. Suggested adjustments which are also used in this
thesis are shown in Table 3.1.

This maneuver should be repeated using several thrust levels to excite the
nonlinear rudder effect. The maneuver parameters should also be adjusted for
ships with rather fast or slow turning capabilities. For unstable ships the reverse
spiral maneuver is still necessary to identify the nonlinear characteristics around
zero rudder deflection.
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Figure 3.4: North-East plot and rudder input during the proposed maneuver.
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3.4 Identification Methods

System identification techniques applied to determine ship steering dynamics have
been under research for ages. The techniques varies from simple determination
to more sophisticated algorithms. Although a diversity of identification methods
is described in the literature, a number of methods are based on more or less the
same principles. In the paragraphs below, three general procedures reviewed in
[35] are introduced.

This section also presents some of the reported methods utilized for identifi-
cation of ship steering dynamics. The last subsection describes a few methods
utilized for validation of models and parameter convergence.

Prediction-Error Identification Approach (PEM) This approach contains
well-known procedures, such as the least-square method and the maximum like-
lihood method. It is also closely related to the Bayesian maximum a posteriori
estimation. The method is according to [35] defined by:

θ̂N = arg min
θ∈DM

VN (θ, ZN) (3.12)

VN (θ, ZN ) =
1
N

N∑
t=1

�(ε(t, θ), θ, t). (3.13)

Subspace Approach to Identifying State-Space Models Subspace meth-
ods avoid the problem connected to parametrization. In general the approach
consists of three steps: (1) estimating ahead predictors using a least-square algo-
rithm, and (2) selecting the state vector, and (3) estimate the state-space matrices
using the least-square method.

Correlation Approach Another approach is to utilize the correlation between
regression variables and the chosen instruments. The approach contains the
instrumental-variable technique, as well as several methods for rational transfer
function models and is defined by:

εF (t, θ) = L(q)ε(t, θ) (3.14)
θ̂N = sol

θ∈DM
[fN (θ, ZN ) = 0] (3.15)

fN(θ, ZN ) =
1
N

N∑
t=1

ζ(t, θ)α(εF (t, θ). (3.16)

3.4.1 Simple Curve Fitting of Turning Circles

One simple method to identify the Nomoto time and gain constant is presented
in [18]. By considering the results from the turning circle the ordinary differential
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equation (3.3) can be written explicitly. For a constant step input δ0 the rate of
change r(t) can be written as:

r(t) = exp(−t/T )r(0) + (1 − exp(−t/T ))Kδ0, (3.17)

where r(0) is the initial value, T is the Nomoto time constant and K is the Nomoto
gain. Using nonlinear least square curve fitting T and K can be estimated.

3.4.2 Classic Determination from Zig-zag Trials

A widely used technique is to determine the parameters in the Nomoto model
from the zig-zag maneuver using an index estimator published in [48]. Further
has Journée [27] developed a method to deal with overshoot and transient effects
caused by rudder delay and limitations. Using Nomoto’s first order model, a large
number of zig-zag maneuvers have been calculated at a practical range of K and
T values. These data have been analyzed and the relation between the zig-zag
maneuvering characteristics and the Nomoto parameters have been reflected in
graphs.

Further work in the field of identification from zig-zag trials has been accom-
plished by [50] and [73]. The steering dynamics has also been estimated by simple
integration of the measurements during planar motion mechanism tests as in [12]
and [67].

Figure 3.5: Graph describing Journée’s method. Courtesy to [27].
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3.4.3 Closed Loop/Adaptive Identification

Identification of parameters can also be done in closed-loop. A survey on closed-
loop identification is given in [23]. Several papers, such as [11], [34] and [45], have
reported great results. Adaptive steering of ships have for instance been utilized
in [21], [44] and [61]. In general there is some basic issues associated with closed
loop identification:

• a closed loop experiment is less informative,

• an accurate noise model is necessary to apply direct methods,

• for indirect methods, the exact regulator mechanisms have to be known.

3.4.4 Maximum Likelihood Estimation

The parameters of a second-order model has been successfully determined in [63],
[65] and [66] using the maximum likelihood method. The identification is done
by manual generation of test signals with a full scale freighter. As many other
techniques, the method minimizes a loss function.

Figure 3.6: Results of identification of a second-order model using maximum
likelihood estimation. Courtesy to [66].
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3.4.5 Extended Kalman filter Estimation

Several researchers have reported great results using identification techniques
based on the extended Kalman filter such as [2], [9], [10], [25] and [39]. In con-
trast to other estimators this approach treats the parameters as additional state
variables, which must be constant in time. Further work based on the extended
Kalman filter in the field of system identification is accomplished by [42] and [77].
The Kalman filtering technique is also widely used in dynamic positioning of ships,
which for instance is described in [5] and [20].

System Identification 
Program using the 

Extended Kalman Filter 
Technique

Rudder δ(t)

Heading ψ(t)

Yaw rate r(t)

Surge vel. u(t)

Sway vel. v(t)

Hydrodynamic 
Coefficients 
and Current

Figure 3.7: Illustration of the extended Kalman filtering technique used in the
purpose of system identification [2].

3.4.6 Frequency Domain Methods

Another method applied to ship maneuvering is a frequency domain method re-
ported in [8], [7] and [59]. The method has its origin in the work of [56] and
further work is accomplished by [6]. This is a non-iterative, spectral method per-
forming the nonlinear operations in the time domain and the linear operations in
the frequency domain.

3.4.7 Prediction Error Identification Methods

In [31] several identification methods are considered such as output error, maxi-
mum likelihood and more general prediction error methods. The recursive (iter-
ative) prediction error method is closely related to the extended Kalman filtering
technique. In contrast, the nonlinear prediction error method treat the Kalman
gain as elements of the parameter vector to be estimated, which is also known as
Ljung’s innovations filter model. Hence, this identification method is less critical
to the a priori knowledge about the noise covariance. The family of prediction
error methods also have a close kinship with the maximum likelihood estimation.
The method is based on the theory of Ljung [36][37] and is also thorough described
and utilized in [79].
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3.4.8 Other Methods

In addition several other identification techniques are applied to this identification
problem. For instance is a neural network approach considered in [55]. Another
approach is based on Lyapunov identification which in the work of [70] is compared
to classic least-square techniques.

3.4.9 Parameter Convergence

Validating the model and identification algorithm is an important step in system
identification. Although visual inspection of the results can be valuable, it is
often preferable to use numerically calculations. In [35] several ways of comparing
models is presented, such as the variance:

Jk(m) =
1
N

N∑
t=1

|y(t) − ŷk(t|m)|2, (3.18)

sum of residuals:

Jk(m) =
N∑

t=1

|y(t) − ŷk(t|m)|, (3.19)

standard deviation:

Jk(m) =

√√√√ 1
N

N∑
t=1

|y(t) − ŷk(t|m)|2 (3.20)

and Akaike’s final prediction-error (FPE) criterion [3]:

J̄p(M) ≈ 1 + (dM/N)
1 − (dM/N)

VN (θ̂N , Z
N ) (3.21)

=
1 + (dM/N)
1 − (dM/N)

1
N

N∑
t=1

ε2(t, θ̂N ). (3.22)

In addition to several methods of cross-validation, [41] introduces the fit-function.
This method describes the percentage of the measured output that was explained
by the model. The function is defined by:

fit = 100/(1 − norm(y − ŷ)/norm(y −mean(y))). (3.23)
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Chapter 4

Identification Results

In this thesis the autopilot models are estimated using the iterative prediction
error minimization method provided by the System Identification Toolbox [41]
in Matlab. This method is comparable to the prediction error method reviewed
in subsection 3.4.7. Each iteration involves the approximate solution of a large
linear system using the method of preconditioned conjugate gradients. The Trust
Region Reflective Newton search method of nonlinear least-squares (lsqnonlin),
provided by the Optimization Toolbox [40] is chosen because it handles bounds
better than line search methods.

This chapter describes the simulation environment and the identification re-
sults. In the first section the experiment design is simulated. The predefined
maneuvers: turning circle and zig-zag maneuver are compared to the maneuver
suggested in subsection 3.3.2. All of the maneuvers are simulated with different
initial velocities and rudder deflections. The turning circle is carried out at 5,
10, 20 and 40 degrees, while the same deflections and headings are used in the
zig-zag maneuvers, namely 5-5, 10-10, 20-20 and 40-40 degrees. In contrast is
only one suggested maneuver necessary to excite the various rudder deflections.
Subsequently are all maneuvers executed in both 200 rpm and 500 rpm.

In section two and three the identification results are presented. Estimation
of the model parameters is first carried out on single experiments at a constant
revolution for all of the maneuvers. Subsequently, the same identification proce-
dures are carried out for the merged data including simulations in both 200 rpm
and 500 rpm for each of the three maneuvers. In addition is the identification
procedure executed for both the linear Nomoto model and the nonlinear autopilot
model of Ross.

4.1 Simulation of the Experimental Designs

The maneuvering model and the suggested maneuver is implemented in Matlab
as an m-function and imported to Simulink. An overview over the simulation
environment is shown in Figure 4.1.

The model parameters used in this report are identified by Ross [58] from a
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Length between perpendiculars Lpp 4.002 m
Maximum beam at the waterline Bwl 0.538 m
Vertical distance from bottom of hull to waterline T 0.172 m
Displacement Disp 0.188 m3

Yaw Inertia Iz 0.295*Lpp
Roll Inertia Ix 0.37*Bwl
Maximum rudder rate rr 15.0 deg/s

Table 4.1: The vessel’s main particulars [69].

scaled model. Unfortunately, the roll data was not included so the simulation is
done in 3 DOF namely surge, sway and yaw. The vessel’s main particulars are
published on Simman [69] and are partly presented in Table 4.1.

Compared to [69] the maximum rudder rate is decreased to emphasize the
saturation effect on the maneuvering model. In addition to the vessel model
presented in (2.13), a highly nonlinear rudder effect on the yaw motion is included
as shown in Figure B.15. The simulated ship has an approximately maximum
speed of 3.5 knots (1.8 m/s) and is able to turn as much as 10 radians per second
using the maximum rudder deflection of 45 degrees.
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Figure 4.1: Overview over the simulation environment.
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4.1.1 Turning Circle

Figure 4.2 and 4.3 shows the results of the 40 degree turning circle in 500 rpm.
Results of the other turning circle experiments are presented in section A.1.
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Figure 4.2: North-East plot of the 40 degree turning circle (500 rpm).
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Figure 4.3: Yaw rate and velocity during the 40 degree turning circle (500 rpm).
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4.1.2 Zig-zag Maneuver

The 40-40 zig-zag maneuver in 500 rpm in shown in Figure 4.4 and 4.5. The other
zig-zag maneuvers are available in section A.2.
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Figure 4.4: Rudder/yaw plot of the 40-40 zig-zag maneuver (500 rpm).
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Figure 4.5: Yaw rate and velocity during the 40-40 zig-zag maneuver (500 rpm).
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4.1.3 The Suggested Maneuver

Below, in Figure 4.6 and 4.7 the results during the suggested maneuver in 500
rpm is presented. The other experiment during 200 rpm is shown in section A.3.
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Figure 4.6: North-East plot of the suggested maneuver (500 rpm).
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4.2 Identification based on Single Experiments

4.2.1 Data from the Turning Circle

Now the two autopilot models are identified using measured data from the 40
degree turning circle. The measured behavior is not linear, as seen in Figure 4.8.
But as expected, the autopilot model of Ross is able to adapt the maneuver very
well in Figure 4.10.
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Figure 4.8: The estimated Nomoto model compared to measured data from a
single turning circle.
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Figure 4.9: Prediction error for yaw rate.
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Autopilot Model derived by Ross
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Figure 4.10: The estimated autopilot model of Ross compared to measured data
from a single turning circle.
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Figure 4.11: Prediction error for yaw rate.

The results above indicates the huge difference between the linear Nomoto
model and the nonlinear autopilot model of Ross. The reason why the Nomoto
model does not converge to the steady-state yaw rate is the relative short simula-
tion time. The identified Nomoto model’s loss function is 0.061179 and Akaike’s
FPE is 0.0620058. Contrary, the identified model of Ross has the loss function
0.00289805 and the Akaike’s FPE 0.00325052.
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4.2.2 Data from the Zig-zag Maneuver

Identification of the parameters based on the 40-40 zig-zag maneuver is presented
in Figure 4.12 and 4.14. The identified Nomoto model shows a fair capability
to adapt the chosen zig-zag maneuver, while the autopilot model of Ross not
surprisingly is able to adapt very well.
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Figure 4.12: The estimated Nomoto model compared to measured data from a
single zig-zag maneuver.
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Figure 4.13: Prediction error for yaw rate.
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Autopilot Model derived by Ross
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Figure 4.14: The estimated autopilot model of Ross compared to measured data
from a single zig-zag maneuver.
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Figure 4.15: Prediction error for yaw rate.

The Nomoto model has a loss function of 0.399596 and Akaike’s FPE of
0.40137. On the other hand has the autopilot model of Ross a loss function
of 0.0203783 and Akaike’s FPE of 0.0211926 which is substantially higher than
during the turning circle.
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4.2.3 Data from the Suggested Maneuver

Finally the models are identified using the suggested maneuver at 500 rpm. As
imagined the Nomoto model is neither able to adapt the nonlinearities nor the var-
ious rudder deflections. In contrast the Ross model easily adapted this maneuver
at 500 rpm.
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Figure 4.16: The estimated Nomoto model compared to measured data from a
single suggested maneuver.
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Figure 4.17: Prediction error for yaw rate.
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Autopilot Model derived by Ross
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Figure 4.18: The estimated autopilot model of Ross compared to measured data
from a single suggested maneuver.
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Figure 4.19: Prediction error for yaw rate.

Identification of the Nomoto model gave the loss function 0.730669 and the
Akaike’s FPE 0.731346. The estimated model of Ross yields the loss function
0.00867066 and Akaike’s FPE 0.00874294. This is nearly as low as the turning
circle even though the simulation time is nine times longer. One of the reasons the
suggested maneuver has a substantially lower loss function compared to the zig-
zag maneuver is because of the change in velocity during the first rudder deflection
during the zig-zag maneuver.
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4.3 Identification based on Merged Experiments

4.3.1 Data from the Turning Circles

In this section identification is carried out using measured data from several ex-
periments. However, the plots are only displaying the measurements from the 40
degree step in 500 rpm. Thus, the figures itself has to be considered accordingly.
Figures 4.20 and 4.22 shows the results of the Nomoto model and model of Ross,
respectively.
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Figure 4.20: The estimated Nomoto model compared to measured data from
several turning circles.
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Figure 4.21: Prediction error for yaw rate.
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Autopilot Model derived by Ross
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Figure 4.22: The estimated autopilot model of Ross compared to measured data
from several turning circles.

P
re

di
ct

io
n

er
ro

r
(d

eg
/s

)

time (s)
100 110 120 130 140 150 160 170 180 190 200-5

-4
-3
-2
-1
0
1
2
3
4
5

Figure 4.23: Prediction error for yaw rate.

The result of the identified Nomoto model is as expected rather poor. More
surprisingly is the identified autopilot model of Ross. The rather strange response
is probably caused by too short steady-state simulation data. The Nomoto model’s
loss function become 1.25724 and Akaike’s FPE 1.25859 during all experiments.
The loss function and Akaike’s FPE of the identified Ross model yields 0.109565
and 0.110618, respectively.
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4.3.2 Data from the Zig-zag Maneuvers

The models are now estimated using zig-zag measurements from all of the executed
zig-zag maneuver including both 200 and 500 rpm. But only the measurements
of the 40-40 zig-zag maneuver in 500 rpm is compared to the estimated models.
Figures 4.24 and 4.26 shows the results of the Nomoto model and model of Ross,
respectively.
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Figure 4.24: The estimated Nomoto model compared to measured data from
several zig-zag maneuvers.
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Figure 4.25: Prediction error for yaw rate.
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Autopilot Model derived by Ross
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Figure 4.26: The estimated autopilot model of Ross compared to measured data
from several zig-zag maneuvers.
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Figure 4.27: Prediction error for yaw rate.

Identification of the Nomoto model gave the loss function 1.72636 and the
Akaike’s FPE 1.72763. The estimated model of Ross yields the loss function
0.492535 and Akaike’s FPE 0.49582. The estimated Nomoto model is clearly
better compared to the estimates based on turning circles. For the autopilot
model of Ross the estimated model is not quite capable of adapting the highly
nonlinear yaw motion effect.
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4.3.3 Data from the Suggested Maneuvers

Finally the merged experiments of the suggested maneuver are estimated. As in
the previous cases only the measurements during the maneuver in 500 rpm are
shown in Figure 4.28 and 4.30.

The Nomoto Model

time (s)

Y
aw

ra
te

(d
eg

/s
)

data; measured
nomoto; fit: 62.34 %

200 400 600 800 1000 1200 1400 1600 1800
-10

-8

-6

-4

-2

0

2

4

6

8

10

Figure 4.28: The estimated Nomoto model compared to measured data from two
suggested maneuvers.
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Figure 4.29: Prediction error for yaw rate.
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Autopilot Model derived by Ross
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Figure 4.30: The estimated autopilot model of Ross compared to measured data
from two suggested maneuvers.
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Figure 4.31: Prediction error for yaw rate.

The Nomoto model has a loss function of 2.5597 and Akaike’s FPE of 2.56103.
As already mentioned the model is not able to fit various velocities, but as seen
on Figure 4.28 the results yields a fair average performance. On the other hand
has the autopilot model of Ross a loss function of 1.07884 and Akaike’s FPE of
1.08392. Compared to the single suggested experiment which fitted perfectly, the
merged results indicates that the model suffer adapting the highly nonlinear force
caused by the rudder deflection in various velocities. However, the model fits
slightly better than the zig-zag estimated model.
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Chapter 5

Autopilot Design

In this chapter the identified autopilot models will be implemented using a model-
based autopilot controller. This is carried out to verify the models under other
conditions than during the identification procedures. The ship will be simulated
during both 300 and 400 rpm to check the models accuracy. In contrast, the model
parameters are estimated during 500 and 200 rpm. Although advanced controllers
can be derived, designing an autopilot system from a nonlinear dynamic model
is rather comprehensive. Thus, in this thesis only the well known three term
controller is considered, including a reference feed forward.

The first section presents a historical overview over the origin of the autopilot.
In section two the model-based controller is derived based on both the Nomoto
model and the autopilot model of Ross. Section three describes the simulation
environment and the reference model, before the closed-loop results are presented
in section four.

5.1 Historical Overview

The autopilot has its origin in the research followed by the invention of the elec-
trically gyroscope. This invention took place by Hopkins as early as in 1890 and
in 1908 Herman Anschütz patented the first north seeking gyrocompass. In 1911
Elmer Sperry constructed the first ship steering mechanism, referred to as the
”Metal Mike”, using feedback control and automatic gain adjustments [62]. Later,
in 1922, Nicholas Minorsky came up with a position feedback control system using
a three term control law, which is referred to nowadays as Proportional Integral
Derivative (PID) control [18].

The ship autopilot controller can further be defined as a linear quadratic op-
timization problem [54]. Several steering criterion are developed such as Koyama
[32], Norrbin [52] and Van Amerongen and Nauta Lemke [72]. When assuming
full state feedback several controllers can be derived by means of Lyapunov sta-
bility theory, which includes adaptive feedback linearization [43] and nonlinear
backstepping. More theory on nonlinear control can for instance be found in [30].

Recently a number of other sophisticated controller techniques are developed,
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such as adaptive techniques described in [46], [60], [71], [72] and [76], model-
reference approaches presented in [4] and [33], fuzzy-logic methods introduced in
[57] and [74] and other robust approaches. A comprehensive review of nonlinear
ship control is given in [17]. Further theory on numerical optimization is thorough
described in [47].

5.2 Model-based Autopilot Controller

The main subject in this thesis is identification of autopilot models. Thus, the au-
topilot design is limited to only consider the conventional PID-controller including
a feed forward term. The controller can according to [18] be stated as:

τN = τFF −Kpψ̃ −Kdr̃ −Ki

∫
ψ̃(τ)dτ , (5.1)

where τFF is the reference feed forward term.
When only the linear Nomoto model is considered the feed forward term can

be written:

τFF =
T ṙd + rd

K
. (5.2)

A final implementation will also require a wave-filter, but that is not covered in
this subject. The controller gain Kp, Ki and Kd can be calculated using a pole
placement algorithm [18]. Choosing the bandwidth ωb and the relative damping
ratio ξ, the simplified controller gain can be calculated by the following equations:

Kp = mω2
n (5.3)

Ki =
ωn

10
Kp (5.4)

Kd = 2ξωnm, (5.5)

where ωn = ωb/

√
1 − 2ξ2 +

√
4ξ4 − 4ξ2 + 2 is the natural frequency and m is the

vessels mass. The conventional PID-controller with the Nomoto model in refer-
ence feed forward is implemented in Simulink straight forward from a predefined
toolbox in [19].

The implementation of the autopilot model of Ross is carried out in the same
manner, only extending the feed forward term τFF to include the model introduced
in (3.7) using the model parameters estimated in section 4.3. Thus, the feed
forward term is given by:

τFF = (Iz −Nṙ)ṙ −NL
uvφφuvφ

2 −NL
uvuv −NL

uuvu
2v −NL

vvvv
3

−NL
rrvr

2v −N|v|v|v|v −N|r|v|r|v −NL
urur −NL

uuru
2r

−NL
rrrr

3 −NL
vvrv

2r −N|v|r |v|r −N|r|r|r|r + (X0
u̇ − Y 0

v̇ )uv

−1
2
(N0

v̇ + Y 0
ṙ )ru− 1

2
(Y 0

ṗ +K0
v̇ )p. (5.6)
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5.3 Reference Model and Simulation Environment

To obtain smooth and bounded yaw rate and acceleration for steps in the desired
heading, a third order reference model is implemented according to [18]:

ψd

ψr
(s) =

ω3
n

(s+ ωn)(s2 + 2ξωns+ ω2
n)
, (5.7)

where the reference ψr is the operator input, ψd is the desired heading, ξ is
the relative damping ratio and ωn is the natural frequency. The parameters in
Table 5.1 is selected to generate a quick change of course to excite the vessels
nonlinearities.

Heading step (deg) 45 deg
Step time (s) 100 s
Relative damping (ξ) 1.0
Natural frequency (ωn) 0.2

Table 5.1: Reference model parameters.

5.4 Closed-loop Simulation Results

In this section the closed-loop results are reviewed. Based on the merged iden-
tification results the ship is simulated during a turn described in section 5.3.
To obtain a comparable quantity the sum of residuals is calculated according to
(3.19). Although the sum of residuals is not sufficient to conclude which maneuver
gives the best estimates, it provides an indication of the quality.

5.4.1 Nomoto Model Reference Feed Forward

Since to different autopilot models are considered in this thesis the results are
separated into two subsections. First, the Nomoto model reference feed forward
is reviewed by means of estimates from each of the three experimental designs:
turning circle, zig-zag maneuver and the suggested maneuver. Secondly, the au-
topilot model of Ross is employed as reference feed forward by means of the three
different estimates. Although only the plots created during 300 rpm are presented
in this chapter, both the residuals are available in the following tables. The other
plots are available in Appendix B.
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Parameters Identified from The Turning Circle

Simulating the Nomoto model in feed forward using the estimates from the turning
circles gave surprisingly good results. In fact, for the simulations in 300 rpm the
results are better than for both the zig-zag maneuver and the suggested maneuver.
One of the reasons is that the turning circle excite the nonlinearities the least and
thus generating a good linear approximation.

Simulation in 300 rpm 80.4113
Simulation in 400 rpm 44.7822

Table 5.2: Closed-loop residuals using the Nomoto model identified by measure-
ments from the turning circles.
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Figure 5.1: The Nomoto model in closed-loop (300 rpm).
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Parameters Identified from The Zig-zag Maneuver

Further is the zig-zag estimate utilized in the feed forward loop. The results are
presented in Table 5.2 and Figure 5.1. This substantiate that the response of the
Nomoto model is extremely coupled with the velocity.

Simulation in 300 rpm 108.0843
Simulation in 400 rpm 17.3626

Table 5.3: Closed-loop residuals using the Nomoto model identified by measure-
ments from the zig-zag maneuvers.
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Figure 5.2: The Nomoto model in closed-loop (300 rpm).
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Parameters Identified from The Suggested Maneuver

Finally the Nomoto estimate from the suggested maneuver is carried out in the
feed forward loop. As seen in Figure 5.3 the results are not as good as for the
turning circles. By evaluating the identification results in section 4.3, it is observed
that the turning circle is generating a substantial smaller response, which fit this
test better.

Simulation in 300 rpm 179.6080
Simulation in 400 rpm 69.0153

Table 5.4: Closed-loop residuals using the Nomoto model identified by measure-
ments from the suggested maneuvers.
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Figure 5.3: The Nomoto model in closed-loop (300 rpm).
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5.4.2 Ross Autopilot Model Reference Feed Forward

In this subsection the autopilot model of Ross is applied as reference feed forward.
This model is nonlinear and is able to adapt the maneuvering characteristics in
various deflections and velocities. However, only a simple step in the heading
reference is applied with two initial velocities. Thus, the best results in this
subsection are only slightly better compared to the Nomoto model.

Parameters Identified from The Turning Circle

Using the estimates from the turning circles provide various results as seen in
Table 5.5. The identification result in subsection 4.3.1 gave rather poor results
during high velocities and the closed-loop simulation also suffer because of this.

Simulation in 300 rpm 110.0642
Simulation in 400 rpm 185.0572

Table 5.5: Closed-loop residuals using the autopilot model by Ross identified by
measurements from the turning circles.
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Figure 5.4: The autopilot model of Ross in closed-loop (300 rpm).
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Parameters Identified from The Zig-zag Maneuver

In Figure 5.5 the closed-loop simulation during 300 rpm is shown. The estimated
parameters clearly suffer from a slightly slow, but too large response.

Simulation in 300 rpm 125.1633
Simulation in 400 rpm 145.2591

Table 5.6: Closed-loop residuals using the autopilot model by Ross identified by
measurements from the zig-zag maneuvers.
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Figure 5.5: The autopilot model of Ross in closed-loop (300 rpm).



5.4 Closed-loop Simulation Results 53

Parameters Identified from The Suggested Maneuver

At last the estimated model of Ross is simulated using the parameters from the
suggested maneuvers. As seen in subsection 4.3.3 the autopilot model was not able
to adapt the most extreme conditions, but the suggested maneuver excited the
system well. Although the results are not excellent, the results from the suggested
maneuver provide the best average performance.

Simulation in 300 rpm 78.7259
Simulation in 400 rpm 31.0921

Table 5.7: Closed-loop residuals using the autopilot model by Ross identified by
measurements from the suggested maneuvers.
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Figure 5.6: The autopilot model of Ross in closed-loop (300 rpm).



54 Autopilot Design



Chapter 6

Discussion

Through this thesis two autopilot models have been identified during several pre-
defined ship maneuvers. The field of system identification has been reviewed and a
prediction error method was chosen to estimate the model parameters. At last the
autopilot models are simulated in closed loop by means of a model-based autopilot
controller. In this chapter the different choices and results will be discussed.

6.1 Autopilot Models

Although several autopilot models exists, this thesis has considered the linear
Nomoto model and a nonlinear autopilot model derived by Ross.

The Nomoto model shows good accuracy in a strictly bounded operation point
as for the single experiments and is able to give a good approximation to both the
turning circle and the zig-zag maneuver. Particularly the turning circle provide
good estimates for the Nomoto model, and for slow-moving vessels like tankers
the Nomoto model would give a fair approximation.

However, for faster ships a more sophisticated model is necessary. The non-
linear autopilot model of Ross clearly deliver far better results fitting the various
maneuvers. During the single experiments the model fits exceedingly well. But
as seen in section 4.3 also the nonlinear model suffer when pushing the vessel at
its extremities. It should be mentioned that driving the yaw rate to ten radians
per second is rather extreme, which is done during the tests. In addition should
a model of the highly nonlinear rudder effect be included in the autopilot system,
which probably would give better results in sense of parameter convergence.

6.2 Ship Maneuvers

In this thesis three experiment designs are implemented, namely the turning circle,
zig-zag maneuver and the new suggested maneuver described in subsection 3.3.2.
The main goal for the maneuvers is to produce maximum informative signals. Al-
though the considered models performance not were excellent, the identification
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results and closed-loop simulations gives an indication of the maneuver’s perfor-
mance.

Although the turning circle is not optimally in an identification point of view,
satisfactory results were obtained for the linear Nomoto model. The widely used
zig-zag maneuver performs fairly well using estimates generated from several ex-
periments with various deflections. In the sense of informative signals white noise
is an optimal solution. However, the relative slow steering dynamics involve per-
forming predefined maneuvers. Although the performance of the suggested ma-
neuver is not proven during this thesis, the results indicates better performance
than both the turning circle and the zig-zag maneuvers for the nonlinear model.

6.3 Identification Methods

A review on identification methods has been presented. Based on the literary
study an iterative prediction error method was chosen to estimate the model
parameters. The method minimize the loss function and provide an unbiased
estimate with excellent asymptotic properties. It is nevertheless difficult to char-
acterize the quality of the estimates, as they are dependent of the data during
the experiment design. However when the number of data tends to infinity, the
asymptotic properties can be stated. In general the convergence property result
in:

θ̂N → θ∗ as N → inf, (6.1)

where
θ∗ = arg min

θ
E�(ε(t, θ)). (6.2)

This means that as more and more data become available, the estimate converge
to the value θ∗ that minimize the expected value of the norm of the prediction
errors. Which in a sense is the best possible approximation of the true system
available within the model structure.

6.4 Model-based Autopilot Controller

Only one controller is considered, namely the conventional PID-controller includ-
ing a model feed forward term. The controller was tuned to obtain a rather slow
but critical damped system without considering the feed forward term. Although
a number of real systems still are using simple PID-controllers, it is obviously not
an optimal choice. Better results would probably be obtained when introducing
saturation control, integrator-windup protection and model prediction control.



Chapter 7

Conclusion

This thesis has focused on identification of ship autopilot models. The main
goal was to suggest a new ship maneuver suitable for identification of the steering
characteristics. Secondly, a literary study on system identification was carried out
and a suitable identification method was chosen to verify the suggested maneuver’s
convergence properties. To verify the identified autopilot models, the ship was
simulated in closed-loop with a model-based autopilot controller.

Based on the theory of informative signals a new ship maneuver has been
developed. The identification results and the closed-loop simulations indicates
better convergence properties than the turning circle and zig-zag maneuver for the
nonlinear autopilot model. However, identification of different nonlinear autopilot
models and full-scale experiments have to be carried out to state a final conclusion.

To identify two different autopilot models an iterative prediction error method
was chosen. This identification method provided great results, although it suf-
fered because of the autopilot models. Finally a conventional PID-controller was
implemented with a model reference feed forward term to verify the identification
results.
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Chapter 8

Further Research

Different Models

Based on the results in this report several improvements can be done. Further
simulation with different ships can be performed. The identification results also
clearly showed that even more complex autopilot models should be applied for
highly nonlinear vessels performing very fast turns.

Optimization of The Suggested Maneuver

Although the suggested maneuver provides good results during the simulation in
this thesis, further improvements can probably be done in sense of efficiency and
parameter convergence.

Experimental Data

Further should the simulation environment be extended to contain both waves,
current and measurement noise according to [15] and [38]. More experimental
data will also substantiate the convergence properties of the suggested maneuver.

Model-based Controller

Better overall performance could also be reached by implementing a more sophis-
ticated autopilot controller.
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Appendix A

Further Simulation Results

In this chapter all of the experiments utilized during the merged identification
process are presented. First the different turning circles are shown, followed by
the zig-zag maneuvers. The suggested maneuver during 200 rpm are subsequently
displayed. At last the closed-loop identification results during 400 rpm are pre-
sented.
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A.1 Turning Circle

20 degree step with 500 rpm
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Figure A.1: North-East plot of the 20 degree turning circle (500 rpm).
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Figure A.2: Yaw rate and velocity during the 20 degree turning circle (500 rpm).
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10 degree step with 500 rpm
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Figure A.3: North-East plot of the 10 degree turning circle (500 rpm).
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Figure A.4: Yaw rate and velocity during the 10 degree turning circle (500 rpm).
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40 degree step with 200 rpm
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Figure A.5: North-East plot of the 40 degree turning circle (200 rpm).
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Figure A.6: Yaw rate and velocity during the 40 degree turning circle (200 rpm).
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20 degree step with 200 rpm
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Figure A.7: North-East plot of the 20 degree turning circle (200 rpm).
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Figure A.8: Yaw rate and velocity during the 20 degree turning circle (200 rpm).
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10 degree step with 200 rpm
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Figure A.9: North-East plot of the 10 degree turning circle (200 rpm).
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Figure A.10: Yaw rate and velocity during the 10 degree turning circle (200 rpm).
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A.2 Zig-zag Maneuver

20-20 zig-zag maneuver with 500 rpm
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Figure A.11: Rudder/yaw plot of the 20-20 zig-zag maneuver (500 rpm).
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Figure A.12: Yaw rate and velocity during the 20-20 zig-zag maneuver (500 rpm).
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10-10 zig-zag maneuver with 500 rpm
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Figure A.13: Rudder/yaw plot of the 10-10 zig-zag maneuver (500 rpm).
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Figure A.14: Yaw rate and velocity during the 10-10 zig-zag maneuver (500 rpm).
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40-40 zig-zag maneuver with 200 rpm
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Figure A.15: Rudder/yaw plot of the 40-40 zig-zag maneuver (200 rpm).
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Figure A.16: Yaw rate and velocity during the 40-40 zig-zag maneuver (200 rpm).
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20-20 zig-zag maneuver with 200 rpm
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Figure A.17: Rudder/yaw plot of the 20-20 zig-zag maneuver (200 rpm).
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Figure A.18: Yaw rate and velocity during the 20-20 zig-zag maneuver (200 rpm).
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10-10 zig-zag maneuver with 200 rpm
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Figure A.19: Rudder/yaw plot of the 10-10 zig-zag maneuver (200 rpm).
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Figure A.20: Yaw rate and velocity during the 10-10 zig-zag maneuver (200 rpm).
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A.3 Suggested Maneuver

The suggested maneuver with 200 rpm
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Figure A.21: North-East plot of the suggested maneuver (200 rpm).
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Figure A.22: Yaw rate and velocity during the suggested maneuver (200 rpm).
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A.4 Closed-loop Simulation Results

In this section the closed-loop simulations in 400 rpm are presented. The results
are discussed in section 5.4.
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Figure A.23: The Nomoto model in closed-loop (400 rpm).
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Parameters Identified from The Zig-zag Maneuver
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Figure A.24: The Nomoto model in closed-loop (400 rpm).
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Parameters Identified from The Suggested Maneuver
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Figure A.25: The Nomoto model in closed-loop (400 rpm).
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Ross Autopilot Model Reference Feed Forward
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Figure A.26: The autopilot model of Ross in closed-loop (400 rpm).
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Parameters Identified from The Zig-zag Maneuver
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Figure A.27: The autopilot model of Ross in closed-loop (400 rpm).
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Parameters Identified from The Suggested Maneuver
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Figure A.28: The autopilot model of Ross in closed-loop (400 rpm).



Appendix B

MATLAB Models

This chapter presents the Simulink diagrams and Matlab code used in this thesis.
A digital version of the diagrams and code is also available in Appendix C.

Simulink Diagrams
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Figure B.1: Project/Vessel
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Project/Zig-zag Maneuver

delta_c

1
rad2deg

−K−

Switch2
SwitchSelector

Constant3

0
Constant1

−C−

Constant

−C−

Clock

psi
1
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Figure B.6: Project/Model-based Autopilots.
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Project/Model-based Autopilots/Heading autopilot (Ross)
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Figure B.8: Project/Model-based Autopilots/Heading autopilot (Ross).
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Figure B.13: Project/Control Input/Rudder Machinery.
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Project/Control Input/Rudder

Drag 

Lift 

[XYKN]’

1

pi/(2*stall)7

−LCG

pi/(2*stall)6

−(VCG−0.5*sp)

pi/(2*stall)2

0.5*rho*A

gain
2

−1

gain
1

dCL

gain

1/(0.9*pi*ar)

Saturation

Product4

Product2
Product1

Math
Function

u2

Constant1

CD0

Vrel

2

Alpha_eff

1
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M-files

main init.m

1 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 % > Main initialization
3 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4

5 clc
6 clear all
7

8 vessel.n0 = 0; %init pos [m]
9 vessel.e0 = 0; %init pos [m]

10 vessel.phi0 = 0; %init roll ang [rad]
11 vessel.psi0 = 0; %init yaw ang [rad]
12

13 vessel.u0 = 0;%1.56; %init surge vel [m/s]
14 vessel.v0 = 0; %init sway vel [m/s]
15 vessel.p0 = 0; %init roll rate [rad/s]
16 vessel.r0 = 0; %init yaw rate [rad/s]
17

18 vessel.eta0 = [vessel.n0 vessel.e0 vessel.psi0]';
19 vessel.nu0 = [vessel.u0 vessel.v0 vessel.r0]';
20 vessel.init = [vessel.eta0; vessel.nu0];
21

22

23 %% Rudder
24 rudder.max = 45; %60; %max rudder [deg]
25 rudder.rate = 15.0; %max rudder rate [deg/s]
26 rudder.ts = 1; %time constant [s]
27 rudder.surge = 0.7; %0.3; %rudder effect on surge
28 rudder.sway = 4.0;%1.5%2.5; %rudder effect on sway
29 rudder.roll = 0.6; %rudder effect on roll
30 rudder.yaw = −2.3; %6.3 %−3.3%−5.3; %rudder effect on yaw
31

32 %% Thrust
33 thrust.max = 500; %max RPM
34 thrust.rate = 100; %max RPM Rate
35 thrust.ts = 1; %time constant [s]
36 thrust.rudder_fluid_vel = 1/200; %generated fluid velocity
37 thrust.effect = 0.05; %thrust effect on surge
38

39 %% Turning Circle
40 maneuver.circle = 45; %turning circle rudder deflection [deg]
41 maneuver.circle_threshold = 100; %threshold time [s]
42

43 %% Zig−zag Maneuver
44 maneuver.zigzag = 20; %zig−zag test [deg]
45 maneuver.zigzag_threshold = 100; %threshold time [s]
46

47 %% The suggested Variable Step Maneuver
48 maneuver.new_step = [0 5 10 20 30 40 45 0 0]; %rudder steps [deg]
49 maneuver.new_param = [100 2 0.3]; %threshold,switch,ramp
50

51 %% Autopilot
52 %Controller
53 autopilot.wb = 0.05; %bandwidh
54 autopilot.xi = 1.5; %relative damping ratio
55 autopilot.wn = (1/(sqrt(1−2*autopilot.xi^2+sqrt(4*autopilot.xi^4 ...
56 −4*autopilot.xi^2+2))))*autopilot.wb; %natural frequency
57

58 %Calculate controller gain
59 autopilot.Kp = (190*autopilot.wn^2)
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60 autopilot.Kd = (2*autopilot.xi*autopilot.wn*190)
61 autopilot.Ki = ((autopilot.wn/10)*autopilot.Kp)
62

63 %Nomoto model reference forward
64 autopilot.ffK = 0.107937
65 autopilot.ffT = 4.467136
66

67 %% Reference model
68 refmod.xi = 1; %relative damping ratio
69 refmod.wn = 0.2; %natural frequency
70 refmod.max_velocity = 10; %saturate r_ref [deg/s]
71

72 %% Reference step
73 reference.steptime = 100;
74 reference.init = 0;
75 reference.step = 45;
76

77 display Initialization_completed

vesselmodel.m

1 %% See Appendix C

suggested maneuver.m

1 function [output] = suggested_maneuver(input)
2 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
3 % > Suggested ship maneuver
4 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
5 % > Input vector: [clock,param,step]
6 % > Output vector: [rudder]
7 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
8

9 % Rename input vector
10 clock = input(1);
11 threshold_start = input(2);
12 threshold_switch = input(3);
13 ramp = input(4);
14 rudder_step = input(5:13);
15

16 persistent stepNumber; %define persistent counter
17 persistent threshold_temp; %define persistent threshold
18 persistent stepNow; %define persistent psi
19 persistent stepPhase; %define persistent step phase
20 persistent out; %define persistent output
21

22 if isempty(out)
23 out = 0;
24 end
25

26 if isempty(stepPhase)
27 stepPhase = 0;
28 end
29

30 if isempty(stepNow)
31 stepNow = 0;
32 end
33

34 if isempty(stepNumber)
35 stepNumber = 1;
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36 end
37

38 if isempty(threshold_temp)
39 threshold_temp = 0;
40 end
41

42 if(clock > threshold_start)
43 if(stepNumber == 1)
44 stepNumber = 2;
45 stepPhase = 1;
46 threshold_temp = clock;
47 out = −rudder_step(stepNumber);
48 end
49 end
50

51 threshold_switch = threshold_switch*rudder_step(stepNumber);
52

53 if(stepNumber > 1 && stepNumber < 9)
54 if(stepPhase == 1 && ((threshold_temp + threshold_switch) < clock))
55 out = −rudder_step(stepNumber) +(clock − threshold_temp − ...
56 threshold_switch)*ramp;
57 if(out > 0)
58 stepPhase = 2;
59 end
60 elseif(stepPhase == 2 && ((threshold_temp + threshold_switch) ...
61 < clock))
62 stepPhase = 3;
63 threshold_temp = clock;
64 out = rudder_step(stepNumber);
65 elseif(stepPhase == 3 && ((threshold_temp + threshold_switch) < clock))
66 out = rudder_step(stepNumber) −(clock − threshold_temp − ...
67 threshold_switch)*ramp;
68 if(out < 0)
69 stepPhase = 4;
70 end
71 elseif(stepPhase == 4 && ((threshold_temp + threshold_switch) ...
72 < clock))
73 stepNumber = stepNumber + 1;
74 stepPhase = 1;
75 threshold_temp = clock;
76 out = −rudder_step(stepNumber);
77 end
78 end
79

80 if(stepNumber > 8)
81 out = 0;
82 end
83

84 output=[out];

identification.m

1 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 % > Identification
3 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 % > Iterative Prediction−Error Minimization
5 % > lsqnonlin | Trust−Region Reflective Newton Search
6 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
7

8 %% Estimating Nonlinear Grey−Box Models
9 display Identification_started

10 nomoto = pem(data, nom.nlgr, 'Display', 'Full') %parameter estimation
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11 %ross = pem(data, ros.nlgr, 'Display', 'Full') %parameter estimation
12 display Identification_completed

model nomoto.m

1 function [dx, y] = model_nomoto(t, x, u_, K, T, varargin)
2 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
3 % > IDNLGREY Model File
4 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
5 % > The autopilot model of Nomoto
6 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
7

8 N = u_(1); %rudder input
9

10 y = x(1); %output
11

12 dx = [(K/T)*N−(1/T)*x(1)]; %state equation

model ross.m

1 function [dx, y] = model_ross(t,x,u_, Ndr, NuvppL, NuvL, NuuvL, NvvvL, ...
2 NrrvL, Nvv, Nrv, NurL, NuurL, NrrrL, ...
3 NvvrL, Nvr, Nrr, Xdu0, Ydv0, Ndv0, Ydr0, ...
4 varargin)
5 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
6 % > IDNLGREY Model File
7 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
8 % > Autopilot model derived by Ross
9 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

10

11 N = u_(1); %rudder input
12 u = u_(2); %sway velocity
13 v = u_(3); %surge velocity
14 r = u_(4); %yaw rate
15 p = u_(5); %yaw
16

17 r = x(1);
18 y = r; %output
19

20 dx = [(1/(−Ndr))*(N+NuvppL*u*v*p^2+NuvL*u*v+NuuvL*u^2*v+NvvvL*u^3 ...
21 +NrrvL*r^2*v+Nvv*abs(v)*v+Nrv*abs(r)*v+NurL*u*r+NuurL*u^2*r ...
22 +NrrrL*r^3+NvvrL*v^2*r+Nvr*abs(v)*r+Nrr*abs(r)*r−(Xdu0−Ydv0)*u*v ...
23 +(1/2)*(Ndv0+Ydr0))]; %state equation

data structure.m

1 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 % > Data Structure
3 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 % > Representing Time−Domain Data as IDDATA Objects
5 % > Constructing IDNLGREY Object of the models
6 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
7

8 %load Simulation/circle_40deg_500
9 %load Simulation/zigzag_40deg_500

10 load Simulation/suggested_500
11 id.startsim = 95; %start simdata
12 id.endsim = length(simout_time); %end simdata
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13 id.minx = 100; %plot minx
14 id.maxx = 200; %plot maxx
15

16 %% Time−Domain Data as IDDATA Objects
17 id.u = [simout_rudder_c.signals.values(id.startsim:id.endsim) ...
18 simout_u.signals.values(id.startsim:id.endsim) ...
19 simout_v.signals.values(id.startsim:id.endsim) ...
20 simout_r.signals.values(id.startsim:id.endsim) ...
21 simout_psi.signals.values(id.startsim:id.endsim)]; %input
22 id.y = [simout_r.signals.values(id.startsim:id.endsim)]; %output
23 id.Ts = 0; %nonuniformly sampled data
24 id.TimeVector = simout_time(id.startsim:id.endsim); %time
25 data = iddata(id.y,id.u,id.Ts,'SamplingInstants',id.TimeVector); %iddata
26

27 %% IDNLGREY Object | Nomoto autopilot model
28 nom.FileName = 'model_nomoto'; %file describing the model structure
29 nom.Order = [1 5 1]; %model orders [ny nu nx]
30 nom.Parameters = [−0.15; 3]; %initial parameters
31 nom.InitialStates = [0]; %initial initial states
32 nom.Ts = 0; %time−continuous system
33 nom.nlgr = idnlgrey(nom.FileName, nom.Order, nom.Parameters, ...
34 nom.InitialStates, nom.Ts, 'Name', 'Nomoto Model');
35

36 %% IDNLGREY Object | Ross autopilot model
37 ros.FileName = 'model_ross'; %file describing the model structure
38 ros.Order = [1 5 1]; %model orders [ny nu nx]
39 ros.Parameters = [15; 0; 200; −400; 0.01; −2; 70; −8; 11; −2.5; 0.05; ...
40 100; −10; −1; −200; 200; −0.05; −0.05; ]; %init param.
41 ros.InitialStates = [0]; %initial initial states
42 ros.Ts = 0; %time−continuous system
43 ros.nlgr = idnlgrey(ros.FileName, ros.Order, ros.Parameters, ...
44 ros.InitialStates, ros.Ts, 'Name', 'Ross Model');
45

46 display Data_Structure_Created

autopilotmodel.m

1 function [output] = autopilotmodel(input)
2 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
3 % > Autopilot model
4 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
5 % > Input vector: [d/dt(r_d),r_d,eta,psi_d,nu]
6 % > Output vector: [N]
7 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
8

9 % Rename input vector
10 dr = input(1);
11 r = input(2);
12 u = input(3);
13 v = input(4);
14 p = input(6);
15

16 % Insert identified parameter vector
17 param = []
18

19 % Rename parameter vector
20 Ndr = param(1);
21 NuvppL = param(2);
22 NuvL = param(3);
23 NuuvL = param(4);
24 NvvvL = param(5);
25 NrrvL = param(6);
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26 Nvv = param(7);
27 Nrv = param(8);
28 NurL = param(9);
29 NuurL = param(10);
30 NrrrL = param(11);
31 NvvrL = param(12);
32 Nvr = param(13);
33 Nrr = param(14);
34 Xdu0 = param(15);
35 Ydv0 = param(16);
36 Ndv0 = param(17);
37 Ydr0 = param(18);
38

39 % Calculate new states
40 N = (Ndr*dr−NuvppL*u*v*p^2−NuvL*u*v−NuuvL*u^2*v−NvvvL*u^3 ...
41 −NrrvL*r^2*v−Nvv*abs(v)*v−Nrv*abs(r)*v−NurL*u*r−NuurL*u^2*r ...
42 −NrrrL*r^3−NvvrL*v^2*r−Nvr*abs(v)*r−Nrr*abs(r)*r+(Xdu0−Ydv0)*u*v ...
43 −(1/2)*(Ndv0+Ydr0));
44

45 output=[N];
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