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Abstract

In this paper, the optimal filtering problem for incom-
pletely measured polynomial system states over linear ob-
servations is treated proceeding from the general expression
for the stochastic Ito differential of the optimal estimate and
the error variance. In contrast to the previous works, the
nonlinear polynomial states are allowed to be unmeasured
in this problem. The procedure for obtaining a closed sys-
tem of the filtering equations for any polynomial state over
linear observations is then established, which yields the ex-
plicit closed form of the filtering equations in the particular
case of a bilinear state equation. In the example, perfor-
mance of the designed optimal filter is verified against a
conventional extended Kalman-Bucy filter.1

1 Introduction

This paper presents the optimal finite-dimensional filter
for incompletely measured polynomial system states over
linear observations with an arbitrary, not necessarily invert-
ible, observation matrix, thus generalizing the results of
([3, 2]). In contrast to [3], the nonlinear polynomial states
are allowed to be unmeasured in this framework, whereas
only linear unmeasurable components of polynomial states
are allowed in [3]. This significantly complicates solution
of the optimal filtering problem, since the direct derivation

1The authors thank the US National Science Foundation (NSF) and
the Mexican National Science and Technology Council (CONACyT) for
financial support under Grants CTS-0117300 and 39388-A, 52953-A, re-
spectively.

of the filtering equation from the Ito differentials, employed
in ([3, 2]), is no longer possible, and a transformation of the
original filtering system should first be conducted.

The optimal filtering problem is treated proceeding from
the general expression for the stochastic Ito differential of
the optimal estimate and the error variance [4]. As the first
result, the Ito differentials for the optimal estimate and error
variance corresponding to the stated filtering problem are
derived. Next, a transformation of the observation equation
is introduced to reduce the original problem to the previ-
ously solved one with an invertible observation matrix [2].
The procedure for obtaining a closed system of the filtering
equations for any polynomial state over linear observations
is then established, which yields the explicit closed form
of the filtering equations in the particular case of a bilin-
ear state equation. In the illustrative example, performance
of the designed optimal filter is verified for a quadratic bi-
dimensional state over linear observations against a conven-
tional extended Kalman-Bucy filter, which is still the most
common tool for obtaining suboptimal estimates for non-
linear system states. The simulation results show a definite
advantage in favor of the designed optimal filter.

2 Filtering Problem for Incompletely Mea-
sured Polynomial States

Let (W,F,P) be a complete probability space with an
increasing right-continuous family of s -algebras Ft , t ≥ t0,
and let (W1(t),Ft , t ≥ t0) and (W2(t),Ft , t ≥ t0) be indepen-
dent Wiener processes. The Ft -measurable random process
(x(t),y(t)) is described by a nonlinear differential equation
with both polynomial drift and diffusion terms for the sys-
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tem state

dx(t) = f (x, t)dt +b(t)dW1(t), x(t0) = x0, (1)

and a linear differential equation for the observation process

dy(t) = (A0(t)+A(t)x(t))dt +B(t)dW2(t). (2)

Here, x(t)∈ Rn is the state vector and y(t)∈ Rm is the linear
observation vector, m ≤ n. The initial condition x0 ∈ Rn is
a Gaussian vector such that x0, W1(t) ∈ Rp, and W2(t) ∈ Rq

are independent. In contrast to the previously obtained re-
sults (see [2]), the observation matrix A(t) ∈ Rm×n is not
supposed to be invertible or even square. It is assumed that
B(t)BT (t) is a positive definite matrix, therefore, m≤ q. All
coefficients in (1)–(2) are deterministic functions of appro-
priate dimensions.

The nonlinear function f (x, t) is considered polynomial
of n variables, components of the state vector x(t)∈Rn, with
time-dependent coefficients. Since x(t)∈ Rn is a vector, this
requires a special definition of the polynomial for n > 1.
In accordance with [2], a p-degree polynomial of a vector
x(t) ∈ Rn is regarded as a p-linear form of n components of
x(t):

f (x, t) = a0(t)+a1(t)x+ . . .+ap(t)x . . .p times . . .x, (3)

where a0(t) is a vector of dimension n, a1 is a matrix of
dimension n×n, a2 is a 3D tensor of dimension n×n×n, ap

is an (p+1)D tensor of dimension n× . . .(p+1) times . . .×n,
and x× . . .p times . . .× x is a pD tensor of dimension n×
. . .p times . . .× n obtained by p times spatial multiplication
of the vector x(t) by itself.

The estimation problem is to find the optimal estimate
x̂(t) of the system state x(t), based on the observation pro-
cess Y (t) = {y(s), t0 ≤ s≤ t}, that minimizes the Euclidean
2-norm J = E[(x(t)− x̂(t))T (x(t)− x̂(t)) | FY

t ] at every time
moment t. Here, E[z(t) |FY

t ] means the conditional expecta-
tion of a stochastic process z(t) = (x(t)− x̂(t))T (x(t)− x̂(t))
with respect to the s - algebra FY

t generated by the obser-
vation process Y (t) in the interval [t0, t]. As known [4],
this optimal estimate is given by the conditional expecta-
tion x̂(t) = m(t) = E(x(t) | FY

t ) of the system state x(t) with
respect to the s - algebra FY

t generated by the observation
process Y (t) in the interval [t0, t]. As usual, the matrix func-
tion P(t) = E[(x(t)−m(t))(x(t)−m(t))T | FY

t ] is the esti-
mation error variance.

3 Optimal Filter for Incompletely Measured
Polynomial States

The following non-closed system of the optimal filtering
equations is obtained using the formula for the Ito differen-
tial of the conditional expectation m(t) = E(x(t) | FY

t ) ([4])

dm(t) = E( f (x, t) | FY
t )dt +P(t)AT (t)(B(t)BT (t))−1×

(dy(t)− (A0(t)+A(t)m(t))dt). (4)

dP(t) = (E((x(t)−m(t))( f (x, t))T | FY
t )+

E( f (x, t)(x(t)−m(t))T ) | FY
t )+

+b(t)bT (t)−P(t)AT (t)(B(t)BT (t))−1A(t)P(t))dt+

E(((x(t)−m(t))(x(t)−m(t))(x(t)−m(t))T | FY
t )×

AT (t)(B(t)BT (t))−1(dy(t)−A(t)m(t))dt). (5)

The equation (4) and (5) should be complemented with
the initial conditions m(t0) = E(x(t0) | FY

t0 ) and P(t0) =
E[(x(t0)−m(t0)(x(t0)−m(t0)T | FY

t0 ].
The equations (4) and (5) for the optimal estimate m(t)

and the error variance P(t) form a non-closed system of the
filtering equations. As shown in [2], a closed system of
the filtering equations for a system state (1) with polyno-
mial drift and state-independent diffusion over linear obser-
vations can be obtained, if the observation matrix A(t) is
invertible for any t ≥ t0. Since the observation matrix A(t)
in (2) is not necessarily invertible, the following transfor-
mations are introduced.

First, note that the matrix A can always be assumed a
matrix of complete rank, m, which is equal to the dimen-
sion of the linearly independent observations y(t) ∈ Rm; if
not so, excessive linearly dependent observations, corre-
sponding to linearly dependent rows of the matrix A, must
be removed from consideration. In doing so, the number
of Wiener processes in the observation equations can also
be reduced to m, the dimension of independent observa-
tions, by summarizing and re-numerating the Wiener pro-
cesses in each observation equation (2). Therefore, the
matrix B can always be assumed a square matrix of di-
mension m×m, such that B(t)BT (t) is a positive definite
matrix (see Section 2 for this condition). Next, the new
matrices Ā(t) and B̄(t) are defined as follows. The ma-
trix Ā(t) ∈ Rn×n is obtained from A(t) ∈ Rm×n by adding
n−m linearly independent rows such that the resulting ma-
trix Ā(t) is invertible. The matrix B̄(t) ∈ Rn×n is made from
the matrix B(t) ∈ Rm×m by placing B(t) in the upper left
corner of B̄(t), defining the other n−m diagonal entries of
B̄(t) equal to infinity, and setting to zero all other entries
of B̄(t) outside the main diagonal or outside the subma-
trix B(t). In other words, B̄(t) = diag[B(t),b I(n−m)×(n−m)],
where b = ¥, and I(n−m)×(n−m) is the identity matrix of di-
mension (n−m)×(n−m). Thus, the new observation equa-
tion is given by

ȳ(t) = (Ā0(t)+ Ā(t)x(t))dt + B̄(t)dW2(t), (6)

where ȳ(t) ∈ Rn, Ā0(t) = [AT
0 (t),0n−m]T ∈ Rn, and 0n−m is

a vector of n−m zeros.
The key point of the introduced transformation is that

the new observation process ȳ(t) is physically equivalent to
the old one y(t), since the fictitious last n−m components
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of ȳ(t) consist of pure noise in view of infinite intensities of
white Gaussian noises in the corresponding n−m equations,
and the first m components of ȳ(t) coincide with y(t). In
addition, the entire observation matrix Ā(t) is invertible, and
the matrix (B̄(t)B̄T (t))−1 ∈ Rn×n exists and equals to the
n×n – dimensional square matrix, whose upper left corner
is occupied by the submatrix (B(t)BT (t))−1 ∈ Rm×m and all
other entries are zeros.

In terms of the new observation equation (6), the filtering
equations (4) and (5) take the form

dm(t) = E( f (x, t) | FY
t )dt +P(t)ĀT (t)(B̄(t)B̄T (t))−1

(dȳ(t)− (Ā0(t)+ Ā(t)m(t))dt), (7)

dP(t) = (E((x(t)−m(t))( f (x, t))T | FY
t )+

E( f (x, t)(x(t)−m(t))T ) | FY
t )+

+b(t)bT (t)−P(t)ĀT (t)(B̄(t)B̄T (t))−1Ā(t)P(t))dt+

E(((x(t)−m(t))(x(t)−m(t))(x(t)−m(t))T | FY
t )×

ĀT (t)(B̄(t)B̄T (t))−1(dȳ(t)− Ā(t)m(t))dt). (8)

Since the new observation matrix Ā(t) is invertible for
any t ≥ t0, the random variable x(t)−m(t) is conditionally
Gaussian with respect to the observation process y(t) for
any t ≥ t0 (see [2]). Hence, the technique for represent-
ing the superior conditional moments of x(t)−m(t), based
on the properties of Gaussian variables, is applicable to ob-
taining a closed system of the filtering equations for any
polynomial function f (x, t) in (1) (see [2] for more sub-
stantiation and details of this technique). In doing so, the
following variance equation is obtained

dP(t) = (E((x(t)−m(t))( f (x, t))T | FY
t )+

E( f (x, t)(x(t)−m(t))T ) | FY
t )+

b(t)bT (t)−P(t)ĀT (t)(B̄(t)B̄T (t))−1Ā(t)P(t))dt. (9)

Finally, in view of definition of the matrices Ā(t) and
B̄(t) and the new observation process ȳ(t), the filtering
equations (7),(9) can be written again in terms of the origi-
nal observation equation (2) using y(t), A(t), and B(t)

dm(t) = E( f (x, t) | FY
t )dt +P(t)AT (t)(B(t)BT (t))−1×

(dy(t)− (A0(t)+A(t)m(t))dt), (10)

dP(t) = (E((x(t)−m(t))( f (x, t))T | FY
t )+

E( f (x, t)(x(t)−m(t))T ) | FY
t )+b(t)bT (t)−

P(t)AT (t)(B(t)BT (t))−1A(t)P(t))dt, (11)

with the initial conditions m(t0) = E(x(t0) |FY
t0 ) and P(t0) =

E[(x(t0)−m(t0)(x(t0)−m(t0)T | FY
t0 ].

In the next subsection, a closed form of the filtering
equations will be obtained from (10) and (11) for a bilin-
ear function f (x, t) in the equation (1). It should be noted,
however, that application of the same procedure would re-
sult in designing a closed system of the filtering equations
for any polynomial function f (x, t) in (1).

3.1 Optimal Filter for Bilinear States

Let the function

f (x, t) = a0(t)+a1(t)x+a2(t)xxT (12)

be bilinear polynomial, where x is an n-dimensional vec-
tor, a0(t) is an n-dimensional vector, a1(t) is n× n - ma-
trices, a2(t) is 3D tensor of dimension n× n× n. In this
case, the representations for E( f (x, t) | FY

t ) and E((x(t)−
m(t))( f (x, t))T | FY

t ) as functions of m(t) and P(t) are de-
rived as follows (see [2])

E( f (x, t) | FY
t ) = a0(t)+a1(t)m(t)

+a2(t)m(t)mT (t)+a2(t)P(t), (13)

E( f (x, t)(x(t)−m(t))T ) | FY
t )+

E((x(t)−m(t))( f (x, t))T | FY
t ) = a1(t)P(t)+P(t)aT

1 (t)+

2a2(t)m(t)P(t)+2(a2(t)m(t)P(t))T . (14)

Substituting the expression (13) in (10) and the expres-
sion (14) in (11), the filtering equations for the optimal es-
timate m(t) and the error variance P(t) are obtained

dm(t) = (a0(t)+a1(t)m(t)+a2(t)m(t)mT (t)+ (15)

a2(t)P(t))dt +P(t)AT (t)(B(t)BT (t))−1[dy(t)−A(t)m(t)dt],

m(t0) = E(x(t0) | FY
t )),

dP(t) = (a1(t)P(t)+P(t)aT
1 (t)+

2a2(t)m(t)P(t)+2(a2(t)m(t)P(t))T +

b(t)bT (t))dt−P(t)AT (t)(B(t)BT (t))−1A(t)P(t)dt. (16)

P(t0) = E((x(t0)−m(t0))(x(t0)−m(t0))T | FY
t )).

4 Example

This section presents an example of designing the op-
timal filter for a quadratic bi-dimensional state over scalar
linear observations and comparing it to a conventional ex-
tended Kalman-Bucy filter, which is still the most common
tool for obtaining suboptimal estimates for nonlinear sys-
tem states.

Let the bi-dimensional real state x(t) satisfy the
quadratic-linear system

ẋ1(t) = x2(t), x1(0) = x10, (17)

ẋ2(t) = 0.1x2
2(t)+y1(t), x2(0) = x20,

and the scalar observation process be given by the linear
equation

y(t) = x1(t)+y2(t), (18)
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where y1(t) and y2(t) are white Gaussian noises, which
are the weak mean square derivatives of standard Wiener
process (see [4]). The equations (17),(18) present the con-
ventional form for the equations (1),(2), which is actually
used in practice [1].

The filtering problem is to find the optimal estimate for
the quadratic state(17), using incomplete linear observa-
tions (18) corrupted with independent and identically dis-
tributed disturbances modeled as white Gaussian noises.
Since the solution of (17) goes to infinity at T = 7.87, the
filtering horizon time is set to T = 7.85.

The filtering equations (15),(16) take the following par-
ticular form for the system (17),(18)

ṁ1(t) = m2(t)+P11(t)[y(t)−m1(t)], (19)

ṁ2(t) = 0.1m2
2 +0.1P22(t)+P12(t)[y(t)−m1(t)],

with the initial condition m(0) = E(x(0) | y(0)) = m0,

Ṗ11(t) = 2P12(t)−P2
11(t), (20)

Ṗ12(t) = P22(t)+0.2m2(t)P12(t)−P11(t)P12(t),

Ṗ22(t) = 1+0.4m2(t)P22(t)−P2
12(t),

with the initial condition P(0) = E((x(0)−m(0))(x(0)−
m(0))T | y(0)) = P0.

The estimates obtained upon solving the equations (19)–
(20) are also compared to the estimates satisfying the fol-
lowing extended Kalman-Bucy filtering equations for the
quadratic-linear state (17) over the incomplete linear obser-
vations (18), which are obtained using the direct copy of the
state dynamics (17) in the estimate equation and assigning
the filter gain as the solution of the Riccati equation for the
linearized system:

ṁK1(t) = mK2(t)+PK11(t)[y(t)−mK1(t)], (21)

ṁK2(t) = 0.1m2
K2 +0.1PK22(t)+PK12(t)[y(t)−mK1(t)],

ṖK11(t) = 2PK12(t)−P2
K11(t), (22)

ṖK12(t) = PK22(t)+0.2PK12(t)−PK11(t)PK12(t),

ṖK22(t) = 1+0.4PK22(t)−P2
K12(t),

with the same initial conditions m0 and P0.
For each of the two filters (19)–(20) and (21)–(22), and

the reference system (17)–(18), involved in simulation, the
following initial values are assigned: x1(0) = 1.1, x2(0) =
1.1, m1(0) = 10.1, m2(0) = 10.1, P11(0) = 10, P12(0) =
1, P22(0) = 10. Gaussian disturbances y1(t) and y2(t) in
(17),(18) are realized using the built-in MatLab white noise
function.

The following graphs are obtained: graphs of the errors
between the the reference state components x1(t) and x2(t),
satisfying the equations (17), and the optimal filter estimate

components m1(t) and m2(t), satisfying the equations (19),
are shown in Fig. 1; and graphs of the errors between the
the reference state components x1(t) and x2(t), satisfying
the equations (17), and the extended Kalman-Bucy filter es-
timate components mK1(t) and mK2(t), satisfying the equa-
tions (21), which are not shown. It can be observed that
the error given by the optimal filter estimate (19) rapidly
reaches and then maintains the zero mean value even in a
close vicinity of the asymptotic time point T = 7.87, where
the reference state (17) goes to infinity. On the contrary, the
estimation errors given by the extended Kalman-Bucy filter
behave unstably and diverge to infinity almost immediately
at T = 0.68.
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Figure 1. Graph of the error between the real
states x1(t), x2(t) (17) and the optimal filter es-
timates m1(t), m2(t) (19), respectively, in the
interval [0,7.84].

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 15, 2009 at 06:49 from IEEE Xplore.  Restrictions apply.


