GETTING STARTED WITH

A simple VHDL tutorial based on Xilinx ISE 10.1

Written by Erik Neess

07/05/2009

R [01 (oo [F{ox 1 o] o NP PPPPPPUPPPPPPPR
P = Vg 1] o [0 J= W [TV o] (o] [T 0! ST 3
3 CreatiNg the SOUICESuuuiiii it e e e e e e e e e e e e e e ene e eaeeennn e as 4
3.1 Creating a top-1eVvel fille..... ... 4
3.2 Creating the CIOCK dIVISOTcevtmemmmmeeeeeeeeeeeee ettt eeeeee s e e e e e e aeaes 6
3.3 Creating the LED ArIVETcoooiiiii ettt e e e e e e e e e e e e aeeeeeeeeeeeeeneees 7

4 Linking the physical pins and the VariableSccovviieeeeiiiiiiiiiiei e eeeeeee e, 8
5 Synthesizing and transferring the code to the &APRG..............ooiiiiiiiiii e, 8

1 Introduction

Welcome to the world of VHDL and FPGAs. This tugbnivill guide you through the creation
of a very simple project that will make some LEDtsyour development board blink. The
board used in this tutorial is the XilinX Sparta;dut if you’'ve got a different one, that's
probably not a problem. The only difference shdadgdhe location of the pins that are used.

VHDL is not at all like any other programming lamges — actually it's not a programming
language at all. VHDL is short for “Very High Spelediegrated Circuit Hardware Description
Language”. This means that when writing VHDL, ohewdd think not so much in terms of
variables, but more in terms of physical databasescomponents.

2 Starting a new project

Start by launching Xilinx. You should see four diént windows/areas that contain nothing.

* The biggest window is the workspace. This is wiyene edit your files.

* The upper left window is where you chose whichsfile work with from the project.

* The window below the upper left window is where ytwose to perform some action
on the selected file, such as simulate or syntkesiBynthesizing is FPGAs
equivalent to compiling.

* The bottom window is where you get feedback frompglogram, such as warnings
and errors.

Choose File — New Project. Call it “leds”, and cekeHDL" for top-level source type. A
folder will be created called “leds”. This will ctain all the project files. Push next.

Here we must choose the platform we are usingirFillhatever matches your setup. If
you’re not sure, look in the documentation thalofek the development board. Make sure
that VHDL is the preferred language, and that IB&Utator is the chosen simulator. Push
next.

5 New Project Wizard - Device Properties Léj
Select the device and design flow for the project
Property Name Value |
Product Category All E|
Family Spartan3E E|
1
Device XC3S500E ||
Package F5320 =]
|
Speed -4 E
Top-Level Source Type HDL
Synthesis Tool _XST (YHDLVerlog) E
Simulator ISE Simulator (VHDL/Verilog) ‘L—l
Prefered Language VHDL E|
Enable Enhanced Design Summary [V
Enable Message Filtering [
| Display Incremental Messages
| More Info ‘ < Back | | Next > | ‘ Cancel |

Now you are asked if you want to add any sourages. skip shis step and all the next ones by
pressing next a couple of times and then finish.

3 Creating the sources

3.1 Creating a top-level file

By now you should have your FPGA listed in the “®@®&s” window. Mark it, then choose
“Add new source”. Often one may want to reuse fitede in different projects etc, then one
may use “Add existing source”.

In the “New Source Wizard”, choose “VHDL module”dagall it “main”. This will be the
top-level file for our project, which will contaiall the pins used on the FPGA, global
variables etc. Push next and finish.

Now this file should appear as a sub-file undemryERGA in the “sources” window. Double-
click it, and the contents of the file should bepdiyed in the main window. As you may see,
some code has already been generated. Also, angthnting with “—* is commented away,
like “//" in C.

Looking at the code, you'll see three parts. Rinete are declarations, just saying that we
want to include some functions from the IEEE librar All files must start with these, just
like the “#include” statements in C.

Next there is an “entity” part, and an “architeefupart. These should also be included in all
sources. The entity part tells us what in- and wiv@ariables the source has, and the
architecture tells us what to do with these vagabBecause this is the top-level file, the in-
and output variables are the actual pins on theAB8cause we want to control the LEDS,
we will have to add these connections. Also, wetradd the clock. Modify the entity part to
look like this:

entity main is
Port (clk : in std_logic;
--LEDS
LED_O, LED_1, LED_2, LED_3, LED_4, LED_5, LED_6ED_7 : out std_logic
)i

end mai;

Now we have one input pin, and 8 output pins. Sigiclmeans that these are single pins.
Some sources may for instance take an 8-bit variabinput. This would be written as:

“var_name : in std_logic_vector(7 downto 0)” or
“var_name : in std_logic_vector(0 to 7)” etc.

The difference between these two, is which bit bdlindexed when writing “var_name(0)”.

Now let’s look at the architecture part. The fitshg we may want to do, is to create an
internal signal. We want blinking leds, but thepshin’t be blinking at 50 MHz. Let’s create
an internal clock with a frequency of 1 Hz. Alse want to create two sub-blocks, one to
perform the clock division, and one to be the LEDet.

Modify the architecture part to look like this:

architecture Behavioral of main is
signal slow_clk : std_logic;
begin
clk_div : entity work.clk_div(Behavioral)
port map (clk, slow_clk);
led_drv : entity work.led_drv(Behavioral)
port map (slow_clk, LED_O, LED_1, LED_2, LED LED 4, LED_5, LED_6, LED_7);
end Behavioral;

This creates the sub-blocks clk_div and led_drv shauld be entities of “work.clk_div” and
“work.led_drv”. “work” just means that these arkeéiin our current project. But we haven't
made these yet. As you can see, these are crebitlika how you use function calls in C,
except the call includes both the input and th@uuariables that the function needs.

If you wanted to use an identical led-driver fomsoother leds, you could for instance add:

led_drv2 : entity work.led_drv(basic)
port map (slow_clk, LED_8, LED_9, LED_10, LED,1ED_12, LED_13, LED_14, LED_15);

This way, you don’t have to write the driver twice.

3.2 Creating the clock divisor

Now it's time to create our entities. Make sure fmias chosen under “sources”, and
doubleclick “create new source”. Make it “WVHDL mddt and call it “clk_div”. Do the same
for “led_drv”.

Open the clk_div file, and make the entity likesthi

entity clk_div is
Port (clk : in std_logic;
slow_clk : inout std_logic :='0’
)i

end clk_div;

Here, “inout” means that the variable can alsoda&l iwithin the block. Kind of like a
feedback function. It is set to be ‘0’ as default.

Replace the architecture part with the following:

architecture Behavioral of clk_div is
begin
--This generates the 1HZ clock for the leds
slow_clk_proc : process (clk) is
constant clkspeed : integer := 50000000;
variable Counter : integer range 0 to clkspeed; :=
begin
if (clk'event and clk="1") then
Counter := Counter + 1;
if (Counter = clkspeed) then
slow_clk <= not slow_clk;
Counter := 0;
end if;
end if;
end process slow_clk_proc;
end Behavioral;

This generates a process called “slow_clk_prod’shauld be “trigged” whenever something
happens on the “clk” signal. It is possible to haegeral signals as triggers, but “clk” usually
covers it all.

One can have several processes in each block, ngeidnait you could easily create a
“slow_clk2_proc” below this one if you wanted tchd constants that are declared in this
process, are availiable to this process only. If want variables to work in several processes,
they must be declared before the “begin” statenretite architecture. This is a bit dangerous
though, and should mainly be done for constants.

After the begin statement in the process, we salyshmething is supposed to happen when
the clk signal has a rising edge. It is customarglivays use the rising edge. The rest of the
code should be quite self explanatory. Note thatisee":=" when updating a local variable,
and “<=" when updating one of the output signalslaed in the entity statement.

3.3 Creating the LED driver

Open the led_drv file, and make the entity as fedio

entity led_drv is
Port (slow_clk : in std_logic;
LED_0, LED_1, LED 2, LED_3, LED 4, LED_5, LED BED_7 : out std_logic :='0'
)i

end led_drv;

Make the architecture as follows:

architecture Behavioral of led_drv is
begin
leds_proc : process (slow_clk)
variable counter : std_logic_vector(7 downto 0Y08000000";
begin
if (slow_clk="1" and slow_clk'event) then
counter := counter + 1;
LED_O<=counter(0);
LED_1<=counter(1);
LED_2<=counter(2);
LED_3<=counter(3);
LED_4<=counter(4);
LED_5<=counter(5);
LED_6<=counter(6);
LED_7<=counter(7);
end if;
end process leds_proc;
end Behavioral;

Here we have created an 8-bit counter that willease on each cycle of our slow clock. We
pass each bit out to the respective LED connectdmen the counter variable overflows, it
will simply start on 0 again.

Mark the FPGA under “sources”, expand “Design tié”, and doubleclick “Update All
Schematic Files”. Choose okay if you get a popépce this is done, our two blocks should
appear as sub-blocks of the main file.

4 Linking the physical pins and the variables

Now select “main.vhd”, and take a look in the “R¥sses” window. Choose “user
constraints” — “Floorplan 10 — Pre-Synthesis”. ©ke “yes” on the popup. For all the pins,
enter the correct data as specified in the devedopimoards user manual.

Design Object List - [/O Pins [||)
1/0 Name | 170 Direction| Loc | Bank 1/0 Std. Viref | Veeo| Drive Str.| Temmination | Slew | O
dk Input) EANK [[VCMOS33 N/A 330
LED0 |Output Fiz BANK | LVTTL N/A (330 |8 SLOW
LED_1 Output E12 BANK | LVTTL N/A [330 |8 SLOW
[ED 2 |Output E1 BANK | LVTTL N/A (330 |8 SLOW
LED_3 |Ouiput F1i BANK | LVTTL N/A (330 |8 SLOW
LED_ 4 [Ouiput cn BANK | LVTTL N/A [330 |8 SLOW
[ED_5 | Output D11 BANK | LVTTL N/A [330 |8 SLOW
LED 6 | Output E9 BANK | LVTTL N/A 330 |8 SLOW

4 L 3

5 Synthesizing and transferring the code to the FPGA

Under “Configure Target Device”, rightclick “Mana@®nfiguration Project” and select
“‘Run”.

Everytime you have made some change to the protranyou wish to try out, this has to be
performed. When the program starts to grow in ghis,will take longer and longer time. Ass
the program gets huge, and the FPGA is almost agiplfilled up, this could easily take
more than 20 minutes.

When done, you should get a popup asking you toss#an action. Leave it as default
(Automatically connect to a cable....). Press finish.

The first time you program the FPGA you also havspecify how the “JTAG chain” is. This
means what elements the programming-signal has tbrgugh before it comes to the FPGA.
Select “Operations” — “Initialize Chain”. Open “nmdbit” (which contains our synthesized
code), then choose bypass on any subsequent pdplupsse okay on the final popup.

Now you can right-click the green square with “mhiti and select “program”. If everything
is working, the LEDs should be counting.

