
June 2009
Sverre Hendseth, ITK

Master of Science in Engineering Cybernetics
Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Engineering Cybernetics

A Multicore-aware Deadline-driven
Real-Time Scheduler for the Linux
Kernel

Henrik Austad

Problem Description
Implement a multicore aware deadline driven real-time scheduler for the Linux kernel;
a) Determine type of algorithm that is best suited in a multi-core system (heterogeneous CPUs)
with respect to CPU cache, race conditions and overall system utilization.
b) Understand and modify the kernel source, configuration and compilation system.
c) Discuss the proposed scheduling class with the kernel community to make sure it is a desired
project.
d) Track the mailing list, filter relevant topics, submit patches and perform patch review when
necessary. All of this to gain practical knowledge about kernel development and maintenance.
e) Identify relevant subsystems and create test-modules to verify behavior.
f) Create userland interface to the class via syscalls and sysfs entries.
g) Implement the scheduling class and connect it with the relevant subsystems.
h) Design and implement a small test for the new scheduling class.
i) Have the new scheduling class included in the kernel repository, either mainline Linux or the
real-time preemption patch series.

Assignment given: 12. January 2009
Supervisor: Sverre Hendseth, ITK

Norwegian University of
Science and Technology

Department of Engineering Cybernetics

TTK4900

Dedicated Computer Systems,

Master Thesis

Rate-based Real-Time Scheduler for the
Linux kernel on multicore systems

Author:

Henrik Austad

Supervisor:

Sverre Hendseth

ii

Preface

This paper is written as fulfillment of the Master of Engineering degree, completed

during the 10th semester at the Norwegian University Science and Technology

(NTNU), Department of Engineering Cybernetics. In this paper, a multi-core

aware, rate-based scheduler for real-time tasks is implemented in the Linux ker-

nel. Due to problems faced during the integration process, a fully functional

scheduler has not been implemented.

I acknowledge the invaluable assistance offered by associate professor Sverre

Hendseth at the Department of Engineering Cybernetics, Norwegian University

of Science and Technology. I would also like to show my gratitude to Peter Zijlstra

for helping me with technical issues. I also thank Bill Huey’s patience for the

countless hours spent listening to my ideas and opinions about scheduling in the

kernel. Without his guidance, I would have been truly lost. Finally, I thank my

brother Jon, for helping me realize the difference between a comma and a period.

————————————

Henrik Austad

Trondheim, June 8, 2009

iii

iv PREFACE

Abstract

This paper describes the implementation of a new scheduling class in
the Linux kernel. The required subsystems are covered and tested in detail.

The scheduling class will handle real-time tasks that cannot miss a
deadline (hard real-time) and is planned to be placed on top of the RT
Preemption Patch. The goal is to extend the Linux kernel with a deadline-
driven scheduler.

The scheduling algorithm is the PD2 algorithm developed by Baruah
et. al [22]. Some optimizations have been performed, most notably the
way the subjob values are being calculated. Furthermore, the release of
a subjob has been updated to be an O(1) operation. For reasons to be
discussed later, the implementation failed, but from the failure arose a
better understanding. A modified MLLF [20] scheduler has been proposed,
one which is designed specifically to counter many of the problems faced
during this project.

v

vi ABSTRACT

Contents

Preface iii

Abstract v

I Exordium 1

1 Introduction and Motivation 3

1.1 Motivation . 4

1.2 Problem definition . 7

1.3 Summary of work . 7

1.3.1 Bringing order to chaos . 8

1.3.2 Optimizing the build . 10

1.3.3 It’s all about source control 11

1.3.4 Required knowledge . 11

1.3.5 Related work . 12

1.4 Related projects . 13

1.4.1 LitmusRT . 13

1.4.2 RT-Linux . 14

1.4.3 Bill Hueys generic deadline framework 14

1.5 The rest of this report . 15

2 The Linux Kernel 17

2.1 Background . 17

2.2 Current status in the Linux scheduler 18

2.2.1 The “normal” scheduling policy 19

2.2.2 Real-time class and policies 20

2.2.3 Challenges faced with the current scheduler 20

2.3 Ingo Molnar’s RT-preemption patch 21

2.3.1 Fully preemptible kernel 22

2.3.2 Threaded ISRs . 22

2.3.3 Spinlocks . 23

vii

viii CONTENTS

2.3.4 Priority Inheritance . 23

2.4 Kernel API and conventions . 24

2.4.1 Coding conventions . 24

2.5 Summary . 24

3 Scheduling Theory 27

3.1 Background and terminology . 28

3.2 Single core scheduling algorithms 29

3.2.1 Rate Monotonic . 29

3.2.2 EDF Scheduling . 29

3.3 Multi-Core scheduling algorithms 30

3.3.1 Global . 30

3.3.2 Partitioned . 31

3.4 Rate based scheduling - Pfair . 32

3.4.1 Calculating release and deadline 34

3.4.2 Tie breaking rules . 35

3.4.3 Reweighing . 36

3.4.4 Constraints and limitations 37

3.5 Summary . 37

II Design and Implementation 39

4 Overall Design of the Scheduler 41

4.1 A birdseye view . 42

4.2 A pfair task . 44

4.2.1 New attributes in the task descriptor 44

4.2.2 Adding subjobs . 45

4.2.3 Calculation of subjob values 47

4.2.4 Comparison of tasks . 48

4.3 The pfair runqueue . 49

4.3.1 Added fields to the standard runqueue 49

4.3.2 Values in the pfair runqueue 51

4.3.3 Storing tasks in the runqueues 52

4.4 Solving the deadline inversion problem 52

4.5 Main scheduler interface . 53

4.6 Adding a gate to the kernel . 54

4.7 Building the kernel . 54

4.8 Summary . 54

CONTENTS ix

5 Memory management 55

5.1 Background . 56

5.1.1 kmalloc and kfree . 56

5.1.2 The SLAB allocator . 58

5.2 Kernel interface . 60

5.2.1 Cache create and destroy 60

5.2.2 Allocate memory for an object 61

5.2.3 Deallocate, return to cache 61

5.3 SLAB kernel interface . 62

5.4 Small test module . 62

5.5 End result . 63

5.6 Summary . 63

6 Advanced data structures 65

6.1 Linked lists . 66

6.1.1 Background . 66

6.1.2 Intended role . 67

6.1.3 Kernel interface . 67

6.1.4 Test module . 68

6.1.5 End result . 68

6.2 Red black trees . 69

6.2.1 Background . 69

6.2.2 Kernel interface . 69

6.2.3 Small test module . 70

6.2.4 End result . 70

6.3 Summary . 71

7 Linking to userspace 73

7.1 SysFS and kobject . 74

7.1.1 kobject . 74

7.1.2 SysFS . 74

7.1.3 Kernel interface . 74

7.1.4 Sample module . 76

7.1.5 Final result . 77

7.2 System calls . 77

7.2.1 Syscall background . 77

7.2.2 Required change . 78

7.2.3 Final result . 78

7.3 Summary . 79

x CONTENTS

8 Time management 81

8.1 Background and requirements . 82

8.2 The timer infrastructure . 83

8.2.1 Cascading Timer Wheel (CTW) 83

8.2.2 High resolution timers - hrtimers 84

8.3 The timer API . 86

8.3.1 hrtimer init() . 86

8.3.2 hrtimer start() . 87

8.3.3 hrtimer cancel() . 87

8.3.4 Remote timers . 87

8.4 Sample module . 87

8.5 Final results . 88

8.6 Summary . 88

9 Implementation of the core scheduler 89

9.1 Core algorithm . 90

9.1.1 Calculations for the subjobs 90

9.1.2 Testing the elements . 90

9.2 The expected interface from the main scheduler 91

9.2.1 put prev task pfair() 91

9.2.2 pick next task pfair() 92

9.3 The syscall interface . 94

9.3.1 sched pfair update() 94

9.3.2 sched pfair reweigh() 94

9.3.3 sched pfair release() 94

9.4 The acceptance function for new tasks 95

9.5 Summary . 95

III Assembly and Evaluation 97

10 Bringing it all together 99

10.1 Other practical tasks . 100

10.1.1 Add kconfig . 100

10.1.2 Allocating memory for the core 101

10.2 Adding the pieces together . 101

10.3 Summary . 102

11 Summary and Conclusions 103

11.1 Evaluation of scheduler . 104

11.2 Deadline Inheritance . 104

CONTENTS xi

11.3 Evaluation of project goals . 105

11.4 A more mature approach . 106

11.4.1 Preliminaries . 106

11.4.2 Assumptions and notation 107

11.4.3 Earliest Failure First . 108

11.4.4 Implementation optimizations for the Linux kernel 110

11.4.5 Future work . 110

11.5 Summary . 111

References 113

Index 117

Glossary 121

IV Appendix 127

A Distributed and cached compilation 129

A.1 Cached compilation - ccache . 129

A.2 Distributed C/C++ compiler - distcc 129

A.3 Basic setup and usage . 129

B Module code 133

B.1 Slab allocator . 134

B.2 Linked Lists . 136

B.3 Red black trees . 140

B.4 Sysfs module . 145

B.5 Timer module . 147

B.6 Bouncing timer module . 151

C Various scripts 155

C.1 kinstall.sh . 156

C.2 trigger script.sh . 157

xii CONTENTS

Part I

Exordium

1

Chapter 1

Introduction and Motivation

“A computer terminal is not some clunky old television with a typewriter in front

of it. It is an interface where the mind and body can connect with the universe

and move bits of it about.”

— Douglas Adams

This project is about implementing a multi-core, rate based scheduler for real-

time tasks in the Linux kernel. The pfair algorithm is given particular attention.

The theory is “state of the art”, and at the time of this writing, no operating

system officially supports a multi-core, rate based scheduler.

The major tasks in this project has been implementing the algorithm, in-

cluding it into the kernel and utilizing the various subsystems. Furthermore, the

theory must be mastered, as must the somewhat daunting task of interfacing

with the kernel community via the Linux Kernel Mailing List (LKML).

The report is split into 4 distinct parts. Part I contains introduction and

background material. The background covers the current scheduling system in

the Linux kernel, scheduling theory and a brief look at related work. Part II

describes design and implementation of the pfair scheduler. This is where most

of the actual work is described. Then, part III evaluates the scheduler and the

outcome. Part IV contains the Appendix with various elements not strictly re-

lated to the project, but are needed nevertheless.

This report is intended as a document to show what was done, why and how,

but is by no means exhaustive. For a complete understanding of the kernel inter-

nals, the only way is to work with the kernel code. All relevant code is attached

for the readers perusal.

3

4 CHAPTER 1. INTRODUCTION AND MOTIVATION

This chapter introduces the project, and explains the primary motivation

for writing a whole new scheduling class instead of “just” extending the current

scheduler. Then it outlines the project itself, with all the practicalities, dead ends

and planning. It also lists the required skills needed to successfully complete a

task of this magnitude.

1.1 Motivation

The pfair scheduler is a near optimal rate based scheduler. An optimal scheduler

is an instance of a given algorithm that performs at the peak of the theoretically

possible. For instance, EDF is optimal because deadline driven scheduling can

achieve 100% utilization on a single core machine. Rate Monotonic scheduling

is also optimal, even though it is bounded to approximately 68%, because the

static priority algorithm is bounded to this level.

The current real-time scheduler in the Linux kernel is a static priority, parti-

tioned scheduler. It will never change the priority of a task, but it may move a

task from one processor to another to balance the load. The idea is to give the

application programmer complete control over the priorities. This works to some

extent, but have several serious drawbacks:

• The application developer must decide the priorities for all tasks in order

to successfully meet the deadlines. When the number of tasks grow, this

can become an unmanageable task.

• Very dynamic systems, or systems composed of several applications, quickly

becomes too complex for the most advanced tool to analyze offline.

• By using a partitioned scheduler, most of the global scheduler related in-

formation will be unreachable. To perform globally “sound” scheduling

decisions, the scheduler must itself be global (or have some serious load

balancing).

• A partitioned scheduler must use approximation when accepting jobs, and

hence, by definition, cannot ever hope to perform as well as a scheduler

than takes the entire system into consideration.

• In order to allow all tasks execute as quickly as possible, the load across

the CPUs must be kept as even as possible. A partitioned approach has to

resolve to load balancing, adding extra overhead and unpredictability. A

global scheduler can avoid this issue all together.

1.1. MOTIVATION 5

• It has no notion of passed execution time and remaining time, and this

results in “blindfolded” task-switches — the scheduler preempt tasks hoping

it has done the right thing.

For some applications, this scheduler works fine. However, as the comput-

ers keep evolving, and more and more real-time tasks are being handled by the

computers, the analysis grow in complexity. The current scheduler cannot scale

to very large, complex schedules. To fully utilize the hardware, the scheduler

must accept jobs until the processor can be kept busy at all time, while still

ensuring that all deadlines are met. All in all, the kernel must provide greater

expressiveness to the application programmer. The developer must be given the

ability to express the needs of the application in as a precise manner as possible.

By allowing the deadlines to be passed directly and used internally, much greater

expressiveness can be achieved than by using simple priorities.

Chapter 3 discusses the pfair scheduler, a multi-core rate based scheduler

that is near-optimal1. To justify the large effort required to implement a new

scheduler in the kernel, it must help, or ease:

• Scenarios too complicated for application developers to deal with manually,

i.e. if a system has a large number of tasks.

• Scenarios that are too dynamic to deal with either manually or by a single

application, e.g. when more than one real-time application run on the

computer.

• Accept new tasks more broadly than the current static priority, partitioned

scheduler, and guarantee the overall system being deterministic and meet

all deadlines.

• Induces less overhead and computational complexity than a partitioned

scheduler with an advanced load balancer.

• Provide the application programmer with greater expressiveness when it

comes to communicating the needs of the task to the scheduler.

• Give the scheduler a simple way of enforcing bandwidth control over tasks.

The PD2 scheduler can do a lot of this, but not all. It is neither truly opti-

mal, nor able to solve all the bin-packing problems. It strives to, but unless the

timeslices shrinks to infinitesimal size, the scheduling decisions take zero time

1Almost optimal, but not quite due to some design choices that minimized computational
overhead, but adds to the “error”

6 CHAPTER 1. INTRODUCTION AND MOTIVATION

and the time needed to switch tasks is non-existent, it will never be truly opti-

mal. Because of the global runqueue needed by the algorithm, it can never scale

linearly to an ever increasing number of CPU cores. In Sec. 3.4, the scheduler

is presented more formally. Although it is not optimal, it is very close in many

areas. This makes it a better candidate than a lot of other partitioned algorithms

which fail to do this. Another “neat” feature of pfair, is that it will reduce jitter

dramatically, and it can act as “computational timers”, by this we mean that not

only will pfair meet the deadlines, but the jobs will also finish close to the actual

deadline, allowing for “just in time computation”.

An old “mantra” when it comes to real-time engineering, is to just add more

and faster hardware if the system experienced deadline misses2. As long as

Moore’s Law applies, this works. But, as the hardware manufacturers are moving

from improving single-core performance to “just” adding more cores, this rule of

thumb breaks down. In addition, as we continue to see more and more embedded

devices doing tasks previously performed by big systems, or humans, using less

power becomes very important. If the scheduler is multi-core optimal, it means

that the system can be minimized and still meet the deadlines and provide the

required QoS.

In this project, we look at hard real-time. By doing that, we do not allow

for any tasks to miss a deadline. This is next to impossible to test at run-time,

and the added overhead for doing so, makes this non-feasible. Instead, Resource

Reservation is used. This is an effective technique for ensuring that tasks do not

use more resources than the system can provide, and still be able to utilize as

much of the available system as possible. It works by reserving a certain amount

of resources as an acceptance test. If the system can provide the requested

amount, the task is accepted. Otherwise it is turned down. Once accepted, the

system provide assurance to the task that it will be given the requested amount.

As a final note, by implementing a scheduling policy that handles time as the

fundamental key to order the tasks, the system frequency3 becomes less of an

issue. If the scheduler can set a lower frequency limit, the system can scale down

to this limit and still meet all deadlines. For small and embedded systems, this is

a desirable goal. However, this is not part of this project; it is just a motivating

factor.

2If tweaking the priorities proved unsuccessful for various reasons.
3CPU frequency, along with System Bus Frequency and Memory frequency, i.e. overall

speed.

1.2. PROBLEM DEFINITION 7

1.2 Problem definition

The kernel needs a scheduler to handle tasks with fixed deadlines without forcing

the tasks to readjust their priorities dynamically at run-time. It is desirable to

allow a task to reweigh4 its parameters dynamically in order to facilitate non-

fixed deadlines. All of this must be done in a way that preserves predictability,

which is the most important property of any RTOS.

Now is the time to extend the Linux scheduler. Consumer hardware already

has several cores5. More interestingly, the embedded market will see chips with

multiple cores [13], thus revealing an even greater need for a multi-core aware

scheduler. A scheduler like pfair can enable system engineers to utilize the entire

system without having to verify all priorities to ensure that the deadlines are

met. Furthermore, it is a scalable along several axes:

• The available processing power will scale almost linearly to the number of

cores (up to a certain point).

• All deadlines can be met regardless of the number of tasks (given that the

overall utilization does not exceed the available processing capacity).

A deadline driven scheduler allows the engineer to focus on the actual task,

not on computing the priorities for all the tasks. The current Linux scheduler

cannot easily be extended this way, thus the need for a new scheduling class.

1.3 Summary of work

Most of this project is practical work. A large portion of time was spent on

understanding the kernel internals, build system and coding style, as well as sub-

mitting patches to the scheduler region of the kernel.

As the algorithm of choice is a global approach, care had to be taken when

choosing data structures, which subsystems to use, and that these were employed

as efficiently as possible. To describe this, the implementation part is divided into

a series of chapters, each describing, as thoroughly as possible, the subsystems

used. Chapter 10 ties everything together. Tasks too small to justify a dedicated

chapter in part II are included here.

4Change the parameters, period, deadline, worst case execution time, and if it is periodic
or sporadic.

5Intel and Advanced Micro Devices (AMD) both offer quad-core chips, Sun with its Niagara
processor takes this to 8, each capable of running 4 threads, to name a few.

8 CHAPTER 1. INTRODUCTION AND MOTIVATION

Figure 1.1: Current tree describing the different tasks and how they are repre-

sented in the TaskJuggler files

The rest of this section deals with tasks and challenges required by the project,

but not directly relevant to the scheduler itself. Nevertheless, time and effort was

spent on these topics, and they are relevant to the report.

1.3.1 Bringing order to chaos

It was clear from the beginning that this was a complex task. A vast amount

of details needs to be addressed in order to get a working scheduler. As the

scheduler is a central part of the kernel, adding a new scheduling class is a rather

complicated affair. Also, several smaller subtasks had to be identified and prop-

erly planned.

TaskJuggler was used in order to organize the project. The process of iden-

tifying all the subtasks worked quite well. Granted, it had to be refined and

altered slightly, but by and large, the initial tree of tasks has been kept more

or less unchanged. Fig. 1.1 shows how the subtasks are ordered in a tree-like

hierarchy. Also, note that the right side of the tree is not complete. This was

left out to make the diagram more illustrative.

In TaskJuggler, all tasks are listed in a text file format, and you then com-

pile it into various charts and diagrams. From the list of tasks, TaskJuggler will

order elements in the best way possible way and save you a lot of time moving

boxes around. The project website6 offers several excellent tutorials and a very

6http://taskjuggler.org/

http://taskjuggler.org/

1.3. SUMMARY OF WORK 9

Figure 1.2: The main editor window in TaskJuggler, showing the “Master” docu-

ment where all other documents are included and the base environment is defined.

Note how several developers can be added, each with different hourly effort.

thorough manual.

Even though a lot of the deadlines set in the original schedule proved to be

either too optimistic or too pessimistic, TaskJuggler turned out to be a valuable

tool for listing all tasks, dividing these into “supertasks” and subtasks. From

the supertasks, a natural report-layout grew, and in part II, the chapters are

more or less a reflection of these “supertasks” found in this process. The entire

TaskJuggler schedule can be found in the attachment under planning/ .

One of the most prominent features lacking from TaskJuggler, is a way to

export a diagram to a picture. At the moment, you are more or less tied to

10 CHAPTER 1. INTRODUCTION AND MOTIVATION

Figure 1.3: One of many available reports generated from the TaskJuggler-

grammar composed in the editor.

using TaskJuggler alone, and that requires KDE. Thus, once you decided to use

TaskJuggler, you are not only locked to a specific operation system, you are

looked to a window-manager library as well!

1.3.2 Optimizing the build

This project was all about building kernels. From a clean start, building a com-

plete kernel with the Debian default config (used as a form of benchmark), took

on average 40 minutes on shaky, on medea it took about 30 minutes. In App.

A both distcc and ccache are presented. When distcc and ccache were

used, the time dropped to 7-8 minutes, 3 for a more optimized config, less than

1 minute when building just vmlinux. Conscious configuration of the kernel is

therefore something it has been invested a fair amount of time in.

To make the compilation, linking and installation of new kernel images as

simple as possible, a script found in [16] was modified and extended to suit my

needs. The script can be found in Appendix C.1 and was a very useful tool as it

allowed for the compilation to be started without much required attention, and

when done, the computer could be rebooted, with no forgotten steps and no time

wasted waiting for one of the sub-commands to finish.

Another very useful script, was the trigger script.sh . This was called from

1.3. SUMMARY OF WORK 11

a post-update hook on medea. Whenever a branch with the post-fix “build ”

was received, medea would trigger a complete kernel build, and send the result

of the compilation back via email. This allowed for thorough testing without dis-

turbing the workflow at all. The post-update script was a modified version found

in the Git community. The trigger script.sh was written from scratch. It can

be found in Appendix C.2. The latter, when combined with a properly configured

distcc -cluster made adding changes to the kernel (in particular sched.h , which

require a full kernel rebuild) a much more pleasant experience.

Building and linking the entire kernel is, however useful, not always necessary.

Often, all you need to do, is to make sure that no syntactic errors have been

introduced. The build system therefore has the option of just compiling a part

of the hierarchy. make M=kernel/ 7 will do this. Do note that you should have

compiled the kernel once to allow for linking to other parts (in particular the

include/linux/ directory).

1.3.3 It’s all about source control

Git8 is the source control tool used by the kernel. It was written by Linus Tor-

valds after the license to use BitKeeper was withdrawn. As it is, Git is not for the

feeble minded or computer illiterate. It was design to aid Torvalds doing his job,

and is therefore a tool for developers. User-friendliness maps into expressiveness,

and not ease-of-use. However there are ways of making Git a bit easier to use.

To name but a few: magit, an Emacs mode, and git-gui.

One of the many features with Git has, is the possibility to track several

remote repositories, and to push to several. Another useful element, is the concept

of hooks. This allowed for trigger script.sh . Of course, the real benefit with

using Git, is the way Git handles content, merging of branches, that it has merge

history and the ability to pick individual commits from other branches. Add

the excellent email-support and you start to understand why Git has become so

popular.

1.3.4 Required knowledge

The aforementioned elements are a bit beside what one would expect this task

to require. They will always be handy, but during the past few months, it has

become more and more apparent that they are not only handy — they are vital.

Without Git, sending patches and keeping the work tidy and ordered would be

7Substitute ’kernel/’ with the directory of your choice.
8Git is the name of the project, when referring to the command, git should be used.

12 CHAPTER 1. INTRODUCTION AND MOTIVATION

impossible. Without distributed and cached compilation, the time required to

build all the kernels (several hundreds, if not more, have been compiled) would

have crippled all progress.

In order to attain an efficient scheduler, a few additional skills are required.

These include good knowledge about computer architecture (cache awareness and

memory layout especially), sound theoretical understanding of real-time schedul-

ing and operating systems (preemption, locking, race conditions etc.) and of

course: the C programming language. This reader is presumed to be familiar

with these.

1.3.5 Related work

Patches submitted

While working on this project, I have submitted a few patches to the kernel list.

Some of the minor ones where accepted almost immediately. Two of the larger

patches, which dealt with moving priority calculation into two new scheduling

class functions, were NACK’ed. The reason was to avoid further function call

overhead. This was a bit disappointing, but it highlights 2 key points; a) patches

are reviewed thoroughly, and no new change is accepted without testing and dis-

cussion and b) the scheduler code is optimized for speed, not readability or

maintainability, hence new code must take this into consideration.

This might seem trivial, but it was one of the most intimidating tasks un-

dertaken. Submitting patches to LKML is not easy, nor without hazards9. The

patches should be formatted according to a very strict set of rules, and they

better have a very good reason for being submitted in the first place. The kernel

community is a very technocratic crowd, and the only real currency is knowledge.

Discussions on LKML

Strongly related to submitting patches, are the discussions on the mailing list.

The volume is high, sometimes reaching almost 1,000 new messages pr. day. To

filter out the relevant messages, reading the patches and understanding the im-

pact has been a much larger job than expected. After some creative testing with

procmail, a reasonable setup was found, where all emails were sorted by topic.

This way, the volume was manageable.

9If you do a bad enough job, you will be given a very explicit message.

1.4. RELATED PROJECTS 13

The discussions tend to revolve around patch review, new feature discussion

or regression. Then there are the version releases which sparks off a discussion

once in a while10.

Discussions on IRC

Several of the kernel hackers frequent on various IRC channels. Some of the

most fruitful discussions relevant to the project has been conducted here. Pe-

ter Zijlstra and Bill Huey both provided a lot of insight and invaluable com-

ments on the planned scheduler. Most of the practical advice I have received

regarding actual kernel development, come from these discussions. Some chan-

nels for the interested: #linux-rt@freenode.net, #kernelnewbies@oftc.net,

#sched@oftc.net

1.4 Related projects

Real time research and development is an active area. Since Linux is one of the

few truly open operating system kernels, real-time forks of the kernel is a natural

thing. That Linux is supported on more platforms than any other OS, as well

as having support for more hardware than most other operating systems, is yet

another reason for adding real-time capability to Linux. The Linux Real-time

preemption patch, which is the semi-official kernel project for gaining real-time

capabilities in the kernel, is covered in the next chapter.

1.4.1 LitmusRT

Of all the other real-time project currently undertaken, LitmusRT11 is probably

the most advanced and well maintained. It is from this research group that pfair

has its origins. They also have an implementation of pfair, but it lacks in several

aspects and is difficult to integrate into the current kernel as it adds changes to

large areas of the kernel. LitmusRT aims to do a lot more than “just” schedul-

ing, recent activity has focused on locking and how to avoid deadlocks and large

unpredictable latencies.

By being very dependent upon hz, they cannot scale the timeslice lower than

1ms, nor can they move above 10ms. Furthermore, once the hz is set, it cannot

be changed without recompiling the kernel. It will also add a overhead to the

kernel, even when no pfair tasks are running. Finally, they use a linked list for

10especially the discussion following Linux v2.6.29: http://lkml.org/lkml/2009/3/23/449,
which turned into a massive thread discussing the ext3/ext4 filesystem performance

11http://www.cs.unc.edu/~anderson/litmus-rt/

http://lkml.org/lkml/2009/3/23/449
http://www.cs.unc.edu/~anderson/litmus-rt/

14 CHAPTER 1. INTRODUCTION AND MOTIVATION

storing the entire runqueue, making it very expensive to schedule a large set of

tasks.

The complexity of merging the pfair-related code into the standard kernel

was the reason why the LitmusRT pfair scheduler was not ported to the vanilla

kernel, but instead written from scratch.

1.4.2 RT-Linux

RT-Linux is now a registered trademark of Wind River. Being one of the first

real-time Linux systems, RT-Linux acted as a hypervisor, letting the kernel run

as a standard process. Having complete control over all interrupts, being able

to compartmentalize the kernel behavior and to react very quickly to external

events, RT-Linux was able to achieve hard real-time status.

1.4.3 Bill Hueys generic deadline framework

Bill Huey is currently working on a generic deadline driven framework. Origi-

nally developed to be partitioned, it is now planned to gradually extend to global

algorithms. The framework will handle all the basic requirements from connect-

ing to the rest of the scheduler, setting timers and acting as a mediator for new

tasks. An implementing class need only provide an acceptance function for new

tasks and a way of returning the next task to run when the currently running

should be rescheduled. Some internal logic for storing the task is needed as the

framework will keep the task in an unsorted list.

Still in its infancy, the project shows great promise, and the at the time of

this writing, it seems this project can be tied into the generic framework as a

first proof-of-concept. The following paragraph describes the current framework

which is partitioned. The global is still being discussed in various channels, in-

volving several people, including me.

General idea:

The deadline scheduling is straight forward. Each task classified as either periodic

or sporadic. The difference is that a sporadic task will migrate once preempted

by a periodic task, a periodic task will keep to the given CPU as it is here it

has reserved bandwidth. The framework keep track deadlines and will signal a

task if it misses the deadline. Each task is given a bandwidth tied to wcet and

deadline. To keep compatibility with the existing kernel, a runnable EDF task

will be given the systems highest priority, and be classified as less runnable than

1.5. THE REST OF THIS REPORT 15

the idle-task when the budget is exhausted.

The priority inversion/inheritance solution is quite similar to the proxy exe-

cution protocol planned in this project, see Sec. 4.4, but due to the partitioned

landscape, some extra concepts need to be introduced: task groupings and yield-

nests. The former is a way of visualizing the relationship between tasks, the latter

is the actual concept implemented. If task A requires a resource R currently held

by B, you have a A→ B. Task A is not removed from the run-queue, and when

it is scheduled, A’s budget is decreased and B is scheduled to run. The rt-mutex

keep track of the blocked tasks, and when more tasks request R, or some resource

held by the tasks waiting for R, you now get a DAG. This DAG will gradually

expire. By degrading B to sporadic status (which will trigger reallocation to

other CPUs but without moving B from the original runqueue), the lock will be

released as quickly as possible as B will execute on different CPUs on behalf of

the tasks in the wait-list. Once B releases R, the rt-mutex will notify the next

task. As tasks will gradually expire, they will be removed from the wait-list,

thus forcing the rt-mutex to give access to the task in the list with the shortest

deadline.

1.5 The rest of this report

The rest of this part is dedicated to general information, such as the Linux kernel,

with particular focus on the task scheduler. The theory is introduced in Chapter

3. Most attention is given to multi core algorithms, but for completeness, a short

section is given to single core scheduling.

Part II contains design and implementation. Ch. 4 outlines the overall design

for the scheduler and moves on to the implementation. The implementation is

split into several chapters, each describing a defined subsystem needed by the

scheduler. Beginning with the overall design in Ch. 4, memory management,

particularly the SLAB-allocator, is discussed in Ch. 5. The two major data

structures, linked lists and red-black trees, are covered in Ch. 6.1 and 6.2 re-

spectively. Ch. 7 follows with the SysFS infrastructure. The subsystem-chapters

sequence is closed with a look at timekeeping in Ch. 8. Then, finally, the core

scheduling algorithm and implementation is treated in Ch. 9.

Part III All the loose ends and a few various small topics are tied together

and discussed in Ch. 10. Then the scheduler itself is discussed and the project

evaluated in Ch. 11. The pfair-algorithm has been found inadequate despite the

initial enthusiasm. To battle this, an adaptive version of Modified Least Lax-

16 CHAPTER 1. INTRODUCTION AND MOTIVATION

ity First[20] (global adaptive slack-based deadline driven scheduler) is presented,

and to the authors knowledge, no such algorithm has been implemented in any

operating system.

Part IV contains the appendices describing distributed and cached compila-

tion of the kernel in App. A, the test-modules in App. B and some small scripts

in C.

Chapter 2

The Linux Kernel

“Controlling a laser with Linux is crazy, but everyone in this room is crazy in

his own way. So if you want to use Linux to control an industrial welding laser,

I have no problem with your using preempt rt.”

— Linus Torvalds

This chapter gives an introduction to the Linux kernel. Starting out with

background in 2.1. Sec. 2.2 then covers the current scheduler with classes,

policies and entities. This is meant to provide the reader with the essentials of

the scheduler internals. The RT Preemption Patch and why this moves Linux

into the RTOS realm, is discussed in 2.3, while the kernel API is presented in

2.4. The latter is a pervasive topic, and naturally, only relevant sections of the

API is discussed. The “non-stable kernel API” policy is also discussed in this

section. Sec. 2.5 concludes the chapter.

2.1 Background

In 1991, Linus Torvalds released the first version of Linux, an open source clone

of the UNIX operating system kernel1. Originally written specifically for the

Intel 80383 microprocessor, Linux has since grown and it supports 22 different

architectures, which is more than any other operating system today2. The rea-

son for this tremendous success was the early adoption of the Gnu Public License

(GPL). Torvalds later stated “Making Linux GPL’d was definitely the best thing

I ever did”, describing how the shared effort across the world was made possible

only through the public license.

1Linux is the kernel in a GNU/Linux operating system.
2http://en.tldp.org/HOWTO/User-Group-HOWTO-1.html

17

http://en.tldp.org/HOWTO/User-Group-HOWTO-1.html

18 CHAPTER 2. THE LINUX KERNEL

Today, Linux is a preemtible, fully POSIX-compliant operating system kernel.

It has support for a wide range of hardware through its device driver system, it

scales down to system as small as a watch, and runs on approximately 88% of

the top500 3 supercomputers.

2.2 Current status in the Linux scheduler

The Completely Fair Scheduler (CFS) was introduced in Linux v2.6.23. The old

O(1) scheduler can still be found in the sched rt.

. The scheduler in the kernel implements a set of scheduling classes. Each

class is responsible for one or more scheduling policies Policies govern how tasks

will be scheduled. A task can only belong to a single policy. As of this writing,

the official kernel supports 5 policies, all of which are discussed below. As the

scheduler actually is a collection of scheduling policies, the “main scheduler”, is

the logic in sched.c that drives the overall flow. It is from here that each policy

and class is invoked. This can be a bit confusing at first glance.

Figure 2.1: Where the different classes are implemented, and how the policies

relate to this. Note that sched idle and sched idle.c is not the same thing.

The idletask logic is invoked when no task is eligible to run on that CPU.

3http://www.top500.org/stats/list/32/osfam

http://www.top500.org/stats/list/32/osfam

2.2. CURRENT STATUS IN THE LINUX SCHEDULER 19

2.2.1 The “normal” scheduling policy

The CFS handles all tasks with priorities in the [−19, 20]-range4. The class imple-

ments three scheduling policies sched normal, sched batch and sched idle.

The CFS schedules sched entities , not tasks. Both the CFS and the RT-

scheduler uses sched entities as this allows for a more generic approach. This

allows groups of tasks to be scheduled similarly to single tasks. These entities

are then stored in a sorted red-black tree. The key used to keep the tree sorted

is the delta run-time value for the entity (se.vruntime). The lower the value,

the further left in the tree the entity will be inserted. Every once in a while the

currently running task will be preempted and inserted into the runqueue. The

entity’s vruntime is updated, and the task (being treated as a sched-entity) will

be inserted at the appropriate place. The scheduler then picks the leftmost leaf

in the tree, i.e. the task with the gravest need for running. From this, it becomes

clear that CFS does not use priorities directly to schedule tasks. The priorities

are used to determine the base timeslice. The time a task is allowed to run will

eat into this slice, and once it becomes exhausted (or relatively “more exhausted”

than another tasks timeslice, it will be preempted and the other task allowed to

run).

Figure 2.2: Figure showing briefly insertion and which node that will be returned

when the next task is picked from the CFS red-black tree.

4or 0 to 39, depending on whether you look at priorities from the users perspective, or from
the kernel

20 CHAPTER 2. THE LINUX KERNEL

SCHED NORMAL is the class for “normal applications”. It will be given a

default weight corresponding to the priority, and this will influence its place

in the runqueue tree.

SCHED BATCH are for tasks that does not require interactivity. This leads

to less frequent preemption and they may execute for long period of time.

This is ideal for background jobs having a lot of work to do, but has little

or no dialog with a user or other jobs.

SCHED IDLE - the last policy to be handled by CFS. This is a way of setting

the priority of a task even lower than nice 19. To avoid conflict with the

idletask, this policy has slightly higher priority, but lower than any other

task from the other policies.

2.2.2 Real-time class and policies

The sched rt.c contains the real-time scheduling class. This in turn, implements

the rt-policies,sched fifo and sched rr. It embodies the old O(1) scheduler,

although the 140 levels are reduced to 100 (see [4] for more details around this).

Each level in the runqueue contains a linked list of tasks eligible to run. Both

policies uses the same runqueue, but sched fifo does not use timeslices.

In practice, this difference means that a sched fifo task will run indefi-

nitely until it either blocks, suspends or a task of higher (rt-) priority enters

state running. sched rr will let a task run until it has exhausted its times-

lice before inserting the task at the tail of the priority level list. This allows other

tasks on the same priority level to run, but it will block all tasks below it, and it

will be blocked by any task with higher priority.

2.2.3 Challenges faced with the current scheduler

One of the major problems with any large project, is to handle the schedule. For

normal tasks, this is seldom a problem: the scheduler does a fairly good job, and

the tasks do not have very strict deadline requirements.

For real-time tasks, things are different. Very often, the priorities must be

worked out to ensure that the deadlines will be met. It is therefore of vital

importance that the operating system is deterministic. Nevertheless, as the rt-

tasks in the kernel have static priorities, the kernel will not provide any help

to the application programmer to determine the static schedule. If the kernel

2.3. INGO MOLNAR’S RT-PREEMPTION PATCH 21

Figure 2.3: Insertion of a task into the real-time runqueue. Red indicates

sched fifo, blue sched rr. The sched fifo task immediately enters the

head, sched rr moves to the tail.

was deadline aware, this would be made much simpler, as the priorities often are

inferred from a set of expressed deadlines.

2.3 Ingo Molnar’s RT-preemption patch

The RT Preemption Patch (RT-Patch)[25], is a set of patches currently main-

tained by Thomas Gleixner (originally by Ingo Molnar). The RT-Patch includes

full kernel preemption5 Priority Inheritance, conversion of ISR into schedulable

kernel threads, transforming spin-locks into adaptive spinlocks and mutexes as

well as deadlock detection logic.

Several features from the RT patch series have found their way into the main-

line kernel. Amongst those are generic IRQs, gettimeofday() architecture and

hrtimers. The latter is discussed later in Ch. 8. Other features remain in the

RT-patch. Not because they are not useful, but because the mainline kernel is a

GPOS and some of the features in the patch-series is geared towards increased

determinism often resulting in higher kernel overhead (and lower throughput).

5Except in a few important and short atomic sections.

22 CHAPTER 2. THE LINUX KERNEL

The most important feature of any RTOS, is determinism. To obtain this,

the OS must not necessarily minimize latencies, but it must make them pre-

dictable. The following subsections look at different causes for latencies, and

how the RT-patch deals with these. After determinism, latency and through-

put are important. The RT-patch improves latencies in the kernel, making the

impact of interrupts and syscalls smaller on other applications running.

2.3.1 Fully preemptible kernel

This is perhaps the most “famous” part of the RT-patch. By making the entire

kernel fully preemptible, the kernel latencies can be minimized. This started out

by changing the Big kernel lock (BKL) from a recursive spinlock to a rt-mutex.

This was one of the first, dramatic reductions of kernel latencies, and the first

element from the RT-Patch to be included in the Linux kernel.

The rt-mutex was another improvement to this. Originally, Linux 2.6 did

not have mutexes. All it had was semaphores (which, granted, where used as

mutexes), and these semaphores where quite slow and did not have any idea

about ownership. The mutex knows who the current owner is, and is one of the

strict requirements for the Priority Inheritance protocol discussed later.

2.3.2 Threaded ISRs

One of the big contributors to kernel latencies are the interrupt handlers, or ISRs.

By moving most of the time consuming work coupled with the interrupt handlers

into schedulable threads, it is possible to let a high priority thread execute re-

gardless of network activity, a misbehaving timer or disk activity. In effect, what

actually happens is quite simple: the interrupt causes ISR to execute. This sets

the irq inprogress flag and redirects the irq handler. If the handler is a “no-

delay”, it is executed immediately. Otherwise, the do irqd thread is awoken,

the interrupt masked and the interrupt exits. When do irqd is executed, it

will run the handler and clear the irq inprogress flag, finishing the interrupt

handling.

This means that the priority inversion latency (the delay caused for the cur-

rently executing thread) will only be the time it takes to mask the interrupt and

wake the do irqd thread, a lot less than actually handling the entire interrupt.

As a real-time task can be given higher priority than the interrupt thread, the

interrupt impact can be negligible. Of course, a misbehaving real-time applica-

tion can render the entire system useless if no interrupts are processed properly,

2.3. INGO MOLNAR’S RT-PREEMPTION PATCH 23

but that is not really an issue. RTOS is all about control. If the application

misbehaves, it is the fault of the application developer, not the kernel.

2.3.3 Spinlocks

Spinlocks should be fast. Unfortunately, some events can cause the spinning to

take a very long time, ultimately delaying other parts of the kernel. As they avoid

sleeping, when the time spent waiting is short, spinlocks are very a effective way

of synchronizing resources. However, a spinlock may cause a thread running on

another CPU to spin, so great care must be taken in order not to delay other

parts of the kernel. The same goes for locks that are shared by interrupt service

routines and the “normal” kernel. If one part of the kernel takes the lock without

disabling interrupts, the system will eventually deadlock. It goes without saying

that spinlocks are a delicate matter, and as such possess a hazard in an RTOS6.

The RT-patch converts a large portion of the spinlocks in the kernel into mu-

texes. This allows the task to be preempted, removing a whole series of deadlock

candidates. Unfortunately, this also increases the kernel lock overhead dramat-

ically. Some of the locks however, must not be altered. Instead of converting

these into mutexes, they are changed to raw spinlock, helping the compiler to

optimize the code in a safe manner.

Lately, a new type of spinlock has emerged, the adaptive spinlock. This is a

spinlock that will try to spin in order to acquire the resource. If the busy wait has

been unsuccessful for a predefined amount of time, it will sleep until the resource

is released allowing another thread to execute, possibly releasing the lock.

All of this does not help predictability at all. In fact, it can introduce non-

determinism. On the other hand, it helps avoiding deadlocks and starvation as

other threads can run in place of a spinning thread.

2.3.4 Priority Inheritance (PI)

Priority Inheritance is a well known way of avoiding, or at least reducing, the ef-

fect of priority inversion. Priority Inversion is when a high priority task is blocked

by a lower priority task waiting for a shared resource to be released. This is one

of the major contributors to latencies, and must be handled carefully. Inversion

cannot be completely avoided, but it is possible to avoid unbounded latencies.

6also in a GPOS, but the impact of a deadlock in a GPOS is less severe

24 CHAPTER 2. THE LINUX KERNEL

There are several approaches to avoid Priority Inversion. As the kernel is

too big and complex for most of these techniques (design or priority ceiling), the

kernel implements the PI. When a high priority thread requests a resource held

by a lower priority thread, the priority of the resource owner is boosted to equal

the high priority task. This approach works well and scales to large projects.

2.4 Kernel API and conventions

2.4.1 Coding conventions

In order to implement a new scheduling class in the kernel, several of the sub-

systems must be used. The elements intended for general usage, is placed in the

include/ directory and can be referenced as normal C header files.

2.4.1.1 Return values

The kernel functions normally return negative numbers upon error, 0 on success,

or a positive integer describing the amount the operation caused.

2.4.1.2 Coding style

In a project as large as Linux, with approximately 1000 active developers spread

all over the world, the need for a well defined coding style is imperative. In fact,

patches will be rejected if the style is too deviant from the norm. As a first

meeting with the kernel code, this can be a bit frustrating, but after all, with

well over 7 million lines of code7 the rules must be strict.

Unlike many other projects however, the Linux kernel has very clearly stated

policy about unstable kernel API. You should never, ever assume that the API

stays the same. No interface is perfect, and instead of keeping a consistent API

and ensuring backwards compatibility, the kernel hackers believe in a clean slate.

If it is wrong — fix it. The only way of programming kernel code, is to know the

API, and stay on top of it.

2.5 Summary

In this chapter we saw how the kernel handles all types of tasks, we looked at a

few of the limitations with the current real-time scheduler, and how the real-time

77 210 957 lines of ANSI-C code found by sloccount for v2.6.30-rc5

2.5. SUMMARY 25

preemption patch tries to solve some of these issues. Then, at the end, we looked

briefly at the kernel API with special focus on coding conventions.

26 CHAPTER 2. THE LINUX KERNEL

Chapter 3

Scheduling Theory

“The key is not to prioritize what’s on your schedule, but to schedule your prior-

ities.”

— Stephen R. Covey

The previous chapter covered the current Linux scheduler and indirectly some

of the theory. This chapter introduce theory for deadlines, global and multicore

scheduling algorithms.

Section 3.1 looks very briefly at background and terminology, with particular

attention given to common simplifications regarding scheduling algorithm design.

Section 3.2 then presents single core scheduling before the main topic of this

chapter, multi core scheduling algorithms are presented in Sec. 3.3. As this

section outlines the general idea for multi core algorithms, the theory for pfair

(the algorithm treated in this project) is presented in full in Sec. 3.4. The chapter

is then concluded in Sec. 3.5.

27

28 CHAPTER 3. SCHEDULING THEORY

3.1 Background and terminology

The “era” of real-time scheduling theory began with the famous paper by Liu

and Layland ([18]) where they presented Rate Monotonic and Earliest Deadline

First. They then showed how these would make it possible to schedule complex

sets of real-time tasks in “multi-computers”.

A real-time system consists of a set of tasks, τ , where an individual task i is

identified by τi. Each task is characterized by its release-instances, called a job

which will occur at least Ti time-units apart. This is called the period of the task.

The kth job is denoted τi,k. Each task has a relative release-time, Ri and each

job has an absolute release-time ri,k. The same can be found for deadlines, the

time for when the job must have finished, as Di and di,k respectively. The time

required to run a single job is called its execution time (ci,k), and the worst case

execution time is Ci = max(ci, k) ∀ k ∈ N. Finally, a task has a given utilization,

Ui = Ci

Ti
, Ti = Di.

A (real-time) schedule is said to be feasible if a collection of (real-time) tasks

can be ordered in such a way that all the deadlines for all the tasks are met. A

set of simplifications are normally assumed when discussing real-time scheduling:

No dependencies between tasks This includes hardware resources, or soft-

ware resources (locks, queues, other shared datastructures). By assuming

this, deadlock- and starvation logic can be simplified. Furthermore, priority

(deadline) inversion (PI) is simplified and can be handled easily or avoided

all together.

Deterministic periods and deadlines Normally the deadline is set to the pe-

riod, and the task is released exactly at the period. This makes several

equations simpler. In some cases, the scheduler uses the shortest of the two

as an approximated period and consider the larger period to be a special

case when the task is released late.

Free context switches changing between tasks is essentially free, or, takes neg-

ligible time.

Isolated system By ignoring all other elements in the system, other tasks and

the effect they play on the system, the real-time tasks can be analyzed

separately.

By looking briefly at this list, we can see that in any normal setting, this does

not hold. However, by assuming this, the general idea can be expressed more

clearly and verified. Then, upon implementation and testing, extra logic can be

3.2. SINGLE CORE SCHEDULING ALGORITHMS 29

added that will deal with these elements. This is a flaw most algorithms are

being criticized for, but something it is very hard to do anything about. If you

take every single unpredictable element into consideration when devising a new,

clever algorithm — you will never get anywhere.

For a complete list of terminology, please see [4, Sec. 2.1]. The glossary (page

121) also contains some of the terms used. Where appropriate, the terms will be

discussed in situ.

3.2 Single core scheduling algorithms

This section gives a very brief introduction to single core scheduling algorithms.

Since the target system is multicore, this section is only included for completeness,

and for helping understand the problems faced with multi core systems. For a

better discussion about single core scheduling, see [4, Sec. 3.3].

3.2.1 Rate-Monotonic (RM) scheduling

In RM, a tasks priority is determined based on the period. The shorter the pe-

riod, the higher the priority. In many cases, this assumption is correct. If a task

has a very short period, it is natural to assume that the corresponding deadline

is also short, and hence, the priority must be high.

The acceptance test for the RM scheduler is very simple: Keep accepting new

tasks for as long as the overall utilization is below the following limit:

U =
n∑
i=1

ui ≤ n(n
√
n− 1) = ln(2) ≈ 69.3%

One of the major advantages of RM, is that it has low overhead. Furthermore,

it is relatively simple to implement and works well with other priority based

scheduling algorithms. As the “normal” way of implementing a scheduler, is by

using priorities, this is a very important feature.

3.2.2 Earliest Deadline First (EDF) scheduling

EDF looks directly at the deadline of a task. Where RM assumes that the

deadline is related to the period, EDF ignores the period and picks the task with

the shortest deadline. The acceptance test:

U =
n∑
i=1

ui ≤ 1

30 CHAPTER 3. SCHEDULING THEORY

EDF can utilize the processor fully, but it will have higher overhead than

RM. In many cases (most notably in theoretical work), this is ignored. It has

been shown that EDF actually results in. fewer task switches [8], so the overhead

with respect to task switches is lower. However, since “all” operating systems use

priorities as the base element for scheduling tasks, including an EDF scheduler

will be difficult. The common approach is to map the deadlines to priorities, but

for each new task arriving, the entire schedule must be recomputed and some, if

not all, priorities changed. This lead to a very inefficient implementation.

3.3 Multi-Core scheduling algorithms

Extending single core algorithms to multicore systems is not trivial. In fact, in

many cases, known assumptions and features fall apart. One example is EDF

and the utilization bound. On a multicore system, EDF has utilization bound

by U ≤ m(umax− 1)−umax where umax is the highest utilization by a single task

in the schedule[14]. EDF-US[1/2] can then increases this to U ≤ m+1
2

[5]. As a

starting point, this section will use EDF as an example to show that EDF can

be implemented differently, and how that will affect the overall performance and

utilization.

Multicore scheduling algorithms can be classified into two distinct groups,

global and partitioned . Global algorithms use a single runqueue and central-

ized dispatch logic to handle the tasks. Partitioned algorithms use a per-CPU1

runqueue and logic. A term used to describe something in between, is called a

clustered scheduler. A global scheduler is a cluster of one domain. A partitioned

scheduler is a cluster of n domains, where n is the number of CPUs.

3.3.1 Global

A global scheduler is a scheduling algorithm with a single runqueue for the entire

system. By looking at the entire system at once, the algorithm can pick the task

best suited to run at a given CPU/core at a given point in time. The benefits

of doing this, is that it is much easier to achieve optimal scheduling decisions.

You also avoid the bin-packing problem that the partitioned (clustered) algo-

rithms strive to avoid. On top of this, since the algorithm is global, you will not

have to worry about load balancing logic, as this will be handled by the scheduler.

1The recent advances in multicore systems lead to a lot of confusion between CPU and core.
In this report we use the two to describe the same thing - a single entity capable of executing
a task.

3.3. MULTI-CORE SCHEDULING ALGORITHMS 31

There are downsides:

• The moment you have several cores competing for a single shared resource

(namely the runqueue), the scheduler code can, and will block, causing

non-deterministic kernel latencies.

• The runqueue will introduce race-conditions (previous item), and the sched-

uler is required to introduce logic to handle this. One approach is staggering,

but either way, it will introduce higher overhead and more complex code.

• Another downside, is the overhead. Since the scheduler now must con-

sider all tasks running on all cores, every single scheduling decision be-

comes quite involved. This translates directly into slow and not scalable.

The requirement for fast and efficient runqueue implementation is therefore

paramount.

• Yet another problem, is memory bandwidth for the shared runqueue. Be-

sides (dead)locking, the data structure must be read by all cores, forcing

the data to be written out to memory (due to cache invalidation whenever

something is updated in the runqueue) and read back in. This will cause

high memory traffic, decreasing the performance dramatically.

In fact, one of the strongest objections against global approaches, is the scal-

ability and cache invalidation issues. As long as an algorithm is truly global, this

will be an issue, as global means sharing information across all domains. This

is one of the reasons why global algorithms have received little attention from

researchers over the years.

3.3.2 Partitioned

A complete opposite way of doing things than the global, is the partitioned ap-

proach. In a partitioned scheduler, each CPU will have a separate instance of the

runqueue, and one task can only reside in one runqueue at a time. This removes

a lot of the scalability issues related to the global approach. The Linux kernel is

a very good example of this — 2.4 kernel used a global runqueue for the tasks,

and this made scaling to several CPUs very difficult. In Linux v2.6, the scheduler

was rewritten into a partitioned scheduler, and this removed several performance

problems. This is living proof that partitioned scheduling is both scalable and

fast.

However, the moment you start looking at each CPU as a separate domain,

you run into bin packing problems. The bin packing problem manifests itself by

32 CHAPTER 3. SCHEDULING THEORY

making it difficult to choose which runqueue a new task should be assigned to

in order to maintain a feasible schedule. In fact, it can be shown that this is an

NP Complete problem in the strong sense. Some heuristic must be used when

assigning a task to a runqueue.

FF First Fit, add the task to the first non-empty queue with enough reserve

resources remaining.

BF Best Fit, of all the non-empty queues, find the queue where the least amount

of resources are left after allocation.

NF Next Fit, take the previous queue and add the task to the next queue in the

list.

WF Worst Fit, try to allocate the task into the queue with the greatest remain-

ing resources.

Common for all: If no non-empty queues can accept the job, add it to the first

empty queue. If no queue can hold it, fail the allocation.

Since the bin-packing is done as an approximation, the load will not be

evenly distributed between the domains. To even out the load, and handle load-

transients, most systems use a load balancer to move a task from one domain to

another. This is needed in every partitioned scheduler since you cannot make

optimal scheduling decisions, and is the cause for yet another non-deterministic,

sporadic latency.

In the Linux kernel, none of these approximations are used. A real-time task

is set to execute on the core where it upgraded its status from sched normal

to sched fifo (or sched rr). Then, if the load is very unbalanced, the CPU

with lowest load will try to grab tasks from other, highly loaded, CPUs. The

reason is as follows: if a non-rt task is allowed to run on a CPU (which it must

if it is to elevate its status from sched normal to sched fifo), that CPU has

already low load and can therefore accept a new RT-task.

3.4 Rate based scheduling - Pfair

In pfair scheduling ([1], [2], [3], [22]), tasks are required to execute at a steady

rate. What this means, is that not only the deadline but also wcet will affect

how the task runs. Pfair will then spread the execution of the task evenly across

the period. Fig. 3.1 gives a simple illustration for how a task will be split

into quantum length subjobs and each subjob scheduled individually (although

3.4. RATE BASED SCHEDULING - PFAIR 33

Figure 3.1: How a task will be split into subjobs and scheduled with the pfair al-

gorithm. Unused areas are slots where subjobs from other tasks can be scheduled

to run.

sequentially). Note how the gray areas indicate possible execution times in a

standard EDF scheduler without preemption. This is one of the major problems

with EDF, even though the task meets it deadline, you have no control over when

in the period the task will execute. This results in jitter.

In pfair, the normal task description is extended to subjobs. A subjob is de-

noted as τi,k,l. A subjob is given release, deadline and execution cost the same

way a job is. The execution cost, however, is pre-determined and matches the

quantum length exactly. The release and deadline is denoted ri,k,l and di,k,l re-

spectively. The subjobs must execute sequentially, meaning that two subjobs

cannot execute on different CPUs at the same time. Scheduling decisions are

taken at the timeslice boundaries, and a subjob will not be allowed to run after

this boundary. The subjobs allows pfair to take the weight of Ti into considera-

tion without a lot of extra logic. A large wcet gives may subjobs, and therefore

higher bandwidth.

Note: the notation can differ, and we strive to use the same notation as the

majority of real-time scheduling articles. In some articles however, Ti is used to

describe the ith release of a task T, and T.p is used to describe the period. The

convention in other articles, however, is to use T to describe the period, or the

Time between releases and P to indicate the priority. The set of all tasks is given

arbitrary letters, but ’S’ means the schedule.

A schedule is said to be pfair if the lag satisfies the following condition at

34 CHAPTER 3. SCHEDULING THEORY

time t after a set of subjobs have been allocated time to run:

lag(τi, t) =

(
Ci
Ti

)
t− allocated(τi, t) (3.1)

|lag(τi, t)| < |timeslice| ∀τi ∈ τ (3.2)

Each slice can be identified by [t, t+ 1) and the time a given timeslice spans

can be found by:

timespan = [t ∗ |timeslice| , (t+ 1) ∗ |timeslice|) ∀t ∈ N (3.3)

If the execution cost of a task is not dividable by the timeslice, the last subjob

will waste processor time2. Thus, the smaller the timeslice, the less resources will

be wasted and the scheduler will approach the ideal pfair scheduler. Each subjob

will have a sub-release time and corresponding deadline. These are given in t,

where the release is at the start of the interval, and the deadline at the end. As

an example, a release- and deadline-pair (0,0), indicates that the subjob will be

released at the start of a timeslice and must finish before the end of it.

The optimal length of a timeslice must be determined experimentally. Even

though slices of infinitesimal length will give an “optimal” scheduler, actual costs

such as task preemption, cache warmup and time required to handle timer-events

must also be taken into consideration.

3.4.1 Calculating release and deadline

wt(τi) =
Ci
Ti

(3.4)

ri,j,k =

⌊
(l − 1) ∗ Ti

Ci

⌋
(3.5)

Di,k,l =

⌈
l ∗ Ti
Ci

⌉
− 1 (3.6)

w(τi,k,l) = [ri,k,l, Di,k,l] (3.7)

The weight of a task is used describe the behavior. A task cannot have weight

higher than 1.00 as that would require it to run concurrently in the real sense,

on several CPUs. All tasks with weight 1 can be given a dedicated CPU, and

tasks with wt(τi) ≥ 0.5 are called heavy. The weight is found in Eq. 3.4. The

pseudo release (Eq. 3.5) gives the start of the window in which a subjob must

2We will show later how this can be minimized, and that other non-pfair tasks can be allowed
to run instead.

3.4. RATE BASED SCHEDULING - PFAIR 35

be released. All subjobs are expected to be released at its window boundary,

and that the start of the window correspond to the start of system timeslice.The

deadline gives the last timeslice in a subjobs window where it can be scheduled

in order to meet the deadline. Eq. 3.6 finds this.

3.4.2 Tie breaking rules

A tie is when two subjobs have the same pseudo deadline, something that will

happen quite often in a busy system. In [2], it was shown that only 2 tie-breaking

parameters are needed (the disjoint bit and group deadline), and those can be

computed once when the task is created. This is called PD2 and is what we have

implemented in this project.

3.4.2.1 Disjoint bit

b(τi,k,l) =

 0, if
⌈

l
wt(τi)

⌉
=
⌊

l
wt(τi)

⌋
1, else

From this, we can see that the only time when a disjoint-bit will be 0, is at

the very last subjob. The disjoint bit will cause the scheduler to pick the task

that has not yet finished running to avoid a cascade of critical subjobs.

3.4.2.2 Group deadline

Group deadlines only make sense for heavy tasks. Any non-heavy tasks will

have a group-deadline of 0. The group deadline will cause the scheduler to pick

the heaviest of the two heavy tasks being compared at a tie-break. It works by

looking at a set of subjobs, defined as a group. This group can then be scheduled

almost as a single entity, and the group deadline is used to compare two subjobs

from two groups. Light tasks will have a single group, namely the entire sequence

of subjobs, and the group-deadline for such tasks will be 0 (forcing light tasks to

be picked before heavy).

D(τi,k,l) = min u :: u ≥ d(τi,k,l) and u is a group deadline of τi,k,l (3.8)

See the pseudocode-listing 4.1 on page 47 for an example to how this value is

found.

36 CHAPTER 3. SCHEDULING THEORY

3.4.2.3 Comparing two tasks

When comparing two pfair-tasks (τi,k,l and τj,k,l) to the PD2 rule, the following

rules are used to determine the relative priority between the two:

1. Start by comparing sub-deadlines:

τi,k,l > τj,k,l if d(τi,k,l) < d(τj,k,l) (3.9)

Subjob τi,k,l will be picked if its sub-deadline is smaller than τj,k,l.

2. If the sub-deadlines equal, compare disjoint bit:

τi,k,l > τj,k,l if b(τi,k,l) > b(τj,k,l) (3.10)

τi,k,l will be picked if it’s disjoint-bit is greater. In practice, this is when

τj,k,l is the last subjob in the sequence and τi,k,l is not.

3. Compare the group deadline to see which task is the heaviest and closest

to its deadline.

τi,k,l > τj,k,l if D(τi,k,l) < D(τj,k,l) (3.11)

All of these tests can compare values already computed, avoiding expensive list-

traversals at run-time. If τi,k,l = τj,k,l, it does not matter which task is picked as

they are equal in all respects. See Listing 4.2 (p. 49).

3.4.3 Reweighing

Allowing for dynamic change of weights makes the system adaptive. The theory

is two-fold. One approach allows for dynamic reweighing, that is between sub-

jobs, another is between job-releases. The latter is straightforward and need only

verify that the change of resources is feasible. The former is a bit more involved

as it must keep track of remaining subjobs and map these to the new set of

subjobs. Because we cannot do fractions of subjobs, this can lead to situations

where a reweighing can add almost 2 subjobs extra time for a task.

Then, the scheduler can reweigh as well. This is the same as if every task

were to change its wcet requiring a different number of subjobs. However, the

impact is large, and this is not allowed at the moment. If the scheduler wants

to change the timeslice, it can only do so if no tasks have requested to enter

sched pfair.

3.5. SUMMARY 37

3.4.4 Constraints and limitations

PD2 offers a global, optimal approach to pfair scheduling. ERfair offers better

utilization of the available time as it can allow tasks to be released early, but also

introduces higher computational overhead at run-time. For this reason, ERFair

will not be considered further in this project.

3.5 Summary

This chapter introduced the theory behind the pfair algorithm and discussed var-

ious approaches to multicore scheduling. Pfair is a global algorithm that executes

tasks at a steady rate, thus minimizing the bin-packing problem found with par-

titioned schedulers, and avoiding Dhall’s effect which affects global, multicore

EDF schedulers.

38 CHAPTER 3. SCHEDULING THEORY

Part II

Design and Implementation

39

Chapter 4

Overall Design of the Scheduler

“The most exciting phrase to hear in science, the one that heralds new discover-

ies, is not ’Eureka!’ but ’That’s funny...’ ”

— Isaac Asimov

The motivation for this project was outlined in Ch. 1. Based on that, the

chapters following laid down the foundation for the implementation. In Chapter

2, the Linux kernel was introduced, and in particular, in Sec. 2.2 the current

scheduler was described. The theory behind this was presented in Ch. 3.

In this chapter, the goal is to present the layout of this schedulers. Sec.

4.1 describes a high-altitude overview of the scheduler. Then Sec. 4.2 follows

by presenting how the tasks are handled, and then moves on to discuss how

these tasks are stored in the runqueue in Sec. 4.3. The pfair scheduler is made

available to user-space via a set of syscalls and SysFS entries. attributes. This is

discussed in 4.6. The last major component of the scheduler is the way the main

scheduler utilizes struct sched class and a few other odds and ends that must

be included directly in sched.c in Sec. 4.5. Section (4.7) describes how the

kernel build system should be modified in order to add the new scheduler to the

kernel according to current conventions. The chapter is then concluded in 4.8.

41

42 CHAPTER 4. OVERALL DESIGN OF THE SCHEDULER

4.1 A birdseye view

Early on, the original plan to adopt a pure EDF scheduler was dropped due to

the fact that the optimal properties of EDF breaks down on a multicore system

[4]. The choice of a rate-based scheduler was found based in a series of articles

([3], [1], [21], [24], [2] and [6]).

One difficult task with all scheduling algorithms, but especially with a deadline-

driven algorithm in a kernel almost entirely based on (static) priorities, are dead-

line inversion. As the algorithm of choice is global, an elegant solution this has

been found. The proxy execution protocol is used as a basis and adapted to the

global landscape. This is described further in 4.4.

Figure 4.1: Simple SDL diagram for scheduler agents with roles

Figure 4.1 gives a short overview of the scheduler. To outline the different

sections of the scheduler, the term agent has been used. This is simply to split

the behavior into different roles, but also to distinguish between what happens at

timer-interrupts and what the task is responsible for doing. The scheduler does

not contain agents, but it does implement the roles. At the core of this, is the

timer agent. It will provide a heartbeat functionality with timeslice granularity,

and is the main input to the pfair engine. When a new task is added, it is inserted

4.1. A BIRDSEYE VIEW 43

Figure 4.2: State machine for the “timer-agent” role in the pfair scheduler

into the runqueue, and the timer-agent is notified about the new task. Steps are

then taken to ensure that when the task is released, a time-event will force this

to happen.

The normal state, is running. When it is in running, there will be at least

one task in the active queue. When active is empty and ready is non-empty, it

will wait in post schedule. When a timer event occurs, the currently running

task (curr) is marked for preemption. We have the following set of scenarios:

• curr is pfair task and has exhausted its timeslice and there are tasks left

in active. The setup is straightforward: put current in ready and pick the

next form active.

• curr is pfair, but active is empty. curr has exhausted its timeslice and

should be preempted. The timer-logic will find the next release-time and

then wait in post schedule.

• curr is not a pfair task. The event can only mean that a task in ready is

ready to be released. It will migrate tasks from ready, preempt current and

wait for a pick next event.

• curr is not pfair and both queues are empty. This is a situation that can

arise when several CPUs try to migrate the same task. This race-condition

is actually quite difficult to handle and in the current version, it is accepted

as a performance penalty as only non-pfair tasks are affected.

44 CHAPTER 4. OVERALL DESIGN OF THE SCHEDULER

The details of the timer architecture discussed further in Ch. 8.

A note of warning: systems incorporating simultaneous multi-threading (like

Intel’s HT-technology) must be configured with this option disabled for obvious

reasons.

4.2 A pfair task

All tasks in the kernel are represented by a task struct found in

include/linux/sched.h . In this struct, all resources held by the task, infor-

mation about scheduling class, priority etc. are stored. Each task also con-

tains a sched entity and sched entity rt , which is what sched fair.c and

sched rt.c use to schedule tasks. As one goal was to keep the complexity as

low as possible, the current version does not create a new scheduling entity but

instead embed the required fields directly.

4.2.1 New attributes in the task descriptor

All attributes concerning time, is represented as u64 1, and in nanoseconds. Ide-

ally, ktime t should be used, but it makes debugging easier, and some of the

arithmetic simpler by not adding yet another mathematical library in the code.

sched.h :

u8 pfair state Which state the task is in. This can be either pfair ready

or pfair active. The flag pfair running will also be multiplexed in (bit

position 1) to indicate if the task is running on a CPU or not.

u8 pfair periodic The task can be either periodic or sporadic.

struct pfair subjob Added twice in the form of psj head and psj curr.

They are pointers to the head of the subjob queue as well as the current

subjob (or the next to run if state is pfair ready).

struct rb node task node Used in the runqueue to store the task, either in the

ready or active runqueue.

u64 period ns This is the base period for the task and is set when the task

is updated to pfair-status. If the task is periodic, once the last subjob

has finished, it will be released at last releasetime + period ns . If it is

1 u64 is a way of describing unsigned long long values, and also force the compiler
to make it 64 bits, regardless of the architecture.

4.2. A PFAIR TASK 45

sporadic, it will not be allowed to be released until at least period ns has

passed since last releasetime .

u64 deadline ns The deadline dictates the dynamic priority of a task, but also

how much resources that must be reserved for the task (as we will see later

in Sec 4.2.3).

u64 wcet ns The Worst Case Execution Time (wcet) is an estimate at best

as determining this value is very difficult, but in order for deadlines to have

any meaning, an estimate of the execution cost must be provided. This will

also determine the number of subjobs allocated to the task.

u64 scaled wcet ns To make sure the utilization does not increase beyond what

is feasible, a scaled wcet is used from all tasks to provide a approximated

utilization measure. This is wcet scaled up to fit into the hyper period in

the runqueue. The hyper ns is described in the runqueue section (Sec.

4.3), and so is the calculation of this value.

u64 abs release ns This stores the absolute release-time for the current sub-

job. It was introduced to minimize the need for computing. Each time two

tasks in state pfair ready are compared, the release-times for the current

subjobs are used.

u64 last release ns Not to be confused with abs release ns , this value

stores the last release of a job. The release-times for each subjob is com-

puted when the task is either updated or reweighed and are stored as rela-

tive values in the subjobs. To find the absolute releasetime (or deadline) for

any given subjob, the relative time added with this will give the absolute

system time.

u64 no subjobs The number of subjobs the task has. This is useful when the

task is reweighed, as finding how many subjobs to add or remove can be

done quickly.

4.2.2 Adding subjobs

The subjobs belonging to a task is the entities the pfair scheduler actually han-

dles as elements. In itself, a subjob is not a separate task, but rather a token

(or ticket) the job2 holds to show the scheduler how it should be handled. The

values in the subjobs are computed when the task is either updated or reweighed.

2A job is an instance of a task, when a task is released.

46 CHAPTER 4. OVERALL DESIGN OF THE SCHEDULER

Figure 4.3: A job is stored in a tree, and the subjobs are used to sort the task to

the correct place.

Elements in the pfair subjob :

• struct list head list : The linked-list element. This will be covered

further in 6.1.

• u32 window length ns : Not to be confused with the window-length in the

pfair run-queue. This value indicate the length from sub-release to sub-

deadline for this subjob.

• u32 consumed time : How much time has been granted to the subjob upon

preemption. As a subjob can be temporarily suspended at interrupts etc,

this is intended to correct for that. However, this has proved to be infeasible

to conduct in practice, and the value should be removed.

• u64 sub release ns : The relative release-time of this subjob with respect

to abs release ns in the task-descriptor.

• u64 sub dl ns : The relative deadline. The absolute deadline is found by

adding abs release ns .

• u64 group dl ns : Exactly as the sub dl ns value.

• unsigned char disjoint bit:1 : The last element to complete the PD2

rules.

All the subjobs are kept in a linked list, sorted increasingly by the release-

time. As the deadline of a subjob cannot exceed the release of the next, it is

also sorted by the sub-deadlines. The choice fell on linked lists as this structure

provides a way of changing the size dynamically in a very easy manner. Since we

4.2. A PFAIR TASK 47

keep the current subjob (or the next to be released), finding the next subjob can

be done very efficiently. The kernel implementation also uses memory prefetching

to bring in the next element whenever possible. This makes traversing the lists

very efficient, and incrementing a single node can in most cases be done without

going to memory a second time. The linked list is described in Ch. 6.1.

Any single task with a reasonable large wcet, will end up with a large number

of subjobs. Add several tasks, and you suddenly get a very large number of

subjobs. All these require memory to be allocated (and deallocated), with as

little memory wasted as possible. The memory management layer, and especially

by the SLAB allocator, handles this. This is presented in full in Chapter 5.

4.2.3 Calculation of subjob values

All the values in the subjobs, are found according to the equations described in

Sec. 3.4. The original algorithm calls for 3 passes over the entire list, first to

update the release-times and deadlines, then to set the disjoint-bit and finally to

find the group-deadlines for the subjobs. The need for doing this 3 times (2 if

you take the disjoint-bit and group-deadline together in one pass) is because the

values depend on the next value in the list. However, if you change the direction

you traverse the list, you can do this in one go. Unfortunately, this leads to a bit

more complex code, as seen in listing 4.1. The actual computation can be found

in kernel/sched pfair.c in the source code. At the moment, the calculation

is preformed in the pfair subjob calc() function so both the update and

reweigh-functions can utilize it.

Listing 4.1: Calculation of the subjob values

j ob nr = no subjobs
foreach element in l i s t reverse :

s u b r e l e a s e [j ob nr] = f l o o r ((job nr −1)∗ j o b p e r i o d / wcet)
sub dead l ine [j ob nr] = c e i l (j ob nr ∗ j o b p e r i o d /wcet) −1
i f l a s t s u b j o b :

s u b d i s j o i n t [j ob nr] = 0
else

s u b d i s j o i n t [j ob nr] = 1
i f t a s k i s h e a v y

i f l a s t w indow length == 3 and th i s w indow length == 2
l a s t g r o u p d l = t h i s s u b d l

sub group d l [j ob nr] = l a s t g r o u p d l
j ob nr − 1

48 CHAPTER 4. OVERALL DESIGN OF THE SCHEDULER

Figure 4.4: Two schedules. The first with deadline equal period, the second with

a much shorter deadline, resulting in a much “tighter” schedule.

This might seem like a non-trivial way of finding the subjob values, as the

actual release time must be computed from the absolute releasetime of the job

and added with the subjob release time. However, it has one very important

feature: when a job is released, regarding of the number of subjobs, only the

releasetime for the job needs to be updated. This provides O(1) release-time

overhead, something that is very important in a real system. In other words,

optimize for the common case.

The resulting values can be added graphically as shown in Figure 4.4 for two

different tasks.

4.2.4 Comparison of tasks

A normal scheduler compares the relative importance between two tasks by look-

ing at their priorities and conducts a pure numerical comparison between the

two. With deadlines, and especially with pfair, this comparison becomes more

complicated. In particular, the compare-function is needed when a new task is

going to be inserted into either one of the runqueues. Both trees (see Sec. 4.3

for how the scheduler keeps the tasks in the runqueues) are kept sorted based on

properties in the tasks.

The task can be in state ready, meaning it has released a job, but no

subjob is currently ready to run. The other is state active meaning that a

subjob is ready to run, it has been released. Looking at the ready-state first,

the comparison is straightforward. Take the absolute release-time for the current

subjob in and compare with another, similar task. pfair active is a bit more

4.3. THE PFAIR RUNQUEUE 49

involved, and this is the actual PD2 rules:

1. Compare the absolute deadlines and pick the task with the shortest dead-

line.

2. If the deadlines match, test the disjoint bit. If they differ, the task with

the bit set “wins”.

3. If they both have equal disjoint-bit, compare the group deadline.

Listing 4.2: Comparison of two pfair tasks

PFAIR COMPARE TASK(t1 , t2)
i f t1 i s PFAIR READY

return r e l e a s e (t2) − r e l e a s e (t1)

i f sub dead l ine (t1) == sub dead l ine (t2)
i f d i s j o i n t (t1) == d i s j o i n t (t2)

return group dead l ine (t2) − group dead l ine (t1)
return d i s j o i n t (t2) − d i s j o i n t (t1)

return sub dead l ine (t2) − sub dead l ine (t1)

Optimizations can be done here. For instance, if both have cleared the disjoint

bit, they are both the last job, and hence the group deadline will also be equal.

This is not done in the actual implementation as it would lead to a more complex

comparison and the gained speedup is negligible compared to transversing the

tree.

4.3 The pfair runqueue

The kernel runqueues are per- CPU, but the pfair runqueue (prq) is global.

Each rq has a reference to prq . As mentioned in 1.1, resource reservation

is used to ensure that tasks requirements can be met. Since the kernel does

not support floating point arithmetic, we need to approximate this. By using

a large hyper-period and then scale all tasks to approximately this length, the

estimated cost for an entire hyper-period can be found. This can then be added

to consumed time ns to store the total, reserved resources thus far.. This is an

less-than ideal approach, but it is fast and fairly accurate.

4.3.1 Added fields to the standard runqueue

In the kernel, each CPU is given a dedicated runqueue, and a set of values have

been added here:

50 CHAPTER 4. OVERALL DESIGN OF THE SCHEDULER

Figure 4.5: The relation between the local runqueues and the global pfair run-

queue, and some of the important fields in both.

struct pfair rq *prq This is a reference to the global pfair runqueue. The

reason for adding this to the local runqueue, and not as a global, static

value, is that we want to retain the option of dividing a domain into several

“sub-domains”.

struct hrtimer pfair timer Each CPU need to have a dedicated timer. At

regular intervals, the timer will generate events to trigger a rescheduling

of tasks. This will enforce the timeslice granularity for the tasks, and also

make sure that tasks are released when they are supposed to be.

unsigned int pfair enabled:1 If pfair is enabled or not. This can be used to

turn off the scheduler.

unsigned int pfair running:1 Indicates whether or not the scheduler is run-

ning (if it has any tasks in any of the runqueues).

unsigned int timer enabled:1 Flag used to indicate if the timer is enabled.

When new tasks arrive, this is used to quickly determine if the timer should

be reset (an expensive operation), or if the timer can be started blindly.

struct task struct * pi resource holder This is the task holding the resource

we are currently blocked at. This is for implementing PEP.

4.3. THE PFAIR RUNQUEUE 51

4.3.2 Values in the pfair runqueue

The pfair runqueue holds a set of variables used to manage the behavior. This

list describes the elements, and how they are used in the kernel.

spinlock t lock To protect the structure from concurrent access, it has been

given a lock. It is a simple spinlock, as the expected time of holding the lock

will be short, and we really do not want to block while trying to schedule

a new task.

u32 pfair running Flag that can be modified via the SysFS interface to turn

the scheduler on and off. This is to provide a flexibility for the system

administrators.

struct rb root active The runqueue for the active tasks in the system.

struct rb root ready While the jobs wait for the next subjob to be released,

they are kept in the ready-queue.

u32 active count Instead of traversing the entire tree in order to find the num-

ber of tasks, this is a quick path to obtain this. It is updated upon task

migration (from the ready-queue to the active and vice versa).

u32 ready count Same as u32 active count .

u64 next release ns In order to quickly determine when the timer will fire, this

is a value holding the next timeout value. By looking at this, the system can

determine if the current timer should be canceled or if it provides adequate

service.

u64 hyper ns When accepting new jobs (and allowing tasks to reweigh), the

utilization must be found. The hyper ns is the length of a hyper-period,

and is chosen to be larger than most periods. By scaling the period of a

task up to this size, the multiplier can be used in conjunction with wcet

to create an estimate of the expected load for the task in the hyper period.

u64 consumed time ns This is the combined, scaled wcet for all the accepted

pfair-tasks in the system.

u32 timeslice ns The length of each time quanta given to the jobs.

ktime t timeslice delay A ktime t representation of the timeslice. It can be

computed quickly whenever needed by ns to ktime(time in ns) , but it is

easier and more efficient to store it directly as this is a value that does not

change often.

52 CHAPTER 4. OVERALL DESIGN OF THE SCHEDULER

u32 busy limit ns If a job finishes before the current timeslice is exhausted,

other non-pfair tasks can be allowed to run. However, if the remainder of

the timeslice is below this limit, it does not make sense to change the tasks,

as a preemption would remove the new task before it is allowed to run.

This attribute is used to tune the performance in such settings, telling the

scheduler to spin instead of schedule out a new task.

4.3.3 Storing tasks in the runqueues

As shown in Fig.4.5, the pfair runqueue has two runqueues, one for active tasks,

and one for tasks waiting to be released. Motivated by the cfs, the usage of

red black trees was adopted. Since the runqueues are global, these structures

can potentially be required to hold a large number of tasks. It is therefore

very important that insertion, removal and balancing of these trees can be done

efficiently. The usage of red black trees are described in Chapter 6.2, and they

are kept sorted by using the compare-function introduced in 4.2.4.

4.4 Solving the deadline inversion problem

Whenever there are shared resources in a system, there will be lock contention,

race conditions and possible deadline misses. The kernel must make sure re-

quested resources are freed as quickly as possible. The need for locks are obvious,

a given resource must be protected from concurrent access. The nature of the

lock can be either short-term, e.g. a spin-lock or long-term, e.g. a mutex (a

binary semaphore) where the task may suspend awaiting release of the resource.

The problem arises when you have (at least) 3 tasks in the system, A, B and

C. A has the highest priority, C the lowest. C holds a shared resource R which

then A requires. A is then suspended waiting for C to release R. Now B becomes

runnable. Since B has higher priority than C, B is allowed to run, blocking both

C and A.

Several ways of solving this have been proposed over the years, where the Pri-

ority Inheritance Protocol (PIP) is one of the better. In PIP, when A is blocked

by C holding R, C is given A’s priority until R is released. That way, C will

be allowed to run even if B becomes runnable, speeding the release of R. This

works fine for systems based on priority, and recent work has extended this to

the realm of deadlines [11]. BandWidth Inheritance (BWI) works by extending

the allocated resources given to a task, to the holder of a lock. Each task has

a period, execution cost and deadline. They are given a certain portion of the

total bandwidth, namely execution cost
period

. Then, when a task holds a resource and

4.5. MAIN SCHEDULER INTERFACE 53

depletes its budget, it will tap into another, requesting task’s budget until the

resource is freed.

In our setup, we use a slight variation of BWI called the proxy execution pro-

tocol, PEP. The difference between BWI and PEP is that in BWI, the holders

budget is depleted first, and once empty it will run on the A’s resources. In PEP,

C will run as normal, using its own budget. When A attempts to acquire the

lock, it blocks, but it is not removed from the runqueue. Instead, it is treated

as any normal task. When A is scheduled to run, C will run instead, but using

A’s budget. This gives an added bonus to C for holding something A wants. In

BWI, a task would be penalized for holding a wanted resource.

It is at this point, that we can see the pfair-scheduler excel. Simply because

we have total control over all tasks at all time. By adding a memory reference

to the task holding the resource, the scheduler can automatically trace down the

path until it finds the task eligible for execution. If the task is already running,

it can deduce this from the pfair state flag. The time allocated to the holder

of a resource on behalf of the requester is then accounted for on the requestors

budget (meaning task A will pay to allow C to run so C will release R faster).

This compartmentalize the extra resources given to C to the combined size of A

and C’s budget.

As a final note. If C is not a pfair-task, it will still run in a pfair context.

This means that every task in the kernel can hold the resource, and because

the resources granted will be accounted for on A’s budget, it does not matter

if C uses normal priorities, the problem is reduced to picking another task, not

type of task. This means that PEP in effect can be extended to span all tasks

in the system, not only the pfair class. At the moment, it is of considerable

interest to implement this in the Linux kernel, especially in conjunction with the

RT-preemption patch and its rt-mutexes.

4.5 Main scheduler interface

All scheduling classes are required int implement all (or a large subset of) the

functions found in struct sched class . This allows the kernel to call a set of

functions without knowing which class it belongs to. In some cases, this restrict

what a scheduling class can do, but in most cases, it makes the job of integrating

a new class much simpler. The most important functions are also covered in Ch.

9.

54 CHAPTER 4. OVERALL DESIGN OF THE SCHEDULER

4.6 Adding a gate to the kernel

To update a task from any scheduling policy to pfair, the sched pfair update()

function will do this. It is mapped to the syscall sys sched pfair update() in

sched.c . This is needed in order to allow tasks to gain pfair privileges. A set

of tests are performed (capability, validity of parameters and whether or not the

scheduler can serve the request) before the task is allowed into the pfair runqueue.

When a task has gained pfair status, it must be released in order to be granted

time on the CPU. This is either done automatically (if the task is periodic), or the

task must call sched pfair release() itself. Either way, the task will not be al-

lowed to run before a time equal the period has passed since last release. Finally,

the scheduler allows a task to change its parameters. This is called reweighing

and is made available via sched pfair reweigh() . The technical details around

implementing syscalls are covered in Ch. 7.2.

To tune the scheduler, several attributes have been added to the /sys direc-

tory. These are covered in Ch. 7.

4.7 Building the kernel

When the kernel is going to be built, it is an absolute requirement that the pfair-

scheduler can be enabled or disabled via the kernel configuration system. By

wrapping the pfair-related code in “ #ifdef CONFIG SCHED PFAIR ”, the compila-

tion will result in no pfair-related code3 with no added code or run-time overhead.

This, and some of the other options and tunable values are covered in Ch. 10.1.

4.8 Summary

This chapter gave an outline of the new scheduling class, and the new scheduling

policy sched pfair. A thorough discussion about the new fields added to both

the runqueue and the task descriptor was given. The timer state-machine was

also covered and explained. The next chapters will delve into how the different

subsystems work, and how the scheduler uses these. Each system has also been

tested with a dedicated module, and those are also covered. Where this chapter

gave the outline and general idea, the following chapters will provide the nitty-

gritty details.

3Except the syscall-wrappers.

Chapter 5

Memory management

“Memory is necessary for all the operations of reason.”

— Blaise Pascal

Until now we have only looked at background, theory and design. The sched-

uler requires several specialized datastructures, most of which requires memory

to be allocated dynamically.

In user space, memory is easy1, but once you enter kernel context, things

get a bit more hairy. For one, the entire kernel shares the same address-space.

Where each user-land thread has its own memory space, the kernel threads share

theirs. A memory error can therefore affect other, completely unrelated parts of

the kernel, making tracing bugs very difficult. Often the kernel cannot sleep or

suspend while waiting for memory either, which makes swapping other pages out

a bit more complicated.

In this chapter we will at how memory is allocated with kmalloc and freed

with kfree . We then proceed to look at the SLAB allocator and why this is a

good choice for some of the datastructures in the pfair-scheduler.

1“Easy” must be taken with a grain of salt as C and memory has always been, and will
always be, an error-prone area.

55

56 CHAPTER 5. MEMORY MANAGEMENT

5.1 Background

Memory is treated as pages of memory. Each page is normally 4kB or 8kB

depending on the underlying hardware. Both kmalloc and kfree , and then

also the SLAB layer, use the buddy system to obtain and release memory. The

buddy system is a system used for managing large areas of memory. The details

around this is omitted, as this is beyond the scope of this project ([19, Ch. 11]

and [7, Ch. 8,9] gives a very thorough discussion about memory management,

allocation and implementation).

5.1.1 kmalloc and kfree

kmalloc is used to allocate memory (kernel memory allocation), and kfree is

its counterpart, it will free previously allocated memory. Both kmalloc and

kfree are found in include/linux/slab.h .

5.1.1.1 Allocating the correct size of memory

As the buddy system deals with page frames, it cannot handle variable length

blocks. As it would be redundant2 for kmalloc to implement direct memory

management, this is left for the buddy system. To waste as little memory as

possible, kmalloc maintains a table of blocksizes (see Table 5.1), and when a

new request for memory is issued, kmalloc (and in turn, the buddy system) will

try to return the nearest fitting block of memory, rounding up in size.

5.1.1.2 Allocating the memory at the correct time

When allocating memory, kmalloc must be given a flag to indicate the type

of memory. We will not cover this in depth, other than presenting the two

(composite) flags most often used:

GFP ATOMIC is high priority allocation that cannot block. If other pages

must be swapped out before free memory is returned, kmalloc will fail

and return NULL. When allocating memory from regions that cannot sleep,

i.e. interrupt context or other time-critical sections, this is the preferred

choice. However, it will fail to allocate memory long before gfp kernel.

GFP KERNEL is the “normal” allocation flag. kmalloc will block the issuer

if other pages needs to be swapped out. This is the most common flag when

allocating memory in the kernel.

2“Redundant” translates directly into increased complexity and less maintainability.

5.1. BACKGROUND 57

list bit width memory size list bit width memory size

0 5 32 B 6 11 2,048 B

1 6 64 B 7 12 4,096 B

2 7 128 B 8 13 8,192 B

3 8 256 B 9 14 16,384 B

4 9 512 B 10 15 32,768 B

5 10 1,024 B 11 16 65,535 B

12 17 131,072 B

Table 5.1: List of memory blocks handled by kmalloc . New memory will be

granted, rounded up to the nearest available block and managed via the buddy

system

5.1.1.3 Freeing memory

This is done by kfree and will free a memory region allocated by kmalloc .

The kernel will not try to monitor which pages belongs to which threads so it

can deallocate memory belonging to a dead thread. To avoid memory leakage,

all allocated memory should be freed when not in use anymore.

5.1.1.4 Using kmalloc and kfree

To allocate a memory area, kmalloc is used. It will return a memory pointer

(to void) or null upon failure:

void * kmalloc(size t size, int flags)

To free memory, kfree accepts a pointer to a memory region. Note that

kfree is “null-safe”, but it is not advisable to free the same memory twice, or

memory not allocated by kmalloc :

void kfree(void *mem ptr)

58 CHAPTER 5. MEMORY MANAGEMENT

5.1.2 The SLAB allocator

When allocating a large number of objects3, kmalloc can, and probably will,

waste a lot of space. As a result, developers often devote a small part of their

larger system to managing memory. By allocating a large block of memory they

can organize the memory in such a way that only a small amount is wasted.

Unfortunately, this code tends to grow in complexity and steals focus from the

more important task — namely the purpose of the project at hand. For this

reason, the SLAB layer was invented. Originally found in Sun’s Solaris, the

SLAB layer is a way of allocating a large amount of memory in caches and

return just the memory needed when asked for. Each cache is divided into a set

of caches, and each cache allocated one or more physical pages of memory.

Frequent allocation and deallocating of objects The layer has a memory-

cache, and when a new object is allocated, the layer first attempts to ac-

quire the object from the cache. If unsuccessful, the layer allocates a large

slab of memory, and then returns just the correct amount of memory from

this region. Deallocation returns the object to the cache, so that a new

allocation-request can be served from the cache.

Centralized free-list implementation As the kernel has a single system for

a free list, the kernel can monitor the SLAB and optimize memory usage.

Cache line aware By using coloring of the elements, the allocator can minimize

the cache conflicts between objects. This helps reduce cache thrashing.

Another benefit of allocating objects as tightly together as possible, and

not in areas with power of 2 size, is to reduce the address collisions.

Optimal usage of available memory The layer can be told the size of the ob-

jects to allocate. This allows it to optimize for memory footprint, reducing

the wasted memory greatly.

Multiprocessor aware The slab layer has a per-CPU cache as well, called the

“slab local cache”, a cache for each CPU.

The SLAB-layer (Fig 5.1, p. 59) creates one cache for each object, and each

cache is composed of one or more slabs. The slabs are one (or possibly several)

page of memory. A slab can be empty, partial or full. When a slab is empty, no

objects have been allocated from the slab. A partial slab has 1 to n−1 allocated

objects, where n is the maximum number of objects a slab can allocate).

3When talking about objects in the kernel, one normally indicates an allocated instance of
a struct for a particular purpose.

5.1. BACKGROUND 59

Figure 5.1: The SLAB layer with a set of initialized caches, and the pfair cache

consisting of 3 slabs, each with 6 pages. Red indicates full, orange is partial (not

shown) and green is empty.

60 CHAPTER 5. MEMORY MANAGEMENT

The whole point with the cache, is to store unused objects instead of directly

freeing them. When objects are allocated and deallocated frequently, this or

when the object has a size different than the power of 2 list found in kmalloc .

5.1.2.1 SLAB, SLUB and SLOB

SLUB is an improvement to SLAB. Over the years, the SLAB layer has proved

its worth in the kernel. It is quite complex, and some kernel hackers found it to

be insufficient. As a result, the SLUB allocator was proposed, a replacement for

SLAB. SLUB has several improvements, most notably removal of several of the

queues and no metadata in the cache it self (it is kept in the allocator itself, not

inside the cache areas). Instead of an array of objects, SLAB uses a linked list of

free objects. When a request is made, the first available object is returned (the

head of the list). If the slab is full, a new page is requested, and an object is

returned from the new page.

The SLOB allocator is a very, very simple allocator to use in small embed-

ded systems. SLOB does not try to do cache alignment, coloring or other cache

techniques. This makes it lightweight, but it suffers from internal fragmentation

as it does not have a sufficiently advanced allocating algorithm.

The allocator is chosen at compile time. The API is the same (hence the

“drop-in replacement”), the difference is how memory is treated. The layer is still

denoted “the SLAB Layer”, and the main API-file is include/linux/slab.h .

Depending on the kernel configuration, slab.h will include either a) slab def.h

b) slub def.h or c) slob def.h and since Linux-2.6.22, SLUB has been the

default allocator.

5.2 Kernel interface

As the startup routines in the kernel will initialize the SLAB Layer, we will not

cover direct SLAB Layer manipulation here. We will instead look at how to cre-

ate, use and destroy a SLAB cache. This section tries to explain the parameters.

The usage can also be viewed in App. B.1.

5.2.1 Cache create and destroy

To create a slab cache, a pointer to the cache is needed. The type is kmem cache t

and is returned by kmem cache create . The create function takes the following

set of arguments:

5.2. KERNEL INTERFACE 61

const char *name

A string with the name of the cache.

size t size The size of each element (object) in the cache.

size t align

Offset of first object in the slab. This is to change the initial alignment

within the cache.

unsigned long flags

(optional) This sets the cache behavior. No particular flag must be set.

The complete list can be found in [17, line 19-24]. To increase perfor-

mance, the cache can be told to align the objects to different cache-lines

(slab hwcache align or slab must hwcache align).

This will increase performance, but memory is wasted as the allocator adds

empty regions if the objects align.

void (*)(void *)

Used to be constructor for the cache, in case special operations need to be

performed. As no one actually needed this reference, it is moving towards

deprecation, and thus, the empty function signature. This should always

be set to null.

On success, kmem cache create returns a pointer to the allocated area. This

function can sleep, so a cache should not be implemented from an ISR.

To destroy a cache, int kmem cache destroy(kmem cache t *cache) can be

used. The result is almost identical to kfree . Note that all objects allocated

from the cache must be returned before the cache can be destroyed.

5.2.2 Allocate memory for an object

As with kmalloc , the kmem cache alloc() takes a flag as argument. The flag

is the same as for kmalloc , and in effect, either gfp kernel or gfp atomic is

used. The difference in the function signature, is that kmem cache alloc() takes

the slab-cache pointer as argument, whereas kmalloc takes the size.

void * kmem cache alloc(kmem cache t *cachep, int flags)

5.2.3 Deallocate, return to cache

As with kfree , a pointer to the allocated object must be provided, and since

we are working with the SLAB-cache, a pointer to the correct slab must also be

62 CHAPTER 5. MEMORY MANAGEMENT

provided:

void kmem cache free(kmem cache t *cachep, void *objp)

5.3 SLAB kernel interface

The SLAB Layer adds complexity to the scheduler, no questions asked. So why

use the SLAB Layer when, if datastructures are devised carefully, kmalloc per-

forms just fine? The pfair scheduler will create a set of subjobs for each task, and

all of these will be chained together in a linked list (see Ch. 6.1 for how linked

lists are implemented and used). The subjobs were presented in listing 4.1 on

page 47

A short list of reasons to why the SLAB Layer is a good choice:

a) A large number of pfair subjobs will be allocated and eventually deallocated,

making the SLAB Layer an ideal choice.

b) SLAB is fast. When we initialize a pfair task, we want to wait for as short

time as possible.

c) It will reduce memory fragmentation. Each subjob is a small struct, con-

taining only a few variables.

The cache will be used when a task is either updated, i.e. changes scheduling

policy to sched pfair or when a reweighing changes the number of subjobs (i.e.

the wcet changes).

5.4 Small test module

To verify that the layer was created and used correctly, a small module was cre-

ated. It can be found in Appendix B.1 and is also included in the attached files

(on the CD-ROM, code/slab/slab.c) To compile, insert and remove:

make

sudo insmod slab.ko

sudo rmmod slab

dmesg | tail

The usage is fairly straightforward. It is important to use kmem cache free()

when deallocating objects. If kfree is used, the kernel will panic.

5.5. END RESULT 63

5.5 End result

In the scheduler, the SLAB layer is used whenever a new task is updated to

sched pfair. Based on the period, deadline and worst case execution time

(wcet), a set of subjobs are created. The number of subjobs depend on the

timeslice used by the scheduler (normally 1 ms) and wcet. All of this was

shown in Sec. 4.2.3.

In the end, once SLAB was understood, the required code was only a few lines.

This is as expected - anything more would have been disastrous. The challenge

lies in understanding the system and using it properly, and the implemented code

shows this.

5.6 Summary

In this chapter we looked at how the SLAB allocator can optimize the memory

footprint and speed up frequent allocation and deallocation. This will be further

used by the datastructures presented in the next chapter.

64 CHAPTER 5. MEMORY MANAGEMENT

Chapter 6

Advanced data structures

“A computer program is organized complexity.”

— Edsger W. Dijkstra

This chapter will present two of the advanced datastructures used in the

scheduler for managing subjobs and storing the jobs in the runqueues. The

chapter starts out by presenting linked lists with background, kernel API and a

sample module before the role in the scheduler is described in more detail. Then

red-black trees are covered in very much the same manner.

65

66 CHAPTER 6. ADVANCED DATA STRUCTURES

Figure 6.1: A circular, doubly linked list of 5 pfair subjob elements.

6.1 Linked lists

As described in Sec. 4.2.2 and shown in Fig. 4.3, the subjobs will be stored in

a linked list. Linked lists compared to arrays can reduce memory footprint as

you do not have to bring the entire array into memory, you can fetch only parts

of it, furthermore, you can create the exact length, something very difficult with

arrays (pagesize etc).

6.1.1 Background

The linked list in the kernel is a doubly linked, circular list. A doubly linked list

is a list where each node contain a reference to the next and previous element in

the list. A circular list, is where the last element point to the first (and the first

to the last if it is doubly linked).

The kernel structure for linked lists are found in include/linux/list.h ,

and in particular the struct list head is the actual list-node. This is used

“in place”, this means that struct list head lies directly in the encapsulating

data-structure, not via a memory reference. This saves the kernel an extra level

of memory abstraction. By using the container of macro, it is trivial to obtain

the correct struct from a list head pointer. Figure 6.1 show how the 5 subjobs

are linked together via list head and how they are embedded directly into the

subjob.

One of the most common operations done on a linked list, is traversal. To

speed this up, the kernel tries to prefetch the next list-element when fetching one.

6.1. LINKED LISTS 67

As it is very rare for a traversal to skip one element, this can be done safely, and

will in most cases speed list traversal considerably.

6.1.2 Intended role

The linked list will be used to store the subjobs for each task. As we always have

a reference to the currently running subjob, finding the next subjob (when the

task is removed from the active queue and placed in the ready queue, the next

subjob with its release time is found) is straightforward and is done in O(1) time.

This is a very important point, and this is the sole reason for choosing linked list

instead of red-black trees.

6.1.3 Kernel interface

All the related macros and functions can be found in include/linux/list.h ,

the following list is the functions (and macros) used in sched pfair.c . The full

syntax is not given in all examples as some are nearly identical for some. The

supplied module should give sufficient insight where the syntax is not shown.

• INIT LIST HEAD : This macro initializes a list head struct so it can be

used in a linked list.

• list entry : Given a list head , this will find the encapsulating struct.

The syntax is similar to the container of macro:

struct your struct *foo = list entry(list ptr,

struct your struct,

list);

Given the memory reference to the list, list ptr embedded with variable

name “list” in struct your struct , the correct struct will be returned.

• list first entry : Given the head, this returns the first entry in a list.

It is very similar to list entry .

• list add tail : This will, not surprisingly, add a new element to the tail

of the provided list.

• list is last : Test to see if the given list head is the last element in

the list.

• list for each entry : Will iterate over a linked list in a loop and break

once returned to the head of the list.

68 CHAPTER 6. ADVANCED DATA STRUCTURES

• list for each entry reverse : Identical behavior to list for each entry

, except for the direction.

6.1.4 Test module

In order to understand the list properly and avoid memory reference errors, a

small module was created. It creates a set of list elements, keeps them in sorted

order based on a primary and a secondary key (much like how subjobs will be

compared between tasks) and traversed it before freeing the memory.

The result can be found in App. B.2. Even though the actual code is very

small, and the usage is very basic, this small module help identify several funda-

mental problems and removed several flaws from the linked list implementation

in the scheduler code.

6.1.5 End result

The functions dealing with subjobs are the ones using the list-functionality. A

set of higher level functions have been created that handle the day-to-day list

basics.

• Initializing the list. This is done in the same function that adds elements

(as initializing and adding is normally done at the same time).

• Adding new elements to the list is done when it is either updated to

sched pfair or when it is reweighed. The function needs the task to

add tasks to, and the number of subjobs. Note: this function does not edit

the elements, it merely ensures that the given task has total jobs number

of subjobs available in the list.

pfair create subjobs(struct task struct *task, u32 total jobs)

• Removing elements is done when the tasks is taken out of the pfair-system

(either it changes scheduling class or it stops) or it reweighs the task and

ends up with fewer subjobs:

pfair free subjobs(struct task struct *task, u32 jobs to rem)

• Traversing the list, or incrementing the curr-pointer one step. This happens

when a subjob has finished and the system readies the job for the nest sub-

release. The function advance psj() moves &task->psj curr to the

next in the list.

6.2. RED BLACK TREES 69

• Resetting the subjob-list. reset psj(struct task struct *task) han-

dles this by setting the curr reference to the first element in the subjob

list. Note: a common mistake here would be to set curr to head . As

we have mentioned earlier, the correct way is to use last first entry() ,

which will return the element head refers to.

These are the main subjob-handling functions. On top of this, there are

functions that compare the subjobs and order the trees. As these are not directly

relevant to the linked list, they are omitted here.

6.2 Red black trees

6.2.1 Background

A red-black tree is a special case of a binary tree. It is used to store comparable

data in a way that makes lookup as well as insertion very efficient. The most

famous attribute with red-black trees, is that they are approximately balanced

at all times. A binary tree is said to be balanced if the height of the left subtree

of a node is never more than ± 1 of the right subtree. Because of this, a balanced

tree will never be higher than 2lg(n+1). Since the pfair scheduler is global, we

must assume that a large number of tasks will be inserted in either one of the

to queues. Having a data-structure that efficiently inserts and retrieves elements

when the number of tasks grow, is crucial.

6.2.2 Kernel interface

The kernel red-black tree implementation is optimized for speed and reduced

memory footprint. This means that it does not have all the abstract methods

one would like, nor is it as easy to use at one would like. It incorporates the same

basic idea found in the linked list, that the node is embedded directly in the

enclosing data structure. By doing this, the kernel save one memory dereference,

minimizing time spent moving data in from memory to cache.

Furthermore, there are no top-level search, insert and delete functions. The

implementing module must provide these. This is simply because the red-black

trees will be used in a variety of settings, making it impossible to write a general,

performant API for this. What you get, however, is raw speed and unparalleled

control over the data-structure.

70 CHAPTER 6. ADVANCED DATA STRUCTURES

Of all the various functions provided, only a few of the “core functions” are

needed, namely:

• struct rb node *rb first(struct rb root *tree);

Find and retrieve the leftmost element in the tree (or null should the tree

be empty). The rest of the logic have to traverse the tree anyway, and all

that they require, is the root.

• void rb erase(struct rb node *node, struct rb root *root)

This will remove the supplied node from the tree starting in root and

rebalance the tree after it is done.

6.2.3 Small test module

The red black trees are pretty much the most advanced data structure used

in the scheduler. Only the hrtimer interface surpass it in complexity and size.

In Appendix B.3 a small tree has been implemented. Especially the function

rbt insert() illustrates the point about keeping track of memory references.

6.2.4 End result

As previously mentioned, the scheduler keeps two separate queues, one for active

and one for ready. Both are kept sorted based on their subjobs, and even though

the sorting differs based on the state, the interface is pretty generic. The extra

overhead in the compare-function is well worth the gained abstraction in this

setting.

The most important functions are

• void pfair task insert(struct rb root *root, struct task struct *new)

Inserts a task into the runqueue starting in root . It will use the compare-

function described in Listing 4.2, and move iteratively1 through the tree.

One notably different property about this function, is that as most trees

choke on identical keys, this function does not. Two identical tasks indicate

the exact same subjob signature, something that might happen frequently.

To solve this “extra” tie-breaking parameter2 by prioritizing the task al-

ready in the tree. By doing this consistently with all new tasks arriving,

no task will ever be starved due to a large number of new, identical tasks.

1The “standard” way of traversing a tree, is recursively, but as the kernel has very limited
stack, avoiding recursive function-calls is an absolute requirement.

2pfair solves this arbitrarily as the tasks are considered equal

6.3. SUMMARY 71

• struct task struct * pfair remove task(struct task struct *task) Since

we have the task, we do not need to traverse the task. All we need to do is

unlink it and ask the library to rebalance the tree.

• void pfair migrate ready(struct rq *rq) This is perhaps the most im-

portant function in the queue-manager. This will move all tasks ready to

be released from the ready queue to the active. It will draw heavily upon

the preceding tasks.

In some areas, the queues are tapped into directly, in particular in the pick-

next logic. The reason for doing this directly is to avoid needless function call

overhead, and picking the next task is, compared to other tree-related operations,

basic.

6.3 Summary

In this chapter we looked at two of the major datastructures. It is clear that

they are complex and at times difficult to use. Especially the red black trees have

proved to be a challenge. However, once mastered and properly used, they provide

unparalleled control and abstraction. By drawing on exact knowledge about the

hardware, the kernel can prefetch regions of memory, effectively masking out

much of the memory latency found in cold-cache scenarios.

72 CHAPTER 6. ADVANCED DATA STRUCTURES

Chapter 7

Linking to userspace

“A system call is the mechanism used by an application program to request service

from the operating system based on the monolithic kernel or to system servers on

operating systems based on the microkernel-structure.”

— http://en.wikipedia.org/wiki/System_call

Up until now, we have only looked at how the different datastructures can be

utilized in the kernel. In this chapter we create the connection between the task

in one end and the scheduling code in the other. This is done via a set of system

calls and several attributes in the /sys directory exported via SysFS.

73

http://en.wikipedia.org/wiki/System_call

74 CHAPTER 7. LINKING TO USERSPACE

7.1 SysFS and kobject

7.1.1 kobject

One of the new things introduced when the kernel moved from 2.4 to 2.6, was a

new approach to how a device was represented and described in the kernel. The

aim was to minimize code duplication, to list all devices in a tree-like fashion

where devices depending on other devices were ordered in the tree. An easy way

of linking a device to its driver. Finally, the ability to walk the tree from the leafs

all the way up to the root, powering down the nodes (devices) in the correct order.

As power management in the kernel are a global event, the kernel need a

generic and simple way of turning off the power on every device when the systems

enter a power-save mode. On top of that, this must be done in a very specific

order. E.g. an USB hub must be powered down before the PCI bus is turned off.

We focus on the sysfs-entries in this chapter. Knowing that the kobject lies at

its foundation, we can abstract that away. A more thorough guide to kobjects1

can be found in [19, Ch. 17].

7.1.2 SysFS

SysFS, normally mounted at /sys is a filesystem, that at first glance, look very

much the same as /proc . Like /proc , sysfs is a way of user mode applications

to access kernel data structures. Unlike the /proc -directory, sysfs is more

organized, forcing each device to inherit other devices, thus building a tree of the

devices. Each directory is represented as a kobject and each file in a directory

maps directly to an attribute (which in turn is normally tied to a variable).

7.1.3 Kernel interface

As with all other systems in the kernel, the SysFS interface is extensive and we

therefore only presents a small subset of all the functions. The entire interface

can be found in include/linux/sysfs.h .

7.1.3.1 Create the kobject

The kobject can be found as a folder in /sys/ . To create a new kobject ,

the sysfs-subsystem has a dedicated function:

1http://lxr.linux.no/linux/Documentation/kobject.txt

http://lxr.linux.no/linux/Documentation/kobject.txt

7.1. SYSFS AND KOBJECT 75

Figure 7.1: A subset of the objects and attributes found in /sys in any standard

GNU/Linux distribution

struct kobject * kobject create and add(const char *, struct kobject *)

The first parameter is the name with which it will be represented in /sys/

and the second is the parent- kobject . If, for instance, the kernel kobject (

kernel kobj) is passed and the supplied name is “pfair”, a new directory will be

added in /sys/kernel/pfair/ . If no existing kobject is passed (i.e. NULL),

the new object will be created in the root of /sys/ . Figure 7.1 gives a tree-view

over how the different sysfs objects and attributes are connected.

7.1.3.2 Create the files

Before an attribute can be used, it must be initialized. The proper way of do-

ing this, is via the ATTR macro. The macro needs the name of the exposed

attribute, the file-mask and two functions, one for converting the value into a re-

turned string and one for converting a supplied string into the correct datatype.

These functions are normally described as the show and store functions.

static struct kobj attribute sgattr =

ATTR(sched idle ns, 0644, pfair show, pfair store);

This links the attribute to the name “ sched idle ns ”, it gives the user root

(root will own all files in /sys) rw -access, the rest of the world read-only

. When someone tries to read the attribute, the function pfair show will be

queried, and when a value is written to the attribute, pfair store . To connect

76 CHAPTER 7. LINKING TO USERSPACE

the attribute sgattr to a kobject:

sysfs create file(kobj, &sgattr.attr);

The function will return a non-zero value upon error and should be properly

handled.

7.1.3.3 Show/store functions

SysFS is about exposing attributes to the user-space, and it requires functions

for showing and storing values. When initializing the attributes, references to

functions to handle these must be given. If an attribute does not need either

reading or writing, the corresponding reference can be set to NULL.

The required signature for the show-function is:

ssize t show(struct kobject *, struct kobj attribute *, char *buffer)

The returned ssize t is the size of data written to the buffer. The kobject is

the kobject where the sysfs-entry belong. The function should confirm the name

of the attributes as well as the length of the data received.

ssize t store(struct kobject *,

struct kobj attribute *,

const char *buffer,

size t size)

The store function is nearly identical to the show function. The difference

is the const char *buffer and the size added to the list of parameters. The

const keyword help the compile catch possible errors where the buffer is modified

by the store-function. The size gives the size of the data passed to the function.

The function is required to return the amount of data read.

7.1.4 Sample module

To test how sysfs worked and open up for faster prototyping, a module was

created. it can be found in App. B.4 and shows the basic show-store functionality.

It will add two attributes in /sys/kernel/pfair . When values added, the result

will be printed to /var/log/kern.log 2.

2At least on a Debian-like distribution. Behavior has not been verified in other distributions
(alternatively, use ’ dmesg ’.

7.2. SYSTEM CALLS 77

7.1.5 Final result

In the scheduler, kernel/sched pfair.c , 3 attributes have been exposed in

/sys/pfair/ . Originally it was planned to expose this under the kernel-directory,

but the sysfs-interface to the kernel is initialized after the scheduler is brought

online. This would therefore require delayed initialization. Because of this, it is

just added to /sys/pfair/. We could end up with 6 functions for handling

this, however, as the attribute-struct contain the name of the attributes, we have

multiplexed the handling of all three attributes into one general show-function

and one store-function. These are named pfair show and pfair store and are

both located in sched pfair.c .

7.2 System calls

System calls, or “ syscalls ”, is the standard way of allowing userspace code to

trigger events in the kernel. Syscalls in Linux is fast, and this is largely due to

the fact that the infrastructure is very efficient, but also because there are so few

syscalls. Adding a syscall to Linux is something the kernel community is very

reluctant to do, and there have to be a very good reason for this. Even though

the internal kernel API is declared unstable as a design-feature, the external API

must remain stable. This means that once a syscall is added, it cannot ever be

removed.

7.2.1 Syscall background

To understand how syscalls work, we need to look at how the kernel is started.

On x86 architecture, a set of soft-interrupts, or “system gates” are available, each

can be given a unique vector and access-rights ([7, Ch. 4, App. A]). 0x80 is

given to syscalls, and userspace is granted access to raising this interrupt3. When

this happens, the processor will immediately jump to a predefined address and

execute the code found there. We say that the interrupt is trapped. It is here

that the system call entry is located. For further discussion about how the rest

of the syscalls are organized, please see [19, Ch. 5] and [7, Ch. 10].

Once in the syscall-entry, it will look at the registers. When calling a syscall,

the syscall-number must be placed in %eax . This number is then used in a table-

lookup to find the proper syscall. Once found, the required number of parameters

are copied to the stack from %ebx , %ecx , %edx , %esi , %edi and %ebp . As

the number of general registers are limited in x86 hardware, this is maximum

3 asm(’int 0x80’);

78 CHAPTER 7. LINKING TO USERSPACE

number of parameters. If more are needed, or the number is required to change

later on, a value by reference should be used. If an address to a struct is passed,

an unlimited number of parameters can in theory be passed.

7.2.2 Required change

In this project, we only had access to x86 hardware. The following discussion

therefore only applies to this. However, it should not be too difficult to add these

changes to other platforms, as the only thing that changes, is where you add the

table-lookup address.

In x86, you need to edit the file arch/x86/kernel/syscall table 32.S . Here

you will find a long list, and at the bottom you must add the new syscall-names.

It is very important not to add it between existing lines, as that would change

the unique number given to each syscall, breaking user-space. The function must

be given the prefix sys , and the function created to trap the interrupt, must

be created with a special macro, where all input-arguments must be specified.

7.2.3 Final result

To add a syscall, you need to find a place to add it. Since all the other scheduler-

related syscalls are located in sched.c , the pfair-related syscalls were placed

here as well. Since we can compile away all code sched pfair.c , and once a

syscall is added, it cannot go away, the syscall-entry must be placed in a file

not included based on a compile-switch. To add a syscall, the correct way is to

use the supplied macros with the correct amount of arguments. When asking

for 2 arguments, the correct macro is SYSCALL DEFINE2 . The syntax is slightly

different as type and variable-name is separated. In the body of the syscall, the

following action is then performed:

1. Test to see if the user has cap sys nice, which is normally the root-user.

2. Make sure pid is valid, i.e. greater than 0, and that the supplied param-

eters are valid (not a zero-value reference).

3. Copy the data safely from user-space to kernel-space via copy from user()

4. Find the task identified by pid and store the task descriptor.

When all of this is done without errors, the syscall delegates control to

sched pfair [update|reweigh]() which handles the actual syscall behavior.

These functions can be found in sched pfair.c and will update a non-pfair task

to pfair or reweigh an existing pfair-task. The syscall and delegated function

7.3. SUMMARY 79

for sched pfair release() is basically identical and will not be covered. The

delegated functions are described in Sec. 9.3.

7.3 Summary

In this chapter we had a look at ways of interacting directly with the scheduler.

First we looked at the tuning-knobs provided by sysfs-attributes exposed in the

/sys -directory. Then we moved on to look at the task-wise interface to the

scheduler, the syscalls .

80 CHAPTER 7. LINKING TO USERSPACE

Chapter 8

Time management

“Time is the most undefinable yet paradoxical of things; the past is gone, the

future is not come, and the present becomes the past even while we attempt to

define it, and, like the flash of lightning, at once exists and expires.”

— Charles Caleb Colton

The previous chapters have discussed various data structures and memory

management. We now turn our attention to how the kernel manages time. The

pfair scheduler revolves around frequent timer interrupts thus having a flexible,

robust and optimized timekeeping system is an absolute requirement.

This chapter is organized as follows: first we list the requirements pfair place

on the timer (Sec. 8.1). Sec. 8.2 then look at how the timer system has evolved

over the years and how the current system can meet these requirements. Sec 8.3

looks at the hrtimers API before we in Sec. 8.4 presents two small modules

to determine the error in the timers, and how various types of load affect this.

The other module looks at starting timers on other cores. The final result in the

scheduler can be found in Sec. 8.5. The chapter is concluded in 8.6.

81

82 CHAPTER 8. TIME MANAGEMENT

8.1 Background and requirements

When it comes to time management, the kernel has evolved over the years. As

the kernel continues to increase the number of supported hardware units, having

a generic framework for time-related devices is essential. Part of the rework seen

in Linux-2.6.16, was the generic abstraction layer, providing a simpler way of

integrating new hardware devices into the existing timekeeping framework.

The current timekeeping infrastructure is separated into 3 parts; a) the timeof-

day layer, b) the clockevents layer and c) hrtimers. In this project, only hrtimers

are of interest, although the three are strongly interconnected. See [12] and [23]

(and section 8.2) for a discussion about hrtimers and the timekeeping architec-

ture.

The general design of the scheduler was discussed in Ch. 4. No specific

requirements has yet been placed on the time-keeping architecture except a period

timer interrupt. We now turn our attention to these details:

High resolution — it should be possible to achieve sub-jiffy resolution for the

timer-ticks (it should not be tied to the kernel variable hz).

Accurate and efficient — it should trigger as accurately as possible, and as

little time as possible should be spent inside the timer infrastructure. It

should also be easy to adjust for drift.

Dynamic — it should be possible (and easy) to change the frequency of the the

timer without rebooting, or recompiling the kernel.

Per-CPU timer — make it easy to synchronize the timers (either all at the

same boundary, or a “staggered” approach where each timer is spaced

evenly apart inside the length of a window.

Low impact — when not in use, it should be possible to remove the timer

interrupts all together without affecting other parts of the system. This will

make it possible to compile kernels with pfair support and not experience

degraded performance when no pfair tasks are running.

As we will see in Sec. 8.2.2, hrtimers can do all of this, and with the

RT-preemption patch, some of the related performance and latency issues are

minimized.

8.2. THE TIMER INFRASTRUCTURE 83

8.2 The timer infrastructure

The problem with timers is that all they do is to make sure the event is not

released before the specified time. To keep the event as close to the specified time

as possible, the timer-event infrastructure must be efficient and able to handle

a large number of queued time-events without noticeable degraded performance.

This is clearly a difficult and complex task.

8.2.1 Cascading Timer Wheel (CTW)

It is worth the time to look at how the previous timer architecture was imple-

mented. Not only because there are still kernels out there with ctw, but also

because this illustrates some of the major obstacles met in when implementing a

efficient, scalable and robust timer.

In 1997, the ctw was included in the kernel, and was then a huge improve-

ment to the old O(N) linked list implementation. The ctw contains 5 runqueues

each holding a separate slice of the time-frame in a set of buckets. The first queue

contains timers that will expire within the next 255 ticks1. The remaining queues

all contains 64 buckets.

Listing 8.1: How the timers are stored, migrated and released

foreach t i m e r t i c k
i f queue [0] [counter [0]] not empty

r e l e a s e (queue [0] [counter [0]])
counter [0]++
i f counter [0] == 256

for n in range 1 4
counter [n−1] = 0
exp i r e bucke t (queue [n] [counter [n]] , queue [n−1])
counter [n]++
i f not counter [n] == 64

break

Looking at Listing 8.1, the the counter is incremented every tick, and the cor-

responding bucket in queue[0] is emptied. When the counter overflows, queue

0 is empty, and the counter for queue 1 is incremented. All tasks in this bucket

in queue[1] is then expired and are moved down into queue[0]. This is handled

by expire bucket() as it takes all timers stored in bucket queue[n] and moves

1A tick is normally the periodic timer-tick event, often denoted hz and must be set at
compile-time.

84 CHAPTER 8. TIME MANAGEMENT

Queue Start End Cascading Expiry (1000Hz)

0 0 28 − 1 1ms

1 28 214 − 1 256ms

2 214 220 − 1 ≈ 16 sec

3 220 226 − 1 ≈ 17 min

4 226 232 − 1 ≈ 18 hrs 36 min

Table 8.1: Table of the 5 queues with jiffy-range and expiry period. Each queue

contains one bucket for each element in the bit-range (256 for queue 0, 64 for the

last 4) Note that when queue 4 expires every 18 hour, every queue also expires.

down to queue[n-1] , placing each timer in the correct bucket. Note that when

a timer interrupt occurs, it is not necessarily bucket 0 that contains the timers,

but bucket counter[0] . This is a code-complication that removes the need for

moving tasks through the buckets at each timer interrupt. The added complexity

can be confusing at first, but it is well worth the complexity. Since the number

of buckets are a factor of the same integer (i.e. they are not relatively prime), all

queues will eventually migrate tasks at the same tick (226 seconds). See column

Cascading Expiry in Table 8.1. This can introduce unpredictable delays in the

timer system, and is the reason for the name — Cascading timer wheel.

8.2.2 High resolution timers - hrtimers

The hrtimers provide a generic and abstract interface to the timer infrastructure.

The system can change timer hardware (clocksource) at run-time, and return the

timer granularity to the user, providing not only a very flexible, configurable and

robust system, but also a way for the user do adapt to different hardware.

Scalability is always an important issue. One of the major drawbacks with

ctw was how the cascading effect could ruin predictability (and performance).

This effectively put a cap on how many active timers the system could support.

By moving the timers to a per-cpu queue, and using a red-black tree to store a

time-ordered list, the number of timers pr. CPU decreases, and the cascading

effect vanishes. Granted, to walk a red black tree on every timer expiry is not

efficient, and for that reason the systems also uses a separate list to give the expiry

code fast access to the next event. By using the red black tree as fundamental

8.2. THE TIMER INFRASTRUCTURE 85

Timer frequency Granularity 32 bit 64 bits

100 Hz 10 ms ≈ 1 year 130 days ≈ 5.8 billion years

1000 Hz 1 ms ≈ 49 days 17 hours ≈ 584 million years

10 kHz 100 µs ≈ 4 days 23 hours ≈ 58 million years

1 MHz 1 µs ≈ 1 hour 11 min ≈ 584,558 years

1 GHz 1 ns ≈ 4.3 sec ≈ 584 years

Table 8.2: Comparison between 32 bits- and 64 bits length for timer variable

with respect to timer granularity and maximum delay (approximate)

storage, insertion can be done quickly “regardless”2 of queue-size.

Granularity and extendability is one of the big improvements. With the

clockevents- and timeofday-architecture, legacy code still dependent upon the hz

value will work as expected. If the underlying hardware does not support more

than hz resolution, neither will hrtimers. However, if high resolution hardware

timers are available, hrtimers can utilize these without changing hz, rebooting

or recompiling the kernel thus dramatically improving the granularity.

Maximum timer period for the old ctw was approximately 50 days when

the hz ran at 1000Hz. In many cases, that was more than adequate. With the

new high resolution requirements, this quickly becomes a limitation.

From table 8.2, we can see that if we want 1µs resolution, using 32 bits severely

limits the period, and for nanosecond granularity the result is even worse3. It is

also evident that for a 100Hz timer, using 64bits is a complete waste of space as

no computer will run for 5 billion years.

As the new timer variable is 64 bits, and Linux is supported on both 64bits

and 32bits architecture, time is wrapped in struct ktime t. By using compile-

defines and typedefs, ktime t will be represented as a “pure” 64 bit integer on 64

bit architecture, and a struct containing seconds since the epoch and nanoseconds

since the last second, both in 32 bits integers. The timer architecture has macros

for dealing with ktime t , abstracting away the underlying representation. When

nanosecond granularity is no longer adequate, the hrtimers are so modular that

2it will use O(lg2N) time
34.3 seconds vs. 584 years 203 days 19 hours 44 minutes 9 seconds 709 ms 551 µs 616 ns

86 CHAPTER 8. TIME MANAGEMENT

a lower bound can be set “relatively easy”, and by using ktime t , no other code

needs to change.

8.3 The timer API

This section will cover initialization, start, callback functions and cancel. It will

also describe how to start a timer on another CPU. Together with Sec. 8.4, this

will provide an adequate introduction to the hrtimers API. hrtimers has a

lot of functionality, but we focus on what we need, see the full documentation4

and API5.

Central to hrtimer , is the datatype, struct hrtimer . This struct contains

all the elements need to store and retrieve the timer, as well as a pointer to a

callback function6.

8.3.1 hrtimer init()

Before a timer can be used, a memory region must be reserved, and the region

must be initialized. Memory allocation is done via kmalloc (or a slab cache),

see Ch. 5 for details about memory management.

This function takes 3 arguments:

struct hrtimer *timer a pointer to a hrtimer struct where the data-fields are

stored. A normal convention is to embed this directly into another struct

used to keep various data one wants to pass to the callback function.

clockid t clock id , for instance clock monotonic

enum hrtimer mode mode - relative to “now” or absolute compared to the

epoch (1. Jan 1970), for instance hrtimer mode rel for a relative timer.

enum hrtimer restart timer callback(struct hrtimer * hrt)

The callback-function is stored in hrtimer.function and must be set after

initialization and before start (to be precise; before the timer expires). Whenever

the timer expires, this function will be called, and the parameter struct hrtimer

*hrt is the struct given as argument when the timer was initialized.

4http://lxr.linux.no/linux+v2.6.29/Documentation/timers/highres.txt
5http://lxr.linux.no/linux+v2.6.29/include/linux/hrtimer.h
6http://lxr.linux.no/linux+v2.6.29/include/linux/hrtimer.h#L100

http://lxr.linux.no/linux+v2.6.29/Documentation/timers/highres.txt
http://lxr.linux.no/linux+v2.6.29/include/linux/hrtimer.h
http://lxr.linux.no/linux+v2.6.29/include/linux/hrtimer.h#L100

8.4. SAMPLE MODULE 87

8.3.2 hrtimer start()

This function is also used for re-releasing timers. It takes 3 parameters and

returns an integer indicating success (0) or failure (1):

• A pointer to the timer data type (struct hrtimer *timer), normally

embedded within a data-element (in the same convention used for both

linked lists and red black trees).

• The delay for the timer (absolute or relative to “now” found in struct

ktime t

• enum hrtimer mode which can be either hrtimer mode abs or

hrtimer mode rel.

8.3.3 hrtimer cancel()

This is used to cancel a pending timer. It takes a pointer to a struct hrtimer

as its sole parameter. If the timer has already expires, the function returns 0, 1

if the timer was active.

8.3.4 Remote timers

An smp-capable kernel has a set of functions for running functions on one, a

subset or all of the cores available. The function smp call function single()

will run a function on a specified CPU. The module presented in Appendix B.6

does just this.

However, even though starting a remote timer is easy, the real problem arises

when the kernel experiences load. It is at the moment, no deterministic way of

starting a timer. One risk that the function call will be delayed for a long time,

and starting accurate timers can therefore be a challenge.

8.4 Sample module

In App. B.5, a module for measuring the latencies for timers are presented. Some

very basic test-results showed that for a standard Linux v2.6.29-kernel, the la-

tency could be from approximately 2 µs to 40µs. Granted, a latency of 40µ is

not a very large delay, but since pfair require 1ms resolution, we have a latency

of nearly 4%, possibly at every tick. The same test was conducted with the RT-

preempt patch. This proved to be a lot less susceptible to the load. The average

88 CHAPTER 8. TIME MANAGEMENT

delay was more consistent, varying between 5 and 7 µs.

Another module was also created to investigate the possibility of starting

timers on other CPUs. This feature is essential for the pfair scheduler. The

code proved to be quite simple, but it also proved susceptible to kernel load.

This module did not measure average latency, as the main goal was to provide a

proof-of-concept for remote timers.

8.5 Final results

Obtaining accurate timers have proved to be very difficult. This did not come

as a surprise, but the amount of uncertainty did. If the pfair scheduler is going

to work, very accurate timers are required. Not only to keep the deadlines, but

also to prevent unbounded drift.

The final result in the kernel code proved to be next to impossible to imple-

ment properly. The minor details of starting a timer is not the problem, nor is

running the actual pfair-timer event machine (described in Sec. 4.1 and in Fig.

4.2 on page 43. The challenge lies in accurately calculating the drift and counter

this. As we will see in later chapters, several other flaws have been discovered

in the pfair-algorithm, leading to its demise. For this reason, further work on

the timers were suspended until these other problems were resolved. They were

not, however, and therefore the final implementation of the timers has not been

completed.

8.6 Summary

This chapter started out by giving an introduction to how timer-events were and

is managed in the kernel. It then moved on to describe the kernel-API and two

sample module. Sadly, the scheduler code for managing the timers have not been

completed, for reasons not solely to blame on the timer infrastructure.

The next chapter will look at the core part of the scheduler, and several other,

major issues leading to a stop in the implementation will be discussed.

Chapter 9

Implementation of the core

scheduler

“You have to seek the simplest implementation of a problem solution in order

to know when you’ve reached your limit in that regard. Then it’s easy to make

trade-offs, to back off a little, for performance reasons. You can simplify and

simplify and simplify yet still find other incredible ways to simplify further.”

— Steve Wozniak

In part I, the motivation for the project and general layout of the scheduler

was presented. Then, in the start of part II, Ch. 4 dived into the actual design

and how the various components should be created and interconnected. This

chapter, being the last chapter in part II, looks at how the “core” pfair scheduler

has been devised, tested and implemented.

89

90 CHAPTER 9. IMPLEMENTATION OF THE CORE SCHEDULER

9.1 Core algorithm

The core algorithm is a bit loosely defined term. Several of the key-elements have

already been covered. We now turn our attention to the required calculations

and interaction between sub-jobs, jobs, runqueues and user-space.

9.1.1 Calculations for the subjobs

To better understand the algorithmic problems with the scheduler, a user-land

version was created. It initialized a set of tasks with different execution cost,

deadline and period, and proved to be an effective way of tweaking the calcula-

tion of the subjob values, but also for finding the hyper-period to estimate the

overall utilization. As the kernel does not support floating point arithmetic, it

was an ideal place to test numerical approximation.

This of course, took a considerable amount of time, but in the end a lot of

time was also saved. The implement-, compile-, test- and refine-cycle is much

shorter for a normal application than for the kernel (the prototyping went a lot

faster). Even with distributed compilation, a single cycle takes at least 10 min-

utes. With a normal C-program, this is done in a manner of seconds. The whole

program is attached, under code/pfair window/ .

9.1.2 Testing the elements

When the calculations were verified and found correct, work started on the other

areas, working through documentation, small test-modules and adding more code

to sched pfair.c . However, verifying this along the way proved to be very dif-

ficult. Not only because the prototyping cycle is very long, but also the lack

of debugging-support. Granted, both kgdb, debugging over the network, stack-

dumps and other tools can be used, but none of these provide the flexibility and

speed that can easily be incorporated into a user-land application.

Then, in April 2009, LinSched was discovered. Originally released in Dec.

2008, LinSched has been applied to Linux v2.6.23.14, one of the earliest versions

of cfs. This means that most of the fields in sched class are present. LinSched

uses parts of the Linux library directly to emulate a kernel scheduling environment

in user-space. Being able to use linked lists, trees and parts of the math-library

directly, proved invaluable. Several subtle (and not-so-subtle) bugs were traced

down via this simulator, especially in the rb-tree -related code. However, two

9.2. THE EXPECTED INTERFACE FROM THE MAIN SCHEDULER 91

major components were missing, making LinSched unable to aid the construction

all the way:

1. Timers: the lack of any timers meant making sure the time-critical code

actually worked.

2. Only one task struct were created for the entire schedule. This caused

some confusion at first as one would normally expect that each task received

an unique task struct .

Clearly, element 1 can be emulated without a lot of work. A basic estimate

landed the required work at about 2 working days. Clearly, the second element

could be changed within a day, allowing for a few hours tracing down unexpected

bugs as this would change the LinSched internals. However, at the time, 3 days

were simply too much. Furthermore, LinSched was only used to validate the

datastructures. The calculation did receive some optimizations (e.g. the list

was traversed in reverse). In total, LinSched can be an invaluable tool when

devising new scheduling algorithms, but it needs to be updated to a more current

version, and it should emulate some sort of timing interface. The code written

for LinSched has not been directly attached, as the change between a LinSched-

compatible sched pfair.c and the official sched pfair.c are almost negligible.

9.2 The expected interface from the main sched-

uler

The main scheduler, expects each scheduling class to implement a set of func-

tions and store pointers to these functions in a struct sched class . Of all these

functions, we only discuss the most important functions here. The rest of the

functions are documented in sched pfair.c .

The whole pfair-engine is driven by the timer. This was described in Sec. 4.1

and 8.5. At the end of the timer state-machine, the flag TIF NEED RESCHED is

set in a task to be preemted. When control was about to leave kernel-mode, this

would trigger schedule() which is where we are conceptually right now. Figure

9.1 shows 3 of the related functions in sched class being called from schedule()

. Note that pre schedule() leads nowhere. This is one of the functions that

can be implemented voluntarily, and we do not need it.

9.2.1 put prev task pfair()

Called before a task is about to be removed from the CPU, once this is called,

we know that the next step will be to query for a new task. We use this function

92 CHAPTER 9. IMPLEMENTATION OF THE CORE SCHEDULER

Figure 9.1: A small subset of the sched class functions which are used by

schedule()

to store the task back into the runqueue. We must do this, because schedule()

does not call enqueue() or any other function to indicate that we should save

the task. If we do not add the task in this function, it will be lost to the scheduler1.

The function will test if the TIF NEED RESCHED flag is set. If it is, it will go

through some steps:

1. advance the psj curr one position.

2. If psj curr has overflown:

a) If task is periodic, reset psj curr and move release time ns one

period forward

b) If task is not periodic, it has overflown and an error should be signaled.

At the moment, only a warning is issued.

3. Change pfair state to pfair state ready

4. It is inserted into the ready-queue where it will be placed according to the

compare-function (Listing 4.2).

9.2.2 pick next task pfair()

After put prev task pfair() , schedule() will call pick next task pfair() .

This function is expected to return the task best suited to run, in other words,

1Of course, tasks are also stored in a big list, but this is for other purposes and the pfair
scheduler does not have access to this list.

9.2. THE EXPECTED INTERFACE FROM THE MAIN SCHEDULER 93

Figure 9.2: Flowchart describing the choice taken in pick next task pfair()

the highest priority task available. As this function can be called out of place, i.e.

not at the time we desire, we must test to see if the currently running task should

be kept running, or if a better task is suited. The flowchart in Fig. 9.2 shows this.

When we are in this function, we know that

1. curr was pfair and has exhausted its timeslice

2. curr was not pfair, but another pfair-task has entered PFAIR STATE ACTIVE

and must be allowed to run.

3. curr is any odd task (type probably pfair, but special cases can be proved

to exist) and has finished.

94 CHAPTER 9. IMPLEMENTATION OF THE CORE SCHEDULER

9.3 The syscall interface

In Ch. 7 and in particular in Sec. 7.2, the user-land interface to the scheduler

was described. The syscalls were introduced, but only the “gateway” found in

sched.c . We now look at the functions called from these gateways, now that the

input has been validated, tested and properly copied into kernel-space.

9.3.1 sched pfair update()

This is when a task enters SCHED PFAIR . After all the testing in the syscall-

gateway, this function moves on to test the content of the variables. This was not

done in the gateway-function to encapsulate the data. All the gateway-function

does, is to verify that the memory-reference is valid and that it successfully copies

data from user-space to kernel-space.

When a set of parameters successfully passes these tests, the number of sub-

jobs are set to 0 and the periodicity is set according to the parameters. Then,

control is passed to sched pfair reweigh() .

9.3.2 sched pfair reweigh()

The reweigh-function does a lot of the same things the update does. In fact, so

much of the same, that update uses reweigh. They could very well have been

multiplexed together (remember that the kernel community is very reluctant to

add new syscalls), but for clarity they have been kept apart.

First off, it will test to see if the number of new jobs are fewer than before.

If so, the task will release resources, and this can be granted immediately. If

more resources are needed, things will be a bit more complicated. A lot of the

logic is handled by sched reserve util() , especially the requests for resources.

Then, if resources are successfully reserved, the subjob-values are computed as

described in Sec. 4.2.3 and Listing 4.1.

9.3.3 sched pfair release()

The release-function is used to start a new cycle of the task, or to release a new

job and is very simple. It tests to see if the offset is 0, and if it is, it will trigger

a periodic release. Otherwise it is an aperiodic release. This requires a time in

the future, and no earlier than the period.

9.4. THE ACCEPTANCE FUNCTION FOR NEW TASKS 95

9.4 The acceptance function for new tasks

As already mentioned, the sched reserve util() is the acceptance function.

This is the embodiment of the resource reservation approach discussed in Ch. 1

(Sec. 1.1) and gives us a simple and effective way of guaranteeing that we can

meet the deadlines.

Since we want to guarantee a hard real-time system, we must make sure no

transients can cause other deadline-misses. We therefore use the deadline as

basis (since we do not allow for deadlines longer than the period). We then

find the scaling factor so we know how many jobs the task will release within

a hyper-period. The scaling factor is then used to multiply the wcet ns so

we get wcet scaled ns . If this can be added to consumed time ns without

this exceeding hyper ns * num online cpus() , we can allow the task to enter as

pfair.

9.5 Summary

In this chapter, we looked at how the core part of the scheduler has been imple-

mented. The most crucial functions to the inner workings has been discussed,

and it is now time to tie every piece together.

96 CHAPTER 9. IMPLEMENTATION OF THE CORE SCHEDULER

Part III

Assembly and Evaluation

97

Chapter 10

Bringing it all together

“Nature laughs at the difficulties of integration1”

— Pierre-Simon Laplace

The first section (Sec. 10.1) lists all the small elements needed, but not

large enough to justify a dedicated chapter. Most of the subsystem integration

was described in the preceding chapters, Sec. 10.2 aims at tying all of those

“superstrings” together. This section is quite short, as most of the problems

encountered here, are difficult to describe as other than “compile errors” and

variable faults. The chapter is concluded in Sec. 10.3 with a short discussion

about how the integration process went.

1The author is aware that Pierre-Simon Laplace was describing calculus. Had he lived today,
he would no doubt have had the quote extended to span computer software integration as well.

99

100 CHAPTER 10. BRINGING IT ALL TOGETHER

10.1 Other practical tasks

10.1.1 Add kconfig

The kernel build system is a complex, yet elegant system. It consists of a set of

Kconfig-files, and these files have a special syntax. This syntax is described in

full in [26].

The configuration menu is compiled and presented to the user, in several

different ways. The most intuitive is the graphical interfaces, with xconfig

and gconfig having the highest abstraction. The most common is perhaps

menuconfig, which uses the ncurses library in order to present a graphical user-

interface that requires very little system resources, and also works well via a

terminal.

10.1.1.1 The new config variables

For the pfair scheduler, a new Kconfig.pfair was created in the kernel/

source folder. As we only had x86 hardware to test on, the file was included in

arch/x86/Kconfig , in the same section as config sched mc (Multi-core sched-

uler support) under “Processor types and features”. Note that sched pfair

depends on sched sched mc (“Multi-core scheduler support”) so this feature

must be enabled for pfair to be available2.

• config sched pfair — The main “switch” for including the scheduler

into the code. If this code is not set, no new code is added to the kernel

source (except for the syscall-wrappers, see 7.2.3.

• config sched pfair timeslice — The length of the timeslice window

pfair will use. It is currently set to a default 1ms, and can be changed

(from 100 us to 100000 us) at compile time.

• config sched pfair busy limit — Initially, this element was added to

tune the limit for when the scheduler would return and allow a lower priority

task (any other scheduling policy), or if the scheduler should just busy-loop

until the timeslice boundary was reached. As busy-looping in the kernel is

very ugly, this option will not be used.

• config sched pfair sysfs r — Enable the sysfs interface to some of the

pfair status variables, including the timeslice, in a read-only (ro) manner.

2It does not make sense to include a multi-core scheduler in a single-core system.

10.2. ADDING THE PIECES TOGETHER 101

• config sched pfair sysfs w — When sysfs is enabled ro, this option

is made available, and the pfair values can now be changed, giving system

administrators the option of changing the timeslice when the kernel runs.

• config sched pfair debug — Increase the verbosity of the kernel log-

ging done by pfair from little to quite a bit. This should not be used in a

production environment.

10.1.2 Allocating memory for the core

The scheduler is one of the first parts of the kernel to be initialized. As a result,

the memory management subsystem is not yet available. In the sched init()-

function 3 the scheduler uses alloc bootmem(), and its usage is not trivial. In

fact, it leads to so many problems when used wrongly, that the current trend is

to move away from alloc bootmem. The current idea is to move the memory

initialization earlier in the startup-process 4.

The pfair scheduler is not needed by any of the early kernel threads, we

can wait until the memory management is initialized properly. The scheduler

is actually initialized in two steps. The first being sched init() , the second

is sched smp init() . The latter also iterates over all the per-CPU runqueues.

Luckily, sched smp init() is run after the memory-subsystem has been initial-

ized. First, the global pfair runqueue is created (struct pfair rq * prq), and

the pfair subsystem initialized. Then, each runqueue is connected to prq. This

way, each runqueue has a pointer, rq->prq.

10.2 Adding the pieces together

This is perhaps the most difficult task of all. Largely due to LinSched , several

issues were discovered and corrected before this step. Then, by turning on all

the warnings in the compiler, some erroneous variable usage was discovered and

corrected. Numerous errors were encountered at startup and normal run. These

turned out to be trivial in most cases, but took a long time to correct (largely

due to the long prototype cycles).

Finally, and in many ways the “final nail in the coffin” for the scheduler,

was the inability to get accurate and staggered timers from the timer subsystem.

Without accurate timers, it will not be possible to accurately schedule a large

3 http://lxr.linux.no/linux+v2.6.29/kernel/sched.c#L8298
4 http://marc.info/?l=linux-kernel&m=124265695228027&w=2

http://lxr.linux.no/linux+v2.6.29/kernel/sched.c#L8298
http://marc.info/?l=linux-kernel&m=124265695228027&w=2

102 CHAPTER 10. BRINGING IT ALL TOGETHER

number of tasks, and without staggering and drift-correction, the contention for

the global runqueue will render the system completely unusable.

10.3 Summary

Most of the scheduler has now been described and pieced together. In most

scenarios, it works without crippling the kernel. However, the timers render the

scheduler useless and it cannot be used properly at this time. The next chapter

will discuss what went wrong, and also look into why this really does not matter,

as there are other, more fundamental problems with pfair.

Chapter 11

Summary and Conclusions

“There is no greater mistake than the hasty conclusion that opinions are worth-

less because they are badly argued.”

— Thomas Huxley

We have now reached the end of the road, and a total evaluation is in order.

As already stated on several occasions, the scheduler itself proved to be difficult

to assemble properly. A lot of blame has been placed on the timers. This requires

some modification. It is not the timer-system itself, but rather the fact that once

you add timers, things become very delicate, very fast. When the timers cannot

provide the required accuracy, a scheduler like pfair suffers greatly and the inte-

gration becomes very fragile.

Section 11.1 evaluates the scheduler implementation process. Sec. 11.2 then

briefly covers deadline inversion. In Sec. 11.3 the goals of the project are dis-

cussed and evaluated. Then, to rectify some of the rather depressing results,

a modified version of a scheduling algorithm, first published in August 2008 is

presented in Sec. 11.4. The algorithm as well as a way of adding it to the kernel

is described in full. The report is then concluded in Sec. 11.5.

103

104 CHAPTER 11. SUMMARY AND CONCLUSIONS

11.1 Evaluation of scheduler

During the project, several people, some of the active kernel developers, have

objected to the usage of a global algorithm, claiming that it will not scale due to

memory traffic and lock contention. This would only get worse once you started

to add several cores, not just 2 or 4. All of this is true, but it can also be

minimized by staggering the timers. This again sparked the argument that if you

need very accurate, staggered timers, a lot of resources will be tied into keeping

the timers accurate. And, even if you stagger the timers, if you run this on a

NUMA-machine, it does not matter how accurate your timers are. Again, this

is true, but when you look at the potential gain from using a global algorithm

that can achieve almost full utilization, this argument weakens. A partitioned

EDF scheduler must cap the utilization prohibitively low to avoid Dhall’s effect .

Furthermore, a lot of the added overhead in a global scheduler can be compared

to the extra overhead the load balancing logic will require in a partitioned setup.

1. The main problem with pfair, is preemption. If it is one thing that will

steal cycles from a running system, it is switching tasks. What pfair does,

is implementing fine-grained multithreading - in software.

2. The next reason for why pfair is a bad choice in real-life, is because it will

waste a lot of resources. By only scheduling at timer boundaries, it cannot

utilize the remainder of a timeslice, causing another, totally needless, task

switch.

3. It cannot accept tasks with deadline closer to release than one timeslice,

and the number of subjobs will be rounded up. This inability to support

arbitrary offsets makes the scheduler impractical in real life.

4. Very strong dependency upon the timers. If the accuracy of the timers

varies even a little, the pfair scheduler will become unstable and introduce

more error and non-determinism.

11.2 Deadline Inheritance

Initially, this was not part of the project. However, it was early realized that

a deadline driven scheduler would never be accepted into the kernel source tree

without some support for this. At the time of this writing, the proxy execution

protocol (introduced in 4.4) looks like a very good candidate, not only for pfair (or

another deadline-driven scheduler), but for the entire kernel. Some rudimentary

support for this has been incorporated in the design, but the major effort that

remains, is to add logic that detects when a task blocks on a protected resource.

11.3. EVALUATION OF PROJECT GOALS 105

Delegating the CPU to the holder of the task is straightforward, and is already

implemented in the pfair-scheduler.

11.3 Evaluation of project goals

The main goal was to implement a multi-core aware, deadline driven real-time

scheduler. This has been fulfilled to some extent. Most of the subsystem is in

place, the core logic is, as far as it can be verified without proper testing, imple-

mented.

Based on work in [4], the pfair algorithm was chosen. This was because, at

the time, it looked like the only way of utilizing most of the available resources in

a multi-core system. During the project, it was realized that the introduced over-

head from frequent task-switches would reduce this gain. The cache problem was

largely ignored because once you even if it takes time to move the task-descriptor

from one cache to another (which is the whole motivation for processor affinity),

the task has been preempted anyway, and the cache is cold. The required accu-

racy of timers in the kernel lead to another problem, one which was very difficult

to circumvent.

One of the goals that truly succeeded, was understanding the kernel source,

configuration and compilation system. During these months, the gained knowl-

edge of these systems has been staggering. The same goes for discussing the class

with the kernel community, or a subset thereof. Even though several opposed

the pfair-algorithm, the point of adding a deadline-driven scheduler has been ac-

cepted.

Tracking lkml in order to keep abreast of recent changes has involved a lot

of time. Once the email-filtering became accurate enough, this proved to be one

of the better tasks, starting each day with 30 minutes of email reading.

Identifying all the relevant subsystems, however, has not been quite as easy.

A lot of time was spent searching and reading documentation. Some motivation

was found in related code in the kernel, others found after discussions on irc and

yet other were found after several careful searches on the Internet.

The userland interface has been completed and verified. Both the syscalls and

the SysFS interface works as expected. The fact that most literature regarding

syscalls are outdated with respect to export and where to include the table-

entries lead to some confusion at first.

106 CHAPTER 11. SUMMARY AND CONCLUSIONS

The scheduler-implementation has been discussed on several occasions al-

ready. Again, I would like to recap; the scheduler is mostly finished. What

prevents it from working is the timer-subsystem. As this introduced several very

subtle bugs, and that they were very susceptible to load, made this task the

hardest task.

Since the scheduler was not fully implemented, and it was realized at a late

stage in the project, that it would never be accepted into the kernel, the testing

has been omitted. The next section presents a new and revised algorithm where

several of the design-choices are taken based solely on experience gained in this

project. If included, tools like cyclitest 1 can be extended to handle deadline-

tasks as well.

At the start of this project, it was believed that adding code to something so

central as the scheduler, was possible in a matter of months. Not only was this

wrong, it even bordered to the ignorant. What has been learned over these past

few months however, are invaluable knowledge about how the kernel community

works, how kernel development is conducted and how code is structured. The

gained knowledge is truly astonishing, even though several of the initial goals

failed.

11.4 A more mature approach

As stated, pfair is not the right way to go, and the main argument against pfair,

is the excessive number of task-switches.Motivated by [8] where Buttazzo showed

that EDF will lead to few task-switches, a way of extending EDF looked like the

best approach. This section therefore presents a variant of the Modified Least

Laxity First algorithm [20].

11.4.1 Preliminaries

The scheduler is a global approach, but it should be noted that for large systems,

it should be divided into a clustered scheduler, where each domain is treated

as a smaller, global domain. It uses deadlines as the base unit, because this is

what gives the application developers the greatest expressiveness. This way, the

scheduler can scale to very large, complex and dynamic systems, too difficult or

impossible for offline tools to analyze and assign static priorities to.

1http://rt.wiki.kernel.org/index.php/Cyclictest

http://rt.wiki.kernel.org/index.php/Cyclictest

11.4. A MORE MATURE APPROACH 107

The problem today with global algorithms, is something called Dhall’s ef-

fect [10]. It is possible to device a schedule of light tasks that can cause a deadline

driven scheduler to fail, even at low utilization. The proposed scheduler avoids

this by using a term called time to failure as base element for scheduling decisions.

The reason why multi-core EDF experiences this effect, is because they sched-

ule solely on deadline and fail to take the importance into consideration. This

is not required in a system with only a single core, as the utilization and the

assumption that the period equals the deadline provide this. In a multi-core

system, the deadline is important, but it cannot be used alone. Some algorithms

use weight instead, but this assumes that the task will not be preempted once

it has started running. If it is preempted, the logic fails and one risks to miss

deadlines. Thus, a way of describing not only deadlines and weight, but also

granted resources must be available. The next sections show how this is done,

and how it can be done in an efficient manner.

This algorithm is a derivative of Modified Least Laxity First [20] and Earliest

Deadline Critical Laxity [15]. Neither of these can accept fully utilized schedules.

The next proposal can, as far as the author has been able to verify, accept this.

A set of assumptions are needed, as well as notation. This is covered next.

11.4.2 Assumptions and notation

We assume a set of periodic tasks in a hard real-time system. We assume that no

extra overhead is added in an unpredictable manner (this can be approximated

by using the RT Preemption patch) and that the estimated execution cost for

the tasks are an upper bound. We distinguish between soft and hard tasks by

allowing soft real-time tasks to use the period as basis for the utilization, even if

the deadline is shorter. This opens up for deadline tardiness as we can have sit-

uations where several tasks have a high priority to run thus forcing one or more

tasks to miss their deadlines (we say we have transients). For hard real-time

schedules, we use the shorter of the two as we cannot accept deadline tardiness.

We use the same notation as most EDF-literature, and we set the maximum

utilization to the number of CPUs (M)

• Let a schedule S consist of a set of τ tasks.

• M is the set of tasks currently scheduled to run on any of the m processors.

• Let a single task be denoted τi and there be n tasks, i ∈ [1, n]. Let the j th

release of a task be a job τi,j.

108 CHAPTER 11. SUMMARY AND CONCLUSIONS

• Each task have a period Ti that describes the minimum interval between

releases.

• Di describes the relative deadline for a job after release, and absolute dead-

line is di,j and Di ≤ Ti

• The estimated computation cost (wcet) is denoted Ci, Ci ≤ Di.

• The individual and total utilization is then

Ui =
Ci

min(Ti, Di)
(11.1)

U =
∑
i∈[1,n]

Ui ≤M (11.2)

• Absolute release-time is ri,j and the time between two releases is at least

Ti, e.g. ri,j+1 ≥ (ri,j + Ti).

• The allocated time for a given job is given by CA(τi,j, t), and describes the

amount of processor time allocated to the task at time t.

• Let the unallocated computation time, or remaining time, for the currently

active job τi,j at time t be CR(τi,j, t) = Ci − CA(τi,j, t)

• The relative time to failure, ttf and the absolute time of failure, F, is then

the time left for when a task can be deferred execution and still be able to

meet the deadline:

ttf(τi, j, t) = (di,j − t)− CR(τi,j, t)

= (di,j − CR(τi,j, t))− t
= F (τi,j, t)− t (11.3)

Note the need to have t as part of ttf . This is solely a convenient way

of describing the (relative) ttf at a specific point in time, when a certain

amount of CPU time has been granted.

11.4.3 Earliest Failure First

We have denoted the algorithm as Earliest Failure First as it will always pick the

task with the lowest Failure value.

Let the initial set of tasks eligible to run be denoted S and let the total uti-

lization of the set be less than M, i.e U ≤ M . Find ttf(τi,j, t)∀τi,j ∈ S and

11.4. A MORE MATURE APPROACH 109

Figure 11.1: Figure showing some of the values needed by the EFF-scheduler and

how they relate.

arrange this in a list sorted ascending on ttf(τi,j, t) (see Fig. 11.2). Take the

first m tasks and assign to the available processors. Create a list of all tasks

assigned a CPU, sorted by ttfR(τi,j, t) in descending order. As all tasks will

update their allocated time, the relative time to failure will flow the same way,

thus the largest ttfR will accept being scheduled out best. The ttf(τi,j, t) for the

tasks on the CPU will stay constant, whereas the values for the queued tasks will

decrease as t progresses. For every task, set a timeout at CR(τi,j, t) in the future.

When running, preempt any task that does not finish when CR(τi,j, t) = 0. This

indicates a computational overflow and is an erroneous condition. When a task

finish and relinquish the CPU, take the next task in the waiting queue with lowest

ttf(τi,j, t). When a new task arrives, compute the time to failure and compare

it to the running tasks. If the time to failure is larger than the smallest exist-

ing value, insert it into the list. If it is smaller, preempt the task with largest ttfR.

We only preempt tasks when they either exceed allocated computation time

or another task is released with immediate need for computational resources. In-

stead of testing all tasks, we preempt the task with the highest ttf(τi,j, t) unless

the slack, or time to failure is 0. If that is the case, we will have deadline-miss

and the new task is added to the head of the queue.

This means that no tasks in the queue will reach 0 time to failure unless we

have a schedule with utilization higher than M. If this is the case, we are running

a soft real-time schedule and tardiness can be bounded. This will not affect the

scheduling decisions.

At tie-breaks:

• The new task has higher F (τi,j, t) than the first task in the queue and can

be added in the list, compared to the other tasks with the time-to-failure

value.

• The new task has lower F(τi,j, t) than the head of the list. If ttf(τi,j, t) is

110 CHAPTER 11. SUMMARY AND CONCLUSIONS

Figure 11.2: A set of tasks, represented by their relative time-to-failure (ttf)

values.

lower than the highest of the running tasks, it is scheduled to run on that

CPU and ttf-CPU list is re-sorted.

• Otherwise it is added at the head of the wait-queue.

11.4.4 Implementation optimizations for the Linux kernel

This scheduler has been designed based on the experience from this project. The

need for a single timer per CPU maps nicely to hrtimers. As the scheduler avoids

preemptions unless absolutely necessary, means it wastes as little resources as

possible. Datastructures should be easy to pick, and the way the deadlines are

used, both relative and absolute, means that comparison of tasks, but running

and queued, can be done without expensive integer additions, but as simple

integer comparisons. Since we keep two values for time-to-failure, one relative,

which makes comparison of running tasks cheap and one absolute which means

we do not have to update the queued tasks before they are added to the CPU,

comparison can be done fast. All of these features should make the algorithm

efficient to implement. That it is global makes it easy to add PEP support, and

it avoids load-balancing, yet another expensive operation.

11.4.5 Future work

Future work should focus on handling sporadic tasks as soft real-time tasks that

can sustain bounded yet constant deadline tardiness as well as formally prove

11.5. SUMMARY 111

the correctness of the scheduler. It should also be implemented into the current

Linux kernel, with the RT-Preemption patch applied.

11.5 Summary

This chapter concludes the report. We have now not only introduced the sched-

uler, the kernel, its subsystems and this extension. We have also evaluated the

failure of the implementation and pointed to some reasons why this happened.

The inclusion into the kernel repository has also been covered, and finally,

EFF was described. This algorithm may prove to solve some problems found

with deadline driven algorithms on multicore platforms, and the author has high

hope that it will be implemented and included in the kernel repository.

112 CHAPTER 11. SUMMARY AND CONCLUSIONS

Bibliography

[1] Anderson, J., and Srinivasan, A. Pfair scheduling: beyond periodic

task systems. Real-Time Computing Systems and Applications, 2000. Pro-

ceedings. Seventh International Conference on (2000), 297–306.

[2] Anderson, J., and Srinivasan, A. Mixed pfair/erfair scheduling of asyn-

chronous periodic tasks. Real-Time Systems, 13th Euromicro Conference on,

2001. (2001), 76–85.

[3] Anderson, J. H. A new look at pfair priorities. Tech. rep., University of

North Carolina, September 1999.

[4] Austad, H. A survey of real-time scheduling algorithms for the linux kernel.

Tech. rep., Norwegian University of Science and Technology, December 2008.

[5] Baker, T. An analysis of edf schedulability on a multiprocessor. Parallel

and Distributed Systems, IEEE Transactions on 16, 8 (Aug. 2005), 760–768.

[6] Björn B. Brandenburg, J. M. C., and Anderson, J. H. On the

scalability of real-time scheduling algorithms on multicore platforms: A case

study. In Proceedings of the 29th IEEE Real-Time Systems Symposium (De-

cember 2008), pp. 157–169.

[7] Bovet, D. P., and Cesati, M. Understanding the Linux Kernel, third ed.

O’Reilly Media, Incorporated, 2006.

[8] Buttazzo, G. Rate monotonic vs. edf: Judgement day. Real-Time Systems

29, 1 (2005), 5–26.

[9] Corbet, R., and Kroah-Hartman. Linux Device Drivers, third ed.

O’Reilly Media, Inc., 2005.

[10] Dhall, S. K., and Liu, C. L. On a real-time scheduling problem. Oper-

ations Research 26, 1 (Jan. - Feb. 1978), 127–140.

113

114 BIBLIOGRAPHY

[11] Faggioli, D., Lipari, G., and Cucinotta, T. An efficient implemen-

tation of the bandwidth inheritance protocol for handling hard and soft

real-time applications in the linux kernel. OSPERT08 (2008).

[12] Gleixner, T., and Niehaus, D. Hrtimers and beyond: Transforming

the linux time subsystem. In Proceedings of the Linux Symposium, 2006,

Ottawa, Canada (2006), pp. 333–346.

[13] Hirata, K., and Goodacre, J. Arm mpcore; the streamlined and scal-

able arm11 processor core. In ASP-DAC ’07: Proceedings of the 2007 con-

ference on Asia South Pacific design automation (Washington, DC, USA,

2007), IEEE Computer Society, pp. 747–748.

[14] Joël Goossens1, S. F., and Baruah3, S. Priority-driven scheduling

of periodic task systems on multiprocessors. Real-Time Systems 25, 2-3

(November 2003), 187–205.

[15] Kato, S., and Yamasaki, N. Global edf-based scheduling with efficient

priority promotion. In Embedded and Real-Time Computing Systems and

Applications, 2008. RTCSA ’08. 14th IEEE International Conference on

(Aug. 2008), pp. 197–206.

[16] Kroah-Hartman, G. Linux Kernel in a Nutshell, first ed. O’Reilly Media,

Inc., December 2006.

[17] Lameter, C. slab.h.

[18] Liu, C. L., and Layland, J. W. Scheduling algorithms for multipro-

gramming in a hard-real-time environment. J. ACM 20, 1 (1973), 46–61.

[19] Love, R. Linux Kernel Development, second ed. Novell Press, 2005.

[20] Oh, S.-H., and Yang, S.-M. A modified least-laxity-first scheduling al-

gorithm for real-time tasks. In Real-Time Computing Systems and Appli-

cations, 1998. Proceedings. Fifth International Conference on (Oct 1998),

pp. 31–36.

[21] Philip Holman, J. H. A. Group-based pfair scheduling. Real-Time Sys-

tems 32, 1-2 (February 2006), 125–168.

[22] Sanjoy K. Baruah, Johannes E. Gehrke, C. G. P. Fast schedul-

ing of periodic tasks on multiple resources. In In proceedings of the 9th

International Parallel Processing Symposium (April 1995), pp. 280–288.

BIBLIOGRAPHY 115

[23] Schultz, J., Aravamudan, N., and Hart, D. We are not getting any

younger: A new approach to time and timers. In Proceedings of the Linux

Sympsium, 2005, Ottawa, Canda (2005), pp. 219–232.

[24] Srinivasan, A., and Anderson, J. H. Optimal rate-based scheduling

on multiprocessors. J. Comput. Syst. Sci. 72, 6 (2006), 1094–1117.

[25] Steven Rostedt, D. V. H. Internals of the rt patch. In Proceedings of

the Linux Symposium (July 2007), pp. 161–172.

[26] Torvalds, L., Ravnborg, S., Dunlap, R., and Zippel, R.

http: // lxr. linux. no/ linux/ Documentation/ kbuild/

kconfig-language. txt .

http://lxr.linux.no/linux/Documentation/kbuild/kconfig-language.txt
http://lxr.linux.no/linux/Documentation/kbuild/kconfig-language.txt

116 BIBLIOGRAPHY

Index

bin-packing, 32

BitKeeper, 11

BKL, 22

buddy system, 56

ccache, 10, 129

CFS, 18, 19

CTW, 83

buckets, 83

HZ, 83

timer wheel, 83

Deadline-misses, 6

distcc, 10, 129

Earliest Deadline First, 28

EDF, 4

Generic IRQ, 21

Git, 11

Gnu Public License (GPL), 17

GPOS, 21

hrtimers, 50, 81, 84

ktime t , 85

hrtimer init, 86

API, 86

callback function, 86

clockenvents, 85

HZ, 82

jiffy, 82

timeofday architecture, 85

IRC, 13

ISR, 21

Kernel API, 24

kfree, 55

kmalloc, 55

gfp atomic, 56

gfp kernel, 56

linked list, 47

Linked-lists, 66

INIT LIST HEAD, 67

list add tail, 67

list entry, 67

list first entry, 67

list for each entry reverse, 68

list for each entry, 67

list is last, 67

Circular, 66

Doubly linked, 66

LinSched, 90

LitmusRT, 13

LKML, 3, 12

Load balancer, 32

memory bandwidth, 31

memory page, 56

Modified Least Laxity First, 16

Moore’s Law, 6

NUMA, 104

page frame, 56

patches, 11

pfair, 7

computational timers, 6

jitter, 6

just in time computation, 6

117

118 INDEX

PD-2, 5

subjobs, 45

pfair rq, 51

active count, 51

busy limit ns, 52

consumed time ns, 51

hyper ns, 51

next release ns, 51

pfair running, 51

ready count, 51

spinlock t, 51

struct rb root active, 51

struct rb root ready, 51

timeslice delay, 51

timeslice ns, 51

pfair subjob, 46

consumed time, 46

disjoint bit:1, 46

group dl ns, 46

list, 46

sub dl ns, 46

sub release ns, 46

window length ns, 46

POSIX-compliant, 18

post-update hook, 11

PREEMPT RT, 17

Priority Inheritance, 23

PEP, 42, 50, 53

Priority Inversion, 23

Processor load, 4

procmail, 12

Rate Monotonic, 4, 28

Real-time, 28

Jitter, 33

RT Preemption Patch, 21

rt-mutex, 15, 22

scheduling, 28

System, 28

Red-black tree, 19, 69

rbtree.h, 69

Resource Reservation, 6

rq, 49

pfair enabled, 50

pfair rq, 50

pfair running, 50

pfair timer, 50

pi resource holder, 50

timer enabled, 50

RTOS, 7, 17, 22

sched entities, 19

Scheduling Class

policy, 18

sched batch, 19

sched fifo, 20

sched idle, 19

sched normal, 19

sched rr, 20

Scheduling Policies, 18

Scheduling theory, 27

Acceptance test, 29

BWI, 52

Clustered, 30

Dhall’s effect, 37, 104

EDF, 29, 42

EFF, 111

Global, 7, 30, 104

multicore, 30

Partitioned, 30

pfair, 32

Disjoint bit, 35, 47

Group Deadline, 35, 47

lag, 33

Tie-breaking parameters, 35

PIP, 52

race condition, 31

race condition, 43

rate monotonic (RM), 29

Resource Reservation, 49

single core, 29

SLAB allocator, 47, 55, 58

INDEX 119

cache, 58, 60

cache object, 60

slab, 58

SLAB Layer, 58

slab layer, 60

SLOB, 60

SLUB, 60

Spinlock, 23

adaptive spinlock, 23

raw spinlock, 23

Sun’s Solaris, 58

syscalls, 41, 77

syscall table 32.S , 78

trapped, 77

SysFS, 41, 74

ATTR, 75

kobject, 74

task struct, 44

abs release ns, 45

deadline ns, 45

last release ns, 45

no subjobs, 45

period ns, 44

pfair periodic, 44

pfair state, 44

pfair subjob, 44

scaled wcet ns, 45

task node, 44

wcet ns, 45

TaskJuggler, 8

Test-machines

medea, 10

shaky, 10

timeouts, 83

timers, 83

top500, 18

trigger script.sh, 10

Unstable kernel API, 24

virtual page, see mmory page56

Wind River, 14

RT-Linux, 14

120 INDEX

Glossary

Acceptance test A test used by the scheduler to determine if a

new task should be allowed to enter the sched-

ule. If it fails the acceptance test, it is barred

from execution on the CPU(s), 29

Agent A separate entity with a well defined role, per-

forming a task, or a set of tasks in collabora-

tion with other agents, 43

Bin packing problem An NP-Complete problem. The problem

arises when you have several elements and

only a finite set of resources to map to. In

order to use each resource as effectively as pos-

sible, the elements must be ordered in a way so

that they are split evenly among the resources,

31

BitKeeper Distributed SCM, the first source-control

management system used by Linux instead of

tarballs and patches, 11

CFS Completely Fair Scheduler, a scheduler using

the concept of a “fair share” for each task,

assigning a portion of the processors time and

making sure each task get the chance to run

for the share’s time on the CPU, 18

CTW Cascading Timer Wheel, 83

Critical (sub)job A (sub)job which must be scheduled to run

immediately in order to meet its deadline, 35

121

122 Glossary

EDF Scheduler Earliest Deadline First Scheduler that picks

the next task based on an ordered list in as-

cending order, picking the task that reaches

the deadline first. If two or more tasks have

identical deadlines, the tie is broken arbitrar-

ily, 29

Exordium A beginning or introductionary part. Where

the reader is prepared for rest of the discus-

sion, and the orator lays out the purpose of

the discourse, 1

Forked project When a subset of the developers in a project

(or an outside group of developers) copy the

project and start working in a different direc-

tion than the original project, 13

GPOS General Purpose Operating System, 21

Generic IRQs A layer providing a generic interrupt handling

abstraction layer for device drivers, 21

HZ The frequency of the timer interrupt, a peri-

odic “heartbeat” which must be set at compile

time, 83

Hard real-time When a task cannot miss a single deadline, 6

ISR Interrupt Service Routine, code located at a

specified address ran when a interrupt trig-

gers, 21

Jitter Variance in response-time for a task, 32

MMU Memory Management Unit Memory is the

part of the processor that is responsible for

protecting system resources from unwanted

access and also adding the capability for han-

dling virtual memory, 56

Medea One of the test machines. 2 P4 Xeon 2.40GHz

HT, 2GB DDR SDRAM ECC, 2x 36GB

10k IBM Ultrastar SCSI disks, 2x Broadcom

10/100/1000 Mbit NIC, 10

Glossary 123

Memory page A block of memory (RAM) of fixed length

which is the smallest divisible unit of memory

the MMU will handle. Whereas a memory

region will be contiguous in virtual memory,

but often fragmented in physical, a page will

always be contiguous in both, 56

NACK’ed patch When a submitted patch is turned down from

the responsible maintainer, 12

NUMA Non Uniform Memory Access, typical for large

clusters and SMP machines. Often denoted

HPC or “Supercomputers”, 104

PEP Priority Execution Protocol, allowing a task

A to run on the expenses of task B in order to

release a resource as quickly as possible, 53

PEP Proxy execution protocol, allowing a blocked

task to act as proxy for another task, to speed

up the time taken to release a shared resource.,

42

PIP Priority Inheritance Protocol, when a low-

priority task A inherits a higher priority task

B’s status in order for A to run and release a

shared resource requested by B, 52

Page frame A block of memory (RAM) used to store a

virtual page, 56

Procmail Procmail is a mail delivery agent (MDA)

or mail filter, a program to process incom-

ing emails on a computer, widely used on

Unix systems. — http://en.wikipedia.

org/wiki/Procmail, 12

RTOS Real Time Operating System, 6

Race condition A situation where two or more individual pro-

cesses (or CPUs) compete for the same re-

source, and where the order in which access

is granted, is not ordered in a determinis-

tic way. This will therefore introduce non-

deterministic, and very subtle, latencies, 31

http://en.wikipedia.org/wiki/Procmail
http://en.wikipedia.org/wiki/Procmail

124 Glossary

Rate Monotonic Scheduling A scheduling algorithm where a tasks priority

is inferred from the period relative to other

tasks, 29

Real Time System A system that is required to react to external

stimuli, including the passing of time, within

a time interval dictated by the environment,

28

Resource Reservation A technique for minimizing or avoiding all to-

gether, missed deadlines in a real-time system,

6

Role A defined behavior for an actor or entity, 43

SLOB Allocator Simple List Of Blocks, a simple, lightweight

SLAB allocator, intended for embedded sys-

tems, 60

Sched entity A sched entity is a schedulable element, 19

Scheduling Policy A set of “rules” indicating how a set of tasks

will be scheduled at run time, 18

Shaky One of the test machines. P4 2.40GHz, 1GB

RAM, 40GB Disk, 10/100Mbit NIC, 10

Spinlock A lock guarding a shared resource which ac-

cess should take a very short time. A request-

ing task will “spin” (busy wait) until the lock

is available, in effect halting the execution of

that task, or any other on that CPU in the

foreseeable future, 23

Staggered scheduler A staggered scheduler, is a multi core sched-

uler that spread the scheduling decisions taken

on each CPU out in time to avoid that several

CPUs try to acquire the resource (runqueue),

thus giving rise to a race condition, 31

Syscalls A syscall, or system call, is a way of adding

function calls accessible for userspace into the

kernel. By raising soft-interrupt 0x80 (x86

arch), the kernel will trap the signal and start

executing in kernel-mode, 41

Glossary 125

Trapping The action taken by the kernel when a soft-

interrupt triggers a jump in the instruction

stream on the CPU, 77

Utilization A measure for how much work the scheduler

and CPU is experiencing. It is given as a frac-

tion of the number of CPUs, 28

clockevents layer A subsystem in the timer infrastructure, dis-

tributing clockevents to all parts of the kernel,

82

hrtimers High Resolution Timers, a simple yet powerful

interface for setting (a)periodic timers in the

kernel, 82

jiffy A term used to describe a short amount of

time, in the Linux kernel, it is used to describe

the length of a timer-tick (1-10ms), the time

between periodic timer interrupts, 82

kobject A data struct, it is the glue that holds much

of the device and SysFS-model together., 74

timeofday layer A generic layer giving the kernel a standard-

ized interface to time, 82

timeout the intentional ending of an incomplete task

after a time limit considered a long enough

for it to end normally, 83

timers a device used to measure the amount of time

something takes, or a device that can be set

to sound an alarm after a certain amount of

time., 83

vmlinux The compiled and linked kernel image, 10

126 Glossary

Part IV

Appendix

127

Appendix A

Distributed and cached

compilation

This explains how to configure and enable an efficient and distributed build-

process to minimize delay and increase productivity by using distcc and ccache

together with gcc .

A.1 Cached compilation - ccache

In practice - every file you compile is checked against a cache. Or, rather, the

check-sum of the preprocessed file1 is matched against the cache. If the prepro-

cessed file matches a file, the corresponding object-file is simply copied. If not,

gcc compiles the file, and ccache stores the hash and the object-file for later

usage. This means that only files that have actually changed, will be recompiled.

A.2 Distributed C/C++ compiler - distcc

distcc does what ccache does not - it spreads out the load to several machines

over the network. No shared file-system is needed. distcc tries to move the job

to several machines to distribute the load.

A.3 Basic setup and usage

Setup is straightforward. You install distcc (and ccache if you are so inclined).

No special configuration is needed other than a “per use” configuration.

1The result from gcc -E .

129

130 APPENDIX A. DISTRIBUTED AND CACHED COMPILATION

Figure A.1: An example layout of a master-machine and number of satellite

computers (servers and other workstations) used for compiling. The red user is

the user directing the cluster, the master.

ccache does not need any configuration. You can tweak settings like the depth

of the cache-tree, the size of the cache and the location. A good rule of thumb

is to make the cache large enough to contain all cached files, and move it to the

fastest disk in your system.

distcc requires a bit of configuration. First off you need nodes in your cluster.

A node is a machine that accept jobs from the master. The master is the machine

where the compilation is started from.

Once distcc is installed on the hosts, the master can export jobs in two

different ways. The first, and most secure, is to invoke ssh. This will tunnel

each job. No other configuration of the node is required, distcc will start gcc

properly via ssh. The downside of this approach, although it is notably the

most secure, is the overhead that ssh incurs. The other approach is to configure

A.3. BASIC SETUP AND USAGE 131

each node to run a distcc-daemon. This is faster, but the pre-compiled files

will be sent over the network unencrypted, leaving the compilation exposed to

man-in-the middle attacks.

For either one of the setups, the master needs to be told where it can find the

nodes. The easiest way is to configure $HOME/.distcc/hosts on the form:

1 # Sample ~/. distcc/hosts file

2
3 # Order the examples with the most powerful machine first

4 # local computer

5 l o c a l h o s t
6
7 # Machine running with distcc started in daemon mode.

8 # Do not start more than 4 parallell jobs on th enode

9 192 . 168 . 0 . 1 /4
10
11 # machine running distccd started with

12 # distccd --daemon -j8 --allow 192.168.0.1

13 # Note that distccd handles maximum job , do not add /n here

14 192 . 1 6 8 . 0 . 2
15
16 # ssh to hosts with defined workqueue

17 username@your . host . com/4
18 @your . other . host . com/8

• Even though it is not necessary to configure ccache or distcc in any

particular way, you can. In that case, look at the webpage of the project2

or the man-page.

• Both can be configured to replace gcc entirely (which will cause ccache/distcc

to be invoked every time you compile anything. However, this is not al-

ways what you want, and for that reason, it is not done here (i.e. we use

CC=’’distcc ccache gcc’’ in the make invocation).

• distcc must be configured to use separate hosts. You can do this in two

different ways, where the preferred one, is to update the /.distcc/hosts .

• Finally, distcc requires passphrase-less ssh-keys. This is due to the fact

that distcc cannot be configured to pass along neither password nor passphrase.

Example A i)

1. Create ssh-key silently to standard file

ssh-keygen -q -t rsa -b 2048 -f /.ssh/id rsa

Note that this will create a key with passphrase (which is always a good

idea). To let distcc use this, you must either create without passphrase

(add -N ”) or use key-agent.

2http://ccache.samba.org/

http://ccache.samba.org/

132 APPENDIX A. DISTRIBUTED AND CACHED COMPILATION

2. Configure /.distcc/hosts

3. Distribute ssh-key from the master to every node in the cluster that

requires ssh-login

4. Do a make -j32 CC=d̈istcc ccache gcc¨ and watch the compilation fly.

Appendix B

Module code

This chapter contains the module code from the different sections. This code is

also included in the attachment (on the CD-ROM). The makefiles for the different

modules are not show. These are attached, but will not be discussed. See [9] for

an excellent coverage of these.

133

134 APPENDIX B. MODULE CODE

B.1 Slab allocator

1 /*

2 * slab.c

3 *

4 * This module demonstrates the usage of the slab allocator. The result is

5 * printed to kern.log at insertion and removal. It does not provide any other

6 * interface. The sole purpose is to make kernel context readily available.

7 *

8 *

9 * Copyright 2008 -2009 Henrik Austad <henrik@austad.us >

10 * Norwegian University of Science and Technology

11 *

12 *

13 * This program is free software; you can redistribute it and/or modify

14 * it under the terms of the GNU General Public License as published by

15 * the Free Software Foundation; either version 2, or (at your option)

16 * any later version.

17 *

18 * This program is distributed in the hope that it will be useful ,

19 * but WITHOUT ANY WARRANTY; without even the implied warranty of

20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

21 * GNU General Public License for more details.

22 *

23 * You should have received a copy of the GNU General Public License

24 * along with this program; see the file COPYING. If not , write to

25 * the Free Software Foundation , 675 Mass Ave , Cambridge , MA 02139, USA.

26 */

27
28 #include <l i nux /module . h>
29 #include <l i nux / ke rne l . h>
30 #include <l i nux / s l ab . h>
31
32
33 /* struct object

34 *

35 * Small struct to demonstrate how the slab can allcoate memory.

36 * It creates a singly linked list and a status counter. The size is set so

37 * small (8 bytes) that kmalloc will waste a lot of space (24 bytes pr. object).

38 */

39 struct ob j e c t {
40 struct ob j e c t ∗next ;
41 unsigned long counter ;
42 } ;
43
44 stat ic struct kmem cache ∗ ob j e c t ca che ;
45 stat ic struct ob j e c t ∗head ;
46
47 /* slab_test_init - module initialization function

48 *

49 * This function will create a kmem_cache , with hardware cache alignment , and

50 * allocate a set of struct object from it. To illustrate , each object will be

51 * given a unique number in increasing order.

52 */

53 stat ic int in i t s l a b t e s t i n i t (void)
54 {
55 int c = 0 ;
56 struct ob j e c t ∗new , ∗prev ;
57 ob j e c t ca che = kmem cache create (”ObjectCache” ,
58 s izeof (struct ob j e c t) ,
59 0 , SLAB HWCACHE ALIGN, NULL) ;

B.1. SLAB ALLOCATOR 135

60 i f (! ob j e c t c a che)
61 goto f a u l t y e x i t 1 ;
62 pr in tk (KERN INFO ”Object−cache s u c c e s s f u l l y c r ea ted !\n”) ;
63
64 head = (struct ob j e c t ∗) kmem cache al loc (ob j ec t cache , GFP KERNEL) ;
65 i f (head) {
66 pr in tk (KERN INFO ”Got object−memory from slab−cache \n”) ;
67 head−>next = NULL;
68 head−>counter = 0 ;
69 }
70 new = head ;
71 pr in tk (KERN INFO ”OK, got the head , c r e a t i n g l i s t , s i z e o f each element i s %u\n” ,
72 s izeof (struct ob j e c t)) ;
73 while (c++ < 10) {
74 prev = new ;
75 new = (struct ob j e c t ∗) kmem cache al loc (ob j ec t cache , GFP KERNEL) ;
76 i f (! new)
77 break ;
78 prev−>next = new ;
79 new−>counter = prev−>counter + 1 ;
80 }
81 pr in tk (KERN INFO ” Al located %d ob j e c t s from the cache \n” , c) ;
82 return 0 ;
83 f a u l t y e x i t 1 :
84 return −ENOMEM;
85 }
86
87 /* slab_test_exit - module exit function

88 *

89 * When module is removed , free and unlink all elements in the list and return

90 * the cache to the kernel.

91 */

92 stat ic void exit s l a b t e s t e x i t (void)
93 {
94 struct ob j e c t ∗tmp , ∗ o ld ;
95 i f (ob j e c t c a che) {
96 i f (head) {
97 tmp = head−>next ;
98 while (tmp) {
99 o ld = tmp ;

100 tmp = tmp−>next ;
101 old−>next = NULL;
102 pr in tk (KERN INFO ” r e l e a s e : %lu \n” , old−>counter) ;
103 kmem cache free (ob j ec t cache , o ld) ;
104 }
105 kmem cache free (ob j ec t cache , (void ∗) head) ;
106 pr in tk (”Freed head and returned i t to the cache \n”) ;
107 }
108 kmem cache destroy (ob j e c t c a che) ;
109 }
110 pr in tk (KERN INFO ”Goodbye world\n”) ;
111 return ;
112 }
113
114 /* notify the module interface which functions that are init and exit */

115 modu l e in i t (s l a b t e s t i n i t) ;
116 module ex i t (s l a b t e s t e x i t) ;
117
118 /* some extra info about author an license (if not GPL , kernel will be "tainted ") */

119 MODULE LICENSE(”GPL”) ;
120 MODULEAUTHOR(”Henrik Austad”) ;

136 APPENDIX B. MODULE CODE

B.2 Linked Lists

1 /*

2 * linked_list.c

3 *

4 * Demonstrate the usage of the linked_list system in the kernel. This module

5 * will allocate a set of list elements and keep them in sorted order , first on

6 * the uid -key , and then on uid2.

7 *

8 * Copyright 2008 -2009 Henrik Austad <henrik@austad.us >

9 * Norwegian University of Science and Technology

10 *

11 *

12 * This program is free software; you can redistribute it and/or modify

13 * it under the terms of the GNU General Public License as published by

14 * the Free Software Foundation; either version 2, or (at your option)

15 * any later version.

16 *

17 * This program is distributed in the hope that it will be useful ,

18 * but WITHOUT ANY WARRANTY; without even the implied warranty of

19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

20 * GNU General Public License for more details.

21 *

22 * You should have received a copy of the GNU General Public License

23 * along with this program; see the file COPYING. If not , write to

24 * the Free Software Foundation , 675 Mass Ave , Cambridge , MA 02139, USA.

25 */

26
27 #include <l i nux /module . h>
28 #include <l i nux / ke rne l . h>
29 #include <l i nux / s l ab . h>
30 #include <l i nux / l i s t . h>
31
32 struct t e s t s t r u c t {
33 int uid ;
34 struct l i s t h e a d l i s t ;
35 int uid2 ;
36 } ;
37 stat ic struct t e s t s t r u c t ∗head ;
38 stat ic int l i s t s i z e ;
39
40
41 /** compare_test - compares to test_structs

42 *

43 * @ts1 : first element (struct) to compare

44 * @ts2 : second element

45 *

46 * returns

47 * negative : ts1 is smaller than ts2

48 * zero : they are equal (or one of them is NULL and comparison does not make

49 * sense).

50 * positive : ts1 is greater than ts2

51 */

52 int compare tes t (struct t e s t s t r u c t ∗ ts1 , struct t e s t s t r u c t ∗ t s2)
53 {
54 i f (! t s1 | | ! t s2)
55 return 0 ;
56 i f (ts1−>uid == ts2−>uid)
57 return ts1−>uid2 − ts2−>uid ;
58 return ts1−>uid − ts2−>uid ;
59 }

B.2. LINKED LISTS 137

60
61 /** remove - remove element from the list

62 *

63 * 1 on success , 0 on failure (i.e. not found)

64 */

65 int remove (int uid1 , int uid2)
66 {
67 struct t e s t s t r u c t ∗ t s = NULL;
68 struct l i s t h e a d ∗ lh = NULL;
69 unsigned char found = 0 ;
70 l i s t f o r e a c h (lh , &head−> l i s t) {
71 t s = l i s t e n t r y (lh , struct t e s t s t r u c t , l i s t) ;
72 i f (ts−>uid == uid1 && ts−>uid2) {
73 found = 1 ;
74 break ;
75 }
76 }
77 i f (found && ts) {
78 l i s t d e l (&ts−> l i s t) ;
79 k f r e e (t s) ;
80 l i s t s i z e −−;
81 return 1 ;
82 }
83 return 0 ;
84 }
85
86 /**

87 * add_new - add a new element to the list

88 *

89 * This function shall create a new test_struct , initialize the embedded

90 * list_head and insert it into the queue. It will do this in sorted order.

91 *

92 * @uid : primary uid (key)

93 * @uid2 : secondary key

94 *

95 * Return 0 on sucess , negative on fault

96 */

97 int add new (int uid , int uid2)
98 {
99 unsigned char added = 0 ;

100 struct t e s t s t r u c t ∗ t s = NULL;
101 struct l i s t h e a d ∗ lh = NULL;
102 struct t e s t s t r u c t ∗tmp = (struct t e s t s t r u c t ∗)
103 kmalloc (s izeof (struct t e s t s t r u c t) , GFP KERNEL) ;
104
105 i f (! tmp)
106 return −ENOMEM;
107 i f (! head) {
108 pr in tk (KERN ALERT ”Cannot add to non−e x i s t i n g l i s t !\n”) ;
109 return −EFAULT;
110 }
111 tmp−>uid = uid ;
112 tmp−>uid2 = uid2 ;
113 INIT LIST HEAD(&tmp−> l i s t) ;
114 i f (l i s t empty (&head−> l i s t))
115 l i s t a d d (&tmp−> l i s t , &head−> l i s t) ;
116 else {
117 l i s t f o r e a c h (lh , &head−> l i s t) {
118 t s = l i s t e n t r y (lh , struct t e s t s t r u c t , l i s t) ;
119 i f (compare tes t (tmp , t s) < 0) {
120 l i s t a d d t a i l (&tmp−> l i s t , lh) ;

138 APPENDIX B. MODULE CODE

121 added = 1 ;
122 break ;
123 }
124 }
125 i f (! added) {
126 /* if the number is greater than all the other elements

127 * in the list , it will not be added during the normal

128 * loop , and hence , we need to add it before head , or

129 * at the tail , as this is a circular list */

130 l i s t a d d t a i l (&tmp−> l i s t , &head−> l i s t) ;
131 }
132 }
133 l i s t s i z e ++;
134 return 0 ;
135 }
136
137 /**

138 * print_all - print all elements in the list

139 *

140 * This function will print all elements in the list in a standard way. This is

141 * great for debugging , but if the list is very large , this adds a lot of text

142 * to kern.log (and dumping large amount of text in kernel -mode is generally

143 * frowned upon).

144 *

145 * @params : void

146 * @returns: void

147 */

148 void p r i n t a l l (void)
149 {
150 struct t e s t s t r u c t ∗ t s ;
151 struct l i s t h e a d ∗ lh ;
152
153 i f (! head) {
154 pr in tk (”No head de f ined !\n”) ;
155 return ;
156 }
157 i f (un l i k e l y (l i s t empty (&head−> l i s t))) {
158 pr in tk (KERN INFO ” L i s t i s empty !\n”) ;
159 return ;
160 }
161
162 l i s t f o r e a c h (lh , &head−> l i s t) {
163 t s = l i s t e n t r y (lh , struct t e s t s t r u c t , l i s t) ;
164 pr in tk (KERN INFO ”UID : %d UID2 : %d\n” , ts−>uid , ts−>uid2) ;
165 }
166 }
167
168
169 /**

170 * llist_init - init linked -list module

171 */

172 int in i t l l i s t i n i t (void)
173 {
174 int c = 0 ;
175 int l im i t = 7 ;
176 head = (struct t e s t s t r u c t ∗) kmalloc (s izeof (struct t e s t s t r u c t) , GFP KERNEL) ;
177 i f (! head)
178 return −ENOMEM;
179 l i s t s i z e = 0 ;
180 head−>uid = 0 ;
181 head−>uid2 = 0 ;

B.2. LINKED LISTS 139

182 /* init head */

183 INIT LIST HEAD(&head−> l i s t) ;
184
185 /* create a set of tasks */

186 for (; c<l im i t ; c++)
187 i f (add new (c%5, c ∗2))
188 break ;
189 add new (1 , 2 3) ;
190 add new (5 , 9 9) ;
191 add new (1 , 0) ;
192 pr in tk (KERN INFO ”Removed 1 , 1 : %s \n” , (remove (1 , 1) ? ”OK” : ”NOK”)) ;
193 pr in tk (KERN INFO ”Removed 1 , 23 : %s \n” , (remove (1 ,23) ? ”OK” : ”NOK”)) ;
194 pr in tk (KERN INFO ”Removed 6 , 23 : %s \n” , (remove (6 ,23) ? ”OK” : ”NOK”)) ;
195
196 return 0 ;
197 }
198
199 void exit l l i s t e x i t (void)
200 {
201 struct t e s t s t r u c t ∗ t s = NULL;
202 int counter = 0 ;
203
204 /* if the list is not too long , print all to show that it is sorted */

205 i f (l i s t s i z e < 10)
206 p r i n t a l l () ;
207
208 i f (head) {
209 while (! l i s t empty (&head−> l i s t)) {
210 t s = l i s t f i r s t e n t r y (&head−> l i s t , struct t e s t s t r u c t , l i s t) ;
211 l i s t d e l (&ts−> l i s t) ;
212 k f r e e (t s) ;
213 counter++;
214 }
215 pr in tk (KERN INFO ”Destroyed %d elements from the l i s t \n” , counter) ;
216 k f r e e (head) ;
217 }
218 pr in tk (KERN INFO ”Goodbye , I ’m no longe r l i nked \n”) ;
219 }
220
221 /* set init , exit and moduleinfo */

222 modu l e in i t (l l i s t i n i t) ;
223 module ex i t (l l i s t e x i t) ;
224 MODULE LICENSE(”GPL”) ;
225 MODULEAUTHOR(”Henrik Austad”) ;

140 APPENDIX B. MODULE CODE

B.3 Red black trees

1 /*

2 * rbtree_mod.c

3 *

4 * Demonstrate the usage of rbtree.h in the kernel.

5 *

6 *

7 * Copyright 2008 -2009 Henrik Austad <henrik@austad.us >

8 * Norwegian University of Science and Technology

9 *

10 *

11 * This program is free software; you can redistribute it and/or modify

12 * it under the terms of the GNU General Public License as published by

13 * the Free Software Foundation; either version 2, or (at your option)

14 * any later version.

15 *

16 * This program is distributed in the hope that it will be useful ,

17 * but WITHOUT ANY WARRANTY; without even the implied warranty of

18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

19 * GNU General Public License for more details.

20 *

21 * You should have received a copy of the GNU General Public License

22 * along with this program; see the file COPYING. If not , write to

23 * the Free Software Foundation , 675 Mass Ave , Cambridge , MA 02139, USA.

24 */

25
26 #include <l i nux /module . h>
27 #include <l i nux / ke rne l . h>
28 #include <l i nux / rb t r e e . h>
29 #include <l i nux / s t r i n g . h>
30
31 /* emulate the pfair_subjob and keep a sorted tree based on these subjobs */

32 struct rb ta sk {
33 unsigned long long subdl ;
34 unsigned long long wcet ;
35 unsigned long long dead l ine ;
36 unsigned int pid ;
37 struct rb node node ;
38 } ;
39 stat ic struct rb roo t a c t i v e = RB ROOT;
40
41 /**

42 * print_rbtask - print an rb_task to dmesg

43 *

44 * @rbt: The rb_task to print

45 */

46 stat ic i n l i n e void p r i n t r b t a s k (struct rb ta sk ∗ rbt)
47 {
48 pr in tk (KERN INFO ”[%d] %l l u %l l u %l l u \n” ,
49 rbt−>pid ,
50 rbt−>subdl ,
51 rbt−>deadl ine ,
52 rbt−>wcet) ;
53 }
54
55 /**

56 * compare_raw - compare a rb_task to a set of values and determine if they are

57 * equal according to a predefined set of rules

58 * rbt: - The rb_task to test

59 * subdl: - matching sub_deadline

B.3. RED BLACK TREES 141

60 * wcet: - matching worst case execution time

61 * deadline: - matching deadline (major deadline)

62 *

63 * The compare is optimized for the tree -setup , and ’smaller ’ nodes should be

64 * placed to the left. Hence , if rbt’s values are smaller than the provided

65 * values , negative is returned. 0 if equal and positive if rbt should be moved

66 * right.

67 *

68 * We need this in a dedicated function , as compare_tasks () is not the only

69 * function using compare_raw ()

70 */

71 stat ic i n l i n e int compare raw (struct rb ta sk ∗ rbt ,
72 unsigned long long subdl ,
73 unsigned long long wcet ,
74 unsigned long long dead l ine)
75 {
76 i f (rbt−>subdl != subdl)
77 return rbt−>subdl − subdl ;
78 i f (rbt−>dead l ine != dead l ine)
79 return rbt−>dead l ine − dead l ine ;
80 i f (rbt−>wcet != wcet)
81 return wcet − rbt−>wcet ;
82 return 0 ;
83 }
84
85 /**

86 * compare_tasks - compare two rb_tasks and determine difference between them.

87 *

88 * rb1: - First rb_task

89 * rb2: - Second rb_task

90 *

91 * The compare is optimized for the tree -setup , and ’smaller ’ nodes should be

92 * placed to the left. If rb1 is smaller than rb2 , negative is returned. This

93 * function uses compare_raw , and thus , the same rules apply.

94 */

95 int compare tasks (struct rb ta sk ∗ rb1 , struct rb ta sk ∗ rb2)
96 {
97 i f (! rb1 | | ! rb2)
98 return 0 ;
99 return compare raw (rb1 , rb2−>subdl , rb2−>wcet , rb2−>dead l ine) ;

100 }
101
102 /**

103 * rbt_search - search the tree and find a task with matching attributes

104 *

105 * @root - the root of the tree

106 * @subdl - sub_deadline

107 * @wcet

108 * @deadline

109 * @pid - this is the key element , as this is actually the only unique

110 * attribute. However , the tree is kept sorted by the other

111 * attributes , so we need all of these in order to find the

112 * node.

113 *

114 * If rbt_search finds a matching task , it is returned , otherwise NULL.

115 */

116 struct rb ta sk ∗ r b t s e a r ch (struct rb roo t ∗ root ,
117 unsigned long long subdl ,
118 unsigned long long wcet ,
119 unsigned long long deadl ine ,
120 unsigned int pid)

142 APPENDIX B. MODULE CODE

121 {
122 int compres = 0 ;
123 struct rb node ∗tmp = root−>rb node ;
124 struct rb ta sk ∗ rbt = NULL;
125 while (tmp) {
126 rbt = con t a i n e r o f (tmp , struct rb task , node) ;
127 compres = compare raw (rbt , subdl , wcet , dead l ine) ;
128 i f (compres == 0 && rbt−>pid == pid)
129 return rbt ;
130 /* rbt smaller than values , go right */

131 i f (compres <= 0)
132 tmp = tmp−>r b r i g h t ;
133 else
134 tmp = tmp−>r b l e f t ;
135 }
136 return NULL; /* not found */

137 }
138 /**

139 * rbt_insert - insert a new rb_task into the tree.

140 *

141 * @root - the root of the tree

142 * @rbt - the new node to insert into the tree.

143 *

144 * This function differs slightly from other rbtree insertion methods as it

145 * allows for several ’identical ’ tasks to be inserted into the tree. This is

146 * because 2 distinct tasks can have the *exact* same profile , even if they are

147 * separate tasks.

148 *

149 * If rbt is already present in the tree , it will detect this and abort. Note ,

150 * it will only detect this if it *is* a duplicate , or if it happens to

151 * encounter another tasks , but with identical pid. The latter should not pose a

152 * problem , as pid is guaranteed to be unique.

153 */

154 void r b t i n s e r t (struct rb roo t ∗ root , struct rb ta sk ∗ rbt)
155 {
156 struct rb node ∗∗ tmp l ink = &(root−>rb node) ;
157 struct rb node ∗parent = ∗ tmp l ink ;
158 struct rb ta sk ∗tmp ;
159 int compres = 0 ;
160 while (∗ tmp l ink) {
161 parent = ∗ tmp l ink ;
162 tmp = rb ent ry (parent , struct rb task , node) ;
163 i f (un l i k e l y (tmp−>pid == rbt−>pid)) {
164 pr in tk (KERN ALERT ”Trying to i n s e r t a task a l r eady ”\
165 ” pre sent in the t r e e !\n”) ;
166 return ;
167 }
168 compres = compare tasks (rbt , tmp) ;
169 i f (compres < 0)
170 tmp l ink = &((∗ tmp l ink)−> r b l e f t) ;
171 else
172 tmp l ink = &((∗ tmp l ink)−> r b r i g h t) ;
173 }
174 rb l i nk node (&(rbt−>node) , parent , tmp l ink) ;
175 r b i n s e r t c o l o r (&(rbt−>node) , root) ;
176 }
177
178 /**

179 * rbt_delete - remove an rb_task from the tree and return it.

180 *

181 * @root: the root of the tree

B.3. RED BLACK TREES 143

182 * @subdl: current subdeadline for the task

183 * @wcet: Worst Case Execution Time

184 * @deadline: Full deadline

185 * @pid: PID of the task

186 *

187 * This function searches through the tree to find the task with pid_t pid. If

188 * found , it will be unlinked from the tree and returned.

189 *

190 * It uses the parameters as a guide to navigate through the tree , so if these

191 * are off , it will *not* find the task.

192 *

193 * This method highlights one of the key problems with the rb-tree (as well as

194 * a lot of other data -structures) - if you have to use something different as

195 * search -key , things quickly becomes tedious and error -prone.

196 */

197 struct rb ta sk ∗ r b t d e l e t e (struct rb roo t ∗ root ,
198 unsigned long long subdl ,
199 unsigned long long wcet ,
200 unsigned long long deadl ine ,
201 unsigned int pid)
202 {
203 struct rb ta sk ∗remove = rb t s e a r ch (root , subdl , wcet , dead l ine , pid) ;
204 i f (remove)
205 rb e r a s e (&remove−>node , root) ;
206 return remove ;
207 }
208 /**

209 * rbt_delete_full fully remove the rb_task from the tree

210 *

211 * If a matching tasks is found , not only is it removed from the tree , the

212 * memory is freed as well.

213 */

214 void r b t d e l e t e f u l l (struct rb roo t ∗ root ,
215 unsigned long long subdl ,
216 unsigned long long wcet ,
217 unsigned long long deadl ine ,
218 unsigned int pid)
219 {
220 struct rb ta sk ∗remove = rb t d e l e t e (root , subdl , wcet , deadl ine , pid) ;
221 i f (remove)
222 k f r e e (remove) ;
223 }
224
225 int in i t r b t r e e i n i t (void)
226 {
227 struct rb ta sk ∗tmp = NULL;
228 struct rb ta sk ∗ s r e s = NULL;
229 int c = 20 ;
230
231 /* Create a set of elements for the tree. */

232 while (c−−>0) {
233 tmp = (struct rb ta sk ∗) kmalloc (s izeof (struct rb ta sk) , GFP KERNEL) ;
234 i f (! tmp)
235 goto r b e r r ;
236 tmp−>subdl = c%13;
237 tmp−>wcet = (c ∗10) %19;
238 tmp−>dead l ine = (c ∗50)%29;
239 tmp−>pid = c ;
240 r b t i n s e r t (&act ive , tmp) ;
241 }
242

144 APPENDIX B. MODULE CODE

243 /* make sure it works , search and remove a task guaranteed to be there. */

244 tmp = (struct rb ta sk ∗) kmalloc (s izeof (struct rb ta sk) , GFP KERNEL) ;
245
246 /* If this fails , just drop out of the init , most of the tree is

247 * populated anyway */

248 i f (! tmp)
249 return 0 ;
250 tmp−>subdl = 5 ;
251 tmp−>wcet = 50 ;
252 tmp−>dead l ine = 250 ;
253 tmp−>pid = 500 ;
254 r b t i n s e r t (&act ive , tmp) ;
255 s r e s = r b t d e l e t e (&act ive , 5 , 50 , 250 , 500) ;
256 i f (s r e s) {
257 pr in tk (KERN INFO ”Got match to remove !\n”) ;
258 p r i n t r b t a s k (s r e s) ;
259 k f r e e (s r e s) ;
260 }
261 return 0 ;
262 r b e r r :
263 pr in tk (KERN ALERT ”Error in a l l o c a t i n g memory f o r rb ta sk \n”) ;
264 return −ENOMEM;
265 }
266
267 void exit r b t r e e e x i t (void)
268 {
269 struct rb ta sk ∗ rbt = NULL;
270 struct rb node ∗ rb1 = r b f i r s t (&ac t i v e) ;
271 struct rb node ∗ v ict im ;
272
273 pr in tk (KERN INFO ”Cleaning up the rb−t ree , removing a l l nodes\n”) ;
274 while (rb1) {
275 rbt = rb ent ry (rb1 , struct rb task , node) ;
276 p r i n t r b t a s k (rbt) ;
277 v ic t im = rb1 ;
278 rb1 = rb next (rb1) ;
279 i f (v ic t im) {
280 rb e r a s e (vict im , &ac t i v e) ;
281 k f r e e (c on t a i n e r o f (vict im , struct rb task , node)) ;
282 }
283 }
284 pr in tk (KERN INFO ”Done c l e an ing up the t r e e . Ready f o r e x i t .\n”) ;
285 }
286
287 modu l e in i t (r b t r e e i n i t) ;
288 module ex i t (r b t r e e e x i t) ;
289
290 MODULE LICENSE(”GPL”) ;
291 MODULEAUTHOR(”Henrik Austad”) ;

B.4. SYSFS MODULE 145

B.4 Sysfs module

1 /*

2 * sysfs_module.c

3 *

4 * Add new kobject (’pfair ’) under /sys/kernel/ and add two new attributes

5 * - sched_gran_us

6 * - sched_idle_us

7 * These are exposed 0644, and root may change the values. Changes will be

8 * logged to kern.log

9 *

10 * Copyright 2008 -2009 Henrik Austad <henrik@austad.us >

11 * Norwegian University of Science and Technology

12 *

13 *

14 * This program is free software; you can redistribute it and/or modify

15 * it under the terms of the GNU General Public License as published by

16 * the Free Software Foundation; either version 2, or (at your option)

17 * any later version.

18 *

19 * This program is distributed in the hope that it will be useful ,

20 * but WITHOUT ANY WARRANTY; without even the implied warranty of

21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

22 * GNU General Public License for more details.

23 *

24 * You should have received a copy of the GNU General Public License

25 * along with this program; see the file COPYING. If not , write to

26 * the Free Software Foundation , 675 Mass Ave , Cambridge , MA 02139, USA.

27 */

28
29 #include <l i nux / kob j ec t . h>
30 #include <l i nux / s t r i n g . h> /* for memset , strcmp */

31 #include <l i nux /module . h>
32 #include <l i nux / ke rne l . h>
33 #include <l i nux / sched . h>
34 #include <l i nux / s y s f s . h>
35 #include <l i nux / s l ab . h> /* for kmalloc */

36
37 /* the granularity of the scheduler , i.e. the length of each timeslice given to

38 * the subjobs */

39 long s ched gran us = 0 ;
40
41 /* if time left before next hrtimertick in pfair -scheduler is less than this ,

42 * run a busy loop until the time is right , if it is more , invoke the

43 * schedule () to find another task to run for a few microseconds before the

44 * bell goes off again. */

45 long s c h e d i d l e u s = 0 ;
46
47 stat ic s s i z e t
48 p f a i r s t o r e (struct kob jec t ∗kobj , struct kob j a t t r i b u t e ∗ att r ,
49 const char ∗ bu f f e r , s s i z e t s i z e)
50 {
51 unsigned long r e s = 0 ;
52 s s i z e t l eng th r ead = −1;
53 i f (strcmp (att r−>a t t r . name , ” sched gran us ”) == 0) {
54 l eng th r ead = s s c an f (bu f f e r , ”%lu \n” , &r e s) ;
55 i f (l eng th r ead > 0 && re s > 1000) {
56 sched gran us = re s ;
57 }
58 } else i f (strcmp (att r−>a t t r . name , ” s c h e d i d l e u s ”) == 0) {
59 l eng th r ead = s s c an f (bu f f e r , ”%lu ” , &r e s) ;

146 APPENDIX B. MODULE CODE

60 i f (l eng th r ead > 0 && re s >= 0)
61 s c h e d i d l e u s = r e s ;
62 } else {
63 pr in tk (KERN ALERT ”Unknown sy s f s−entry g iven to sys f s modu le \n”) ;
64 }
65 /* return length_read; */

66 /* to avoid endless loops , return the size and be done with it */

67 return s i z e ;
68 }
69
70 stat ic s s i z e t
71 p fa i r show (struct kob jec t ∗kobj , struct kob j a t t r i b u t e ∗ att r ,
72 char ∗ bu f f e r)
73 {
74 i f (strcmp (att r−>a t t r . name , ” sched gran us ”) == 0) {
75 return s p r i n t f (bu f f e r , ”%lu ” , s ched gran us) ;
76 }
77 else i f (strcmp (att r−>a t t r . name , ” s c h e d i d l e u s ”) == 0)
78 return s p r i n t f (bu f f e r , ”%lu ” , s c h e d i d l e u s) ;
79 return 0 ;
80 }
81
82 /* create the attributes and initialize with __ATTR */

83 stat ic struct kob j a t t r i b u t e s g a t t r =
84 ATTR(sched gran us , 0644 , p fa i r show , p f a i r s t o r e) ;
85 stat ic struct kob j a t t r i b u t e s i a t t r =
86 ATTR(s ch ed i d l e u s , 0644 , p fa i r show , p f a i r s t o r e) ;
87 stat ic struct kob jec t ∗kobj ;
88
89 stat ic int in i t l o c i n i t (void)
90 {
91 int r e t v a l = 0 ;
92 /* Create a folder in /sys/kernel/ */

93 kobj = kob j e c t c r ea t e and add (” p f a i r ” , k e rn e l kob j) ;
94 i f (! kobj)
95 return −ENOMEM;
96 r e t v a l = s y s f s c r e a t e f i l e (kobj , &s ga t t r . a t t r) ;
97 i f (r e t v a l)
98 goto e r r o r e x i t ;
99

100 r e t v a l = s y s f s c r e a t e f i l e (kobj , &s i a t t r . a t t r) ;
101 i f (r e t v a l)
102 goto e r r o r e x i t ;
103
104 /* retval = sysfs_create_group(kobj , &attr_group); */

105 return r e t v a l ;
106 e r r o r e x i t :
107 pr in tk (KERN ALERT ”Error in i n i t i a l i z i n g sys f s modu le !\n”) ;
108 kob j e c t put (kobj) ;
109 return r e t v a l ;
110 }
111
112 stat ic void exit l o c e x i t (void)
113 {
114 kob j e c t put (kobj) ;
115 }
116
117 modu l e in i t (l o c i n i t) ;
118 module ex i t (l o c e x i t) ;
119 MODULE LICENSE(”GPL”) ;
120 MODULEAUTHOR(”Henrik Austad”) ;

B.5. TIMER MODULE 147

B.5 Timer module

1 #include <l i nux / hrt imer . h>
2 #include <l i nux / ke rne l . h>
3 #include <l i nux /module . h>
4 #include <l i nux / sched . h>
5 #include <l i nux / t imer . h>
6
7 /*

8 * timer_module.c

9 *

10 * Small test -module for hrtimers

11 *

12 * Copyright 2008 -2009 Henrik Austad <henrik@austad.us >

13 * Norwegian University of Science and Technology

14 *

15 *

16 * This program is free software; you can redistribute it and/or modify

17 * it under the terms of the GNU General Public License as published by

18 * the Free Software Foundation; either version 2, or (at your option)

19 * any later version.

20 *

21 * This program is distributed in the hope that it will be useful ,

22 * but WITHOUT ANY WARRANTY; without even the implied warranty of

23 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

24 * GNU General Public License for more details.

25 *

26 * You should have received a copy of the GNU General Public License

27 * along with this program; see the file COPYING. If not , write to

28 * the Free Software Foundation , 675 Mass Ave , Cambridge , MA 02139, USA.

29 */

30
31 kt ime t t im e o f f s e t ;
32 kt ime t l a s t r e l e a s e ;
33 unsigned long de lay ns ;
34 #define REL BUFF SIZE BITS 10
35 #define REL BUFF SIZE 1<<REL BUFF SIZE BITS
36
37 /* to calculate the difference between desired delay and actual delay */

38 stat ic signed long long ∗ d i f f b u f f e r ;
39 stat ic unsigned int d i f f b i n d e x ;
40
41 struct conta ine r {
42 struct hrt imer hrt imer ;
43 kt ime t l a s t r e l e a s e ;
44 unsigned long long l a s t r e l e a s e n s ;
45 /* delay is adjusted in order to try to match delay_ns set by user/init */

46 kt ime t de lay ;
47
48 /* the actual delay in ns wanted */

49 unsigned long long de lay ns ;
50 signed long long min ;
51 signed long long max ;
52 unsigned long long hand l ed in t e r rup t s ;
53 } ;
54 struct conta ine r ∗ data conta ine r ;
55
56 #define NS IN US 1000
57 #define NS IN MS NS IN US ∗ 1000
58 #define NS IN SEC NS IN MS ∗ 1000
59

148 APPENDIX B. MODULE CODE

60 /**

61 * hrtimer_handler - hrtimer callback function

62 *

63 * This is the function that will be called on every timer event.

64 *

65 * @hrt: the registred struct hrtimer

66 * @hrtimer_restart : enum , if HRTIMER_RESTART , the hrtimer subsystem will call

67 * the handler again immediately

68 */

69 enum h r t ime r r e s t a r t h r t imer hand l e r (struct hrt imer ∗hrt)
70 {
71 struct conta ine r ∗c = NULL;
72 int cpu = −1;
73 unsigned long long l a s t t im e n s = 0 ;
74
75 i f (! hrt) {
76 pr in tk (KERN ALERT ” [timer module] No data r e c e i v ed in ”\
77 ” hr t imer hand l e r !\n”) ;
78 return HRTIMER NORESTART;
79 }
80 c = con t a i n e r o f (hrt , struct conta iner , hrt imer) ;
81 i f (! c) {
82 pr in tk (KERN ALERT ” [timer module] con ta ine r i s nu l l , ”\
83 ”even though we have the s t r u c t hrt imer \n”) ;
84 return HRTIMER NORESTART;
85 }
86
87 /* schedule next timer now to avoid noise from this function

88 *

89 * WARNING: If delay is set so low that the function uses longer time

90 * than the delay , this will cause a cascading effect and the system

91 * will crash as the kernel -stack will overflow.

92 */

93 i f (h r t ime r s t a r t (&c−>hrtimer , c−>delay , HRTIMER MODE REL))
94 return HRTIMER RESTART;
95
96 d i f f b i n d e x = ++d i f f b i n d e x % REL BUFF SIZE ;
97 /* save last release so we can compute the diff */

98 l a s t t im e n s = c−> l a s t r e l e a s e n s ;
99 c−> l a s t r e l e a s e = hr t ime r cb ge t t ime (hrt) ;

100 c−> l a s t r e l e a s e n s = kt ime to ns (c−> l a s t r e l e a s e) ;
101 d i f f b u f f e r [d i f f b i n d e x] = c−> l a s t r e l e a s e n s − l a s t t im e n s − c−>de lay ns ;
102
103 i f (c−>de lay ns > 100∗NS IN MS) {
104 cpu = smp proce s so r id () ;
105 pr in tk (KERN INFO ” [timer module] Time : %l l u on CPU %d , d i f f : %l l d \n” ,
106 kt ime to ns (c−> l a s t r e l e a s e) ,
107 cpu , d i f f b u f f e r [d i f f b i n d e x]) ;
108 }
109 i f (c−>max < d i f f b u f f e r [d i f f b i n d e x])
110 c−>max = d i f f b u f f e r [d i f f b i n d e x] ;
111 i f (c−>min > d i f f b u f f e r [d i f f b i n d e x])
112 c−>min = d i f f b u f f e r [d i f f b i n d e x] ;
113 c−>hand l ed in t e r rup t s++;
114
115 return HRTIMER NORESTART;
116 }
117
118 /* initializing function

119 *

120 * Before starting the timer , create and initialize the data -elements needed.

B.5. TIMER MODULE 149

121 */

122 stat ic int in i t t im e r i n i t (void)
123 {
124 int r e s = 0 ;
125 da ta conta ine r = (struct conta ine r ∗)
126 kmalloc (s izeof (struct conta ine r) , GFP KERNEL) ;
127 i f (! da ta conta ine r) {
128 pr in tk (KERN ALERT ” [timer module] ”\
129 ”Could not a l l o c a t e memory to da ta conta ine r !\n”) ;
130 return −ENOMEM;
131 }
132 da ta conta ine r = (struct conta ine r ∗)
133 memset (data conta ine r , 0 , s izeof (struct conta ine r)) ;
134
135 /* set default values in the data_container */

136 data conta ine r−>de lay ns = 1 ∗ NS IN MS ;
137 data conta ine r−>delay = ns to kt ime (data conta ine r−>de lay ns) ;
138 data conta ine r−> l a s t r e l e a s e = kt ime get () ;
139 data conta ine r−> l a s t r e l e a s e n s = kt ime to ns (data conta ine r−> l a s t r e l e a s e) ;
140 data conta ine r−>max = 0 ;
141 data conta ine r−>min = data conta ine r−>de lay ns ;
142 data conta ine r−>hand l ed in t e r rup t s = 0 ;
143
144
145 /* Create and initalize the diff_buffer , where we calculate the offset

146 * and errors while the timer is running */

147 d i f f b u f f e r = (signed long long ∗)
148 kmalloc (s izeof (unsigned long long) ∗ REL BUFF SIZE , GFP KERNEL) ;
149 i f (! d i f f b u f f e r) {
150 k f r e e (da ta conta ine r) ;
151 pr in tk (KERN ALERT ” [timer module] ”\
152 ”Could not a l l o c a t e memory to d i f f b u f f e r !\n”) ;
153 return −ENOMEM;
154 }
155 d i f f b u f f e r = (signed long long ∗)
156 memset (d i f f b u f f e r , 0 , s izeof (signed long long) ∗ REL BUFF SIZE) ;
157 d i f f b i n d e x = 0 ;
158
159
160 h r t im e r i n i t (&data conta ine r−>hrtimer , CLOCK MONOTONIC, HRTIMER MODE REL) ;
161 data conta ine r−>hrt imer . f unc t i on = hrt imer hand l e r ;
162 #ifdef CONFIG PREEMPT RT
163 data conta ine r−>hrt imer . i r q s a f e = 1 ;
164 #endif
165 r e s = h r t ime r s t a r t (&data conta ine r−>hrtimer ,
166 data conta ine r−>delay ,
167 HRTIMER MODE REL) ;
168 pr in tk (KERN INFO ” [timer module] Started t imer %s \n” ,
169 (r e s) ? ”NOK” : ”OK”) ;
170 return r e s ;
171 }
172
173 /* timer_exit

174 *

175 * When the module is removed , it will print out the global min and max error

176 * (the difference between actual release and desired release). The resources

177 * held are then freed and the module exits.

178 */

179 stat ic void exit t ime r e x i t (void)
180 {
181 int index = 0 ;

150 APPENDIX B. MODULE CODE

182 signed long long max , min ;
183 signed long long t o t a l e r r o r = 0 ;
184 pr in tk (” [t imer module] Removing t imer \n”) ;
185 i f (da ta conta ine r) {
186 h r t ime r canc e l (&data conta ine r−>hrt imer) ;
187 /* Calculate the avg delay for the last REL_BUFF_SIZE timers */

188 i f (d i f f b u f f e r) {
189 max = d i f f b u f f e r [0] ;
190 min = d i f f b u f f e r [0] ;
191 for (; index<REL BUFF SIZE ; index++) {
192 t o t a l e r r o r += d i f f b u f f e r [index] ;
193 i f (max < d i f f b u f f e r [index])
194 max = d i f f b u f f e r [index] ;
195 else i f (min > d i f f b u f f e r [index])
196 min = d i f f b u f f e r [index] ;
197 }
198 pr in tk (KERN INFO ” [timer module] de lay : %l l u ”\
199 ” g l oba l max : %l l d l o c a l max %l l d ”\
200 ” g l oba l min : %l l d l o c a l min %l l d ”\
201 ”avg : %l l d s i z e : %d i n t r : %l l u \n” ,
202 data conta ine r−>de lay ns ,
203 data conta ine r−>max ,
204 max ,
205 data conta ine r−>min ,
206 min ,
207 t o t a l e r r o r>>REL BUFF SIZE BITS ,
208 REL BUFF SIZE ,
209 data conta ine r−>hand l ed in t e r rup t s) ;
210 k f r e e (da ta conta ine r) ;
211 } else {
212 pr in tk (KERN ALERT ” [timer module] r e l e a s e : ! data−conta ine r \n”) ;
213 }
214 }
215 pr in tk (KERN INFO ” [timer module] Goodbye world\n”) ;
216 return ;
217 }
218
219 MODULE LICENSE(”GPL”) ;
220 MODULEAUTHOR(”Henrik Austad”) ;
221 MODULE DESCRIPTION(”Timer−f u n c t i o n a l i t y t e s t module”) ;
222 modu l e in i t (t im e r i n i t) ;
223 module ex i t (t ime r e x i t) ;

B.6. BOUNCING TIMER MODULE 151

B.6 Bouncing timer module

1 #include <l i nux / hrt imer . h>
2 #include <l i nux / ke rne l . h>
3 #include <l i nux /module . h>
4 #include <l i nux /ktime . h>
5 #include <l i nux / sched . h>
6 #include <l i nux / t imer . h>
7 #include <l i nux / time . h>
8
9 /*

10 * timer_bounce.c

11 *

12 * Small test -module for hrtimers that bounce between CPUs

13 *

14 * +---------+ +---------+

15 * | CPU 0 | --> | CPU 1 |

16 * +---------+ +---------+

17 * ^ |

18 * | v

19 * +---------+ +---------+

20 * | CPU 2 | <-- | CPU 3 |

21 * +---------+ +---------+

22 *

23 * Copyright 2008 -2009 Henrik Austad <henrik@austad.us>

24 * Norwegian University of Science and Technology

25 *

26 *

27 * This program is free software; you can redistribute it and/or modify

28 * it under the terms of the GNU General Public License as published by

29 * the Free Software Foundation; either version 2, or (at your option)

30 * any later version.

31 *

32 * This program is distributed in the hope that it will be useful ,

33 * but WITHOUT ANY WARRANTY; without even the implied warranty of

34 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

35 * GNU General Public License for more details.

36 *

37 * You should have received a copy of the GNU General Public License

38 * along with this program; see the file COPYING. If not , write to

39 * the Free Software Foundation , 675 Mass Ave , Cambridge , MA 02139, USA.

40 */

41
42 /* simple container for the timer

43 *

44 * @hrtimer - the timer for the given CPU

45 * @period - time between each event (from CPU to CPU).

46 * @last_started - absolute time (gettimeofday ()) when the time last triggered

47 * on *this* CPU.

48 */

49 struct conta ine r {
50 struct hrt imer hrt imer ;
51 kt ime t per iod ;
52 struct t imespec l a s t s t a r t e d ;
53 } ;
54 stat ic struct conta ine r ∗ t imers [CONFIG NR CPUS] ;
55
56 #define NS IN US 1000
57 #define NS IN MS NS IN US ∗ 1000
58 #define NS IN SEC NS IN MS ∗ 1000
59

152 APPENDIX B. MODULE CODE

60
61 /**

62 * remote_timer_start - start a timer on another CPU

63 *

64 * This function will trigger a timer on *another* CPU to start.

65 */

66 void r emot e t ime r s t a r t (void ∗data)
67 {
68 struct conta ine r ∗c = (struct conta ine r ∗) data ;
69 i f (c) {
70 h r t ime r s t a r t (&c−>hrtimer , c−>per iod , HRTIMER MODE REL) ;
71 }
72 }
73
74 /**

75 * hrtimer_restart - timer callback function

76 *

77 * When a timer event triggers , this callback function will be called , with

78 * struct hrtimer *hrt as argument.

79 *

80 * We update current time and shows the time since last time.

81 */

82 enum h r t ime r r e s t a r t h r t imer hand l e r (struct hrt imer ∗hrt)
83 {
84 int cpu , next cpu ;
85 struct t imespec time now , t ime de l t a ;
86 cpu = get cpu () ;
87 put cpu no resched () ;
88
89 /* find next CPU */

90 next cpu = (cpu+1) % num onl ine cpus () ;
91
92 /* Get time since last time the timer triggered on this CPU , and update

93 * so we remember until next time */

94 getnst imeofday(&time now) ;
95 t ime de l t a = t imespec sub (time now , t imers [cpu]−> l a s t s t a r t e d) ;
96
97 pr in tk (KERN INFO ”Time s i n c e l a s t t imer on t h i s CPU (%d) : %l l d \n” , cpu , t ime spec to n s (& t ime de l t a)) ;
98 t imers [cpu]−> l a s t s t a r t e d = time now ;
99

100 /* single -core setups does not really like smp_call_function_single */

101 i f (next cpu == cpu)
102 h r t ime r s t a r t (&t imers [cpu]−>hrtimer , t imers [cpu]−>per iod , HRTIMER MODE REL) ;
103 /* call function on specific CPU */

104 else i f (smp c a l l f u n c t i o n s i n g l e (next cpu , r emote t imer s ta r t , t imers [next cpu] , 1))
105 pr in tk (KERN ALERT ”Could not r e s t a r t timer , abor t ing \n”) ;
106
107 return HRTIMER NORESTART;
108 }
109
110 /**

111 * timer_bounce_init - init the timer bouncing

112 *

113 * This initializes the boucing. A timer is started on a CPU and when that

114 * triggers , the handler will schedule a timer on the next timer , effectively

115 * turning then timing into a token passed around between the cores.

116 */

117 stat ic int in i t t ime r bounc e i n i t (void)
118 {
119 int cpu , th i s cpu ;
120 int num cpus ;

B.6. BOUNCING TIMER MODULE 153

121 u64 per iod ;
122 struct t imespec time now ;
123
124 /* get current cpu and release lock without triggering resched */

125 th i s cpu = get cpu () ;
126 put cpu no resched () ;
127 cpu = th i s cpu ;
128 num cpus = num onl ine cpus () ;
129 per iod = 1∗NS IN SEC ;
130 getnst imeofday(&time now) ;
131 pr in tk (KERN INFO ” Ava i l ab l e cpus : %d\n” , CONFIG NR CPUS) ;
132 pr in tk (KERN INFO ” on l i n e cpus : %d\n” , num cpus) ;
133 pr in tk (KERN INFO ”This CPU: %d\n” , cpu) ;
134 pr in tk (KERN INFO ”Period : %l l u \n” , per iod) ;
135
136 /* walk the cpus and init the timers */

137 f o r e a ch on l i n e c pu (cpu) {
138 t imers [cpu] = (struct conta ine r ∗) kmalloc (s izeof (struct conta ine r) , GFP KERNEL) ;
139 i f (t imers [cpu]) {
140 t imers [cpu]−>per iod = ns to kt ime (per iod) ;
141 t imers [cpu]−> l a s t s t a r t e d = time now ;
142 h r t im e r i n i t (&t imers [cpu]−>hrtimer , CLOCK MONOTONIC, HRTIMER MODE REL) ;
143 t imers [cpu]−>hrt imer . f unc t i on = hrt imer hand l e r ;
144 #ifdef CONFIG PREEMPT RT
145 t imers [cpu]−>hrt imer . i r q s a f e = 1 ;
146 #endif
147 pr in tk (KERN INFO ”Adding t imer on CPU %d in %l l u \n” ,
148 cpu , k t ime to ns (t imers [cpu]−>per iod)) ;
149 } /* endif */

150 } /* end for_each */

151
152 /* start the timer on this CPU immediately */

153 i f (h r t ime r s t a r t (&t imers [t h i s cpu]−>hrtimer , n s to kt ime (0) , HRTIMER MODE REL))
154 pr in tk (KERN ALERT ”Could not s t a r t t imer \n”) ;
155 return 0 ;
156 }
157
158 /**

159 * timer_bounce_exit - close down module

160 *

161 * Stop all timers and free the struct container in the array

162 */

163 stat ic void exit t ime r bounce ex i t (void)
164 {
165 int c = 0 ;
166 for (; c<CONFIG NR CPUS; c++) {
167 i f (t imers [c]) {
168 h r t ime r canc e l (&t imers [c]−>hrt imer) ;
169 k f r e e (t imers [c]) ;
170 }
171 }
172 pr in tk (KERN INFO ” [t imer bounce] Module removed\n”) ;
173 }
174
175
176 MODULE LICENSE(”GPL”) ;
177 MODULEAUTHOR(”Henrik Austad”) ;
178 MODULE DESCRIPTION(”Timer−bouncing t e s t module”) ;
179 modu l e in i t (t ime r bounc e i n i t) ;
180 module ex i t (t ime r bounce ex i t) ;

154 APPENDIX B. MODULE CODE

Appendix C

Various scripts

This appendix lists some of the scripts used in the project.

155

156 APPENDIX C. VARIOUS SCRIPTS

C.1 kinstall.sh

1 #!/bin/bash

2 #

3 # Script for automating the build and installation of new kernels.

4 #

5 # This script is based on work by Greg Kroah -Hartman ,

6 # http ://www.kroah.com/lkn/

7 # In the book Linux Kernel Development.

8 #

9 # It has been modified and extended to provide some more feedback to the

10 # user by Henrik Austad , 2009

11 #

12 # This work is licensed under the Creative Commons Attribution -ShareAlike

13 # 2.5 License. To

14 # view a copy of this license , visit

15 # http :// creativecommons.org/licenses/by-sa/2.5/ or send a letter

16 # to Creative Commons , 543 Howard Street , 5th Floor , San Francisco ,

17 # California , 94105, USA.

18
19 i f [! $# -eq 1];then

20 echo ”Need l inux−t a r g e t f o l d e r ”
21 e x i t
22 f i
23
24 # enter target

25 cd $1
26
27 echo ”Making modu l e s i n s t a l l ”
28 make i n s t a l l
29 sudo make modu l e s i n s t a l l
30
31 # Fin version tags:

32 f o r TAG in VERSION PATCHLEVEL SUBLEVEL EXTRAVERSION ; do
33 eva l ‘ sed −ne ”/ˆ$TAG/ s / //gp” Makef i le ‘
34 done
35 SRC RELEASE=$VERSION.$PATCHLEVEL.$SUBLEVEL$EXTRAVERSION
36
37 ARCH=‘grep ”CONFIG ARCH ” inc lude / l i nux / autoconf . h | cut −f 2 −d ”\”” ‘
38
39 # Copy kernel -image , System.map to /boot

40 sudo cp −v arch /x86/boot/bzImage /boot/vmlinuz−$SRC RELEASE
41 sudo cp −v System .map /boot/System .map−$SRC RELEASE
42
43 echo ” I n s t a l l i n g $SRC RELEASE f o r $ARCH, f i x i n g grub”
44 i f [−f /boot/ i n i t r d . img−$SRC RELEASE] ; then
45 rm −v /boot/ i n i t r d . img−$SRC RELEASE
46 f i
47 sudo / usr / sb in /update−i n i t r am f s −c −k $SRC RELEASE
48 sudo update−grub

C.2. TRIGGER SCRIPT.SH 157

C.2 trigger script.sh

1 #!/bin/sh

2 # read from config -file in ~/. trigger

3 #

4 # Written by:

5 # Henrik Austad <henrik@austad.us> 2009

6 # Norwegian Uninversity of Science and Technology

7 # Department of Engineering Cybernetics

8 #

9 # This script is released under GPLv2

10
11 # This small script will move to the designated folder , and checkout out

12 # the provided branch in $HOME /. trigger/trigger.conf

13 # It will then proceed to build the (kernel). It is, at the moment ,

14 # hardcoded to use the kernel.

15
16 # if some other instance is running , we drop. If the already running

17 # instance does not catch the instnace , we can trigger it manually. No

18 # need to be fancy -schmanzy

19 l o c k f i l e=$HOME/ . t r i g g e r / l ock
20 i f [−f $ l o c k f i l e] ; then
21 echo ”Lock ($ l o c k f i l e) a l r eady present , c l o s i n g ” >&2
22 ex i t
23 f i
24 touch $ l o c k f i l e
25
26 # read branches from file

27 c f i l e=$HOME/ . t r i g g e r / t r i g g e r . conf
28 i f [! −f $ c f i l e] ; then
29 echo ” $ c f i l e non−ex i s tant , c l o s i n g ”
30 e x i t
31 f i
32
33 time=‘date +%s ‘
34 tmp err=” tmperr $t ime ”
35 tmp msg=”tmpmsg $time”
36 tmp name=”tmp $time”
37
38 # Redirect stderr and stderr , save for later usage (so we can echo to

39 # stderr/out and get the mail formatted properly.

40 exec 3>&1
41 exec 4>&2
42 exec 2>$tmp err
43 exec 1>$tmp msg
44
45 func t i on t e s t b u i l d ()
46 {
47 b=$1
48 p=$2
49 pushd $p
50 g i t checkout −f $b
51 make d i s t c l e a n
52 cp −v . . / p f a i r c o n f i g . c on f i g
53 echo ” Bui ld ing branch $b”
54 echo ” Bui ld ing branch $b”>&2
55 i f [! −f c on f i g] ; then
56 echo ”No con f i g found , copying from /boot” >&2
57 cp /boot/ con f i g −‘uname −r ‘ c on f i g
58 f i
59

158 APPENDIX C. VARIOUS SCRIPTS

60 yes ’ ’ | make o l d c on f i g > /dev/ nu l l
61 echo ” Bui ld ing kerne l , 32 jobs in p a r a l l e l l , us ing d i s t c c ”
62 time make −j 40 a l l CC=” d i s t c c ccache gcc ” > /dev/ nu l l
63
64 # Do the module -magics

65 rm −r f /home/henrikau /tmp modules > /dev/ nu l l
66 time make INSTALL MOD PATH=/home/henrikau /tmp modules modu l e s i n s t a l l
67 popd
68 }
69
70 # read through config and parse each line separately

71 o l d i f s=$IFS
72 IFS=$ ’\n ’
73 tmp sdate=” ‘ date +%F\ %H:%M:%S ‘ ”
74 f o r l i n e in ‘ cat $ c f i l e ‘ ;
75 do
76 i f [−n ” $ l i n e ”] && [[$ l i n e != \#*]]; then

77 echo ” va l i d l i n e ($ l i n e) , t e s t i n g f o r branch and path”
78 branch=‘echo $ l i n e | cut −d ’ ’ −f1 ‘
79 path=‘echo $ l i n e | cut −d ’ ’ −f2 ‘
80 echo ”Got branch $branch and path $path”
81 i f [−d $path] ; then
82 # test to see if branch -name contains build

83 echo ” supp l i ed path i s va l i d ”
84 i f [” ‘ echo $branch | sed −n ’/ˆ bu i ld .∗/p ’ ‘ ”] ; then
85 t e s t b u i l d $branch $path
86 e l s e
87 # This should be avoided by post_update , but add line in

88 # case we forgot some crazy special case

89 echo ”$branch i s not a bui ld−branch . Skipping ”>&2
90 f i
91 e l s e
92 echo ”$path does not e x i s t ” >&2
93 f i
94 f i
95
96 echo ”Removing ’ $ l i n e ’ from $ c f i l e : ”
97 sed − i ” s : $ l i n e : : g” ” $ c f i l e ”
98 done
99 tmp edate=” ‘ date +%F\ %H:%M:%S ‘ ”

100
101 ((s e c s =‘date +%s −d ”$tmp edate ” ‘− ‘ date +%s −d ”$tmp sdate ” ‘))
102
103 IFS=$ o l d i f s
104
105 # Construct the body of the email

106 tmp f i l e =‘mktemp t r i g g e r .XXXXXX‘
107 echo ”” >> $ tmpf i l e
108 echo ”The t r i g g e r s c r i p t . sh has j u s t f i n i s h e d running at ‘ hostname ‘ , ” >> $ tmp f i l e
109 echo ”and t h i s i s the output generated from the system” >> $ tmp f i l e
110 echo ”” >> $ tmpf i l e
111 echo −ne ” Star t :\ t$tmp sdate \n” >> $ tmp f i l e
112 echo −ne ”End :\ t$tmp edate \n” >> $ tmp f i l e
113 echo −ne ”Total :\ t ” >> $ tmp f i l e
114 echo −ne − | awk ’{ p r i n t f ”%d:%d:%d” , ” ’ ” $ s e c s ” ’ ” /(60∗60) , ” ’ ” $ s e c s ” ’ ”%(60∗60)/60 , ” ’ ” $ s e c s ” ’ ”%60} ’ >> $ tmp f i l e
115 echo −ne ” ($ s e c s seconds)\n” >> $ tmp f i l e
116 echo ”” >> $ tmpf i l e
117 echo ”” >> $ tmpf i l e
118
119 cat $tmp msg >> $ tmp f i l e
120 echo ”” >> $ tmpf i l e

C.2. TRIGGER SCRIPT.SH 159

121 cat $tmp err >> $ tmp f i l e
122 # Send result to the owner of the job. Assume proper delivery (possibly

123 # via a .forward)

124 cat $ tmpf i l e | mail −s ”Result o f running the automated bu i l d i ng s c r i p t at ‘ hostname ‘ ” ‘whoami ‘
125
126 # Cleanup

127 rm −f $tmp msg
128 rm −f $tmp err
129 rm −f $ l o c k f i l e
130 rm −f $ tmp f i l e
131
132 # remove empty lines in the config -file and return stderr and stdout

133 # just to be safe.

134 sed − i ’/ˆ $/d ’ $ c f i l e
135 exec 1>&3
136 exec 3>&4

	Title Page
	Problem Description
	Preface
	Abstract
	I Exordium
	Introduction and Motivation
	Motivation
	Problem definition
	Summary of work
	Bringing order to chaos
	Optimizing the build
	It's all about source control
	Required knowledge
	Related work

	Related projects
	LitmusRT
	RT-Linux
	Bill Hueys generic deadline framework

	The rest of this report

	The Linux Kernel
	Background
	Current status in the Linux scheduler
	The ``normal'' scheduling policy
	Real-time class and policies
	Challenges faced with the current scheduler

	Ingo Molnar's RT-preemption patch
	Fully preemptible kernel
	Threaded ISRs
	Spinlocks
	Priority Inheritance

	Kernel API and conventions
	Coding conventions

	Summary

	Scheduling Theory
	Background and terminology
	Single core scheduling algorithms
	Rate Monotonic
	EDF Scheduling

	Multi-Core scheduling algorithms
	Global
	Partitioned

	Rate based scheduling - Pfair
	Calculating release and deadline
	Tie breaking rules
	Reweighing
	Constraints and limitations

	Summary

	II Design and Implementation
	Overall Design of the Scheduler
	A birdseye view
	A pfair task
	New attributes in the task descriptor
	Adding subjobs
	Calculation of subjob values
	Comparison of tasks

	The pfair runqueue
	Added fields to the standard runqueue
	Values in the pfair runqueue
	Storing tasks in the runqueues

	Solving the deadline inversion problem
	Main scheduler interface
	Adding a gate to the kernel
	Building the kernel
	Summary

	Memory management
	Background
	kmalloc and kfree
	The SLAB allocator

	Kernel interface
	Cache create and destroy
	Allocate memory for an object
	Deallocate, return to cache

	SLAB kernel interface
	Small test module
	End result
	Summary

	Advanced data structures
	Linked lists
	Background
	Intended role
	Kernel interface
	Test module
	End result

	Red black trees
	Background
	Kernel interface
	Small test module
	End result

	Summary

	Linking to userspace
	SysFS and kobject
	kobject
	SysFS
	Kernel interface
	Sample module
	Final result

	System calls
	Syscall background
	Required change
	Final result

	Summary

	Time management
	Background and requirements
	The timer infrastructure
	Cascading Timer Wheel (CTW)
	High resolution timers - hrtimers

	The timer API
	hrtimer_init()
	hrtimer_start()
	hrtimer_cancel()
	Remote timers

	Sample module
	Final results
	Summary

	Implementation of the core scheduler
	Core algorithm
	Calculations for the subjobs
	Testing the elements

	The expected interface from the main scheduler
	put_prev_task_pfair()
	pick_next_task_pfair()

	The syscall interface
	__sched_pfair_update()
	__sched_pfair_reweigh()
	__sched_pfair_release()

	The acceptance function for new tasks
	Summary

	III Assembly and Evaluation
	Bringing it all together
	Other practical tasks
	Add kconfig
	Allocating memory for the core

	Adding the pieces together
	Summary

	Summary and Conclusions
	Evaluation of scheduler
	Deadline Inheritance
	Evaluation of project goals
	A more mature approach
	Preliminaries
	Assumptions and notation
	Earliest Failure First
	Implementation optimizations for the Linux kernel
	Future work

	Summary

	References
	Index
	Glossary

	IV Appendix
	Distributed and cached compilation
	Cached compilation - ccache
	Distributed C/C++ compiler - distcc
	Basic setup and usage

	Module code
	Slab allocator
	Linked Lists
	Red black trees
	Sysfs module
	Timer module
	Bouncing timer module

	Various scripts
	kinstall.sh
	trigger_script.sh

