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Abstract

Valve stiction is one of the largest stand-alone reasons for oscillatory behavior
in process industry. It is reported by Siemens Oil and Gas that valve stiction
is a problem that is hard and time consuming to detect at offshore production
plants for oil and gas.

As a result, Siemens Oil and Gas wants to develop an algorithm that
detects stiction. The algorithm is thought to be a feature of the logging
system of Siemens in the future.

To better understand the problem and scope of stiction at a offshore oil
and gas production plant, the effects of stiction is studied on a model of such
a plant. The study shows that oscillations from stiction in the control valves
of a first stage separator easily spread to downstream components such as the
connected gas compressor.

An algorithm that detects stiction from routine operating data is developed
in this thesis. The method in base for the algorithm is chosen from a variety
of methods for stiction detection. To choose a suitable method in base for the
algorithm a brief survey of methods for detecting stiction is given.

The algorithm output is a stiction index that indicate the presence of
stiction in the data analyzed. The algorithm detects stiction in data from
non-integrating processes with constant inputs and can be applied on data
with a varying sample rate. Proper testing on real data from an offshore
production plant remains to be done. The algorithm should also be improved
to handle data containing noise.

Two new ideas of detecting stiction in integrating processes are presented
in the end of the thesis. The new ideas try to regain the hidden ellipses in
the PV-OP plots from data with stiction from integrating processes. The first
idea is to plot the OP data against time shifted PV data, while the second
idea is to plot the OP data against high-pass filtered PV data. Both the ideas
show promising results but need to be further developed and tested before
they can be applied in a future application for stiction detection.
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Chapter 1

Background

1.1 Introduction

Siemens delivers control and logging systems for offshore production plants.
Such plants consist of several thousand valves and controller loops. An inter-
nal operation report from such a plant written by [Torpe and Dessen] have
discovered that that there are many valves with stiction problems that cause
poor and unwanted process behavior.

The operation report is not unique. Despite the fact that control theory
has been an active research area for over 60 years, [Jelali, 2006], and [Des-
borough and Miller, 2002], state that 60% of all industrial controllers have
performance problems.

One of the main causes for the poor control performance reported is oscil-
latory behavior, according to [Choudhury et al., 2005] and references therein.
Oscillations in critical variables at a typical offshore oil and gas production
plant lowers product quality, safety and economic margins and is unwanted.
[Choudhury et al., 2005] also report that 30% of the oscillatory behaviour is
present due to control valve problems.

Control valve problems occur from non-deterministic nonlinear dynamics
inside the control valve. [Choudhury et al., 2005] concludes that ”among the
nonlinearities in control valves, stiction is the most common and one of the
long-standing problems in the process industry.”

In the mentioned operation report, a control valve was reported to have
stiction problems for 3-4 years before the stiction problem was detected. The
only way to confirm the stiction was by visual inspection of the valve stem
during operation. The only way of fixing a worn-out valve, is to replace it
during process service shutdown. A shutdown results in no production and
production loss during startup period. Early detection of stiction in a valve
can make service shutdown more efficient, by replacing both worn-out and
soon to be worn-out valves. This can increase the time period between service
shutdowns, saving time and money.

1



2 CHAPTER 1. BACKGROUND

Siemens initially wanted to develop an algorithm that automatically de-
tected and investigated poor control performance. [Kvam, 2008] presented a
literature survey on Control Performance Monitoring and and suggested the
Harris Index as a simple measure for evaluating control performance. Results
showed that the Harris Index was hard to apply to real data the logging system
of Siemens due to extensively data compression.

Because of this and the reported problems from valve stiction, Siemens
rather wants a simple algorithm that detects stiction. The algorithm must
applicable to all the different control loops in a typical oil and gas production
plant. The algorithm is required to have a low computational burden since
the it should be implementable online.

Siemens also wants to investigate how valve stiction in one component of
a oil and gas production plant affects downstream components under different
operating conditions such as inlet slug flow. Oscillations in one part of a
plant will result in larger control action in control valves close to the source
of oscillation, and the oscillations may easily spread. Larger control action
results in increased wear and tear on the control valve.

To simulate different scenarios, a model of a typical oil and gas production
plant should be used. Development and testing of a stiction detection algo-
rithm is also more easily done on data from a known model. [Kylling, 2008]
have developed a complete model of a production line from an offshore oil and
gas platform. His model is used for simulation in this thesis. If not specified,
the model of [Kylling, 2008] from now on should be read as the production
plant model.

Some necessary background information is now given followed by a scope
and emphasis of this thesis.

1.2 A production plant

A typical offshore production plant for oil and gas is given on figure 1.1. Crude
oil from the well is separated into oil, water and gas. This is done offshore to
simplify further transport. The crude oil can contain slugs of sand and large
gas pockets making its composition unknown and not suitable for transport.

From figure 1.1 it can be seen that separation is done in three separators,
each reducing pressure in the processed crude oil. The output pressure in the
oil from separator S3 is near the atmospheric pressure. After separation, the
gas is compressed for transport which require a high gas pressure. The later
the gas is separated from the crude oil, the more the gas must be compressed,
motivating for the compressor train structure, compressing the gas in several
stages/compressors.
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Figure 1.1: Overview of a production plant for oil and gas, from [Kylling, 2008]

1.3 Slug flow

Slug flow is a known problem at offshore production plants for oil and gas and
can be described as periodic bubbles of gas inside bulks of multiphase liquid
flow, according to [Storkaas et al., 2003]. Slug flow is divided into horizontal
and gravity induced slugs.

Horizontal induced slug flow appears in horizontal pipelines, while gravity
induced slug flow appear in a low point of pipeline, for instance at the bottom
of a riser. Because of gravity, liquid accumulates in such a low point which
blocks any gas transport. From a upstream pressure buildup and release of
gas bubbles from the liquid, periodic oscillations in pipe pressure and mass
are created.

The time period of the slugs are long, approximately 10 minutes and result
in a variation in pipe pressure of pressure 5 − 6 bars.

The oscillations in the pipe flow pressure and flow creates an unwanted
disturbance to the first stage separator in a production plant. It also affects
downstream components.

1.4 Control valve

Control valves are a crucial part of a process control systems. Each loop in a
process control system has a process variable such as temperature, pressure,
level etc. A controller is designed to keep the process variable at a desired
value unaffected of internal or external disturbances. [Fisher, 2005] defines
the control valve as the final control element that implements the controller
strategy into the real process by manipulating flowing fluid.

To get a better understanding of how a control valve works, some necessary
definitions of the notation used in association with the control valve followed
by a description of the structure and the nonlinearities of a common control
valve.
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1.4.1 Notation

A precise notation is important when describing a control valve. In literature,
there are many phrases used together in a vague mix such as, controller output,
valve input, measured variable, controlled variable and manipulated variable.

The notation presented is widely used in industry and will be used through-
out this thesis. The notation is illustrated in a general control structure in
figure 1.2. OP is the controller output and a set point for the valve opening.
MV is the valve output or valve stem position and describes the actual valve
opening. Both MV and OP are always in the range from 0 to 1, where 1
denotes a fully opened valve and 0 denotes a closed valve. The last variable
defined is the controlled variable or process variable PV, which is a measure-
ment of the controlled medium.

PI controller Valve Plant

_

PVr MVOPe

Figure 1.2: General process control structure

1.4.2 Assembly

Figure 1.3 shows the structure of a common pneumatic control valve since
pneumatic valves are widely used in industry. The balance between the elastic
force, air pressure and friction determine the position of the valve stem and
flow rate through the valve. The valve is closed by the elastic force and opened
by air pressure.

1.4.3 Friction

The force that is hard to determine and control in a valve is friction. Friction
opposes any stem movement as defined by [Fisher, 2005] as: A force that tends
to oppose the relative motion between tho surfaces that are in contact with each
other. Two types of friction exist, static and dynamic friction. Static friction
is the force that must be exceeded before any motion between two surfaces
can occur. Dynamic friction is the friction force present when there is relative
motion, acting in the opposite direction of motion.

From friction forces in mechanical valve assembly, several valve nonlinear-
ities occur.
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Figure 1.3: Structure of pneumatic control valve , from [Kano et al., 2004]

1.4.4 Nonlinearities

Friction forces create different nonlinearities in valve stem dynamics such as
backlash, hysteresis, dead band, dead zone and stiction. As a result, OP and
MV are not always the same. Different valves have different characteristics
depending on size, valve type, operational conditions etc. A MV-OP plot is
used to describe valve characteristics as in figure 1.4, and a MV-OP plot is
mostly part of the valve data sheet.

[Choudhury et al., 2005] and references therein defines four valve nonlin-
earities as (with an illustration, see figure 1.4):

• Backlash: ”A relative movement between interacting mechanical parts,
resulting from looseness, when the motion is reversed.”

• Hysteresis: ”Property evidenced by the dependence of the value of the
output, for a given excursion of the input, upon the history of prior
excursions and the direction of the current traverse”, see figure 1.4 (a)
and (c).

• Dead band: ”The range through which an input signal may be varied,
upon reversal of direction, without initiating an observable change in the
output signal”, see figure 1.4 (b).

• Dead zone: ”A predetermined range of input through which the output
remains unchanged, irrespective of the direction of change of the input
signal”, see figure 1.4 (d).
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Figure 1.4: Valve nonlinearities, from [Choudhury et al., 2005]

1.5 Stiction

Stiction is defined by [Choudhury et al., 2005] as ”A property of an element
such that its smooth movement in response to a varying input is preceded
by a sudden abrupt jump called the slip-jump” and is as described in the
introduction a major problem in process industry.

Stiction is the only nonlinearity that introduces limit cycles1. Pure dead
band and backlash can only introduce limit cycles in a integrating loop under
feedback control.

The size of the stiction is the force necessary to move the valve stem out of
a stuck position. In industry, stiction is measured in percent of the controller
output necessary to move the valve stem.

When a valve stem is stuck in a closed loop controlled by a PI controller,
the lack of change in the controlled variable result in an increased output
from the controller due to the integral action in the controller. The controller
output increases until the valve stem starts to move. The force necessary to
keep the valve stem in movement is less than the force needed to move the
stem. As a result the controlled variable starts to oscillate.

Because the valve stem sticks and slips the MV output has the form of a
square pulse when stiction is present. In non-integrating processes this pulse
is smoothened out by process dynamics, and the oscillations in the PV data

1A limit cycle is an isolated periodic orbit in the phase portrait and indicates that the
system oscillates, [Khalil, 2002]
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takes the form of an exponential rice and decay. For integrating processes, the
squared pulse is integrated by the process and a triangular shaped oscillation
occurs in the PV data.

1.6 Scope of thesis

The rest of the thesis is organized as follows:

• Chapter 2 gives a survey of published methods that automatically de-
tects stiction from routine operating data.

• Chapter 3 presents the production plant model used to investigate the
effects of stiction in a offshore production plant for oil and gas.

• Chapter 4 contains a description of the valve model with stiction added
to the production plant model to create stiction effects.

• In Chapter 5, the results from simulation of the production plant model
is presented.

• In Chapter 6, an algorithm that detects stiction is presented and tested.

• Chapter 7 presents two new ideas for detection of stiction.





Chapter 2

Review of methods for
stiction detection

This chapter gives a review of different methods that detect stiction in a
control valve. An overview of research in this area is necessary to suggest and
assess methods that can be used in an algorithm that detects stiction. Initially,
the chapter sets stiction detection in a larger context, before some methods
are presented in three different parts depending on what type of analysis the
methods are based upon. The chapter ends with an summarizing comparison
of the presented methods.

2.1 History

Automatic detection of stiction is a fairly new research area that branches from
Control Performance Monitoring (CPM). CPM was initiated by [Harris, 1989]
in 1989 and during the 1990s many new methods for CPM was developed.
Most of the CPM methods at that time did not diagnose the reason for poor
controller performance, they only assessed whether performance was good or
poor.

In the late 1990s, [Thornhill and Hägglund, 1997] presented some opera-
tional signatures that indicate the cause of an oscillation. Later, many meth-
ods for detecting valve stiction have been proposed, and some of these methods
have been applied in the process industry. The methods vary in complexity
and computational burden, and they have all some limiting assumptions for
a general application.

Until recently, articles have been the only source of literature in the area
of detecting stiction. The little established literature found are two books
in the Springer Book Series Advances in Industrial Control : Process Con-
trol Performance Assessment, [Ordys et al., 2007], and Diagnosis of Process
Nonlinearities and Valve Stiction, [Choudhury et al., 2008]. Because several
authors have contributed with chapters in the second book, the chapters in

9
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Table 2.1: Outline of methods for stiction detection

# Principle Reference
i. Cross correlation [Horch, 1999]
ii. Derivative of PV data [Horch, 2000]
iii. Half period integral ratio [Singhal et al, 2005]
iv. Shapes in PV data using QSAa [Rengasw. et al, 2001]
v. Parallelogram in MV-OP plot [Kano et al, 2004]
vi. Shapes in PV data using finite derivatives [Yamashita, 2006]
vii. Fit PV data to stiction shapes [Rossi and Scali, 2004]
viii. Fit output if first integrator to triangular [He et al, 2007]
ix. Compute NLI and NGIb, quantify using PV-OP [Choud. et al, 2005]
x. Predictability of a time trend and its surrogate [Thornhill, 2005]
xi. Multi-model estimation and detection of change [Stenman et al, 2003]
xii. Change (or lack of change) in OP and PV [Yamashita, 2006]

aQualitative Shape Analysis
bNon-Linear and Non-Gaussian Index

this book are referred in specific to tribute the correct authors.
[Horch, 2007] has tested a variety of methods on different data sets and

assesses each method against each other. Horch presents the different methods
and their performance in a short and well-arranged way by defining three dif-
ferent classes of stiction detection methods: time shape analysis (TSA), non-
linearity analysis (NLA) and fault detection & identification analysis (FDI).

Before the methods are described, an outline of methods with key refer-
ences and principles are presented, see table 2.1. The methods are numbered
from i-xii, where methods numbered i-vii belongs to the TSA class, methods
numbered viii-ix belongs to the NLA class and methods numbered x-xii is
from the FDI class.

2.2 Time domain shape analysis

Time domain shape analysis is a class of visual based methods. A known
stiction pattern is recognized on either raw or processed valve data such as
OP, MV or PV data. Early methods were only graphical, an operator needed
to recognize the patterns visually, while the newest methods make use of
mathematical fitting to known shapes that characterize the valve stiction.

i. One of the first attempts to automatically detect stiction was made by
[Horch, 1999]. He uses the cross correlation (CC) between OP and PV data to
indicate stiction. He observes that stiction introduces a phase lag of 90◦ (odd
CC-function), while an aggressive controller or external disturbance introduces
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a 180◦ phase lag (even CC-function). If the CC-function is between an odd
an even form, no conclusions can be made.

The method applies to non integrating processes controlled by a PI con-
troller. To ensure the quality of the indications made, an oscillation must be
detected before the CC-function is calculated.

ii. [Horch, 2000] later developed another principle that is applicable on in-
tegrating processes. They compute the probability density function (PDF) of
the second derivative of the PV signals to detect stiction.

Integrating processes with stiction produce a PV signal with a triangular
pulse. The second derivative of a triangular pulse is single peaks in an ideal
case. For self-regulating processes1 the PDF of the first derivative is used. The
following description applies to both integrating and non-integrating processes
and the derivative should be read as both first and second derivative dependent
on what process that is analyzed.

In a non-ideal case, noise will be present and the PV signal must be fil-
tered before it is differentiated. The filter cut-off frequency is three times the
oscillation frequency.

If the PDF of the derivative can be fitted to a Gassian distribution (peak
around zero frequency), stiction is present. If the PDF fits a ”camel”-formed
distribution (two peaks), it is likely that there is a sinusoidal oscillation, since
a pure sinus signal have two peaks in its signal spectrum. See figure 2.1 for an
example of second derivatives with histograms for a stiction and non-stiction
case.

The method requires only PV-data, but needs to know whether the process
is an integrating process or not.

Figure 2.1: Second derivatives of PV with histograms for a stiction (top figure) and
non-stiction case (bottom figure), from [Horch, 2000]

1A process with its poles in the right half plane. Integrating processes has at least one
pole at the imaginary axis and are thus not a self-regulating process.
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iii. [Singhal and Salsbury, 2005] propose a simple method for detection of
valve stiction. Their main principle is to recognize two shapes in the control
error signal, an exponential rice and decay and a sinusoidal wave. If valve
stiction is present, the control error signal is similar to a exponential rise and
decay due to a pulse in the OP data. The pulse in the OP data is a known
phenomena when stiction is present in self-regulating plants. A sinusoidal
wave arises from aggressive control, for instance an under damped mass-spring
system.

To distinguish between the two shapes, an index is computed from the half
period integrals of a single oscillation. The index is defined as:

R =
A1

A2
(2.1)

where A1 is the integral area of the half period before the peak and A2 is the
integral area of the half period after the peak. See figure 2.2 for an illustration
of the different control error signal shapes and the different integrals.

Based on the value of R for the two shapes described, [Singhal and Sals-
bury, 2005] define a decision rule:

R > 1 ⇒ valve stiction
R ≈ 1 ⇒ aggressive control

To avoid that wrong conclusions are made, [Singhal and Salsbury, 2005]
assume that the controller output is not saturated2, the oscillations are not
from an external disturbance and the process analyzed is not an integrating
process. The PV data of a purely integrating processes often take a triangular
shape where the two integrals A1 and A2 are equal in the presence of stiction.
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Figure 2.2: Control error signal shapes for stiction and aggressive control, from
[Singhal and Salsbury, 2005]

2Saturation may introduce oscillations in a control loop
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iv. [Rengaswamy et al., 2001] use a qualitative shape analysis (QSA) to de-
tect shapes in process time data that characterize stiction. In short, the QSA
breaks down and represent the time data from a set of pre-defined primitive
shapes. By defining stiction as a specific sequence of some primitives (for
instance triangular or square shapes), stiction is present if such a sequence is
identified.

The fundamental part of the QSA is to identify the primitives. The iden-
tification is done using neural networks. [Rengaswamy et al., 2001] defines
neural networks as ”computing systems composed of highly interconnected lay-
ers of simple neuron-like processing elements, which process information by
their dynamic response to external inputs.”

In order to work satisfactory, the neural network must be trained to de-
tect at least an increasing and decreasing trend. To isolate such a trend, a
time window containing the trend must be specified which limits the adap-
tivity and generality of the method. The complex identification increases the
computation time.

v. [Kano et al., 2004] exploit the form of the MV-OP plot to detect stiction.
With stiction, the MV-OP plot is a parallelogram shown in figure 4.1. The
parallelogram changes size from a change in stri-band and slip-jump vectors.
Stiction is detected by detecting the parallelogram and its size in a recursive
function:

F (t) = max{min{F (t − 1) + Δu(t), Fmax}, 0} (2.2)

where u(t) is the controller output. To obtain Fmax and an initial value
F (0), an optimization problem must be solved which complicates the method.
The results from the method are only reliable when there is a strong correlation
between u − F and y, which limits the usage of the method. Despite these
limitations, [Kano et al., 2004] were one of the first to try to quantify the
degree of stiction.

vi. The method of [Yamashita, 2006] is similar to the method of [Ren-
gaswamy et al., 2001]. [Yamashita, 2006] defines three qualitative primitives:
increasing (I), steady (S) and decreasing (D). Combining the primitives, nine
fragments are defined in an MV-OP-plane to represent a type of movement.
Four of these fragments are typical for valve stiction, see figure 2.3.

The identification of the fragments is based on the time derivatives of the
OP and MV data. If noise is present, the identification is done by use of the
finite differences compared to threshold values.

By counting the time period of IS and DS in these fragments, the degree
of stiction can be estimated in an index:

ρ2 =
τISII + τISSI + τDSDD + τDSSD+

τtotal − τSS
(2.3)
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Figure 2.3: Combination of primitives typical for stiction, from [Yamashita, 2006]

where the subscripts denote the number of specific fragment samples in a
data set. A index greater than 0.25 indicates valve stiction in the observed
loop. A drawback for this method is that MV data must be available3. As
for the method of [Rengaswamy et al., 2001], identification of the fragments
is complex for data containing noise.

vii. [Rossi and Scali, 2004] use a first-order-plus-time-delay (FOPTD) pro-
cess model with stiction to produce different oscillation shapes in the MV, OP
and PV data that is compared to the real case data.

The different shapes are made by variation of three parameters: the con-
troller gain Kc, the process time constant τ and the process time delay θ. From
an analyze of the different oscillation shapes, three approximation curves are
defined: a sinus wave (S), relay curve (R) and a triangular curve (T).

By variation of the parameters for the tree approximation curves, a fit to
the real case data is made. For each fit, the mean square errors (ES ,ER and
ET ) between the fitted curve and the real case data are calculated. A stiction
index is defined as

SI =
ĒS − ĒRT

ĒS + ĒRT
(2.4)

where ERT = min{ER, ET } and bars mean average value on all half cycles
present in the real data. SI ∈ (−1, 1) where negative values indicate a better
sinus approximation and positive values indicate a relay or a triangular ap-
proximation and stiction may be present. When the index is close to zero, the
approximations are equal and the presence of stiction cannot be concluded.

When noise is present, the uncertainty of the index increases. There are
no limitations on process type for this method, and only PV data are needed
to apply the method.

viii. A very similar method to the method presented above is the method of
[He et al., 2007]. Their principle is to fit the output of the first integrator after
the valve in the control loop to either a triangular or sinusoidal wave. With

3MV data are usually not logged in industry according to [Choudhury et al., 2008].
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valve stiction the valve output is a square pulse and integration of a square
pulse is a triangular pulse.

For self-regulating loops, the data to fit is the OP data (since the controller
has integral action), for an integrating loop the PV signal is the data to be
fitted. After fitting the correct data to both triangular and sinusoidal wave, a
stiction index is calculated in nearly the same way as the index of [Rossi and
Scali, 2004].

In contrast to [Rossi and Scali, 2004], [He et al., 2007] demands some
knowledge about the process in order to choose the correct data to be fitted.

2.3 Nonlinearity analysis

Nonlinearity analysis is a class of purely mathematical based methods that
are designed to detect a nonlinearity in the valve. The methods result in a
nonlinearity index that quantifies the size of the nonlinearity.

ix. One of the more complete methods for both detection and quantifica-
tion of stiction was developed by [Choudhury et al., 2005]. They initially
computed a nonlinearity and non-Gaussian index (NLI and NGI) using signal
bicoherence, a normalization of the bispectrum4 of a signal. It is assumed that
the process is locally linear and that no nonlinear disturbances enter the loop
assessed. Stiction is present if both the NGI and NLI measures are positive.

In the second step, the PV-OP plot is used to diagnose the stiction after
a nonlinearity is detected. It is important to note that the data samples must
be filtered prior to the diagnosis. The filter must be constructed such that
the nonlinearity is not filtered away. Choudhury et al. [2005] suggest three
different diagnosis strategies depending on the data available and its quality:

• If the loop contains a smart valve, MV data are present and can be
plotted against PV data. The width of the cycling patterns in such a
plot provides the amount of stiction. Smart valves are not yet to be used
in most of the process industry.

• If the MV data are not available, an ellipse is fitted to the PV-OP
plot. The maximum width is calculated from the fitted ellipse in the
OP direction. The maximum width is the size of the stiction.

• If an ellipse cannot be fitted, a clustering technique is used to locate the
mean of the PV. The mean of the ellipse is a narrow strip because most
of the data points in an OP-PV plot are in the top and bottom of the
ellipse. The width in the OP direction between the two narrowing MV
strips gives the size of the stiction.

4The bispectrum is defined in [Choudhury et al., 2008] as ”the frequency domain repre-
sentation of the third order cumulant or moment”.
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[Choudhury et al., 2005] used the PV-OP plots only to quantify the size of
the stiction after a nonlinearity is detected. Some of the time domain shape
analysis in section 2.2 use PV-OP plots to detect stiction and may detect false
stiction when noise and external disturbances are present. Process dynamics
can also hide the shapes in the PV-OP plots. The detection of a nonlinearity
removes these false detections. The method of [Choudhury et al., 2005] is thus
more general and accurate, but also more complex and heavy to compute than
the time domain based methods.

x. [Thornhill, 2005] has developed a method for finding the source of a non-
linearity in a process with plant-wide disturbance. She and her references
observe that the bispectrum in the method of [Choudhury et al., 2005] is zero
for symmetrical waveforms such as triangular and square. This limits the
performance of their method when such waveforms are present.

To counteract this drawback, [Thornhill, 2005] compared the predictability
of a time trend against its surrogate5. Nonlinearities are more predictable than
its surrogate time series. From a computation of the mean square prediction
errors for the time and surrogate data (Γtest and Γsurr), a nonlinearity index
is defined as

NThorn =
Γ̄surr − Γtest

3σΓsurr

(2.5)

where Γ̄surr is the mean of the surrogate prediction errors and σΓsurr is
its standard deviation. Nonlinearity is present if NThorn > 1 and the highest
index in a plant with a plant-wide nonlinearity is probably the source of the
nonlinearity. The same principles for quantifying stiction as [Choudhury et al.,
2005] thus can then be applied to gain more info about the nonlinearity.

The method uses only PV data, but the data require some preprocessing
which increases the computational load.

2.4 Fault detection & identification analysis

The last class of methods is Fault detection & identification analysis. Fault
detection in this context means to detect a change (or lack of change) in valve
output (MV or PV) when OP is changed. The identification methods identifies
a stiction parameter if stiction is present.

xi. [Stenman et al., 2003] purpose a method for stiction detection based on
a multi-model estimation and a detection of a change. Their origin is a simple
stiction model

5Surrogate data are data constructed from the same power spectrum as its time trend,
but with a random phase added.
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x(t) =

{
x(t − 1), if |u(t) − x(t − 1)| ≤ d

u(t), otherwise
(2.6)

where x is valve output, u is controller output and d is the stiction friction
force. From (2.6), a equation for stiction detection is derived

x(t) = (1 − δ(t))x(t − 1) + δ(t)u(t) (2.7)

where δ(t) is a binary mode parameter which is one if a jump in x(t)
occurs and zero otherwise. Assuming linear pipe dynamics, a process model
with stiction is shown in figure 2.4

Figure 2.4: Data driven process model with stiction, from [Stenman et al., 2003]

By using segmentation from the literature of change detection, an estimate
of the mode parameter δN = (δ1, ..., δN ) sequence is calculated. If jumps occur
in the estimated sequence (δi), stiction is present. The amount of stiction is
dependent of the number of jumps estimated. The method does not require
any process information or that any oscillations are present and uses only PV
data.

xii. Another method of [Kano et al., 2004] exploits the change (or lack of
change) in the MV or PV data to detect stiction. If a valve is stuck, the MV
or OP value is naturally constant. The difference in the valve output,

Δy(t) = y(t) − y(t − 1) (2.8)

is compared to a threshold value ε. If |Δy| < ε, the difference between the
maximum and minimum controller output (ũ) and the difference between the
maximum and minimum valve position (ỹ) is calculated. Further, thresholds
for these differences are defined: εu for ũ and εy for ỹ.

When the controller output is above its threshold and the position differ-
ence is below its threshold (ũ ≥ εu, ỹ ≤ εy), stiction is concluded.

An index is suggested to be the ratio (ρ) of time samples with stiction to
all the time samples. The index lies in the interval ρ ∈ (0, 1), where values
close to one indicates a high possibility for stiction and no stiction is present
when the index is zero. The stiction can be quantified by taking the mean of
ũ when stiction occurs.
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2.5 Comparison of methods

A comparison of the methods described in this chapter is presented in table
2.2. The table lists the key assumptions of the methods together with some
pros and cons. The table also gives an estimate of the computational load of
the methods. The table is inspired from the table of [Horch, 2007].

All the methods rely on different assumptions. The assumptions mainly
consider the data available and the structure of the process analyzed. [Choud-
hury et al., 2008] states that only 5% of the valves in industry have MV data
available. As a result, methods that use MV data have a relative limited usage
in the industry.

The most important process knowledge needed is to know whether the
process is an integrating process or not. Because of this, there are no methods
that can be applied to all kinds of processes, and some process knowledge
must exist to choose a proper method.

A majority of the methods require that oscillations are detected before they
can be applied. Methods that detect oscillations are a solved problem, and
some good methods are given in [Hägglund, 1995], [Thornhill and Hägglund,
1997] and [Salsbury and Singhal, 2005]. However, to apply such a method prior
to apply a method for stiction detection increases the overall computational
load.

In the TSA class, almost all methods have a low computational load. No
heavy transformations are needed, the raw time measurements can be used
directly. Depending of principle, the methods in this class are sensitive to
noise. A derivation of a noisy signal results in an even more nosy signal, for
instance. Filtering may help, but can destroy the nonlinear shapes of the
signal characteristic for stiction.

The methods in the class of NLI detect a nonlinearity before the stiction
is quantified. To detect a nonlinearity, the time domain data must be Fourier
transformed, increasing the computation load. An advantage of the methods
in this class is that they are purely mathematical and can detect a nonlinearity
not visible for the human eye.

The methods from the last class detect a change or lack of change in the
MV and OP data. This principle sounds simple and should require a low
computational load. However, multi-model identification require a high com-
putational load, see the method of [Stenman et al., 2003]. To set a threshold
for each loop analyzed complicates the use of the other method in this class,
the method of [Kano et al., 2004].
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Table 2.2: Comparison of methods for stiction detection

Load Assumptions Pros (+)/ cons (−)

i.

Low � OP and PV available + Simple, intuitive
� Non-int. process with PI − Not for all loop types
� Oscillations detected − Strong assumptions
� No compression

ii.
Low � SP and PV available + Simple

� Int. or non-int. process? + Signal shape not important
− Rely on proper filtering

iii.
Low � PV and SP available + Intuitive

� Non-int. process + Handles varying sample time
� Controller not saturated − Sensitive to noise

iv.
High � OP and PV available + Flexible

� Some process knowledge − Complex
� An isolated time trend − Sensitive to noise

v.
Low � OP and MV available + Quantifies stiction

� Correlation − MV data required
� Opt. problem solved initially − Sensitive to noise

vi.
Medium � OP and MV available + Intuitive

+ Quantifies stiction
− Complex when noise is present

vii.
Medium � PV available + Flexible

� Clear shape forms + Reliable
− Sensitive to noise

viii.
Medium � SP and OP or PV available + Flexible

� Int. or non-int process? + Handles some noise
� Oscillations detected − Complex fitting

ix.
High � OP and PV available + Quantifies stiction, reliable

� Locally linear process + Fails for tri. or square signals
� No ext. nonl. disturbances − Complex computation

x.
High � PV available + Flexible

� Oscillations detected − Not stiction specific
- Heavy computation

xi.
High � PV available + Applies to non-oscillation data

� Multi-mode identification − Heavy computation

xii.
Medium � MV or PV available + Simple

� Low process delay − Quantifies stiction
− Threshold set for each loop





Chapter 3

Production plant model

The production plant model described in this chapter is a model made by
[Kylling, 2008]. The model is a simplified version of the oil and gas production
plant described in section 1.2. A summary of the most important aspects of
the plant model derivation is given here. For a more detailed description,
the reader is referred to Kyllings project report. An overview of the model
is presented before each component is studied. The control structure of the
model is given in the end of the chapter.

3.1 Process overview

The model of [Kylling, 2008] which is illustrated in figure 3.1 consists of two
separators (S1 and S2) each connected to a scrubber and gas cooler, a gas
turbine (M2) and two gas compressors (C2 and C3). The model input is
crude oil from well and gas from compressor C4, the model output is oil to
separator S3 and gas to compressor C1.

[Kylling, 2008] does these model simplifications to lower simulation time
and to reduce the model complexity. Troubleshooting and implementation is
thus easier. A model of each component in the production plant model is now
presented followed by a description of the control structure of the model.

3.2 Separator

3.2.1 Function

The separator separates crude oil from well into gas and oil. In a real case, sand
and water are also part of the crude oil, blended in a complex mix. [Kylling,
2008] models a two-phase separator that separates gas and oil, assuming that
water is mixed and part of the the oil fraction. He further assumes that the
gas contains of only methane (CH4), and the oil only contains the component

21
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Figure 3.1: Overview of production plant model, from [Kylling, 2008]

hexane (C6H14). The final assumption is that the oil remain in a liquid phase,
the oil can not vaporise.

The crude oil is then a blend of three components, methane in gas form
(metG), methane in liquid form (metL) and hexane in liquid form (oilL). From
now on, oil should be read as hexane.

3.2.2 Model

For each component, a mole balance is derived using a mole conservation law

ṄoilL = ZoilIFin − ZoilOFoutL (3.1)

ṄmetL = ZmetIFin − ZmetLFoutL − Fsep (3.2)

ṄmetG = Fsep − FoutG (3.3)

where NoilL is the number of hexane moles, NmetL is the number of
methane moles in liquid phase, NmetG is the number of methane moles in gas
phase. ZoilI = 1 − ZmetI is the molar oil fraction in the inlet molecular flow
Fin, ZmetI is the molar methane fraction in the same flow. ZoilO = 1−ZmetL

is the molar oil fraction in the outlet liquid flow FoutL. ZmetL = NmetL
NoilL+NmetL

is the molar methane fraction in liquid form inside the separator.
Fsep is the boiling flow rate of methane in liquid phase that vapors to

methane in gas phase, and defined as

Fsep = C4(pev − psep) = C4(pmetV ZmetL − psep) (3.4)
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where pev is equilibrium1 pressure, estimated using Rault’s law. psep is
the separator pressure, derived from the ideal gas law2. PmetV is the methane
vapour pressure and ZmetL is still the molar lipquid methane fraction in the
separator. C4 is a tuning parameter, deciding how fast separator process
converges to equilibrium.

In order to do level control, an expression for the liquid volume inside the
separator Voil is needed. The amount of moles in liquid form is is combined
using basic physics to derive liquid volume

VoilL =
WoilLNoilL

ρoilL
+

WmetNmetL

ρmetL
(3.5)

A constant known separator area Asep is assumed for all levels and the
level is easily computed from

hoil =
Voil

Asep
(3.6)

3.3 Scrubber and gas cooler model

Before the separated gas is compressed, it is cooled down. A gas with a low
temperature has a higher molecule density than a gas with a high temperature,
which makes the compressor more efficient. When a gas is cooled, droplets
easily arise. To remove these droplets and other unwanted liquid from the
separator gas flow, a scrubber is placed downstream to the gas cooler.

[Kylling, 2008] assumes that both the gas cooler and scrubber are ideal
elements, behaving as described above without introducing extra dynamics
in the production plant model. Since gas temperature is lowered, an extra
pressure drop between the separator and compressor is added.

3.4 Compressor

3.4.1 Function

[Egeland and Gravdahl, 2003] described the function of a compressor, which is
to compress the gas by increasing its pressure. This is done by an acceleration
of the fluid followed by a deceleration of the same fluid. The acceleration is
done by an impeller driven from a rotating shaft. A diffuser decelerates the
fluid.

The acceleration increases the fluid kinetic energy which is converted into
increased potential energy by a pressure rise in the fluid. These principles

1Equilibrium occurs when methane dissolved in the liquid no longer vapors to methane
gas

2(PsepVmetG = psep(Vsep − VoilL = NmetGRTsep)
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can be explained from Bernoulli’s equation for frictionless incompressible flow
along a streamline:

p1

ρ
+

v2
1

2
+ gz1 =

p2

ρ
+

v2
2

2
+ gz2 (3.7)

where p is pressure, ρ is the fluid density, v is the fluid velocity and gz is
the potential energy. Left and right hand side is the total fluid energy before
and after deceleration. Since the fluid does not have any horizontal movement
(z1 = z2) before and after declaration, the decrease in kinetic energy (C2

1
2 )

results in a increase in fluid pressure.
The compressor operation is limited by both high and low mass flow,

according to [Egeland and Gravdahl, 2003]. At high mass flow, choking occurs
when reaching the sonic speed in a compressor component. At low mass flow
surge occurs when a drop in mass flow results in a decreased pressure, which
again reduces the mass flow through the compressor.

Surge is characterized by large oscillations in the mass flow of the com-
pressor, and the mass flow may even be reversed. Surge can in worst case
destroy the compressor and components connected up- or downstream of the
compressor and is thus unwanted. To prevent surge, a recycle vale can be
installed around the compressor, ensuring a mass flow above the surge limit.

All compressors have their own compressor characteristics, describing the
safe operation working points for different mass flows, fluid pressures and shaft
speeds.

3.4.2 Model

The compressor type used in production plants for oil and gas is mainly a
centrifugal compressor. Kyllings compressor model is a modified version of
a centrifugal compressor model developed by [Egeland and Gravdahl, 2003].
The main model equations will be presented in this section. The reader is
referred to chapter 13 in [Egeland and Gravdahl, 2003] for details about the
model derivation.

The compressor model consists of a centrifugal compressor with a recycle
valve to avoid surge, see figure 3.2. Using control volume considerations from
fluid dynamics, two fixed plenums are defined: Inlet (Vin) and outlet (Vout)
plenum.

To describe the dynamics of the compressor, mass and momentum balances
are applied. The mass balance describes the pressure in the two plenum and
the mass flow through the compressor. The mass balance describes the forces
acting on the compressor shaft.
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Figure 3.2: Compressor in- and outlet conditions, from [Kylling, 2008]

Assuming that the process is isentropic3 and that methane is an ideal gas4

the mass balance for the inlet plenum becomes

Vinρ̇in =
Vin

c2
01

ṗin = min + mrv − mc (3.8)

where ρin is inlet density, pin is inlet pressure, min is inlet mass flow, mrv

is mass flow through the recycle valve, mc is the compressor mass flow , c01

is the sonic speed of gas, Tc is compressor temperature and γ is specific gas
weight.

Similarly, the mass balance for the outlet plenum pressure is

Voutρ̇out =
Vout

c2
01

ṗout = min + mrv − mc (3.9)

where ρout is outlet density, pout is outlet pressure, mout is outlet mass
flow. To describe the mass flow through the compressor, the in- and outlet
pressures are combined in a mass balance for the compressor

Lcṁc = Ac(Ψc(nc, mc)(pin − pout)) (3.10)

where Lc is the length of the compressor duct, Ai is the area of the same
duct. Ψ(nc, mc) is the compressor characteristic extracted from compressor
data sheet and polynomial approximations, giving a relation between com-
pressor shaft speed nc and compressor mass flow mc.

The last model equation describes the different forces acting on the com-
pressor shaft running the compressors. In the model of [Kylling, 2008] one gas
turbine drives two compressors through one shaft. A torque balance for the
shaft that drives the two compressors then becomes

3Egeland and Gravdahl, [Egeland and Gravdahl, 2003] defines isentropic processes as ”
processes where there is no entropy production”, meaning that there is no heat conduction
and no internal viscous work.

4Ideal gas is a gas where the molecules are non-interacting, which is an common assump-
tion at normal temperatures and pressures
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Itotω̇ = τd − τc1(Nc1, mc1) − τc2(Nc2, mc2) (3.11)

where Itot is the total inertia of all rotating equipment acting on the shaft.
[Kylling, 2008] suggest an estimate of this size based on compressor data
and physical considerations. τd is the drive torque from the gas turbine.
τc1(Nc1, mc1) and τc2(Nc2, mc2) is compressor torque for each compressor, ex-
tracted from compressor data and polynomial approximation. See [Kylling,
2008] for details.

3.5 Control structure

After all components in the production production plant model have been
described, a brief overview of the control structure in the model is now given.
The main controllers in the production production plant model are:

Table 3.1: Controllers of the production production plant model

Controller Controller type Symbolic name
Compressor anti surge PI with nonlinear gain ASCC21
Gas turbine speed PI SC001
Separator level PI with anti-windup LCS11
Separator pressure PI with anti-windup PCS11

The controller symbolic names are extracted from figure 3.1. The two
first letters denote compressor type and the next two letters denote process
component. The last letter is the controller number. For instance, PCS12 is
pressure controller number two in separator one.

3.5.1 Anti-surge controller

The main purpose of the anti-surge controller is to keep the compressor from
going into surge. This is achieved by using a recycle valve around the compres-
sor. When pressure or mass flow drops, the recycle valve opens and compressed
gas are sent back into the compressor to maintain a minimum mass flow.

The anti-surge controller used in Kyllings production plant model is a
simplified version of a real anti-surge controller used in industry. Some safety
functions are removed, but the core control structure is kept. All controller
parameters are from a real anti-surge controller making the model very real-
istic.

The set point for the anti-surge controller is computed from measurements
of compressor mass flow and pressure. A non-linear gain is added to the
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increase the controller gain when approaching the surge-line5. A damping like
functionality is also added to the controller gain to increase controller action
if the mass flow or pressure gradients reaches a given limit.

3.5.2 Gas turbine speed controller

The two compressors C2 and C3 are driven by a common shaft. The shaft is
driven by a gas turbine, where the shaft speed is controlled by a cascaded PI
controller. The main objective of the speed controller is of course to main-
tain the shaft speed regardless of the different loads on the two compressors
connected to the shaft.

Another important issue is to minimize the pressure loss from the separa-
tors to the compressors. Any pressure drop in the separators must be retrieved
in the compressors, specially in the low pressure separator S2. Therefore, the
valve at gas outflow from S2 is desired to be almost open.

These two objectives justify the need for two controllers in cascade where
the first controller calculates the shaft speed set point based on measured and
desired valve opening. The second controller puts out torque to the gas turbine
from deviation in measured and desired shaft speed. The cascade controller
is illustrated in figure 3.3.

PI valve PI speed Gas turbine Plant

__

u_cu_ref �_ref ��

Figure 3.3: Structure of gas turbine speed controller

3.5.3 Separator level controller

In addition to separate inlet well flow into oil and methane, the separators
also act as buffer tanks to ensure a more steady outlet product stream from
the process plant. As a result, the separator level controllers are not tightly
tuned. [Kylling, 2008] uses a volume controller in his production plant model,
where the set point is half of the separator volume.

5The surge-line is a line in the compressor characteristics that defines the limit for safe
operation of the compressor. If the surge.line is crossed it is very likely that the compressor
will go into surge.
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3.5.4 Separator pressure controller

Pressure control is necessary to keep the pressure in the separators within
safe values. High pressure peaks can destroy the separator process, mixing
already separated methane into the oil. Some pressure must be obtained in
the separators, to save energy in the compressors. If, for instance the crude
oil looses all its pressure in separator S1, compressor C3 cannot compress the
gas satisfactory.

In addition to standard pressure control, [Kylling, 2008] models a safety
pressure controller for the separators. The controller ensures that pressure
peaks from inlet flow do not reach downstream process components. Because
the peaks must be counteracted immediately, it is assumed that the safety
pressure controller output is unlimited and without any valve dynamics. The
amount of gas that exceeds the safety pressure limit is led to a flare that burns
the gas.



Chapter 4

Valve model with stiction

This chapter presents a valve model with stiction. Prior to the presentation
of the valve model, a more detailed description of stiction is given.

4.1 Stiction characteristics

To gain a better understanding of stiction, a more visual description is now
given. The discription is based on the MV-OP plot in figure 4.1.

When a valve is at rest (A in figure 4.1), the controller output must be
increased to overcome the dead band and stiction force. After overcoming
the stiction force, the stem slips (C-D). If the controller require more stem
movement, the stem moves until the valve sticks again, (E). When in move-
ment, dynamic friction is present, which can be lower than the static friction,
see figure 4.2. When the controller output closes the valve, the valve behaves
equal in the opposite direction (E-F-G-A).
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Figure 4.1: MV-OP plot characteristic for stiction, from [Choudhury et al., 2005]
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It is important to notice that dead band only occurs when the force moving
the stem changes direction. If the valve sticks for instance from D to E in figure
4.1, the controller will try to move the stem longer in the same position, and
a stepped curve characteristic will arise.

4.2 Model

4.2.1 Valve model

A valve is simply a narrowing of a pipe, limiting the pipe flow. The size of the
narrowing is depending of the valve opening. Assuming that the flow through
the valve is frictionless and incompressible and with z1 = z2, the mass flow
mv = Av2 through a pipe is obtained by a reconstruction of the Bernoulli
equation (3.7)

mv =

{
ucC̄v

√|p2 − p1|, if p2 ≥ p1

−ucC̄v

√|p2 − p1|, if p2 < p1

(4.1)

where uc ∈ (0, 1) is the valve opening, C̄v = A
√

2
ρ is the valve sizing

constant and p1 and p2 is the pressure up- and downstream to the valve. The
inlet flow v1 is neglected, a common approximation when modeling valves.

Since all the valves modeled are connected to a separator operating with
moles, (4.1) is rewritten to

Fv =

{
ucCv

√|p2 − p1|, if p2 ≥ p1

−ucCv

√|p2 − p1|, if p2 < p1

(4.2)

where Cv = 1000
W C̄v scales the valve constant for mass flow into mole flow.

4.2.2 Sizing constant Cv

When designing a process plant, the sizing of the pipe and valve are important,
since they determine the flow from one process component to another. The
driving force in pipe flow is the pressure drop at in- and outlet conditions of
the pipe. The pressure drop in the pipes are small compared to the pressure
drop in the process components and valves. Further, pipe flow dynamics is
modeled from heavy flow equations making the total model more complex and
time consuming to simulate. Pipe flow dynamics are thus not modeled in this
thesis.

To ensure that the valve puts out the wanted controller action, the valve
must be sized correctly. A valve that is too small valve will limit pipe flow
and saturate the controller. A large valve will result in an unnecessary waste
of resources. [Fisher, 2005] describes a ”‘step-by-step procedure for the sizing
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of liquid valve,”‘ based on a International Electrotechnical Commission (IEC)
standard. Determining the valve constant is a part of this procedure.

The first step is to specify the variables the valve flow coefficient, the
process fluid and unit equation constant. There are two types of process
fluids, methane and oil. For both fluids the valve flow coefficient is mole flow
per second. The second step is to define the piping geometry factor. This step
is omitted due to the lack of pipe dynamics in the process model, and this
factor is set to 1. The valve sizing constant is finally computed directly from
the rewritten valve model (4.2) at maximum valve opening (uv = 1)

Cv =
Fv√
Δp

(4.3)

where Δp is the less of the maximum and operating pressure drop across
the valve and Fv is the worst case mole flow through the vale. This procedure
must be repeated for every valve that is modeled.

4.2.3 Stiction model

Stiction is present because of static friction acting on the valve stem. A model
of the valve stem dynamics is thus the basis for a stiction model. The valve
stem dynamics describes the movement of the valve stem from the moment
when the controller sets out a new OP signal until the valve opening (MV-
value) is at rest. This position may not be the desired position from the
controller due to nonlinearities, in this model stiction and deadband.

[Choudhury et al., 2005] describes the valve stem dynamics by applying
Newton’s second law, the sum of forces acting on the valve stem is equal to
the stem mass times stem acceleration:

Msas = Msẍs =
∑

i

Fi = Fa + Fr + Ff + Fp + Fj (4.4)

where Ms is mass of the moving parts and x is the relative stem position.
Fa = Adus is the force applied by the pneumatic actuator, Ad is the diaphragm
area and us is the actuator air pressure. Fr = −kxs is the spring force, k is the
spring constant. Fp = −αΔp is the force due to fluid pressure drop across the
valve, and α is the plug unbalanced area. Because Fp is considerable less than
both the friction force, Ff , and the spring force Fr, Fp is omitted, following
[Kayihan and Doyle, 2000]. Fj is the extra force required to force the valve
into its seat and will also be omitted.

Ff is the friction force and source of stiction, and defined as:

Ff =

⎧⎪⎨
⎪⎩
−Fcsgn(v) − vFv, if v �= 0
−(Fa + Fr), if v = 0 and |Fa + Fr| ≤ Fs

−Fssgn(Fa + Fr), if v = 0 and |Fa + Fr| > Fs

(4.5)
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where Fc is the Coulomb friction, Fv is the viscous friction, Fs is the max-
imum static friction and v is the stem velocity. Different values on the friction
constants gives different friction characteristics. A description of friction char-
acteristics is given in figure 4.2, and illustrates that the stiction force must be
exceeded before any movement is obtained.

By applying different sizes of the static friction force, different cases of
stiction is made.
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Figure 4.2: Friction force characteristics



Chapter 5

Simulations

The purpose of simulating the production plant model given in chapter 3
with the added valve model with stiction from chapter 4 is to produce data
with valve stiction and investigate how valve stiction affects important process
variables in the production plant model.

Two cases of are simulated, constant inlet flow with fixed methane fraction
(Case1) and constant inlet flow with sinusoidal (Case2) varying methane frac-
tion. The varying input simulate inlet slug flow. For each case, three different
sizes of stiction is applied: no, normal and high stiction.

With constant inlet flow and methane fraction the stiction is expected to
be easy to verify. If external oscillations enter the process it may be more
difficult to detect stiction. Some details about the simulation parameters are
now given followed by the results of the simulations.

5.1 Simulation parameters

The production plant model in chapter 3 with the the valve model with stiction
from chapter 4 is implemented in Simulink

TM
. The model is simulated until

an satisfactory period of sample data in steady state conditions is achieved.
After 2000 seconds the model had been in steady state conditions for about
1000 seconds. As a result, 2000 seconds is the simulation time for all the cases
simulated in this chapter.

The model was quite time consuming to simulate due to the complex
process components such as the compressors. As a result, a stiff variable step
integration method is applied, ”ode23s” . The sample rate on the logged data
is set to 0.1seconds to fetch all the dynamics of the measured variables.

5.1.1 Physical parameters

A list of all necessary physical parameters is given in table A.1 in the ap-
pendix. If not specified with component number, the parameters are equal all

33
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process components. For instance, the liquid oil density ρoilL yields for both
separators, while the separator volumes, Vsep1 and Vsep2 are specified for each
separator. All the physical parameter values are from the model of [Kylling,
2008].

5.1.2 Controller and valve parameters

The controller parameters with the name of the connected control valve are
given in table 5.1. Through initial simulation of the model, the controller
parameters used by [Kylling, 2008] achieved satisfactory performance, and
his original tuning parameters have been kept to avoid any unnecessary time
spent on retuning the whole model.

Table 5.1: Controller parameters with connected control valves

Controller Kp Ti Set point Control valve
ASCC2 0.22 3 [...] VRVC2
ASCC3 0.53 12 [...] VRVC3
LCS11 0.1 200 40.95[m3] VLCS1
LCS21 0.1 200 50.04[m3] VLCS2
PCS11 5E−10 8 30[bar] VPCS1
PCS12 0.01 0.8 12[bar] -
PCS21 3E−10 8 40[bar] VPCS2
PCS22 0.01 0.8 15[bar] -

The valves are sized from the procedure described in section 4.2.2 and the
sizing of all the valves is given in table A.2 in the appendices. In the same
section, a description of the operating pressure and mass flows in base of the
valve size is also given.

5.1.3 Case parameters

[Kylling, 2008] simulates his model with a constant input methane fraction at
0.37 which is a fairly realistic value and used in the case of constant methane
fraction throughout this simulation.

The time periods and amplitude of the sine wave are chosen to match the
slug flow described in section 1.3. To achieve a variation in inlet pressure, the
inlet methane fraction is chosen as the variable to be varied.

The amplitude of the sine wave is 0.1, and its mean value is lowered to
0.25 to avoid saturation of control valves1. The time period is 500seconds and
corresponds to a frequency of 0.013Hz.

A sinus-wave is an ideal and linear disturbance and should gain information
on how a large disturbance propagate through the process components. Since

1A saturated control valve can introduce oscillations, which can give detection of false
stiction.
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the sinus-wave is linear, it should not destroy the nonlinear shapes in measured
data produced by stiction.

Table 5.2 summarizes the parameters for the two cases.

Table 5.2: Parameters of simulated cases

Case # Descr. Mean Amplitude Time period
Case1 Constant 0.37 0 ∞
Case2 Sinus 0.25 0.1 500sec

5.1.4 Stiction sizes

Three different sizes of stiction is applied to each case of the inlet methane
fraction to study the effects of increasing stiction on controlled variables. The
size of the stiction is varied by changing the stiction force in the friction model
in equation (4.5). The stiction sizes in Newton and corresponding percentage
controller change in stick- and jumpband are given in table 5.3.

Table 5.3: Sizes of the stiction cases

No stiction Normal stiction High stiction
Fs 1250N 1750N 2250N

Stickband 5% 5% 5%
Jumpband 0% 1% 2%

When no stiction is applied, the only nonlinearity is deadband, the valve
stem does not jump when it starts to move after it has been stuck. No oscilla-
tions are thus expected to occur in non-integrating processes due to deadband
only.

5.2 Constant input methane fraction

The purpose of simulating the production plant model with a constant input
methane fraction is to investigate how stiction affects other process compo-
nents and to produce process data with stiction for testing of an algorithm
that detects stiction.

Classical MV-OP and PV-OP plots are presented to verify the presence of
stiction.

5.2.1 Key variables

Figure 5.1 shows the behavior of the key variables in the simulated produc-
tion plant model for the three cases of stiction with constant input methane
fraction. From the figure it is clear that oscillations occur when stiction is
present. When no stiction is present, the variables are nearly constant.
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As described in chapter 2, special shapes for process variables arise in the
presence of stiction. These shapes should be recognized in the pressure and
volume control error signals. In figure 5.1(b), the shapes of the pressure control
error are best recognized for normal stiction. The pressure control error form
an exponential rice and decay shaped oscillation, which is characteristic for
PV data from non-integrating processes with stiction. The pressure model
acts like a filter that smooths the pulse in the MV signal. See figure B.1 in
the appendices for time plot of the MV and OP data. When high stiction is
present the exponential rice and decay are harder to verify visually.

The shape of stiction induced oscillations in PV data from an integrating
process normally is triangular due to integration of a square pulse in the MV
data. In figure 5.1(a), the triangular shapes of the volume control error are
best recognized in the high stiction case. With normal stiction there are small
oscillations in the increasing part of the volume control error signal. The lack
of the pure triangular shapes can be explained from the tuning of the volume
controller which is not tuned tightly because of reasons described in section
3.5.3.

Note that the rice time is slower than the decay time in the normal stiction
case for both the pressure and volume controller. An explanation of this is
that when the pressure or volume in the separator is to low, the only way of
increasing it is to wait for more crude oil to enter since negative flow is not
allowed in the process. When the pressure or volume is to high, the controller
effectively decreases the pressure or volume by letting more gas or oil out of
the separator.

From Separator 1, the oscillations spread to other components in the pro-
cess such as the connected compressor and the gas turbine controlling the shaft
speed for the controllers. Figure 5.1(c) and 5.1(d) shows the outlet pressure of
Compressor 2 and the shaft speed of the shaft that drives the tho compressors
in the production plant model.

Table 5.4 presents the amplitudes and the time periods of the largest os-
cillations for all the variables in figure 5.1. From the table it is confirmed
that the oscillations in the pressure controller spread to the compressor. The
time periods of the oscillations that occurs in the pressure controller are very
similar to the time periods of the oscillations in the compressor and shaft
speed.

The amplitudes increase with increasing stiction for all variables except
the volume control error where the amplitude is equal for normal and high
stiction.

A 100% increase stiction (from normal to high) size results in a 200%
increase in the amplitude for the oscillation in the compressor shaft speed .
For the compressor outlet pressure the increase is 141% and for the comtrol
error pressure 69%. These results indicate that an increase in stiction has
largest effect on the compressor shaft speed. However, it should be noted
that the amplitude of the shaft speed oscillation is only 0.39RPM which is
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relatively small.
A comparison of the control pressure error and the compressor outlet pres-

sure indicate that the oscillation amplitudes from stiction are damped in the
compressor (damping of 54% in the normal stiction case and 34% in the high
stiction case). This may be because of the pressure rise in the compressor.

Table 5.4: Amplitudes and time periods (A/T) for stiction induced oscillations, con-
stant methane fraction

Fig# No stiction Normal stiction High stiction Units
5.1(a) ∞/0 339/0.30 77/0.30 [sec/m3]
5.1(b) ∞/0 101/0.26 37/0.44 [sec/bar]
5.1(c) ∞/0 100/0.12 39/0.29 [sec/bar]
5.1(d) ∞/0 100/0.13 40/0.39 [sec/RPM]

5.2.2 MV-OP and PV-OP plots

The classical MV-OP and PV-OP plots for both volume and pressure control
are presented in figure 5.2 and 5.3. The case with no stiction is omitted
here since no oscillations and no controller variation are present for this case,
producing only a single dot in these plots.

In figure 5.2 stiction is recognized by the rectangular shapes. The sizes of
the stick- and jumpband coincide with the sizes in table 5.3. As described in
section 4.1, the length of horizontal lines gives the size of the stickband. The
length of the vertical lines give the size of the jumpband.

By increasing the stiction, the increase in the jumpband is more visible
since the relative increase is larger for the jumpband compared to the stick-
band. The stickband is the sum of both deadband and stiction.

Figure 5.2 also shows that there is no difference in the the shape and size
of the MV-OP plots for the volume and pressure controller. This is because
the same valve model is applied to the two different control loops. MV-OP
plots are thus a valuable tool to confirm and quantify stiction.

For the PV-OP plots in figure 5.3, the shapes differ depending on the
control loop. An ellipse is observed for the pressure control loop in figure 5.3(a)
and 5.3(b) and indicates that stiction is present. The ellipse is deformed in
the upper left part of the ellipse in figure 5.3(a). This is because the different
shapes in the pressure rice and decrease observed in section 5.2.1.

In the PV-OP plot from the volume control loop there is harder to rec-
ognize the ellipse, see figure 5.2(c) and 5.3(d). The ellipses are more narrow
and have sharper edges. From correspondence with [Hovd, 2009] this can be
explained from the fact that an integrating process shifts the phase 90◦. To
shift the phase by 90◦ is equal to view an ellipse observed from process data
with 0◦ phase shift from the side. In an ideal case, a single line will be visible
in the PV-OP plot of an integrating process. There is not a single line in
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figure 5.2(c) and 5.3(d) because the volume process is not a purely integrating
process. An idea on how to omit this problem is presented in chapter 7.

As described in section 2.3, the width of the ellipse in the OP direction at
the mean of the ellipse can quantify stiction. Figure 5.3(b) is the only case
where the with of the ellipse is near to the correct value at 2%. The deformed
upper shape of the ellipse in figure 5.3(a) increases the width of the ellipse,
while the phase shift for the volume process decreases the width of the ellipses,
see figure 5.2(c) and 5.3(d).

From the uncertainties described, to quantify and detect stiction from a
PV-OP plot only should be done with caution.
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Figure 5.1: Key process variables, constant methane fraction
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Figure 5.2: MV-OP plots, constant methane fraction
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5.3 Sinusoidal methane fraction

To simulate the production production plant model with a sinusoidal input
methane fraction will provide information about how the stiction oscillations
are affected by an linear disturbance. Data from the simulation will also be
used in a test of an algorithm for stiction detection.

Further, it will be interesting to see how the MV-OP and PV-OP plots
vary compared to the case with a constant input. The disturbance will intro-
duce more variation of controller output and these plots are expected to have
larger shapes. It should be possible to distinguish the shapes from the linear
disturbance from the nonlinear shapes characteristic for stiction.

5.3.1 Key variables

Figure 5.4 shows the behavior of the key variables in the simulated produc-
tion plant model for the three cases of stiction with sinusoidal input methane
fraction. As seen, all the key variables are largely affected of the sinusoidal
input methane fraction. The variable that is least affected of the input is the
shaft speed of the gas turbine, see figure 5.4(d).

Small oscillations with amplitudes and time periods similar to the stiction
induced oscillations observed in section 5.2 occur in the case of high stiction.
Only one period of the input sine wave is plotted to give a better view of these
small oscillations.

With no and normal stiction, there is no small oscillations in the volume
control error in figure 5.4(a). High stiction introduces some scattered small
oscillations. The time period, amplitude and form of these oscillations vary
during the simulation, making them hard to quantify. The reason for this is
most likely the the weakly tuned volume controllers.

In figure 5.4(b) small oscillations is present between 1500 and 1800 seconds
for the case of high stiction. Some of the shapes in these oscillations are the
exponential rice and decay shapes that is characteristic for stiction. As in
section 5.2, the controller can only affect the pressure if it is too high. When
the pressure is below the set point, the only way of increasing the pressure is
to wait for more crude oil to enter the separator, and the controller output
is zero during this period, see figure B.2(c) in the appendices. This explains
why the pressure control error follows the inlet disturbance before and after
the period of small oscillations and why a saturated controller can introduce
oscillations in the controlled variable.

The small oscillations in the separator pressure spread to the compressor
pressure and shaft speed in figure 5.4(c) and 5.4(d). The size and form of the
oscillations are similar to the ones observed in section 5.2 for high stiction.

The large increase in the compressor pressure is present due to the inlet
disturbance that propagates through the pressure controller. However, the
increase in pressure does not affect the shaft speed to the same extent. This
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may be because the disturbance is so slow that the compressor is within its
working point during the whole simulation. The small oscillations do however
propagate to the shaft speed, indicating a high-pass filtering effect from the
compressor pressure to the compressor torque.

5.3.2 MV-OP and PV-OP

Stiction can easily be verified from the MV-OP plot in figure 5.5. In figure
5.5(a) and 5.5(d), the MV-OP shapes almost match the ideal shape in figure
4.1. The jump in the MV value in the lower right and upper left corners
of both the figures confirms the presence of stiction. In the increasing part
of both the figures there is a continuous valve stem movement, while for the
decreasing part of figure 5.5(a) the MV value stick and slips in the same
direction, producing a stepped curve.

These stepped curves are more dominating in the cases for high stiction,
see figure 5.5(b) and 5.5(d). An important difference from the case with
constant input in section 5.2.2 is that the deadband does not occur when the
valve sticks and slips in the same direction. In industry, this stepped curve is
uncommon according to [Choudhury et al., 2005].

A ellipsoidal form is viewed in all the plots of figure 5.6 except in figure
5.6(a) where process dynamics and the input disturbance destroys the ellipse.

In figure 5.6(b), two parallel shifted ellipses are observed. The sizes of
these ellipses are equal to the ones observed in section 5.2.2. The ellipses are
affected by noise and can be hard to detect by an automatic method as the
one purposed by [Choudhury et al., 2006].

In difference from section 5.2.2, the PV-OP plots in figure 5.6(c) and 5.6(d)
now take the form of an ellipse. The ellipse in figure 5.6(c) are not sharp-edged,
indicating that there is only linear oscillations behind the ellipse shape. In
figure 5.6(d) the shapes of the ellipse are sharp. It is however likely that these
ellipses arises from the linear disturbance since the width of the ellipses does
not increase with the increasing stiction. The with of the ellipse is also ten
times larger then the stiction for the normal stiction case and five times larger
in the high stiction case.

There is also in the case of sinusoidal input disturbance hard to detect and
quantify stiction from PV-OP plots only.
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Figure 5.4: Key process variables, sinusoidal methane fraction
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Figure 5.5: MV-OP plots, sinusoidal methane fraction
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Figure 5.6: PV-OP plots, sinusoidal methane fraction



Chapter 6

Algorithm for stiction
detection

This chapter presents an algorithm that automatically detects stiction from
routine operating data. The algorithm is not complete, but is a nice stepping
stone for further development as part of a new feature in the logging system
for Siemens.

The chapter initially lists some criteria for the algorithm given by the
author in collaboration with Siemens, followed by a presentation of the al-
gorithm. The algorithm is further tested on some ideal data sets: the data
produced in chapter 5 and some real data from an oil and gas production plant.
The chapter ends with some suggestions for improvements of the algorithm.

6.1 Criteria for algorithm

In collaboration with Siemens, the following criteria are defined for the algo-
rithm developed in this chapter:

• Applicable to all process types. The algorithm should be applicable
to all the process types at a general process plant to avoid extra work
specifying process type and tuning of the algorithm for each control valve
and process.

• Low computational burden. Since there can be several thousand
control valves at a process plant, a small increase in computational power
at each valve will require a huge total investment.

• Handle a varying sample time. The logging system of Siemens only
logs a measurement when there is a significant change in the measured
value. The algorithm is thought to be a feature in the logging system
and should thus use data directly form the logging system.
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In addition to these criteria, the algorithm should be automatic and in-
stallable online to provide the operator with real-time information.

6.2 Choice of principle

To meet the first criteria, the test results of [Horch, 2007] are studied. He
tested many of the methods described in chapter 2 on a variety of datasets
from different processes with and without stiction. He compares how correct
the different methods conclude on stiction appearance on all the datasets. He
noted that there is not one method that covers all the applied data sets. The
top five methods from this comparison is method number iii, vii, xi, x and xi
following the method numbering from table 2.1.

From the top five methods only method number iii, vii and xi are based on
time domain analysis. To transform the data into the frequency domain would
require an increase in computational load. Methods that use time domain data
only, should thus be chosen in order to meet the criteria of low computational
burden.

[Kvam, 2008] states that the compression of data done by the logging
system of Siemens makes any system identification from the compressed data
hard. As a result, stiction detection methods based on identification are not
relevant for usage. Together with the fact that an identification also require
some computational power, the only methods left are method number iii (the
method of [Singhal and Salsbury, 2005]) and vii (the method of [Rossi and
Scali, 2004]).

The method of [Singhal and Salsbury, 2005] exploits the difference in the
left and right half cycle integral when stiction is present. The integral of a
function f(t) between two discrete data points t1 and t2 can easily be computed
using numerical trapezoidal integration defined in [Egeland and Gravdahl,
2003]

t2∫
t1

f(t) ≈ 1
2
(
f(t1) + f(t2)

)
(t2 − t1) (6.1)

By computing this integral for each measurement present and keeping
track of the maximum or minimum of the half cycle, the method of [Singhal
and Salsbury, 2005] can handle a varying sample time (t2 − t1). This nice
property fulfills the last criteria in section 6.1.

In addition, the method of [Singhal and Salsbury, 2005] concludes more
correct than the method of [Rossi and Scali, 2004] in the tesing done by [Horch,
2007]. The method of [Singhal and Salsbury, 2005] is the choice of principle
for the algorithm developed in this chapter.

It should be noted that the method of [Singhal and Salsbury, 2005] is
patented, according to [Horch, 2007]. This can complicate use in a future
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Siemens implementation. However, the author chooses to ignore this fact since
the method is published and no details about any commercial implementation
of the method is given in the published paper. As a result, before a future
commercial use of the proposed algorithm, the details of the patent attached
to the method of [Singhal and Salsbury, 2005] should be further studied.

6.3 Algorithm

The algorithm input is a controller error data set, Y , the output is a stiction
index (R) where values greater than one indicates that stiction is present in
the controller error data set. The algorithm is written in Matlab

TM
. It makes

use of the general for- loop and the Matlab
TM

function sign().1. The algorithm
is presented in a general pseudo code, see algorithm 1, and should thus be
implementable in most industrial programming languages.

The algorithm initially gets the length of the data set before the for loop
computes the integrals necessary for the stiction index. The loop iterates over
all values in the data set except the first and last value.

For an online implementation, the for loop can be exchanged with an
infinite while loop that iterates one time for each new measurement present.
The loop index i must then be replaced by a counter.

Inside the loop, the slope sign is computed from the sign of the difference
between present and previous data sample, see line 4. The slope sign indicates
whether the controller error increases (SIGN= 1) or decreases (SIGN= −1).
Before any integral value is detected, a zero crossing must occur. If a zero
crossing is present and no integral is computed, a new iteration is done without
any action, see line 8.

Further, if the controller error is increasing, the integral value between
the present and next data sample is added to the integral value A1 using the
trapezoidal integration in equation (6.1), see line 17. When a local maximum
is reached, the slope changes sign and the integration values are added to A2,
see line 19.

When a zero crossing is detected and both A1 and A2 are non zero, R is
computed. Since R is defined as the ratio of integrals before and after a peak
between two zero crossings, a test is needed to distinguish between positive
and negative integral values. Line 9 − 12 ensures this. If the integral values
are negative, A2 is the first integral. If the integral values are positive, A1

is the first integral. Finally, the integral values are reset, and a new integral
computation can begin, see line 14 − 15.

During testing, all the computed values of R and integrals are stored to
ease the analysis of the algorithm. The mean and standard deviation of ap-
proximately 20 values of R are computed to assess the uncertainty of the
index.

1sign() returns 1 for positive sign, −1 for negative sign and 0 for zero value
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Algorithm 1 Field stiction detector, initial
1: N ← SIZE OF Y
2: A1 ← 0
3: A2 ← 0
4: for i = 2 to N−1 do
5: SIGN ← sign(Y (i) − Y (i − 1))
6: if ZERO CROSS BETWEEN Y (i) and Y (i + 1) then
7: if (A1 OR A2) = ZERO then
8: BREAK
9: else if A1 > 0 then

10: R ← A1
A2

11: else if A1 < 0 then
12: R ← A2

A1

13: end if
14: A1 ← 0
15: A2 ← 0
16: else if SIGN = 1 then
17: A1 ← A1 + 0.5(Y (i) + Y (i + 1))(ti+1 − ti)
18: else if SIGN = −1 then
19: A2 ← A2 + 0.5(Y (i) + Y (i + 1))(ti+1 − ti)
20: end if
21: end for

6.4 Applied on ideal data

Before the algorithm is applied to data from the simulation in chapter 5 and
real data from industry, the algorithm is tested on two sets of idealized data:
an ideal stiction shape and a sinus wave.

The ideal stiction shapes are the exponential rice and decay in the PV
data, a shape that characterizes stiction. These shapes are produced from
simulation of a simple PI controlled first order process with high stiction in
the control valve. The controller structure is equal to the general control
structure in figure 1.2. The process C(s) and controller G(s) is defined as

G(s) =
3

10s + 1
, C(s) = 0.4

(10s + 1
10s

)
(6.2)

This simple process is simulated in Simulink
TM

for 600s using the ode23s
integration method and a 0.1 seconds sample time. An initial step in reference
is applied to invoke controller usage.

The sine wave has a time period of 50 seconds and an amplitude of 0.075.
The results of the algorithm tests on the the ideal data sets are presented in
figure 6.1. The mean of the stiction index and its standard deviation are given
in the figure text. The integral areas computed by the algorithm are colored
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to red (A1) and blue (A2) following the notation of the pseudocode.
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(a) Sine wave, R̄ = 1.03± 0.00
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(b) PI controlled first order process with high stiction, R̄ = 3.71± 0.06

Figure 6.1: Algorithm test on ideal data, high stiction.

As expected, the two areas in figure 6.1(a) are equal and the mean value
of R is nearly one for the sinus wave. The small deviation from one is present
because of numerical integral errors from the trapezoidal rule.

From figure 6.1(b) it is clear that the two areas before and after the peaks
in the stiction shapes are not equal which result a mean value of R larger than
one. As a result, the algorithm concludes correct for the two ideal data sets
presented in this section.

An important remark is that the size of the stiction index cannot quantify
the size of the stiction. A decrease in stiction or a decrease in controller gain
both result in an increase in the stiction index, see figure B.3 in the appendices.

6.5 Applied on data from production plant model

The algorithm proposed in this chapter is now applied on the pressure and
level control errors from the simulation of the production process model in
chapter 5. The algorithm is tested on data from both constant and sinusoidal
methane fraction for all stiction cases.
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The tests are done to gain information about the behavior of the algorithm
when applied to interacting and non-integrating processes with both constant
and varying inputs.

6.5.1 Constant methane fraction

The mean and standard deviation of the stiction index from the tests on
data with a constant input methane fraction are presented in table 6.1. The
case with no stiction for the constant methane fraction is omitted since the
simulation produced no oscillations for this case.

For the level process the algorithm cannot conclude safely that stiction is
present. In the normal stiction case, the value is nearly one and the stiction
index concludes with an aggressive controller which is incorrect. The conclu-
sion for the level process with high stiction is vague since the mean value has
a large standard deviation.

From the results of the pressure process the algorithm can conclude with
presence of stiction since R is much larger then one in both the normal and
high stiction case. The large standard deviation in the normal stiction case
arises because of the different shapes in the control error signal above and
below zero, see figure 5.1(a).

Table 6.1: Mean and standard deviation of stiction index (R̄ ± σR̄), production
process model with constant input

Process type Normal stiction High stiction
Level 0.94 ± 0.71 1.74 ± 1.36
Pressure 14.63 ± 17.13 4.09 ± 1.80

6.5.2 Sinusoidal input methane fraction

Table 6.2 give the test results of the algorithm applied on data from simulation
of the production process model with a sinusoidal input methane fraction.

The results from the level process are again hard to conclude from. For
the case of no stiction, the mean value of R is even higher than the value of
R in the high stiction case for the constant input. The input sine wave is
deshaped from process controller action and process dynamics.

Due to the large influence in the pressure from the varying methane input
fraction, the values of R are below one in the case of no and normal stiction
for the pressure process. For high stiction the algorithm concludes correct,
but the high standard deviation indicate that there is large uncertainty in this
conclusion.
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Table 6.2: Mean and standard deviation of stiction index (R̄ ± σR̄), production
process model with sinusoidal input

Process type No stiction Normal stiction High stiction
Level 1.80 ± 0.63 1.63 ± 0.40 0.89 ± 0.12
Pressure 0.46 ± 0.59 0.87 ± 0.89 3.06 ± 2.25

6.6 Applied on real process data

The real case data available for testing of the purposed algorithm are from
a level and pressure control valve at a production plant for oil and gas. The
level control valve is reported to have stiction in [Torpe and Dessen] while the
pressure control valve is part of a pressure controller close to the level control
valve with stiction.

Ideally, data from a pressure control valve with reported stiction should
be available, since the algorithm is reported to conclude incorrect on data
from from level processes. But it has proven to be hard to get such data from
Siemens. Anyway, the tests on real case data will give valuable results in how
the algorithm copes with a varying sample time and noise.

As stated in in section 6.1, the logging strategy of the Siemens logging
system results in a varying sample time in the logged data. The mean sample
time and standard deviation is 6.84 ± 3.18 seconds for the level data and
91.59 ± 37.04 seconds for the pressure data.

Table 6.3 lists the mean and standard deviation of the stiction index from
the controller error data sets described above. In addition, the mean and
standard deviation of the oscillation time period and amplitude are given to
gain some more info about the datasets. Figure 6.2 shows the datasets with
the computed integral value in the same way as in figure 6.1. A line is drawn
for each integral computed and the colors distinguish the two integral areas
A1 and A2.

Table 6.3: Mean and standard deviation of stiction index (R̄), time periods (T̄osc)
and amplitude (Āosc) of oscillations from real data

Process type R̄ T̄osc Āosc

Level 1.80 ± 1.32 188.52 ± 151.80 2.25 ± 1.38
Pressure 3.14 ± 2.74 670.30 ± 919.48 0.02 ± 0.01

From the values of the stiction index in table 6.3 there is difficult to con-
clude about the presence of sticion, especially for the data from the level
process. However, the oscillation time period for the level data are in the area
of the time periods of the stiction induced oscillations in chapter 5. The sizes
of the amplitudes are in the range of the amplitudes from the sine disturbances
indicating that the oscillations arise from a disturbance.
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The mean of the stiction index for the pressure data is 3.14 and indicates
that stiction is present, but the long time periods and small amplitudes com-
plicates the conclusion. Because of the small amplitudes, there is likely that
the real pressure is constant, but affected by measurement noise.

To assess the performance of the algorithm regarding noise and a varying
sample time, figure 6.2 is studied. For both the processes, the algorithm copes
with the varying sample time, but it seems like the sample time is in general
too long in the pressure data. If the oscillations consist of only one sample,
the increasing and decreasing integral area cannot be computed. Interpolation
can solve this by introducing more samples during the oscillation time period.

Noise is present in both figure 6.2(a) and 6.2(b) and result in a change of
the derivative sign before a peak is reached. Because of this, the decreasing
integral areas can be added during a increasing time trend and vice versa
which leads to an incorrect value of the stiction index. A discrete pre-filtering
of the data samples can solve this, but can be hard to apply on data with a
varying sample time.

6.7 Improvements

Based on the results and discussion of the tests in section 6.4 some improve-
ments of the algorithm are suggested:

• Additional functionality must be made to handle integrating processes.

• The problem of noise must be investigated and solved, discrete pre-
filtering can be a solution.

• The algorithm should give more correct conclusions in the presence of
large disturbances. Detection and comparing of the different time peri-
ods present in the data set can give valuable additional information.
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Figure 6.2: Algorithm test on real data





Chapter 7

New principles for stiction
detection

The results from the previous chapters show that there is hard to detect
stiction in a PV-OP plot for integrating processes. This chapter presents
some ideas on how to solve this.

7.1 Background

Use of PV-OP plots are one of the classical ways in industrial practice to
detect stiction in a control loop from routine operating data, according to
[Choudhury et al., 2006].

When stiction induced oscillations are present, the PV-OP plot takes the
shape of an ellipse. The assumption for these shapes to occur is that the
process time constant is significantly shorter than the time periods of the
stiction induced oscillations. For non-integrating processes the phase-lag then
is 0◦ between the OP and PV data. Any oscillation with a significant longer
time periods than the process dynamics will then make shapes in the PV-OP
plot.

There has been little research on how these shapes develop in data from
integrating processes. Integrating processes introduce 90◦ phase lag between
the OP and PV data. [Hovd, 2009] states that this phase lag results in a 90◦

twist of the circle or ellipse shapes in the PV-OP plot. The twist leads to a
more narrow ellipse or even a single line in an ideal case.

Two ideas on how to regain the ellipse in a PV-OP plot from an integrating
process are now presented.
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7.2 Description of ideas

7.2.1 Idea number 1

[Hovd, 2009] suggests to plot OP data against time shifted PV data to regain
the shapes of the ellipse. The time shift of N samples of a general vector y is
simply

yts(t) = y(t + N) (7.1)

7.2.2 Idea number 2

Another idea is to plot OP data against filtered PV data. If the filter can
change the 90◦ phase lag between PV and OP data back to 0◦ phase lag, the
ellipse should be regained in the PV-OP plot.

The filter basis is a continuous first order high-pass filter

H(s) =
s

s + τ
(7.2)

where τ is the filter time constant. If the time constant is large, the filter
can be viewed as a derivator at low frequencies which adds a 90◦ positive
phase lag to the filtered data . A discrete version of the high-pass filter is

y(t) = αy(t − 1) + α(x(t) − x(t − 1)), α =
τ

τ + Ts
(7.3)

where x(t) is the filter input, y(t) is the filter output and Ts is the sample
time of the discrete data. Some trial and error are done to find a filter constant
τ that regains the ellipse shape.

7.3 Results

Both the ideas from the previous section are tested on data from an ideal in-
tegrating process. The valve stiction model applied is the model from chapter
4. The high stiction case from chapter 5 is used to enlarge the stiction effects.

The ideal integrating process and controller is

GI(s) =
3

10s
, C(s) = 0.2

(400s + 1
400s

)
(7.4)

Negative controller usage and PV values are allowed to force the ideal
integrating process to produce oscillations. The ideal process is simulated in
2000 seconds. The time plot of the MV and OP data is given in B.4 in the
appendices confirms the characteristic time domain shapes for an integrating
process with stiction.
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7.3.1 Idea number 1

Some simple trial and error testing is done to find a N that regained the ellipse.
Figure 7.1 shows the PV-OP plots for different values of N.

Small values of N only increase the ellipse shape, see figure 7.1(b). For
larger N, the shapes take more a form of a rectangle, and the ellipse shapes are
smoothened out which make the ellipse shapes harder to detect. The width
of the rectangles increase when N is increased.

The search for correct values of N to regain the ellipse must most likely be
repeated if the oscillation time period changes. Proper guidelines to find such
an N for different time periods should be developed before the performance of
this idea could be concluded.
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Figure 7.1: PV-OP plot with time delayed PV data, ideal integrating process

7.3.2 Idea number 2

Figure 7.2 shows the OP data plotted against non-filtered PV-data from the
ideal integrating process. Filter time constants of 100 and 50 give different
sizes of the hidden ellipse without changing the shape of the ellipse, see figure
7.2(b) and 7.2(c). When the filter time constant is decreased to 10, the shape
of the ellipse is changed, which indicates that the phase lag is above 90◦.

Data from the level process part of the production plant model simulated
in chapter 5 are also applied to this idea, see figure 7.3. The filter parameters
are equal to the ideal case to make comparison the results from the different
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cases possible. For the filter time constants of 100 and 50 in figure 7.3(b) and
7.3(c), the ellipses develop in a similar case as in figure 7.2, the width increases
without changing the shape of the ellipse.

In figure 7.3(d), the upper ellipse shape is changed. This may be due to
the little break in the controller volume error in figure 5.1(a). The little break
is amplified because of the small filter constant. If more small changes such as
noise are present, these will most likely also be amplified. This is a drawback
if applied on real data, and the effect of noise should be further investigated.

A plus is that the filter time constants that regained the ellipse shape
were quite easy to find, and the same filter constant showed equal results
when applied to a different case.
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Figure 7.2: PV-OP plots with non-filtered and high-pass filtered PV data, ideal
integrating process
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Figure 7.3: PV-OP plots with non-filtered and high-pass filtered PV data, level
process from production process model with constant input





Chapter 8

Conclusion and future work

8.1 Conclusion

From simulations of a production plant model, some results on how stiction af-
fects neighboring process components was obtained. Stiction in control valves
in the first stage separator affected downstream components in the plant model
such as the compressor. Stiction was easy to detect and quantify from PV and
OP data in the pressure process of the separator if there were no external dis-
turbances. In the level process of the separator, there was more difficult to
detect stiction from PV and OP data only.

If disturbances from slugs in the inlet stream arose, MV data had to be
available to confirm the presence of stiction. Oscillations from inlet slug flow
was found to be larger than stiction induced oscillations. The inlet slug flow
should thus be controlled before any effort is made to remove the stiction
induced oscillations.

An algorithm that detects stiction from routine operating data was pro-
posed. The algorithm correctly detected stiction in data from an ideal non-
integrating process. When applied to data from the production plant model,
the algorithm concluded correct for the separator pressure process. With inlet
slug flow applied, high stiction had to be present for the algorithm to conclude
correct. For the separator level process, the conclusions were more uncertain.

The correctness of the algorithm when applied on real data from a offshore
production plant was difficult to assess. The real case data did however, show
the ability of the algorithms to cope with varying sample time and addressed
its problem of coping with noise. The algorithm needs to solve the problem
of noise before it can be installed in a Siemens application.

From the reported problems of detecting stiction from OP-PV data, two
new ideas for stiction detection were suggested. Both ideas regain the ellipse
characteristic for stiction and the results are promising, especially the idea
that exploits high-pass filtering. Both the ideas need to be further studied if
they are to be part of a stiction detection algorithm.
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8.2 Future work

• Improve the proposed algorithm to cope with integrating processes, noise
and large disturbances.

• Test the purposed algorithm on more real case sets from industry.

• Test the two new ideas on more complex data sets.

• Investigate the possibility of quantifying stiction from the two new ideas.
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Appendix A

Simulation parameters

Table A.1: Physical parameters for production process model

Symbol Value Denomination
Ac 0.00956 [m2]
ρoilL 659 [Kg/m3]
ρmetL 422 [Kg/m3]
c01 453.43 [m/s]
Fc 1250 [N]
Fv 612 [N]
k 52500 [N/m]
Lc 1.8 [m]
Mv 1.36 [kg]
pmetV 261 [bar]
R 8.31 [J/(K mol)]
Vin 0.6 [m3]
Vout 0.6 [m3]
Tc 302.95 [K]
Tsep 308.15 [K]
Vsep2 100.07 [m3]
Wmet 16 [g/mol]
Woil 86 [g/mol]

For the control pressure valves (VPCS1 and VPCS2), the difference be-
tween the pressure set point and the operating pressure of the connected
compressor is the main contribution for Δp. An additional pressure difference
added to compensate for the pressure loss in the scrubber and gas cooler. The
mass flows are the designed mass flows for the compressors converted into
mole flow.

The designed pressure drop across the level control valve (VLCS1) of sep-
arator 1 is simply the difference in set point pressure. For the level control

67



68 APPENDIX A. SIMULATION PARAMETERS

Table A.2: Valve constants for production process model

Symbol Value Denomination
VRVC2 − − 0.020
VARVC3 − − 0.025
VLCS1 9500 24 E5 6.1
VLCS2 9500 12 E5 8.7
VPCS1 4750 0.3 E5 27.4
VPCS2 670 0.3E5 3.8

valve (VLCS2) of separator 2, the pressure drop is the difference in set point
pressure and atmospheric pressure. The mass flows are the maximum flows
for the inlet cases with a margin added.



Appendix B

Additional results

B.1 Additional results from simulation of
production plant model
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(a) Volume control valve, normal stiction.
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(b) Volume control valve, high stiction.
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(c) Pressure control valve, normal stiction.
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(d) Pressure control valve, normal stiction.

Figure B.1: Time plots of MV and OP data, constant methane fraction
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(a) Volume control valve, normal stiction.
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(b) Volume control valve, high stiction.
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(c) Pressure control valve, normal stiction.
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(d) Pressure control valve, normal stiction.

Figure B.2: Time plots of MV and OP data, sinusoidal methane fraction case of
simulation of production process model
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B.2 Additional results from testing of algorithm
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(a) Algorithm applied on data from a PI controlled first order process with high stiction and
halved controller gain, R̄ = 18.40± 0.7
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(b) Algorithm applied on data from a PI controlled first order process with normal stiction,
R̄ = 6.40± 0.80

Figure B.3: Algorithm test on ideal data, decreased stiction and controller gain
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B.3 Additional results from testing of new ideas
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Figure B.4: Time plots of MV and OP data, ideal integrating process




	Title Page
	Problem Description
	master_thesis.pdf


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


