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Abstract. A new concept of low-density electroencephalograms-based
(EEG) Subject identification is proposed in this paper. To that aim,
EEG recordings of resting-states were analyzed with 3 different classifiers
(SVM, k-NN, and naive Bayes) using Empirical Mode Decomposition
(EMD) and Discrete Wavelet Transform (DWT) for feature extraction
and their accuracies were estimated to compare their performances. To
explore the feasibility of using fewer channels with minimum loss of ac-
curacy, the methods were applied to a dataset of 27 Subjects (From 5
sessions of 30 instances per Subject) recorded using the EMOTIV EPOC
device with 1 set of 14 channels and 4 subsets (8, 4, 2 and 1 channel)
that were selected using a greedy algorithm. The experiments were re-
produced using fewer instances each time to observe the evolution of
the accuracy using both; fewer channels and fewer instances. The results
of this experiments suggest that EMD compared with DWT is a more
robust technique for feature extraction from brain signals to identify
Subjects during resting-states, particularly when the amount of infor-
mation is reduced: e.g., using Linear SVM and 30 instances per Subject,
the accuracies obtained using 14 channels were 0.91 and 0.95, with 8
channels were 0.87 and 0.89 with EMD and DWT respectively but were
reversed in favor of EMD when the number of channels was reduced to
4 channels (0.76 and 0.74), 2 (0.64 and 0.56) and 1 channel (0.46 and
0.31). The general observed trend is that, Linear SVM exhibits higher
accuracy rates using high-density EEG (0.91 with 14 channels) while
Gaussian naive Bayes exhibits better accuracies when using low-density
EEG in comparison with the other classifiers (With EMD 0.88, 0.81, 0.76
and 0.61 respectively for 8, 4, 2 and 1 channel). The findings of these
experiments reveal an important insight for continuing the exploration
of low-density EEG for Subject identification.

Keywords: Biometric security, Subject identification, Electroencephalo-
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1 Introduction

To protect places and/or information where privileges are required, organizations
use security systems. To achieve this, different measures have been proposed,
ranging from security-guards/smart-cards to fingerprint /face-recognition [1,2].

The use of security systems has been increasing not only in organizations
but also in low-cost portable devices (e.g., mobile phones, tablets and personal
computers). Due to the increasing vulnerabilities to skip the authentication and
authorization process of current traditional/biometric security systems [2], there
is a growing interest in exploring new biometric measures. With this trend, the
use of brain signals to create biometric markers using different neuro-paradigms
also has emerged as a robust alternative to the above mentioned vulnerabilities.
Brain signals can be used as a basis for the design of biometric markers since they
satisfy the requirements of universality, permanence, collectability, performance,
acceptability, and circumvention [1]. Brain signals are more reliable and secure
because biometric markers obtained from EEG-recordings from human brain
activity will be almost impossible to duplicate since the brain is highly individual
3].

To promote the concept of “low-cost” affordable devices to record brain
signals using different neuro-paradigms, a popular/non-invasive technique us-
ing Electroencephalography (EEG) is the well known Brain-Computer Interface
(BCI).

Empirical Mode Decomposition (EMD) [4] and Discrete Wavelet Transform
(DWT) [5-7] have been applied to transform and analyze brain signals while
different mental tasks are performed. Both, EMD and DWT, have shown to be
effective in decomposing non-stationary/non-linear time series. But, EMD has
the advantage that it does not need the definition of any mother function or
pre-processing to improve the signal-to-noise ratio [4]. On the other hand, DWT
needs a pre-processing stage to fit the appropriate mother function depending
to the task/neuro-paradigm used.

Biometric systems based on EEG-recordings can be separated into states:
task-related-state and resting-states. In task-related state different ways have
been used to stimulate the brain, for example in [8] Visual Counting and geo-
metric figure Rotation (visual stimulation of images) were used. Another way
presented in [9] consisted in mental composition of letters, or as in [10], imagin-
ing random digit numbers were presented, among others method and techniques
that can be found in [11, 12]. However, persons with certain diseases (e.g., Amy-
otrophic Lateral Sclerosis, Attention Deficit Disorder, etc) [13,14] cannot per-
form some tasks and the use of the above stimuli are not feasible.

The use of EEG signal from resting-states has been reported for example in
[7] where a method based on Morlet Wavelet and Linear SVM was tested using
a dataset of 40 Subjects (192 instances per Subject) and the signal was captured
with a sample rate of 256 Hz from 64 channels. In that work, resting-states with
the lengths of 300, 60 and 30 seconds were used obtaining accuracies of 1.00,
0.96 and 0.72. However, the use of 300, 60 or even 30 seconds of brain signal
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length is computationally costly and for a real-time application, fast recognition
capabilities with limited information will be essential.

In [15], a method based on Convolutional Neural Networks using the raw
signal as input (without pre-processing and without feature extraction) was pre-
sented. The dataset was obtained using BCI2000 from 64 channels with a sample
rate of 160 Hz. from 10 Subjects and 55 instances of 1 second of duration per
subject. Three different experiments were presented: Using resting-states with
Open-Eyes/Closed-Eyes/both, and the accuracies obtained were 0.88, 0.86 and
0.82 respectively.

Although the use of resting-states as a biometric marker has been reported
by several researchers [7,11,15], the possibility of using fewer channels or fewer
instances has not been explored so far. As mentioned earlier in the paper, the
use of 64 channels does not support the concept of a flexible, low-cost portable
EEG-device as presented in [16]. The biometric systems currently adopted by
the industry/market use about 5 instances or even fewer to add a new person
(e.g., fingerprint, voice/face recognition, retinal scans) and in the research on
biometric systems based on EEG, 192 or 55 instances per Subject, which is not
practical for a real implementation.

In more recent works, Subject identification methods based on imagined
speech using DWT [5] and EMD [4] for feature extraction, were presented and
the results obtained suggest that EEG of imagined speech can be a good candi-
date as a biometric marker. In the present work, a new conceptual proposition
using resting-states (unconstrained rest) in conjunction with fewer EEG chan-
nels/instances, is explored. Resting-states can be a valuable biometric marker
when the population is large (e.g., in an airport, big enterprises or government
organizations) because of its self-reliance and inherent independence from train-
ing.

In the following, the new concept of EEG with a reduced number of chan-
nels/instances will be presented followed by the proposition of using resting-
states (resting-states without restrictions) in conjunction with this new EEG
concept as a flexible and affordable portable recognition/authentication system.

2 Towards a low-density EEG Concept: FlexEEG

In order to realize a low-cost and flexible solution for subject identification from
brain signals, a new EEG concept is envisioned and presented in this paper. This
new EEG concept will be based on a design with a reduced number of channels
and the use of wireless dry electrodes to support portability and ease of use.
While a laboratory setting and research-grade EEG equipment ensure a con-
trolled environment and high-quality multiple-channel EEG recording, there are
applications, situations, and populations for which this is not suitable. Conven-
tional EEG is challenged by high cost (i.e,. computationally costly), high-density,
immobility of equipment and the use of inconvenient conductive gels. One con-
sequence of high-density EEG is that interpretation in real-time is not available
today. Technological advancements in dry sensor system have opened avenues of
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possibilities to develop wireless and portable EEG systems with dry electrodes
to reduce many of these barriers.

In [16] a new EEG concept of portable (non-invasive) dry single-channel or
low-density EEG system, was introduced. While being portable and relying on
dry-sensor technology, it will be expected to produce recordings of comparable
quality to a research-grade EEG system but with wider scope and capabilities
than conventional lab-based EEG equipment. In short, a single more intelligent
EEG sensor could defeat high-density EEG. Through this new concept, the range
of applications of EEG signals will be expanded from clinical diagnosis and re-
search to health-care, to better understanding of cognitive processes, to learning
and education, and to today hidden/unknown properties behind ordinary human
activity and ailments (e.g., resting-states, walking, sleeping, complex cognitive
activity, chronic pain, insomnia, etc.).

The proposition of real-time Subjects identification using low-density EEG
recordings of resting-states will benefit from an EEG device that can offer the
flexibility and capabilities envisioned in the FlexEEG concept. The combination
of resting-states brain signals with a flexible EEG design with a reduced num-
ber of channels will make possible to materialize low-cost and seamless Subject
identification within the reach of everyone.

3 Methods

In this section, the methods used with the aim of Subject identification are
described in brief. The idea of using resting-states for Subjects identification is
motivated by the fact that resting-states are typically used to analyze problems
relative to the Subject internal state of mind [13], and this suggests the existence
of unique patterns pertaining to the Subject.

According to [17], a stable resting-state (even called resting-state activity)
does not necessarily exist, because spontaneous changes in regional neuronal fir-
ing occur even when the organism is apparently in rest-state. Also, spontaneous
activation can change local blood flow, cause low-frequency blood oxygenation
level-dependent signal fluctuations [18]. In other words, the brain is never really
at rest [19], and the term only refers to the absence of goal-directed neuronal
action with the integration of information of external environment and the Sub-
ject internal state, that could be a starting point to discuss why the Subject
identification task can work, which in this paper will be done experimentally.

The methods were applied to a dataset of resting-states from the low-cost
EMOTIV EPOC device using 14 channels, 8 (P7, P8, O1, 02, F7, F8, T7 and
T8), 4 (F7, F8, T7 and T8), 2 (T7 and T8) and 1 channel (T7) that were
placed according to the 10-20 international system [20]. Subsets of channels
were selected using a greedy algorithm [21] as a first attempt to move towards
the FlexEEG Concept [16]. This is done in order to analyze the evolution of the
accuracy using each time fewer channels, as it is explained later. Additionally,
for the set and each subset of channels, experiments were reproduced using 30,
20, 10, 5 and 3 instances per subject, to observe the evolution of accuracy and to
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Fig. 1. Protocol for EEG signal acquisition using EMOTIV EPOC [22,6].

Fig. 2. 10-20 international system for 14 channels

obtain a first approximation of the necessary instances to create a competitive
system to the current biometric systems used in industry.

In the following subsections, the methods used are explained in brief, includ-
ing the dataset description, the logic for channels selection, the feature extraction
and classification techniques.

3.1 Dataset description

To test the new conceptual proposition, EEG signals obtained from the low-cost
EMOTIV EPOC device with a sample rate of 128 Hz and 14 channels, were
used. The dataset consists of brain signals from 27 subjects while imagining
33 repetitions of five imagined words in Spanish, where each repetition was
separated by a resting-state. The protocol for acquisition is shown in figure 1
and is described in [22].

The imagined words were recorded in 5 different sessions (not consecutively
one after the other), that allows the use of resting-states between instances of
words and from 5 different sessions. The mean size of the resting-states in the
dataset is [3] seconds.

The 14 recorded electrodes as shown in 2 were placed according to the 10-20
international system [20)].
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Algorithm 1 Greedy algorithm for channels selection

1: procedure CH_SELECTION(subjects) > 27 Subjects, 14 channels per each one.
2: sj < len(subjects)

3: ch <+ len(sj[0])

4: ch_selected < [[]]

5: while ch > 1 do > Stop if there are no channels to remove.
6: ch_combinations < Cen,1 > k-combinations, Chp x
T: accuracies = |

8: for ch_combination in ch_combinations do

9: accuracies < accuracies U classi fier(subjects, ch_combination)
10: end for
11: highest_accuracy < max(accuracies)
12: ch < ch_combinations[highest_accuracy] >ch <+ ch—1
13: ch_selected < ch_selected U ch
14: end while
15: return ch_selected > Channels selected

16: end procedure

3.2 Channel reduction criteria for low-density EEG

A first step towards the low-density EEG concept discussed in [16] is the chan-
nel reduction approach applied based on the information provided for a given
neurophysiological task. With this starting point, restrictions of fixed electrodes,
the use of a single design for different tasks and its implications for the device
portability are discussed. The logic based on the greedy algorithm was applied
for channels reduction a first step to understand how many channels are needed
to obtain sufficient information to detect the relevant activity of the brain.

Channel selection: In the algorithm 1 the greedy procedure presented in [21]
has been adopted to remove channels in a step-by-step manner. The idea is to
obtain the combinations removing 1 channel at a time (k-combinations: k = 1)
and selecting the subset with the highest accuracy (local maximum). Then the
procedure is repeated with the subset obtained while the length of the subset is
still greater than 1 channel.

3.3 Feature extraction

Two methods were used for this purpose to compared their capabilities. The
first method used is based on the EMD algorithm for which the relevant In-
trinsic Mode Functions (IMFs) were decided based on Minkowski distance [23].
Then, for each IMF 4 features were computed: Instantaneous/Teager energy dis-
tribution and Higuchi/Petrosian Fractal Dimension. The flowchart for feature
extraction from a given channel is shown in figure 3 and is detailed in [4].

For the second method used, the DWT, first the Common Average Reference
(CAR) was applied to improve the signal-to-noise ratio and then the biorthogonal
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Fig. 3. Flowchart summarizing the feature extraction procedure using EMD

2.2 (bior2.2) DWT with 4 levels of decomposition was computed. Then, for each
level of decomposition the instantaneous energy was obtained. The flowchart
describing the method is shown in figure 4 and is detailed first in [6] and then
used for Subject identification using imagined speech in [5].

3.4 Classification

The classification procedure was performed using SVM (with the kernels: Lin-
ear, Sigmoid and Radial Basis Function), Gaussian naive Bayes and with k-NN
(k=1,2,3,4).

To estimate the accuracy and thus evaluate the performance of the methods,
{10, 10, 10, 5, 8}-folds cross-validation were respectively used for each experi-
ment using respectively 30, 20, 10, 5 and 3 instances per Subject.
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Fig. 4. Flowchart summarizing the feature extraction using bior2.2 DWT

3.5 Experiment setup

The method used to reduce the number of EEG channels provides a general out-
work about which channels contain more information and the minimum number
of channels for which the loss of accuracy is minimum. However, because the
analysis in this paper was carried out between 5 different sessions and using
fewer instances; the channels selected in the first sessions/experiment were not
the same when using fewer instances or even when using DWT and EMD.

In order to ensure fairness of comparison, the same channels need to be used
with EMD and DWT in all sessions and with a different number of instances.
Therefore, only the channels that were common to all the experiments were
selected. Then, with these subsets of channels, the experiments were repeated
with the common channels, to obtain a fair comparison using EMD and DWT.

4 Results

The idea behind the use of fewer channels is to understand and observe the
evolution of the accuracy when using DWT and EMD. On the other hand, the
method used for channel selection provides a general outlook about which are the
channels that contain more information for the Subject identification task and
the neuro-paradigm used (In this case: resting-states). According to the method
applied for channel selection and after the analysis of the common channels
(common channels between instances-used/sessions/methods), the experiments
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Fig. 5. Average accuracies obtained from 5 sessions using different number of channels
with Linear SVM.

were repeated using 14 channels, 8 (P7, P8, O1, 02, F7, F8, T7 and T8), 4 (F7,
F8, T7 and T8), 2 (T7 and T8) and 1 channel (T7).

In the figure 5 the average accuracies obtained from 5 different sessions with
Linear SVM and using the set and subsets of channels, are shown.

When 14 and 8 channels were used, the highest accuracies were reached
with DWT even when using 3 instances. However using 4, 2 and 1 channels
the highest accuracies were reached using EMD. For this task, the evolution of
accuracy is clear and easy to understand that EMD can better represent the
signal even when the information is reduced. At the same time, these results
show that DWT is a more robust method for transforming the brain signals and
for feature extraction when the amount of information is higher, which in this
context is achievable with a high-density EEG device.

For example, using 14 channels and 30 instances the accuracies obtained with
DWT and EMD were 0.95 and 0.91, but using 1 channel and 3 instances the
accuracies obtained with DWT and EMD were instead reversed (0.25 and 0.41
respectively) in favor of EMD.

The results presented in figure 6 confirm the observed property above that
suggests that the method based on EMD can represent well the brain signal
obtaining high accuracy rates.

In figure 7 the results obtained using Gaussian naive Bayes, are shown. These
results still confirm the high accuracy rates using EMD, but also with an ap-
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Fig. 6. Average accuracies obtained from 5 sessions using different number of channels
with 3-NN.

parently random behavior when information is low (using 5 and 3 instances per
Subject).

A possible response for the naive Bayes behavior was presented in [24], where
the authors defend the idea that optimal performance is presented in two extreme
cases (completely independent features and functionally dependent features) and
the performance is worst between these extremes.

In figure 8, the evolution of average accuracies obtained with 20 instances
are shown as an example to understand that SVM exhibits the highest accuracy
using 14 channels but when the number of channels is reduced the naive Bayes
classifier exhibits higher accuracy rates using EMD compared with the other
two classifiers. An important revelation from these result is also that all three
classifiers exhibit better accuracies under low-density EEG conditions only when
using EMD for feature extraction. In general, using 14 and 8 channels the highest
accuracies were obtained using DWT for feature extraction while the highest
accuracies using fewer channels (4, 2, 1 channels) were obtained using EMD for
feature extraction.

In the tables 1 to 3 the accuracies per session with Linear SVM, 3-NN (k-
NN) and Gaussian naive Bayes using EMD and DWT with a different number
of channels and a different number of instances, are presented in detail. The
average accuracies (Avg.) and standard deviation (Std) between sessions, also
are presented for each subset of channels and using fewer instances.
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Table 1. Accuracies obtained with Linear SVM in 5 different sessions using EMD and
DWT.

{ EMD I DWT
Session Ch 30 20 10 5 3 Avg. 30 20 10 5 3 Avg.

14 0.89 10.92 0.87 0.83 0.79 0.86+0.05 0.94 0.95 0.94 0.88 0.76 0.89+0.08
1 8 0.86 0.87 0.86 0.75 0.69 0.81+o0.08 0.90 0.90 0.87 0.84 0.71 0.84+o0.08
4 0.77 0.78[0.79 0.69 0.69 0.74+o0.05 0.77 0.79 0.76 0.68 0.68 0.74+o0.05
0.65 1 0.65 0.59 0.62 0.61 0.624+0.03 0.57 0.59 0.58 0.53 0.47 0.55+0.05
0.47 0.48 0.46 0.50 0.47 0.474+0.01 0.32 0.34 0.33 0.26 0.20 0.29+0.06
0.91 1 0.91 0.88 0.79 0.81 0.86+0.05 0.95 0.96 0.92 0.87 0.80 0.90+0.07
0.87 0.84 0.84 0.77 0.77 0.82+0.05 0.89 0.88 0.85 0.79 0.71 0.82+0.08
0.76 0.73 0.68 0.63 0.57 0.68+0.07 0.76 0.74 0.72 0.71 0.60 0.71+0.06
0.63 0.57 0.59 0.66 0.52 0.5940.05 0.61 0.60 0.60 0.54 0.53 0.58+0.04
0.44 0.41 0.42 0.50 0.45 0.4440.04 0.30 0.28 0.33 0.28 0.33 0.30+0.03
0.93 092 0.91 0.84 0.81 0.88+0.05 0.96 0.96 0.93 0.86 0.75 0.89+0.09
0.89 0.87 0.84 0.80 0.69 0.82+0.08 0.89 0.86 0.85 0.74 0.64 0.80+0.10
0.74 0.71 0.63 0.64 0.57 0.66+0.07 0.70 0.67 0.62 0.58 0.47 0.61+0.09
0.62 0.60 0.52 0.54 0.47 0.554+0.06 0.53 0.51 0.45 0.47 0.39 0.47+o0.06
0.48 0.42 0.35 0.37 0.27 0.384+0.08 0.31 0.29 0.26 0.30 0.20 0.27+0.04
0.920.92 0.90 0.86 0.67 0.85+0.11 0.94 0.93 0.88 0.82 0.65 0.85+0.12
0.84 0.84 0.84 0.74 0.59 0.77+0.11 0.86 0.83 0.81 0.72 0.59 0.76+0.11
0.74 0.70 0.66 0.66 0.60 0.67+0.05 0.70 0.72 0.66 0.60 0.53 0.64+0.08
0.60 ' 0.61 0.57 0.54 0.51 0.574+0.04 0.54 0.56 0.55 0.51 0.47 0.52+0.04
0.39 10.49 0.46 0.33 0.424+0.06 0.28 0.25 0.26 0.22 0.19 0.24+0.04
0.93 0.89 0.87 0.82 0.69 0.84+0.09 0.95 0.93 0.94 0.86 0.76 0.89+0.08
0.88 0.86 0.83 0.69 0.53 0.76+0.15 0.90 0.90 0.89 0.76 0.69 0.83+0.10
0.80 0.79 0.76 0.61 0.60 0.714+0.10 0.78 0.75 0.72 0.58 0.59 0.69+0.09
0.68 0.63 0.53 0.49 0.56 0.584+0.08 0.56 0.56 0.50 0.46 0.52 0.52+0.04
0.48 10.45 0.42 0.38 0.51 0.45+0.05 0.35 0.33 0.33 0.31 0.31 0.3340.02
0.91 0.91 0.89 0.83 0.75 0.95 0.95 0.92 0.86 0.75
0.87 0.85 0.84 0.75 0.66 0.89 0.87 0.85 0.77 0.67
0.76 0.74 0.71 0.64 0.61 0.74 0.74 0.70 0.63 0.57
0.64 0.61 0.56 0.57 0.53 0.56 0.56 0.54 0.50 0.47
0.46 0.43 0.43 0.44 0.41 0.31 0.30 0.30 0.28 0.25
+0.02 £0.01 £0.02 +0.02 40.07 +0.01 £0.01 +0.02 +0.02 40.05
+0.02 £0.01 £0.01 £0.04 £0.10 +0.02 £0.03 £0.03 +0.05 4+0.05
+0.02 £0.04 +£0.07 +0.03 +0.05 +0.04 £0.04 +0.05 +0.06 +0.08
4+0.03 £0.03 £0.03 £0.07 +0.06 4+0.03 £0.04 £0.06 £0.03 +0.06
+0.02 £0.03 +£0.05 +0.06 +0.10 +0.03 +£0.04 +0.04 +0.03 40.07

Avg.

w0

o

o

= = | | | =
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=
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Inspecting the results in the tables, the following obvious questions come to
mind: What does exactly mean the fluctuation of accuracies? Why sometimes
is the accuracy highest with fewer channels/instances?. An important insight
from this paper is that more data is not necessarily more information, and that
irrelevant data from certain channels can affect the performance of classifiers
depending on the chosen task. Hence the channels selection approach depending
on task takes relevance.

4.1 Discussion

The experiments presented were carried out with fewer channels and instances.
However, to create a real machine-learning-based model will be necessary to
select the best instances to use in a real application. To select those instances
the greedy algorithm can be used, but depending on the task and the Subjects,
the instances can differ. This means that the selection of instances is Subject-
dependent.
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Table 2. Accuracies obtained with 8-NN in 5 different sessions using EMD and DWT.

{ EMD I DWT
Session Ch 30 20 10 5 3 Avg. 30 20 10 5 3 Avg.

14 0.86 0.87 0.88 0.80 0.64 0.81+o0.10 0.89 0.89 0.88 0.83 0.76 0.85+0.06
1 8 0.84 0.84 0.84 0.79 0.63 0.7940.09 0.85 0.85 0.84 0.82 0.75 0.82+0.04
4 0.79 0.79 [0.79 0.75 0.64 0.75+o0.06 0.75 0.75 0.76 0.73 0.68 0.73+o0.03
0.68 [0.68 0.67 0.66 0.60 0.66+0.03 0.60 0.57 0.60 0.56 0.40 0.55+0.08
0.51 0.51 0.53 [ 0.55 0.48 0.524+0.03 0.36 0.35 0.33 0.29 0.23 0.31+0.06
0.85 1 0.85 0.83 0.72 0.67 0.784+0.08 0.90 0.90 0.84 0.81 0.72 0.83+0.07
0.82 0.81 0.81 0.74 0.72 0.784+0.05 0.84 0.83 0.80 0.81 0.69 0.80+0.06
0.72 0.69 0.67 0.60 0.48 0.63+0.10 0.74 0.73 0.71 0.70 0.60 0.70+0.08
0.65 0.62 0.63 0.62 0.44 0.59+0.08 0.62 0.61 0.61 0.60 0.44 0.57+o0.08
0.48 10.49 0.48 0.48 0.40 0.46+0.04 0.34 0.33 0.36 0.42 0.25 0.34+0.06
0.87 10.88 0.83 0.78 0.72 0.81+0.07 0.89 0.88 0.86 0.80 0.65 0.81+0.10
0.82 10.82 0.77 0.73 0.69 0.77+0.06 0.84 0.83 0.80 0.74 0.55 0.75+0.12
0.71 10.72 0.69 0.69 0.53 0.67+0.08 0.66 0.65 0.63 0.62 0.45 0.60+0.09
0.63 0.59 0.58 0.55 0.53 0.58+0.04 0.52 0.52 0.48 0.50 0.37 0.48+0.06
0.52 0.51 0.44 0.40 0.32 0.444+o0.08 0.29 0.27 0.22 0.30 0.20 0.26+0.05
0.87 10.85 0.82 0.78 0.63 0.794+0.10 0.86 0.83 0.80 0.73 0.55 0.75+0.13
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In addition, the findings in the experiments suggest that EMD-based method
can be used for feature extraction. However, for a certain task, it will be necessary
to fix some problems related to the EMD method itself: the well-known mode-
mixing problem and explore and test possible solutions available in the state-of-
the-art to improve the methodology presented in this paper [26, 27].

5 Conclusions

In this paper, a comparison of EMD and DWT for Subject identification using
EEG recordings of resting-states, was presented. In addition, the new FlexEEG
Concept [16] was introduced and two of its main challenges were tackled: the use
of fewer EEG channels and fewer instances to obtain a competitive/unhackable
biometric system. In this paper and as a first attempt to reduce the number of
channels, the greedy algorithm, was tested. The results obtained are promising
and show that resting-states can be effectively used as a biometric marker for
subject identification. The experiments conducted on a dataset obtained with
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Table 3. Accuracies obtained with Gaussian naive Bayes in 5 different sessions using
EMD and DWT.

{ EMD I DWT
Session Ch 30 20 10 5 3 Avg. 30 20 10 5 3 Avg.

14 0.88 0.89 0.90 0.78 0.23 0.744+0.29 0.92 0.93 0.90 0.63 0.15 0.71+0.34
1 8 0.87 0.88/0.91 0.80 0.20 0.73+0.30 0.89 0.90 0.90 0.62 0.20 0.70+0.31
4 0.82 0.84 0.85 0.68 0.24 0.694+0.26 0.84 0.85 0.82 0.55 0.15 0.64+0.30
0.77 0.78 10.80 0.65 0.28 0.66+0.22 0.70 0.71 0.73 0.59 0.25 0.60+0.20
0.61 0.63  0.64 0.54 0.29 0.544+0.14 0.47 0.49 0.51 0.41 0.23 0.42+0.11
0.87 0.85 0.84 0.70 0.32 0.724+0.23 0.92 0.93 0.90 0.64 0.31 0.74+o0.27
0.87 0.85 0.87 0.72 0.16 0.69+0.31 0.90 0.89 0.89 0.66 0.28 0.72+0.27
0.79 10.81 0.75 0.63 0.16 0.63+o0.27 0.79 0.82 0.80 0.61 0.32 0.67+0.21
0.75 0.74 0.72 0.62 0.25 0.624+0.21 0.70 0.70 0.70 0.57 0.25 0.58+0.19
0.60 0.57 0.58 0.52 0.25 0.5140.14 0.42 0.43 0.46 0.45 0.21 0.39+0.10
0.92 0.89 0.87 0.73 0.24 0.73+0.28 0.93 0.94 0.91 0.61 0.25 0.73+0.30
0.89 0.87 0.83 0.70 0.23 0.70+o0.28 0.89 0.90 0.87 0.62 0.27 0.71+0.27
0.82 0.80 0.76 0.64 0.17 0.64+0.27 0.75 0.74 0.69 0.56 0.25 0.60+0.21
0.75 0.72 0.68 0.60 0.27 0.604+0.20 0.60 0.59 0.53 0.49 0.17 0.48+0.18
0.60 0.59 0.51 0.46 0.21 0.474+o0.16 0.42 0.37 0.36 0.33 0.19 0.33+0.09
0.90 0.89 0.88 0.69 0.19 0.71+0.30 0.90 0.89 0.86 0.66 0.19 0.70+0.30
0.89 0.88 0.84 0.68 0.17 0.694+0.30 0.86 0.86 0.85 0.62 0.19 0.68+0.29
0.81 10.81 0.75 0.62 0.21 0.644+0.25 0.75 0.75 0.74 0.54 0.20 0.60+0.24
0.75 0.74 0.73 0.58 0.31 0.624+0.19 0.62 0.61 0.59 0.42 0.21 0.49+0.17
5 0.51+0.15 0.39 0.41 0.39 0.31 0.16 0.33+0.10
0.89 0.88 0.84 0.54 0.20 0.67+0.30 0.88 0.90 0.85 0.62 0.11 0.67+0.34
0.88 10.89 0.85 0.58 0.23 0.694+0.29 0.85 0.87 0.85 0.67 0.15 0.68+0.31
0.83 10.83 0.80 0.58 0.19 0.64+0.28 0.76 0.76 0.74 0.62 0.21 0.62+0.23
0.78 0.77 0.76 0.57 0.28 0.63+0.21 0.62 0.63 0.60 0.44 0.20 0.50+0.18
0.63 10.65 0.62 0.51 0.31 0.544+0.14 0.45 0.46 0.46 0.38 0.27 0.40+0.08
0.89 0.88 0.87 0.69 0.23 0.91 0.92 0.88 0.63 0.20
0.88 0.87 0.86 0.70 0.20 0.88 0.88 0.87 0.64 0.22
0.81 0.82 0.78 0.63 0.19 0.78 0.79 0.76 0.58 0.23
0.76 0.75 0.74 0.60 0.28 0.65 0.65 0.63 0.50 0.22
0.61 0.61 0.59 0.50 0.26 0.43 0.43 0.44 0.37 0.21
+0.02 £0.02 £0.02 +0.09 4+0.05 +0.02 £0.02 £0.03 +0.02 40.08
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an EMOTIV EPOC EEG device were reproduced by gradually reducing the
number of channels and instances, in the first attempt towards a low-cost EEG-
based subject identification. The relatively high accuracies obtained with fewer
channels indicate a promising potential towards the FlexEEG concept.

When the methods based on EMD and DWT were compared, the difference
in performance increases when using less information. EMD shows a robust and
powerful property for feature extraction especially when fewer instances and
fewer channels are used. This finding suggests that combining brain signals dur-
ing resting-states with the use of EMD and the Gaussian naive Bayes classifier
for low-density EEG, can materialize in a valuable biometric system based on a
low-cost EEG-device.

A limitation of the method is that the use of the proposed method will
require to find the smallest number of channels and instances to obtain similar
accuracies as with high-density EEG. In general, a drastic fall of accuracy is
observed from 10 to 5 instances and from 2 (or even 4) to 1 channel. In the
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future, alternative approaches will be tested for channel selection to improve the
performance obtained in these experiments.

Since the focus of this work is the use of EEG-recordings in real-time applica-
tions, it is necessary to analyze the computational complexity of the algorithms
used to process a signal of size (IV): In the case of DWT is O(N log o N) [25], and
for EMD O(N log N) [28]. Recently, the real-time implementation of EMD has
been reported by some authors [29, 30], and among the challenges anticipated,
techniques to distribute the computation and memory, and considerations about
the benefits of cloud computing [5,31] have been discussed.

Future efforts will be directed towards the use of Multivariate Empirical
Mode Decomposition [32] which is aimed at multichannel data analysis, but can
also be explored for channel selection taking into account the findings of this
work.

Acknowledgments. This work was supported by Enabling Technologies -
NTNU, under the project “David versus Goliath: single-channel EEG unrav-
els its power through adaptive signal analysis - FlexEEG”.
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