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Abstract

The thesis deals with the problem of output-feedback position tracking control of
an electro-pneumatic actuator. The considered application is a single-acting pneu-
matic cylinder operated by a three-way proportional valve, which is used for clutch
actuation in automated manual transmissions (AMT), and clutch-by-wire (CBW)
solutions on heavy-duty trucks.
The high compressibility of air in combination with nonlinear flow and friction

characteristics, complicate the control design. Moreover, the pneumatic actuator
operates against a highly nonlinear clutch compression spring which constitutes the
main load of the actuator. These strong nonlinearities in the system motivates
the use of nonlinear control techniques which are capable of explicitly handling
nonlinearities. An additional requirement, which further complicate the design, is
that only the position is measured and available for feedback control, i.e., an output-
feedback control problem must be solved.
A literature study on the modeling and control of electro-pneumatic actuators,

reveals that particular properties of existing models exclude the application of ex-
isting output-feedback solutions available in the nonlinear control literature. This
work provides a unified treatment of the modeling of electro-pneumatic actuators
in the context of nonlinear and adaptive control, and introduces some modifications
which makes the resulting design model applicable for solutions available for output-
feedback control of nonlinear systems. In particular, improved models of the flow
rate of flow control valves are proposed.
The modeling work is summarized in a 6th-order dynamic model of the electro-

pneumatic clutch actuator, consisting of the actuator position, velocity, friction
(seal) deflection, pressures of both chambers, and the valve spool position, as dy-
namic states. The resulting model is fully feedback linearizable with relative degree
four, and can thus be expressed in input-output form where constructive procedures
for (adaptive) output-feedback control utilizing high-gain observers are available.
Furthermore, the model is in pure-feedback form, which makes it applicable for a
nonlinear state-feedback control design by a backstepping approach, and for output-
feedback control by an observer-based backstepping approach, provided that an as-
ymptotic observer is available. In this thesis, the latter approach is pursued in the
design of an output-feedback tracking controller for the electro-pneumatic system.
It is shown that the model of the unmeasured states can be used as an open-

loop nonlinear observer for the electro-pneumatic actuator. Analyzing the stability
properties of this open-loop observer, which does not include the unstable integrator
of the position y, it is shown to be asymptotically stable, which again establishes
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the detectability property of the system. This shows that pneumatic actuators
have some inherent stability properties which enable the design of simple nonlinear
observers.
Based on this results, two nonlinear observers are proposed, where both are com-

patible with output-feedback control by an observer-based backstepping approach:
a full-order observer and a simpler reduced-order observer. The observers combine
closed-loop estimation with linear output-injection terms for the estimation of the
main states and open-loop estimation of the remaining states. The observers are
asymptotically stable as long as the estimated states remain within the region of
validity of the model.
As a robust re-design of the observers, smooth saturation of the state estimates

is introduced to constrain the observer dynamics to the feasible region of the state-
space, by which ensures global uniform stability properties even if the unsaturated
observer states enter the non-feasible region in state-space during initial transients.
The differentiability of the introduced smooth saturation ensures compatibility with
observer backstepping. The initial transients of the observer are further improved
by projecting its non-saturated observer states by a discontinuous projection to a
small boundary layer around the region of normal operation. Since the discontinu-
ous projection is only active for estimates which are fully saturated, the smoothness
of the saturated estimates is preserved. Hence, a control law can be designed by a
backstepping approach using the observer with saturated estimates, and then im-
plemented using the observer with combined saturation and projection, without
introducing discontinuities in the control input, thus, preserving the stability prop-
erties of the closed-loop system. The performance of the observers are validated by
simulations, and experimentally on the test rig.
Based on the reduced-order observer, a robust output-feedback tracking con-

troller is designed by a recursive observer-based backstepping procedure in four
steps. An alternative approximate backstepping design is also presented, where the
backstepping procedure is simplified for the last two steps using high-gain observers
to estimate, rather than calculate analytically, the derivative of the stabilizing func-
tion designed at the previous step. Theoretically, the (approximate) backstepping
controller achieves exponential (practical) tracking according to a prescribed track-
ing precision, which can be made arbitrary accurate by sufficiently high feedback
gain in the observer and controller.
The output-feedback backstepping controller can be tuned using four main design

parameters: The observer gains are set according to the design bandwidth λo, and
the feedback gains and scaling of control law according to the two parameters cc
and νc. The parameters of the reference model are determined according to a design
bandwidth λr, which can be viewed as the design bandwidth of the closed-loop
tracking controller since it determines the time-constant τ r of the tracking of the
reference input r.
A main strength of the output-feedback backstepping controller, is the high

tracking performance achieved experimentally. The experimental results shows that
the maximum achievable bandwidth of the controller is limited by unmodeled valve
dynamics. The controller achieves accurate tracking of the filtered reference tra-
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jectory yr for arbitrary reference inputs r, provided that the bandwidth is chosen
according to λr < 50. This corresponds to a time-constant of τ r = 0.100 s for this
5th-order reference model. For comparison, what is achievable using a properly
tuned PID controller while requiring the same accuracy, is tracking according to a
time-constant of τ r = 1.500 s.





Preface

This doctoral thesis is based primarily on research conducted in the period December
1999 through March 2003, when I held a research scholarship as a PhD candidate,
partially funded as part of a research project through the VARP program by the
Norwegian Research Council and by Kongsberg Automotive ASA (KA), in coop-
eration with the Norwegian University of Science and Technology (NTNU), and
Telemark University College (HiT).
My research has included work on different types of prototype pneumatic clutch

actuators and valve configurations, and experimental testing has been conducted
both in the laboratory and with in-vehicle implementations. For inclusion in this
thesis, I have focused on an actuator configuration using a proportional valve, and
all experimental results and simulations presented in this thesis are related to a
particular application; a pull-type prototype actuator mounted on a test rig clutch
at the laboratory at Kongsberg Automotive.
I have chosen to focus on a configuration using a proportional valve, and not

multiple pairs of on-off valves, which is the most cost-effective solution for series
production. This choice has been made of two main reasons: The first is that the
use of a proportional valve (or servo valve) is the most common configuration for
electro-pneumatic servo systems in general. Hence, by considering a proportional
valve configuration, it makes the results on the modeling and control of the clutch
actuation system presented in this thesis, more generalized, as they readily carry over
to a wide range of applications of electro-pneumatic actuators using proportional
or servo valves. The second reason, which perhaps is more important, is that KA’s
industrialized solution using on-off valves has not yet been set into series production.
Hence, in order to let KA be the first to bear the fruits from my efforts in this area,
I have decided to postpone the publication of the results with on-off valves, which in
many ways are extensions of the results obtained using a proportional valve. Of this
reason, I have also decided not to include in the thesis, the results from adaptive
designs, where the parameters of the clutch load characteristic are estimated on-line
by the output-feedback controller.
In the writing of this thesis, I have adopted an informal and personal style from

the US that I have come to like, but which is somewhat uncommon for Ph.D. theses
in Europe. This means that I often write in plural form using the personal pronoun
’we’ when describing work and results which are entirely my own.
Several people have contributed to this research in different ways. First of all,

I would like to thank my advisors Professor Peter J. Chapple at Department of
Energy and Process Engineering, NTNU, and Professor Bernt Lie at Department of
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Electrical Engineering, Information Technology, and Cybernetics, HiT. I am grateful
for their dedicated interest in my research. I would like to thank Bernt, in particular,
for thorough and valuable feedback on my work, and for help with arranging my
research stay in the US.
During my doctoral work, I have been affiliated with the Cybernetics Research

Group (CyneRG) at HiT, led by Bernt Lie, together with Bernt’s other Ph.D. stu-
dents, Tor Anders (with whom I shared office), Marta, and Beathe. Thank you all
for a rewarding time, both professionally and personally.
I am thankful to Professor Brad Paden at University of California, Santa Bar-

bara (UCSB) for inviting me for a research stay the first half of 2002 – a visit which
has greatly influenced my work. Particularly, am I grateful to Professor Petar V.
Kokotovíc at UCSB, who through his encouraging and enthusiastic lecturing in his
adaptive control courses, opened a door into the exciting world of nonlinear and
adaptive control. This has had a strong influence on my work, and has definitively
brought my understanding of control theory to a higher level. I would also like to
thank my fellow students from the laboratory at Engineering II at UCSB and Pro-
fessor Kokotovíc’s courses: Lasse, Ove, Niklas, Makan, Mihailo, Yonggang, Dragan,
Emre, Aruna, and all of you who contributed to make my stay an unforgettable
memory.
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with Professor Masanori Takahashi at Ariake National College of Technology in
Japan, applying his results in adaptive control to the pneumatic clutch system, which
resulted in a joint publication for the AdCONIP’02 conference in Japan, 2002. Also,
Professor Per-Åge Krogstad at Department of Applied Mechanics, Thermodynamics
and Fluid Dynamics, NTNU, is thanked for taking the time to review some of my
work on flow modeling. Furthermore, I owe a thank to the staff at the library at HiT,
particularly Patricia Floor, for excellent help with obtaining various literature for
my research, and Per Bjørnaas at NTNU, for support whenever my laptop seemed
to fail me.
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cluded the writing of the thesis. I am indebted to my colleagues at KA for providing
a stimulating work environment, and for letting me draw from their well of knowl-
edge. Particularly, I would like to thank Inge André Haraldstad Johansen, previous
fellow student at NTNU, now colleague, and Morten Gunnerud, also colleague at
the R&D group at KA. Thanks should also go to Olav Volldal, CEO at KA, and
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sacrifices she has made during periods when there has been much work and little
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Notation

For time-varying variables, like inputs, outputs, and states, the time-argument t
is generally dropped, except when time-dependence should be emphasized, or it
is unclear from the context. Function arguments are often dropped whenever no
confusion might occur, and sometimes they are replaced by a dot, like e.g. f (·)
instead of f (x1, x2, x3), to indicate dependence on arguments.
Bold font types are used for vectors and matrices to distinguish from scalars. For

vectors, the inequality operators (>, ≥, <, ≤), means an elementwise application,
i.e., [a, b, c]T < [2, 6, 11]T ⇐⇒ a < 2 ∧ b < 6 ∧ c < 11. Similarly, the inverse
operator (x−1) refers to application to each element when applied to a vector, i.e.,
x−1 = [x−11 , x−12 , · · · , x−1n ]T . Furthermore, we let the operator × denote elementwise
multiplication, for example for the vectors x,y ∈ Rn, we have

q = x× y = [x1y1, x2y2, · · · , xnyn]T , (1)

where q ∈ Rn.

Signal measures
For a scalar x ∈ R, the operator |·| denotes the absolute value. For a vector x ∈ Rn,
we let |x| denote the c2 (Euclidian) vector norm, defined below. The c1 norm is
defined as

|x|1 , |x1|+ · · ·+ |xn| , (2)

the c2 (Euclidean) norm as

|x|2 ,
q
x21 + · · ·+ x2n, (3)

and the c∞ norm as
|x|∞ , max

1≤i≤n
|xi| . (4)

The weighted Euclidian (Frobenius) norm is defined as

|x|P ,
√
xTPx (5)

where P is a weighting matrix.
We let kx (t)k1, kx (t)k2, and kx (t)k∞ denote, respectively, the L1, L2, and L∞

norms which are used to characterize upper bounds on a time-varying vector signal
x (t) ∈ Rn. The L1 norm is defined as

kx (t)k1 ,
Z ∞

0

|x (t)|1 dt =
Z ∞

0

(|x1 (t)|+ · · ·+ |xn (t)|) dt, (6)
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the L2 norm as

kx (t)k2 ,
Z ∞

0

|x (t)|2 dt =
Z ∞

0

q
x1 (t)

2 + · · ·+ xn (t)
2dt, (7)

and the L∞ norm as

kx (t)k∞ , sup
t≥0
|x (t)|∞ = sup

t≥0
max
1≤i≤n

|xi (t)| . (8)

If kx (t)k1 exists, i.e., it is finite, we say that x (t) is integrable, if kx (t)k2 exists,
x (t) is square integrable, and if an upper bound kx (t)k∞ exists, x (t) is bounded.

Terminology

Some commonly used expressions from the modeling and control terminology (and
the meaning in which the author make use of them), are summarized below:

affine: An expression f (x, y) is said to be affine in its variable x, if it is a linear
function of x, i.e., f (x, y) = g (y) · x. Furthermore, we say that f (x, y) is
piecewise affine in x, if it is a piecewise linear function of x. The notation
is extended to the multivariable case. We say that an expression f (x,θ) is
parameter-affine if it is linear in its parameter vector θ ∈ Rp, i.e., f (x,θ)
= g1 (x) θ1 + · · ·+ gp (x) θp = g (x)

T θ.

Hurwitz matrix: A square real matrix is Hurwitz if all its eigenvalues have nega-
tive real parts, i.e., a linear system ẋ = Ax, where A is Hurwitz, is exponen-
tially stable.

matching condition: A term (function, uncertainty, etc.) is said to satisfy the
matching condition if it is in the range of the control input, that is, it enters in
the state equation at the same point as the control input, making it possible
to directly cancel it by the control.

mechanistic: We use the word mechanistic in the meaning “based on the common
laws of nature”, i.e., we refer to a model as mechanistic, when it is based on
physical laws, with parameters of physical meaning. In this sense, mechanis-
tic is the antonym to empirical, since an empirical model refers to a model
based merely on observations rather than theory (or physical laws), where the
parameters in general have no physical interpretation.

output-feedback: By output-feedback control we refer to the case when only the
output is available for feedback to the controller, i.e., only the output is mea-
sured. By state-feedback control (or partial state-feedback control), we refer
to the case when all the states of the dynamic system (or some of them) are
measured, thus, available for feedback to the controller.
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parametrization: A parametrization of a function refers to a mathematical ex-
pression of the function in terms of variables and parameters (i.e., not a look-
up table). When a function is expressed in a parameter-affine form, it is
referred to as linear parametrization. For example, a 2nd-order polynomial
f (x) = a0+a1x+a2x

2, is a linear parametrization of the function f (x) in the
parameters a0, a1, and a2.

smooth: We use the term smooth to indicate that a function is differentiable, i.e.,
a function f (x) is (sufficiently) smooth in x, if it is (sufficiently many times)
differentiable with respect to x. For example, the continuous function f (x) =
|x| has a non-smooth breakpoint for x = 0, thus, is not smooth, and its
derivative is undefined for x = 0.

tracking: By tracking we refer to the case when the objective of the controller
is to make the output y of the system track a time-varying reference tra-
jectory, e.g. given by zr , [yr, ẏr, · · · , y(n−1)r ]T . Tracking is thus a more
general (and difficult) control task than regulation (or stabilization), which
refers to the special case where the reference is a fixed set-point, i.e., simply
zr , [yr, 0, · · · , 0]T .



Mathematical symbols

For a compact notation, various mathematical symbols are used, summarized in the
table below.

Symbol Description, meaning
× elementwise multiplication operator
≡ identically equal
≈ approximately equal
, defined equal
∀ for all
→ tends to
∈ belongs to
∃ there exists
⊂ subset of
∧ and
∨ or

0m×n matrix of zeros of dimension m× n
λ (A) eigenvalue(s) of the matrix A

λmax (A) maximum eigenvalue of the matrix A
λmin (A) minimum eigenvalue of the matrix A
ej jth unit basis vector (e.g., e1 = [1, 0, · · · ]T )
x̂ estimate of x
ẋ , d

dt
(x), first-order time-derivative of x

ẍ , d2

dt2
(x), second-order time-derivative of x

x(n) , dn

dtn
(x), nth-order time-derivative of x

sgn (x) ,

⎧⎨⎩ 1, x > 0
0 x = 0
−1 x < 0

, signum function

sat (x) ,

⎧⎨⎩ 1, x > 1
x x ∈ [−1, 1]
−1 x < −1

, saturation function

dist (x,Ω) , infz∈Ω |x− z|, shortest distance from a point x to a set Ω
max (·) maximum
min (·) minimum
sup (·) supremum, the least upper bound
inf (·) infimum, the greatest lower bound
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Acronyms and abbreviations

A summary of some commonly used acronyms and abbreviations are given in the
table below.

Abbreviation Meaning
AMT Automated Manual Transmission
CBW Clutch-by-Wire

SISO Single-Input Single-Output
NN Neural Network
RBF Radial Basis Function
AS Asymptotically Stable
ES Exponentially Stable
ISS Input-to-State Stable
GUB Globally Uniformly Bounded
GUS Globally Uniformly Stable
GUAS Globally Uniformly Asymptotically Stable
GUES Globally Uniformly Expnentially Stable
CLF Control Lyapunov Function
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Chapter 1

Introduction

The topic of this doctoral thesis is the design of a tracking control system for electro-
pneumatic clutch actuation in heavy-duty trucks. This introductory chapter pro-
vides the background and an overview of the problem, a review of existing work in
the literature, and outlines how the problem has been solved in this thesis.
First, Section 1.1 describes the background for this project, and outlines its main

challenges. The next two sections provide a review of existing published work; Sec-
tion 1.2 on mathematical modeling of electro-pneumatic actuators, and Section 1.3
on control of electro-pneumatic actuators, also describing some applicable results
from nonlinear control theory not yet employed for control of pneumatic actuators.
An outline of the organization of the remaining parts of the thesis is given in Sec-
tion 1.4.

1.1 Background

1.1.1 Electro-pneumatic clutch actuation

An increasing demand for improved driving comfort has resulted in an increased
effort from vehicle manufacturers to develop cost-effective automated solutions. In
heavy-duty trucks, electro-pneumatic actuators are used to automate the clutch and
gear shift operation of manual transmissions with friction disc clutches. Such sys-
tems are usually referred to as automated manual transmissions (AMT). In heavy-
duty trucks, AMT systems are the preferred choice over automatic transmissions
with hydraulic clutches, mainly because automatic transmissions designed for high
torque transfer, are expensive, and have a considerable power loss compared to man-
ual transmissions. Furthermore, the possibility to electronically control the clutch
actuation – inherent in AMT systems – offers a higher degree of flexibility with
respect to engine and transmission control which can be used to reduce engine emis-
sions, fuel consumption, and minimize wear of clutch and transmission.
Because pressurized air is available on the truck, pneumatic actuators are the

preferable choice over hydraulic actuators (used in AMT systems on personal cars),
which would require an additional hydraulic power unit in order to provide the
necessary hydraulic pressure supply.

1



Compared to hydraulic actuators, pneumatic actuators are inherently difficult to
control, mainly due to the high compressibility and nonlinear flow characteristics of
air. The automation of the shift and select actuation of the gear box requires only
an on-off function, and is performed by simple open-loop control of the pneumatic
actuators, with the positioning of the actuator piston performed by mechanical
constraints. The automation of the clutch actuation, on the other hand, requires
both smooth and precise engagement and disengagement of the clutch in order to
assure smooth speed control, and low wear of the clutch and transmission. This
requires the control system to be able to perform high-performance tracking control
of the pneumatic actuator piston position. This is a particularly difficult control
task which is not properly accomplished in existing pneumatic clutch actuation
systems, which exhibit a relatively poor tracking performance primarily due to an
inability of the control system to properly compensate for the strong nonlinearities
in the system. Consequently, there lies a significant potential in utilizing advances in
nonlinear control theory in order to improve the tracking performance of pneumatic
clutch actuation systems.

1.1.2 Mathematical modeling

The design of a nonlinear control system for improved and robust tracking perfor-
mance of electro-pneumatic clutch actuation systems, requires a mathematical model
of the system which is suited for control design. The development of a model for
control design is always a compromise between accuracy and simplicity, i.e., in order
to minimize the complexity of the resulting control design the model should not be
more detailed than required by the specific control task. However, the model must
be accurate enough to make possible an observer design for reconstruction of the un-
measured states, and to provide precise feedforward compensation of nonlinearities.
In addition, the model should have certain mathematical properties which accom-
modate a nonlinear control design. The pneumatic system has a physical structure
which lets it be expressed in the so-called pure-feedback form in state-space, which
makes it applicable for a recursive integrator backstepping design. In order to make
the model suited for exact backstepping, the nonlinear functions – or nonlinearities
– in the model must be sufficiently differentiable (or smooth). Furthermore, it is
advantageous that uncertain nonlinearities in the model are linearly parametrizable
in order to facilitate parameter estimation, and make possible existing constructive
adaptive designs where the uncertain nonlinearities, i.e. the parameters of the non-
linear functions, are estimated on-line. In particular, this applies to the modeling
of the clutch compression spring – referred to as the clutch load characteristic –
which is a strongly nonlinear function of the actuator position, representing the most
significant nonlinearity in the system.
Existing models of specific system components and nonlinearities in electro-

pneumatic actuators are not well suited for the constructive methods currently
available for nonlinear and adaptive model-based control; that is, recursive designs
by a backstepping approach, or designs based on a transformation of the model to
an input-output form. In most applications where electro-pneumatic actuators are
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used, the model of the flow control valve constitutes the most important nonlinearity
in system. Existing models of flow control valves are either highly accurate models
developed for simulation which are too complex for control design; or simplified ex-
plicitly invertible models, which for many control valves provide less accuracy than
desired, and that are not differentiable. Furthermore, the friction–both in the
actuator and in the external load–constitutes another important nonlinearity in
the system which must be accurately modeled in order to achieve high-performance
tracking. The modeling of friction in pneumatic actuators has until recently been
limited to static models, which are inadequate for high-precision model-based con-
trol, because important dynamic properties of friction in pneumatic actuators are
then disregarded. Summarizing, in order to utilize recent advances in nonlinear
and adaptive control theory for improved control of electro-pneumatic actuators, a
required first step is the development of a model of the electro-pneumatic system
which is suited for nonlinear and adaptive control.

1.1.3 Control design

The primary objective of the control system is to achieve robust high-precision track-
ing control of the electro-pneumatic clutch actuator. The high compressibility of air
in combination with the strong inherent nonlinearities of electro-pneumatic actua-
tors – like the air flow characteristics and dynamic friction – makes the control
design a particularly difficult task. Additionally, in the clutch actuation application,
the electro-pneumatic actuator operates against a strongly nonlinear clutch compres-
sion spring, which is a static nonlinear function of the clutch position referred to
as the clutch load characteristic. This nonlinear function constitutes an additional,
and most significant, nonlinearity in the system, making high-performance tracking
control impossible without nonlinear compensation of some sort. This motivates the
application of nonlinear control techniques which are capable of explicitly handling
nonlinearities in the system.
An important and severe requirement for the control design, is that only the

position is measured and available for feedback control, as economic considerations
preclude the use of additional sensors to measure all, or some, of the remaining sys-
tem states. Consequently, in lack of full-state measurements, we pursue an output-
feedback design by following a state-variable approach which requires the synthesis
of an observer to reconstruct the unmeasured states for use by the control law.
An obvious and ultimate objective of the control system, is that it must be

robust in the sense that it effectively deals with uncertainties in the design model,
and attenuates possible disturbances, such as changes in the friction and clutch load
characteristic due to temperature changes, ageing, and wear of the clutch.
An additional desired objective of the control system, is that the controller should

be universal, in the sense that it should be able to perform high-performance tracking
control of the electro-pneumatic actuator with any type of clutch, without the need
of a manual change, or tuning, of its parameters. In essence, this most likely requires
the design of a self-tuning, or an adaptive controller, which is able to identify the
strongly nonlinear clutch load characteristic, either by an initialization routine after



assembling, or by on-line adaptation.

1.2 Literature review – mathematical modeling

Only a few published papers have been found that address the modeling and control
of electro-pneumatic actuators applied to clutch actuation, and none of these gives
a complete and uniform treatment of the modeling of the system. Research that
should be mentioned is work by Tanaka et al., who consider torque control by clutch
actuation in automated manual transmissions by use of an electro-pneumatic pres-
sure proportional valve1, see e.g. [93] and the references therein. In the papers [40]
and [42], Kaasa et al. employ slightly different models of the electro-pneumatic
clutch actuator for experimental implementation of an Extended Kalman filter for
state estimation, and for the simulation and analysis of an adaptive tracking con-
troller, respectively. Xiang and Wikander are other researchers who have considered
pneumatic clutch actuation in particular. See the technical report [103] cited in
Xiang’s thesis [102] on the control of pneumatic actuators.
The modeling of pneumatic actuators in general, on the other hand, has received

a great amount of attention during the last decades, and a vast number of papers
on the subject have been published. The basic theory of the modeling and control
of pneumatic actuators can be found in the fluid power text books by Blackburn et
al. [9], or Anderson [4]. The early work by Shearer [86] has been frequently refer-
enced in research papers. Reethof and Shearer’s work on the modeling of pneumatic
actuators, summarized in [9], was further extended by Jebar in his thorough the-
sis [37], providing an analysis of the dynamics of pneumatic cylinder actuators which
is substantiated by extensive experimental validation. An assortment of the most
interesting literature is reviewed below, grouped into the modeling of the dynamics
of the air states in the pneumatic chambers – referred to as the air dynamics, the
flow rate of control valves and restrictions, the friction in the pneumatic actuator
and load, and briefly the modeling of static nonlinearities in general.

1.2.1 Dynamics of the pneumatic chambers

The physical mechanisms of the thermodynamic properties e.g. of air in the pneu-
matic cylinder chambers, are well understood. A vast number of published papers
address the modeling of pneumatic systems, which also includes the modeling of the
dynamics of the pneumatic chambers, referred to as the air dynamics. By applying
some reasonable assumptions, an accurate full-state dynamic model of the air states
(e.g., pressure and temperature) in the pneumatic chamber can be derived based
on simple thermodynamics using an empirical heat transfer model. This full-order
model of the air dynamics – with pressure and temperature as state variables –
is derived by Jebar in his comprehensive thesis on the design of pneumatic actuator
systems [37]. The model is consequently referred to as the Jebar model. In [20],

1The valve has a pressure sensor with an internal pressure control loop which regulates the
pressure according to the pressure set-point given as the valve’s input signal.
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Det et al. proposed a modification of the Jebar model by introducing a pressure
and temperature dependent convective heat coefficient in the empirical heat trans-
fer model, motivated by research on combustion engine modeling. In [13] and [42],
the full-order Jebar model, applied to the modeling of pneumatic cylinder actuators,
is presented in state-space form with pressure and temperature as state variables. A
derivation of the full-order Jebar model – in a form with the chamber energy and
mass as state variables – is given by Maré et al. in [64].
For analysis and control design, a simplified reduced-order model of the air dy-

namics is preferred. The classical reduced-order model of the air dynamics is ob-
tained by neglecting heat transfer, and assuming that the temperature is constant
and equal to the temperature of the inlet flow. The air dynamics is then given
as a 1st-order nonlinear equation for the pressure dynamics. This model was first
presented by Shearer in [86, Part I]. Variations of Shearer’s model is obtained by
viewing the ratio of specific heats (κ , cp/cv) as a polytropic exponent n, and letting
the chamber temperature be given as a function of the chamber pressure according
to a polytropic process. In this case, the choice n = 1 is referred to as the isothermal
reduced-order model, while with the choice n = 1.4, the model is referred to as the
adiabatic reduced-order model. In the thesis work [97], Virvalo presents an extensive
experimental validation of Shearer’s reduced-order model applied to heavy pneumat-
ics, reporting highly accurate results with commercially available pneumatic cylinder
actuators. Shearer’s reduced-order model is the model most researchers have used
to model the air dynamics of pneumatic actuators, and practically all published
work dealing with nonlinear model-based control of pneumatic actuators employ
this model, see e.g. [13], [56], [69], [79], [80], [96], [98], [104].

1.2.2 Flow rate modeling

The conventional approach to the modeling of the flow rate characteristic of a pneu-
matic component, is by use of the theoretically derived equation for isentropic com-
pressible flow through a simple orifice, referred to as the isentropic orifice flow
equation. A rigorous treatment of the fundamental compressible flow theory can
be found in student texts on fluid mechanics, e.g. the textbook by White [101].
A fluid power approach to the theory is given by Blackburn et al. in [9]. In the
ISO standard [35], a simple, but rather accurate approximation of the isentropic
orifice flow equation has been standardized for the determination of the flow rate
characteristic of pneumatic components. This simplified model, referred to as the
standardized orifice flow equation, consists of an elliptic approximation to the theo-
retically derived pressure ratio function which describes the flow rate’s dependence
on the pressure ratio over the restriction. For most pneumatic components, this
elliptic approximation provides a closer fit to measurements than the theoretically
derived pressure ratio function because it allows a tuning of the effective critical
pressure ratio B, which for a given restriction geometry, uniquely determines the
pressure dependence of the modeled flow rate.
The flow equation is used to construct a model of the flow rate characteristics

of flow control valves, thus, it should provide an accurate description of the flow



rate over the full range of valve openings. The elliptic pressure ratio function of
the standardized orifice flow equation provides an accurate description for simple
restrictions where frictional effects are small, however, for flow (or leakage) through
smaller clearances, the effect of friction becomes increasingly important, and the
accuracy of the equation reduces. Furthermore, in the formulation of the elliptic
pressure ratio function, the parameter B appears highly nonlinearly, which makes
parameter estimation difficult and not suited for adaptive control. Thus, aspects of
the flow modeling which still remains to be properly solved, is the development of
a parametrization of the pressure ratio function which allows modeling of the flow
through small clearances with improved accuracy, in a form suited for subsequent
application of existing tools for nonlinear and adaptive control.

Flow control valves

Flow control valves used for actuator control are either three-way valves connected
to one cylinder chamber, supply, and exhaust reservoirs, or five-way valves connected
to both cylinder chambers, supply, and exhaust. With a few exceptions, most flow
control valves are classified as sliding type valves, e.g. spool, sliding plate, or rotary-
plug valves, referring to the principle for operation of the valve. In the following,
we discuss the modeling of a spool type valve, which applies to the modeling of
most types of sliding valves. Typical flow control valves used with pneumatic ac-
tuators are proportional valves and servo valves, where the main difference lies in
the type of actuation device. Pneumatic proportional valves are actuated by a an
electro-magnetic force motor, which is either direct acting on the spool of the flow
stage, or operates a pilot spool on two-stage valves. The principal characteristic of
proportional valves is that the spool position is proportional to the valve input in
steady-state, where the positioning is performed either by balancing the solenoid
force against the spring force, or by a control loop with feedback from a sensor mea-
suring the spool position. The force motor is usually a proportional solenoid which
provides a force proportional to the coil current in steady-state. For valves with
spool feedback the force motor can alternatively be an on-off solenoid. Pneumatic
servo valves are usually two-stage valves where an electro-magnetic torque motor
actuates the pilot stage of the valve which pneumatically amplifies the positioning
of the spool in the main flow stage.
An important characteristic of flow control valves is their steady-state response

from valve input to spool position, referred to as the input—spool characteristic.
For proportional valves, the input—spool characteristic is ideally linear, but without
spool feedback it will always be encumbered with hysteresis resulting from friction,
and the disturbing effect of flow forces which depend on the flow rate. For pneumatic
servo valves, the input—spool characteristic is usually considerably nonlinear.
The flow rate as a function the position of the spool is referred to as the spool—

flow characteristic of the valve. The spool—flow characteristic is characterized by
its spool and port design, which determines the geometry of the flow path. The
spool lap is the main factor which determines the flow properties in the null region
of the valve. The null region may be defined as the region of spool positions in
the neighborhood the center position where there is leakage flow through both the
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supply and exhaust ports. Outside the null region the flow is primarily orifice flow
either through the supply port, or the exhaust port, which is proportional to the
position of the spool. The flow properties in the null region represents a significant
nonlinearity in the valve. Ideally, the spool of proportional valves is designed with
zero lap in order to provide a linear proportional spool—flow characteristic. However,
manufacturing tolerances introduce an inevitable leakage flow in the null region. To
compensate for manufacturing tolerances and reduce the leakage flow in the null
region, proportional valves are often designed with a slight overlap, resulting in a
dead zone nonlinearity in the spool—flow characteristic. Most servo valves (and some
proportional valves), on the other hand, are designed with underlap, resulting in a
considerable leakage flow in the null region.
A good description of the modeling of the steady-state flow rate characteristic

of a three-way pneumatic proportional valve is given in the first of the referenced
papers by Shearer [86], and in [9]. The description applies for the modeling of the
spool—flow characteristic of sliding type valves in general. The flow rate is modeled
according to the isentropic orifice equation, assuming that the effective restriction
area has a linear dependence on the spool for each valve orifice, and includes the
modeling of leakage flow in the null region by introducing an underlap in the model.
In the above mentioned paper, Shearer demonstrates a close fit to measurements
of a zero-lapped sliding plate valve. Though providing an accurate description of
zero- or under-lapped proportional valves, the model is not well suited for control
because the introduced underlap causes flow through both flow paths in the null
region, which complicates the computation of the inverse. Another example of an
accurate mechanistic model of the spool—flow characteristic of a five-way spool valve
including leakage in the null region, is derived by Mo in the paper [66]. The model
is more general than Shearers model and is validated experimentally to be highly
accurate for the modeling of a spool valve. Like Shearer’s model, however, it is well
suited for simulation, but too complex for control.
Simplifying Shearer’s model by assuming a zero underlap, results in a model

which is piecewise input-affine, i.e., the input u appears affinely in the form

w = g (p, sgnu) · u, (1.1)

where p is the chamber pressure, and where u is the spool position which is regarded
as the input. Because of the affine form, the model is explicitly invertible, making it
particularly suited for control design. However, because the model disregards leak-
age flow in the null region, it is primarily suited for the modeling of high-performance
zero-lapped valves with precise manufacturing tolerances such that the null region
is negligibly small. This model has been used by several researchers for model-based
nonlinear control employing full state-feedback. Common for these applications, is
their use of robust control techniques which suppress model uncertainties, like the
disregarded leakage in the null region. Pandian et al. employ the model in successful
implementations of sliding mode control applied to the control of both vane-type
rotary actuators and cylinder actuators in [73], [74], [75]. Wang et al. report good
experimental results in a robust nonlinear design applied to the control of a cylinder
actuator in [99], [100]. In [44], Keller & Isermann employ a model in this piecewise



input-affine form using the elliptic approximation of the ISO standard for the mod-
eling of the pressure ratio function, demonstrating good experimental results with
a model-based nonlinear adaptive scheme applied to a pneumatic cylinder actuator.
In addition, several researchers employ this simplified piecewise input-affine model
in simulation studies of nonlinear control of pneumatic actuators, see e.g. [12], [21],
or the more recent papers [2] and [1] by Acarman et al.
In the paper [10], Bobrow and McDonell point out the discrepancy of modeling

a jet-pipe type Moog servo valve using the input-affine model of a proportional
valve. This is primarily due to a considerable leakage in the null region of the valve
combined with a nonlinear input—spool characteristic, inherent in most pneumatic
servo valves. In [79], Richard proposes a model structure which consists of an orifice
flow termmodeled by the orifice flow equation with a fictitious flow area as a function
of the input, and an additional leakage term representing a fixed clearance in the
valve. The model is in the form

w = go (p, sgnφ (u)) · φ (u) + gl (p) , (1.2)

where the fictitious area function φ (u) – referred to as the input nonlinearity of
the valve – appears in a piecewise affine form, thus, this model structure is referred
to as being in an input nonlinearity-affine form. The input nonlinearity φ (u) can
alternatively be modeled as a flow conductance function, and is in essence a lumped
function approximating the total steady-state input nonlinearity of the valve, i.e.,
representing both the nonlinear leakage flow in the null region and the nonlinear
input—spool characteristic. This form is convenient for control because the nonlinear
input function φ (u) is straightforward to parametrize in a form which is explicitly
invertible, thus, resulting in a flow model which is explicitly invertible. A main
drawback, however, is that a model in the form (1.2) is not capable of providing
an accurate description of the leakage flow in the null region, since this requires the
modeling of the flow through each of the flow paths separately due to the nonlinear
flow characteristics of compressed air. Hence, a model in the form (1.2) is not suited
for accurate modeling of zero- or underlap valves where the leakage flow in the null
region is significant.
The form (1.2) is well suited for the modeling of overlap valves where the leakage

flow in the null region is small. For example in the paper [80], Richard & Scavarda
implements a feedback linearization controller applied to the tracking control of
a pneumatic actuator, using a model in the form (1.2) to model an overlap servo
valve. Further validation of a model in this form for the modeling of overlapped servo
valves has been demonstrated in the recent papers by Lee et al. [56] and by Maré et
al. in [64]. Maré et al. employ an experimentally obtained nonlinear function of the
effective conductance instead of the effective area, and employ the ISO standardized
elliptic approximation instead of the isentropic pressure ratio function. In the models
presented in the above mentioned papers [79], [80], [56], [64], the input nonlinearity
is implemented as a look-up table which is obtained experimentally for the given
application, and a parametrization of the nonlinear function is not provided.
In [85], a detailed experimental study of a three-way Servotronic proportional

valve was conducted, and a highly accurate flow rate characteristic was obtained.
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Purely empirical parametrizations of this characteristic, in the form of multivari-
able polynomial approximations, were proposed in [8]. In this paper, Belgharbi et
al. present a highly accurate model for simulation, and a simplified model for control
which is in the above mentioned input nonlinearity-affine form (1.2). In this sim-
plified empirical model, the input nonlinearity becomes a piecewise linear function
with a small discontinuity for the spool in its center position due to a slight overlap
in the valve. The model is employed for tracking control of pneumatic actuators in
work by Brun et al, for example in the paper [13]. A main drawback with the sim-
plified parametrization in the form (1.2) presented in [8], is its discontinuity in the
spool position at the origin, and its pure empirical nature which requires extensive
measurements in order to identify all the parameters of the model.
The currently most general parametrization of a model in the form (1.2) is pro-

posed by Xiang and Wikander, who use the model in approximate feedback lin-
earization approaches for the control of pneumatic actuators, see for example the
paper [102, Paper A]. Their model is partially mechanistic in the sense that the
pressure dependence is modeled by the (mechanistic) elliptic pressure ratio func-
tion, and the lumped input nonlinearity is parametrized by a dead zone function
multiplied by an empirical polynomial approximation.

1.2.3 Friction modeling

Friction in mechanical servo systems is a complex phenomenon, which traditionally is
considered hard to model accurately. The first real survey on the modeling of friction
for control purposes, was conducted by Armstrong-Hélouvry et al. in 1994 [6]. In
many ways, this work initiated an extensive amount of research on the subject,
which has accelerated the development of new friction models suitable for model-
based friction compensation.
Several works on the modeling of friction in pneumatic actuators has been pub-

lished in the literature, where most are concerned with static friction models only.
Schroeder and Singh analyze the most interesting of these static friction models
in [84], where seven models are compared and validated from experiments with a
pneumatic cylinder actuator. In most pneumatic actuators dynamic frictional ef-
fects are important, and a dynamic friction model is required in order to achieve an
accurate description of the friction in pneumatic actuators. In particular, the dy-
namic pre-sliding deflection of the seal between the piston and cylinder wall, plays
an important role for accurate friction modeling due to its high elasticity.
In the paper [15], Canudas de Wit et al. present a dynamic friction model –

referred to as the LuGre model (Lund-Grenoble), which captures most of the qual-
itative properties of friction reported in the literature. The model is simple, and
well suited for model-based control. A drawback with the model is that it results
in a non-physical drift in position in the pre-sliding phase, i.e., it does not render
true stiction. An improved model, compared to the LuGre model, was published
by Dupont et al. in [22]. This model is referred to as the Elasto-plastic model, and
employs a switching function in order to render plastic deformation (which results
in drift) only for load forces above a certain limit. That is, the model renders pure



elastic deformation, thus, true stiction, below this limit. In [91], Swevers et al.
introduce a more elaborate model – referred to as the Leuven model, which demon-
strates improved pre-sliding properties compared to the LuGre model (presumably
also compared to the Elasto-plastic model). By introducing a hysteresis function
with nonlocal memory, the Leuven model renders true stiction without the use of a
switching function. Some modifications of the Leuven model was later proposed by
Lampaert et al, in [54]. In the paper [70], Nouri et al. employ the Leuven dynamic
friction model in an experimental study on the modeling of a pneumatic actuator.
In [31], Hsieh & Pan provide the most complete and accurate description to date

of the pre-sliding friction properties (in the author’s view), and present a highly
accurate model of the pre-sliding friction properties of mechanical systems. The
model has many similarities to the above mentioned Leuven model, but is more
complex.

1.2.4 Static nonlinearities

From a parameter estimation point of view, it is beneficial that nonlinear functions
in the system model are parametrized in forms where the parameters appear in
an affine fashion. With respect to off-line parameter fitting from measurements,
parameter-affine models make possible parameter estimation by convex optimization
(for example, linear least-squares parameter fit to measurements). Furthermore,
existing constructive tools for nonlinear adaptive control, comprise only systems
with uncertain nonlinearities which can be parametrized in a parameter-affine form.
A smooth nonlinear function can in general be modeled, or approximated, by a

weighted sum of simple basis functions, where increased complexity of the nonlin-
earity, simply requires a larger number of basis functions in order to meet a required
accuracy. This is for example exploited in (one-layer) neural network models, which
are composed of a large number of simple basis functions. Parametrizations us-
ing a weighted sum of basis functions results in models which are parameter-affine,
making possible parameter estimation by a convex optimization approach. A prefer-
able choice of basis functions, are the bell-shaped smooth normalized Gaussian, or
the B-spline basis functions. For a reference to the theory of neural network mod-
els, see e.g. the textbook [67] by Nelles, and for a reference on B-splines, see the
textbook [19, Chapter 7] by Cheney. Another application of this type of smooth
parameter-affine models is proposed by Johansen (see e.g. [38]), where normal-
ized Gaussian basis functions are utilized for the construction of smooth Lyapunov
functions for performance and stability analysis of nonlinear systems, in general.

1.3 Literature review – output-feedback track-
ing control

1.3.1 Introduction

For linear systems, tools for analysis and control are well developed, and the prob-
lem of output-feedback tracking of single-input single-output (SISO) systems may
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be solved by various techniques; either a state-variable approach using static (mem-
oryless) state-feedback combined with an observer to reconstruct the unmeasured
states, or a direct polynomial approach where a dynamic output-feedback control law
is designed based on an input-output representation of the system. A detailed treat-
ment of linear system theory can be found in graduate level texts, like e.g. [43], [81]
or [17]. In the sections below, we briefly outline the basics of these two approaches for
output-feedback tracking control of SISO linear systems, mainly in continuous-time.
For linear systems, the so-called separation principle holds, which means that

the output-feedback control problem can be separated into the design of a state-
feedback controller and observer, independently. For linear time-invariant systems,
the stability of the resulting closed-loop system is given by the union of the state-
feedback and observer poles. This indirect approach is referred to as an observer-
based output-feedback design, and is based on a model of the system in state-space
form. First, a linear state-feedback controller may be designed by various techniques,
such as pole placement control or linear quadratic (LQ) optimal control, assuming
that all states are measured. Next, provided that the system is observable, the
design of an observer is solved by using a copy of the system and adding linear output
correction terms, providing exponentially converging estimates of the unmeasured
states (with arbitrary fast rate of convergence). This type of observer for a linear
deterministic2 system was introduced by Luenberger [60], and is therefore often
referred to as a Luenberger observer. The output-feedback problem is then solved by
replacing the unmeasured states of the state-feedback controller with the estimates
provided by the observer. A description of full-order and reduced-order observer
design for linear systems is given e.g. in [43, Ch. 4], [81, Ch. 15], [17, Ch. 8]
or [57, Ch. 37].
The alternative direct approach of designing a dynamic output-feedback controller

for a linear system is solved by first expressing the system in an appropriate input-
output form, e.g., as a transfer function in polynomial form. A dynamic output-
feedback controller may then be designed by e.g. pole placement control where a
dynamic feedback is designed such that the resulting characteristic equation of the
closed-loop system coincides with a desired characteristic polynomial. Alternatively,
a model reference control approach may be pursued, where the dynamic feedback is
designed so that the closed-loop system matches a desired reference model. A plain
summary of the design and analysis of pole placement and model reference control
can be found in [33, Ch. 7.3 and Ch. 6.3], and in more detail in [17, Ch. 9].

For nonlinear systems, tools for control and analysis are still at an evolution-
ary stage, therefore, nonlinear control has not yet become a common engineering
tool. For this reason, and because tools for control and analysis of linear systems
are constructive and powerful, the most common approach is to apply linear con-
trol techniques based on a locally linearized model of the nonlinear system. This
approach is usually best suited for systems which can be characterized as “weakly”
nonlinear. When nonlinearities in the system become significant, a common ap-

2In a stochastic setting with normal noise distributions, the well known Kalman-Bucy filter
provides the optimal solution to the state estimation problem.



proach in order to extend the applicability and improve the performance of linear
control, is by applying so-called gain scheduling techniques. Gain scheduling refers
to the concept of interpolating (or scheduling the parameters of) a family of linear
controllers over a set of operating points in the state-space. In this way, a time-
varying linear controller may be designed using the wide range of design tools that
are available for linear systems. For a review of gain scheduling techniques, see
e.g. the survey paper by Rugh & Shamma (2000) [82].
If the nonlinearities in the system are essential, a control design based on locally

linearized models may lead to poor performance, or even instability of the closed-
loop controlled nonlinear system. In these cases, a pure nonlinear control design
is likely to provide superior performance and robustness compared to linear meth-
ods (even when using gain scheduling). In nonlinear control theory, the problem of
output-feedback tracking is considered one of the most challenging. First of all, the
separation principle holds only for a limited class of nonlinear systems3. That is,
for nonlinear systems in general, the design of a state-feedback controller where the
states are replaced with asymptotically convergent estimates obtained from an ob-
server, does not imply stability of the combined output-feedback solution. In order to
guarantee stability of an observer-based output-feedback design, the state-feedback
controller must be robust (i.e., input-to-state stable) with respect to state estimation
errors. Another challenge with output-feedback control of nonlinear systems, is the
design of an asymptotically convergent observer, which is solved only for restricted
classes of nonlinear systems. Therefore, constructive output-feedback designs for
nonlinear systems are available only for restricted classes of systems. A detailed
account of the most significant results within the field of output-feedback control of
nonlinear systems can be found in the thesis by Maggiore (2000) [61]. Furthermore,
an overview of constructive nonlinear control, including results in output-feedback
control, is reviewed in the historical survey by Kokotovíc & Arcak (2001) [51].

In the remaining of this literature review, we first attempt to give an overview
of some of the main approaches applied to control of electro-pneumatic actuators.
Next, we review the most interesting constructive techniques that are currently avail-
able for nonlinear control design, restricting ourselves to results which are applicable
to observer-based output-feedback control of electro-pneumatic actuators.

1.3.2 Control of electro-pneumatic actuators

A large amount of research has been published on the problem of position tracking
control of electro-pneumatic actuators. In order to avoid an exhaustive presentation,
we attempt to outline only the main approaches which have been considered in the
literature, implying that some research will not be mentioned in this review. Too
complete the overview on existing work, see also the literature reviews provided in
the thesis works [97] (1995) by Virvalo, and [102] (2001) by Xiang, on the control
of electro-pneumatic actuators.

3Assuming that the separation principle holds is often a practical solution to many design
problems even when it can not be rigorously established.
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Due to the inherent low stiffness and low damping of pneumatic actuators, the
conventional proportional plus differential (PD) output-feedback control achieves
unsatisfactorily poor (read: slow) tracking performance for most applications, thus,
it not discussed here. Other research which (perhaps unfairly) are omitted in this
review, are applications of model predictive control (MPC), and neural network
(NN), and Fuzzy control. Main reasons for this are that MPC is computationally
highly demanding since it requires the solution of a nonlinear optimization problem
at each sample, and that the main advantage of NN and Fuzzy control, which is to
adapt empirically to uncertain systems, are not needed since pneumatic systems are
well understood, and accurate mechanistic models exist.
Hence, with a reservation to unfair omission of research, the main strategies

applied to tracking control of electro-pneumatic actuators may roughly be grouped
into the three categories:

Linear control Designs based on linearized models of the pneumatic actuator,
which allow the application of linear control techniques.

Feedback linearizing control A nonlinear control design performed in two steps:
First, a change of coordinates is found such that all nonlinearities satisfy the
matching condition (that is, they appear in the same equation as the control
input). Second, a control is designed which cancels all nonlinearities and
makes the system linear for a redefined control input such that linear control
techniques can be applied to the feedback linearized system.

Sliding mode (or variable structure) control A robust nonlinear design method-
ology where the nonlinear control problem is partitioned into two design phases:
the design of a sliding manifold which defines some ideal motion of the system,
and the design of a control which forces convergence to this manifold (referred
to as sliding mode), where switching terms in the controller compensates for
model uncertainties (or imprecisions) satisfying the matching condition.

Linear control

A common approach is to describe the dynamics of the actuator by a simplified
4th-order nonlinear model with the actuator position, the actuator velocity, and the
pressures of the two chambers as dynamic states, i.e., x = [y, v, pA, pB]T . The valve
dynamics is then assumed to be negligibly fast, and the friction is assumed to be a
static function of the velocity. Based on this nonlinear dynamics, a locally linearized
model is obtained by linearizing about the equilibrium point x∗ = [y∗, 0, p∗A, p

∗
B]

T ,
with y∗ usually taken as the mid-stroke position of the actuator, and where p∗A
and p∗B are equilibrium pressures corresponding to the chosen operating point y∗,
i.e., p∗A = p∗A (y

∗), p∗B = p∗B (y
∗). The resulting 4th-order linear model is strictly

minimum-phase with relative degree three, i.e., it has one strictly stable zero. A
detailed description of this model in state-space form can be found e.g. in the papers
[83], [58], [20], [11]. For control design, the model is usually further simplified by
averaging the time constant of the two pressure states such that the system can be



expressed in the 3rd-order normal form

d

dt

⎡⎣yẏ
ÿ

⎤⎦ =
⎡⎣0 1 0
0 0 1
0 −ω2n −2ζnωn

⎤⎦⎡⎣yẏ
ÿ

⎤⎦+
⎡⎣ 0
0

Kω2n

⎤⎦u, (1.3)

where y is the position as a deviation variable from the equilibrium position y∗, the
variable ẏ is the velocity, and the two pressures are replaced by the acceleration
variable ÿ, that is, the new state vector is x , [y, ẏ, ÿ]T . The parameter K is the
steady-state gain, ωn is the resonance frequency (also called the natural frequency),
and ζn is the damping coefficient. The dynamics (1.3) can alternatively be expressed
as a transfer function from input u to the position y, i.e., in the input-output form

G (s) , y (s)

u (s)
=

Kω2n
s (s2 + 2ζnωns+ ω2n)

. (1.4)

Remark 1 In the reduced-order model (1.3), the state which was rendered unobserv-
able by the transformation to the normal form, was simply cancelled due to averaging
the two pressure states. This zero-pole cancellation can be allowed because the 4th-
order system is strictly minimum-phase, thus, the cancelled unobservable state is
strictly stable.

The 3rd-order linear model, given by (1.3) or (1.4), has been used by several
researchers as basis for linear control designs. For a detailed description of the model,
including expressions for K, ζn, and ωn, see e.g. the references [20], [96], [97], [80],
[13]. Characteristic properties of pneumatic actuators which makes control difficult
(compared to hydraulic actuators), are that the damping coefficient ζn typically is
very low due to low viscous friction, and that the resonance frequency ωn is low
due to the high compressibility of air, and of course that both ζn and ωn varies
significantly as functions of the position y.
Based on the above 3rd-order linear model with states x , [y, ẏ, ÿ]T , the con-

ventional linear state-feedback tracking controller is given by

u = −Kp (y − yr)−Kvẏ −Kaÿ, (1.5)

where yr is the desired reference position, and Kp, Kv, Ka, are the controller feed-
back gains for the position, the velocity, and the acceleration, respectively. When
the parameters K, ζn and ωn of the model is known, the feedback gains can be de-
termined by various linear control techniques, such as pole placement, steady-state
linear quadratic (LQ) optimal control, or common performance criterion like the
ITAE (integral of the time-weighted absolute error) criterion, etc. In most cases, ad-
ditional fine-tuning of feedback gains may be required in order to achieve satisfactory
performance for a given application.
The application of linear control techniques for the control of heavy pneumat-

ics using commercial components has been experimentally studied by Virvalo. In
his thesis [97] (1995), Virvalo implements the linear control law (1.5) for tracking
control, and investigates a wide range of applicable linear techniques for the deter-
mination of the feedback gains Kp, Kv and Ka utilizing the 3rd-order linear model
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(1.3). Virvalo also considers gain scheduling of the feedback gains Kp, Kv, and
Ka as functions of the position y in order to improve performance over the entire
operating range of the system. The application of the control law (1.5) with gain
scheduled feedback gains, has also been investigated experimentally by several other
researchers, see e.g. the work by Thomasset et al. [96], Richard & Scavarda [80],
and Brun et al. [13].
In order to obtain an output-feedback solution, the velocity ẏ and the acceleration

ÿ must be estimated for use by the control law (1.5). Estimates of ẏ and ÿ, which
are the 1st and 2nd-order derivative of the measured position y, may be obtained
by (filtered) numerical differentiation of y, or by the use of an observer. Numerical
differentiation is the most common approach for the estimation of ẏ and ÿ. A
major drawback with this approach is that it is vulnerable to measurement noise,
particularly in the 2nd-order derivative. Furthermore, by introducing filtration of
the numerical derivatives, one introduces a time-delay in the estimates which may
significantly degrade the performance of the closed-loop system. The alternative
to numerical differentiation is to design an observer. The full-order Luenberger
observer for the system (1.3) is given as

d

dt

⎡⎣ŷḃyb̈y
⎤⎦ =

⎡⎣k1k2
k3

⎤⎦ (y − ŷ) +

⎡⎣0 1 0
0 0 1
0 −ω2n −2ζnωn

⎤⎦⎡⎣ŷḃyb̈y
⎤⎦+

⎡⎣ 0
0

Kω2n

⎤⎦u, (1.6)

where [ŷ, ḃy, b̈y]T are the estimates of [y, ẏ, ÿ]T , and [k1, k2, k3]T are the observer gains
of the output error injection term (y − ŷ) which may be determined by pole place-
ment of the resulting closed-loop observer error dynamics. Alternatively, a reduced-
order observer may be designed, which estimates only the unmeasured states ẏ and
ÿ.
For estimation of ẏ and ÿ, Virvalo [97] investigates experimentally both the use of

numerical differentiation, the reduced-order and the full-order Luenberger observer
(1.6). The application of the reduced-order Luenberger observer for the system (1.3)
has also been investigated by Hong & Yongxian e.g. in [30].

The application of dynamic output-feedback control based on input-output mod-
els in polynomial form (which does not require an observer to recover the unmea-
sured states), has been investigated by some researchers. The results found in the
literature mainly consider discrete-time designs, which are convenient for digital im-
plementation. The continuous-time transfer function (1.4) is then discretized, and
expressed in the polynomial form

H (z) =
B (z)

A (z)
, y (z)

u (z)
=

b2z
2 + b1z + b0

(z − 1) (z2 + d1z + d0)
=

b2z
2 + b1z + b0

z3 + a2z2 + a1z + a0
. (1.7)

A dynamic output-feedback controller for the discrete system (1.7) is given in poly-
nomial form as

R (z)u = −S (z) y + T (z) r. (1.8)

where R, S, and T are polynomials of z. Designing a minimum-degree pole place-
ment controller with no zero cancellation for (1.7), the polynomials must be R (z) =



z2 + r1z + r0, S (z) = s2z
2 + s1z + s0 and T (z) = t2z

2 + t1z + t0. The polynomial
T (z) is a design factor. A good choice is to take T (z) = t2z

2 = t2A0 (z), where t2
is chosen to provide a unity steady-state gain, while A0 (z) = z2 is pole dynamics
which is cancelled by the controller in the resulting closed-loop system. By defining
a desired closed-loop pole polynomial Ad (z), the coefficients of R (z) and S (z) are
found by solving the so-called Diophantine equation4

A (z)R (z) +B (z)S (z) = A0 (z)Ad (z) . (1.9)

The discrete-time implementation of the dynamic controller (1.8) is thus given as

uk = −r0 · uk−2 − r1 · uk−1 − s0 · yk−2 − s1 · yk−1 − s2 · yk + t2 · rk (1.10)

where subscript k denotes the sample at time tk , k ·∆T (where ∆T is the sam-
ple time). Experimental implementation of (1.8) is among others investigated by
Virvalo, see [97]. In [87], Shih & Huang applies the dynamic output-feedback pole
placement controller in combination with on-line estimation of the model parameters
(i.e., the coefficients of A (z) and B (z)), using a recursive least squares identifier.

Feedback linearizating control

The first application of a pure nonlinear control scheme for position tracking control
of electro-pneumatic actuators, was the use of input-output feedback linearization by
Richard & Scavarda (1989) [79]. This work has been further refined and validated by
several members of Scavarda’s research group, see e.g. the papers [96], [80], [13]. As
their basis for design, the dynamics of the actuator was described by the simplified
4th-order model (or variants with minor differences)

ẏ = v

v̇ =
AA

M
pA − AB

M
pB − 1

M
ff (v)

ṗA = −AA
1

VA (y)
vpA +RT0

1

VA (y)
wv (pA, u) (1.11)

ṗB = AB
1

VB (y)
vpB +RT0

1

VB (y)
wv (pB,−u) .

where the valve dynamics was assumed to be negligibly fast. In order to make possi-
ble input-output linearization, the friction ff (v) was required to be a differentiable
function of the velocity, e.g. ff (v) = Dv. Furthermore, to facilitate the computation
of the inverse of the valve flow wv (p, u) with respect to u, the model of the valve
flow was confined to the (piecewise input nonlinearity-affine) form

wv (p, u) = go (p, sgnφ (u)) · φ (u) + gl (p) , (1.12)

4The Diophantine equation may be formulated as a linear equation in the form Ax = b, where
x contains the unknown coefficients of R (z) and S (z) which is straightforwardly computed by
inverting the Sylvester matrix A.
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where gl (p) is a leakage term, and φ (u) is an invertible input nonlinearity. With the
redefined control input ū , φ (u), the system (1.11) is in the piecewise input-affine
form

ẋ = f (x) + g (x, sgn ū) · ū (1.13)

y = h (x) ,

with the state vector x , [y, v, pA, pB]
T , and measured output y. Provided that

the friction term ff (v) is one time differentiable, the system (1.13) is input-output
linearizable, with a well defined relative degree ρ = 3, for all physically realizable
pressures (i.e., pA, pB > 0). Hence, the model is in a form which is applicable for a
straightforward use of input-output feedback linearization, following the approach
described e.g. in the textbooks by Slotine & Li [89] or Isidori [34].
The system is thus transformable by a change of coordinates z = φ (x) and

ζ = μ (x) to the normal form

ż1 = z2

ż2 = z3

ż3 = a (x) + b (x, sgn ū) · ū (1.14)

ζ̇ = q (z, ζ)

y = z1

where the states z = [z1, z2, z3]T , [y, ẏ, ÿ]T are the measured output and its deriv-
atives, and ζ the state of the unobservable internal dynamics. A linearizing state
feedback is then

ū =
1

b (x, sgn ū)
[−a (x) + α] , (1.15)

which makes the z-subsystem a triple integrator for the new control term α. Given
the tracking reference trajectory zr = [yr, ẏr, ÿr]T , the poles of the dynamics of the
closed-loop tracking error z̃ , z − zr = [ey, ėy, ëy]T can be arbitrary placed with the
feedback

α (z̃) = −Kyey −Kv
ėy −Ka

ëy. (1.16)

Furthermore, it can be established that the zero dynamics ζ̇ = q (zr, ζ) is stable for
all bounded reference trajectories zr, which is required for the feedback linearizing
control law (1.15)—(1.16) to be feasible.

Remark 2 In the work [79] [96], [80], and [13], the state of the zero dynamics is
taken to be ζ = pB. This means that the control ū appears as a variable in the
internal dynamics, i.e., ζ̇ = q (z, ζ, ū). Consequently, the system in new coordinates
z and ζ, is not in the proper normal form (1.14) where ζ is carefully chosen so
that its governing dynamics becomes independent of the input ū. Hence, in order to
guarantee stability, one must prove that the dynamics governing ζ = pB, is stable
for all possible inputs ū and reference trajectories z = zr. The authors proves this
only for the special case when the reference is a set-point, i.e., zr = [yr, 0, 0]T .



The feedback linearizing control (1.15)—(1.16) yields superior tracking perfor-
mance compared to linear control approaches, mainly because the nonlinearities in
the system are explicitly compensated for. However, like model-based linear control
approaches, careful modeling and accurate tuning of model parameters is required.
A possible drawback with the feedback linearizing control law, is that it relies on
cancellation of the nonlinearities a (z, ζ) and b (z, ζ). For nonlinear systems in gen-
eral, such a cancelling control law is not robust. Additionally, a cancelling control
law is not optimal in the sense that it wastes control effort by failing to recognize
stabilizing nonlinearities, i.e., nonlinearities which contribute to push the states to-
wards the reference trajectory. Another possible drawback with the input-output
feedback linearization approach, is the necessity to transform the system to the
normal form, which imposes constraints on the model used for design; to allow a
continuos state transformation to the normal form, the model nonlinearities must
be differentiable. An alternative feedback linearizing approach for control of electro-
pneumatic actuators is proposed by Xiang in his thesis work (2001) [102], which is
referred to as block-oriented approximate feedback linearization. Here, Xiang con-
siders approximate cancellation, allowing the use of a design model with nonsmooth
nonlinearities, like e.g. discontinuous friction. Other work which should be men-
tioned, is an input-state feedback linearization approach considered by Kimura et al
in [49].

No results have been found in the literature which consider output-feedback
control using a feedback linearizing control law in combination with an observer
for the estimation of the unmeasured states. In most published papers which ad-
dress control by a feedback linearization approach, partial state-feedback is pursued,
where both pressures and the position are measured, while a velocity estimate (and
possibly an acceleration estimate) is obtained by filtered numerical differentiation.
Hence, output-feedback control by pursuing a feedback linearization approach is
still an open problem, consisting of two parts: First, the design a nonlinear observer
which provides asymptotically convergent estimates of all the unmeasured states,
and second, to establish under which conditions the feedback linearizing controller
with observer is stable with respect to initial state estimation errors. The design of
a nonlinear observer for electro-pneumatic actuators is discussed in the last section
on sliding mode control below.

Sliding mode control

Sliding mode control is perhaps the most popular and successful nonlinear control
technique which has been applied to tracking control of electro-pneumatic actuators.
The design of a sliding mode controller is a general methodology which is performed
in two steps: First, a sliding manifold is constructed for a subsystem not containing
the actual control input. The design is simply a reduced-order control problem
for the considered subsystem, where one of the states is assumed to be the control
input. Next, the actual control law is designed so that the system states are forced
to converge to the sliding manifold in finite time and remain there for all future time.
This is a scalar control problem which is achieved by introducing switching terms
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in the controller, where convergence can be made robust to bounded disturbances
satisfying the matching condition. The dynamics of a sliding mode controlled system
is usually characterized by two phases; the convergence to the sliding manifold which
is referred to as the reaching phase, and the motion on the manifold once reached,
which is referred to as the sliding phase. In the sliding phase – when the system
is maintained on the sliding manifold – the system is said to be in sliding mode,
characterized by infinitely fast switching of the control input.
Successful applications of sliding mode control for tracking control of electro-

pneumatic actuators have been proposed by several researchers. A constructive
approach to the design of a sliding mode controller for systems transformable to
the normal form, is described in the textbook by Slotine & Li [89]. This approach
is described below to illustrate sliding mode tracking control of electro-pneumatic
actuators, which is the approach also applied by Bouri et al. [12] using the 4th-order
nonlinear model (1.11) transformed to the normal form (1.14). Sliding mode designs
based directly on 4th-order model (1.14) is, among others, proposed by Acarman
& Hatipoğlu [1] and Drakunov et al. [21]. Pandian et al. [73], [74], [75], propose
a similar approach based on a simplified 3rd-order design model where the two
pressure states are replaced with a single differential pressure state.
In this section, we illustrate the sliding mode control approach, based on the

4th-order model (1.11) transformed to the normal form (1.14), as described in [12].
Recalling that the tracking error is defined as z̃ , z − zr = [ey, ėy, ëy]T , the tracking
error dynamics of the open-loop system (1.14) is given as

.

z̃1 = z̃2
.

z̃2 = z̃3
.

z̃3 = a (x) + b (x, sgn ū) ū− ÿr + δ (t) (1.17)

ζ̇ = q (z, ζ) ,

where the additional term δ (t)may represent any bounded uncertainty such as mod-
eling imprecisions or bounded disturbances, and the zero dynamics ζ̇ = q (z r, ζ) is
stable for all possible zr. The design of an appropriate sliding manifold is straight-
forward considering the subsystem

.

z̃1 = z̃2
.

z̃2 = z̃3.

Assuming z̃3 to be the control input, a pole placement controller with critically
damped poles placed at −λ is given by

z̃3 = −2λz̃2 − λ2z̃1.

The sliding manifold is thus defined as

s (z̃) = z̃3 + 2λz̃2 + λ2z̃1 = 0 (1.18)

such that on the sliding manifold, i.e., s (z̃) = 0, the tracking error dynamics is
described by s (z̃) = ëy + 2λėy + λ2ey = 0.



The design of a control which forces convergence to the sliding manifold s (z̃) = 0
is a scalar control problem, where the control is taken in the form

ū = ūeq − Ū sgn (s) . (1.19)

Here, ūeq is referred to as the nominal equivalent control which is designed to cancel
all known terms such that in the absence of uncertainty, taking ū = ūeq would give
ṡ = 0 and sliding mode (s ≡ 0) would be maintained once it was reached. The
switching term −Ū sgn (s) is designed to ensure robust convergence to sliding mode,
even in the presence of a bounded uncertainty δ satisfying |δ| ≤ D. Hence, taking
the equivalent control as

ūeq =
1

b

¡−a+ ÿr − 2λz̃3 − λ2z̃2
¢
, (1.20)

and the magnitude of the switching term as

Ū =
D + c

b
,

the time-derivative of s is governed by

ṡ = a+ bū− ÿr + δ + 2λz̃3 + λ2z̃2

= δ − bŪ sgn (s)

= δ − (D + c) sgn (s)

⇓
ṡ =

½ ≤ −c , s > 0
≥ c , s < 0

which proves convergence to sliding mode (s = 0) in finite time. Since the switching
term can be designed to guarantee convergence to the manifold for any bounded
uncertainty δ with sufficiently high Ū , the main feature of the continuous component
ueq is that it cancels all known terms in the dynamics of s, in order to reduce the
magnitude Ū of the switching term required to ensure convergence to sliding mode,
s = 0.
Notice the similarity between the equivalent control law (1.20) and the feedback

linearizing control law (1.15). In order to reduce the magnitude Ū compared to the
case with ueq = 0, the continuous control part ueq can be taken as any controller
which approximately stabilizes s = 0. In the work [90] by Surgenor & Vaughan, the
linear tracking controller (1.5) is adopted as the equivalent control, i.e.,

ueq = −Kpz̃1 −Kvz̃2 −Kaz̃3. (1.21)

An example of a sliding mode design based on the linearized model (1.3) in the
normal form is illustrated in the paper [96] by Thomasset et al.
A possible drawback with the sliding mode controller (1.19) is that it results in a

discontinuous control law due to the switching term Ū sgn (s). In applications with
high friction, where the controller is implemented with sufficiently high sampling
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rate, this may be advantageous as high-frequency switching in the control introduces
a dither which eliminates or reduces stiction. In most applications, however, a
discontinuous control law is undesirable as it introduces chattering in the control
input which may wear out the valve. In these cases, the discontinuous sliding mode
controller (1.19) is replaced with the continuous approximation

ū = ūeq − Ū sat
³ s
Φ

´
, (1.22)

where Φ is referred to as the boundary layer thickness. The modified continuous
control (1.22) now only guarantees convergence to the boundary layer |s| ≤ Φ in
finite time. Inside the boundary layer |s| ≤ Φ, the controller is simply a local high-
gain controller which will maintain tracking within a small neighborhood of sliding
mode, s = 0.

The inherent strong robustness properties of sliding mode control, makes it par-
ticularly suited for observer-based control. Unlike the case of exact feedback lin-
earization, establishing stability of the resulting output-feedback solution is in most
cases constructive because the last design step is scalar. However, the extension of
full state-feedback sliding mode control to the case of using output-feedback only,
requires the design of an asymptotically convergent observer for the unmeasured
states, which in general is not a trivial task.
For the full 4th-order system (1.11), the unmeasured states are ẏ, pA, and pB.

With an asymptotically convergent observer available for these states, the problem
of output-feedback tracking would be solved using either of the mentioned (partial)
state-feedback sliding mode designs presented in [12], [1], or [21]. However, there are
very few published papers that address the problem of nonlinear state estimation
using the 4th-order system (1.11). One of the few constructive solutions to observer
design for nonlinear systems is the so-called Extended Kalman filter (EKF), which
is a straightforward extension of the renowned Kalman filter for stochastic systems5.
In [18], Chen et al. attempt to design an asymptotic nonlinear observer for all the
states of the nonlinear system (1.11) by application of the Extended Kalman filter,
in discrete-time. The paper indicates that good experimental results are obtained.
However, no evaluation of the observability properties of the system is provided,
hence, the design is based on the indirect assumption that the Jacobian – the lin-
earization along the estimated state trajectory – of (1.11) is observable from the
output y under all conditions. Furthermore, even if the observability assumption is
satisfied, it is not guaranteed that the Extended Kalman filter is indeed asymptoti-
cally stable under all conditions for the nonlinear system (1.11). This is one of the
main drawbacks of the EKF, which, in general, only guarantees asymptotic stability
locally, and no quantitative region of attraction is provided by design. Hence, asymp-
totic stability in a given region must be established separately. Another drawback

5The Kalman filter provides the optimal solution – the minimum of the mean square of the
estimation error – to the state estimation problem for linear time-varying systems subjected
to uncorrelated stochastic disturbances and measurement noise. For the fundamental theory on
stochastic systems and filtering, see e.g. [36].



with the EKF, is that the implementation of the EKF is computationally demand-
ing, mainly because the Ricatti equation is solved on-line, which also requires the
continuous computation of the Jacobian.
An important aspect with respect to observer design for electro-pneumatic ac-

tuators, is that the observability properties of (1.11) with y being measured, has
not been rigorously established. A common approach to determine the observability
properties of the system has been to linearize (1.11) about some steady-state oper-
ating point in state space, which may lead to the conclusion that only one of the
pressures, pA and pB, are observable simultaneously from y. This apparent lack of
full observability of (1.11), which is false in the main operating range of the actuator,
has possibly been a main reason for the slow progress in research on output-feedback
control and nonlinear observer design for electro-pneumatic actuators using the 4th-
order model (1.11). On the other hand, if an observer is designed on an assumption
of full observability (like in the case of simply applying the Extended Kalman filter
and not checking the observability conditions), one runs the risk that the output-
feedback correction term in the observer may cause unobservable states to diverge
and make the output-feedback solution unstable.

Remark 3 That the nonlinear system (1.11) has at least three observable states,
is proven in a nonlinear sense by the existence of a state transformation to the
normal form (1.14) which is invertible. Furthermore, since the unobservable internal
dynamics of (1.14) is asymptotically stable, the system (1.11) is at least detectable,
i.e., the possibly unobservable state is asymptotically stable. However, this insight
on observability and detectability of the nonlinear system (1.14) which is provided by
the transformation to the normal form, has not been commented in any paper found
in the literature.

One way to avoid the problem of observability, is by approximating the system by
a 3rd-order model, which makes the system clearly observable from y (see Remark 3),
which again greatly simplifies the observer design. Following this approach, with a
3rd-order model in the states [y, ẏ,∆p]T as in [73], [74], [75], Takemura et al. [92]
propose a reduced-order Luenberger-type observer for estimation of the velocity ẏ
and the differential pressure ∆p. The observer is combined with the sliding mode
design proposed in [73] and [75] to obtain one of the few nonlinear output-feedback
solutions proposed for electro-pneumatic actuators. The output-feedback solution
is validated experimentally with reasonably good results.

1.3.3 Output-feedback control theory

In this section, the most interesting (in the author’s view) constructive procedures
which are currently available for nonlinear control are reviewed, constrained to re-
sults applicable for output-feedback control of electro-pneumatic actuators. A com-
prehensive review of existing constructive nonlinear control theory is provided by
Kokotovíc and Arcak in their historical survey paper [51] (2001). Their review
describes a close to exponential growth of results within the field of nonlinear state-
feedback control during the two last decades, while the progress in output-feedback
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control has been relatively slow. In the output-feedback case, the main challenges
are the development of an asymptotically convergent observer for the unmeasured
states, and the lack of a general separation principle for nonlinear systems. As a
result, constructive procedures for output-feedback control are developed only for
particular classes of nonlinear systems. A detailed review of the output-feedback
control literature can be found in the thesis by Maggiore (2000) [61]. An output-
feedback solution relies on the design of an observer to recover the unmeasured
states, and various approaches to nonlinear observer design are reviewed e.g. in the
theses by Johansson (2001) [39] and Rajamani (1995) [78].
Provided that some smoothness requirements are satisfied (basically on the fric-

tion and valve flow models), the full nonlinear model of the electro-pneumatic ac-
tuator is fully feedback linearizable. An important property of electro-pneumatic
actuators, is that their full nonlinear model is in pure-feedback form in its natural
coordinates. In the first section below, we first describe some results for feedback lin-
earizable nonlinear systems, the most general class in the nonlinear control literature
for which constructive procedures for nonlinear output-feedback tracking control are
available. Next, we discuss nonlinear systems in pure-feedback form, which are ap-
plicable for nonlinear state-feedback control design by a backstepping approach, and
for output-feedback control by an observer-based backstepping approach, provided
that an asymptotically convergent observer is available. In the last section, we pro-
vide a review of a few selected approaches for nonlinear observer design, applicable
for electro-pneumatic actuators.
In the review below, we limit our discussion to the single-input single-output

(SISO) case and approaches relevant for electro-pneumatic actuators, and we roughly
sketch the main ideas and refer explicitly to only a few selected references. For a more
complete overview over existing approaches, see the literature reviews in [61], [39],
and the survey [51].

Feedback linearizable systems

Most output-feedback solutions considered in the literature are based on high-gain
observers to estimate all, or some of, the unmeasured states of the system. A
constructive design of high-gain observers which robustly estimates the derivatives
of the output, are available for a general class of nonlinear systems which are fully
input-output linearizable. The main feature of the observer is that it uses high gain
in its output-injection term to achieve an arbitrary large region of attraction with
respect to vanishing pertubations, in addition to arbitrary fast rate of convergence,
and arbitrary attenuation of the effect of bounded disturbances. See e.g. the tutorial
paper by Khalil [48], and the references therein. A drawback with this high-gain
observer, is that it estimates the states of the model transformed to the input-output
form, i.e., where the states are the output and its derivatives. In order to obtain
estimates of the original states, an invertible observability mapping between the
output-derivatives and the original states is required to be explicitly known. In
his thesis [61], Maggiore removes this inconvenient and unpractical restriction by
proposing a high-gain observer for feedback linearizable systems which operates in
the original states, hence, which do not require a preceding transformation of the



system to an input-output form with the output and its derivatives as states.

One of the first general classes of nonlinear systems which was considered in
the output-feedback control literature, is feedback linearizable systems of minimum-
phase, which can be expressed in the normal form

ż1 = z2

ż2 = z3

· · ·
żr−1 = zr (1.23)

żr = a (z, ζ) + b (z, ζ) · u
ζ̇ = q (z, ζ) ,

where z = [z1, z2, · · · , zr]T , [y, ẏ, · · · , y(r−1)]T ∈ Rr, with y being the output, u
the input, and ζ ∈ Rn−r the states of the internal dynamics, while n is the order,
and r the relative degree of the system. Since the state ζ is carefully devised so
that the control input u does not appear in the internal dynamics ζ̇ = q (z, ζ), it
can not be controlled, thus, the system (1.23) is required to be minimum-phase, or
more precisely, the zero dynamics ζ̇ = q (zr, ζ) is required to be stable (or bounded)
for all possible reference trajectories z = zr. In the partial-state feedback case
where ζ is measured (in addition to y), a high-gain observer can be designed to
estimate the (r − 1) derivatives of the output y, with regional (and even semi-global)
asymptotic convergence. A partial state-feedback design then follows a separation
approach: First, a full state-feedback controller is designed to be robust to errors in
z. Secondly, as z is not measured, the designed full-state controller is implemented
using the estimates ẑ of z obtained by a high-gain observer. Since ẑ converges
asymptotically to z, the tracking performance of the full state-feedback controller is
asymptotically recovered by partial state-feedback of ζ and y only. A key element of
the design, is to make the full state-feedback control globally bounded in ẑ, in order
to prevent the peaking (initial transients with large magnitudes) of the high-gain
observer from destabilizing the resulting output-feedback solution.

Remark 4 Provided the model of the electro-pneumatic actuator is sufficiently smooth,
the normal form (1.23) (possibly non-affine in the input u), is obtained by differen-
tiating the output y until the input u appears in the equation. Typically, a model of
the electro-pneumatic actuator consists of the position y, the velocity v, and the two
pressures pA and pB, and then, the dynamic order is n = 4, and the relative degree
r = 3. Increasing the dynamic accuracy of the model, it could be further extended
to include states of the valve dynamics, friction dynamics, and possibly also temper-
ature dynamics. Then, the relative degree r would be increased by the order of the
valve dynamics, while the other dynamics would enter in the internal dynamics, i.e.,
only increasing the order n, but not the relative degree r.

The fact that ζ is unobservable from y, represents a major obstacle for an output-
feedback solution when ζ is not measured. This means that ζ is unavailable for
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control, such that the controller design is limited to a partial state-feedback using z
only. A high-gain observer is then used to robustly estimate the output derivatives
of y. Since ζ is not measured, it represents an unknown bounded disturbance
in the observer such that only approximate asymptotic convergence is achieved,
hence, the performance achieved with the underlying state-feedback controller is
only approximately recovered in the output-feedback case. An example of output-
feedback stabilization6 by the above outlined approach, is proposed by Mahmoud
and Khalil in the paper [62], which extends the results of [45] by Khalil, to also
include systems with zero dynamics.

Remark 5 In the above described approach, the state ζ of the internal dynamics
represents an unknown bounded disturbance, since it is not estimated. Hence, only
approximate tracking is possible to achieve using a continuous high-gain observer and
continuous control. It should be noted, however, that in the case when the internal
dynamics is asymptotically stable, a copy of the system would provide asymptotically
convergent estimates of ζ. Thus, an asymptotically convergent observer could be
straightforwardly designed, despite of ζ not being observable from y.

The largest class of nonlinear systems, for which constructive procedures for non-
linear output-feedback tracking control are available, is fully feedback linearizable
systems which can be expressed in the perturbed input-output form

y(n) = ā (z,u, w (t)) + b̄ (z,u, w (t))u(n−r), (1.24)

where n is the order and r is the relative degree of the system. Here, the non-
linear functions ā (·) and b̄ (·) may depend on the output and its derivatives z ,
[y, ẏ, · · · , y(n−1)]T ∈ Rr, and also on the input and its derivatives u , [u, u̇, · · · , u(n−r−1)]
∈ Rn−r when the relative degree is lower than the order of the system (r < n), and
w is a bounded uncertainty which can represent modeling errors and time-varying
disturbances. In the form (1.24), the state vector is the derivatives of the output
y, hence, provided that the input u and its derivatives are known, a high-gain ob-
server can be designed to provide asymptotically converging estimates of all the
states for the nominal (unperturbed) system without uncertainties, i.e., w (t) = 0.
The high-gain observer can be designed with a region of attraction which can be
made arbitrary large, by sufficiently large gain. Furthermore, in the presence of the
bounded uncertainty w (t), the high-gain observer recovers the output-derivatives
with arbitrary accuracy, by sufficiently large gain. Hence, with an asymptotically
stable observer available to robustly estimate all of the system states, the main
obstacle to an output-feedback solution is removed. A new difficulty with this ap-
proach is that the full state-feedback controller must be designed to provide, not only
the input u, but also its derivatives u̇, · · · , u(n−r−1) in order to be able to estimate
all the states of (1.24) using a high-gain observer. To solve this problem, a series
of integrators are augmented on the input side of the system (1.24), whose states

6The term tracking refers to the most general case where the reference is a time-varying trajec-
tory, while the term regulation, or stabilization, refers to the special case when the reference is a
fixed set-point.



are denoted u , [u1, u2, · · · , un−r]T = [u, u̇, · · · , u(n−r−1)], such that the augmented
system is given by the state-space model

ż1 = z2

ż2 = z3
...

żn = ā (z,u, w (t)) + b̄ (z,u, w (t)) ν (1.25)

u̇1 = u2

u̇2 = u3
...

u̇n−r = ν.

Remark 6 Provided that the electro-pneumatic actuator is modeled sufficiently smooth,
the model can be expressed in the input-output form (1.25) (however, not necessarily
affine in un−r) by successive differentiation of the output.

Viewing ν , u(n−r) as the control input of (1.25), this corresponds to using a
dynamic controller of order (n− r) to control z. As opposed to the design based
on the normal form (1.23), we no longer need to impose a partial state-feedback
restriction on the controller design of ν: The state z contains the derivatives of the
output y which can be robustly estimated using a high-gain observer, while u is
the state of the dynamic compensator which is readily available for feedback upon
integration of ν. Following this approach (in a reversed manner), Oh & Khalil [71]
design a high-gain observer for the tracking error (z̃ , z− zr), and then a globally
bounded sliding mode controller in the observer coordinates which forces the esti-
mated observer tracking error to zero. Since the convergence of the actual tracking
error follows by the convergence of the high-gain observer, semi-global tracking is
achieved which is robust to the bounded, time-varying uncertainty w (t), i.e., mod-
eling errors and time-varying disturbances satisfying the matching condition. The
input ν is discontinuous. However, there is no chattering in the actual control u since
it is obtained by (n− r) times integration of ν. For the augmented system (1.25)
without the uncertainty w, Aloliwi & Khalil [3] propose (as an extension of Khalil’s
paper [46]) an adaptive output-feedback tracking controller, with unknown parame-
ters θ appearing in (1.24) with ā (·) = f0 (·) + f (·)T θ and ḡ = g0 (·) + g1 (·)T θ.
Based on the augmented system (1.25), Mahmoud & Khalil proposed in [63] the full
generalization of [62] to the case of robust output-feedback tracking control utilizing
high-gain observers.

Systems in feedback form – integrator backstepping

For systems in pure-feedback form with only feedback paths in the dynamics, like

q̇1 = f1 (q1, q2)

q̇2 = f2 (q1, q2, q3)

q̇3 = f3 (q1, q2, q3, u) , (1.26)
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a nonlinear controller may be designed recursively by an integrator backstepping
approach. Backstepping is a flexible design procedure, where the nonlinear control
design becomes constructive by breaking down the control problem into scalar prob-
lems at each step. A particular strength of backstepping, is that it can be used
to effectively deal with structured uncertainties which do not satisfy a matching
condition with the control input u (which is a common restriction in robust control
designs). With adaptive backstepping we may design asymptotic tracking controllers
in the case where the uncertainty is unknown constant parameters which appear in
an affine form, i.e., pure-feedback systems where the nonlinear functions can be fac-
tored as fi (·) = f0i (·)+φi (·)T θ, where f0i (·) and φi (·) ∈ Rp are known, and θ ∈ Rp

is a vector of p uncertain parameters. Adaptive backstepping, and backstepping in
general, is treated in the textbook by Krstíc et al. [52]. With robust backstepping we
may design robust tracking controllers in the presence of time-varying disturbances,
bounded by known functions, i.e., with nonlinearities in the form fi (·) = f0i (·)+
qi (·)T w (t), where w (t) is a bounded uncertainty, while f0i (·) and qi (·) are known
functions satisfying the pure-feedback structure. Robust backstepping is also briefly
treated in [52], and in the textbook by Freeman & Kokotovíc [26]. Robust and
adaptive backstepping techniques can effectively be combined to deal with systems
with a combination of uncertain parameters and time-varying disturbances, i.e.,
with nonlinearities in the form fi (·) = f0i (·) + φi (·)T θ + qi (·)T w (t), as proposed
by Freeman et al. [27].
One of the main purposes of backstepping is the construction of a Control Lya-

punov Function (CLF) which is used for control design. Briefly stated, a CLF is
a Lyapunov function candidate where a stabilizing control law exists which would
render the CLF a Lyapunov function for the closed-loop system with a negative
definite time-derivative. Some extensions of the backstepping procedure is based
on modifications of the recursive construction of a CLF. By introducing a flattened
CLF, Freeman & Kokotovíc [25] and [26, Section 5.3.2] removed an undesirable high-
growth property of robust terms in the control law, resulting from a backstepping
design using a quadratic CLF. Furthermore, Freeman & Praly [28] extended the
backstepping procedure to systems with actuator magnitude and rate constraints.
Another important extension of the backstepping procedure, with considerable prac-
tical importance because it guarantees stability margins, is the possibility to render
the design inverse optimal. Inverse optimal and locally optimal backstepping design
procedures are proposed by Ezal in his thesis [24]. See also [26, Section 5.3.2], Krstíc
& Li [53], or Pan et al. [72] and the references therein.

Remark 7 The physical structure of electro-pneumatic actuators confines its model
to the pure-feedback form in its physical coordinates. The backstepping techniques
found in the control literature usually consider systems in the strict-feedback form,
that is, a lower-triangular form where the nonlinearities are restricted to the struc-
ture fi (q1, · · · , qi+1) = ai (q1, · · · , qi)+biqi+1, i.e., affine in qi+1. Provided that an im-
plicit function restriction is imposed on the dependence of fi (·) on qi+1, most results
for systems in the strict-feedback form carries over to systems in the more general
pure-feedback form, however, the results are then no longer global, see [52, Section
4.5.3].



The most general class of feedback systems where backstepping applies, com-
prising most models of electro-pneumatic actuators, is the pure-feedback form with
internal dynamics and uncertainties bounded by known functions. This form can be
expressed as

q̇1 = f1 (q1, q2, ζ) + g1 (q1, q2, ζ)
T w (t)

q̇2 = f2 (q1, q2, q3, ζ) + g2 (q1, q2, q3, ζ)
T w (t)

... (1.27)

q̇r = fr (q1, · · · , qr, u, ζ) + gr (q1, · · · , qr, u, ζ)T w (t)
ζ̇ = F (q, ζ, u) +G (q, ζ, u)w (t)

where n is the order of the system, r is the relative degree, with the r first states
contained in the vector q = [q1, · · · , qr]T , the remaining (n− r) states of the in-
ternal dynamics contained in ζ, and w (t) ∈ Rp is a vector of p time-varying
bounded disturbances. The nominal dynamics fi (·) and the disturbance gains gi (·),
i = 1, · · · , r, the nominal dynamics F (·) ∈ Rn−r, and the disturbance gain ma-
trix G (·) ∈ R(n−r)×p of the internal dynamics, are known functions. The internal
ζ-dynamics is written in a compact vectorized form for simplicity, however, it is
required to be in a form which does not violate the pure-feedback property of the
q-dynamics.
An additional strength of the backstepping procedure is that, provided an as-

ymptotic observer is available, a robust output-feedback design is constructive by
an observer-based backstepping approach. Denoting the estimated states q̂ =
[q̂1, q̂2, · · · , q̂r] and ζ̂, a backstepping design is performed on the dynamics of the
(q1, q̂2, · · · q̂r, ζ̂)-system. The observer error q2 − q̂2 then appears in the design as a
time-varying disturbance, which is systematically counteracted by robust terms in
the backstepping design – referred to as nonlinear damping. By observer backstep-
ping, an output-feedback solution is derived, which is robust to observer errors, and
where the performance of an equivalent full state-feedback backstepping design is
asymptotically recovered as the observer error q2 − q̂2 converges to zero. Hence, for
systems in the pure-feedback form, the only obstacle to an output-feedback solution
by a backstepping approach, is the design of an asymptotically convergent observer
for the system, which in general is not a trivial task.

Nonlinear observer design

The problem of reconstructing states which are not measured directly, is referred to
as an observer or state estimation problem in the control literature. A general theory
on nonlinear observer design does not exist, and constructive designs are available
only for particular classes of nonlinear systems. An overview of the nonlinear ob-
server literature is provided in the theses by Maggiore (2000) [61] and Johanson
(2001) [39]. Several approaches to nonlinear observer design are collected in the
textbook (1999) [68], edited by Nijmeijer & Fossen. In this section, we review a few
nonlinear observer designs which are interesting with respect to electro-pneumatic
actuators.
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Consider the nonlinear system

ẋ = f (x, u)
y = cTx,

(1.28)

where x ∈ Rn is the state vector, and u, y ∈ R are the input and the measured
output, respectively.
If the system dynamics and the input u is known, an open-loop observer – also

referred to as a ballistic observer – for the states x, is given by
.

x̂= f (x̂, u) , (1.29)

where x̂ is the estimated state. When the input u is known, and the system
dynamics, given by f (x, u), is asymptotically stable, the estimate x̂ of the open-
loop observer (1.29) converges asymptotically towards the actual state x. In other
words, (1.29) is an asymptotic observer for (1.28) where the estimation error x̃ ,
x− x̂ converges asymptotically to zero. Due to its simplicity, an open-loop observer
could be a good choice for nonlinear systems, whose dynamics can be established to
be asymptotically stable7.
For certain classes of nonlinear systems which are uniformly observable and not

required to be asymptotically stable, a Luenberger-type observer with linear output-
injection may provide asymptotic estimates of the state x of (1.28). This Luenberger-
type observer is given by

.

x̂= f (x̂, u) + k · (y − ŷ)
ŷ = cT x̂,

(1.30)

where k ∈ Rn is a vector of output-injection feedback gains which one attempt to
choose to make the resulting observer error asymptotically stable. Rajamani [77]
(1993) develops necessary and sufficient conditions under which the Luenberger-type
observer (1.30) is asymptotically stable for nonlinear systems whose dynamics can
be written in the form

ẋ = Ax+ φ (x, u)
y = cTx,

(1.31)

where
¡
A, cT

¢
is an observable pair, and where φ is a Lipschitz nonlinearity in x,

satisfying
|φ (x, u)−φ (x̂, u)| ≤ L |x− x̂| (1.32)

for some positive constant L. Rajamani shows that the stability of the observer error
dynamics depends both on the eigenvalues and eigenvectors of

¡
A− kcT¢. Briefly

stated, the observer gain vector k must be chosen such that the asymptotic stability
of the linear part of the observer error dynamics, given by

¡
A− kcT¢, dominates the

destabilizing effect of φ (x, u)−φ (x̂, u), which appears as a vanishing perturbation
in the observer error dynamics.

7Recently, a general approach to the construction of a smooth Lyapunov function for nonlinear
systems, was proposed by Johansen, see e.g. [38]. This approach can be used to establish an
estimate of the region of attraction, in which exponential stability can be guaranteed.



Utilizing the sliding mode observer
.

x̂= f (x̂, u) + k · (y − ŷ) + l · sgn (y − ŷ)
ŷ = cT x̂,

(1.33)

proposed by Slotine et al. [88] (1987), the class of systems considered by [77] is
extended to include systems with nonlinearities satisfying

|φ (x, u)−φ (x̂, u)| ≤ L0 + L1 |x− x̂| , (1.34)

for some positive constants, L0 and L1. The sliding mode observer [88] has strength-
ened convergence and disturbance attenuation properties compared to (1.30), and
achieves asymptotic convergence even in the presence of bounded non-vanishing
disturbances.

1.4 Thesis outline

The main contributions, and organization of the thesis, are outlined below.

1.4.1 Contributions

The main contributions from this work are within the fields:

• Modeling for nonlinear and adaptive control
• Nonlinear observer design
• Nonlinear output-feedback tracking control
• Experimental implementation and validation.

The first part of the thesis deals with the mathematical modeling of the electro-
pneumatic clutch actuation system for nonlinear and adaptive output-feedback con-
trol. Main objectives have been the development of improved models of particular
model parts, i.e., friction and flow rate models, with respect to accuracy, and proper-
ties which are advantageous for control, i.e., parameter-affinity and differentiability.
Modeling of nonlinearities in parameter-affine form allows parameter identification
to be solved as a convex optimization problem, and is required for Lyapunov-based
adaptive control design. Differentiability of system nonlinearities enables exact back-
stepping, and is also required for the system to be fully feedback linearizable such
that it can be expressed in the input-output form to which existing solutions for
output-feedback control using high-gain observers apply.
This work provides a unified treatment of the modeling of electro-pneumatic

actuators in general, and introduces some modifications which make the resulting
design model applicable for solutions available for nonlinear and adaptive output-
feedback control. In particular, a smooth dynamic friction model, a generalized
flow rate equation, and valve flow models with improved accuracy, are introduced.
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The modeling is summarized in a 6th-order dynamic model of the electro-pneumatic
clutch actuator. This model is fully feedback linearizable with relative degree four,
and in pure-feedback form, which makes it applicable for backstepping. The most
important nonlinearities of the model, i.e., the valve flow and clutch load model,
are linearly parametrizable, hence, suited for online identification by an adaptive
control design in the case of full state-feedback.

Utilizing the smooth design model derived in the first part of the thesis, the
second part addresses the design of an output-feedback tracking control system for
the electro-pneumatic clutch actuator.
The first part of this output-feedback problem, is that of designing an observer

for the unmeasured states of the system. We first propose to use the design model
as an open-loop nonlinear observer for the unmeasured states. Analyzing the sta-
bility properties of this observer, we demonstrate that the pneumatic actuator has
some inherent stability properties which enables the design of simple nonlinear ob-
servers. Based on this result, we propose two simple nonlinear observers for the
electro-pneumatic actuators – a full-order observer and a reduced-order observer
– both compatible with output-feedback control by an observer-based backstep-
ping approach. The performance of the observers are validated by simulations and
experimentally on a test rig.
The second part of the output-feedback problem, is that of designing an observer-

based tracking controller. Based on the proposed reduced-order observer, a robust
output-feedback tracking controller is designed by an observer backstepping ap-
proach. The controller achieves asymptotic practical tracking in the presence of
bounded disturbances (e.g. modeling errors), which means tracking within a pre-
scribed precision which can be made arbitrary small by sufficiently high gain in the
controller. The performance of the output-feedback tracking controller is validated
by simulations and experimentally on a laboratory test rig.

1.4.2 Organization of the thesis

The remaining chapters are divided into four parts: Part I, Mathematical Modeling,
which addresses the modeling of the electro-pneumatic clutch actuation system,
Part II, Control Design, which addresses the design of an output-feedback tracking
controller for the actuator, Part III, Thesis Conclusions, and Part IV Appendices.
Part I on mathematical modeling includes Chapters 2—6:

Chapter 2: Provides a brief description of the clutch actuation system and the
laboratory test rig.

Chapter 3: Addresses the modeling of the motion dynamics, including subsections
on the modeling of the nonlinear load characteristic, the dynamic friction, and
hardstop forces.

Chapter 4: Reviews the full and reduced-order equations describing the air dy-
namics of the pneumatic chambers.



Chapter 5: Addresses the modeling of the static flow rate characteristics of pneu-
matic restrictions in a nonlinear and adaptive control setting. The chapter
includes novel parametrizations of flow rate equation for fixed restrictions,
and the flow rate of flow control valves, and a simplified model of the valve
dynamics.

Chapter 6: Summarizes, in state-space form, the full dynamic model of the electro-
pneumatic clutch actuator, and outlines its characteristic properties which are
important with respect to observer and control design.

Part II includes Chapters 7—9 on control design:

Chapter 7: Recapitulates some technical tools and terminology, used in the sub-
sequent chapters on observer and control design.

Chapter 8: Addresses the problem of nonlinear observer design for electro-pneumatic
actuators. Three simple observers are proposed, where all are compatible with
output-feedback control by an observer-based backstepping approach, are pro-
posed. Their stability and convergence properties are analyzed, and validated
by simulations and experimentally on the test rig.

Chapter 9: Addresses nonlinear output-feedback control of electro-pneumatic ac-
tuators. Utilizing the proposed reduced-order observer, a particular design
based on observer backstepping, is proposed. The performance of the con-
troller is validated by simulations and experimentally on the test rig.

Part III summarizes the thesis conclusions in Chapter 10:

Chapter 10: Concludes the results of the thesis.

Part IV includes the Appendices A—C:

Appendix A: Reviews and discusses a general approach for the modeling of smooth
static nonlinearities in parameter-affine form using the bell-shaped Gaussian
or B-Spline basis functions.

Appendix B: Briefly reviews the linear least squares approach for parameter es-
timation of parameter-affine static models, and the nonlinear least squares
optimization approach for fitting of the parameters of non-affine models.

Appendix C: Provides a detailed derivation of the full-order dynamics of the pneu-
matic cylinder chambers.

Most of the results included in this thesis have not yet been published. A primary
reason for this has been customer projects of strategic importance for KA, on the
development of electro-pneumatic actuators for AMT systems. In these projects, the
results from the Ph.D. work have been key competitive factors, that have motivated
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to delay the publication of results. The application of the results from the Ph.D.
in these projects, has resulted in a patent application on a control strategy for
pneumatic clutch actuation, submitted early October 2005.
A paper describing the design model of Chapter 6, was presented at the 3rd

FPNI-PhD Symposium 2004 [41]. Related work based on Chapter 8 on nonlinear
observer design for pneumatic clutch actuators, is the M.Sc. thesis by Knutsen [50].
The work on nonlinear observer design is currently being refined into a journal paper,
planned submitted by January 2006. Another journal paper which compares the
cancelling backstepping design presented in Chapter 9, with a non-cancelling design
which avoids cancellation of the inherent stabilizing nonlinearities of the pneumatic
clutch actuator, is planned submitted by June 2006.
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Chapter 2

System Description

A brief description of the physical parts of the clutch actuation system, is given
below. A drawing of a prototype clutch actuator from Kongsberg Automotive, is
given in Figure 2.1.

pull-type clutch actuator

actuator piston
connection hook

release bearing
chamber A chamber B

actuator spring

Figure 2.1: Drawing of a pull-type clutch actuator.

Clutch: The functional objective of the friction clutch is to provide a disengagement
of the engine from the vehicle (e.g., during transmission shifting), and to
control the torque transmitted from the engine to the vehicle during clutch
engagement. Torque is transmitted by the friction plates which are compressed
by a clutch compression spring.

Actuator: A pneumatic cylinder actuator is used to disengage the clutch. The
actuator illustrated in Figure 2.1, is a direct acting pull-type actuator, where
the piston is connected to the clutch compression spring by a hook which pulls
at the release bearing.
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Valve: Electro-pneumatic flow control valve(s) are used to control the air flow to
and from chamber A of the actuator. In the prototype system considered in
this work, a closed center three-way proportional valve is used. An alternative
valve configuration is by use of multiple pairs of on-off valves, where each pair
consists of a fill valve controlling the flow from the supply into chamber A,
and a vent valve to escape air to exhaust.

Sensor: A sensor is required in order to provide measurements of the position of
the actuator for feedback control.

Electronic Control Unit (ECU): The ECU is a digital computer system on the
vehicle which is used to implement the control system.

A simplified schematic diagram of a pneumatic clutch actuator is given in Fig-
ure 2.2. The system consists of a direct acting pull-type prototype actuator, con-
trolled by a closed center three-way proportional valve, with an Electronic Control
Unit (ECU) which implements the control system, and a position sensor measuring
the actuator position. The load and friction forces, denoted fl and ff respectively,
are represented by arrows acting on the connection hook of the actuator piston.

Sp

( )⋅ff

Ap

( )yfl
AA

Electronic Control
Unit (ECU)

my

vu

y

r

Bp

BA

0PpE =

clutch actuatorposition sensor

Supply Exhaust

0P

0A

Figure 2.2: A schematic diagram of the pneumatic clutch actuator PCA.

The position y of the clutch actuator is measured by a position sensor, and
the measured position ym is fed back to the Electronic Control Unit (ECU) which
computes the valve control input uv according to a given reference signal r. The
valve distributes the air flow in and out of chamber A by opening for flow from the
supply reservoir (with pressure pS), or escaping air to the exhaust reservoir (usually
at atmospheric pressure pE = P0). By controlling the air flows, the valve controls
the pressure pA of chamber A. The back-chamber B is connected to atmosphere
(with pressure P0) through a duct, referred to as the outlet restriction of chamber
B. For certain actuators, the flow resistance in the outlet restriction is so high that
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actuator movements are causing a significant dynamic back-pressure pB in chamber
B. The resulting force provided by the pneumatic actuator is given as

fa = A0P0 +AApA −ABpB.

The position y of the clutch actuator is consequently controlled by manipulating
the valve input uv to generate the necessary pressure pA in chamber A to balance
the resultant load force fl, and compensate for the friction force ff , and the back-
pressure pB. The load and friction forces acting on the pneumatic clutch actuator
are briefly described below.

The position dependent load force fl, referred to as the clutch load characteristic,
is a lumped spring force composed of the clutch compression spring which compresses
the clutch friction discs, and a counteracting (much weaker) actuator spring. The
clutch compression spring is a stiff and highly nonlinear diaphragm spring which
constitutes the main part of the load characteristic, while the actuator spring is a
linear coil spring.
The resulting load characteristic may differ significantly from truck to truck,

depending on various factors: The clutch compression spring is designed according
to the type and required torque capacity of the clutch, which obviously depends
on the type of truck. In general, there is a significant difference between the load
characteristic of a new and a worn clutch, because the point of attack of the clutch
compression spring changes with wear of the clutch. The clutch load characteristic
also depends on whether the clutch actuator is of push or pull type, or whether the
actuator operates the clutch directly or indirectly by a lever. Typically, push type
actuators have a stronger nonlinear characteristic and a higher force level than pull
type actuators. The exchange ratio of the lever is usually about 2, thus, the lever
operated actuators have about twice the operating range, and consequently, half the
force level compared to the directly acting actuators.

The actuator seals and the mechanical contact between moving parts in the actu-
ator and clutch, constitute a considerable friction force in the system. In Figure 2.2,
these friction forces are lumped together in the single resultant friction force ff
acting on the connection hook of the actuator.

2.1 Laboratory test rig setup

All the experimental results presented in this thesis are obtained with an early
prototype pneumatic clutch actuator mounted on a Scania clutch at the laboratory
at Kongsberg Automotive’s research department at Kongsberg, in Norway. The
actuator on the test rig is a concentric actuator of pull type, which means that the
actuator has a concentric placement inside the clutch housing, and that the actuator
is pulling directly on the clutch release bearing.
The actuator is equipped with a Servotronic proportional valve from Joucomatic,

and sensors providing measurements of the actuator’s position y, acceleration ÿ,



cylinder chamber pressures, pA and pB, and supply pressure pS. A dSPACE real-
time computer system together with Matlab/Simulink is used for data acquisition
and control.
Figure 2.3 shows a photo of the prototype test rig and data acquisition system in

the R&D Laboratory of Kongsberg Automotive’s R&D department at Kongsberg.

ECU (MicroAutoBox)

clutch actuator

proportional valve

power supply

clutch housing

air supply

Figure 2.3: Photo of the test rig used for experimental testing, consisting of clutch,
clutch actuator, valve, sensors, ECU, and laptop used for data acquisition and con-
trol of experiments.

2.1.1 Observer and controller implementation

The simulation models of the electro-pneumatic actuator, the observers, and the
output-feedback controller, designed in Chapters 8 and 9, were implemented in
Simulink/Matlab using continuous-time integrators, and simulated using a variable
step solver.
For real-time implementation of the observer and controller, a real-time control

system from dSPACE was used, where the observer and controller were implemented
in discrete-time using a 3rd-order explicit Runge-Kutta fixed step solver with sam-
ple time ∆T = 2.0ms. The required C-code was generated by automatic code
generation in Matlab, and downloaded to a real-time operating system running on
a MicroAutoBox from dSPACE. Virtual instrument control panels were developed
in a dSPACE Control Desk program, which were used to control the experiment via
a laptop connected to the MicroAutoBox. The instrument panels developed for the
observer and controller are depicted in Figure 2.4 and 2.5, respectively. The main
functions of the instrument panels were to perform data acquisition, adjust parame-
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ters, and to plot the estimated and measured variables on-line. They also provided
a possibility to adjust selected observer and controller parameters and initial values,
and choose control mode (open-loop or closed loop), and type of reference or con-
trol input: square wave, sine wave, clutch sequence or manual input by means of a
hand-held position sensor.

Figure 2.4: A screen dump of the observer instrument panel.



Figure 2.5: A screen dump of the controller instrument panel.



Chapter 3

Motion Dynamics

The motion dynamics of the actuator piston is expressed by the equation of motion,
known as Newton’s 2nd law. The resulting force acting on the actuator piston is
composed of the clutch load force fl, the friction force ff , and the resultant actuator
pressure force (A0P0 +AApA −ABpB). In addition, the stroke of the actuator piston
is limited by the physical length of the cylinder, where the physical constraints give
rise to the hardstop forces fh. Furthermore, the mechanical coupling between the
actuator and clutch compression spring is assumed to be stiff, and the inertia of
moving parts is lumped to the mass of the piston. Thus, the motion dynamics is
described by

M
d2y

dt2
= A0P0 +AApA −ABpB − fl (y)− ff (·)− fh (·) , (3.1)

where y, pA, pB are the piston position and pressures, and indices A and B are
referring to chambers A and B, respectively; M is the effective mass of moving
parts; AA and AB are the piston areas. The area A0 = AB − AA is an area of the
piston on the chamber A side of the actuator which is subjected to atmospheric
pressure P0. The mathematical modeling of the static load force fl, the dynamic
friction force ff , and the hardstop force fh, are addressed in the following sections.

3.1 Clutch load characteristic

The clutch load characteristic is a nonlinear function of the clutch position, i.e.,
fl = fl (y) (also referred to as a static nonlinearity). For any type of clutches and
actuator configurations, the clutch load characteristic fl (y) can be modeled in the
parameter affine form

fl (y) = θTl · φl (y) , (3.2)

where y ∈ Y , [ylb, yub] is the clutch actuator position, and fl ∈ Fl ⊂ R is the
modeled load force. The regressor φl (y) = [φl 1 (y) , φl 2 (y) , · · · , φl p (y)]T ∈ Rp

is a vector of basis functions, which is weighted by the parameter vector θl =
[θl 1, θl 2, · · · , θl p]T ∈ Θl ⊂ Rp. We use normalized Gaussian basis functions, defined
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according to

φl,i (y) =
μi (y)
pP

j=1

μj (y)

(3.3)

μi (x) = e−
1
2
w2i (x−ci)2, (3.4)

wherew = [w1, w2, · · ·wp]
T is a vector of scaling parameters, and c = [c1, c2, · · · , cp]T

a vector of offset parameters. Equation (3.3) provides a normalization of the stan-
dard Gaussian function given by (3.4), and the parameters wi determine the widths
of the basis functions φl,i (y), thus, the degree of smoothness of the modeled output
fl (y), and the parameters ci determine the location (or centers) of the basis func-
tions φl,i (y). See Appendix A for further discussion of the choice of the parameters
wi and ci.
With properly defined scaling vector w and center vector c, the load model (3.2)

using normalized Gaussian basis functions has the following desirable properties:

• Provided that c and w are viewed as fixed, non-tunable parameter vectors,
the model is affine in its tunable parameter vector θl, which is advantageous
for parameter estimation, and necessary to make possible on-line identification
by existing constructive Lyapunov-based adaptive controller designs.

• The interpretation of each parameter is good, in the sense that there is a close
relation between the weighting θi of the ith basis function φl,i (y) and the
modeled output fl (y) at the center y = ci. This is mainly due to the unity
property

pX
i=1

φl,i (y) ≡ 1, (3.5)

which is a result of the normalization.

• Each basis function in the interior of Y ( φl,i (y), i = 2, · · · , p − 1) has expo-
nential local support (defined in Appendix A), which means that each basis
function is practically zero outside a finite subset of Y around its center. Such
basis functions have superior numerical properties with respect to to parameter
identification, hence, are desirable for adaptive controller designs.

• The modeled load force is infinitely smooth, i.e., it is infinitely differentiable.

The measured and modeled clutch load characteristic of the test rig clutch ac-
tuator, is plotted in Figure 3.1. The full operating range of a new clutch of this
actuator configuration is between 0 and 15mm. As the clutch wears, the clutch
load characteristic will typically move to the left and increase in magnitude. The
operating range of a worn clutch of the considered configuration is typically −10
to 5mm at the end of its lifetime. Consequently, for the model to be valid for
the entire lifetime of the clutch, the input range of the modeled load characteris-
tic should be Y = [−10, 15] mm. The parameter vector θl can be fitted to the
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mean of a quasi-static load characteristic obtained from measurements on the test
rig. This characteristic may be obtained by one slow disengagement and subsequent
engagement of the clutch while measuring the actuator pressures. From the mea-
sured actuator pressures, it is possible to compute the corresponding actuator load
force. This measured load force results in a characteristic with hysteresis, where
it is possible to extract the mean load force. The hysteresis can be attributed to
friction which is modeled separately (see section below). In Figure 3.1, the extracted
mean of the measured load characteristic, denoted fl,m (y), is plotted together with
the modeled clutch load characteristic fl (y), where the parameters θl are fitted to
the measurements by a least squares method (see Appendix B). The corresponding
set of normalized Gaussian basis functions φl (y), is plotted in the lower pane in
the figure. The figure also shows a typical example of the load characteristic of a
worn clutch, fl,w (y) , and some conservative estimates of upper and lower bounds,
discussed in the subsection below.
.
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Figure 3.1: The modeled clutch load characteristic of the test rig (push-type
actuator).

Remark 8 The clutch load characteristic can alternatively be modeled using B-
spline basis functions, as illustrated in Appendix A, Figures A.7—A.8 with cubic



(3rd-order) B-spline basis functions. The modeling capabilities are very similar to
the normalized Gaussian basis functions. A difference is that the B-spline functions
have a finite degree of differentiability with degree that increases with the order of
the function. An advantage over normalized Gaussian functions, is that each B-
spline function has a precise region of local support (instead of exponentially local
support). This means that the B-spline functions can be used to define a set of basis
functions with a precise region of support. This makes the B-spline functions better
suited to define customized parametrizations, where the smoothness of the modeled
output may vary over the region of support, which again can be used to minimize the
number of necessary basis functions for a given accuracy.

3.1.1 Uncertainty modeling

The load characteristic will change considerably during the life-time of the truck
due to wear of the clutch. When the modelled load characteristic is used for model-
based compensation, it therefore needs to be updated as the clutch wears. This
can be done continuously using an adaptive control scheme, or by offline parameter
estimation at scheduled intervals. In both cases, to obtain a robust solution, it will
be necessary to compute bounds on fl (y) which are valid through the entire lifetime
of the clutch. The given parametrization of the clutch load characteristic provides
a simple way to implement such upper and lower bounds. That is, the upper and
lower bounds of the load characteristic can be implemented as

fl,ub (y) , θTl,ubφl (y) , (3.6)

fl,lb (y) , θTl,lbφl (y) ,

where θl,ub and θl,lb are the parameter vectors for the upper and lower bound,
respectively. Hence, a parametric uncertainty model of the load characteristic is
given by (3.2) and the parameter set

Θl , {∀θl : θl,lb ≤ θl ≤ θl,ub} , (3.7)

i.e., we have that θl ∈ Θl, y ∈ Y =⇒ fl,lb (y) ≤ fl (y) ≤ fl,ub (y).

Remark 9 The clutch load characteristic of the test rig application is a new clutch
of push-type, which has a rather mild nonlinear characteristic. The clutch load force
of push-type clutches, however, exhibits a stronger nonlinear characteristic. An ex-
ample of the modeled clutch load characteristic of a push-type clutch, is plotted for
both a new and a worn clutch in Figure 3.2. Notice that for both push-type and
pull-type clutches, the nonlinear form of the clutch characteristic becomes more pro-
nounced as the clutch wears. Notice also that the push-type clutch characteristic
is less steep than the pull-type characteristic, thus, can be modeled accurately with
fewer basis functions. The “measured” clutch load characteristics fl,m and fl,w in
the figure, which are used for fitting of parameters, are provided by the clutch manu-
facturer as look-up tables. These characteristics are theoretic curves computed from
the geometry of the clutch compression spring and its configuration, i.e., they are
not actually measured.
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Figure 3.2: Example of the clutch load characteristic of a push-type clutch.

3.2 Friction

In the clutch actuator application the resultant friction force is considerable. Hence,
friction modeling and friction compensation plays an important role with respect to
high-performance position control of the actuator.
The properties of friction are distinguished by two friction regimes, referred to

as the pre-sliding and sliding regime. Pre-sliding friction refers to the friction force
during the small displacement (or micro-slip) occurring in the contact material prior
to sliding, i.e., when there is still zero relative velocity between the piston seal and
the cylinder wall. Sliding friction refers to the case when the contact surfaces are
moving relatively to each other, i.e., when the piston seal slides on the cylinder wall.
Pre-sliding and sliding friction are briefly described below:

Pre-sliding friction: When subjected to a load force which is below the friction
break-away force (also referred to as the stiction force), there will be a pre-
sliding displacement of the asperities in contact, in particular, an elasto-plastic
deformation of the asperities. This phenomenon is intuitive since all materi-
als exhibit strain when subjected to stress. Hence, pre-sliding displacement
occurs for all kinds of materials in contact. However, the softer the material



is, the more pronounced will the pre-sliding displacement be. The pre-sliding
displacement is composed of an elastic and a plastic deformation. The elas-
tic deformation will behave like a nonlinear spring-damper system, while the
plastic deformation is characterized by a creep motion and work hardening of
the asperities in contact. By creep motion we mean a continuous deformation
of the material, which due to work hardening will cause a decreasing deforma-
tion rate. For a complete and thorough description of the pre-sliding friction
phenomenon, see [31].

Remark 10 Due to the elasticity in the seal between piston and cylinder, the pre-
sliding friction properties of pneumatic actuators plays an important role for accurate
friction modeling1.

Static sliding friction: The friction at steady-state sliding, that is, at constant
velocities, is referred to as static sliding friction. The static sliding friction
may be described in terms of viscous and dry friction, where viscous friction is
due to the shear stress in the fluid separating two moving surfaces, while dry
friction is due to the abrasive contact between surface asperities in contact.
The static sliding friction is static in the sense of being a pure function of
the velocity, and possibly chamber pressures, due to the use of lip seals, or
actuator position, due to changing misalignment of the piston axis along the
actuator stroke. Hence, a static friction model is a function of the actuator
states, and does not contain any internal dynamic states.

Dynamic sliding friction: In addition to pure static properties, sliding friction
exhibits certain dynamic phenomena. These are frictional lag and varying
break-away force. For a detailed description, see e.g. [5]. Frictional lag, or
frictional memory, is simply a time-delay in the corresponding change in fric-
tion after a change in the velocity. The effect of frictional lag is probably most
significant in applications with a highly viscous fluid, or lubricant. Varying
break-away force, or rising static friction, refers to the phenomenon that the
friction force level for which sliding occurs – the break-away force, or stiction
force – increases with the dwell time, i.e., the time spent at rest (in stic-
tion). In the case of dry surfaces, one explanation of this phenomenon is that
cold welding occurs between the contact asperities when the relative motion
between the surfaces reaches zero, thus increasing the friction. Another ex-
planation in the case of lubricated surfaces is that lubrication needs time to
flow away, thus, contributes to keep the surfaces separated a short time after
reaching zero relative velocity.

1For example for the high-precision clutch servo system, a significant part of the operaton is
within the pre-sliding regime, thus, pre-sliding friction constitutes an important part of the friction
model.
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3.2.1 Static friction models

Pure viscous friction is usually modeled as proportional to velocity, sometimes in-
cluding a viscous drag component, such as e.g.,

fv (v) = Dvv +Dd |v| v, (3.8)

where v is the velocity, Dv is the viscous damping coefficient, and Dd is the drag
damping coefficient.
The dry friction is better known by the common Coulomb friction model, which

states that the friction is proportional to the normal force of contact, i.e.,

FC = μN, (3.9)

where μ is a friction coefficient andN is the normal force compressing the surfaces. A
common phenomenon of dry friction, not captured by the Coulomb friction model, is
the stiction effect. The stiction effect refers to the phenomenon that the dry friction
force is higher at rest than when sliding. For unlubricated surfaces, the stiction
effect appears as a discontinuous drop in the dry friction force once sliding occurs,
however, physically, the transition from stiction to sliding must be continuous. A
simplified, but appealing explanation of this phenomenon is to view the fluid as a
lubricant, where the relative movement of the two surfaces will cause the available
fluid to build a lubrication film (on a microscopic level ) which will try to separate
the two surfaces. This separation depends on the relative velocity, and varies from
zero separation at low or zero velocities, to full separation for velocities which are
sufficiently high to build a full fluid film between the surfaces. Consequently, the
friction will be high for zero velocity, and decrease as a fluid film builds between
the surfaces, reducing the normal force on the asperities in contact. This velocity
dependence gives rise to a decreasing force characteristic at low velocities, known
as the Striebeck effect. Assuming negligible position and pressure dependence, the
absolute value of the dry friction force – including the Striebeck effect – is often
modeled in the form

fd (v) = FC + (Fs − FC) e
−|v/vS |σ , (3.10)

where FC is the Coulomb friction level, Fs is the stiction force level (also referred
to as the break-away force), and vS is referred to as the Striebeck velocity. The
parameter σ determines the characteristic of the Striebeck curve, and is usually
taken in the range σ ∈ [1, 2].
In many applications of pneumatic actuators, the viscous and dry friction forces

exhibit a significant dependence on the pressures in the cylinder chambers mainly
due to the use of lip seals. This is usually captured by modeling the viscous friction
coefficientDv, and the dry friction coefficients FC and Fs as functions of the pressures
in the chambers.
The viscous friction force fv (·), omitting the viscous drag term, can thus be

modeled according to

fv (v, pA, pB) = Dv (pA, pB) · v (3.11)

Dv (pA, pB) = Dv0 + βA · (pA − p0)
ρA + βB · (pB − p0)

ρB , (3.12)



where the pressure dependence of the viscous friction function Dv (pA, pB) is deter-
mined by the scaling factors βA, βB > 0 and the exponents ρA, ρB > 0, while Dv0 is
a nominal viscous friction coefficient defined for a nominal actuator pressure p0.
In a similar manner, the dry friction force fd (·), including the Striebeck effect,

can be modeled according to

fd (v, pA, pB) = FC (pA, pB) +Rs · FC (pA, pB) e
−|v/vS |σ (3.13)

FC (pA, pB) = FC0 + αA · (pA − p0)
γA + αB · (pB − p0)

γB , (3.14)

where Rs , (Fs0 − FC0)/FC0 is the fraction of friction increase due to stiction, the
pressure dependence of the Coulomb friction function FC (pA, pB) is determined by
the empirical parameters αA, αB, γA, γB > 0, and FC0 and Fs0 are nominal Coulomb
and stiction force, respectively, defined for actuator pressures at p0.

3.2.2 The LuGre dynamic friction model

A dynamic friction model which captures most of the qualitative properties of fric-
tion, while being well suited for model-based control, is the LuGre (Lund-Grenoble)
dynamic friction model proposed by Canudas de Wit et al. in the paper [15]. The
model is recapitulated below.
The dynamic pre-sliding deflection state of the LuGre dynamic friction model

can be given as

ż = v − Kz

fd
|v| z, (3.15)

where the resulting dynamic friction force is given by

ff (v, z) = Dvv +Kzz +Dżż (v, z) . (3.16)

Here, z is the friction state which for pneumatic actuators may be interpreted as a
pre-sliding seal deflection, where the parameter Kz is the deflection stiffness, and Dż

is the deflection damping coefficient. Furthermore, fd is the dry friction force, andDv

is the viscous damping coefficient, which in general are functions of actuator velocity
and chamber pressures as in Equations (3.13)—(3.14), and (3.11), respectively.

Properties of the LuGre friction model

From (3.15), with ż = 0, the steady-state deflection z∗ becomes

z∗ =
fd
Kz

v

|v| =
fd
Kz
sgn (v) . (3.17)

Hence, from (3.16), the resulting steady-state friction force is given as

f∗f (v, fd) = fd sgn (v) +Dvv. (3.18)

The friction characteristic f∗f given by (3.18), is referred to as the static sliding
friction characteristic of the dynamic friction model (3.15—3.16).
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To gain more insight into the dynamic friction model, it is instructive to show
that the pre-sliding deflection must be finite. The proof below is recapitulated
from [15].

Proposition 11 (Finite pre-sliding deflection, [15]) The pre-sliding deflection
z (t) is finite. That is, the solution z (t) of the pre-sliding dynamics (3.15) is globally
uniformly bounded (GUB) for all bounded initial values z (0).

Proof. Consider the function
V =

1

2
z2,

which time-derivative along the trajectories of z (t) becomes

V̇ = z · ż
= z ·

µ
v − Kz

fd
|v| z

¶
= vz − Kz

fd
|v| z2

= − |v| |z|
µ
− sgn (v) sgn (z) + Kz

fd
|z|
¶

≤ − |v| |z|
µ
−1 + Kz

fd
|z|
¶
.

Hence,

|z (t)| > kfd (t)k∞
Kz

=⇒ V̇ < 0,

which by LaSalle-Yoshizawa’s Theorem [52, Theorem A.8] proves that all solutions
z (t) of (3.15) converges to the invariant set

Ωz , {∀z : |z (t)| ≤ kfd (t)k∞ /Kz} .

Remark 12 Note that the upper bound kfd (t)k∞ on the dry friction force is simply
the level of the stiction force. For example, with the dry friction characteristic
given by (3.10), the upper bound is given by the constant stiction force Fs, i.e.,
kfd (t)k∞ = Fs.

We define the parameter

Zmax , kfd (t)k∞ /Kz, (3.19)

which we denote the max imum pre-sliding deflection. From the proof of Proposi-
tion 11, we see that by choosing the initial deflection z (0) less than the maximum
pre-sliding deflection Zmax, it will remain so ever after, i.e.,

|z (0)| ≤ Zmax

⇓
z (t) ≤ Zmax ∀t ≥ 0.



Remark 13 Since pre-sliding displacement larger than Zmax is not physically justi-
fied, the initial deflection z (0) should always be chosen less than Zmax.

The following proposition states the passivity properties of the LuGre friction
model with the velocity v as input and the friction force ff as output. The proof
of the proposition follows an approach using Lyapunov arguments, rather than the
standard integral definition of passivity as in [7,23].

Proposition 14 (Passivity) Consider the LuGre friction model, given by (3.15)—
(3.16), with the velocity v as input and the friction force ff as output. The model
has the following passivity properties:

i) fd ∈ [FC , Fs]: With the dry friction modeled to include the Striebeck effect, the
dynamic friction model is passive from v to ff if

Dv ≥ Dż
Fs − FC

FC
,

for ∀Kz,Dż ≥ 0, and strictly passive (with excess of passivity) if the above
inequality is strict.

ii) fd = FC: With the dry friction modeled as a constant Coulomb friction force,
the dynamic friction model is passive from v to ff for

Dv ≥ 0.
for ∀Kz,Dż ≥ 0, strictly passive if Dv > 0.

Proof. Consider the scalar function

V =
Kz

2
z2,

which time-derivative becomes

V̇ = Kzzż

= Kzz

µ
v − Kz

fd
|v| z

¶
.

Now add and substract vff = Dvv
2 +Kzvz +Dżvż, and rewrite

V̇ = Kzz

µ
v − Kz

fd
|v| z

¶
+ vff −Dvv

2 −Kzvz −Dżv

µ
v − Kz

fd
|v| z

¶
= vff −Dvv

2 − K2
z

fd
|v| z2 −Dżv

µ
v − Kz

fd
|v| z

¶
.

Using that

|z| ≤ kfdk∞
Kz

=
Fs

Kz
=

FC

Kz
+

Fs − FC

Kz
,



CHAPTER 3. MOTION DYNAMICS 53

we obtain

V̇ ≤ vff −Dvv
2 − K2

z

fd
|v| z2 −Dż

µ
1− Kzz

fd

|v|
v

¶
v2

≤ vff −Dvv
2 − K2

z

fd
|v| z2 −Dż

µ
1− FC

fd
sgn v

¶
v2 +Dż

Fs − FC

fd
sgn vv2

≤ vff −Dvv
2 − K2

z

fd
|v| z2 +Dż

Fs − FC

fd
sgn vv2.

Hence, with

Dv ≥ Dż
Fs − FC

FC
≥ Dż

Fs − FC

fd
,

we get

V̇ ≤ vff − K2
z

fd
|v| z2,

which proves passivity from v to ff . Moreover, with

Dv ≥ ε+Dż
Fs − FC

FC
,

where ε > 0 is an arbitrary small constant. Then,

V̇ ≤ vff − K2
z

fd
|v| z2 − εv2,

which proves strict passivity from v to ff in the case when the inequality is strict:
Dv > Dż (Fs − FC) /FC.

3.2.3 A simplified smooth dynamic friction model

For our control design, we employ a modified version of the LuGre dynamic friction
model, assuming simple static friction characteristics, and by introducing a smooth
approximation of the pre-sliding deflection dynamics. The pre-sliding deflection
dynamics (3.15) is modified according to

ż = v − Kz

FC
|v|s z, (3.20)

where ε0 > 0 is an arbitrary small design parameter, and the dry friction character-
istic is taken as a constant Coulomb friction, fd = FC . In order to make the model
applicable for subsequent application of backstepping techniques, the non-smooth
absolute value term |v| has been replaced with the square root term

|v|s ,
q
v2 + ε20, (3.21)

which is a smooth approximation to the absolute value term |v|. The resulting
smooth friction force has the same form

ff (v, z) = Dvv +Kzz +Dżż (v, z) , (3.22)



where the viscous friction coefficient Dv is taken as constant. This means that we
have neglected the dependence on actuator position, chamber pressures, and also
the Striebeck effect in our dynamic friction model, in order to obtain a simple model
for control design.

Properties of the smoothed LuGre friction model

The introduced smooth approximation |v|s represents a smooth upper bound on the
absolute operator |v|, which can be made arbitrary accurate by a reduction of the
design constant ε0, i.e.,

lim
ε0→0

|v|s = lim
ε0→0

q
v2 + ε20 = |v|. (3.23)

From (3.20), the steady-state deflection z∗ becomes

z∗ =
FC

Kz

vp
v2 + ε20

(3.24)

=
FC

Kz
sgns (v) , (3.25)

where sgns (v) is a smooth signum function, defined as

sgns (v) ,
vp

v2 + ε20
. (3.26)

The modified steady-state characteristic (3.24) is a smooth approximation to the
steady state characteristic (3.17) of the original LuGre friction model, which is
discontinuous at v = 0. From (3.24), the static sliding friction characteristic of the
modified dynamic friction model (3.20)—(3.22), becomes

f∗f (v) = FC
vp

v2 + ε20
+Dvv (3.27)

= FC sgns (v) +Dvv. (3.28)

The modified dynamic friction model, given by (3.20)—(3.22), results in a smooth
static sliding friction characteristic, but which does not give stiction for zero velocity,
i.e., f∗f (0) = 0.

It is straightforward to show that the pre-sliding deflection for the modified
dynamics is still finite, and Proposition 11 still holds. However, the maximum finite
deflection is slightly reduced, as shown by the following proof:
Proof. The time-derivative of V = 1

2
z2 along the trajectories of z (t) becomes

V̇ = z ·
µ
v − Kz

FC
|v|s z

¶
= − |v|s |z|

µ
v

|v|s
sgn z − Kz

FC
z sgn z

¶
,
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which gives,

|z (t)| > FC

Kz

¯̄̄̄
v

|v|s

¯̄̄̄
=⇒ V̇ < 0.

Noting that
v

|v|s
=

vp
v2 + ε20

∈ h−1, 1i ,

by LaSalle-Yoshizawa’s Theorem [52, Theorem A.8], all solutions z (t) of (3.20) con-
verge to the invariant set

Ωz , {∀z : |z (t)| < FC/Kz} .

The maximum pre-sliding deflection (3.19), becomes

Zmax = FC/Kz, (3.29)

since the maximum dry friction force is the Coulomb friction, kfdk∞ = FC . From the
above proof, it follows that by choosing the initial deflection to satisfy z (0) < Zmax,
the maximum pre-sliding deflection Zmax represents an upper bound on the pre-
sliding deflection state, z (t) < Zmax, ∀t ≥ 0.
The passivity properties stated by Proposition 14 still holds for the smoothed

LuGre model, which is straightforward to assess.

3.3 Mechanical constraints

The mechanical constraints of the actuator are modeled simply as nonlinear spring—
damper forces, which becomes active when the piston hits its end-stroke. The hard-
stop force representing the upper and lower mechanical constraints, is thus modeled
according to

fh (y, v) = Kh · μh (y) +Dhv · ρh (y) , (3.30)

where y and v are the cylinder position and velocity, respectively, Kh is the spring
stiffness reflecting the elasticity of the parts in contact (thus, the value of Kh is
typically very high), and Dh is a damping coefficient which reflects the plastic de-
formation that occurs locally in the materials during a hardstop. The functions
μh (y) and ρh (y), respectively, are a smooth dead zone function, and a smooth indi-
cator function, which become “active” when the piston y runs into its end-stroke.
Both functions μh (y) and ρh (y), are plotted in Figure 3.3, and their construction is
addressed in the subsection below.

3.3.1 Smooth dead zone function

A smooth dead zone function with unity slope μk (·) and smoothing interval [−εh, εh],
may be devised according to

μh (y) = εh · g
µ
y − yub

εh

¶
− εh · g

µ
ylb − y

εh

¶
(3.31)
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Figure 3.3: The smooth dead zone and indicator functions used for the construction
of the hardstop force fh (y, v).

where yub and ylb are the upper and lower bound on the cylinder position y, and g (·)
is a smooth plus function with smoothing interval [−1, 1], like e.g. (3.32) below. In
(3.31), εh > 0 is referred to as the smoothing width at the break points of the dead
zone μh (y), and is typically chosen to be small compared to the operating range of
y.
The smooth plus function g (·) may be constructed as a piecewise defined poly-

nomial function – referred to as a spline function, which can be made arbitrary
smooth by using a polynomial of sufficiently high order. An example of a smooth
plus function g (x), which is two times differentiable, is given by

g (x) =

⎧⎨⎩ x, x > 1
3
16
+ 1

2
x+ 3

8
x2 − 1

16
x4, |x| ≤ 1

0, x < −1
, (3.32)

where the polynomial coefficients are computed to satisfy smoothness at the con-
necting points x = {−1, 1}.
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3.3.2 Smooth indicator function

In a similar manner, a smooth indicator function ρh (·) with smoothing interval
[−εh, εh], may be devised according to

ρh (z) =

∙
h

µ
y − yub
εh

¶
− h

µ
ylb − y

εh

¶¸
, (3.33)

where h (·) is a smooth step function with smoothing interval [−1, 1], which can
be constructed as a spline function. A step function h (x) which is two times
differentiable, is given by

h (x) =

⎧⎨⎩ 1, x > 1
1
2
+ 15

16
x− 5

8
x3 + 3

16
x5, |x| ≤ 1

0, x < −1
, (3.34)

where the polynomial coefficients are computed to satisfy smoothness at the con-
necting points x = {−1, 1}.
Summarizing: the above smooth functions μh (y) and ρh (y), are two times differ-

entiable (μh, ρh ∈ C2), and have precisely defined smoothing regions, [ylb−εh, ylb+εh]
and [yub − εh, yub + εh], where εh is referred to as the smoothing width of the break
points.

3.4 Summary

In this chapter we have addressed the modeling of the motion dynamics of the
electro-pneumatic clutch actuator. The forces acting on the actuator are composed
of the pressures in the two chambers, the clutch compression spring, friction forces in
the cylinder and clutch, and mechanical constraints. The clutch compression spring
– which is a diaphragm spring with a highly nonlinear position—load characteristic
which constitutes the main load of the actuator – is modeled using a parameter-
affine parametrization utilizing normalized Gaussian basis functions. A smooth
modification of a simple 1st-order dynamic friction model – known as the LuGre
model – is proposed for the modeling of the resulting friction force in the cylinder
actuator and clutch, including the friction force arising from seal deflections. The
mechanical constraints of the actuator are modeled simply as nonlinear spring—
damper forces, which become active when the piston reach its end-stroke. These
spring—damper forces are referred to as hardstop forces, and are constructed using
a smooth plus function and a smooth step function, created as customized spline
functions.





Chapter 4

Air Dynamics

A detailed derivation – based on simple thermodynamics – of the full-order model
of the dynamics of air in a pneumatic cylinder actuator with pressure and tem-
perature as state variables, is given in Appendix C. In Section 4.1, we apply this
full-order model for the modeling of the air dynamics of the two actuator cham-
bers. In Section 4.2, we describe the reduced-order isothermal model of the pressure
dynamics which we use for our controller-observer design.

4.1 Pressure & temperature dynamics

Figure 4.11 shows a schematic diagram of the flow control valve and pneumatic ac-
tuator, and indicates the control volume used for the derivation of the air dynamics.
We review the assumptions applied to the derivation of the full-state air dynamics,
below:

A4.1) At the attainable pressures, air behaves like an ideal gas obeying the ideal
gas equation of state (see Appendix C, Equation (C.1) ) with negligible error.

A4.2) The specific heats cp and cv of air are assumed to be constant, i.e., not
functions of temperature (or pressure2). For the attainable temperature range
for this application, the deviations are insignificant, see e.g. [16, Section 3.7,
pp. 182-134].

A4.3) The energy change in the fluid due to elevation is negligible.

A4.4) The thermodynamic properties are uniformly distributed (homogenous) within
the control volume, i.e., “perfectly mixed”. This is reasonable due to the small
dimensions of the system, and lets us avoid a complex distributed problem for-
mulation.

1Duplicate of Figure C.1 in Appendix C
2For an ideal gas, the internal energy u and enthalpy h vary only with temperature. Fur-

thermore, the specific heats cv and cp will in general vary with temperature: cv = cv (T ) and
cp = cp (T ). However, this temperature dependence is insignificant for this application.
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A4.5) The flow through pipes, valves and restrictions in the system is assumed to
be isentropic3. That is, frictionless flow is assumed, and the effect of heat
transfer on the flow (adiabatic flow) is disregarded.

Proportional
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Figure 4.1: Schematic diagram illustrating the pneumatic subsystem and control
valve.

4.1.1 Chamber A

The thermodynamic state of the air in the pneumatic chamber is given by two state
variables, where it is natural to choose the two measurable variables pressure and
temperature. The full-order air dynamics of chamber A is according to (C.22) and
(C.28), expressed as

dpA
dt

= − κAAv

VA (y)
pA+

κRT in,A

VA (y)
win,A− κRTA

VA (y)
wout,A+

(κ− 1) ·HwAw,A (y)

VA (y)
(Tw − TA) ,

(4.1)

dTA
dt

= −(κ− 1) ·AAv

VA (y)
TA +

(κTin,A − TA) ·RTA
pAVA (y)

win,A − (κ− 1) ·RT
2
A

pAVA (y)
wout,A

+
(κ− 1) · TAHwAw,A (y)

pAVA (y)
(Tw − TA) . (4.2)

An illustration of the control volume used for the derivation is given in Figure 4.1. In
the above equations, pA and TA are the dynamic pressure and temperature states of
the chamber; the parameters κ and R are the ratio of specific heats and gas constant
of air, respectively; Hw is the empirical convective heat coefficient, and Tw is the
actuator cylinder wall temperature. The chamber volume VA (y), and the effective
wall area of heat transfer Aw,A (y), are functions of the actuator position y, given by

3This is a common approximation in compressible fluid analysis when the system dimensions
are small, [101].
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(4.3) and (4.4) below. The variables win,A and wout,A, are the air flows in and out
of chamber A, where Tin,A is the temperature associated with the inlet flow. For
chamber A, the inlet flow win,A is flow from the supply reservoir, i.e., Tin,A = TS.
The chamber volume is given by

VA (y) = VA 0 +AAy, (4.3)

where VA0 is the chamber volume when y = 0. The effective wall area of heat
transfer is given by

Aw,A (y) = Aw,A 0 + Lwy, (4.4)

where Aw,A 0 is effective area of heat transfer for y = 0, and Lw is the inner perimeter
of the cylinder wall.

4.1.2 Chamber B

The dynamic equations governing chamber B are similar. From (C.22) and (C.28),
the full-order air dynamics of chamber B can be expressed as

dpB
dt

=
κABv

VB (y)
pB +

κRTin,B
VB (y)

win,B − κRTB
VB (y)

wout,B +
(κ− 1) ·HwAw,B (y)

VB (y)
(Tw − TB) ,

(4.5)

dTB
dt

=
(κ− 1) ·ABv

VB (y)
TB +

(κTin,B − TB) ·RTB
pBVB (y)

win,B − (κ− 1) ·RT
2
B

pBVB (y)
wout,B

+
(κ− 1) · TBHwAw,B (y)

pBVB (y)
(Tw − TB) , (4.6)

where pB and TB are the pressure and temperature states of chamber B, and the
chamber volume VB (y) and the effective wall area of heat transfer Aw,B (y), are
given by (4.7) and (4.8) below. The variables win,B and wout,B, are the air flows
in and out of chamber B, where Tin,B is the temperature associated with the inlet
flow. For chamber B, the inlet flow win,B is flow from the exhaust reservoir, i.e.,
Tin,B = TE.
The volume of chamber B is given by

VB (y) = VB 0 −ABy, (4.7)

where VB0 is the chamber volume when y = 0. The effective wall area of heat
transfer is given as

Aw,B (y) = Aw,B 0 − Lwy, (4.8)

where Aw,B 0 is effective area of heat transfer for y = 0.

4.2 Reduced-order isothermal model

For control design purposes, it is desirable to simplify the model so that it is not more
detailed than what is required by the particular control task. For the air dynamics of



the pneumatic actuator, the pressures may be considered to be the main variables,
since they enter as inputs in the motion dynamics. The temperatures, on the other
hand, are usually considered to be less important since both the pressure dynamics
and the air flow rate characteristic has a relatively low sensitivity to temperature
variations.
There is a strong static coupling between the pressure and temperature of a

pneumatic chamber, and it is reasonable to approximate the temperature as a static
function of the pressure, with the pressure as the only dynamic state in the model.
A common assumption for combustion engine modeling, is to assume that the ther-
modynamics is governed by a closed thermodynamic process – a polytropic process,
where the static relation between the pressure and temperature is given by

T = T0

µ
p0
p

¶1−n
n

, (4.9)

which is characterized by the polytropic coefficient n. For example, for an adiabatic
process, the polytropic exponent is taken as the ratio of specific heats, i.e., n = κ
( κ = 1.4 for air). In the simplest case, we may assume an isothermal process by
taking n = 1.

4.2.1 Pressure dynamics of the cylinder chambers

We apply the following assumptions to the full-order air dynamics in order to arrive
at the reduced-order model of the pressure dynamics which we use for our control
design:

A4.6) We assume isothermal conditions (n = 1), which means that the chamber
temperature is constant. Furthermore, we assume that all temperatures equals
the standardized atmospheric reference condition (T0) given by the ISO stan-
dard [35], i.e., TS = TE = TA = TB = T0.

A4.7) We assume a constant supply pressure pS, and assume that the exhaust pres-
sure pE equals a constant atmospheric pressure. That is, we neglect transients
in the supply pressure pS, and changes in the ambient pressure P0.

Assumption A4.6 is equivalent to assuming infinite heat transfer with the ambient
and reservoir temperatures equal to T0. The main justification of A4.6 is that
the pressures dynamic’s sensitivity to temperature changes, is small. Assumption
A4.7 is often more questionable with respect to the supply pressure. For example,
when the supply reservoir is kept at an approximately constant pressure using an
accumulator (buffer tank) with a relay controlled compressor, the supply pressure
will exhibit slower fluctuations due to long-lasting air consumption and subsequent
refilling by the compressor. Furthermore, it is likely that the supply pressure will
exhibit transient variations when subjected to sudden and large changes in the air
consumption (wv).
Applying the above assumptions, the equations describing the pressure dynamics

of the two chambers reduce to
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ṗA = − AAv

VA (y)
pA +

RT0
VA (y)

wv, (4.10)

ṗB =
ABv

VB (y)
pB +

RT0
VB (y)

wr, (4.11)

where wv , win,A − wout,A is the resultant valve flow rate into chamber A, while
wr , win,B − wout,B is the resultant flow into chamber B from atmosphere through
the outlet restriction. The modeling of the flow rate characteristics for wv and wr,
is addressed in Chapter 5 below.

4.3 Summary

In this chapter we have addressed the modeling of the air dynamics of the pneu-
matic cylinder chambers. The full-order air dynamics with both the pressure and
temperature as dynamics states, is reviewed, and common assumptions are applied
in order to arrive at the reduced-order isothermal model with only the pressure as
a dynamics state.





Chapter 5

Flow Control Valve

In this chapter, we address the modeling of the flow rate characteristic of pneumatic
restrictions, and the modeling of the flow control valve. First, we provide a brief
characterization of the types of flow, and review the equations which conventionally
have been used to describe the flow rate of pneumatic restrictions. A generalized
affine parametrization of the flow rate characteristic of pneumatic restrictions is de-
veloped, based on a novel parametrization of the pressure ratio function. We utilize
this generalized flow rate equation to construct a compact bidirectional1 model of
the flow rate of the orifice restriction of chamber B. The model is general in the
sense that it can be applied to accurate modeling of a fixed pneumatic restriction
of any type, and the model is piecewise linearly parametrizable in both its tunable
parameters as a result of using the proposed flow rate equation.
Next, the generalized flow rate equation is utilized for the parametrization of

the static spool—flow characteristic of flow control valves. First, we develop a simple
piecewise input-affine model, very similar to the model proposed by Richard [79].
Next, we develop two novel parametrizations of the spool—flow characteristic of
flow control valves of sliding type, based on an individual description of the flow
through each flow path of the valve, thus, providing improved accuracy compared
to existing models for valves with significant leakage flow in the null region, which
is the case of most servo valves. The first parametrization is an input-invertible
model developed for nonlinear control by a feedback linearization approach, and the
other is a smooth and piecewise linearly parametrizable model suited for nonlinear
and adaptive control by a backstepping approach. Finally, we briefly describe the
modeling of the dynamics of a proportional valve.

This section is organized as follows: A brief review of flow rate modeling of
pneumatic restrictions is given in Section 5.1. The generalized flow rate equation
is presented in Section 5.2, and in Section 5.3, we utilize this generalized flow rate
equation to construct a model of the bidirectional flow rate of a fixed restriction.
Finally, in Section 5.4, we address the modeling of the flow rate characteristic of
flow control valves, and the modeling of the dynamics of a proportional valve.

1By bidirectional, we mean the the model describes flow in both directions, i.e., either positive
or negative flow depending on the direction of the pressure drop over the restriction.
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5.1 Flow rate modeling—a brief review

5.1.1 Flow characterization

The characterization of the type of flow in a pneumatic component is important with
respect to flow rate modeling because it determines the pressure dependence of the
flow rate. The type of flow depends upon many factors, but the primary parameter
is the dimensionless Reynolds number, Re. The Reynolds number can be given as

Re =
ρvD

μ
, (5.1)

where the variables ρ, v, and μ, are the density, the average fluid velocity, and the
coefficient of viscosity of the fluid, respectively, while D , 4A/P is the hydraulic
diameter, where A and P are the area and perimeter of the cross-section, respec-
tively [101]. The flow can be characterized by three flow regimes which are roughly
indicated by the value of the Reynolds number: For low Re the flow is smooth and
steady (laminar), for high Re the flow is fluctuating and agitated (turbulent), while
for intermediate Re there is a change-over from laminar to turbulent flow which is
denoted transition flow [101, Chapter 6]. Furthermore, when a fluid flows at speeds
in the range of its local speed of sound2 the effect of density changes becomes sig-
nificant and the flow is termed compressible flow. For gases in general, the speed
of sound is low, hence, the effect of compressibility is important in most cases of
flow rate modeling of pneumatic components. This means that the type of flow in
pneumatic components may range from compressible turbulent flow for high Re to
incompressible laminar flow for low Re.
With respect to flow rate modeling, it is convenient to categorize the restriction

in a pneumatic component as either an orifice restriction, or a clearance restriction,
depending on the amount of flow resistance in the flow path. Most pneumatic
components such as orifices and short ducts, fall into the category of an orifice
restriction, which is characterized by relatively low flow resistance, where frictional
effects are small. Due to the low speed of sound and low viscosity of air, the type
of flow through an orifice flow restriction is for most normal operating conditions
characterized as compressible and turbulent. For flow through simple orifices, the
effect of friction is usually negligible, hence, when heat transfer is negligible, the flow
rate can be accurately described by the theoretically derived equation for isentropic3

flow of a compressible fluid through a converging nozzle [101, ch. 9]. In these cases,
we refer to the flow as isentropic orifice flow.
The effect of friction on the flow of a compressible fluid is theoretically difficult

to analyze, and deriving an explicit expression for the mass flow rate is only possible
for special cases. For high-speed flow in short ducts, it is reasonable to assume
adiabatic flow, which results in equations which require numerical iteration for the
calculation of the mass flow. For long ducts, however, we may assume isothermal
flow which lets us derive an explicit expression for the mass flow, which we refer

2The speed of sound of a fluid is given by a =
√
κRT .

3When there is no heat transfer (adiabatic conditions), frictionless flow implies isentropic flow.
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to as isothermal compressible flow. See [101, Chapter 9] for an exact description.
In [9], an equation for the flow of a compressible fluid through a capillary passage,
referred to as capillary compressible flow, is derived for adiabatic flow by assuming
that momentum effects in the flow is negligible. This capillary flow equation is for
example used in [86], [9], and [14], to model compressible flow through capillaries
connected to auxiliary tanks, introduced to improve the performance of pneumatic
servo actuators.
Very small clearances, of the type encountered between the sleeve and the spool

in a spool valve, or between the piston and the wall of a cylinder actuator, may
be referred to as a clearance restriction. Since the flow resistance of a clearance
restriction is typically very high, the flow is for most normal conditions relatively
slow and viscous, such that it can be characterized as incompressible and laminar.
In these cases, the flow rate can be described by the common incompressible laminar
flow equation, and we refer to the flow as incompressible laminar flow.

5.1.2 The isentropic orifice flow equation

The theoretical equation for steady-state air flow through an orifice is based on
the assumption of isentropic flow of a compressible fluid through a nozzle. In the
conventional equation used to describe the flow rate of pneumatic components [9],
a discharge coefficient is introduced to account for flow contractions. The resulting
equation is referred to as the isentropic orifice flow equation, which can be expressed
as

w = CdAr

s
κ

R
·
µ

2

κ+ 1

¶κ+1
κ−1

· ω0(pl/ph) · ph√
Th

. (5.2)

Here, w is the mass flow through the restriction, Th and ph are the upstream temper-
ature and pressure, respectively, and pl is the downstream pressure (the subscripts
“h” and “l” refer to the high and the low pressure reservoirs, respectively). The
function ω0(·) is a normalized function of the pressure ratio pl/ph over the restriction
– referred to as the pressure ratio function – given by (5.3) below. The parameter
Cd is the discharge coefficient, which is a lumped parameter that accounts for flow
contractions and possibly minor frictional effects, Ar is the smallest cross-sectional
area of the restriction, κ is the ratio of specific heats, and R the gas constant of the
fluid (κ = 1.4 and R = 287 J/ ( kgK) for air). See e.g. [4] for a thorough discussion
of the discharge coefficient of pneumatic components.
The theoretically derived isentropic pressure ratio function ω0(·) for flow through

an isentropic restriction is

ω0(r) ,
w

w∗
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 , r ∈ [0, B0]vuuuut r

2
κ − r

κ+1
κ

κ− 1
2

·
µ

2

κ+ 1

¶κ+1
κ−1

, r ∈ hB0, 1] , (5.3)



where

B0 ,
µ
pl
ph

¶∗
=

µ
2

κ+ 1

¶ κ
κ−1

(5.4)

denotes the critical pressure ratio of the isentropic restriction, and B0 = 0.528 for
air4. For pressure ratios below critical, i.e. pl/ph < B0, a further lowering of the
downstream pressure pl does not result in an increase in the mass flow rate w, thus
the flow is said to be choked. Under choked conditions, the velocity in the smallest
restriction area (Ar) equals the speed of sound. See e.g. Blackburn et al. [9, Section
3.3], or White [101, Chapter 9], for the derivation of the isentropic orifice flow
equation given by (5.2)—(5.4).

5.1.3 ISO standardized orifice flow equation

In the ISO standard [35], an approximation to the above isentropic orifice flow
equation has been standardized for the determination of the flow rate characteristics
of pneumatic components. The standardized orifice flow equation is given as

w = ρ0
p
T0C · ωe(pl/ph)

ph√
Th

, (5.5)

where the capacity of the restriction is characterized by the sonic conductance C,
defined at a common reference condition, given here by the density ρ0 and the
temperature T0. The isentropic pressure ratio function ω0(r) (5.3) is approximated
by the simpler elliptic function

ωe (r) ,
(

1 , r ∈ [0, B]q
1− ¡ r−B

1−B
¢2

, r ∈ hB, 1] , (5.6)

where B is the effective critical pressure ratio of the restriction5. The sonic con-
ductance C, and the critical pressure ratio B, are viewed as mechanistic parameters
in the sense that they have clear physical meanings, and their values can be de-
rived from physical laws in the ideal case of isentropic flow. The sonic conductance
corresponding to the conventional orifice flow equation (5.2) is given as

C =
CdAr

ρ0
√
T0

s
κ

R

µ
2

κ+ 1

¶κ+1
κ−1

, (5.7)

while the critical pressure ratio for isentropic flow is given by (5.4).
The definition of the sonic conductance originates from the way the flow rate

of pneumatic components is traditionally measured, and is in essence a measure of
the flow capacity of the pneumatic component. The flow rate of pneumatic com-
ponents is usually measured in terms of the volumetric flow rate q [m3/ s] (w = ρq

4The superscript asterisk (∗) denotes sonic, or critical, flow conditions.
5For air with B = B0, the deviation between ωe (r) and ω0 (r) is less than 0.2%, thus, hardly

significant.
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[ kg/ s]), with the outlet and the upstream temperature at atmospheric conditions6.
The sonic conductance C [m3/ ( s Pa)] is defined as the proportionality constant of
the volumetric flow rate for choked flow, measured at a defined common reference
condition for air, which by the ISO standard is ρ0 , 1.185 kg/m3, T0 , 293K and
P0 , 1.00× 105 Pa. That is, the volumetric flow rate can be expressed as q = C · ph
when the flow is choked, and Th = T0, pl = P0, Tl = T0 and ρl = ρ0.
The value of the critical pressure ratio B indicates the pressure ratio for which

choked flow occurs. Due to frictional effects, the value of B for most pneumatic
components is lower than the isentropic value given by (5.4). This means that when
B is allowed to take values below its isentropic value, the validity of the standardized
orifice flow equation (5.5) is broader than just describing isentropic orifice flow, in
the sense that it is able to describe (non-isentropic) frictional effects to a certain ex-
tent. For example, when modeling orifice flow according to (5.5), increased frictional
effects due to e.g. complex geometry of the flow path, are captured as a reduction
in the effective critical pressure ratio parameter B.

5.1.4 Incompressible leakage flow equation

The transition from laminar to turbulent flow is indicated by the critical Reynolds
number, which is approximately Recrit ≈ 2300, but may vary significantly with the
geometry of the restriction [101, ch. 6]. For low Reynolds numbers, Re ¿ Recrit,
the flow is characterized as incompressible and laminar. Here, we refer to this type
of flow as incompressible laminar flow, which can be modeled simply as

wc = ρ0Cc · (ph − pl) , (5.8)

where wc is the clearance flow, and Cc is a lumped clearance flow constant, which is
a characteristic of the geometry of the clearance, the viscosity of the fluid, and the
wall roughness.
It is interesting to note that we can rewrite (5.8) as

wc = ρ0Cc · ωc(pl/ph) ph, (5.9)

with the pressure ratio function defined as

ωc (r) , 1− r, r ∈ [0, 1] , (5.10)

which is in a form similar to the orifice flow equations (5.2) and (5.5).

5.1.5 Compressible leakage flow equations

For high-speed flow through small clearances, the effect of compressibility may be
significant so that the assumption of incompressible flow is invalid. The analysis
of compressible flow with friction is complicated, and a simple explicit equation for
high-speed flow of a compressible viscous fluid through small clearances does not

6Due to the high compressibility of gases, the density of the gas and consequently the measured
volumetric flow rate, varies significantly with the pressure at which it is measured.



exist. For example by assuming adiabatic conditions, we have to iteratively solve
for the flow rate. However, by assuming isothermal conditions, we are able to derive
an explicit equation for the flow [101]. This expression can be written as

wc = Ar

s
1− (pl/ph)2

fL/D + 2 ln ph/pl

ph√
Th

, (5.11)

where Ar is the cross-sectional restriction area, L is the length of the clearance,
D , 4Ar/P is the hydraulic diameter, and f is the viscous friction coefficient. An
interesting point is that when the length is long compared to the hydraulic diameter
D, this equation has a form very similar to the elliptic pressure ratio function with
B = 0. That is,

fLÀ D =⇒ fL/D + 2 ln ph/pl ≈ fL/D, (5.12)

which is reasonably accurate for pressure ratios pl/ph above a certain limit, for
example, pl/ph > 0.1. In this case, by defining Cc , Ar

p
D/ (fL)/ρ0 as a lumped

conductance parameter, we have

wc ≈ ρ0Cc

q
1− (pl/ph)2 ph√

Th
. (5.13)

Hence, the equation for isothermal frictional compressible flow becomes identical to
the standardized orifice flow equation with B = 0.
An alternative analytic solution of frictional compressible flow can be derived by

assuming that the momentum effects of the fluid flow are negligible. This equation
is used to describe compressible flow through capillary passages, which is referred
to as compressible capillary flow. See e.g. Blackburn et al. [9]. This equation can
be expressed in the form

wc = ρ0Cc ·
¡
p2h − p2l

¢ 1
Th

, (5.14)

where Cc is a lumped capillary flow constant which depends on the geometry of the
restriction.

5.2 Generalized flow equation

In accordance with the description in the previous section7, the flow through pneu-
matic restrictions in general, can be described by an equation in the form

w = ρ0
p
T0C · ω

µ
pl
ph

¶
ph√
Th

, ph ≥ pl, (5.15)

where w is the mass flow rate through the restriction, Th and ph are the upstream
temperature and pressure, respectively, and pl is the downstream pressure. Sub-
scripts “h” and “l” refers to the high and the low pressure reservoirs, respectively.

7For the reader’s convenience, this section includes some duplication of the equations from
Section 5.1.
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The capacity of the restriction is characterized by its conductance C, defined at a
common reference condition for air, given by the density ρ0 and the temperature T0.
The pressure ratio function ω (r) ∈ [0, 1], is a normalized function of the pressure
ratio r = pl/ph over the restriction, which determines the pressure dependence of
the flow rate. Thus, the parametrization of the pressure ratio function ω (r) in the
above flow rate equation (5.15), is the main factor which determines the accuracy
of the flow rate description of a given restriction.

5.2.1 Pressure ratio function

The pressure characteristic of a restriction is strongly linked to the type of restriction,
more precisely, the degree of flow resistance in the flow path. We may roughly group
pneumatic restrictions into two categories (see Section 5.1 above):

Orifice restrictions Restrictions which are characterized by relatively low flow
resistance where frictional effects are negligible small, like short pipes or ducts.

Clearance restrictions Restrictions characterized by high flow resistance where
frictional effects are important, e.g. small clearances of the type encountered
between the sleeve and the spool in valves, or between the piston and the wall
in a cylinder actuator.

The flow rate characteristic of orifice restrictions is in most cases accurately
described by the ISO standardized orifice flow equation (5.5), which is an approxi-
mation of the theoretically derived equation for isentropic compressible flow (5.2).
This equation is in the form (5.15), with theoretically derived isentropic pressure
ratio function ω (r) approximated as a quarter of an ellipse according to

ωe (r) ,
(

1 , r ∈ [0, B]q
1− ¡ r−B

1−B
¢2

, r ∈ hB, 1] , (5.16)

where B is the effective critical pressure ratio of the restriction. This equation is
valid when the flow can be characterized as approximately isentropic, i.e., when
frictional effects are small.
For clearance restrictions, the effect of friction is important, and the accuracy

of the elliptic pressure ratio function is reduced. When the flow resistance is high,
the flow is for normal conditions relatively slow and viscous, such that the flow rate
can be described by the common incompressible laminar flow equation (5.8). This
equation can be rewritten in the form (5.15) with the pressure ratio function defined
as

ωc (r) , 1− r, r ∈ [0, 1] , (5.17)

where the subscript “c” refers to “clearance” flow.

Here, we propose a piecewise parameter-affine parametrization of the pressure
ratio function ω (r), which has a validity that encompasses the full range of possible
restriction types, from simple orifice restrictions to small clearance restrictions. This



parametrization is based on the elliptic pressure ratio function (5.16), and the linear
pressure ratio function (5.17) for incompressible laminar flow. This generalized
piecewise parameter-affine pressure ratio function is given as

ωa (r) = Ω0(r) + b · Ω1 (r, sgn b) , b ∈ [−1, 1] , (5.18)

where r ∈ [0,∞i is the pressure ratio, and b is a critical pressure ratio—like parameter
which uniquely determines the characteristic of ωa (r). The basis functions Ω0 (r)
and Ω1 (r, sgn b), plotted in Figure 5.1, are constructed from the incompressible flow
pressure ratio function (5.17), and the upper and lower bounds of the elliptic pressure
ratio function (5.16), according to

Ω0 ,
½ √

1− r2 , r ∈ [0, 1]
0 , r > 1

(5.19)

Ω1 (r,+1) , −Ω0 (r) +

⎧⎪⎪⎨⎪⎪⎩
1 , r ∈ [0, B0]r

1−
³
r−B0
1−B0

´2
, r ∈ hB0, 1]

0 , r > 1

Ω1 (r,−1) , Ω0 (r)−
½
1− r , r ∈ [0, 1]
0 , r > 1

(5.20)

where B0 , (pl/ph)
∗ = 0.528 is the isentropic critical pressure ratio for air. Note

that Ω0 (r) and Ω1 (r, sgn b) are defined also for pressure ratios r > 1, which means
that ωa (r) is defined for ∀r ∈ [0,∞i. In Figure 5.1, the basis functions Ω0 (r)
and Ω1 (r, sgn b), and the affine function ωa (r), are plotted for different values of
the critical pressure ratio—like parameter b. The upper darkest shaded area in the
figure represents the range of the elliptic function ωe (r) for B ∈ [0, B0], which is
the same as the range of the parameter-affine function ωa (r) for b ∈ [0, 1], where
Ω1 = Ω1 (r,+1). The lower shaded area represents the range of ωa for b ∈ [−1, 0],
where Ω1 = Ω1 (r,−1).
The main achievement of the introduced parametrization of the pressure ra-

tio function is that we obtain a generalized flow equation which can be used to
accurately model pneumatic restrictions ranging from simple orifices to small clear-
ances. Another important property of this parametrization is the piecewise affinity
of its only tunable parameter b. This is advantageous in the case when no a priori
knowledge about b exists, and we may need to design an adaptive controller which
identifies the pressure characteristic of the restriction on-line.

Remark 15 In this work, we have put effort into deriving a parameter-affine para-
metrization of the pressure ratio function with as few parameters as possible. An
alternative and simple approach, would be by use of more general basis functions,
like e.g. normalized Gaussian functions, which can be made arbitrary accurate for
any pressure ratio characteristic simply by increasing the number of basis functions,
thus also the number of parameters.
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Figure 5.1: Left: The properties of the piecewise parameter-affine pressure ratio
function ωa (r) are compared with the elliptic function ωe (r). The upper darkest
shaded area represents the output range of ωe (r), while the entire shaded area
represents the range of ωa (r). Right: The corresponding basis functions.

5.3 Outlet restriction

The flow path from chamber B to exhaust E (atmosphere) of the pneumatic clutch
actuator, can be modeled as a fixed orifice restriction, like it is illustrated in Fig-
ure 5.2. We define the flow rate as positive (wr > 0) for filling of chamber B, i.e.,
flow from exhaust E to chamber B for pE > pB, and negative (wr < 0) for venting
to atmosphere when pE < pB.

rA
rwBB Tp , EE Tp ,

rA

BB Tp , EE Tp ,

Figure 5.2: Schematic drawing of the outlet restriction of chamber B.

Utilizing the generalized flow equation (5.15), the outlet restriction of chamber
B can be modeled according to wr = win − wout as

wr = ρ0
p
T0Cr · ωr (pB/pE)

pE√
TE
− ρ0

p
T0Cr · ωr (pE/pB)

pB√
TB

. (5.21)

where Cr is the conductance of the restriction, referred to the standardized reference
condition of air, given by ρ0 and T0, and the physical variables pE, TE, pB, TB are
the pressures and temperatures of the exhaust E and chamber B, as indicated in
Figure 5.2. The obtain a model which is piecewise linearly parametrizable, the
pressure ratio function ωr (r) is modeled according to (5.18)—(5.20) with the critical
pressure ratio—like parameter br.



5.3.1 Linear parametrization

In preparation for off-line parameter estimation, or on-line adaptive control where
both Cr and br are allowed to be unknown, we note that by substituting with the
expression for ωr (·) given by (5.18), the flow rate model can be expressed in the
parameter-affine vector form

wr = θTr · φr(pE, TE, pB, TB) , (5.22)

by defining the parameter and regressor vector as

θr , ρ0
p
T0

∙
Cr

Crbr

¸
, φr ,

"
Ω0(pB/pE)

pE√
TE
− Ω0(pE/pB)

pB√
TB

Ω1(pB/pE, sgn br)
pE√
TE
− Ω1(pE/pB, sgn br)

pB√
TB

#
.

(5.23)
Viewing the temperatures TE, TB, and pressure pE as physical variables (that are
not tunable), the above model is said to be piecewise linearly parametrized in its
tunable parameters (Cr and br).

Remark 16 Using the generalized pressure ratio function (5.18)—(5.20), the leakage
between the two chambers can in most cases be accurately modeled as a fixed restric-
tion with the same model as the outlet restriction of chamber B, i.e., according to
(5.21).

5.3.2 Simplified partially linear parametrization

With the objective of simplifying for control, we apply assumptions A4.6—7 from
the derivation of the pressure dynamics in Section 4.2 also for the flow rate model.
That is, we take all temperatures and the exhaust pressure to be equal to the
reference condition, i.e., we take TB = TE = T0, and pE = P0. With application of
assumptions A4.6—7, the resulting flow rate model of a pneumatic restriction can be
expressed in the partially parameter-affine form

wr = ρ0Cr · ψr (pB) , (5.24)

by defining the restriction flow function

ψr , ωr

µ
pB
P0

¶
P0 − ωr

µ
P0
pB

¶
pB. (5.25)

This is a convenient formulation in situations where reasonable accurate estimates of
br (or alternatively Br) exists, while the capacity Cr is uncertain. The nonlinear flow
function ψr (pB) is then known, and the parameter Cr appears in an affine form,
which makes the model particularly suited for parameter estimation or adaptive
control designs where Cr is estimated on-line.
For the clutch actuator, we know that the outlet restriction of chamber B can

be characterized as an orifice restriction since it is a short duct with relatively low
flow resistance, but in many cases, we do not know a priori the exact dimensions
and geometry of the restriction. Then we know that the flow rate with reasonable
accuracy can be modeled with bv = 1, but the flow capacity Cr of the restriction is
uncertain.
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Remark 17 For the modeling of the outlet restriction in the form (5.24), we do
not utilize the parameter-affinity of the proposed parametrization of the pressure
ratio function given by (5.18)—(5.20). In this case, the simpler standardized elliptic
function given by (5.16) could be used, which for most orifice restrictions achieves
approximately the same degree of accuracy. For clearance restrictions, however, the
elliptic function (5.16) is less accurate than the affine parametrization (5.18)—(5.20).

5.4 Proportional valve

A three-way valve is used to control the flow to the pneumatic chamberA. Figure 5.3
shows a schematic cross-sectional drawing of a proportional spool valve, which is
connected to chamber A, the supply reservoir S, and the exhaust E. The flow
through the valve consists of the flow from the supply to chamber A, and the flow
from chamber A to exhaust. Additionally, there will be internal leakage from the
supply port through the clearances in the valve to the exhaust port.
Our objective is to obtain a model of the flow rate characteristic of the valve

– referred to as the spool—flow characteristic – which is suitable for control. The
model should also be able include any pipe flow resistance in the description, when
the valve is connected to the different chambers through short pipes or ducts.
In this section, the generalized flow rate equation is utilized for the parametriza-

tion of the static spool—flow characteristic of flow control valves. First, we describe
the presumptions we have applied to the flow rate modeling. Then, we present a
simple piecewise input-affine flow model which is based on the assumption of an
ideally proportional spool—flow characteristic, similar to the model most researchers
use for control design because it is easily inverted. Then, we propose two novel
models for control with improved accuracy. The first of these is developed for sub-
sequent application of nonlinear control by a feedback linearization approach, which
is input-invertible. The other is developed for nonlinear and adaptive control by a
backstepping approach, and is smooth and piecewise linearly parametrizable in all
its tunable parameters. Finally, we address the modeling of the dynamics of the
spool position of proportional valves.
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Figure 5.3: Schematic drawing of cross-section and flow diagram of the spool valve.



The position of the spool determines the cross-sectional area of each valve orifice.
In the following, we refer to the spool position xv as the input to the flow rate model,
and we will refer to a normalized spool position xv ∈ [−1, 1], such that xv = 1 refers
to the valve fully open to supply, and xv = −1 fully open to exhaust. We denote the
flow from the supply reservoir to chamber A, as supply flow wS, and the flow from
chamber A to exhaust, as exhaust flow wE. Furthermore, we apply the following
(obvious) assumptions for the valve models:

A5.1) The concerned pressures are always greater than absolute vacuum:

pE, pA, pS > 0.

A5.2) The chamber pressure is always within the pressure range of the supply and
the exhaust pressure, i.e., pS ≥ pA ≥ pE.

A5.3) The geometry of the supply and the exhaust orifices are symmetrical about
the center position of the spool (xv = 0).

Assumption A5.1 is trivial, and is physically always satisfied. Assumption A5.2
is for most pneumatic applications practically always satisfied, and its implication is
that it simplifies the formulation of a valve model because the supply and the exhaust
flows can then always be regarded as positive flows, i.e., wS, wE ≥ 0. Assumption
A5.3 is a reasonable assumption for a three-way spool valve, and is convenient since
it means that the parameters of each valve orifice can then be regarded as identical.
We have pursued to develop models which are (partially) mechanistic, in the

sense that they are based on physical laws and states, with a set of parameters that
are physically meaningful, and which are functions of all the physical variables. To
achieve this, and be able to develop an accurate description of the leakage in the
null region of the valve, we model the flow paths individually, and then combine the
modeled supply flow wS and the exhaust flow wE to obtain a resulting valve flow
model according to wv = wS −wE. Following this approach, it is straightforward to
extend the models to describe the flow rate of, for example, of a four-way, or a five-
way valve. For most control designs, the physical variables pS, TS, pE, TE and TA
are assumed to be constant parameters. In accordance with this, and for notational
simplicity, we will treat only pA and xv as function arguments in the following
discussion, so that the valve model can be written in the form wv = g (pA, xv).

5.4.1 A piecewise input-affine flow model

Assuming that the air flow through the valve is composed of a leakage term wl which
is independent of xv, and an orifice flow term wo which is piecewise proportional to
xv, the valve flow model can be expressed in the piecewise input-affine form

wv = wl + wo = gl (pA) + go (pA, sgnxv) · xv. (5.26)

This form is justified for the ideal case when the valve port orifices have zero overlap,
and where the leakage is due to a fixed clearance in the valve.
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The leakage flow wl is assumed to be independent of xv, and is therefore char-
acterized by a constant leakage conductance (or capacity) Cl, and is composed of
the leakage into chamber A from the supply port, and the leakage out of chamber A
through the exhaust port. Using the generalized flow equation (5.15), the resulting
leakage flow can be modeled according to wl = wl,S − wl,E as

wl = ρ0
p
T0Cl · ωl (pA/pS)

pS√
TS
− ρ0

p
T0Cl · ωl (pE/pA)

pA√
TA

, (5.27)

where the pressure ratio function ωl (r) is given by (5.18)-(5.20) with the parameter
bl.
For the modeling of the spool dependent orifice flow term wo = go (pA, sgnxv)·xv,

we express the variable conductance co of each valve orifice as piecewise proportional
to xv according to

co =

½
Coxv, xv ≥ 0,
0, xv < 0

= Coxv · χ [xv ≥ 0] , (5.28)

where Co is the orifice conductance for the valve orifices fully open (xv = {−1, 1}).
For a compact notation, we have defined the indicator function χ [X] of the event
X (as in [94]):

χ [X] ,
½
1, X is true,
0, else.

. (5.29)

Like the leakage flow wl, the orifice flow wo is modeled according to wo = wo,S−wo,E

as

wo = ρ0
p
T0Co·ωo (pA/pS)

pS√
TS

χ [xv ≥ 0]·xv+ρ0
p
T0Co·ωo (pE/pA)

pA√
TA

χ [xv < 0]·xv,
(5.30)

where the pressure ratio function ωo (r) is given by (5.18)-(5.20) with the parameter
bo.

Remark 18 The pressure ratio functions ωl (r), and ωo (r), can alternatively be
modeled by the simpler elliptic function (5.16), see Remark 17.

The resulting flow rate model is given as wv = wl +wo, and can be expressed in
the partially parameter-affine form

wv = ρ0
p
T0Cl · ψl (pA) + ρ0

p
T0Co · ψo (pA, sgnxv) · xv, (5.31)

by defining the leakage flow function ψl and the orifice flow function ψo as

ψl , ωl (pA/pS)
pS√
TS
− ωl (pE/pA)

pA√
TA

, (5.32)

ψo , ωo (pA/pS)
pS√
TS

χ [xv ≥ 0] + ωo (pE/pA)
pA√
TA

χ [xv < 0] . (5.33)

The above piecewise input-affine model (5.31) is in a form suitable for a Lyapunov-
based adaptive control design, where the two characteristic parameters Cl and Co,



that appear linearly, can be identified on-line by the adaptive controller if bl and bo
are known. The parameters ρ0, and T0 are known parameters, defined by the ISO
standard.

Remark 19 Since the parameters bl and bo of the pressure ratio functions ωl (r)
and ωo (r) appear in an affine form, the flow model (5.31) is linearly parametrizable
with respect to all its tunable parameters (Cl, bl, Co, bo). However, in most cases,
the accuracy of the input-affine model is crude, and the effect of tuning bl and bo
is more or less negligible on the overall accuracy of the model. Hence, it makes
little sense to adapt these parameters on-line. Typical choices which usually provides
sufficient accuracy, are bl = 0 and bo = 1, which are equivalent to the elliptic pressure
ratio function ωe (r) with critical pressure ratios Bl = 0 and Bo = B0 = 0.528,
respectively.

5.4.2 An input-invertible valve flow model

A valve flow model in the input-affine form (5.26) which is used by many researchers,
is convenient for control because the model is explicitly input-invertible, i.e., we are
able to solve for the input as an explicit function of the output, xv = g−1 (wv). A
model which is input-invertible, is not required for a control design, but for certain
nonlinear control techniques, such as feedback linearization, it facilitates the design
and implementation of the controller.
For most flow control valves, the constraints that are imposed by limiting the

model to the piecewise input-affine form (5.26) significantly limits the accuracy of
the model, particularly in the null region of the valve where the flow rate exhibits
a significant nonlinear dependence on xv. Improved accuracy can be obtained by
modeling the variable orifice conductance of the individual supply and exhaust port
as a nonlinear function of the spool position xv, i.e., co,S (xv) and co,E (xv), respec-
tively. Due to symmetry of the valve, the conductance function can be given by
a single function according to co,S = co (xv), and coE = co (−xv). In this section,
we introduce a parametrization of the variable conductance which incorporates an
overlap Xδ (or overlap for negative values, Xδ < 0 ), and a smoothed overlap be-
tween the supply and the exhaust flows in the null region, defined by [−Xk,Xk].
The model is in the form

wv = wl + wo = gl (pA) + go (pA, xv) , (5.34)

where the orifice flow function go (pA, xv) is explicitly input-invertible, i.e., we can
solve for xv = g−1o (pA, wo). The leakage flow term wl = gl (pA) is identical to the
leakage term of the input-affine model, given by (5.27). Utilizing the generalized flow
equation (5.15) in combination with a model of the variable orifice conductance, we
are able to accurately describe the orifice flow term wo over the full range of spool
positions. The resulting orifice flow is modeled according to wo = wo,S − wo,E, and
is then given as

wo = ρ0
p
T0 · co (xv)ωo

µ
pA
pS

¶
pS√
TS
− ρ0

p
T0 · co (−xv)ωo

µ
pE
pA

¶
pA√
TA

, (5.35)
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where ωo (·) is the pressure ratio function of the orifice flow wo, and co (·) is the
orifice conductance function of each flow path as a function of the position of the
spool. The pressure ratio function ωo (·) is parametrized according to (5.18)—(5.20),
which is uniquely characterized by the parameter bo. The parametrization of the
variable orifice flow conductance co (·) is discussed in the subsection below.

Orifice flow conductance function

The orifice flow conductance function co = co (xv) is conveniently modeled in the
form

co = Co · μ(xv) , (5.36)

where μ (xv) ∈ [0, 1] so that Co is the orifice flow conductance for the orifice port fully
open, i.e., xv = {−1, 1}. The normalized conductance function μ (xv) is modeled as
a customized spline function, composed of a linear and a quadratic polynomial term
according to

μ =

⎧⎨⎩ n0 + n1xv, xv ∈ hXk, 1]
m0 +m1xv +m2x

2
v, xv ∈ [−Xk,Xk]

0, xv ∈ [−1,−Xki
. (5.37)

The conductance function co (xv) , and its normalized function μ (xv), are plotted in
Figure 5.4. The function μ (xv) is uniquely characterized by the overlap parameter
Xδ,and the junction knot Xk, together with the requirement that μ (xv) be both
continuous and smooth at −Xk and continuous at Xk. The parameter Xδ represents
the actual overlap of the valve, while the parameter Xk determines the effective null
region [−Xk, Xk], where leakage flow through both the supply and exhaust ports are
possible. The spline polynomial coefficients are expressed in terms of Xδ and Xk as

n0 = − Xδ

1−Xδ
, n1 = − 1

1−Xδ
,

m0 =
Yk
4
, m1 =

Yk
2Xk

, m2 =
Yk
4X2

k
,

(5.38)

where the linear and the quadratic polynomials are jointed together at the knot
(Xk, Yk), with Yk given by

Yk , μ (Xk) =
Xk −Xδ

1−Xδ
. (5.39)

Remark 20 By using a quadratic polynomial in the null region, the modeled conduc-
tance function co (xv) will contain a non-smooth breakpoint at Xk. This non-smooth
breakpoint “softens” for decreasing values of Xδ, and vanishes completely for Xδ = 0.
Hence, the non-smoothness is negligible when Xδ is small compared to the full stroke
of xv. A function co (xv) that is smooth for all Xδ is easily obtained, e.g. by using a
cubic polynomial in the null region, however, this results in a rather messy expres-
sion for the inverse xv = g−1 (pA, wo), which is impractical for implementation in
a nonlinear controller. Hence, we have sacrificed smoothness at Xk for a simpler
expression of the inverse.
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Figure 5.4: The modeled orifice conductance function co = h (xv), and correspond-
ing basis function μ (xv) .

The resulting input-invertible valve flow model

Summarizing, the developed input-invertible valve model is given by

wv = wl + wo

= ρ0
p
T0Cl · ωl (pA/pS)

pS√
TS
− ρ0

p
T0Cl · ωl (pE/pA)

pA√
TA

+ρ0
p
T0 · co (xv)ωo

µ
pA
pS

¶
pS√
TS
− ρ0

p
T0 · co (−xv)ωo

µ
pE
pA

¶
pA√
TA

,(5.40)

where the pressure ratio functions ωl (·) and ωo (·) are parametrized according to
(5.18)—(5.20), uniquely characterized by the parameters bl and bo, respectively. The
variable flow conductance function co (·) is given by (5.36)—(5.37) – as discussed in
the previous subsection – which is characterized by the orifice flow conductance Co,
the overlap Xδ, and the parameter Xk which determines the null region [−Xk,Xk]
of the valve.
The resulting input-invertible flow model (5.40), is uniquely characterized by

only six parameters, where a set of physically meaningful parameters are Cl, bl, Co,
bo, Xδ, and Xk. Furthermore, the model consists of the physical variables pS, TS,
pA, TA, pE, TE, and the known parameters ρ0 and T0 of the defined ISO standard
reference condition of air. It should be noted, that by neglecting the leakage term
wl = gl (pA), assuming a negligible null region by setting Xk = 0, and using the
isentropic pressure ratio function (5.3) for ωo (r), the model becomes identical to
the model proposed by Shearer [86] (see the literature review in Section 1.2 of the
introduction.

Simplified partially affine parametrization

Simplifying for control, we take TA = TS = TE = T0, and pE = P0 according to as-
sumptions A4.6—7 from the derivation of the reduced-order isothermal air dynamics
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in Section 4.2. The flow rate model can then be compactly expressed in the partially
parameter-affine form

wv = ρ0Cl · ψl (pA) + ρ0Co · ψo (pA, xv) , (5.41)

with the leakage flow function ψl (pA) defined according to (5.32), and with the
orifice flow function defined as

ψo , μ (xv) · ωo

µ
pA
pS

¶
pS − μ (−xv) · ωo

µ
P0
pA

¶
pA. (5.42)

With the parameters bl, bo, Xk, Xδ known, the nonlinear flow functions ψl (pA)
and ψo (pA, xv) are known, and the leakage and orifice flow capacities Cl and Co

appear in an affine form, which makes the formulation (5.41) particularly suited for
parameter estimation of Cl and Co, on-line by an adaptive controller design, or off-
line from measurements. The input-invertible flow model (5.41), with its parameters
bl, bo, Cl, Co Xk and Xδ fitted to measurements of the flow rate characteristic of the
considered Servotronic proportional valve, is plotted in Figure 5.5.

−1 −0.5 0 0.5 1
2 4 6 8x 10

5

−40

−20

0

20

40

x
v
  [−]

Flow rate characteristics

p
A
  [Pa]

w
v  [

g/
s]

−1 −0.5 0 0.5 1
−40

−20

0

20

40

x
v

w
v

p
A
 = 1.00⋅105 Pa

p
A
 = 1.10⋅105 Pa

p
A
 = 2.00⋅105 Pa

p
A
 = 4.00⋅105 Pa

p
A
 = 6.00⋅105 Pa

p
A
 = 8.00⋅105 Pa

p
A
 = 9.00⋅105 Pa

p
A
 = 9.25⋅105 Pa

p
A
 = 9.50⋅105 Pa

2 4 6 8

x 10
5

−40

−20

0

20

40

p
A

w
v

p
E

p
S

w
of

−0.5 0 0.5

2

4

6

8

10
x 10

5

x
v

p A

−5

−2

0

0
2 5 10

C
l
 = 0.02x10−8

b
l
 = −1.00

C
o
 = 3.29x10−8

b
o
 = 0.82

Xδ = 0.03
X

k
 = 0.29

X
0
 = −0.017

p
pg

p
E
 , p

S

Figure 5.5: The input-invertible valve flow model (5.41) with its parameters fit-
ted to measurements of the flow rate characteristic of the considered Servotronic
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Remark 21 The pressure ratio function ωo (r) of the orifice flow term, can alter-
natively be modeled by the simpler elliptic function (5.16). So can the pressure ratio
function ωl (r) of the leakage term, however, with reduced accuracy for most types
of flow control valves. See Remark 17.

Tabulated characteristics of the measured sonic conductance C and the critical
pressure ratio B as a function of valve inputs, were provided by the valve manu-
facturer. The measurements are given for a set of valve inputs in the orifice flow
region of each single orifice, i.e., for |xv| ≥ Xk. From these tabulated measurements
of C and B, we create a set of data points of the resulting flow rate characteristic
in the orifice flow regions of the spool (|xv| ≥ Xk) by use of the ISO standard orifice
equation (5.5). We refer to this set of data points as the orifice flow measurements,
denoted with the subscript “of” in Figure 5.5. The valve manufacturer also pro-
vides a plot of the pressure gain curve for zero flow8 of the valve for pS = 7 · 105 Pa.
However, since the pressure pA is measured in our test rig, we use the experimentally
obtained curve which is obtained on the test rig by measuring the equilibrium pres-
sure p∗A for each corresponding spool position x

∗
v. We refer to this set of data points

as the (zero-flow) pressure gain measurements, indicated by the subscript “pg” in
the figure.
The orifice flow measurements and the pressure gain measurements were used to

fit the parameters of the model, marked in the figure in the two lower panes with ’×’
and ’o’, respectively. The parameters of the model were fitted to the measurements
by use of the function lsqnonlin in Matlab, which employs a nonlinear search
algorithm in order to find a set of parameters that minimizes some scalar function of
the modeling errors. See Appendix B for a brief description of parameter estimation
from measurements.
The normalized steady-state spool position of the valve is given as

x∗v = Kvuv +X0, (5.43)

where uv ∈ [−10, 10]V is the actual valve control input, Kv = 1/10V−1 is the
steady-state gain, and X0 = KvUv0 is a small spool offset in the valve.
In Figure 5.5, the flow rate characteristic is plotted for the full operating range

of the spool, xv ∈ [−1, 1], and the full range of chamber pressures pA ∈ [P0, PS],
with supply pressure PS = 9.5 · 105 Pa, and exhaust pressure P0 = 1.0 · 105 Pa. The
temperatures are assumed to be equal a constant room temperature of 25 ◦C, i.e.,
T0 = TS = TA = TE = 297K. The fitted parameters are printed the right of the
plotted pressure gain characteristic.

Computation of the inverse xv = g−1 (pA, wo)

When using the flow rate model for nonlinear control, we may need to compute xv
from a given wo in the control law, and preferably we want to do this by having an

8In general, a pressure gain curve is a contour line of the flow rate characteristics in the xv−pA
plane, i.e., a curve representing a constant flow rate. Thus, the pressure gain curve for zero flow
refers to the contour line for wv = 0, i.e., the set {(xv, pA) : wv = 0}.
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explicit expression for the inverse according to

xv = g−1o (pA, wo) . (5.44)

This is straightforwardly achieved for the proposed valve model. First we note that
we can rewrite the orifice flow part ( wo = go (pA, xv) ) of (5.41) as

wo = CoψS (pA)μ (xv)− CoψE (pA)μ (−xv) , (5.45)

by defining the pressure functions for the supply and the exhaust flow according to

ψS , ρ0
p
T0ωo (pA/pS) , (5.46)

ψE , ρ0
p
T0ωo (pE/pA) , (5.47)

respectively. In order to calculate the inverse g−1o (pA, wo) we divide the domain
of go (xv) into the supply region [Xk, 1] where only ψS is nonzero, the null region
[−Xk,Xk] where both ψS and ψE are nonzero, and the exhaust region [−1,−Xk]
where only ψE is nonzero. Furthermore, it is convenient to define the corresponding
indicator functions

χS , χ [Xk ≤ xv ≤ 1] ,
χc , χ [−Xk ≤ xv ≤ Xk] , (5.48)

χE , χ [−1 ≤ xv ≤ −Xk] ,

respectively, where the general indicator function χ[·] is defined by (5.29) in the
previous section. In this way, we can rewrite (5.45) as

wo = (CoψSn0 + CoψSn1xv) · χS (xv)
+
¡
Com0 · (ψS − ψE) + Com1 · (ψS + ψE)xv + Com0 · (ψS − ψE)x

2
v

¢ · χc (xv)
+ (CoψEn0 − CoψEn1xv) · χE (xv) , (5.49)

where the argument is dropped in ψS (pA) and ψE (pA) for simplicity of notation. In
Figure 5.6, the orifice flow function wo = go (pA, xv) and its corresponding inverse
xv = g−1o (pA, wo) is illustrated for some fixed pressures pA. The figure is plotted
with exaggerated values of Xδ in order to better illustrate the resulting non-smooth
knots at −Xk and Xk.
The inverse is computed by considering each region separately. In the supply

and exhaust regions, the orifice flow function is linear with respect to xv, and the
inverse is given by

xv = Xδ +
1−Xδ

Co
ψ−1S wo ∧ xv ∈ [Xk, 1] (5.50)

xv = −Xδ +
1−Xδ

Co
ψ−1E wo ∧ xv ∈ [−1,−Xk]. (5.51)

In the null region, the orifice flow function is quadratic with respect to xv, hence,
the inverse becomes the square root expression

xv =
Xk

ψS − ψE

µ
2
q
ψSψE + C−1k (ψS − ψE)wo − ψS − ψE

¶
∧ xv ∈ [−Xk, Xk],

(5.52)
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Figure 5.6: An illustration of the orifice flow model wo = go(pA, xv) and its inverse
xv = g−1o (pA, wo).

where Ck , CoYk. Due to the term (ψS − ψE)
−1, Equation (5.52) appear to be not

well defined for ψS − ψE = 0, since it is indeterminate (0/0). However, its limit
exists and is a straight line through the origin in which can be found by l’Hôpital’s
rule to be

xv = C−1k ψ−1S wo. (5.53)

5.4.3 A smooth parameter-affine valve flow model

The valve flow model need not be explicitly input-invertible to be applicable for a
nonlinear control design; it is sufficient that the model is one-to-one. Utilizing an
integrator backstepping approach for the design of a controller, we may circumvent
the need to compute the inverse of the flow rate. In this case, it is advantageous to
develop a model which is smooth so that its derivative becomes continuous, which
is required in order to design a smooth control law by integrator backstepping.
We develop a model in a similar manner as for the input-invertible model, by

utilizing the generalized flow equation (5.15) in combination with a model of the
variable conductance. Modeling the flow paths through the supply and exhaust
ports individually, as general nonlinear functions of the spool xv, i.e., cS (xv) and
cE (xv), we are able to accurately describe the flow rate over the full range of spool
positions. Utilizing the symmetry of the valve, we define a single nonlinear function
which applies for both the supply and the exhaust flows according to cS = cv (xv),
and cE = cv (−xv). An accurate description of the spool—flow characteristic of flow
control valves can thus be obtained by modeling the resulting flow rate according
to wv = wS − wE, in the form

wv = ρ0
p
T0 · cv (xv)ωv

µ
pA
pS

¶
pS√
TS
− ρ0

p
T0 · cv (−xv)ωv

µ
pE
pA

¶
pA√
TA

, (5.54)

where ωv (·) is the pressure ratio function, and cv (·) is the variable conductance of
each flow path as a function of the position of the spool. The pressure ratio function
ωv (·) is parametrized according to (5.18)—(5.20), which is uniquely characterized by
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the parameter bv. The parametrization of the variable flow conductance function
cv (·) is discussed in the subsection below.

Flow conductance function

The variable conductance of each flow path as a function of the position of the spool
is conveniently modeled in the form

cv = Cv · μ (xv) , (5.55)

where μ (xv) ∈ [0, 1] so that Cv represents the valve flow conductance for the valve
port fully open, i.e., xv = {−1, 1}. The normalized conductance function μ (xv) is
parametrized in the parameter-affine form

μ (xv) = θTμ · φμ (xv) , (5.56)

where the regressor φμ (xv) = [φμ1 (xv) , φμ2 (xv) , · · · , φμp (xv)]T ∈ Rp is a vector of p
basis functions which is weighted by the parameter vector θμ = [θμ 1, θμ 2, · · · , θμp]T ∈
Rp. The basis functions φμ,i (xv) are modeled using normalized Gaussian basis func-
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tions, defined according to

φμ,i (xv) =
ψi (xv)
pP

j=1

ψj (xv)

(5.57)

ψi (y) = e−
1
2
σ2i (y−ci)2 , (5.58)

where σ = [σ1, σ2, · · ·σp]T is a vector of scaling parameters, and c = [c1, c2, · · · , cp]T
a vector of offset parameters. Equation (5.57) provides a normalization of the stan-
dard Gaussian functions given by (5.58), and the parameters σi determines the



widths, and the parameters ci determines the location (or centers), of the corre-
sponding basis function ψi. In general, the accuracy of the modeled nonlinearity is
improved by increasing the number of basis functions, p. The modeled conductance
function μ(xv) = θTμ ·φμ(xv) and its corresponding basis functions are illustrated in
Figure 5.7. Notice in the figure, that we have not placed basis functions over the
entire input domain xv ∈ [−1, 1] of μ (xv), but with centers ranging from c1 = −0.2
to c6 = 1.1. With this choice we found that p = 6 functions was sufficient to pro-
vide a highly accurate fit to the tabulated conductance characteristic (marked with
circles ‘◦’ in the figure).

Piecewise linear parametrization

With the introduced affine parametrization of the nonlinear conductance function,
the resulting flow rate model is piecewise linearly parametrizable, i.e., the model
can be expressed in a form where all its characteristic parameters appear piecewise
linearly. That is, the model can be expressed in the form

wv = θTv · φv (pS, TS, pA, TA, pE, TE, xv, sgn bv) , (5.59)

with the parameter and regressor vectors defined as

θv , ρ0
p
T0

∙
Cvθμ
Cvbvθμ

¸
(5.60)

φv ,

⎡⎣ φμ (xv) · Ω0
³
pA
pS

´
pS√
TS
−φμ (−xv) · Ω0

³
pE
pA

´
pA√
TA

φμ (xv) · Ω1
³
pA
pS
, sgn bv

´
pS√
TS
−φμ (−xv) · Ω1

³
pE
pA
, sgn bv

´
pA√
TA

⎤⎦ ,
where we have substituted with the right-hand sides of (5.18) for the pressure ratio
function ωv (·), and (5.7) for the flow conductance function μ (xv) in the flow rate
model (5.54).
This form is particularly suited for parameter estimation of all the model parame-

ters, either on-line by an adaptive controller design, or off-line from measurements,
since Cvθμ ∈ Rp and Cvbvθμ ∈ Rp appear linearly. Note that the dimension of the
resulting parameter vector θv ∈ R2p, where p is the number of parameters in the
conductance function (5.56). Hence, with p = 6 (which is sufficient to provide a
highly accurate fit to the Servotronic flow rate characteristic), the total number of
parameters is 12.

Simplified partially affine parametrization

Simplifying for control, we take TA = TS = TE = T0, and pE = P0 according to
assumptions A4.6—7 from the derivation of the pressure dynamics in Section 4.2.
The flow rate model can then be expressed in the compact, partially parameter-
affine form

wv = ρ0Cv · ψv (pA, xv) , (5.61)

by defining the valve flow function

ψv , μ (xv) · ωv

µ
pA
pS

¶
pS − μ (−xv) · ωv

µ
P0
pA

¶
pA. (5.62)
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When the parameters bv and θμ are known, the nonlinear flow function ψv (pA, xv)
is known, and the valve flow capacity Cv appears in an affine form which makes the
formulation (5.61) particularly suited for parameter estimation of Cv.

Remark 22 Like for the flow rate model of the outlet restriction, the pressure ratio
function ωv (·) can alternatively be modeled using the simpler elliptic parametrization
(5.16), however, with reduced accuracy for the flow rate in the null region of the
valve.

Since the model can be formulated in the piecewise parameter-affine form (5.59),
we use the function lsqlin in Matlab for parameter fitting, which is a convex
optimization routine that finds the set of parameters providing the least squares fit
to the given measurements. See Appendix B for a brief description of its use for
parameter estimation. In Figure 5.8, the flow rate characteristic is plotted for the full
operating range of the spool, xv ∈ [−1, 1], and the full range of chamber pressures
pA ∈ [pE, pS]. With a constant supply pressure pS = PS = 9.5·105 Pa, and a constant
exhaust pressure pE = P0 = 1.0 · 105 Pa. The temperatures are assumed to be equal
a constant room temperature of 25 ◦C, i.e., T0 = TS = TA = TE = 297K. The fitted
parameters are printed on the right of the plotted pressure gain characteristic.

5.4.4 Valve dynamics

In this section we briefly review the modeling of the input—spool dynamics of a
proportional valve actuated by an electro-magnetic force motor with a proportional
input—force characteristic (usually referred to as a proportional solenoid). We then
present a simplified reduced-order model of the dynamics which we use for control
design.

Motion dynamics of the spool

The dynamics of the spool is governed by the equation of motion, and can thus be
expressed as

Mvẍv = −Ksxv +Kmi− ff (·)− fh (xv, ẋv) , (5.63)

where i is the current of the solenoid coil, Mv is the mass of the spool, Ks the
resulting spring stiffness of two centering springs, and Km is the proportionality
constant of the solenoid coil. The friction forces are represented by ff (·), and the
mechanical constraints of the spool by the hardstop force fh (·). See Chapter 3 for
the modeling of friction and hardstop forces.
In (5.63), we have assumed that the spool is centered by two linear coil springs,

and that the electro-magnetic proportional solenoid has an ideally linear character-
istic such that the electro-magnetic force becomes proportional to the coil current,
so that it can be expressed as fm = Kmi.

Remark 23 The 2nd-order dynamics (5.63) is expected to be significantly under-
damped due to the low viscous friction of air.
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Figure 5.8: The smooth piecewise parameter-affine valve flow model (5.59) fitted
to measurements.

In order to obtain a simplified, reduced-order model for control, we assume that
the mass of the spool is negligible small, i.e.,

Mv ≈ 0,
and assume that the friction force ff can be given as

ff = Dẋv ẋv, (5.64)

where Dẋv is a viscous friction coefficient. Furthermore, we neglect the hardstop
force fh (·). The dynamics of the spool (5.63) then reduces to the first-order dynam-
ics

Dẋv ẋv = −Ksxv +Kmi. (5.65)

Remark 24 The reduced-order dynamics (5.65) is expected to represent a reason-
able approximation to the full-order dynamics (5.63) for low frequency inputs, i.e.,
for frequencies well below the resonance frequency of the 2nd-order dynamics (5.63).
However, for inputs with high-frequency components (such as e.g. a step input), the
1st-order dynamics (5.65) will exhibit a damped response, while the actual 2nd-order
dynamics (5.63) will exhibit an oscillatory (underdamped) response.
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Dynamics of the electrical coil circuit

The dynamics of the electrical circuit is approximated by

L
di

dt
= −Ri+ uv, (5.66)

where uv is the applied voltage, L is the conductance, and R the electrical resistance
of the solenoid coil circuit. The coil dynamics is linear, with the time constant
τ i = L/R. Most proportional solenoids, however, are controlled by an internal
feedback from the coil current in order to improve of the transient performance.
This feedback is usually taken as

uv = Ki · (id − i) , (5.67)

where Ki is the proportional feedback gain, and id is the current demand signal
which usually is given by a corresponding voltage signal u as

id = Kuu, (5.68)

with an arbitrary scaling constant Ku. The coil dynamics is thus given as

L
di

dt
= − (R+Ki) · i+KiKuu, (5.69)

with the improved time constant τ i = L/(R+Ki).

In most cases with current feedback, the feedback gain Ki is typically very high,
giving a coil dynamics which is negligible fast compared to the dynamics of the other
(pneumatic and mechanical) states of the pneumatic actuator. To clearly see this,
we can rewrite (5.69) as

L

Ki

di

dt
= −R+Ki

Ki
i+Kuu. (5.70)

With Ki À R, we can approximate

L

Ki

di

dt
≈ −i+Kuu, (5.71)

where the time constant τ i = L/Ki ¿ 1. Hence, in order to obtain a simplified
reduced-order model for control design, it is usually reasonable to assume

i = Kuu. (5.72)

Simple reduced-order valve dynamics

Combining the static approximation (5.72) of the coil dynamics, and the reduced-
order dynamics (5.65) of the motion dynamics of the spool, the valve dynamics
reduces to

Dẋv

Ks

dxv
dt

= −xv + KmKu

Ks
u, (5.73)



which is linear with the time-constant τ v = Dẋv/Ks.
Equation (5.73) serves as a justification to describe the dynamics of a pneumatic

proportional valve by the first-order linear dynamic model

dxv
dt

= − 1
τ v
xv +

1

τ v
sat (Kvuv +KvUv0) , (5.74)

where τ v is the time-constant of the dynamics, uv ∈ [−Uv, Uv] is the control input,
and Kv is the steady-state gain which is chosen such that the input Kvuv is normal-
ized, i.e., for ∀uv ∈ [Uv, Uv] =⇒ Kvuv ∈ [−1, 1]. The parameter Uv0 is introduced to
represent the zero-point drift in the valve – a small offset between the valve input
uv and the corresponding steady-state spool position xv – which is due to temper-
ature variations9. A saturation of the summed input Kv · (uv + Uv0) is introduced to
guarantee that xv ∈ [−1, 1] when the initial state is chosen to satisfy xv (0) ∈ [−1, 1].
Most high-performance valves have spool feedback which greatly improves the

response time and steady-state accuracy of the valve. Depending on the applied con-
trol technique, the feedback control law of proportional valves with spool feedback,
more or less, provides a closed-loop response which is damped and approximately
linear, which means that the dynamics can be well approximated by the simple
model (5.74). Hence, the dynamics (5.74) can also be used to model proportional
valves with spool feedback.

In order to obtain a smooth model, we may modify (5.74) according to

dxv
dt

= − 1
τ v
xv +

1

τ v
· πu (Kvuv +KvUv0) , (5.75)

where πu (·) is a smooth saturation function with saturation limits [xlb, xub] = [−1, 1]
and smoothing width επ, defined as follows.
A smooth saturation function with general saturation limits may be constructed

according to

π (x, xlb, xub, επ) , x+ επ · g
µ−x+ xlb

επ

¶
− επ · g

µ
x− xub

επ

¶
, (5.76)

where επ > 0 is an arbitrary small design constant, referred to as the smoothing
width of the breakpoints of π (·), and where g (·) is smooth plus function with unity
slope and smoothing interval [−1, 1]. An example of g (·) constructed as a spline
function, is given by (3.32) in Section 3.3, which is reviewed below for the reader’s
convenience

g (x) =

⎧⎨⎩ x, x > 1
3
16
+ 1

2
x+ 3

8
x2 − 1

16
x4, |x| ≤ 1

0, x < −1
.

The smooth saturation function (5.76) and the above smooth plus function, is plotted
in Figure 5.9.

9In Figures 5.5 and 5.8, this zero-point offset is represented as X0 , KvUv0.
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For brevity of notation, we may omit the parameters xlb, xub and επ as function
arguments, and let πu (x) , π (x,−1, 1, επ), i.e., a smooth saturation function with
unity saturation limits [xlb, xub] = [−1, 1]. The smooth saturation function πu (x),
is thus a smooth approximation of the standard saturation function sat (x), which
can be made arbitrary accurate by reducing the smoothing width επ, i.e.,

lim
επ→0

πu (x) = sat (x) .
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Figure 5.9: Left: The smooth saturation function π (·) with upper and lower
bounds xub and xlb, and smoothing width ε. Right: The smooth plus function.

Unmodelled valve dynamics

When applying the reduced-order dynamics (5.74) for the modeling of the spool
dynamics of proportional valves, it is important to be aware that this simplified
model is not accurate for inputs with high-frequency content. That is, for fast
changes in the input uv, the model results in unmodeled dynamics. That is, the
reduced-order model (5.74) is not able to reproduce the oscillating transient behavior
of 2nd-order underdamped systems, see Remark 24.
This discrepancy of the model is most pronounced for valves without spool feed-

back, however, it also applies to certain valves with simple spool feedback, i.e.,
using standard PID feedback control. For example, with proportional feedback
u = Kp · (xd − xv) applied to (5.73), the model structure remains the same, only
with a smaller time constant τ v. Another example of unmodeled dynamics arises
when using the reduced-order model (5.74) to model proportional valves with spool
feedback with integral action. This is the case with the considered Servotronic pro-
portional valve, which exhibits a slowly converging overshoot for fast changes in the
control signal, apparently due to slow integral action in the spool positioning loop.
From a control point of view, this unmodeled dynamics is likely to put a sig-

nificant limit on the achievable bandwidth of a tracking controller for the electro-
pneumatic actuator. The obvious alternative would be to model the valve dynamics



using a more elaborate dynamic model of higher order, however, this increases the
complexity of the controller design for the electro-pneumatic actuator.

5.5 Summary

The modeling of the air flow rate in fixed restrictions and flow control valves in the
context of nonlinear and adaptive control, is considered in this chapter. A detailed
summary of the work is provided below.
A generalized, piecewise parameter-affine parametrization of the flow rate char-

acteristic of pneumatic restrictions, is developed. This generalized flow rate equa-
tion is constructed from basis functions using the standardized orifice flow equation,
and the equation for incompressible laminar fluid flow. In addition to its physical
pressure and temperature variables, the equation is uniquely characterized by a con-
ductance parameter C, and a critical pressure ratio—like parameter b. The novelty
of this parametrization, is that it is piecewise affine in b, unlike the ISO standard-
ized equation where the critical pressure ratio B appears nonlinearly, and that its
validity ranges from isentropic nozzle flow to incompressible laminar flow, i.e., it is
generalized in the sense that it encompasses most pneumatic restrictions.
The generalized flow rate equation is utilized to construct a model of the bidi-

rectional flow rate through a fixed pneumatic restriction, which has a validity range
that encompasses the full range of possible restriction types, from simple orifice
restrictions to small clearance restrictions. The resulting model is in piecewise
parameter-affine form, uniquely characterized by two parameters Cr and br, where
the parameter Cr describes the capacity of the restriction, while br determines the
pressure dependence of the flow rate.
The generalized flow rate equation is utilized for the parametrization of the static

spool—flow characteristic of flow control valves. First, we develop a simple piecewise
input-affine model, very similar to the most commonly used model in the literature.
Next, we develop two novel parametrizations of the spool—flow characteristic of flow
control valves of sliding type, where the first is explicitly input-invertible, and the
other is (piecewise) fully linearly parametrizable and differentiable. Both models are
based on an individual description of the flow through each flow path of the valve,
thus, providing improved accuracy compared to existing models, particularly for
valves with significant leakage flow in the null region. The two models are described
below:

An input-invertible valve flow model: An accurate parametrization of the sta-
tic spool—flow characteristic of a flow control valve is developed for subsequent
application of nonlinear control by a feedback linearization approach. The
model is input-invertible in the sense that the spool position (input) can be
expressed explicitly as a function of the flow rate, and it is mechanistic in the
sense that all its parameters have a physical meaning. The model is completely
characterized by only six parameters, composed of a fixed restriction leakage
term, characterized by Cl and bl, an orifice flow term, characterized by Co, bo,
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and incorporates an overlap Xδ ( or underlap for Xδ < 0 ), and a smoothed
characteristic in the null region, characterized by its width Xk.

A smooth parameter-affine valve flow model: An accurate piecewise parameter-
affine and smooth model of the static spool—flow characteristic is developed
for subsequent application of nonlinear and adaptive control by a backstep-
ping approach. The model is based on a parameter-affine parametrization of
the spool—conductance characteristic of each valve port, utilizing normalized
Gaussian basis functions. The resulting model is differentiable, hence, suited
for an exact backstepping design where the valve dynamics is included in the
design. Furthermore, the model can be expressed in a piecewise parameter-
affine form which makes it particularly suited for an adaptive design where all
its parameters may be a priori unknown, and estimated on-line. The model is
characterized by a conductance parameter Cv representing the flow capacity of
fully open valve ports, a pressure ratio-like parameter bv, and a vector θμ ∈ Rp

of the parameter-affine spool—conductance nonlinearity.

The modeling of the motion dynamics of the valve spool and the dynamics of the
coil current of a proportional valve, are briefly reviewed, and serves as a justification
as well as a clarification of the underlying presuppositions for approximating the
valve dynamics by a simple linear model.





Chapter 6

Model for Control Design

In this chapter, we combine the work on mathematical modeling from Chapters 3—5,
in a smooth design model for the electro-pneumatic clutch actuation system. We
describe the model in state-space form, discuss its region of validity, and outline
some important properties with respect to nonlinear and adaptive control.

6.1 Design model in state-space form

6.1.1 Motion dynamics

The position and velocity states y and v are governed by the equation of motion (3.1),
as discussed in Chapter 3. The static clutch load characteristic fl (y) is parametrized
according to (3.2) using normalized Gaussian basis functions, as it is illustrated
in Figure 3.1. The friction forces in the cylinder actuator and clutch is modeled
using the modified smooth version of the 1st-order dynamic LuGre model, where
the pre-sliding deflection state z and the friction force ff (v, z), are governed by
(3.20)—(3.22), respectively. Furthermore, the hardstop force fh (y, v), representing
the mechanical constraints of the actuator, is modeled according to (3.30), utilizing
smooth plus and step functions, which may be constructed as spline functions with
required smoothness.

6.1.2 Air dynamics

The air dynamics of the two pneumatic chambers is modeled assuming isothermal
conditions so that the temperatures can be taken as constant and the pressure be-
comes the only dynamic state. The pressure states pA and pB of the two actuator
chambers are thus governed by the common reduced-order isothermal pressure dy-
namics, given by (4.10) and (4.11), respectively.

6.1.3 Flow rate characteristics and valve dynamics

The flow rate of the fixed outlet restriction of the back-chamber (chamber B) of the
actuator, is modeled according to (5.24)—(5.25) utilizing the affine parametrization
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of the pressure ratio function, given by (5.18)—(5.20). The flow rate characteristic
of the flow control valve is modeled using the developed smooth valve flow model,
given by (5.61)—(5.62. In this smooth and piecewise linearly parametrizable flow
model, the spool—conductance characteristic is parametrized according to (5.56)
using normalized Gaussian basis functions, as illustrated in Figure 5.7, and the
pressure ratio function is parametrized according to (5.18)—(5.20). Finally, the valve
dynamics is modeled using the simple smooth 1st-order model, given by (5.75) which
utilizes the smooth saturation function (5.76).

6.1.4 State-space model

The complete 6th-order state-space model is given as

ẏ = v

v̇ =
A0P0
M

+
AA

M
pA − AB

M
pB − 1

M
ff (v, z)− 1

M
fl (y)− 1

M
fh (y, v)

ṗA = −AA
1

VA (y)
vpA + ρ0T0RCv

1

VA (y)
ψv (pA, xv)

ẋv = − 1
τ v
xv +

1

τ v
πu (Kvuv +KvUv0) (6.1)

ṗB = AB
1

VB (y)
vpB + ρ0T0RCr

1

VB (y)
ψr (pB)

ż = v − Kz

FC
|v|s z,

where the dynamic states are y, v, pA, xv, pB and z; the manipulated input is
uv, and the measured output is the position y; the function ff (v, z) is the friction
force, fl (y) is the nonlinear clutch load force, and the fh (y, v) is the hardstop force;
the functions VA (y) and VB (y) are the chamber volumes which are positive linear
functions of y given by (4.3) and (4.7); ψv (pA, xv) and ψr (pB) are the valve and
restriction flow functions, modeled according to (5.62) and (5.25), respectively; and
π (·) is the smooth saturation function given by (5.76). The valve flow function
ψv (pA, xv) and the restriction flow function ψr (pB), are plotted in Figures 6.1 and
6.2, respectively.

Remark 25 The pressure ratio functions ωv (r) and ωr (r) used to construct ψv (pA, xv)
and ψr (pB), respectively, could alternatively be modeled using the ISO standardized
elliptic pressure ratio function (5.16), which is simpler. In this case, for the con-
struction of ψv (·) and ψr (·), the elliptic function (5.16) must be redefined so that it
is valid also for r ≥ 1, like

ω (r) ,

⎧⎪⎨⎪⎩
1 , r ≤ Bq

1− ¡ r−B
1−B

¢2
, r > B

0 , r ≥ 1
∧ r ∈ [0,∞i , (6.2)

where B is the critical pressure ratio. An approximate relation between the critical
pressure ratio B, and the critical pressure ratio-like parameter b, is approximately
B ≈ 0.528 · b.
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Figure 6.1: The valve flow nonlinearity ψv (pA, xv) of the proportional valve.
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Figure 6.2: The compressible flow nonlinearity ψr (pB) of the outlet restriction.

Region of validity

Due to the assumptions applied to the modeling, and because some states are only
physically feasible (or meaningful) within certain ranges, the model is valid only in
a subset of the full state-space. More precisely, the region of validity of the model
is the set X0 ⊂ R6 defined by

X0 , {∀x : xmin ≤ x ≤ xmax} , (6.3)

where x , [y, v, pA, xv,pB, z]T is the full state vector, and xmin , [ymin, vmin, pAmin,
xvmin,pBmin, zmin]

T and xmax , [ymax,vmax,pAmax,xvmax,pBmax,zmax]T , are the mini-
mum and maximum feasible values of the states in x. The set X0 is also referred to
as the feasible region of the model.
The physically feasible ranges of each of the state variables are identified in the

following:



Actuator postion, y: The feasible range of the actuator position is physically lim-
ited by the mechanical constraints of the clutch and actuator. The mechanical
constraints are given by the lower and upper bounds ylb and yub, and is mod-
eled by the hardstop force fh (y, v) which also emulates the flexibility in the
mechanical constraints. Letting δh denote an upper bound on the mechanical
flexibility of these constraints, the feasible range of actuator positions are

ymax = yub + δh

ymin = ylb − δh.

Note that the basis functions of the modeled clutch load characteristic (3.2)
must be chosen to cover the full feasible range of actuator positions (as illus-
trated in Figure 3.1).

Actuator velocity, v: The model is valid for all real velocities, thus, the feasible
velocity range is given by

vmax = ∞
vmin = −∞.

However, for a given actuator configuration, an upper bound on the physically
attainable velocity during normal operation, is easily assessed.

Pre-sliding deflection, z: The dynamics of the pre-sliding deflection state is de-
fined for all real values. However, since the pre-sliding deflection is explained
as a seal flexibility property, it is only physically justified for finite deflections
with an upper bound Zmax, defined by (3.19), which is given by the level of
the stiction force and the stiffness of the seals:

zmax = Zmax , FC/Kz

zmin = −Zmax , −FC/Kz.

Pressure, pA: As stated by Assumption A5.2, the valve flow function ψv (pA, xv)
relies on the assumption that the controlled chamber pressure pA is constrained
from below by the exhaust (atmospheric) pressure P0, and from above by the
supply pressure PS:

pAmax = PS

pAmin = P0.

Pressure, pB: The model is only physically meaningful for a positive pressure pB,
as stated by Assumption A5.1 in Chapter 5. Hence the feasible pressure range
of the back-chamber is

pBmax = ∞
pBmin = 0.
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Valve position, xv: In the valve flow function ψv (pA, xv), we have assumed a nor-
malized spool position xv, where the basis functions of the flow conductance
function cv (xv) are chosen to cover the full range xv ∈ [−1, 1]. Hence, the
range of feasible valve spool positions are given by

xvmax = 1

xvmin = −1.

6.2 Model properties

6.2.1 Pure-feedback form

The system (6.1) is structurally in the so-called pure-feedback form in state-space,
for which a constructive nonlinear design by an integrator backstepping approach
applies. Denoting the states and control input

q =

⎡⎢⎢⎣
q1
q2
q3
q4

⎤⎥⎥⎦ ,
⎡⎢⎢⎣
y
v
pA
xv

⎤⎥⎥⎦ , ζ =

∙
ζ1
ζ2

¸
,
∙
pB
z

¸
, u , Kvuv,

the dynamics (6.1) can be expressed in the form

q̇1 = f1 (q2)

q̇2 = f2 (q1, q2, q3, ζ1, ζ2)

q̇3 = f3 (q1, q2, q3, q4)

q̇4 = f4 (q4, u) (6.4)

ζ̇1 = g1 (q1, q2, ζ1)

ζ̇2 = g2 (q2, ζ2) .

Neglecting the internal dynamics, i.e., the ζ-subsystem, the system is clearly in the
pure-feedback form:

q̇1 = f1 (q2)

q̇2 = f2 (q1, q2, q3)

q̇3 = f3 (q1, q2, q3, q4) (6.5)

q̇4 = f4 (q4, u) .

Since ζ appears exclusively in the dynamics of the q2-subsystem, and since the
dynamics of the ζ-subsystem depends on the first two states q1and q2 only, the
complete (q, ζ)-system is in pure-feedback form.



6.2.2 Feedback linearizability

Relative degree

All nonlinearities are sufficiently smooth, so that the model (6.1) is sufficiently dif-
ferentiable with respect to time. It can be shown that in the set

Xu , {∀x ∈X0 : P0 + ε ≤ pA ≤ PS − ε} , (6.6)

for some (arbitrary small) constant ε > 0, the system (6.1) has a well-defined relative
degree equal to 4. This means that the output y is separated from the input uv by
four integrators, i.e., we need to differentiate the output y four times for the control
uv to appear in the dynamics. For pA = {P0, PS}, the relative degree is undefined for
some spool positions because the control vanish, i.e., the system looses controllability
in one direction. More precisely, a loss of controllability occurs in the cases

i) pA = P0 ∧ xv ≤ −Xk

ii) pA = PS ∧ xv ≥ Xk,

where [−Xk,Xk] is the null region of the valve (defined in Chapter 5). In either of
these cases, the valve flow and the spool—flow gain becomes zero, i.e.,

ψv (pA, xv) = 0 ∧ ∂ψv (pA, xv)

∂xv
= 0,

which means that changes in the spool position xv (indirectly the control u) do not
cause a flow, thus, the pressure pA cannot be controlled by the input u. The spool—
flow gain of the valve flow function ψv (pA, xv) is plotted in Figure 6.1 (page 97).
This loss of controllability for pA = {P0, PS} has an obvious physical cause: (i) if

the chamber pressure pA equals atmospheric pressure P0, flow from the chamber to
atmosphere is no longer possible (because flow is only possible to a lower pressure),
hence, the system is uncontrollable for spool positions in the exhaust region of the
valve. Likewise, (ii) if the chamber pressure equals supply pressure, pA = PS,
flow from the supply into the chamber is no longer possible, hence, the system is
uncontrollable for spool positions in the supply region.

Normal and input-output forms

In the set Xu defined above, which covers the full feasible region of the state-space
except pA = {P0, PS}, the system (6.1) has a well defined relative degree r = 4,
which implies that it is input-output feedback linearizable in Xu. Hence, there exists
a well defined change of coordinates Φ (x) = [z, ζ]T for ∀x ∈ Xu, which transforms
the system to the normal form

ż1 = z2

ż2 = z3

ż3 = z4

ż4 = a (z, ζ) + b (z, ζ) · u
ζ̇ = g (z, ζ)
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with the main state vector z = [z1, z2, z3, z4]
T ∈ Ωz ⊂ R4, and the states of the

internal dynamics ζ = [ζ1, ζ2]
T ∈ Ωζ ⊂ R2, where Ωz ×Ωζ = Φ (Xu). It can further

be shown that the internal dynamics is input-to-state stable with respect to z = 0,
thus, the system is minimum phase.
Since both a (·) and b (·) are sufficiently differentiable, the system is fully feedback

linearizable for ∀x ∈ Xu, and the system can be transformed to the input-output form

y(n) = ā (q,u) + b̄ (z,u) · u(2),
where the nonlinear functions ā (·) and b̄ (·) may depend on the output and its
derivatives q , [y, ẏ, · · · , y(5)]T ∈ R6, and the input and its first-order derivative
u , [u, u̇] ∈ R2.

6.2.3 Linear parametrization

A particular effort has been put into modeling nonlinearities in parameter-affine
forms, with a minimum number of parameters. As a result, the model is particularly
suited for parameter estimation and adaptive control: The nonlinear clutch load
characteristic fl (y) given by (3.2) is affine in its tunable parameter vector θl, where
the scaling and center vectors w and c of φl (y) are viewed as fixed parameters,
i.e., not tunable. As discussed in Section 5.3 and Section 5.4, the nonlinear flow
functions ψr (pB) and ψv (pA, xv) of the restriction and valve, can be expressed in
the piecewise parameter-affine forms (5.22)—(5.23), and (5.59)—(5.60), with their
affine tunable parameters being θr = [ρ0Cr, ρ0Crbr]

T and θv = [ρ0Cvθμ, ρ0Cvbvθμ]
T ,

respectively. Furthermore, the saturation function π (·) satisfies
π (x) = x, ∀ |x| ≤ 1− επ,

where the smoothing width is negligible small, i.e., επ ¿ 1. Since the control input
term is physically limited to u , Kvuv ∈ [−1, 1], and because KvUv0 ¿ 1, both the
offset parameter Uv0 and the control input uv appear ian affine form in practically the
full operating range of the valve, i.e., for |KvUv0 +Kvuv| ≤ 1−επ. Consequently, the
valve dynamics is linearly parametrizable in its tunable parameters, and input-affine
in the practical operating range of the valve.
The inverse of the chamber volumes,

VA (y)
−1 =

1

VA0 +AAy

VB (y)
−1 =

1

VB0 −ABy
,

are obviously not linearly parametrizable. However, the inverse of the volumes VA
and VB may be accurately approximated by a 2nd-order polynomial, i.e.,

V (y)−1 = a0 + a1y + a2y
2,

which is obvious from the plots of VA (y)
−1 and VB (y)

−1 in Figure 6.3. Hence, using
this approximation, a complete linear parametrization of all the tunable parameters
in the design model (6.1), may be obtained. Table 6.1, summarizes typical values of
the parameters of the model.
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Figure 6.3: The inverse chamber volumes, V −1A (y) and V −1B (y).

6.3 Summary

The work on modeling of the electro-pneumatic clutch actuator in Chapters 3—5, is
in this chapter recapitulated in a 6th-order design model. The model consists of the
actuator position, velocity, friction (seal) deflection, pressures of both chambers, and
the valve spool position, as dynamic states. In the region of normal operation, the re-
sulting model is smooth, linearly parametrizable, and fully feedback linearizable with
relative degree four, which means that it can be transformed to a (parameter-affine)
input-output form where constructive procedures for (adaptive) output-feedback
control utilizing high-gain observers are available. Furthermore, the model is in
pure-feedback form, which makes it applicable for a nonlinear state-feedback design
by a backstepping approach, and for output-feedback by an observer-based back-
stepping approach, provided that an asymptotic observer is available.
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Table 6.1: Model parameters used in the full 6th-order model of the pneumatic
clutch actuator.

Parameter Unit Value Parameter Unit Value
Kz N/m 400 · 103 T0 K 293
Dż Ns/m 5 · 103 P0 Pa 1 · 105
ε0 m/ s 0.01 · 10−3 PS Pa 10 · 105
M kg 20 R J/ ( kgK) 288
AA m2 1.70 · 10−2 ρ0 kg/m3 1.185
AB m2 1.86 · 10−2 τ v s 15 · 10−3
A0 m2 0.16 · 10−2 Kv 1/V 0.1
VA0 m3 0.45 · 10−3 Uv0 V 0.01
VB0 m3 0.38 · 10−3 bv – 0.8
Dv Ns/m 5 · 103 br – 0.6
FC N 200 Cv m3/ ( Pa · s) 3.0 · 10−8
Kh N/m 10 · 106 Cr m3/ ( Pa · s) 1.0 · 10−8
Dh Ns/m 5 · 103 εh m 0.05 · 10−3
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Chapter 7

Technical Preliminaries

This chapter recapitulates some technical preliminaries, tools, and terminology, used
in the subsequent chapters on observer and controller design.

7.1 Technical lemmas

We frequently use completion of squares to obtain upper bounds on sign-indefinite
terms.

Lemma 26 (Completion of squares) For any real-valued scalar variables x, y,
and ε > 0, we have

xy ≤ ε

2
x2 +

1

2ε
y2. (7.1)

For vectors x,y ∈ Rn, note that xTy ≤ ¯̄xTy¯̄ ≤ |x| |y|.
We use theMean Value Theorem (see e.g. [47]) to rewrite differences of nonlinear

functions in time-varying affine forms.

Lemma 27 (Mean Value Theorem) Let the scalar function f (x) with inputs
x ∈ Rn be continuously differentiable on the open set S ∈ Rn. For any two points
x1 and x2 in S, where the line segment joining x1 and x2 are also in S, there exists
a point x∗ ∈ S such that

f (x2)− f (x1) =

µ
∂f

∂x

¶T
¯̄̄̄
¯
x∗∈S

(x2 − x1) . (7.2)

The following convergence lemma is useful to establish ISS bounds [52, Lemma
C.5].

Lemma 28 (ISS bound) Suppose the variable v (t) ∈ R+ satisfies the differential
inequality

v̇ ≤ −cv + dw (t)2 , (7.3)

for some constants c > 0 and d > 0, and w (t) ∈ R+ is a bounded input (w ∈ L∞).
Then

v (t) ≤ v (0) e−c·t +
d

c
kw (t)k2∞ . (7.4)
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7.2 Smooth saturation

Motivated by the use of smooth saturation of parameter estimates in nonlinear
adaptive control (proposed by Teel in [95], see also e.g. [55, 105, 107]), we will use
smooth saturation to obtain global robustness of the observers and output-feedback
control system presented in Chapters 8 and 9. Because the saturation is smooth, it
preserves differentiability, and with that, compatibility with backstepping.
We use a smooth saturation function defined as

π (x, xlb, xub, ε) , x+ ε · g
µ−x+ xlb

ε

¶
− ε · g

µ
x− xub

ε

¶
, (7.5)

where ε > 0 is an arbitrary small design constant referred to as the smoothing width
of π (·), and g (·) is a smooth plus function with unity slope and smoothing interval
[−1, 1]. For brevity of notation, we may omit the constant parameters as arguments
and write π (x) = π (x, xlb, xub, ε). The smooth plus function g (·) is constructed as
a spline function according to

g (x) =

⎧⎨⎩ x, x > 1
5
32
+ 1

2
x+ 15

32
x2 − 5

32
x4 + 1

32
x6, |x| ≤ 1

0, x < −1
, (7.6)

which is three times differentiable (g (x) ∈ C3). The smooth saturation function
(7.5) and the above smooth plus function (7.6), is plotted in Figure 5.9.
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Figure 7.1: Left: The smooth saturation function π (·) with upper and lower
bounds xub and xlb, and smoothing width ε. Right: The smooth plus function.

The smooth saturation function (7.5) will be used for a robust re-design of the
observers, and it useful to point out the following properties

P7.1) π (x) ≡ x , ∀x ∈ [xlb + ε, xub − ε]
P7.2) π (x) ∈ [xlb, xub] , ∀x ∈ R.

In Lyapunov-based designs of controller and identifier, we may use quadratic
control Lyapunov functions (CLF). However, when introducing saturation of states,
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it is convenient to use a modified CLF, as proposed in [95]. We illustrate this for
the case with a scalar quadratic function

V0
³
θ̃
´
=
1

2
θ̃
2
, (7.7)

where θ̃ (t) , θ−θ̂ (t) is the estimation error, with θ̂ (t) being a time-varying estimate
of the constant parameter θ. When the estimate θ̂ is replaced by the saturated
estimate θ̂π , π(θ̂), the estimation error becomes θ̃π , θ − π(θ̂). We may then use
a modified function in the form

V
³
θ̃
´
,
Z θ̃

0

[θ − π (σ − θ)] dσ, (7.8)

which has the gradient
∂V

∂θ̃

³
θ̃
´
= θ − π

³
θ̂
´
= θ̃π. (7.9)

The integral function (7.8) is positive definite and radially unbounded, like its
quadratic counterpart (7.7), however, its gradient is bounded, unlike the gradient of
the quadratic function (7.7). In Figure 7.2, both the quadratic and the integrated
scalar functions and their gradients are plotted to illustrate their main properties.
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Figure 7.2: Comparison between the quadratic function (7.7) and the integrated
function (7.8) utilizing smooth saturation.

7.3 Discontinuous projection

Discontinuous projection will be used to obtain improved transient performance
of the observers in Chapters 8 and 9. In this section, we recapitulate the scalar
discontinuous projection operator, whose multi-variable extension is commonly used
as a robustification tool in the adaptive control literature. See e.g. [33,52,107] and
the references therein.



For the scalar system ẋ = f (x, t) with lower and upper bounds xlb and xub on
x, respectively, we define the scalar discontinuous projection

P (f, x) = P (f, x, xlb, xub) ,
⎧⎨⎩ 0, x ≥ xub ∧ f > 0
0, x ≤ xlb ∧ f > 0
f, otherwise

. (7.10)

Note that the projection (7.10) satisfies

P7.3) P (f, x) ≡ f , ∀x ∈ hxlb, xubi ,

and with initial state x (0) ∈ [xlb, xub], and constant bounds xlb and xub, the pro-
jection ẋ = P (f, x) guarantees that the state is bounded, i.e.,

P7.4) x ∈ [xlb, xub] ,∀t ≥ 0.

For proof of P7.4), see e.g. [106].

Remark 29 For time-varying bounds, xlb (t) and xub (t), the projection can only
guarantee boundedness according to

x ∈
∙
inf
∀t≥0

xlb (t) , sup
∀t≥0

xub (t)

¸
.

7.4 Characterization of uncertainties

A state-space model of a physical system will always contain uncertainties in some
form, due to errors in parameters, model inaccuracies, simplifications, or unknown
exogenous disturbances. These uncertainties can usually be lumped together and
be represented by additive time-varying terms in the model, such as

ẋ = f (x,u, t) + δ (t) , (7.11)

where f (x,u, t) represents the precisely known nominal dynamic model of the sys-
tem with the states x, the inputs u, and δ a lumped uncertainty term. In the
following, we make an attempt to clarify some commonly used characterizations of
uncertainties.
Uncertainties for a given state-space model may be characterized by its structural

properties. An uncertainty may be characterized as an unstructured uncertainty if
it may be represented as a purely time-varying quantity δ = δ (t), e.g. as a result of
unmodeled dynamics, or exogenous disturbances. Unstructured uncertainties, like
δ (t), are also referred to as uncertain dynamics, or simply disturbances. When the
uncertainty is also a function of the modeled states or inputs to the system, like
δ = δ (x,u,t), it may be characterized as a structured uncertainty, or an uncertain
nonlinearity. In the special case when the structured uncertainty is a pure static
relation of the states or other inputs, such as δ = δ (x,u), it is usually referred to as
an uncertain static nonlinearity. In the general case when a structured uncertainty
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is also time-varying (δ = δ (x,u,t)), it may be referred to as an uncertain dynamic
nonlinearity.
A class of structured uncertainties are so-called parametric uncertainties, which

are uncertainties due to uncertain parameters. For example, for the nonlinear func-
tion f (x,θ), where the estimate θ̂ is used for the actual parameter vector θ, the
parametric uncertainty is given as

δ (x) = δ
³
x,θ, θ̂

´
= f (x,θ)− f

³
x, θ̂

´
. (7.12)

An important class of parametric uncertainties is obtained for nonlinearities which
can be written in parameter-affine form, f (x,θ) = φ (x)T θ, so that the parametric
uncertainty can be expressed as

δ (x) = δ
³
x, θ̃

´
= φ (x)T θ̃, (7.13)

affine in its parameter uncertainty θ̃ , θ − θ̂.
Using robust control techniques, high gain is usually required in order to account

for uncertainties in the model. In order to reduce the amount of uncertainty that
needs to be accounted for by robust control, a structured uncertainty can often be
partitioned into a parametric part and a non-parametric part according to

δ (x,u,t) = φ (x,u)T θ̃ +∆ (x,u,t) . (7.14)

In this way, adaptive techniques can be used to account for the parametric uncer-
tainty φ (x,u)T θ̃, and robust techniques can be used to deal with the remaining
uncertainty ∆ (x,u, t), resulting in less need for high gain control. Furthermore, it
may usually be advantageous to exploit the structure of the remaining uncertainty
∆ (x,u, t) in order to reduce unnecessary high gain. For this objective, we may want
to express the structured uncertainty ∆ (x,u,t) in the affine form

∆ (x,u,t) = q (x,u)T ·w (x,u,t) , (7.15)

where q (x,u) is a known function of the system states and inputs, and w is an
unknown, bounded uncertainty, or disturbance. Then, the structural properties of
the uncertainty, given by q (x,u), can be exploited by so-called nonlinear damping
terms in the controller, using the knowledge of q (x,u)T to increase the gain only
when required.

Uncertain dynamics typically arises from simplifications of the model, or are
caused by exogenous disturbances, or a combination of both. A common simplifi-
cation in fluid power systems, is to disregard fast dynamics in the electromagnetic
valve actuator, or model it by a simplified, low-order model, which causes what is
referred to as unmodeled input dynamics (or actuator dynamics). Another common
simplification is to disregard the fast dynamics of the sensor, resulting in unmodeled
output dynamics (or sensor dynamics). Further examples of unmodeled dynamics,
are the unmodeled supply dynamics due to treating the supply pressure as constant,



and our use of the reduced-order pressure dynamics instead of the full-order air dy-
namics, resulting in unmodeled temperature dynamics in our system. An example
of an exogenous disturbance, is the effect of heat transfer on the pressure dynamics
of the pneumatic chamber, which we have disregarded. Note that these uncertain-
ties become structured uncertainties when they enter the nominal state-space model
through some nonlinear function of the modeled states – even though they are
purely unstructured by themselves.
Uncertain static nonlinearities are due to inaccurate static terms in the model.

Typical examples of uncertain nonlinearities in the model of the electro-pneumatic
clutch actuator, are the parametric uncertainty due to uncertain parameters in the
clutch load characteristic, and inaccuracies in the model of the static friction char-
acteristic.



Chapter 8

Nonlinear Observer Design

In this chapter we address the design of nonlinear observers for the estimation of
the unmeasured states of the electro-pneumatic clutch actuation system.
In Section 8.1, we review the design model and discuss some of its properties

relevant for the subsequent observer design. In Section 8.2, we show that the system
model itself can be used as an open-loop observer for the unmeasured states of the
electro-pneumatic actuator. In Section 8.3, we present a full-order observer, and
introduces a redesign for improved robustness and performance. In Section 8.4, we
present a simplified reduced-order observer based on a change of coordinates, and
its robust redesign. We analyze some results from an experimental implementation
of the observers in Section 8.6, and summarizes the chapter in Section 8.7.

8.1 Design model

The 6th-order smooth design model of the electro-pneumatic clutch actuator and
some of its properties which are relevant for an observer design, are reviewed in this
section. Since we never intentionally attempt to drive the actuator into end stroke,
we neglect the hardstop term fh (y, v) in the dynamics (6.1). The full 6th-order
model used for nonlinear observer design in this chapter, is given in state-space
form as

ẏ = v

v̇ =
A0P0
M

+
AA

M
pA − AB

M
pB − 1

M
fl (y)− 1

M
ff (v, z)

ṗA = −AA
1

VA (y)
vpA + ρ0T0RCv

1

VA (y)
ψv (pA, xv)

ẋv = − 1
τ v
xv +

1

τ v
πu (u+ U0) (8.1)

ṗB = AB
1

VB (y)
v · pB + ρ0T0RCr

1

VB (y)
ψr (pB)

ż = v − Kz

FC
|v|s z.

113



Here, the states are y, v, pA, xv, pB, z, the scaled control input is u , Kvuv and
scaled offset U0 , KvUv0, and the measured output is the position y. The functions
fl (y) and ff (v, z) are the nonlinear clutch load characteristic and the friction force,
given by (3.2) and (3.16); VA (y) and VB (y) are the chamber volumes, which are
positive linear functions of y given by (4.3) and (4.7); ψv (pA, xv) and ψr (pB) are
the valve and restriction flow functions given by (5.62) and (5.25), respectively; and
|·|s is a smooth approximation to the absolute value, defined as

|v|s ,
q
v2 + ε20.

For the subsequent stability analysis, it is useful to note that the valve flow
function ψv (pA, xv) is monotonically decreasing in pA, increasing in xv, and bounded,
as can be seen from the plots in Figure 6.1 (page 97). More precisely, ψv (pA, xv)
satisfies

∂ψv

∂pA
(pA, xv) ≤ 0, ∀pA ∈ [P0, PS] , ∀xv ∈ [−1, 1]

∂ψv

∂xv
(pA, xv) ≥ 0, ∀pA ∈ [P0, PS] , ∀xv ∈ [−1, 1]

|ψv (pA, xv)| ≤ PS, ∀pA ∈ [P0, PS] ,∀xv ∈ [−1, 1] .
In a similar manner, the restriction flow function ψr (pB), plotted in Figure 6.2 (page
97), is decreasing in pB, and bounded from above, i.e.,

∂ψr

∂pB
(pB) ≤ 0, ∀pB ∈ [0,∞i

ψr (pB) ≤ P0, ∀pB ∈ [0,∞i .

Region of validity

The region of validity, or region of feasibility, of (8.1) is the set X0 ⊂ R6 defined by
X0 , {∀x : xmin ≤ x ≤ xmax} , (8.2)

where x , [y, v, pA, xv,pB, z]T is the full state vector, and xmin , [ymin, vmin, pAmin,
xvmin, pBmin, zmin]T and xmax , [ymax, vmax, pAmax, xvmax, pBmax, zmax]T , are the
physically feasible ranges of the state vector x, which are identified in Chapter 6.

Region of normal operation

In normal operation of the actuator, the states will stay within some compact re-
gion in state-space, i.e., each state will be bounded. In the following, we assume
knowledge about some lower and upper bounds on each state in normal operation,
which we later utilize for a robust re-design to achieve global stability and improved
transient performance of the observer. We denote these lower and upper bounds
by xlb , [ylb, vlb, pA lb, xv lb,pB lb, zlb]T and xub , [yub, vub, pAub, xv ub,pB ub, zub]T , and
introduce a region of normal operation, defined as

X , {∀x ∈ X0: xlb ≤ x ≤ xub} . (8.3)



CHAPTER 8. NONLINEAR OBSERVER DESIGN 115

Scaling of states

In order to minimize numerical errors with an implementation, we introduce a prac-
tical scaling of states, utilizing the bounds in the definition (8.3) of the region of
normal operation.
Define a vector of scaling factors s = [s1, · · · , s6]T as

s , xub − xlb,
and introduce the scaling of states

x̄ , s−1 × x,
where x̄ = [x̄1, · · · , x̄6]T is the scaled state vector.
A practical result of this scaling, is that the estimation error in scaled states

becomes normalized with respect to the set X , made precise in the following:
Proposition 30 (Scaling of States) Define a vector ē = [ē1, · · · , ē6]T of scaled
estimation errors as

ē , s−1 × (x− x̂) ,
where x̂ is the estimate of x, and the scaling vector s , xub − xlb. With x and
x̂ contained in X , defined by (8.3), the magnitude of the scaled observer errors,
ēi = s−1i · (xi − x̂i), i = 1, · · · , 6, is normalized, i.e.,

(x, x̂) ∈ X =⇒ |ēi| ≤ 1, i = 1, · · · , 6.
Remark 31 We employ this scaling of states when implementing the observer, both
for simulations and experimentally in the test rig. For clarity, however, we omit
scaling in our presentation of the observer and controller design.

Observability

In Section 8.3, we propose an observer with output-injection terms for the three
upper states, y, v and pA. We require that these states are observable from the
output y, which is straightforward to establish. A simple definition of observability
of the state ξ = [ξ1, ξ2, ξ3]

T , [y, v, pA] from the output y, is that with y known, it
is possible to identify the corresponding state ξ. Note that the assumption that y
is known is a stronger concept than being measured, it means that not only y may
be considered known, but also its higher-order derivatives. Hence, observability of
ξ1 = y and ξ2 = ẏ is trivial. To establish observability of ξ from y, in general, we
may assume that pB and z (and their derivatives) are known. Denoting the known
terms by h (y, pB, z, ż) , −AB

M
pB − Kz

M
z − Dż

M
ż + A0P0

M
− 1

M
fl (y), from (8.1) we see

that the observability mapping for the three first states may be expressed as

y0 ,

⎡⎣yẏ
ÿ

⎤⎦ , H (ξ) =
⎡⎣ ξ1

ξ2
−Dv

M
ξ2 +

AA

M
ξ3 + h (y, pB, z, ż)

⎤⎦ .
Clearly, the mapping H (ξ) is invertible and we can write ξ = H−1 (y0), which
establishes that ξ is observable from y.



8.2 Open-loop observer

In this section we analyze the use of the model (8.1) as an open-loop observer for the
unmeasured states of the system, in the case that only the position y is measured.
We show that this observer is asymptotically stable provided both the system and
observer states remains in the region of validity X0 of the model (8.1), and the
convergence properties of the observer is demonstrated by simulations.
An open-loop observer for the system (8.1) is given as

.

v̂ =
A0P0
M

+
AA

M
p̂A − AB

M
p̂B − 1

M
fl (y)− 1

M
ff (v̂, ẑ)

.

p̂A = −AA
1

VA (y)
v̂p̂A + ρ0T0RCv

1

VA (y)
ψv (p̂A, x̂v)

.

x̂v = − 1
τ v
x̂v +

1

τ v
πu (u+ U0) (8.4)

.

p̂B = AB
1

VB (y)
v̂p̂B + ρ0T0RCr

1

VB (y)
ψr (p̂B)

.

ẑ = v̂ − Kz

FC
|v̂|s ẑ,

where the states x̂u , [v̂, p̂A, x̂v, p̂B, ẑ]T are the estimates of the unmeasured states
xu , [v, pA, xv, pB, z]T , and y is the measured output.

8.2.1 Stability and convergence

In order to be able to use an observer in an actual application, e.g. for clutch
actuation in an heavy-duty truck, we must be able to ascertain that the observer is
stable under all possible conditions, and preferably, that its estimates converges to
the actual states, with negligible error, during normal operation of the actuator.
An analysis of the stability and convergence properties of the observer error dy-

namics is in general useful of two main reasons: it provides improved insight into
the dynamics of the observer, and it may reveal potentially destabilizing nonlineari-
ties that would make the observer algorithm prone to blow up or drift unboundedly
when subjected to particular operating conditions.
The following analysis establishes that the open-loop observer is asymptotically

stable in the entire region of validity of the model. This is a particular useful result
with respect to nonlinear observer design for electro-pneumatic actuators, because
it shows that the pneumatic actuators have some inherent stability properties which
enables the design of simple nonlinear observers.
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Observer error dynamics

The stability and convergence properties of the observer is established by analyzing
the dynamics of the resulting observer errors

ṽ , v − v̂

z̃ , z − ẑ

p̃A , pA − p̂A

p̃B , pB − p̂B

x̃v , xv − x̂v.

The first step of the analysis is to express the dynamics of the observer error in a
suitable form, which is done in detail in this section.

First consider the velocity dynamics. The dynamics of the estimation error

ṽ , v − v̂, (8.5)

is obtained by differentiating ṽ:

.

ṽ = v̇ −
.

v̂

=
A0P0
M

+
AA

M
pA − AB

M
pB − 1

M
fl (y)− 1

M
ff (v, z)

−
µ
A0P0
M

+
AA

M
p̂A − AB

M
p̂B − 1

M
fl (y)− 1

M
ff (v̂, ẑ)

¶
=

AA

M
p̃A − AB

M
p̃B − 1

M
[ff (v, z)− ff (v̂, ẑ)] .

The only nonlinearity entering the ṽ—dynamics, is the resulting error in the friction
force ff , given by (3.16). The friction error can be written as

ff (v, z)− ff (v̂, ẑ) = Dvṽ +Kz z̃ +Dż

.

z̃,

where the last term is the time-derivative of z̃, which will be discussed in the next
section. The resulting error dynamics can be written in the form

M
.

ṽ = −Dvṽ −Kzz̃ −Dż

.

z̃ +AAp̃A −ABp̃B. (8.6)

Next, consider the pre-sliding friction dynamics governing the estimation error

z̃ , z − ẑ. (8.7)

Denoting the right-hand side of the pre-sliding dynamics

ż = v − Kz

FC
|v|s z



by the function

gz (v, z) , v − Kz

FC
|v|s z, (8.8)

the resulting error dynamics can be expressed
.

z̃ = ż −
.

ẑ

= v − Kz

FC
|v|s z −

µ
v̂ − Kz

FC
|v̂|s ẑ

¶
= gz (v, z)− gz (v̂, ẑ) . (8.9)

Since gz (v, z) is smooth in v and z, we may use theMean Value Theorem (Lemma 27)
to rewrite the error gz (v, z)−gz (v̂, ẑ) as linear in ṽ and z̃. The friction error dynamics
can thus be written as

.

z̃ = gz (v, z)− gz (v̂, ẑ)

=
∂gz (v̄, z̄)

∂v
(v − v̂) +

∂gz (v̄, z̄)

∂z
(z − ẑ) , (8.10)

with gradients evaluated at a time-varying point (v̄ (t) , z̄ (t)) constrained to

v̄ ∈ Sv , {min (v, v̂) ,max (v, v̂)} (8.11)

z̄ ∈ Sz , {min (z, ẑ) ,max (z, ẑ)}. (8.12)

Computing the gradients of gz (v, z), we get

∂gz (v, z)

∂v
= 1− Kz

FC
sgns (v) z (8.13)

∂gz (v, z)

∂z
= −Kz

FC
|v|s , (8.14)

where the derivative of the smooth absolute operator |·|s, is the smooth signum
function

sgns (v) ,
d |v|s
dv

=
vp

v2 + ε20
.

As the time-varying evaluation point (v̄, z̄) is constrained by Sv and Sz, defined in
(8.11)—(8.12), we show in the following that the gradients must satisfy

∂gz (v̄, z̄)

∂v
∈ h0, 2i (8.15)µ

−∂gz (v̄, z̄)
∂z

¶
∈
∙
Kz

FC
ε0,

Kz

FC
vub

¸
, (8.16)

where vub denotes an upper bound on |v|s and |v̂|s. The upper and lower bounds on
∂gz (v̄, z̄) /∂v follows from the inherent boundedness of the LuGre friction model,
as established by Proposition 11 (page 51 in the chapter on friction modeling1).

1Note that for the original non-smooth LuGre model, the inequalities are not strict, i.e., the
friction state is constrained to |z (t)| ≤ FC/Kz, compared to |z (t)| < FC/Kz, for the smooth
LuGre model.
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Consequently, the friction states z (t) and ẑ (t), whose dynamics are governed by the
friction dynamics (3.15), will remain bounded according to

z (0) <
FC

Kz
⇒ |z (t)| < FC

Kz
∀t ≥ 0

ẑ (0) <
FC

Kz
⇒ |ẑ (t)| < FC

Kz
∀t ≥ 0,

which again constrains the evaluation point z̄ to

|z̄ (t)| < FC

Kz
∀t ≥ 0,

This gives

∂gz (v̄, z̄)

∂v
= 1− Kz

FC
sgns (v̄) z̄

⇓
1− Kz

FC
|z̄| ≤ ∂gz(v̄,z̄)

∂v
≤ 1 + Kz

FC
|z̄|

⇓
1− 1 < ∂gz(v̄,z̄)

∂v
< 1 + 1.

The bounds on ∂gz (v̄, z̄) /∂z follows straightforwardly from v̄ ∈ Sv and |v|s ≥ ε0.
q.e.d.
Summarizing, we may write the dynamics of the z̃—subsystem in the linear time-

varying form

.

z̃ =

µ
1− Kz

FC
sgns (v̄) z̄

¶
ṽ − Kz

FC
|v̄|s z̃ (8.17)

, σ1 (t) ṽ − σ2 (t) z̃, (8.18)

where σ1 and σ2 are strictly positive, time-varying coefficients that satisfy

σ1 (t) ∈ h0, 2i (8.19)

σ2 (t) ∈
∙
Kz

FC
ε0,

Kz

FC
vub

¸
, (8.20)

where v̄ ∈ Sv and z̄ ∈ Sz, and vub is an upper bound on |v|s and |v̂|s.
To analyze the pressure dynamics, we introduce the following new coordinates

qA , VA (y) pA (8.21)

qB , VB (y) pB, (8.22)

which can be viewed as measures of the mass of air in each cylinder chamber. In these
coordinates, the dynamics of pressure pA in the front chamber is given indirectly by

q̇A =
∂VA
∂y

ẏpA + VA (y) ṗA

= AApAv −AAvpA + ρ0T0RCvψv (pA, xv)

= ρ0T0RCvψv (pA, xv) , (8.23)



and equivalently for pB by
.
qB = ρ0T0RCrψr (pB) . (8.24)

Introducing the same change of coordinates for the observer states,

q̂A , VA (y) p̂A (8.25)

q̂B , VB (y) p̂B, (8.26)

we obtain the dynamics

.

q̂A =
∂VA
∂y

ẏp̂A + VA (y)
.

p̂A

= AAvp̂A −AAv̂p̂A + ρ0T0RCvψv (p̂A, x̂v)

= AAp̂A (v − v̂) + ρ0T0RCvψv (p̂A, x̂v) , (8.27)

and .

q̂B = −ABp̂B (v − v̂) + ρ0T0RCrψr (p̂B) . (8.28)

In the new coordinates, the errors in the estimated pressures are given indirectly
by the error variables

q̃A , qA − q̂A (8.29)

q̃B , qB − q̂B, (8.30)

as

p̃A =
1

VA (y)
q̃A (8.31)

p̃B =
1

VB (y)
q̃B. (8.32)

Now consider the pressure dynamics in the new coordinates. Differentiating q̃A, this
gives

.

q̃A = ρ0T0RCvψv (pA, xv)− {AAp̂A (v − v̂) + ρ0T0RCvψv (p̂A, x̂v)}
= −AAp̂Aṽ + ρ0T0RCv [ψv (pA, xv)− ψv (p̂A, x̂v)] (8.33)

and likewise for q̃B
.

q̃B = ρ0T0RCrψr (pB)− {−ABp̂B (v − v̂) + ρ0T0RCrψr (p̂B)}
= ABp̂B ṽ + ρ0T0RCr [ψr (pB)− ψr (p̂B)] . (8.34)

Since the nonlinear flow functions ψv (pA, xv) and ψr (pA) are smooth in the ar-
guments, we also here use the Mean Value Theorem (Lemma 27) to rewrite the
corresponding errors as linear in the error variables p̃A, x̃v and p̃B according to

ψv (pA, xv)− ψv (p̂A, x̂v) =
∂ψv (p̄A, x̄v)

∂pA
(pA − p̂A) +

∂ψv (p̄A, x̄v)

∂xv
(xv − x̂v)

ψr (pB)− ψr (p̂B) =
∂ψr (p̄B)

∂pB
(pB − p̂B) , (8.35)
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where the gradients are evaluated at the time-varying points (p̄A, x̄v) and p̄B, con-
strained to

p̄A ∈ SpA , {min (pA, p̂A) ,max (pA, p̂A)} (8.36)

p̄B ∈ SpB , {min (pB, p̂B) ,max (pB, p̂B)} (8.37)

x̄v ∈ Sxv , {min (xv, x̂v) ,max (xv, x̂v)}. (8.38)

Recalling that

pA − p̂A = p̃A =
1

VA (y)
q̃A

pB − p̂B = p̃B =
1

VB (y)
q̃B,

we may write the (q̃A, q̃B)—dynamics in the following form, linear in the error vari-
ables ṽ, q̃A, q̃B and x̃v:

.

q̃A = −AAp̂Aṽ + ρ0T0RCv
∂ψv (p̄A, x̄v)

∂pA

1

VA (y)
q̃A + ρ0T0RCv

∂ψv (p̄A, x̄v)

∂xv
x̃v

.

q̃B = ABp̂B ṽ + ρ0T0RCr
∂ψr (p̄B)

∂pB

1

VB (y)
q̃B. (8.39)

As the time-varying evaluation points (p̄A, x̄v) and p̄B are constrained to the sets
SpA, SpB , and Sxv as defined in (8.36)—(8.38), the gradients satisfy

∂ψv (p̄A, x̄v)

∂pA
≤ 0 (8.40)

∂ψr (p̄B)

∂pB
≤ 0 (8.41)

∂ψv (p̄A, x̄v)

∂xv
≥ 0, (8.42)

in the entire region of validity X0 of the model. To verify this, recall from Subsec-
tion 8.1 (page 113) that the pressure—flow gradients, ∂ψv (pA, xv) /∂pA and ∂ψv (pB) /∂pB
are either negative or zero, and that the input—flow gradient ∂ψv (pA, xv) /∂xv is
positive or zero, for all valid pressures pA and pB, and valve openings xv, i.e.,
[pA, pB, xv]

T ∈ X0. Furthermore, if both the actual and the estimated states are
contained in X0, then also are the evaluation points (p̄A, x̄v) and p̄B for the gradi-
ents.

Now consider the x̃v—dynamics. Differentiating the estimation error

x̃v , xv − x̂v, (8.43)

we obtain the simple error dynamics
.

x̃v = ẋv −
.

x̂v

= − 1
τ v
xv +

1

τ v
πu (u+ U0)−

µ
− 1
τ v
x̂v +

1

τ v
πu (u+ U0)

¶
= − 1

τ v
x̃v. (8.44)



Recapitulating so far, the complete error dynamics can be expressed in the linear,
time-varying form

M
.

ṽ = − [Dv +Dżσ1 (t)] ṽ − [Kz −Dżσ2 (t)] z̃ +
AA

VA (y)
q̃A − AB

VB (y)
q̃B

.

z̃ = σ1 (t) ṽ − σ2 (t) z̃
.

q̃A = −AAp̂Aṽ + ρ0T0RCv
∂ψv (p̄A, x̄v)

∂pA

1

VA (y)
q̃A + ρ0T0RCv

∂ψv (p̄A, x̄v)

∂xv
x̃v(8.45)

.

q̃B = ABp̂B ṽ + ρ0T0RCr
∂ψr (p̄B)

∂pB

1

VB (y)
q̃B

τ v
.

x̃v = −x̃v,

where the gradients of the friction dynamics,

σ1 (t) , ∂gz (v̄, z̄)

∂v
= 1− Kz

FC
sgns (v̄) z̄ (8.46)

σ2 (t) , −∂gz (v̄, z̄)
∂z

=
Kz

FC
|v̄|s , (8.47)

are strictly positive, time-varying coefficients that satisfy

σ1 (t) ∈ h0, 2i (8.48)

σ2 (t) ∈
∙
Kz

FC
ε0,

Kz

FC
vub

¸
. (8.49)

Provided that both the actual and estimated states remain in the region of validity
of the model, the pressure—flow gradients, ∂ψv (pA, xv) /∂pA and ∂ψv (pB) /∂pB are
either negative or zero, and the input—flow gradient ∂ψv (pA, xv) /∂xv positive or
zero.

Stabilizing mechanisms

The remaining part of the analysis is simply to identify the stabilizing (or destabi-
lizing) effects of each term in the error dynamics. Denoting

σ1 (t) , 1− Kz

FC
sgns (v̄) z̄ (8.50)

σ2 (t) , Kz

FC
|v̄|s (8.51)

αA (t) , −ρ0T0RCv
∂ψv (p̄A, x̄v)

∂pA

1

VA (y)
(8.52)

βA (t) , ρ0T0RCv
∂ψv (p̄A, x̄v)

∂xv
(8.53)

αB (t) , −ρ0T0RCr
∂ψr (p̄B)

∂pB

1

VB (y)
(8.54)
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the error dynamics can be expressed in the form

M
.

ṽ = − [Dv +Dżσ1 (t)] ṽ − [Kz −Dżσ2 (t)] z̃ +
AA

VA (y)
q̃A − AB

VB (y)
q̃B

.

z̃ = σ1 (t) ṽ − σ2 (t) z̃
.

q̃A = −AAp̂Aṽ − αA (t) q̃A + βA (t) x̃v (8.55)
.

q̃B = ABp̂Bṽ − αB (t) q̃B

τ v
.

x̃v = −x̃v.
The structure of the error dynamics becomes even more apparent by expressing the
system in the matrix form⎡⎢⎢⎢⎢⎢⎣

M
.

ṽ
.

z̃
.

q̃A.
q̃B
τ v

.

x̃v

⎤⎥⎥⎥⎥⎥⎦=
⎡⎢⎢⎢⎢⎣
− [Dv +Dżσ1 (t)] − [Kz −Dżσ2 (t)]

AA

VA(y)
− AB

VB(y)
0

σ1 (t) −σ2 (t) 0 0 0
−AAp̂A 0 −αA (t) 0 βA (t)
ABp̂B 0 0 −αB (t) 0
0 0 0 0 −1

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

ṽ
z̃
q̃A
q̃B
x̃v

⎤⎥⎥⎥⎥⎦ .
(8.56)

Knowing that all the time-varying coefficients are non-negative, the structure of the
error dynamics reveals the main stability properties of the system. Because finding
a Lyapunov function which explicitely establishes the stability of the complete error
dynamics is difficult, we settle with a qualitative analysis where we identify and
discuss the stabilizing mechanisms in the system based on the structure of its error
dynamics. The two stabilizing mechanisms in the pneumatic system, we refer to as
negative diagonal stabilization and skew-symmetrical-like stabilization.

Negative diagonal feedback terms, or feedback damping terms, are the most
obvious stabilizing terms in the system. If the negative diagonal terms appears
at all diagonal places, and they are strong enough that they in sum dominate the
remaining cross-diagonal terms, they are the main mechanism which stablizes the
system. In these cases, stability may be established via simple, diagonal Lyapunov
functions. A trivial case of dominating negative diagonal, is the x̃v—dynamics

τ v
.

x̃v = −x̃v,
which is completely decoupled from the remaining system states, with the damping
term −x̃v. In the absense of other (cross-diagonal) terms, the negative diagonal
term ensures that this subsystem is exponentially stable (ES). This is straightfor-
wardly established with the simple quadratic Lyapunov function W (x̃v) = τ vx̃

2
v,

whose derivative becomes Ẇ = −2x̃2v, thus, ES is proven. Because x̃v converges
exponentially to zero, the requirement on the remaining (ṽ, z̃, q̃A, q̃B)—subsystem for
the complete system to be stable, is that it is input-to-state stable with respect to
x̃v as input.
The remaining (ṽ, z̃, q̃A, q̃B)—subsystem has the feedback damping terms:

− [Dv +Dżσ1 (t)] ṽ, −σ2 (t) z̃, −αA (t) q̃A, and −αB (t) q̃B. When the time-varying



damping coefficients [Dv +Dżσ1 (t)], σ2 (t), αA (t), and αB (t) are sufficiently large,
they provide the main stabilization of the system. To demonstrate this, we neglect
the friction and valve dynamics by assuming z̃ ≡ 0 ⇒ .

z̃ = 0 and x̃v ≡ 0 ⇒
.

x̃v,
resulting in the simplified error dynamics

M
.

ṽ = −Dvṽ +
AA

VA (y)
q̃A − AB

VB (y)
q̃B

.

q̃A = −AAp̂Aṽ − αA (t) q̃A (8.57)
.

q̃B = ABp̂Bṽ − αB (t) q̃B.

When the negative diagonal terms are sufficiently large, the simple Lyapunov func-
tion candidate

U (ṽ, q̃A, q̃B) =
M

2
ṽ2 +

1

2
q̃A +

1

2
q̃B

can be use to establish stability for this system. The time-derivative of U becomes

U̇ = ṽ

µ
−Dvṽ +

AA

VA
q̃A − AB

VB
q̃B

¶
+ q̃A (−AAp̂Aṽ − αAq̃A) + q̃B (ABp̂Bṽ − αB q̃B)

= −Dvṽ
2 − αAq̃

2
A − αB q̃

2
B +

µ
AA

VA
−AAp̂A

¶
ṽq̃A −

µ
AB

VB
−ABp̂B

¶
ṽq̃B,

which can be expressed in the matrix form

U̇ = −x̃TQ (t) x̃, x̃ , [ṽ, q̃A, q̃B]T , (8.58)

with

Q (t) ,

⎡⎢⎢⎢⎣
Dv

1
2

³
AA

VA(y)
−AAp̂A

´
−1
2

³
AB

VB(y)
−ABp̂B

´
1
2

³
AA

VA(y)
−AAp̂A

´
αA (t) 0

−1
2

³
AB

VB(y)
−ABp̂B

´
0 αB (t)

⎤⎥⎥⎥⎦ .
(8.59)

Applying Sylvester’s Theorem (see e.g. [47]) we find the requirements for Q to be
positive definite so that U̇ becomes negative definite:

DvαA (t)− 1
4

µ
AA

VA (y)
−AAp̂A

¶2
> 0 (8.60)

DvαA (t)αB (t)− 1
4

µ
AA

VA (y)
−AAp̂A

¶2
− 1
4

µ
AB

VB (y)
−ABp̂B

¶
> 0. (8.61)

Hence, the simplified system is asymptotically stable (AS) provided the negative
diagonal gains Dv, αA, and αB are sufficiently large to dominate the coefficients of
the cross-terms, thus making U̇ negative definite. However, the feedback damping
provided by αA, and αB (resulting from the stablizing effect of the flow functions
ψv and ψr), and σ2 (resulting from the LuGre friction dynamics), is not always
the dominating stablizing mechanism. For example when the velocity is small, the
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internal damping of the LuGre friction dynamics is very small, resulting in a too
small σ2 to provide convergence of z̃. Furthermore, when pressure and valve states
are such that choked flow occurs in the valve, the gradient of the valve’s flow function
ψv becomes small, resulting in a to small αA to ensure convergence of p̃A. In these
cases, the main stabilization of the pneumatic system is due to a skew-symmetrical-
like connection between the states.

Skew-symmetrical-like terms are not as obvious stabilizing terms, and are alone
not sufficient to provide stabilization. The skew-symmetrical-like terms depend
on a negative damping term to provide stabilization (without, they simply result
in poles on the imaginary axis, in the linear case). For example, the stability of
a (Luenberger) observer design with feedback output-injection terms, is based on
skew-symmetrical-like stabilization in combination with a diagonal output-injection
term in the first equation. Likewise, is a cancelling backstepping design based on
skew-symmetrical cancellation of cross-terms in combination with negative diagonal
damping terms. In the pneumatic system, the main stability mechanism alternates
between a negative diagonal and skew-symmetrical-like stabilization. Establishing
stability in the case of skew-symmetrical-like stabilization, using a Lyapunov func-
tion, is far more difficult than in the case with dominating diagonal terms.
What we mean by skew-symmetrical-like stabilization is better explained with

an example. Take the simplified error dynamics

M
.

ṽ = −Dvṽ + a (t) q̃A
.

q̃A = −b (t) ṽ,

where there is no diagonal stabilizing term for the q̃A—dynamics (αA = 0). In
this case, the stabilization of q̃A is due to the terms a (t) q̃A and −b (t) ṽ, which
have the skew-symmetrical-like properties that they are non-zero and has different
sign. Even in this simple case, it is complicated to find a Lyapunov function which
establiches stability, primarily due to the time-variance of the cross-terms. Consider
the Lyapunov function candidate

V (ṽ, q̃A) =
M

2
ṽ2 +

C1
2
q̃2A − C2Mṽq̃A,

where C1 and C2 are positive constants which satisfies C1 −MC2
2 > 0, such that V

is positive definite. The time-derivative of V becomes

V̇ = − [Dv − C2Mb (t)] ṽ2 − C2a (t) q̃
2
A + [a (t) + C2Dv − C1b (t)] ṽq̃A.

We see that if a and b had been constants, we could use C1 and C2 to cancel the cross-
term ṽq̃A to makeV̇ negative definite. This is possible because the skew-symmetrical
terms have different sign.
To show that also the time-varying, skew-symmetrical-like terms provide stabil-

ity, we can express V̇ as

V̇ = −x̃TQ (t) x̃, x̃ , [ṽ, q̃A]T ,



with

Q (t) ,
∙

Dv − C2Mb (t) a (t) + C2Dv − C1b (t)
a (t) + C2Dv − C1b (t) C2a (t)

¸
. (8.62)

Applying Sylvester’s Theorem we find that in order to show asymptotic stability
with the proposed V , there must exists constants C1 and C2 such that

Dv − C2Mb (t) > 0

[Dv − C2Mb (t)]C2a (t)− 1
4
[a (t) + C2Dv − C1b (t)]

2 > 0,

are satisfied for all a (t) and b (t). Provided the time-variance of a (t) and b (t) are
limited, we see that because they have different signs, they partly cancel eachother.
That is, we can use C1 and C2 to make the square term [a (t) + C2Dv − C1b (t)]

2

small, relative to the term [Dv − C2Mb (t)]C2a (t), thereby satisfying the inequal-
ity and prove asymptotic stability. On the other hand, with the time-variance of
a (t) and b (t) being large, stability will no longer be possible to establish using the
suggested Lyapunov function candidate V.
In the (ṽ, z̃, q̃A, q̃B)—subsystem, the skew-symmetrical-like terms works through

the ṽ—dynamics, dependent on the negative damping − [Dv +Dżσ1 (t)] ṽ to pro-
vide stabilization. The skew-symmetrical-like terms in the ṽ—dynamics are: σ1 (t),
−AAp̂A, and ABp̂B, which corresponds to − [Kz −Dżσ2 (t)], AA

VA(y)
, and − AB

VB(y)
, in

the z̃, q̃A, and q̃B—dynamics, respectively. When the diagonal damping gains σ2 (t),
αA (t), and αB (t) are too small to ensure stability, the z̃, q̃A, and q̃B—dynamics,
are stabilized by the corresponding skew-symmetrical-like terms and the negative
damping term − [Dv +Dżσ1 (t)] ṽ.

Summarizing, the structure of the the pneumatic system implies that the system
is asymptotically stable, where the type of stabilization alternates between stabiliza-
tion due to dominating diagonal terms, and stabilization via skew-symmetrical-like
terms.

8.2.2 Simulation results

The strong convergence properties of the open-loop nonlinear observer, is here illus-
trated by simulations. The observer (8.4) and system model (8.1) were implemented
in continuous-time in Simulink/Matlab using the model parameters summarized in
Table 6.1 (page 103), and the parameters θl of the clutch load characteristic printed
below the plot in Figure 3.1 (page 45).
The performance of the observer is illustrated on a simulated response of the

system (8.1) subjected to the square wave valve control input

uv = U0 + U1 sgn

µ
sin

µ
2π

T
t

¶¶
,

with bias U0 = −1.5V, amplitude U1 = 5V, and period T = 0.15 s. The simulated
valve input uv and corresponding output y, is plotted in Figure 8.1. In order to
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Figure 8.1: Simulated valve input uv and the corresponding response in the output,
actuator position y.

obtain comparable results, we use the same simulated system response (as plotted
in Figure 8.1) throughout this chapter for analysis of different observer properties.
The initial convergence properties of the observer is illustrated in Figure 8.2,

with the initial observer errors⎡⎢⎢⎢⎢⎣
ṽ (0)
p̃A (0)
x̃v (0)
p̃B (0)
z̃ (0)

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣
0mm/ s
250 kPa
2

0 kPa
0mm

⎤⎥⎥⎥⎥⎦ .
The simulation illustrates how a moderately large initial error in the estimate of
the chamber pressure pA, may cause considerable transient errors in the estimates
of v, pB and z, which thereafter, converge to the actual states within approximately
0.3 s. A property of the observer error dynamics worth noting, which is evident
from the observer dynamics (8.4), but not apparent from the plotted response, is
that the error dynamics of the spool position error x̃v is completely decoupled from
the remaining observer error dynamics.

8.2.3 Remarks on robustness

From the plot in Figure 8.2, the initial transients in the observer estimates remain
within the feasible region X0 of the system (8.1), while the actual states remain
within the region of normal operation X , thus, the observer errors converge asymp-
totically to zero. However, the simulations also indicates the possibility that certain
estimates may move outside of the region of validity X0 during initial transients.
Hence, a modification of the nominal observer is necessary in order to guarantee
stability of the observer. A redesign of the nominal observer dynamics, by which we
obtain global stability properties and improved transient performance, is addressed
in Section 8.5.



0 0.05 0.1 0.15 0.2 0.25 0.3
0

5

10

15

y 
 [

m
m

]

y

0 0.05 0.1 0.15 0.2 0.25 0.3
−200

0

200

400

v 
 [

m
m

/s
]

v

v̂

0 0.05 0.1 0.15 0.2 0.25 0.3
300

400

500

600

700

p
A
  

[k
P

a
]

pA

p̂A

0 0.05 0.1 0.15 0.2 0.25 0.3
−1

−0.5

0

0.5

1

x v
  

[−
 ]

xv

x̂v

uv/Uv

0 0.05 0.1 0.15 0.2 0.25 0.3
50

100

150

200

p
B
  

[k
P

a
]

t  [s]

pB

p̂B

0 0.05 0.1 0.15 0.2 0.25 0.3

−0.5

0

0.5

1

z 
 [m

m
]

t  [s]

z

ẑ

Figure 8.2: Illustration of the convergence properties of the open-loop observer.

8.3 Full-order observer

In this section we propose a simple full-order observer for the electro-pneumatic
actuator, which combines estimation using output-injection correction terms for the
for main states y, v, and pA, and open-loop estimation of the remaining states xv, pB,
and z. The observer inherits the convergence properties from the open-loop observer,
but the convergence is strengthened as the output-injection terms introduce the pos-
sibility to improve the convergence rate and strengthen the disturbance attenuation
properties of the observer. To guarantee stability, we propose a robust modification
of the observer, compatible with backstepping, where smooth saturation is utilized
to constrain the observer dynamics to the feasible region of the state-space, thus,
achieving global stability properties. We further improve the transient performance
of the observer by applying discontinuous projection of the observer states, which,
in combination with smooth saturation, preserves smooth observer estimates. The
convergence properties of the observer is illustrated by simulations.
A full-order observer for the system (8.1) with linear output-injection terms, is

given as
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.

ŷ = k1 (y − ŷ) + v̂
.

v̂ = k2 (y − ŷ) +
A0P0
M

+
AA

M
p̂A − AB

M
p̂B − 1

M
fl (y)− 1

M
ff (v̂, ẑ)

.

p̂A = k3 (y − ŷ)−AA
1

VA (y)
v̂p̂A + ρ0T0RCv

1

VA (y)
ψv (p̂A, x̂v)

.

x̂v = − 1
τ v
x̂v +

1

τ v
πu (u+ U0) (8.63)

.

p̂B = AB
1

VB (y)
v̂p̂B + ρ0T0RCr

1

VB (y)
ψr (p̂B)

.

ẑ = v̂ − Kz

FC
|v̂|s ẑ,

where the observer states x̂ , [ŷ, v̂, p̂A, x̂v, p̂B, ẑ]
T are the estimates of all of the

system states x , [y, v, pA, xv, pB, z]T , the control input is u, and y is the measured
output.
The observer can be said to be of partially Luenberger-type: It is of Luenberger-

type due to the output-error injection terms for the estimation of the main states y,
v, and pA, similar to the Luenberger observer for linear systems, but only partially,
because the estimation of the remaining states xv, pB, and z is open-loop estimation
without output injection terms.
Partitioning the estimated states according to x̂ = [ξ̂, ζ̂]T , where ξ̂ , [ŷ, v̂, p̂A]T

denotes the estimates with output-injection, and ζ̂ , [x̂v, p̂B, ẑ]T are the open-loop
estimated states, the observer (8.63) can be compactly expressed in the form

.

ξ̂= kỹ + fξ (x̂u, y)
.

ζ̂= f ζ (x̂u, y, u) ,
(8.64)

where ỹ , y − ŷ denotes the error in the estimated output, k , [k1, k2, k3]
T the

observer feedback gains, x̂u , [v̂, p̂A, ζ̂]
T
the estimated unmeasured states, and

where the vectors describing the system dynamics are given by

fξ (x̂u, y) =

⎡⎣fξ1fξ2
fξ3

⎤⎦ ,
⎡⎣ v̂
A0P0
M

+ AA

M
p̂A − AB

M
p̂B − 1

M
fl (y)− 1

M
ff (v̂, ẑ)

−AA
1

VA(y)
v̂p̂A + ρ0T0RCv

1
VA(y)

ψv (p̂A, x̂v)

⎤⎦(8.65)
fζ (x̂u, y, uv) =

⎡⎣fζ1fζ2
fζ3

⎤⎦ ,
⎡⎣ − 1

τv
x̂v +

1
τv
πu (u+ U0)

AB
1

VB(y)
v̂p̂B + ρ0T0RCr

1
VB(y)

ψr (p̂B)

v̂ − Kz

FC
|v̂|s ẑ

⎤⎦ . (8.66)

In Figure 8.3, the full-order observer is visualized in the compact form (8.64) by a
block diagram.

8.3.1 Stability and convergence

The proposed Luenberger-type observer (8.63) inherits the stability properties of
the system (8.1). Due to the output-injection terms k1ỹ, k2ỹ and k3ỹ, the observer
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Figure 8.3: Block diagram of the combined open-loop and Luenberger-type full-
order observer.

has improved convergence rate and disturbance attenuation properties compared to
the open-loop observer (8.4).

8.3.2 Observer gains

Consider the dynamics of the observer error (ỹ, ṽ, p̃A)—subsystem, which can be
written

.

ỹ = −k1ỹ + ṽ
.

ṽ = −k2ỹ − Dv

M
ṽ +

AA

M
p̃A − Kz

M
z̃ − Dz

M

.

z̃

.

p̃A = −k3ỹ −AA
1

VA (y)
[pAv − p̂Av̂] + ρ0T0RCv

1

VA (y)
[ψv (pA, xv)− ψv (p̂A, x̂v)] .

Assuming that pA, p̂A ≥ P0, and neglecting the dynamic friction and the stabilizing
flow function terms, we extract the linear time-invariant subsystem⎡⎢⎣

.

ỹ
.

ṽ
.

p̃A

⎤⎥⎦ =
⎡⎣−k1 1 0
−k2 −Dv

M
AA

M

−k3 − AAP0
VA(yub)

0

⎤⎦⎡⎣ ỹ
ṽ
p̃A

⎤⎦ ,
which we use to facilitate the tuning of observer gains k , [k1, k2, k3]

T for the
nonlinear observer (8.63). The linear system is compactly written as

.

ξ̃= Aoξ̃, (8.67)
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where ξ̃ , ξ − ξ̂ = [ỹ, ṽ, p̃A]T , and has the characteristic polynomial

|sI−Ao| = s3 +

µ
k1 +

Dv

M

¶
s2 +

µ
k1
Dv

M
+

A2AP0
VA (yub)M

+ k2

¶
s+ (k1 + k3)

AA

M
.

(8.68)
The observer gains are chosen such that the constant observer matrix is Hurwitz,
i.e., so that Ao satisfies the Lyapunov equation AoPo + PoA

T
o = −Q for some

Po = PT
o > 0 and Q > 0. We can show that a sufficient condition for Ao to be

Hurwitz, is that k1 > 0 and k2, k3 ≥ 0.
One way to choose observer gains k1, k2, and k3, is to place multiple poles at

s = −λo < 0, which gives a critically damped response in the output ξ̃1 = ỹ. The
dynamics of the linear system (8.67) is then governed by the characteristic equation

|sI−Ao| = (s+ λo)
3 = s3 + 3λos

2 + 3λ2os+ λ3o = 0. (8.69)

By comparing the coefficients of the two polynomials (8.68) and (8.69), the observer
gains can be expressed as functions of λo:

k1 = 3λo − Dv

M

k2 = 3λ
2
o − 3λoDv

M
+
¡
Dv

M

¢2 − A2AP0
VA(yub)M

k3 = λ3o
M
AA
− 3λo + Dv

M
.

(8.70)

With the observer gains determined according to (8.70), the poles of the linear
dynamics (8.67) are placed at s = −λo. Due to the unstable integrator for the
position, we must choose k1 > 0 in order to obtain an asymptotically stable observer,
and we would like to avoid negative feedback gains ki for small λo. Consequently,
we determine the observer gains according to

k1 = max
¡
3λo − Dv

M
, 10
¢

k2 = max
³
3λ2o − 3λo Dv

M
+
¡
Dv

M

¢2 − aAA

M
, 0
´

k3 = max
³
λ3o

M
AA
− 3λo + Dv

M
, 0
´
,

(8.71)

to ensure that k1 ≥ 10 and k2, k3 > 0. In the following, we refer to the parameter
λo as the design bandwidth of the nonlinear observer (8.63).

8.3.3 Simulation results

Figure 8.4 illustrates the convergence properties of the full-order observer (8.63) for
increasing λo, with the observer gains k1, k2, k3 determined according to (8.71).
With λo = 0, the feedback gains become k1 = 10, and k2 = k3 = 0, such that the

convergence rate is approximately equal (or slightly less than) the convergence rate
of the open-loop observer (8.4). In addition, the figure clearly illustrates a desirable
property of the observer for the estimated states ŷ, v̂ and p̂A, namely, that the
convergence rate can be systematically increased by increasing the observer feedback
gains, or more precisely, the design bandwidth λo. Notice also that the improved
convergence of ŷ, v̂, p̂A, improves the convergence of the open-loop estimates p̂B and
ẑ, while the estimate x̂v remains unaffected by changes in the observer gains.
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Figure 8.4: Illustration of the convergence properties of the full-order observer for
increasing feedback gains.

8.4 Reduced-order observer

In this section we propose a simple reduced-order observer for the electro-pneumatic
actuator. The observer is of 4th-order, and estimates only the unmeasured states
based on a simplified design model where the back-chamber pressure pB is assumed
to be constant.

8.4.1 Simplified design model

Denote p , pA, A , AA, V (y) = V0 +Ay , VA (y), and take pB = P0 and AB = A,
and assume that the dynamics of the electro-pneumatic actuator can be given by
the model
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ẏ = v

v̇ =
A

M
p− A

M
P0 − 1

M
fl (y)− 1

M
ff (v, z)

ṗ = −A 1

V (y)
vp+ ρ0T0RCv

1

V (y)
ψv (p, xv) (8.72)

ẋv = − 1
τ v
xv +

1

τ v
u

ż = v − Kz

FC
|v|s z,

where y, v, p, xv, and z are the actuator position, velocity, chamber pressure, valve
spool opening, and friction deflection state, respectively, while fl (y), ff (v, z), V (y),
and ψv (p, xv), are known functions of the clutch load force, friction force, chamber
volume, and the valve flow function, respectively.
The region of validity of model (8.1) is the set X0 ⊂ R5, defined by

X0 , {∀x : xmin ≤ x ≤ xmax} , (8.73)

where the minimum and maximum feasible actuator states are given by xmin =
[ymin,vmin,pmin,xv,min,zmin] and xmax = [ymax,vmax,pmax,xv,max,zmax], as described in
Chapter 6. Moreover, the region of normal operation, in which the actuator states
will remain under normal operation, is defined by the lower and upper bounds
xlb , [ylb,vlb,plb,xv lb,zlb]T and xub , [yub,vub,pub,xv ub,zub]T as

X , {∀x ∈ X0: xlb ≤ x ≤ xub} . (8.74)

In the following section, we illustrate the development of a reduced-order observer
for the system (8.72) which only estimates the unmeasured states v, p, xv, and z.

8.4.2 Observer development

We introduce the change of coordinates

ξ1 , v − k1y

ξ2 , V (y) p− k2y,
(8.75)

where k1, k2 ≥ 0 are design parameters, whose meaning will become clear in the
following. Noting that

ξ̇1 = v̇ − k1ẏ

=
A

M
p− A

M
P0 − 1

M
fl (y)− 1

M
ff (v, z)− k1v

and

ξ̇2 =
∂V (y)

∂y
ẏp+ V (y) ṗ− k2ẏ

= Avp+ V (y)

µ
−A 1

V (y)
vp+ ρ0T0RCv

1

V (y)
ψv (p, xv)

¶
− k2v

= ρ0T0RCvψv (p, xv)− k2v,



we can rewrite the dynamics of the (v, p)—subsystem in the new coordinates as

ξ̇1 =
A

M
p (y, ξ2)−

A

M
P0 − 1

M
fl (y)− 1

M
ff (v (y, ξ1) , z)− k1v (y, ξ1)

ξ̇2 = ρ0T0RCvψv (p (y, ξ2) , xv)− k2v (y, ξ1) (8.76)

where v and p are now functions of y, and the new states ξ1 and ξ2, given by (8.75)
according to

v (y, ξ1) = ξ1 + k1y

p (y, ξ2) =
1

V (y)
(ξ2 + k2y) . (8.77)

Writing −k1v and −k2v in (8.76) in terms of ξ1 and ξ2, gives

ξ̇1 = −k1ξ1 − k21y +
A

M
p (y, ξ2)−

A

M
P0 − 1

M
fl (y)− 1

M
ff (v (y, ξ1) , z)

ξ̇2 = −k2ξ1 − k1k2y + ρ0T0RCvψv (p (y, ξ2) , xv) , (8.78)

where we notice that the change of coordinates (8.75) has introduced the stabilizing
feedback terms −k1ξ1 and k2ξ1 in the dynamics of the (ξ1, ξ2)—subsystem. Estimate
ξ1 and ξ2 using the observer

.

ξ̂1 = −k1ξ̂1 − k21y +
A

M
p
³
y, ξ̂2

´
− A

M
P0 − 1

M
fl (y)− 1

M
ff
³
v
³
y, ξ̂1

´
, z
´

.

ξ̂2 = −k2ξ̂1 − k1k2y + ρ0T0RCvψv

³
p
³
y, ξ̂2

´
, xv
´
, (8.79)

and let estimates of v and p be given by

v̂
³
y, ξ̂1

´
= ξ̂1 + k1y

p̂
³
y, ξ̂2

´
=

1

V (y)

³
ξ̂2 + k2y

´
. (8.80)

First note that the estimation errors ṽ , v − v̂ and p̃ , p − p̂ are given by the
observer errors ξ̃1 , ξ1 − ξ̂1 and ξ̃2 , ξ2 − ξ̂2 according to

ṽ , v − v̂ = ξ̃1

p̃ , p− p̂ =
1

V (y)
ξ̃2.

Now assume that, in addition to the measured output y, that also the friction ff
and the flow function ψv are known. Then, ff and ψv are cancelled, and it is
straightforward to show that the estimation error is governed by the time-varying
linear dynamics " .

ξ̃1.
ξ̃2

#
=

∙−k1 A
M

1
V (y)

−k2 0

¸ ∙
ξ̃1
ξ̃2

¸
, (8.81)

which can be shown to be exponentially stable for y ∈ [ylb, yub] with k1, k2 > 0.
Motivated by this result, we propose the following reduced-order observer.
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Reduced-order observer

A reduced-order observer for the system (8.72) is given by

.

ξ̂1 =
A

M
p̂
³
y, ξ̂2

´
− A

M
P0 − 1

M
fl (y)− 1

M
ff
³
v̂(y, ξ̂1), ẑ

´
− k1 · v̂(y, ξ̂1)

.

ξ̂2 = ρ0T0RCv · ψv

³
p̂(y, ξ̂2), x̂v

´
− k2 · v̂(y, ξ̂1)

.

x̂v = − 1
τ v
x̂v +

1

τ v
u (8.82)

.

ẑ = v̂ − Kz

FC
|v̂|s ẑ,

where v̂ and p̂ are functions of y, ξ̂1, and ξ̂2, given by

v̂(y, ξ̂1) = ξ̂1 + k1y

p̂(y, ξ̂2) =
1

V (y)

³
ξ̂2 + k2y

´
. (8.83)

Here, the observer states are denoted by ρ̂ , [ξ̂1, ξ̂2, x̂v, ẑ]
T , the corresponding es-

timates of the unmeasured states by x̂u , [v̂, p̂, x̂v, ẑ]T , and the actuator states by
x , [y,xu]T = [y, v, p, xv, z]T .
Like the full-order observer, the reduced-order observer (8.82)—(8.83) combines

output-injection based estimation of the main states v and p, with open-loop estima-
tion of the remaining states xv and z. Partitioning the observer states according to
ρ̂ = [ξ̂, ζ̂]T , where ξ̂ , [ξ̂1, ξ̂2]T denotes the output-corrected states, and ζ̂ , [x̂v, ẑ]T
denotes the open-loop estimated states, the observer (8.63) can be compactly ex-
pressed in the form

.

ξ̂ = fξ (x̂u, y)− kv̂
.

ζ̂ = fζ (x̂u, y, u) ,
(8.84)

where k , [k1, k2]
T denotes the observer feedback gains, x̂u , [v̂, p̂A, x̂v, ẑ]

T the
estimated unmeasured states, and where the vectors describing the system dynamics
are given by

fξ (x̂u, y) =

∙
fξ1
fξ2

¸
,
∙
A
M
p̂− A

M
P0 − 1

M
fl (y)− 1

M
ff (v̂, ẑ)

ρ0T0RCvψv (p̂, x̂v)

¸
(8.85)

fζ (x̂u, y, uv) =

∙
fζ1
fζ2

¸
,
∙− 1

τv
x̂v +

1
τv
u

v̂ − Kz

FC
|v̂|s ẑ

¸
. (8.86)

8.4.3 Stability and convergence properties

The stability and convergence properties of the reduced-order observer (8.82) are
qualitatively identical to that of the full-order observer (8.63).



With the introduced change of coordinates (8.75), the dynamics of the system
(8.72) can be represented by

ẏ = ξ1 + k1y

ξ̇1 =
A

M
p− A

M
P0 − 1

M
fl (y)− 1

M
ff (v, z)− k1v

ξ̇2 = ρ0T0RCvψv (p, xv)− k2v (8.87)

ẋv = − 1
τ v
xv +

1

τ v
u

ż = v − Kz

FC
|v|s z,

where

v (y, ξ1) = ξ1 + k1y (8.88)

p (y, ξ2) =
1

V (y)
(ξ2 + k2y) . (8.89)

Observer errors dynamics

The stability and convergence properties of the observer (8.82) is determined by
analyzing the dynamics of the resulting observer errors

ξ̃1 , ξ1 − ξ̂1
ξ̃2 , ξ2 − ξ̂2
x̃v , xv − x̂v (8.90)

z̃ , z − ẑ,

where the resulting velocity and pressure errors are given by the observer errors as

ṽ = ξ̃1 (8.91)

p̃ =
1

V (y)
ξ̃2. (8.92)

The first step of the analysis is to express the dynamics of the observer error in
a suitable form. Since the details of these steps were illustrated for the open-loop
observer, we shorten the presentation here, illustrating only the main steps.
By differentiation, we can show that the observer errors are governed by the

dynamics

M
.

ξ̃1 = −Mk1ṽ +Ap̃− [ff (v, z)− ff (v̂, ẑ)]
.

ξ̃2 = −k2ṽ + ρ0T0RCv [ψv (p, xv)− ψv (p̂, x̂v)]
.

z̃ = gz (v, z)− gz (v̂, ẑ) (8.93)

τ v
.

x̃v = −x̃v,
where the friction error can be written
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ff (v, z)− ff (v̂, ẑ) = Dvṽ +Kz z̃ +Dż

.

z̃,

and the pre-sliding friction dynamics is given by the function

gz (v, z) = v − Kz

FC
|v|s z.

Using the Mean Value Theorem (Lemma 27), we recall that the errors in the pre-
sliding dynamics, and the nonlinear flow function, can be written as linear in its
error variables according to

.

z̃ = gz (v, z)− gz (v̂, ẑ) =
∂gz (v̄, z̄)

∂v
ṽ +

∂gz (v̄, z̄)

∂z
z̃ (8.94)

ψv (p, xv)− ψv (p̂, x̂v) =
∂ψv (p̄, x̄v)

∂p
p̃+

∂ψv (p̄, x̄v)

∂xv
x̃v (8.95)

with the gradients evaluated at time-varying points constrained to

v̄ ∈ Sv , {min (v, v̂) ,max (v, v̂)}
p̄ ∈ Sp , {min (p, p̂) ,max (p, p̂)}
z̄ ∈ Sz , {min (z, ẑ) ,max (z, ẑ)} (8.96)

x̄v ∈ Sxv , {min (xv, x̂v) ,max (xv, x̂v)}.
Using these results, and substituting

ṽ = ξ̃1

p̃ =
1

V (y)
ξ̃2,

the complete error dynamics can be expressed in the linear, time-varying form

M
.

ξ̃1 = −
∙
Mk1 +Dv +Dż

∂gz (v̄, z̄)

∂v

¸
ξ̃1 +

A

V (y)
ξ̃2 −

∙
Kz +Dż

∂gz (v̄, z̄)

∂z

¸
z̃

.

ξ̃2 = −k2ξ̃1 + ρ0T0RCv
∂ψv (p̄, x̄v)

∂p

1

V (y)
ξ̃2 + ρ0T0RCv

∂ψv (p̄, x̄v)

∂xv
x̃v (8.97)

.

z̃ =
∂gz (v̄, z̄)

∂v
ṽ +

∂gz (v̄, z̄)

∂z
z̃

τ v
.

x̃v = −x̃v.
Denoting

σ1 (t) , ∂gz (v̄, z̄)

∂v
(8.98)

σ2 (t) , −∂gz (v̄, z̄)
∂z

(8.99)

α (t) , −ρ0T0RCv
∂ψv (p̄, x̄v)

∂p

1

V (y)
(8.100)

β (t) , ρ0T0RCv
∂ψv (p̄, x̄v)

∂xv
, (8.101)



the error dynamics can be expressed as

M
.

ξ̃1 = − [Mk1 +Dv +Dżσ1 (t)] ξ̃1 +
A

V (y)
ξ̃2 − [Kz +Dżσ2 (t)] z̃

.

ξ̃2 = −k2ξ̃1 − α (t)
1

V (y)
ξ̃2 + β (t) x̃v (8.102)

.

z̃ = σ1 (t) ṽ − σ2 (t) z̃

τ v
.

x̃v = −x̃v,
where the gradients of the friction dynamics satisfy,

σ1 (t) , ∂gz (v̄, z̄)

∂v
= 1− Kz

FC
sgns (v̄) z̄

∈ h0, 2i (8.103)

σ2 (t) , −∂gz (v̄, z̄)
∂z

=
Kz

FC
|v̄|s

∈
∙
Kz

FC
ε0,

Kz

FC
vub

¸
, (8.104)

and the flow gradients

α (t) , −ρ0T0RCv
∂ψv (p̄, x̄v)

∂p

1

V (y)
≥ 0 (8.105)

β (t) , ρ0T0RCv
∂ψv (p̄, x̄v)

∂xv
≥ 0, (8.106)

provided both the actual and estimated states remain in the region of validity of the
model.
The structure of the error dynamics becomes more apparent by expressing the

system in the matrix form⎡⎢⎢⎢⎢⎣
M

.

ξ̃1.

ξ̃2.
z̃

τ v
.

x̃v

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎣
− [Mk1 +Dv +Dżσ1 (t)]

A
V (y)

− [Kz −Dżσ2 (t)] 0

−k2 −α (t) 0 β (t)
σ1 (t) 0 −σ2 (t) 0
0 0 0 −1

⎤⎥⎥⎦
⎡⎢⎢⎣

ξ̃1
ξ̃2
z̃
x̃v

⎤⎥⎥⎦ .
(8.107)

Knowing that all the time-varying coefficients are non-negative, the structure of
the error dynamics reveals the stability properties of the system: Briefly states,
when the time-varying coefficients −α (t), and −σ2 (t) are sufficiently large, the
error system will have a dominating negative diagonal that ensures convergence of
the complete error dynamics to zero, otherwise, the error system is stabilized by the
diagonal damping term − [Mk1 +Dv +Dżσ1 (t)] ξ̃1, with the ξ̃2 error stabilized by
the skew-symmetrical-like connection between the cross-terms−k2ξ̃1 andA/V (y) ξ̃2,
and the z̃ error by σ1 (t) ξ̃1 and − [Kz −Dżσ2 (t)] z̃. Since β (t) is bounded, the

resulting
³
ξ̃1, ξ̃2, z̃

´
-subsystem will be ISS with respect to the x̃v-subsystem, which

is exponentially stable. Consequently, the complete
³
ξ̃1, ξ̃2, z̃, x̃v

´
-system must be

asymptotically stable.
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8.4.4 Observer gains

Consider the simplified time-varying linear dynamics (8.81) of the
³
ξ̃1, ξ̃2

´
-subsystem

from the development of the reduced-order observer. We extract the time-invariant
dynamics " .

ṽ
.

p̃

#
=

∙−k1 A
M

1
V (yub)

−k2 0

¸ ∙
ṽ
p̃

¸
,

which we use to facilitate the tuning of observer gains k , [k1, k2]T for the nonlinear
observer (8.82). This linear system is compactly written as

.

ξ̃= Aoξ̃, (8.108)

and has the characteristic polynomial

|sI−Ao| = s2 + k1s+ k2
A

MV (yub)
. (8.109)

The observer gains are chosen such that the constant observer matrix is Hurwitz,
i.e., so that Ao satisfies the Lyapunov equation AoPo + PoA

T
o = −Q for some

Po = P
T
o > 0 and Q > 0, which is satisfied for ∀ k1, k2 > 0.

We choose the observer gains k1 and k2 by placing multiple poles at s = −λo < 0,
which gives a critically damped response in the output ξ̃1 = ṽ. The dynamics of the
linear system (8.67) is then governed by the characteristic equation

|sI−Ao| = (s+ λo)
2 = s2 + 2λos+ λ2o = 0. (8.110)

Comparing the coefficients of the two polynomials (8.109) and (8.110), the observer
gains can be expressed as functions of λo:

k1 = 2λo
k2 =

MV (yub)
A

λ2o.
(8.111)

With the observer feedback gains determined according to (8.111), we refer to the
parameter λo > 0 as the design bandwidth of the nonlinear observer (8.82).

8.4.5 Simulation results

The simulation results are qualitatively same as the results obtained using the full-
order observer, plotted in Figures 8.4 (page 132), and is therefore omitted.

8.5 Robust re-design

In this section, we introduce a simple robust modification of the observers by uti-
lizing smooth saturation to constrain the observer states to the feasible region X0.
Moreover, we show that we can improve the initial transient performance of the
observer by using discontinuous projection of the unsaturated observer states. The



robust re-design is developed for the full-order observer (8.63), and then applied also
for the reduced-order observer (8.82).
We first introduce the smooth saturation operator, followed by presenting the

modified observer with saturated observer states. Next, we introduce the discontin-
uous projection operator, which we subsequently apply for discontinuous projection
of observer states. Finally, we illustrate by simulations some robustness properties
resulting from the introduced modifications.

8.5.1 Smooth saturation of observer estimates

In normal operation of the actuator, the states will stay within some compact region
in state-space, which means that each state will be bounded. With the knowledge
about some upper and lower bounds on each system state in normal operation, given
by

xub , [yub, vub, pAub, xv ub,pB ub, zub]
T

xlb , [ylb, vlb, pA lb, xv lb,pB lb, zlb]
T ,

an estimate of the region of normal operation is given by

X , {∀x ∈ X0: xlb ≤ x ≤ xub} , (8.112)

where X0 is the set containing all physically feasible states of the system (8.1).
Since we are primarily interested in tracking control of the actuator in normal

operation, it is sufficient to require that the observer provides asymptotically con-
verging estimates as long as the actuator states remain within X . In addition, it
is required that the observer states remain bounded (or constrained to some set
containing X ) if the actuator in particular situations exceed its normal operating
range.
We may achieve this by projecting the observer states to the set X using pro-

jection (see e.g. [33, 52]), however, this makes the resulting observer dynamics
incompatible with an observer backstepping design because the projection operator
introduces a non-differentiability in the observer (see e.g. [32]). Motivated by the use
of smooth parameter saturation in nonlinear adaptive control (see e.g. [55,95,105]),
we use smooth saturation of the observer estimates to constrain the observer dy-
namics to the set X , which achieves global stability properties of the observer.
We define the smooth saturation operator2

π (x̂) , [π1 (x̂1) , π2 (x̂2) , · · · , π6 (x̂6)]T , (8.113)

where
πi (x̂i) , π (x̂i, xi,lb, xi,ub, επ,i) , i = 1, · · · , 6, (8.114)

utilizing the scalar saturation function π (·) defined by (7.5), page 108, where xi,lb,
xi,ub, επ,i, i = 1, · · · , 6, are the lower and upper bounds and smoothing widths,

2Defined here for our 6th-order system at hand, however, the generalization to nth-order systems
is trivial.



CHAPTER 8. NONLINEAR OBSERVER DESIGN 141

respectively. The saturation function π (x̂) defined in this way, is decentralized3,
where each πi (x̂i) is smooth, nondecreasing, and satisfies the following properties,
as stated in Chapter 7:

P7.1) πi (x̂i) ≡ x̂i ,∀x̂i ∈ [xi,lb + επ,i, xi,ub − επ,i]
P7.2) πi (x̂i) ∈ [xi,lb, xi,ub] ,∀x̂i ∈ R.

For a compact notation in the following, we denote the saturated estimates by
x̂π = [ŷπ, x̂u,π] , π (x̂), componentwise by

x̂π =

⎡⎢⎢⎢⎢⎢⎢⎣
x̂1,π
x̂2,π
x̂3,π
x̂4,π
x̂5,π
x̂6,π

⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎣
ŷπ
v̂π
p̂A,π
x̂v,π
p̂B,π
ẑπ

⎤⎥⎥⎥⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎢⎢⎢⎣
π1 (ŷ)
π2 (v̂)
π3 (p̂A)
π4 (x̂v)
π5 (p̂B)
π6 (ẑ)

⎤⎥⎥⎥⎥⎥⎥⎦ .

A robust redesign of the full-order observer (8.64) is obtained simply by saturat-
ing the observer estimates in the observer dynamics. Utilizing the above introduced
smooth saturation, a robust observer for the electro-pneumatic actuator is given by

.

ξ̂= kỹπ + fξ (x̂π, y)
.

ζ̂= f ζ (x̂π, y, u) ,
(8.115)

where ỹπ , y − ŷπ = y − π1 (ŷ) is the saturated output estimation error, and the
system dynamics is given by

fξ (x̂π, y) =

⎡⎣fξ1fξ2
fξ3

⎤⎦ ,
⎡⎣ v̂π
A0P0
M

+ AA

M
p̂A,π − AB

M
p̂B,π − 1

M
fl (y)− 1

M
ff (v̂π, ẑπ)

−AA
1

VA(y)
v̂πp̂A,π + ρ0T0RCv

1
VA(y)

ψv (p̂A,π, x̂v,π)

⎤⎦(8.116)

fζ (x̂π, y, uv) =

⎡⎣fζ1fζ2
fζ3

⎤⎦ ,
⎡⎣ − 1

τv
x̂v,π +

1
τv
u

AB
1

VB(y)
v̂πp̂B,π + ρ0T0RCr

1
VB(y)

ψr (p̂B,π)

−Kz

FC
|v̂π|s ẑπ + v̂π

⎤⎦ . (8.117)

Figure 8.5, the re-designed full-order observer (8.115) is visualized by a block
diagram.

Remark 32 Note that the introduced saturation of the estimated friction deflection
state ẑ is superfluous when ẑ (0) ∈ [zlb, zub] ⊂ [−Zmax, Zmax] because the finite deflec-
tion property of the friction model (see proof of Proposition 11, page 54), guarantees
that ẑ (t) ∈ [−Zmax, Zmax] for ∀t ≥ 0.

3The ith component of π (x̂) depends only on the ith component of x̂.
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πŷ

Figure 8.5: Block diagram of the full-order observer utilizing smooth saturation
of state estimates

8.5.2 Discontinuous projection of observer states

Though the redesigned observer (8.115) ensures global stability properties of the
observer, the actual (non-saturated) observer states ξ̂ and ζ̂ (see the block diagram in
Figure 8.5) are unconstrained, and may move outside the region of normal operation
X during initial transients of the observer, while the saturated estimates ξ̂π and ζ̂π
are kept at the boundary of X . By using projection to stop integration of ξ̂ and
ζ̂ for corresponding estimates ξ̂π and ζ̂π which are fully saturated, the observer
states ξ̂ and ζ̂ are constrained to some small boundary layer around X , and the
transient performance of the observer can be significantly improved. Moreover,
since the projection is then only active for estimates which are fully saturated, the
smoothness of the saturated estimates ξ̂π and ζ̂π is preserved. Hence, a control
law can be designed by a backstepping approach using the observer with saturated
estimates, and can be implemented using the observer with saturation and projection
of the unsaturated states, without introducing discontinuities in the control input,
thus, preserving the stability properties of the closed-loop system. See Chapter 9.
To introduce the projection operator, first note that we may write the observer

dynamics in the general form
.

x̂= f (x̂, y, u) , (8.118)

where f (x̂, y, u) , [f1, f2, · · · , f6]T ∈ R6. We define the discontinuous projection
operator as

Px (f , x̂) , [Px1 (f1, x̂1) ,Px2 (f2, x̂2) , · · · ,Px6 (f6, x̂6)]
T , (8.119)

where

Pxi (fi, x̂i) , P (fi, x̂i, xi,lb − επ,i, xi,ub + επ,i) , i = 1, · · · , 6, (8.120)
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utilizing the scalar projection P (f, x, xlb, xub) defined by (7.10), page 110. Defined
in this way, the discontinuous projection (8.119) constrains the estimates to the
slightly enlarged estimate of the region of normal operation, given by

Xε+π
, {∀x ∈ X0: xlb − επ ≤ x ≤ xub + επ} , (8.121)

which is the union of X and a small boundary layer around it, determined by the
smoothing widths επ , [επ1, · · · , επ6]T of the smooth saturation function (8.113).
Like the saturation function π (x̂), the vectorized projection operator Px(f , x̂) is

decentralized, and each scalar projection Pi (fi, x̂i), i = 1, · · · , 6 satisfies

P7.3) Pi (fi, x̂i) ≡ fi ,∀x̂i ∈ hxi,lb − επ,i, xi,ub + επ,ii .

Letting X̊ε+π
denote the interior of Xε+π

, Property P7.3 means that for ∀x̂ ∈X̊ε+π
the

projection remains inactive, i.e., Px (f , x̂) ≡ f . Furthermore, with initial estimate
x̂ (0) ∈ Xε+π

, the projection
.

x̂ = Px(f , x̂) guarantees

P7.4) x̂ ∈ Xε+π
= {xlb − επ,xub + επ} , ∀t ≥ 0.

8.5.3 Robust full-order observer

The redesigned observer utilizing smooth saturation combined with discontinuous
projection can compactly be expressed as

.

ξ̂ = Pξ
³
kỹπ + fξ (x̂π, y) , ξ̂

´
.

ζ̂ = Pζ
³
fζ (x̂π, y, u) , ζ̂

´
,

(8.122)

where x̂π = π (x̂) = π([ξ̂, ζ̂]
T
) is the saturated observer state vector with π (·) de-

fined by (8.113, and where the discontinuous projection operator, defined by (8.119),
is partitioned according to Px (f , x̂) , [Pξ(kỹπ + fξ, ξ̂),Pξ(fζ , ξ̂)]T .
Figure 8.6 illustrates by a block diagram, the re-designed full-order observer

(8.122).

Simulation results

In this section we illustrate the improved robustness and convergence properties of
the redesigned full-order observer with smooth saturation (8.115), and the observer
with combined saturation and projection (8.122), compared to that of the nominal
Luenberger-type observer (8.63).
The parameters of the electro-pneumatic system (8.1) are the same as in the

preceding simulations. The observer is implemented with upper and lower bounds,
xub and xlb, and smoothing width επ, set according to
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πŷP(·)

P(·)

Figure 8.6: Block diagram of the re-designed full-order observer utilizing smooth
saturation and discontinuous projection of the unsaturated observer states.

xub =
£
15mm 200mm/ s 995 kPa 1 150 kPa 0.5mm

¤T
xlb =

£−5mm −200mm/ s 105 kPa −1 50 kPa −0.5mm¤T
επ =

£
0.1mm 1mm/ s 1 kPa 0.01 1 kPa 0.001mm

¤T
.

We compute the feedback gains of the observer according to (8.71) using design
bandwidth λo = 100:

λo = 100 =⇒ k =

⎡⎣k1k2
k3

⎤⎦ =
⎡⎣ 50
16 · 103
1.2 · 103

⎤⎦ mm/mm
mm/ (mms)
kPa/mm.

The performance of the observer is illustrated for the simulation plotted in Fig-
ure 8.1, where the actuator is subjected to an open-loop square wave control input.
To demonstrate the global stability of the modified observer, we simply set all ob-
server estimates initially equal to zero, giving

x̂ (0) = 0

⇓
x̃ (0) =

£
5mm 0mm/ s 400 kPa 1 100 kPa 0mm

¤T
x̃π (0) =

£
5mm 0mm/ s 295 kPa 1 50 kPa 0mm

¤T
.

Notice that this places the initial estimate of pressure pA outside the region of
validity X0 of the model, since pA,min = P0 = 100 kPa, while the initial estimate of
pressure pB lies outside the region of normal operation X .
Figure 8.7 plots the performance of the observer with saturation (8.115). In the

figure, also the unsaturated observer states are plotted with dash-dot lines (— · —),
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without legend. When the unsaturated estimates in x̂ remain well within X , they
are identical to the saturated estimates in x̂π, however, during the initial transient
period, the observer states v̂, p̂A and p̂B also operates outside of X , while their
saturated counterparts v̂π, p̂A,π and p̂B,π remain inside X due to the saturation. We
see that the velocity estimate v̂ experiences large transient peaks before eventually
converging to the actual velocity v. Notice that both the estimated pressures p̂A and
p̂B, operates outside of the feasibility region X0 of the model (8.1) during the initial
transients. This illustrates the global stability of the redesigned observer (8.115),
which is due to the saturation.
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Figure 8.7: Illustration of the global stability properties of the full-order observer
with saturation of estimates, but without discontinuous projection. The unsaturated
estimates are plotted with dash-dot line (−.−).

Figure 8.8 plots the performance of the observer (8.122) with combined satura-
tion and projection. To illustrate the effect of projection, we simulated the observer
with the same conditions as in the simulation plotted in Figure 8.7. The simulation
illustrates a dramatical improvement in initial transient performance of the observer
utilizing projection of observer states.
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Figure 8.8: Transient performance improvement with discontinuous projection of
observer states.
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8.5.4 Robust reduced-order observer

In this section we describe the robust redesign of the reduced-order observer (8.82)
using smooth saturation and discontinuous projection, as described for the full-order
observer in previous section.
Since the friction deflection estimate ẑ is bounded according to ẑ (t) ∈ [−Zmax, Zmax]

for ∀ẑ (0) ∈ [−Zmax, Zmax], saturation (and projection) of ẑ becomes superfluous.
Furthermore, by constraining the control input according to u (t) ∈ [−1, 1], the es-
timate x̂v of the valve opening, becomes bounded according to x̂v (t) ∈ [−1, 1] for
∀x̂v (0) ∈ [−1, 1]. We utilize this knowledge to simplify the redesign of the reduced-
order observer, by employing saturation and projection only for the estimation of
the main states v and p.
The reduced-order observer (8.82), redesigned with saturation of estimates and

projection of states, can be expressed as

.

ξ̂
P

1 = P
µ .

ξ̂1, v̂
P
π (y, ξ̂

P

1 ), v̂lb + επ,2, v̂ub − επ,2

¶
.
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P
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µ .

ξ̂2, p̂
P
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P
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¶
.

x̂v = − 1
τ v
x̂v +

1

τ v
πu (u) (8.123)
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.
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A

M
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ff
¡
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P
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ξ̂2 = ρ0T0RCv · ψv

¡
p̂Pπ , x̂v

¢− k2v̂
P
π , (8.124)

and where the estimates v̂Pπ and p̂Pπ are saturated functions of y, and the projected

observer states ξ̂
P

1 and ξ̂
P

2 , given according to

v̂Pπ (y, ξ̂
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1 ) , πv
³
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´
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³
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´¶

. (8.125)

In the above equations, the saturation functions πu (·), πv (·) and πp (·) are defined
from (7.5) according to

πu (u) , π (u,−1, 1, επ,u)
πv (v̂) , π (v̂, v̂lb, v̂ub, επ,2)

πp (p̂) , π (p̂, p̂lb, p̂ub, επ,3) ,

with the estimated lower and upper bounds on the velocity v and pressure p given
by v̂lb, v̂ub, p̂lb and p̂ub, respectively, and the parameters επ,u, επ,2 and επ,3 are the



smoothing widths of the saturation functions. The scalar projection P (f, x, xlb, xub)
is defined by (7.10), page 110.
For the redesigned reduced-order observer given by (8.123)—(8.125), the estimates

xPu,π , [v̂Pπ , p̂Pπ , x̂v, ẑ]T are constrained to the slightly enlarged region of normal op-
eration,

Xε+π
, {∀x ∈ X0: xlb − επ ≤ x ≤ xub + επ} ,

which means that since Xε+π
is a subset of the region of feasibility X0, the stability

properties hold globally.

8.6 Experimental results

The redesigned robust full-order observer with saturation and projection of observer
states, given by (8.122), was implemented and tested experimentally on the test
rig described in Chapter 2. Results for the reduced-order observer are qualitatively
similar, and the reduced-order observer is validated experimentally in Chapter 9 in
closed-loop.
The observer gains are computed according to (8.71) on page 131, and the fol-

lowing parameter sets were used to illustrate the performance of the observer:

λo = 0 : k1 = 10mm/mm k2 = 0mm/ (mms) k3 = 0kPa/mm
λo = 100 : k1 = 50mm/mm k2 = 15 · 103mm/ (mms) k3 = 1.0 · 103 kPa/mm
λo = 300 : k1 = 650mm/mm k2 = 100 · 103mm/ (mms) k3 = 30 · 103 kPa/mm
λo = 400 : k1 = 950mm/mm k2 = 240 · 103mm/ (mms) k3 = 75 · 103 kPa/mm.
For the given numerical solver algorithm and sample time, the practical range of
observer gains are λo ∈ [0, 300]T , while for λo ≥ 400 the observer becomes sensitive
to measurement noise. In all plotted responses, we illustrate the initial convergence
of the observer using the initial estimates

x̂ (0) =
£
0mm 0mm/ s 100 kPa 0 100 kPa 0mm

¤T
.

Like in the preceding simulations, the observer was implemented with the model
parameters given by Table 6.1 on page 103, while the parameters θl of the clutch
load characteristic were tuned manually to approximately fit the clutch spring on
the current test rig, giving

θl =
£ −4.0 −4.0 −4.0 −4.0 −4.0 −4.0 −4.0 −4.0 −4.0 −4.0
4.0 6.1 6.3 6.3 6.2 6.1 6.1 6.1 6.2 6.4

¤T · 103N.
Remark 33 To make the observer design realistic with respect to implementation
in an actual application, we have implemented the observer with parameter estimates
(except for the load characteristic), based purely on a priori knowledge of the actuator
and clutch. That is, we have relative accurate estimates of the geometric parameters
of the actuator (A0, AA, VA0, AB, VB0), fairly good estimates of the parameters
of the valve (Cv, bv, Cr, br, τ v, Kv, Uv0) and the physical pressures (P0, PS), but
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only rough estimates of the friction parameters (Dv, FC, Kz, Dż) and the lumped
mass of the actuator, release bearing and clutch (M). The parameters of the load
characteristic were tuned manually to fit the current application. This was required
in order to obtain good estimates of the unmeasured states because of the strong
influence of the load characteristic on the actuator dynamics.

8.6.1 General observer performance

We illustrate the general estimation performance of the observer using the sine wave
input

uv = Uv0 + Uv1 sin
¡
T−1t

¢
,

with bias Uv0 = −1.5V, amplitude Uv1 = 3.5V, and period T = 1.0 s. This pro-
duces a steady periodic response of the actuator in the range y (t) ∈ [2, 7]mm, which
encompasses the grip point of the clutch and also the region with the strongest
nonlinearity in the load characteristic (see Figure 3.1, page 45). Since the plot-
ted experiment includes operation in the grip point of the clutch, it illustrates the
performance of the observer in the region where good observer performance is the
most important. Figures 8.9—8.11, illustrate the performance of the observer with
increasing observer gains.
In Figure 8.9, the observer is implemented with λo = 0, where practically no

feedback correction is used in the observer, only a low correction in the output ŷ to
avoid divergence due to the unstable integrator of the position. Hence, the figure
can be taken as the performance of a pure simulation of the model (8.1), which also
can be taken as a good indication of the performance of the open-loop observer (8.4).
Like the simulations, the experiment demonstrates the strong stability of the actu-
ator, seen from the fast convergence of the estimates. The figure also reveals model
errors for small actuator positions and low velocities, which manifest themselves as
an offset in the estimated position and poor velocity estimates. These errors are
most likely due to poorly tuned parameters of the load characteristic in this region4,
and poor estimates of the parameters of the friction model.
Figure 8.10 demonstrates the disturbance attenuating effect of the output-injection

terms in the observer, where we see that with a moderate observer bandwidth of
λo = 100, the observer provides estimates with good accuracy.
Figure 8.11, demonstrates the observer performance with a relatively high ob-

server design bandwidth of λo = 300. The observer provides highly accurate esti-
mates of the position and velocity, and also the pressure of chamber B, while there is
a slight offset in the estimated pressure in chamber A. This fortifies the assumption
of parameter errors in the load characteristic and friction model.
With too high observer gains, the observer is prone to amplify measurement

noise. This undesirable property is demonstrated in Figure 8.12 with observer design
bandwidth λo = 400.

4The parameters of the load characteristic were tuned manually, using the measured pressure
force fp = A0P0 +AApA −ABpB as an indication of goodness of fit. Consequently, the estimates
are only approximate, and can not rival the online estimation of the adaptive controller.
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Figure 8.9: Measured and estimated observer states with practically no feedback
correction in the observer (λo = 0).
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Figure 8.10: Measured and estimated observer states with observer feedback gains
according to an average design bandwidth λo = 100.
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Figure 8.11: Measured and estimated observer states with observer feedback gains
according to a relatively high design bandwidth λo = 300.
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Figure 8.12: Noise amplification in the estimates for high observer gain (λo = 400).



8.6.2 Disturbance attenuation

In the following two subsections illustrate the performance of the observer when
subjected to disturbances. We consider two types of disturbances: parametric errors
in the modeled clutch load characteristic, and the excitation of unmodeled dynamics
in the proportional valve and supply pressure.

Detuned parameters of the load characteristic

Figures 8.13 and 8.14 illustrate the performance of the observer with the parameters
of the load characteristic corresponding to the load characteristic of a worn clutch.
Figure 8.13 illustrates the significance of an accurate load characteristic for good

performance of the observer. With detuned parameters of the load characteristic, the
observer without feedback correction (λo = 0) provides highly inaccurate estimates
of all states. The poor response of the detuned observer, emphasizes the usefulness
of adaptation of the load characteristic in order to obtain good performance of the
observer.
Figure 8.14, comparing with Figure 8.13, illustrates that the performance of the

observer is improved by increasing the observer gain. In the figure, the performance
for λo = 100 is plotted. The output is approximately recovered, while the estimated
velocity is improved, but still with significant estimation errors. Further increasing
the observer bandwidth (λo), increases the accuracy of the estimated position and
velocity, and also the pressure of chamber B. However, due to the errors in the load
characteristic, the estimated pressure of chamber A is impossible to improve with
increasing gain.
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Figure 8.13: Observer performance for λo = 0 with a detuned load characteristic
corresponding to a worn clutch.
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Figure 8.14: Observer performance for λo = 100 with a detuned load characteristic.

Unmodeled dynamics

High-frequency control inputs with high amplitudes tend to excite unmodeled dy-
namics of the proportional valve. In addition, high-amplitude control inputs result
in significant pressure drops in the supply pressure (modeled as a constant pressure,
given by PS), which also can be viewed as unmodeled dynamics. This undesirable
phenomena is clearly exhibited for the square wave valve input

uv = Uv0 + Uv1 sgn
¡
sin
¡
T−1t

¢¢
,

with bias Uv0 = −2.5V, amplitude Uv1 = 4.5V, and period T = 1.0 s. This high-
amplitude input produces a steady periodic response of the actuator in the range
y (t) ∈ [1, 14]mm, covering the entire region of the actuator in which tracking con-
trol is required. Principally, the step changes in the square wave represent control
inputs with infinitely high frequency. The square wave input and the corresponding
pressure drop in the supply pressure is plotted in Figure 8.15.
The response of the observer for λo = 0 is plotted in Figure 8.16. The excitation

of the unmodeled dynamics is apparent by viewing the pressure response immedi-
ately after a step change in the input. The resulting pressure peak is caused by
an overshoot in the positioning of the valve spool, which occur for high-amplitude
step inputs. This overshooting behavior of the valve assumably due to a high pro-
portional (and possibly derivative) feedback in the positioning loop of the spool,
combined with slow integral action.
Figure 8.17 illustrates the disturbance attenuating effect of feedback correction in

the observer for moderate gains (λo = 100). Increasing the gain, further improves es-
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Figure 8.15: The square wave control input and the corresponding drop in the
supply pressure due to high air flow.

timates of the position, velocity and pressure of chamber B. However, the estimated
pressure of chamber A can not be further improved by increased observer gain be-
cause the error still remaining in Figure 8.17 is caused by errors in the open-loop
estimate of the spool position xv.
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Figure 8.16: Observer performance with λo = 0, illustrating the deterioriating ef-
fect of excitation of unmodelled dynamics with a high-amplitude square wave control
input.

8.7 Summary

In this chapter we have analyzed the problem of nonlinear observer design for esti-
mating the unmeasured states of the electro-pneumatic actuator, in the case when
only the position y is measured. We first analyze the use of the model as an open-
loop nonlinear observer for the unmeasured states. The stability properties of this
observer, thus also the dynamics of the unmeasured states, is shown to be asymp-
totically stable. This again establishes a detectability property of the system, and
shows that the pneumatic actuator has some inherent stability properties which
enables the design of simple nonlinear observers.
Based on these results, two simple nonlinear observers for the electro-pneumatic

clutch actuator are proposed, both compatible with output-feedback control by
an observer-based backstepping approach: a full-order observer and a simplified
reduced-order observer. Both observers combine closed-loop estimation using lin-
ear output-injection of the main states, with open-loop estimation of the remaining
states. The observers are asymptotically stable and robust to bounded disturbances,
as long as the estimated actuator states remain within the region of validity of the
model.
As a robust redesign of the observers, smooth saturation of the state estimates

is introduced to constrain the observer dynamics to the feasible region of the state-
space, by which we are able to guarantee global uniform stability properties even if
the unsaturated observer states enter the non-feasible region in state-space during
initial transients. The differentiability of the introduced smooth saturation ensures
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Figure 8.17: Observer performance for λo = 100, illustrating the disturbance
attenuating effect of the observer when subjected to excitation of unmodeled valve
and supply pressure dynamics.

compatibility with observer backstepping. We further improve initial transients
of the observer by projecting its non-saturated observer states by discontinuous
projection such that the discontinuous projection is only active for estimates which
are fully saturated, thus, preserving the smoothness of the saturated estimates.
Hence, a control law can be designed by a backstepping approach using the observer
with saturated estimates, and then implemented using the observer with combined
saturation and projection, without introducing discontinuities in the control input,
thus, preserving the stability properties of the closed-loop system.
The performance of the observers are validated by simulations, and experimen-

tally on the test rig.



Chapter 9

Nonlinear Output-feedback
Control

In this chapter, we address the design of an output-feedback tracking controller for
the electro-pneumatic clutch actuation system. Using the nonlinear reduced-order
observer introduced in Chapter 8.4, we present a robust output-feedback design by
an observer backstepping approach, which is a recursive procedure performed in four
steps. We further present an approximate backstepping design, where we simplify
the last two steps of the design by using high-gain observers to estimate, rather
than calculate analytically, the derivative of the stabilizing function designed in the
previous steps. The performance of the controller is analyzed by simulations and
experimentally on the test rig.
In Section 9.1, we describe the reference model which is used to generate a

smooth reference trajectory from an arbitrary reference input. Next, we present the
observer backstepping design in detail in Section 9.2, and give an overview of the
implemented output-feedback controller in Section 9.3. We present the simulation
results in Section 9.4, and the experimental results in Section 9.5. Finally, the
chapter is summarized in Section 9.6.

9.1 Reference model

For tracking control applications, the objective is to track a reference input r by
the output y. It is convenient to design a controller for the alternative objective of
tracking the output yr of a linear reference model in the form

żr =

⎡⎢⎢⎢⎣
0
...
0

In−1

−m0 · · · −mn−1

⎤⎥⎥⎥⎦ zr +
⎡⎢⎢⎢⎢⎢⎣
0
...
0
0
m0

⎤⎥⎥⎥⎥⎥⎦ r, (9.1)

where r is the actual reference, zr = [yr, ẏr, · · · , y(n−1)r ]T is the state vector of the
filter, and In−1 ∈ R(n−1)×(n−1) is the identity matrix. The characteristic polynomial
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sn +mn−1sn−1 + · · · +m1s +m0 of the filter is chosen to be Hurwitz, so that the
filter dynamics is exponentially stable. For most tracking tasks, a good choice of the
parameters of the reference model is obtained by placing the multiple (n) poles at
s = −λr, resulting in a critically damped dynamics with time constant τ r = n/λr.
This dynamics may be regarded as the ”best conditioned” among the linear dynamics
for a given bandwidth.
Using this type of reference model to generate the tracking trajectory has several

advantages, outlined below:

• The tracking reference trajectory yr becomes smooth.
• Noise and discontinuities in the reference r is filtered out.
• The derivatives of yr, which is required by a Lyapunov-based tracking design,
becomes available as states in zr.

• The reference model can be used to reduce initial transients by trajectory
initialization (see [52, Section 4.3.2]).

• The use of a reference model facilitates the incorporation of a desired per-
formance specification for the closed-loop controller. That is, for a properly
designed tracking controller, which achieves tracking of the reference yr (t),
the closed-loop dynamical tracking properties are in essence determined by
the properties of the reference model.

Reference model for the electro-pneumatic actuator

For a system with relative degree ρ, a backstepping tracking design requires the first
(ρ+ 1) derivatives of the tracking trajectory to be available for control. For the
electro-pneumatic actuator, the relative degree is ρ = 4, thus, it is convenient to
use a 5th-order reference model such that the state vector contains all the required
derivatives, i.e.,

zr =

⎡⎢⎢⎢⎢⎣
zr1
zr2
zr3
zr4
zr5

⎤⎥⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎢⎣
yr
ẏr
ÿr
y
(3)
r

y
(4)
r

⎤⎥⎥⎥⎥⎦ .
The reference model (9.1) is conveniently expressed in the compact form

żr = Arzr + crr, (9.2)

where in the 5th-order case, the matrix Ar and the vector cr are

Ar ,

⎡⎢⎢⎢⎢⎣
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
−m0 −m1 −m2 −m3 −m4

⎤⎥⎥⎥⎥⎦ , cr ,

⎡⎢⎢⎢⎢⎣
0
0
0
0
m0

⎤⎥⎥⎥⎥⎦ . (9.3)
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Figure 9.1: Block diagram of the reference model.

A block diagram of this 5th-order reference model (9.1), is given in Figure 9.1.
The characteristic polynomial of the filter becomes

|sI−Ar| = s5 +m4s
4 +m3s

3 +m2s
2 +m1s+m0. (9.4)

Placing all the poles of the reference model at s = −λr amounts to choosing the
filter coefficients which results in the characteristic polynomial

(s+ λr)
5 = s5 + 5λrs

4 + 10λ2rs
3 + 10λ3rs

2 + 5λ4rs+ λ5r. (9.5)

Comparing (9.4) with (9.5), we can express the filter coefficients as functions of λr,
giving

m0 = λ5r
m1 = 5λ4r
m2 = 10λ3r
m3 = 10λ2r
m4 = 5λr.

We refer to λr as the bandwidth of the reference model, where in this 5th-order case,
the corresponding time-constant is

τ r =
5

λr
.



9.2 Observer backstepping design

System

We consider the electro-pneumatic clutch actuator given by the model

ẏ = v
v̇ = A

M
p− A

M
P0 − 1

M
fl (y)− 1

M
ff (v, z)

ṗ = −A 1
V (y)

vp+ ρ0T0RCv
1

V (y)
ψv (p, xv)

ẋv = − 1
τv
xv +

1
τv
u

ż = v − Kz

FC
|v|s z,

(9.6)

where y, v, p, xv, and z are the actuator position, velocity, chamber pressure, valve
spool opening and friction deflection state, respectively; while fl (y), ff (v, z), V (y)
and ψv (p, xv), are known functions of the clutch load spring force, friction force,
chamber volume and the valve flow function.
The region of validity (or region of feasibility), of (9.6) is the set X0 ⊂ R5 defined

by
X0 , {∀x : xmin ≤ x ≤ xmax} , (9.7)

where the minimum and maximum feasible actuator states are given by

xmin = [ymin, vmin, pmin, xv,min, zmin]
T

xmax = [ymax, vmax, pmax, xv,max, zmax]
T ,

as described in Chapter 6. Moreover, the region of normal operation, in which the
actuator states will remain under normal operation, is defined by the lower and
upper bounds

xlb , [ylb, vlb, plb, xv lb, zlb]
T

xub , [yub, vub, pub, xv ub, zub]
T ,

as
X , {∀x ∈ X0: xlb ≤ x ≤ xub} . (9.8)

Problem formulation

The objective is to design an output-feedback controller that achieves asymptotic
(practical) tracking of the reference yr by the output y, while keeping all the states
of the closed-loop system bounded.

Observer

The basis for the output-feedback control design is the reduced-order observer, given
by (8.82), presented in Chapter 8. The observer is given as

.

ξ̂1 =
A
M
p̂
³
y, ξ̂2

´
− A

M
P0 − 1

M
fl (y)− 1

M
ff
³
v̂(y, ξ̂1), ẑ

´
− k1 · v̂(y, ξ̂1)

.

ξ̂2 = ρ0T0RCv · ψv

³
p̂(y, ξ̂2), x̂v

´
− k2 · v̂(y, ξ̂1)

.

x̂v = − 1
τv
x̂v +

1
τv
u

.

ẑ = v̂ − Kz

FC
|v̂|s ẑ,

(9.9)
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where v̂ and p̂ are functions of y, ξ̂1, and ξ̂2 according to

v̂(y, ξ̂1) = ξ̂1 + k1y

p̂(y, ξ̂2) =
1

V (y)

³
ξ̂2 + k2y

´
,

and not states in the implemented observer.

In preparation for our backstepping design, we rewrite the actuator dynamics in
terms of the observer velocity and the corresponding estimation error, according to

ẏ = v̂ + ṽ

= ξ̂1 + k1y + ṽ.

Utilizing the observer (9.9), we apply backstepping to the system

ẏ = ξ̂1 + k1y + ṽ
.

ξ̂1 =
A
M

1
V (y)

ξ̂2 +
A
M

1
V (y)

k2y − A
M
P0 − 1

M
fl (y)− 1

M
ff(v̂, ẑ)− k1 · v̂(y, ξ̂1)

.

ξ̂2 = ρ0T0RCv · ψv

³
p̂(y, ξ̂2), x̂v

´
− k2 · v̂(y, ξ̂1)

.

x̂v = − 1
τv
x̂v +

1
τv
u

.

ẑ = v̂ − Kz

FC
|v̂|s ẑ,

(9.10)

with

v̂(y, ξ̂1) = ξ̂1 + k1y

p̂(y, ξ̂2) =
1

V (y)

³
ξ̂2 + k2y

´
.

Denoting
b1 (y) , A

M
1

V (y)
, b2 , ρ0T0RCv, b3 , 1

τv

and re-defining functions in terms of the observer states according to

ψ2

³
y, ξ̂2, x̂v

´
, ψv

³
p̂(y, ξ̂2), x̂v

´
f̄f
³
y, ξ̂1, ẑ

´
, ff

³
v̂(y, ξ̂1), ẑ

´
,

the system can be written in the form

ẏ = ξ̂1 + k1y + ξ̃1.

ξ̂1 = b1 (y) · ξ̂2 + b1 (y) · k2y − A
M
P0 − 1

M
fl (y)− 1

M
f̄f
³
y, ξ̂1, ẑ

´
− k1ξ̂1 − k21y

.

ξ̂2 = b2 · ψ2
³
y, ξ̂2, x̂v

´
− k2ξ̂1 − k1k2y

.

x̂v = b3u− b3x̂v
.

ẑ = ξ̂1 + k1y − Kz

FC

¯̄̄
v̂(y, ξ̂1)

¯̄̄
s
ẑ.

(9.11)
The system is in pure feedback form, hence, suitable for a nonlinear control design
based on an integrator backstepping approach.



9.2.1 Exact backstepping

The backstepping design is performed recursively in four steps on the system (9.11).
We illustrate the design procedure in detail in the following section, and summarizes
the controller and its properties in the section following that.

Controller development

Design — Step 1 First define the tracking error

e1 , y − yr. (9.12)

The time-derivative of e1 becomes

ė1 = ẏ − ẏr

= ξ̂1 + k1y + ξ̃1 − ẏr.

Assuming u1 , ξ̂1 is the actual control, we design a control law for u1 which
renders the error dynamics

ė1 = u1 − ẏr + k1y + ξ̃1 (9.13)

exponentially stable for ξ̃1 = 0, and input-to-state stable with respect to the observer
error ξ̃1. We take a control law in the form

u1 = ẏr + α1 (y, yr) , (9.14)

where ẏr is a feedforward tracking term (which compensates for a time-varying
reference), and α1 is a stabilizing function which is designed to stabilize a zero
tracking error, e1 = 0.
For conformity with the following design steps, we illustrate the design of the

stabilizing function α1 using a Control Lyapunov Function (CLF). We use the CLF

V1 =
1

2
e21, (9.15)

whose time-derivative becomes

V̇1 = e1ė1

= e1
³
u1 − ẏr + k1y + ξ̃1

´
= e1 (α1 + k1y) + e1ξ̃1.

We choose the stabilizing function

α1 = −c1e1 − k1y, (9.16)

which gives
V̇1 = −c1e21 + e1ξ̃1,
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where c1 > 0 is a design constant.
Note that for zero observer error, the time-derivative of V1 becomes

ξ̃1 = 0 =⇒ V̇1 = −c1e21,
and that

|e1| > 1

c1

¯̄̄
ξ̃1

¯̄̄
=⇒ V̇1 < 0.

This proves that for the system (9.13), the control u1 = ẏr +α1 with the stabilizing
function α1 given by (9.16) makes the error state e1 ISS with respect to the input
ξ̃1, and exponentially stable for zero observer error, ξ̃1 = 0.

Design — Step 2 Taking into consideration that u1 is merely a virtual control
that we are not able to control directly, the control law designed at step 1 is taken
as the desired control law

u1d = ẏr + α1 (y, yr) ,

and we define the corresponding error

e2 , u1 − u1d = u1 − ẏr − α1. (9.17)

This error appears in the e1—dynamics by substituting u1 = e2+ ẏr+α1 into (9.13),
giving

ė1 = e2 + α1 + k1y + ξ̃1
= −c1e1 + e2 + ξ̃1.

To deal with this error, we backstep it through the first integrator by differentiation,
and obtain

ė2 = u̇1 − ÿr − α̇1

=
.

ξ̂1 − ÿr − ∂α1
∂y

ẏ − ∂α1
∂yr

ẏr.

Note that the time-derivatives of ξ̂1 and y are given by (9.11), while the partial
derivatives of α1 is obtained upon differentiating (9.16), giving

∂α1
∂y

= − (c1 + k1) ,
∂α1
∂yr

= c1.

The e2—dynamics then becomes

ė2 = b1ξ̂2 + b1k2y − A

M
P0 − 1

M
fl − 1

M
ff − k1ξ̂1 − k21y

−ÿr + (c1 + k1)
³
ξ̂1 + k1y + ξ̃1

´
− c1ẏr

= b1ξ̂2 − ÿr + b1k2y − A

M
P0 − 1

M
fl − 1

M
ff + c1

³
ξ̂1 + k1y

´
−c1ẏr + (c1 + k1) ξ̃1.



Denoting

u2
³
y, ξ̂2

´
, b1 (y) · ξ̂2

Σ2
³
y, ξ̂1, ẑ, ẏr

´
, b1 (y) · k2y − A

M
P0 − 1

M
fl (y)− 1

M
f̄f
³
y, ξ̂1, ẑ

´
+c1

³
ξ̂1 + k1y

´
− c1ẏr

w2 , c1 + k1,

the dynamics of the (e1, e2)—subsystem can be written

ė1 = −c1e1 + e2 + ξ̃1
ė2 = u2 − ÿr + Σ2 + w2ξ̃1.

(9.18)

Assuming u2 , b1 (y) · ξ̂2 is the actual control, we use a control in the form
u2 = ÿr + α2,

and design a stabilizing function α2 which makes the system exponentially stable
for ξ̃1 = 0, and ISS with respect to ξ̃1. Like in Step 1, the stabilizing function α2 is
obtained through a Lyapunov-based design, using a control Lyapunov function for
the system (9.18). We use the CLF

V2 = V1 +
1

2
e22, (9.19)

whose derivative becomes

V̇2 = e1ė1 + e2ė2

= e1
³
−c1e1 + e2 + ξ̃1

´
+ e2

³
u2 − ÿr + Σ2 + w2ξ̃1

´
= −c1e21 + e1e2|{z}+e2 (α2 + Σ2) + e1ξ̃1 + w2e2ξ̃1

= −c1e21 + e2

µ
e1|{z}+α2 + Σ2

¶
+ e1ξ̃1 + w2e2ξ̃1.

We choose the stabilizing function

α2 = −e1 − c2e2 − Σ2, (9.20)

where c2 > 0 is a design constant. Notice that we are now able to eliminate the
e1e2—term from the previous design step with α2. This gives

V̇2 = −c1e21 − c2e
2
2 + e1ξ̃1 + w2e2ξ̃1,

which is negative definite for zero observer error,

ξ̃1 = 0 =⇒ V̇2 = −c1e21 − c2e
2
2.

For the 2nd-order system (9.18), the control u2 = ÿr + α2 with α2 given by (9.20,
makes the system exponentially stable for ξ̃1 = 0, and since w2 is constant, the linear
damping term −c2e2 is sufficient to make the closed-loop system ISS with respect
to the observer error ξ̃1.
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Design — Step 3 We are not able to control u2 directly, hence, u2 is only a virtual
control, and the control law designed at previous step becomes the desired control
law

u2d = ÿr + α2
³
y, ξ̂1, yr, ẏr

´
.

Define the corresponding error

e3 , u2 − u2d = u2 − ÿr − α2, (9.21)

and note in passing that e3 appears in the e2—dynamics according to

ė2 = e3 + α2 + Σ2 + w2ξ̃1
= −e1 − c2e2 + e3 + w2ξ̃1.

Then backstep the error through the last integrator by differentiating e3:

ė3 = u̇2 − y(3)r − α̇2

=
d

dt

³
b1 (y) ξ̂2

´
− y(3)r −

d

dt

³
α2
³
y, ξ̂1, ẑ, yr, ẏr

´´
=

∂b1
∂y

ẏξ̂2 + b1

.

ξ̂2 − y(3)r −
∂α2
∂y

ẏ − ∂α2

∂ξ̂1

.

ξ̂1 −
∂α2
∂ẑ

.

ẑ − ∂α2
∂yr

ẏr − ∂α2
∂ẏr

ÿr.

=
∂b1
∂y

³
ξ̂1 + k1y + ξ̃1

´
ξ̂2 + b1

³
b2ψ2 − k2ξ̂1 − k1k2y

´
−y(3)r −

∂α2
∂y

³
ξ̂1 + k1y + ξ̃1

´
− ∂α2

∂ξ̂1

.

ξ̂1 −
∂α2
∂ẑ

.

ẑ − ∂α2
∂yr

ẏr − ∂α2
∂ẏr

ÿr.

Substituting with expressions for ẏ and
.

ξ̂2from (9.11) and re-ordering, gives

ė3 =
∂b1
∂y

³
ξ̂1 + k1y + ξ̃1

´
ξ̂2 + b1

³
b2ψ2 − k2ξ̂1 − k1k2y

´
−y(3)r −

∂α2
∂y

³
ξ̂1 + k1y + ξ̃1

´
− ∂α2

∂ξ̂1

.

ξ̂1 −
∂α2
∂ẑ

.

ẑ − ∂α2
∂yr

ẏr − ∂α2
∂ẏr

ÿr

= b1b2ψ2 − y(3)r +

µ
−b1k2 + ∂b1

∂y
ξ̂2 −

∂α2
∂y

¶³
ξ̂1 + k1y

´
−∂α2
∂ξ̂1

.

ξ̂1 −
∂α2
∂ẑ

.

ẑ − ∂α2
∂yr

ẏr − ∂α2
∂ẏr

ÿr +

µ
∂b1
∂y

ξ̂2 −
∂α2
∂y

¶
ξ̃1.

Denote
u3
³
y, ξ̂2, x̂v

´
, b1b2ψ2,

which will be the third virtual control, and collect all the remaining known terms
except y(3)r in the function

Σ3

³
y, ξ̂1, ξ̂2, ẑ, ẏr, ÿr

´
,

µ
−b1k2 + ∂b1

∂y
ξ̂2 −

∂α2
∂y

¶³
ξ̂1 + k1y

´
−∂α2
∂ξ̂1

.

ξ̂1 −
∂α2
∂ẑ

.

ẑ − ∂α2
∂yr

ẏr − ∂α2
∂ẏr

ÿr.



This gives

ė3 = u3 − y(3)r + Σ3 +

µ
∂b1
∂y

ξ̂2 −
∂α2
∂y

¶
ξ̃1.

Denoting

w3
³
y, ξ̂2

´
, ∂b1

∂y
ξ̂2 −

∂α2
∂y

,

the dynamics of the (e1, e2, e3)—subsystem can be written

ė1 = −c1e1 + e2 + ξ̃1
ė2 = −e1 − c2e2 + e3 + w2ξ̃1
ė3 = u3 − y

(3)
r + Σ3 + w3ξ̃1.

(9.22)

Assuming u3 , b1 (y) b2ψ2(y, ξ̂2, x̂v) is the actual control, we use a control in the
form

u3 = y(3)r + α3,

and design a stabilizing function α3 to stabilize the (e1, e2, e3)—subsystem. We use
the CLF

V3 = V2 +
1

2
e23,

which gives the derivative

V̇3 = e1ė1 + e2ė2 + e3ė3

= e1
³
−c1e1 + e2 + ξ̃1

´
+ e2

³
−e1 − c2e2 + e3 + w2ξ̃1

´
+e3

³
u3 − y(3)r + Σ3 + w3ξ̃1

´
= −c1e21 − c2e

2
2 + e3

³
e2 + α3 + Σ3 + w3ξ̃1

´
+ e1ξ̃1 + e2w2ξ̃1 + e3w3ξ̃1.

To make V̇3 negative definite for ξ̃2 = 0, we could choose the stabilizing function

α
0
3 = −e2 − c3e3 − Σ3, c3 > 0 (9.23)

which would give

V̇
0
3 = −c1e21 − c2e

2
2 − c3e

2
3 + e1ξ̃1 + e2w2ξ̃1 + e3w3ξ̃1.

For α
0
3 to make the closed-loop system ISS with respect to the observer error ξ̃1,

the term w3(y, ξ̂2) must be bounded. That is, for bounded w3, the negative definite
term −c3e23 in V̇ 0

3 due to linear damping, will dominate the disturbance term e3w3ξ̃1
for sufficiently large e3, thus, ensuring the boundedness of e3. However, the term
w3(y, ξ̂2) is bounded only if y and ξ̂2 are bounded. Hence, the linear damping term
−c3e3 in α0

3 is not sufficient to ensure boundedness of e3 in the presence of observer
errors, unless y and ξ̂2 can be assumed to be bounded.
To enhance performance and guarantee global boundedness in the presence of the

observer error ξ̃1, we strengthen the stabilizing function with a nonlinear damping
term according to

α3 = −e2 − c3e3 − d3w
2
3e3 − Σ3, c3, d3 > 0. (9.24)
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This gives

V̇3 = −c1e21 − c2e
2
2 − c3e

2
3 − d3w

2
3e
2
3 + e1ξ̃1 + e2w2ξ̃1 + e3w3ξ̃1,

and for zero observer error

ξ̃1 = 0 =⇒ V̇3 = −c1e21 − c2e
2
2.− c3e

2
3 − d3w

2
3e
2
3.

For the 3rd-order system (9.22), the control u3 = y
(3)
r + α3, with α3 given by

(9.24), makes the system exponentially stable for ξ̃1 = 0, and due to the nonlinear
damping term −d3w23e3, it also makes the closed-loop system ISS with respect to
the observer error ξ̃1 even for unbounded states y and ξ̂2.

Design — Final step Since u3 is only a virtual control, the control law designed
in the previous step is not directly implementable, but becomes our a desired control
law

u3d , y(3)r + α3
³
y, ξ̂1, ξ̂2, ẑ, yr, ẏr, ÿr

´
,

with the corresponding error

e4 , u3 − u3d = u3 − y(3)r − α3. (9.25)

The error e4 appears in the e3—dynamics according to

ė3 = e4 + α3 + Σ3 + w3ξ̃1
= −e2 − c3e3 − d3w

2
3e3 + e4 + w3ξ̃1.

Proceeding as in previous design steps, we backstep the error e4 through the last
integrator by differentiation, and obtain

ė4 =
d

dt

³
b1 (y) b2ψ2

³
y, ξ̂2, x̂v

´´
− y(4)r − α̇3

=
∂b1
∂y

ẏ + b1b2
∂ψ2
∂y

ẏ + b1b2
∂ψ2

∂ξ̂2

.

ξ̂2 + b1b2
∂ψ2
∂x̂v

.

x̂v − y(4)r

−∂α3
∂y

ẏ − ∂α3

∂ξ̂1

.

ξ̂1 −
∂α3

∂ξ̂2

.

ξ̂2 −
∂α3
∂ẑ

.

ẑ − ∂α3
∂yr

ẏr − ∂α3
∂ẏr

ÿr − ∂α3
∂ÿr

y(3)r .

Substituting with expressions for ẏ and
.
xv from (9.11) and re-ordering, gives

ė4 = b1b2b3
∂ψ2
∂x̂v

u− y(4)r +

µ
∂b1
∂y

+ b1b2
∂ψ2
∂y
− ∂α3

∂y

¶³
ξ̂1 + k1y

´
− ∂α3

∂ξ̂1

.

ξ̂1

+

Ã
b1b2

∂ψ2

∂ξ̂2
− ∂α3

∂ξ̂2

!
.

ξ̂2 − b1b2b3
∂ψ2
∂x̂v

x̂v − ∂α3
∂ẑ

.

ẑ − ∂α3
∂yr

ẏr − ∂α3
∂ẏr

ÿr − ∂α3
∂ÿr

y(3)r

+

µ
∂b1
∂y

+ b1b2
∂ψ2
∂y
− ∂α3

∂y

¶
ξ̃1.



For simplicity of notation, introduce the scaled control variable u4, which is one-to-
one with the actual control u

u4
³
y, ξ̂2, x̂v

´
, b1b2b3

∂ψ2
∂x̂v

u,

and collect all the remaining known terms except y(4)r in the function

Σ4
³
y, ξ̂1, ξ̂2, ẑ, x̂v, ẏr, ÿr, y

(3)
r

´
,

µ
∂b1
∂y

+ b1b2
∂ψ2
∂y
− ∂α3

∂y

¶³
ξ̂1 + k1y

´
− ∂α3

∂ξ̂1

.

ξ̂1

+

Ã
b1b2

∂ψ2

∂ξ̂2
− ∂α3

∂ξ̂2

!
.

ξ̂2 − b1b2b3
∂ψ2
∂x̂v

x̂v − ∂α3
∂ẑ

.

ẑ

−∂α3
∂yr

ẏr − ∂α3
∂ẏr

ÿr − ∂α3
∂ÿr

y(3)r ,

so that the e4—dynamics can be compactly written as

ė4 = u4 − y(4)r + Σ4 +

µ
∂b1
∂y

+ b1b2
∂ψ2
∂y
− ∂α3

∂y

¶
ξ̃1.

Denoting

w4
³
y, ξ̂1, ξ̂2, x̂v

´
, ∂b1

∂y
+ b1b2

∂ψ2
∂y
− ∂α3

∂y
,

the dynamics of the full (e1, e2, e3, e4)—system can be written

ė1 = −c1e1 + e2 + ξ̃1
ė2 = −e1 − c2e2 + e3 + w2ξ̃1
ė3 = −e2 − c3e3 − d3w

2
3e3 + e4 + w3ξ̃1

ė4 = u4 − y
(4)
r + Σ4 + w4ξ̃1.

(9.26)

Taking
u4 = y(4)r + α4,

we design the final stabilizing function α4 to stabilize the complete (e1, e2, e3, e4)—
system. We use the CLF

V4 = V3 +
1

2
e24,

giving the derivative

V̇4 = e1
³
−c1e1 + e2 + ξ̃1

´
+ e2

³
−e1 − c2e2 + e3 + w2ξ̃1

´
+e3

³
−e2 − c3e3 − d3w

2
3e3 + e4 + w3ξ̃1

´
+ e4

³
u4 − y(4)r + Σ4 + w4ξ̃1

´
= −c1e21 − c2e

2
2 − c3e

2
3 − d3w

2
3e
2
3 + e4 (e3 + α4 + Σ4)

+ (e1 + w2e2 + e3w3 + e4w4) ξ̃1.

To make V̇4 negative definite for ξ̃2 = 0, it would be sufficient to choose a stabilizing
function with only linear damping according to

α
0
4 = −e3 − c4e4 − Σ4, c4 > 0, (9.27)
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which would give

V̇4 = −c1e21 − c2e
2
2 − c3e

2
3 − d3w

2
3e
2
3 − c4e

2
4 + (e1 + w2e2 + e3w3 + e4w4) ξ̃1.

However, the disturbance term w4(y, ξ̂1, ξ̂2, x̂v) is an unbounded term which has the
potential to grow very large, so that the linear damping term −c4e4 in α0

4 will not be
sufficient to guarantee boundedness of the error state e4. Consequently, to enhance
performance and guarantee global boundedness in the presence of observer errors
ξ̃1, we strengthen the stabilizing function with a nonlinear damping term which
counteracts the potentially destabilizing effect of observer errors multiplied with w4.
That is, we choose the stabilizing function

α4 = −e3 − c4e4 − d4w
2
4e4 − Σ4, c4, d4 > 0, (9.28)

which gives

V̇4 = −c1e21 − c2e
2
2 − c3e

2
3 − d3w

2
3e
2
3 − c4e

2
4 − d4w

2
4e
2
4 − c4e

2
4

+(e1 + w2e2 + e3w3 + e4w4) · ξ̃1.
For the system (9.22), the control u4 = y

(4)
r +α4, with α4 given by (9.28), makes

the system exponentially stable for ξ̃1 = 0, and due to the nonlinear damping term
−d3w23e3, it also makes the closed-loop system ISS with respect to the observer error
ξ̃1 even for unbounded states y and ξ̂2. The actual control input is given as

u =

µ
b1b2b3

∂ψ2
∂x̂v

¶−1 £
y(4)r + α4

¤
. (9.29)

The complete set of equations describing the exact backstepping control law is sum-
marized in the following section.

Summary – exact backstepping control law

The exact backstepping control law

u (y, x̂u, zr) =

µ
b1b2b3

∂ψ2
∂x̂v

¶−1 £
y(4)r + α4

¤
, (9.30)

asymptotically stabilizes the system in the error coordinates

e1 = y − yr
e2 = u1 − ẏr − α1
e3 = u2 − ÿr − α2
e4 = u3 − y

(3)
r − α3,

(9.31)

and thereby solves the problem of asymptotic output-feedback tracking for the
electro-pneumatic clutch actuator (9.6). The virtual control variables are

u1 = ξ̂1
u2 = b1ξ̂2
u3 = b1b2ψ2,

(9.32)



and the stabilizing functions are defined by the following expressions:

α1 (y, yr) = −c1e1 − Σ1

α2
³
y, ξ̂1, ẑ, yr, ẏr

´
= −e1 − c2e2 − Σ2

α3
³
y, ξ̂1, ξ̂2, ẑ, yr, ẏr, ÿr

´
= −e2 − c3e3 − d3w

2
3e3 − Σ3

α4
³
y, ξ̂1, ξ̂2, x̂v, ẑ, yr, ẏr, ÿr, y

(3)
r

´
= −e3 − c4e4 − d4w

2
4e4 − Σ4,

(9.33)

where c1, · · · , c4 > 0 and d3, d4 > 0 are design parameters. The cancelled observer
dynamics Σi and the disturbance gains wi, i = 1, · · · , 4, respectively, are given by
Σ1 (y) = k1y

Σ2
³
y, ξ̂1, ẑ, ẏr

´
= b1k2y − A

M
P0 − 1

M
fl − 1

M
ff + c1v̂ − c1ẏr

Σ3
³
y, ξ̂1, ξ̂2, ẑ, ẏr, ÿr

´
=
³
−b1k2 + ∂b1

∂y
ξ̂2 − ∂α2

∂y

´
v̂ − ∂α2

∂ξ̂1

.

ξ̂1 − ∂α2
∂ẑ

.

ẑ − ∂α2
∂yr

ẏr − ∂α2
∂ẏr

ÿr

Σ4
³
y, ξ̂1, ξ̂2, x̂v, ẑ, ẏr, ÿr, y

(3)
r

´
=
³
∂b1
∂y
+ b1b2

∂ψ2
∂y
− ∂α3

∂y

´
v̂ − ∂α3

∂ξ̂1

.

ξ̂1

+
³
b1b2

∂ψ2
∂ξ̂2
− ∂α3

∂ξ̂2

´ .

ξ̂2

−b1b2b3 ∂ψ2∂x̂v
x̂v − ∂α3

∂ẑ

.

ẑ − ∂α3
∂yr

ẏr − ∂α3
∂ẏr

ÿr − ∂α3
∂ÿr

y
(3)
r ,

(9.34)
and

w1 = 1
w2 = c1 + k1

w3
³
y, ξ̂2

´
= ∂b1

∂y
ξ̂2 − ∂α2

∂y

w4
³
y, ξ̂1, ξ̂2, x̂v

´
= ∂b1

∂y
+ b1b2

∂ψ2
∂y
− ∂α3

∂y
.

(9.35)

The main properties of the exact backstepping controller is summarized in the
following Proposition:

Proposition 34 (Exact Backstepping Controller) Consider the output-feedback
controller consisting of the observer (9.9) and the control law (9.30)—(9.35) applied
to position tracking of the electro-pneumatic clutch actuator (9.6). For bounded
initial conditions, and any sufficiently smooth reference trajectory yr (t) , assuming
the observer is exponentially stable in the feasible region X0 of the model (9.6), the
following properties hold for the closed-loop system:

i) Boundedness: All signals of the closed-loop control system are bounded.
ii) Exponential tracking: The closed-loop system has an exponentially stable

(ES) equilibrium at (e, x̃u) = 0, which means that exponential tracking is achieved:

lim
t→∞

[y (t)− yr (t)] = 0.

iii) Robustness: The closed-loop system is robust with respect to bounded dis-
turbances entering additively in the system dynamics (9.6). These disturbances can
be exogenous, or caused by model mismatches due to simplifications, parameter
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errors or unmodeled dynamics. To be precise, the system is exponentially input-
to-state stable (ISS) with respect to these disturbances as inputs. This means, in
particular, that in the presence of bounded disturbances, the controller achieves
tracking within a certain precision ∆0 which depends on the upper bound of the
disturbances:

lim
t→∞

|y (t)− yr (t)| ≤ ∆0.

Proof. The closed-loop system consists of the actuator states x = [y, v, p, xv, z]T ,
which can be partitioned into the measured output y and the unmeasured states xu =
[v, p, xv, z]

T , and the states of the reduced-order observer x̂u = [ξ̂1, ξ̂2, x̂v, ẑ]
T . Since

the reference trajectory zr is smooth, its components are bounded. The control law
(9.30)—(9.35) stabilizes the system in the new error coordinates e = [e1, e2, e3, e4]T ,
where the change of coordinates (9.31), which we compactly write as

e = Φ (y, x̂u, zr) ,

is smooth in y, x̂u and zr, and the inverse transformation

x̂u = Φ−1 (y, e, zr) ,

is smooth in y, e and zr. Consequently, the boundedness of y and x̂u will follow
from the boundedness of the error variables e, and the boundedness of xu from the
boundedness of the observer error x̃u.
First, it is assumed that observer error x̃u , [ξ̃1, ξ̃2, x̃v, z̃]T = [ṽ, V (y) p̃, x̃v, z̃]T

is exponentially stable, such that there exists a Lyapunov function

c |x̃u|2 ≤ Vo (x̃u) ≤ c |x̃u|2 , c ≥ c > 0,

whose derivative satisfy

V̇o ≤ −2αoVo + γo |δ|2 , αo, γo > 0,

where δ (t) ∈ Rn−1 represents an additive disturbance in the actuator dynamics,
which can be exogenous, or a result of model mismatches caused by modeling sim-
plifications, parameter errors or unmodeled dynamics. This means that the observer
error x̃u is input-to-state stable with respect to δ (t) as input, that is, exponentially
stable for δ (t) ≡ 0, and bounded when subjected to bounded disturbances δ (t).
Next, we establish that the dynamics of the closed-loop system in the error

coordinates e1, · · · , e4, is ISS with respect to the observer error ξ̃1 as input. Partition
the first two damping constants into c1 = c̄1 + d̄1 and c2 = c̄2 + d̄2w

2
2, for some

c̄1, d̄1, c̄2, d̄2 > 0 (which is possible for c2 because w2 is constant). The dynamics of
the e—system can be compactly written as

ė = Ae (t) e+we (t) ξ̃1, (9.36)

where the time-varying system matrix Ae (t), and disturbance gain vector we (t),



are given by

Ae (t) ,

⎡⎢⎢⎢⎢⎣
−c̄1 − d̄1 1 0 0
−1 −c̄2 − d̄2w

2
2 1 0

0 −1 −c3 − d3w3
³
y, ξ̂2

´2
1

0 0 −1 −c4 − d4w4
³
y, ξ̂2, x̂v

´2
⎤⎥⎥⎥⎥⎦ ,

(9.37)

we (t) ,

⎡⎢⎢⎢⎢⎣
1
w2

w3
³
y, ξ̂2

´
w4
³
y, ξ̂2, x̂v

´
⎤⎥⎥⎥⎥⎦ . (9.38)

To analyze the stability of this error dynamics, consider the CLF (V4) from the final
design step:

Ve =
1

2
e21 +

1

2
e22 +

1

2
e23 +

1

2
e24

=
1

2
|e|2 .

The time-derivative of Ve becomes

V̇e = −c̄1e21 − c̄2e
2
2 − c3e

2
3 − c4e

2
4

−d̄1e21 − d̄2e
2
2w

2
2 − d3e

2
3w

2
3 − d4e

2
4w

2
4

+e1ξ̃1 + e2w2ξ̃1 + e3w3ξ̃1 + e4w4ξ̃1.

Using Lemma 26 (completion of squares), we obtain the inequalities

e1ξ̃1 ≤ d̄1e
2
1 +

1

4d̄1
ξ̃
2

1

e2w2ξ̃1 ≤ d̄2e
2
2w

2
2 +

1

4d̄2
ξ̃
2

1

eiwiξ̃1 ≤ die
2
iw

2
i +

1

4di
ξ̃
2

1, i = 3, 4,

by which we can show that V̇e satisfies

V̇e ≤ −c̄1e21 − c̄2e
2
2 − c3e

2
3 − c4e

2
4

+

µ
1

4d̄1
+

1

4d̄2
+

1

4d3
+

1

4d4

¶
ξ̃
2

1.

Denoting

c0 , min {c̄1, c̄2, c3, c4}

d0 ,
µ
1

d̄1
+
1

d̄2
+
1

d3
+
1

d4

¶−1
,
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we obtain

V̇e ≤ −c0 |e|2 + 1

4d0
ξ̃
2

1

= −2c0Ve + 1

4d0
ξ̃
2

1,

which proves that the e—system is ISS with respect to the observer error ξ̃1 as input.
This means that the equilibrium e = 0 is exponentially stable for ξ̃1 (t) ≡ 0, and
bounded when subjected to bounded observer errors ξ̃1 (t).
In preparation for the analysis of the complete (e, x̃u)—system, we rewrite V̇e in

terms of Vo. Using the inequality

ξ̃
2

1 ≤ |x̃u|2 ≤
2

c
Vo,

we obtain
V̇e ≤ −2c0Ve + 1

2d0c
Vo.

An ISS Lyapunov function for the complete (e, x̃u)—system is given by

V = Ve +moVo

=
1

2
|e|2+mo

2
Vo (x̃u)

where mo > 0 is a scaling constant which is determined below. The derivative of V
becomes

V̇ = V̇e +moV̇o

≤ −2c0Ve −
µ
2moαo − 1

2d0c

¶
Vo +moγo |δ|2 .

Taking

mo ,
1

4 (αo − σ) d0c
,

we get
V̇ ≤ −2c0Ve − 2σmoVo +moγo |δ|2 .

By choosing σ according to

0 < σ < min {c0, αo} ,

the scaling factor mo becomes finite and positive, and V̇ satisfies

V̇ ≤ −2σ (Ve −moVo) +moγo |δ|2
= −2σV +moγo |δ|2 .

This proves that the complete (e, x̃u)—system is ISS with respect to the disturbance
δ (t). This means that for δ (t) ≡ 0, the equilibrium (e, x̃u) = 0 is exponentially



stable, i.e., both the controller error e and observer error x̃u converges exponentially
to zero. Furthermore, for a bounded disturbance δ (t), both e (t) and x̃u (t) are
guaranteed to be bounded.
We proceed to obtain an ISS bound on the tracking error e1 (t) = y (t)− yr (t).

Using Lemma 28, with c = 2σ and d = moγo, it follows that

V (t) ≤ V (0) e−2σ·t+
moγo
2σ

kδ (t)k2∞ ,

where we use the simplified notation V (t) = V (e (t) , x̃u (t)). Noting that

|e|2 = 2V,

we can write

|e (t)|2 ≤ 2V (0) e−2σ·t+
moγo
σ

kδ (t)k2∞
⇓

|e (t)| ≤
p
2V (0) e−σ·t+

r
moγo
σ

kδ (t)k∞ ,

From
|e1| ≤ |e| ,

this provides an ISS bound on the tracking error is given by

|y (t)− yr (t)| = |e1 (t)| ≤
p
2V (0) e−σ·t+

r
moγo
σ

kδ (t)k∞ ,

where an upper bound on the final tracking precision becomes

lim
t→∞

|y (t)− yr (t)| = lim
t→∞

|e1 (t)|

≤
r

moγo
σ

kδ (t)k∞ , ∆0.

Remark 35 Note that, in contrast to the full state-feedback case, the cancelling
control law (9.30)—(9.35) designed by observer backstepping, is robust because the
terms of the observer are exactly known, and because the controller render the closed-
loop system ISS with respect to observer errors at each step of the design. However,
the control law may not be optimal, as it may cancel stabilizing nonlinearities, hence,
wasting control effort.

9.2.2 Approximate backstepping

In the recursive backstepping design, each new design step requires the calculation
of the analytical expression of the derivative of a virtual control law designed at
the previous step, whose complexity grows discouraging complex with each step. In
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the process of simplifying the backstepping design, we may estimate the derivative
of the virtual control law rather than calculate its analytical expression. To this
end, we may use a high-gain observer to obtain (theoretically) an arbitrary accurate
estimate of the 1st-order derivative ẏ (t) of a smooth signal y (t), using high gain,
and the fact that any smooth signal has a 1st-order derivative which is continuous,
thus, a 2nd-order derivative which is bounded.
First, we introduce the high-gain observer which will be used for derivative es-

timation. Next, we illustrate the design procedure using an estimate obtained by
the high-gain observer, rather than calculating analytically, the derivative of the
stabilizing functions.

Reduced-order high-gain observer for derivative estimation

The smooth time-varying signal y (t) can be represented by the state-space model

ẋ1 = x2
ẋ2 = ÿ,

(9.39)

where the states are x1 = y, and x2 = ẏ, and the input is the 2nd-order derivative
ÿ. A high-gain observer can be designed to estimate the states x1 and x2 using
feedback from y = x1. Since x1 = y is already known, it may be preferable to design
a reduced-order observer which only estimates x2.
To design a reduced-order observer, we introduce the change of coordinate

ξ , x2 − ky, (9.40)

where k > 0 is a design constant yet to be determined. In the new coordinate ξ, we
can rewrite the system (9.39) as

ẋ1 = ξ + ky

ξ̇ = ÿ − k (ξ + ky) .

This can be verified by direct calculation of the derivative of x2 and substituting
(9.40) for ξ:

ẋ2 = ξ̇ + kẏ

= ÿ − k (ξ + ky) + kx2

= ÿ − k (x2 − ky + ky) + kx2

= ÿ.

An observer for estimation of the derivative ẏ (t) of the smooth signal y (t) is
now obtained by defining the filter

.

ξ̂ = −k
³
ξ̂ + ky

´
, (9.41)

with the estimate of x2 = ẏ taken as

x̂2 = ξ̂ + ky. (9.42)



The estimate x̂2 obtained by the reduced-order observer, given by (9.41)—(9.42), can
be made arbitrary accurate by increasing the filter gain k. It is instructive to realize
that this high-gain observer is in essence a filtered differentiator, as can be clearly
seen from its transfer function from y to x̂2, which is

x̂2 =
s

1
k
s+ 1

y. (9.43)

We make the properties of the high-gain observer precise in the following Propo-
sition.

Proposition 36 (Derivative Observer) The estimate x̂2 (t) of the time-derivative
ẏ (t) of y (t) obtained using the reduced-order observer (9.41)—(9.42), is exponentially
input-to-state stable (ISS) with respect to the 2nd-order derivative ÿ (t). In particu-
lar, for any smooth signal y (t) ∈ C1, its 2nd-order derivative ÿ (t) will be bounded,
which means that for any prescribed accuracy ε0 > 0, there exist a sufficiently large
observer gain k > 0, which makes the estimation error x̃2 , ẏ − x̂2 converge expo-
nentially to within the prescribed accuracy. That is, the estimation error satisfies

|x̃2 (t)| ≤ |x̃2 (0)| e−k·t + ε0 (9.44)

where ε0 = ∆/k , where ∆ , kÿ (t)k∞ is the upper bound on ÿ (t).

Proof. Denote the filter state error ξ̃ , ξ− ξ̂, and note from (9.39) and (9.42) that
ξ̃ equals the estimation error

x̃2 , x2 − x̂2 = ξ − ξ̂ = ξ̃.

The estimation error is governed by the dynamics
.

ξ̃ = −kξ̃ + ÿ (t) ,

which is ISS with respect to ÿ (t). This can be established by the Lyapunov function

V =
1

2
ξ̃
2
,

which has the derivative
V̇ = ξ̃(ÿ − kξ̃).

Clearly,
¯̄̄
ξ̃
¯̄̄
> |ÿ| /k =⇒ V̇ < 0, which proves the ISS property. We prove the ISS

bound (9.44) with application of the simple convergence Lemma 28. Noting that

d

dt

¯̄̄
ξ̃
¯̄̄
= sgn ξ̃

.

ξ̃ = −k sgn ξ̃ξ̃ + sgn ξ̃ÿ (t)
⇓

d

dt

¯̄̄
ξ̃
¯̄̄
≤ −k

¯̄̄
ξ̃
¯̄̄
+ |ÿ (t)| ,

(taking v = |ξ̃|, c = k, d = 1, and w2 = |ÿ|), the lemma gives¯̄̄
ξ̃ (t)

¯̄̄
≤
¯̄̄
ξ̃ (0)

¯̄̄
e−k·t +

1

k
kÿ (t)k∞ .
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Controller development

In this section, we illustrate the design procedure using approximate backstepping
in the last two steps of the design in order to reduce the complexity of the resulting
control law. That is, rather than computing the analytic expressions for the deriva-
tives of the stabilizing functions α2(y, ξ̂1, ξ̂2, ẑ, zr) and α3(y, ξ̂1, ξ̂2, x̂v, ẑ, zr) in Steps
3 and 4 of the design procedure, respectively, we employ the high-gain observer in-
troduced in the previous section to estimate these derivatives. This approximation
introduces errors in the cancellation of nonlinearities, thus causing tracking errors,
which again requires high feedback gain in the controller in order to achieve a high
tracking precision. High gain in the controller can be disadvantageous because it
makes the controller prone to amplify measurement noise, excite unmodeled dynam-
ics, and introduce chattering in the control input. Therefore, this approximation is
only applied in last steps of the design process, where the complexity of the controller
due to differentiation of the stabilizing function is significant.

Design — Step 3 Recall that the virtual control from the previous step was

u2
³
y, ξ̂2

´
, b1ξ̂2,

where the desired control law designed by an exact backstepping approach, was
given by

u2d = ÿr + α2
³
y, ξ̂1, yr, ẏr

´
.

with the corresponding error

e3 , u2 − u2d = u2 − ÿr − α2.

Denote β2 , α̇2, its estimate β̂2, and the corresponding error β̃2 , β2− β̂2. Defining
the filter .

ζ̂2 = −l2 ·
³
ζ̂2 + l2α2

´
, (9.45)

an estimate of β2 is given by
β̂2 = ζ̂2 + l2α2. (9.46)

Now, backstep the error through the last integrator using the estimate β̂2:

ė3 = u̇2 − y(3)r − α̇2

=
d

dt

³
b1 (y) ξ̂2

´
− y(3)r −

³
β̂2 + β̃2

´
=

∂b1
∂y

ẏξ̂2 + b1

.

ξ̂2 − y(3)r −
³
β̂2 + β̃2

´
.

Substituting with expressions for ẏ and
.

ξ̂2 from (9.11) and re-ordering gives

ė3 = b1b2ψ2 − y(3)r +

µ
∂b1
∂y

ξ̂2 − b1k2

¶³
ξ̂1 + k1y

´
− β̂2 +

∂b1
∂y

ξ̂2ξ̃1 − β̃2.



The virtual control is the same:

u3
³
y, ξ̂2, x̂v

´
, b1b2ψ2.

A significant difference from exact backstepping is the cancellation term

Σ3
³
y, ξ̂1, ξ̂2, β̂2

´
,
µ
∂b1
∂y

ξ̂2 − b1k2

¶³
ξ̂1 + k1y

´
− β̂2,

which is significantly simplified, and the function

w3
³
y, ξ̂2

´
, ∂b1

∂y
ξ̂2,

multiplying the observer error. With the redefined Σ3 and w3, the last difference in
the dynamics of the (e1, e2, e3)—subsystem

ė1 = −c1e1 + e2 + ξ̃1
ė2 = −e1 − c2e2 + e3 + w2ξ̃1
ė3 = u3 − y

(3)
r + Σ3 + w3ξ̃1 − β̃2,

compared to exact backstepping, is the appearance of the estimation error β̃2.
Taking

u3 = y(3)r + α3,

we design a stabilizing function α3 to stabilize the (e1, e2, e3)—subsystem using the
CLF

V3 = V2 +
1

2ν3
e23

=
1

2
e21 +

1

2
e22 +

1

2ν3
e23.

Here, the constant ν3 > 0 is introduced as an additional design parameter in order
to more effectively compensate for the error β̃2. The derivative of V3 becomes

V̇3 = e1
³
−c1e1 + e2 + ξ̃1

´
+ e2

³
−e1 − c2e2 + e3 + w2ξ̃1

´
+
1

ν3
e3
³
α3 + Σ3 + w3ξ̃1 − β̃2

´
= −c1e21 − c2e

2
2 +

1

ν3
e3 (ν3e2 + α3 + Σ3)

+e1ξ̃1 + e2w2ξ̃1 +
1

ν3
e3w3ξ̃1 −

1

ν3
e3β̃2.

We choose the stabilizing function

α3 = −ν3e2 − c3e3 − d3w
2
3e3 − Σ3, c3, d3 > 0,



CHAPTER 9. NONLINEAR OUTPUT-FEEDBACK CONTROL 179

which gives

V̇3 = −c1e21 − c2e
2
2 −

c3
ν3
e23 −

d3
ν3
w23e

2
3

+e1ξ̃1 + e2w2ξ̃1 +
1

ν3
e3w3ξ̃1 −

1

ν3
e3β̃2.

Note that each term in the stabilizing function α3 has a particular task: The
first term −ν3e2 cancels the effect of the error e2 caused by the virtual control
variable u1 being different from the desired control law u1d. The last term Σ3
implements a feedforward cancellation of known nonlinear dynamics, which allows us
to replace it with a desired dynamics by adding feedback damping terms: The linear
damping c3—term determines the local convergence properties of the e3—dynamics,
and ensures boundedness with respect to the bounded disturbance β̃3. The nonlinear
damping d3—term is introduced to counteract the potentially destabilizing effect
of the observer error ξ̃1 multiplied with the unbounded w3—term. Moreover, the
design parameter ν3, introduces the possibility to compensate for the disturbances
appearing in the e3—dynamics. This is apparent from the scaling of the last two
terms in the expression for V̇3 above, which shows that by increasing ν3, the effect
of ξ̃1 and β̃2 reduces.

Design — Final step With u3 being a virtual control, the control law designed
at the previous step becomes our desired control law

u3d , y(3)r + α3
³
y, ξ̂1, ξ̂2, yr, ẏr, ÿr, β̂2

´
,

with the corresponding error

e4 , u3 − u3d = u3 − y(3)r − α3. (9.47)

As in Step 3, denote β̂3 the estimate of β3 , α̇3, and the estimation error β̃3 ,
β3 − β̂3. Introduce the filter

.

ζ̂3 = −l3 ·
³
ζ̂3 + l3α3

´
, (9.48)

and take the estimate of β3 as

β̂3 = ζ̂3 + l3α3. (9.49)

Backstepping the error e4 through the last integrator using approximate differ-
entiation of α3, we obtain

ė4 =
d

dt

³
b1 (y) b2ψ2

³
y, ξ̂2, x̂v

´´
− y(4)r − α̇3

=
∂b1
∂y

ẏ + b1b2
∂ψ2
∂y

ẏ + b1b2
∂ψ2

∂ξ̂2

.

ξ̂2 + b1b2
∂ψ2
∂x̂v

.

x̂v − y(4)r −
³
β̂3 + β̃3

´
.



Substituting with expressions for ẏ and
.
xv from (9.11) and re-ordering, gives

ė4 = b1b2b3
∂ψ2
∂x̂v

u− y(4)r +

µ
∂b1
∂y

+ b1b2
∂ψ2
∂y

¶³
ξ̂1 + k1y

´
+ b1b2

∂ψ2

∂ξ̂2

.

ξ̂2

−b1b2b3∂ψ2
∂x̂v

x̂v − β̂3 +

µ
∂b1
∂y

+ b1b2
∂ψ2
∂y

¶
ξ̃1 − β̃3.

Denoting

u4
³
y, ξ̂2, x̂v

´
, b1b2b3

∂ψ2
∂x̂v

u,

Σ4
³
y, ξ̂1, ξ̂2, ẑ, x̂v, β̂3

´
,
µ
∂b1
∂y

+ b1b2
∂ψ2
∂y

¶³
ξ̂1 + k1y

´
+b1b2

∂ψ2

∂ξ̂2

.

ξ̂2−b1b2b3
∂ψ2
∂x̂v

x̂v−β̂3,

w4
³
y, ξ̂2, x̂v

´
, ∂b1

∂y
+ b1b2

∂ψ2
∂y

,

the dynamics of the complete (e1, e2, e3, e4)—system can be written in the same form
as before

ė1 = −c1e1 + e2 + ξ̃1
ė2 = −e1 − c2e2 + e3 + w2ξ̃1
ė3 = −ν3e2 − c3e3 − d3w

2
3e3 + e4 + w3ξ̃1 − β̃2

ė4 = u4 − y
(4)
r + Σ4 + w4ξ̃1 − β̃3,

(9.50)

where the differences compared to exact backstepping, are the appearance of the
estimation errors β̃2 and β̃3, and the redefined functions, Σ3, Σ4, w3 and w4.
Taking

u4 = y(4)r + α4,

we design the stabilizing function α4 to stabilize the (e1, e2, e3, e4)—system using the
CLF

V4 = V3 +
1

2ν4
e24,

where ν4 > 0 is introduced as an additional design parameter. The derivative of V4
becomes

V̇4 = e1
³
−c1e1 + e2 + ξ̃1

´
+ e2

³
−e1 − c2e2 + e3 + w2ξ̃1

´
+
1

ν3
e3
³
−ν3e2 − c3e3 − d3w

2
3e3 + e4 + w3ξ̃1 − β̃2

´
+
1

ν4
e4
³
α4 + Σ4 + w4ξ̃1 − β̃3

´
= −c1e21 − c2e

2
2 −

c3
ν3
e23 −

d3
ν3
w23e

2
3 +

1

ν4
e4

µ
ν4
ν3
e3 + α4 + Σ4

¶
+e1ξ̃1 + e2w2ξ̃1 +

1

ν3
e3w3ξ̃1 −

1

ν3
e3β̃2 +

1

ν4
e4w4ξ̃1 −

1

ν4
e4β̃3.

We choose the stabilizing function

α4 = −ν4
ν3
e3 − c4e4 − d4w

2
4e4 − Σ4, c4, d4 > 0,
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which gives

V̇4 = −c1e21 − c2e
2
2 −

c3
ν3
e23 −

d3
ν3
w23e

2
3 −−

c4
ν4
e24 −

d4
ν4
w24e

2
4

+e1ξ̃1 + e2w2ξ̃1 +
1

ν3
e3w3ξ̃1 −

1

ν3
e3β̃2 +

1

ν4
e4w4ξ̃1 −

1

ν4
e4β̃3.

Note again that each term in the stabilizing function α4 has similar tasks as
in the previous design step: The first term −ν4

ν3
e3 cancels the effect of the error

between the virtual control variable u2 and the desired control law u2d, while Σ4
cancels known nonlinear dynamics in order to replace it with a desired dynamics by
adding feedback damping terms: The linear damping c4—term determines the local
convergence properties of the e4—dynamics, and ensures boundedness with respect to
β̃4. The nonlinear damping d4—term counteracts the potentially destabilizing effect
of the observer error ξ̃1 multiplied with the unbounded w4—term. Moreover, the
design parameter ν4, is introduced to make possible improved compensation of the
disturbances appearing in the e4—dynamics.

Summary – approximate backstepping control law

The main difference in the approximate backstepping control law compared to exact
backstepping, is due to new definitions of the cancellation terms Σ3 and Σ4, where
the analytic expressions for β2 , α̇2 and β3 , α̇3 are replaced with estimates β̂2
and β̂3, respectively. Furthermore, some additional design parameters ν3 and ν4
are introduced in the stabilizing functions α3 and α4 for improved compensation
of the estimation errors β̃2 and β̃3. The complete set of equations describing the
approximate backstepping control law is summarized below:
The approximate backstepping control law

u (y, x̂u, zr) =

µ
b1b2b3

∂ψ2
∂x̂v

¶−1 £
y(4)r + α4

¤
, (9.51)

stabilizes the system in the error coordinates

e1 = y − yr
e2 = u1 − ẏr − α1
e3 = u2 − ÿr − α2
e4 = u3 − y

(3)
r − α3,

(9.52)

and thereby solves the problem of practical asymptotic output-feedback tracking for
the electro-pneumatic clutch actuator (9.6). The virtual control variables are

u1 = ξ̂1
u2 = b1 (y) ξ̂2

u3 = b1 (y) b2ψ2

³
y, ξ̂2, x̂v

´
,

(9.53)



and the stabilizing functions are defined by the following expressions:

α1 (y, yr) = −c1e1 − Σ1

α2
³
y, ξ̂1, ẑ, yr, ẏr

´
= −e1 − c2e2 − Σ2

α3
³
y, ξ̂1, ξ̂2, yr, ẏr, ÿr, β̂2

´
= −ν3e2 − c3e3 − d3w

2
3e3 − Σ3

α4
³
y, ξ̂1, ξ̂2, x̂v, ẑ, yr, ẏr, ÿr, y

(3)
r , β̂3

´
= −ν4

ν3
e3 − c4e4 − d4w

2
4e4 − Σ4,

(9.54)

where c1, · · · , c4 > 0, d3, d4 > 0 and ν3, ν4 > 0 are design parameters. The time-
derivatives of α2 and α3 are estimated with the reduced-order observers

.

ζ̂2 = −l2 ·
³
ζ̂2 + l2α2

´
, β̂2 = ζ̂2 + l2α2

.

ζ̂3 = −l3 ·
³
ζ̂3 + l3α3

´
, β̂3 = ζ̂3 + l3α3,

(9.55)

where l2, l3 > 0 are design parameters which determines the time-constants of the
filters, given as τ 2 = 1/l2 and τ 3 = 1/l3, respectively. The cancelled observer dynam-
ics Σi and the nonlinear damping disturbance gains wi, i = 1, · · · , 4, respectively,
are given by

Σ1 (y) = k1y

Σ2
³
y, ξ̂1, ẑ, ẏr

´
= b1k2y − A

M
P0 − 1

M
fl − 1

M
ff + c1v̂ − c1ẏr

Σ3

³
y, ξ̂1, ξ̂2, β̂2

´
=
³
∂b1
∂y
ξ̂2 − b1k2

´³
ξ̂1 + k1y

´
− β̂2

Σ4

³
y, ξ̂1, ξ̂2, ẑ, x̂v, β̂3

´
=
³
∂b1
∂y
+ b1b2

∂ψ2
∂y

´³
ξ̂1 + k1y

´
+ b1b2

∂ψ2
∂ξ̂2

.

ξ̂2 − b1b2b3
∂ψ2
∂x̂v

x̂v − β̂3
(9.56)

and
w1 = 1
w2 = c1 + k1

w3
³
y, ξ̂2

´
= ∂b1

∂y
ξ̂2

w4
³
y, ξ̂2, x̂v

´
= ∂b1

∂y
+ b1b2

∂ψ2
∂y

.

(9.57)

The main properties of the approximate backstepping controller are summarized
in the following Proposition:

Proposition 37 (Approximate Backstepping Controller) Consider the output-
feedback controller consisting of the observer (9.9) and the control law (9.51)—(9.57)
applied to position tracking of the electro-pneumatic clutch actuator (9.6). For
bounded initial conditions, and any sufficiently smooth reference trajectory yr (t),
assuming the observer is exponentially stable in the feasible region X0 of the model
(9.6), the following properties hold for the closed-loop system in the feasible region
X0 of the model (9.6):

i) Boundedness: All signals of the closed-loop control system are bounded.
ii) Practical exponential tracking: The closed-loop system has an exponentially

practically stable equilibrium at (e, x̃u, β̃) = 0, which means that the controller
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achieves exponential tracking within a certain precision e0 which depends on the
upper bound of the estimation errors β̃2 and β̃3:

lim
t→∞

|y (t)− yr (t)| ≤ e0.

iii) Robustness: The closed-loop system is robust to bounded disturbances enter-
ing additively in the system dynamics (9.6). These disturbances can be exogenous,
or caused by model mismatches due to simplifications, parameter errors or unmod-
eled dynamics. More precisely, the system is exponentially input-to-state practically
stable (ISpS) with the disturbances as inputs. This means, in particular, that in
the presence of bounded disturbances, the controller exponentially achieves track-
ing within a certain precision e0 + ∆0, which depends on the upper bound of the
disturbance δ (∆0) and the estimation errors β̃2 and β̃3 (e0):

lim
t→∞

|y (t)− yr (t)| ≤ e0 +∆0.

Proof. The main part of the proof is identical to the proof of Proposition 34, and
we only outline the differences.
We first establish the properties of the estimation errors β̃2 and β̃3. In the region

of validity X0, the model (9.6) and the observer (9.9) are smooth in the actuator
states x = [y, v, p, xv, z]T , the estimates x̂u = [ξ̂1, ξ̂2, x̂v, ẑ]

T and the control input u.
Since the reference trajectory zr and the estimates β̂2 and β̂3 (for continuous α2 and
α3) are smooth, the approximate backstepping controller (9.51)—(9.57) produces a
control law u and stabilizing functions αi, i = 1, · · · , 4, that are smooth in t. Conse-
quently, by Proposition 36, the estimation errors β̃2 and β̃3 are bounded according
to ¯̄̄

β̃2 (t)
¯̄̄
≤

¯̄̄
β̃2 (0)

¯̄̄
e−l2t+

1

l2
kα̈2 (t)k∞¯̄̄

β̃3 (t)
¯̄̄
≤

¯̄̄
β̃3 (0)

¯̄̄
e−l3t+

1

l3
kα̈3 (t)k∞ .

From the proof of Proposition 36, we have that the error dynamics can be written
as

.

β̃2 = −l2β̃2 + α̈2 (t)
.

β̃3 = −l3β̃3 + α̈3 (t)

A Lyapunov function which establishes the ISS property of this error dynamics is
given by

Vβ =
1

2
β̃2 +

1

2
β̃3

=
1

2

¯̄̄
β̃
¯̄̄2
.

whose derivative can be written

V̇β = −l2β̃22 − l3β̃
2

3 + β̃2α̈2 + β̃3α̈3.



Using completion of squares (Lemma 26), we obtain

β̃iäi ≤
li
2
β̃
2

i +
1

2li
α̈2i , i = 1, 2,

which is used to show that V̇β satisfies

V̇β ≤ − l2
2
β̃
2

2 −
l3
2
β̃
2

3 +
1

2l2
α̈2 (t)

2 +
1

2l3
α̈3 (t)

2 .

Denoting l0 , 1
2
min{l2, l3}, with β̃ , [β̃2, β̃3]T and α̈ , [α̈2, α̈3]T , we can write

V̇β ≤ −l0
¯̄̄
β̃
¯̄̄2
+
1

2l0
|α̈|2

= −2l0Vβ + 1

2l0
|α̈|2 ,

which establishes that the error β̃ is exponentially input-to-state stable (ISS) with
respect to α̈ (t) as input.
Next, we establish that the dynamics of the system in the error coordinates

e1, · · · , e4, is ISS with respect to the observer errors ξ̃1, β̃2 and β̃3 as inputs. Consider
the CLF (V4) from the final design step

Ve =
1

2
e21 +

1

2
e22 +

1

2ν3
e23 +

1

2ν4
e24

=
1

2
eTPee,

where Pe , diag{1, 1, ν−13 , ν−14 } and e , [e1, e2, e3, e4]
T . Substitute c1 = c̄1 + d̄1,

c2 = c̄2 + d̄2w
2
2, c3 = c̄3 + κ3 and c4 = c̄4 + κ4, such that the time-derivative can be

written

V̇e = −c̄1e21 − c̄2e
2
2 −

c̄3
ν3
e23 −

c̄4
ν4
e24

−d̄1e21 − d̄2e
2
2w

2
2 −

d3
ν3
e23w

2
3 −

d4
ν4
e24w

2
4

+e1ξ̃1 + e2w2ξ̃1 +
1

ν3
e3w3ξ̃1 +

1

ν4
e4w4ξ̃1

−κ3
ν3
e23 −

κ4
ν4
e24 −

1

ν3
e3β̃2 −

1

ν4
e4β̃3.

Using Lemma 26 (completion of squares) to obtain the inequalities

e1ξ̃1 ≤ d̄1e
2
1 +

1

4d̄1
ξ̃
2

1

e2w2ξ̃1 ≤ d̄2e
2
2w

2
2 +

1

4d̄2
ξ̃
2

1

eiwiξ̃1 ≤ die
2
iw

2
i +

1

4di
ξ̃
2

1, i = 3, 4

eiβi−1 ≤ κie
2
i +

1

4κi
β̃
2

i−1, i = 3, 4,



CHAPTER 9. NONLINEAR OUTPUT-FEEDBACK CONTROL 185

we can show that V̇e satisfies

V̇e = −c̄1e21 − c̄2e
2
2 −

c̄3
ν3
e23 −

c̄4
ν4
e24

+

µ
1

4d̄1
++

1

4d̄2
+

1

4ν3d3
+

1

4ν4d4

¶
ξ̃
2

1

+
1

4ν3κ3
β̃
2

2 +
1

4ν4κ4
β̃
2

3.

Denoting

c0 , min {c̄1, c̄2, c̄3, c̄4} ,

d0 ,
µ
1

d̄1
+
1

d̄2
+

1

ν3d3
+

1

ν4d4

¶−1
ν0κ0 , min{ν3κ3, ν4κ4},

we get

V̇e ≤ −c0eTPee+
1

4d0
ξ̃
2

1 +
1

4ν0κ0

¯̄̄
β̃
¯̄̄2
.

This proves that the e—system is ISS with respect to the observer errors ξ̃1, β̃2 and
β̃3 as inputs.
Preparing for analysis of the complete (e, x̃u, β̃)—system, we show, using the

inequality ξ̃
2

1 ≤ |x̃u|2 ≤ 1
c
Vo, that the derivative of Ve in terms of Ve, Vo and Vβ,

satisfies
V̇e ≤ −2c0Ve+ 1

4d0c
Vo +

1

2ν0κ0
Vβ.

A Lyapunov function for the complete (e, x̃u, β̃)—system is given by

V = Ve +moVo +mβVβ

=
1

2
eTPee+moVo +

mβ

2

¯̄̄
β̃
¯̄̄2
, (9.58)

where mo,mβ > 0 are positive constants which is determined below. In order to
obtain an ISS bound on the tracking error e1 (t) , y (t)− yr (t), we need to rewrite
V̇ in terms of V . With this in mind, we show that the derivative of V in terms of
Ve, Vo and Vβ satisfies

V̇ = V̇e +moV̇o +mβV̇β

≤ −2c0Ve+ 1

2d0c
Vo +

1

2ν0κ0
Vβ +mo

¡−2αoVo + γo |δ|2
¢
+mβ

µ
−2l0Vβ + 1

2l0
|α̈|2

¶
= −2c0Ve −

µ
2moαo − 1

4d0c

¶
Vo −

µ
2mβl0 − 1

2ν0κ0

¶
Vβ +moγo |δ|2 +

mβ

2l0
|α̈|2 .

Taking

mo , 1

2 (αo − σ) d0c

mβ , 1

4 (lo − σ) ν0κ0
,



we get
V̇ ≤ −2c0Ve − 2σmoVo − 2σmβVβ +moγo |δ|2 +

mβ

2l0
|α̈|2 .

By choosing σ so that it satisfies

0 < σ < min {c0, αo, lo} ,
we ensure that both scaling factors mo and mβ are finite and positive, and that V̇
satisfies

V̇ ≤ −2σ (Ve −moVo −mβVβ) +moγo |δ|2 +
mβ

2l0
|α̈|2

= −2σV +moγo |δ|2 +
mβ

2l0
|α̈|2 .

This proves that the complete (e, x̃u, β̃)—system is ISS with respect to the distur-
bance δ (t) and α̈ (t) as inputs.
We proceed to obtain an ISS bound on the tracking error e1 (t) = y (t)− yr (t).

Using Lemma 28 for both inputs δ (t) and α̈ (t), we obtain

V (t) ≤ V (0) e−2σ·t+
moγo
2σ

kδ (t)k2∞ +
mβ

4σl0
kα̈ (t)k2∞ ,

where we use the simplified notation V (t) = V
³
e (t) , x̃u (t) , β̃ (t)

´
. From (9.58),

we note that
|e1|2 ≤ eTPνe ≤ 2V,

and obtain an ISS bound on the tracking error e1 (t) , y (t)− yr (t) according to

e1 (t)
2 ≤ 2V (0) e−2σ·t+

moγo
σ

kδ (t)k2∞ +
mβ

2σl0
kα̈ (t)k2∞

⇓
|e1 (t)| ≤

p
2V (0) e−σ·t+

r
moγo
σ

kδ (t)k2∞ +
r

mβ

2σl0
kα̈ (t)k∞ ,

where both δ (t) and α̈ (t) are viewed as inputs. Here, we denote the bounds corre-
sponding to δ (t) and α̈ (t), respectively, by

∆0 ,
r

moγo
σ

kδ (t)k∞

e0 ,
r

mβ

2σl0
kα̈ (t)k∞ .

An upper bound on the final tracking precision ∆0 + e0, is then given by

lim
t→∞

|y (t)− yr (t)| = lim
t→∞

e1 (t) = ∆0 + e0,

which reduces to e0 without disturbances, i.e., for δ (t) ≡ 0.
The boundedness of the uncertain derivatives of the stabilizing functions, is a

property which is inherent of the controller design. Therefore, we may view α̈ (t) as
an internal controller error rather than an input. In this case, the (e, x̃u, β̃)—system is
said to be exponentially input-to-state practically stable (ISpS) with respect to δ (t)
as a disturbance input. Without the disturbance, i.e., for δ (t) ≡ 0, the equilibrium
(e, x̃u, β̃) = 0, is then said to be exponentially practically stable.
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9.3 Robust output-feedback control system

The complete tracking control system for the electro-pneumatic actuator (9.6) con-
sists of three main components, illustrated in the block diagram in Figure 9.2:

Reference Model For arbitrary reference inputs r, the reference model gener-
ates a smooth reference trajectory yr and its time-derivatives, given by zr
, [yr,ẏr,ÿr,y(3)r ,y

(4)
r ]T .

State Estimator Based on a nonlinear model of the actuator, and using the mea-
sured position y and the control input u, the observer (9.9) provides estimates
of the unmeasured states x̂u , [v, p, xv, z]T of the actuator.

Control Law Based on a nonlinear model of the actuator, the controller use the
measured position y and the estimate x̂u of the unmeasured states to compute
a control input u which makes the actuator position y track the reference
trajectory yr.

r Reference
 Model

Tracking
Reference

y

u

y
ux̂

Clutch
Actuator

System

Control
Law

Controller

State
Estimator

Observer

u

rz

Figure 9.2: Block diagram illustrating the structure of the output-feedback track-
ing controller.

9.3.1 Reference model

The reference model is given by (9.2)—(9.3), described in Section 9.1. We determine
the properties of the reference model by the single design parameter λr, referred
to as the design bandwidth of the reference model. Since λr determines the time-
constant of the reference model, it is also viewed as the design bandwidth of the
closed-loop control system with respect to tracking the reference input r with the
actuator position y.



9.3.2 State estimator

To obtain a robust solution, we use the re-designed robust observer given by (8.123),
page 147, rather than the nominal observer (9.9) which was used in the backstepping
design of the control law in the previous sections. In the robust observer, smooth
saturation and projection of the observer states ξ̂1 and ξ̂2, and smooth saturation
of the control input u, is used to constrain the estimates v̂, p̂ and x̂v to the feasible
region χ0 of the model (9.6). Hence, global exponential stability of the observer
xu is obtained for ∀xu ∈ X0. For simplicity of notation, we denote the estimate
obtained from the robust observer (8.123) simply by x̂u, i.e., dropping ’π’ and ’P ’
in x̂Pu,π.
The estimation properties of the observer is determined by the design bandwidth

λo, however, the upper and lower bounds, x̂u,ub and x̂u,lb, have a strong influence
on the initial convergence properties, and should be tightened as much as possible
in order to improve the initial convergence of the observer.

9.3.3 Control law

The control law is given either by the exact backstepping design (9.30)—(9.35), or
the approximate backstepping design (9.51)—(9.57), where the observer estimates x̂u
are replaced with the estimates obtained from the robust observer (8.123)—(8.125).
The actual control input uv is taken as

uv ,
1

Kv
πu (u) ,

where πu (u) is the smooth saturated control input used in (8.123). Since the pro-
jected estimates from the robust observer are smooth, the smoothness of the back-
stepping control law is preserved. Furthermore, since the estimates from the robust
observer are constrained to the feasible region X0 of the model, the properties es-
tablished by either Proposition 34 (page 170) or Proposition 37 (page 182), are
now valid, globally. Hence, the controller achieves global robust output-feedback
(practical) tracking.
In the following, we will implement and analyze only the approximate backstep-

ping controller, given by (9.51)—(9.57).

9.4 Simulation results

In this section, we present some characteristic simulation results when the approx-
imate backstepping controller is applied to output-feedback tracking of the electro-
pneumatic clutch actuator (9.6). We analyze the performance of the controller with
a sinusoidal reference trajectory, which results in a relatively simple tracking task,
but which demonstrates well the properties of the controller. The reference trajec-
tory yr (t) is generated from the reference model using the sine wave input

r (t) = R0 +R1 sin

µ
2π

T
· t
¶
,
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with bias R0 = 8mm, amplitude R1 = 4mm, and period T = 1.0 s.
The reference model is implemented with poles placed at s = −λr, with λr = 50.

This corresponds to a time-constant τ r = 5/λr = 0.100 s for the critically damped
5th-order reference model. The observer gains k1 and k2 of the reduced-order ob-
server (8.123), is placed according to (8.111) with the single design parameter λo,
referred to as the design bandwidth of the observer. We illustrate the performance
using the following observer settings:

λo = 25 ⇒ k1 = 50 k2 = 0.5 · 103
λo = 50 ⇒ k1 = 100 k2 = 2.2 · 103
λo = 100 ⇒ k1 = 200 k2 = 8.9 · 103.

The observer is implemented with upper bound x̂u,ub, lower bound x̂u,lb, and smooth-
ing width επ, set according to

x̂u,ub =
£
200mm/ s 995 kPa 1 0.5mm

¤T
x̂u,lb =

£−200mm/ s 105 kPa −1 −0.5mm¤T
επ =

£
1mm/ s 1 kPa 0.01 0.001mm

¤T
.

Furthermore, the feedback gains l2 and l3 of the derivative observers (9.55) are
implemented with l2 = l3 , lβ = 200, which corresponds to low-pass filtering with
time-constants τ 2 = τ 3 = 1/lβ = 0.005 s.

Controller scaling factors ν3 and ν4

In this subsection, we illustrate the effectiveness of using ν3 and ν4 to attenuate the
disturbing effect of the estimation errors β̃2 and β̃3, introduced by the simplification
of the exact backstepping controller. The tuning of ν3 and ν4 is simplified by
introducing the single design parameter νc > 0, and take ν3 and ν4 according to the
rule

ν3 = νc
ν4 = νcν3.

(9.59)

In order to isolate the effect of β̃2 and β̃3, the closed-loop controller is simulated
without initial transients, and with zero feedback gain in the controller, i.e., cc = 0.
We initialize the observer to produce zero initial error, x̃u (0) = 0, which is equivalent
to simulating the controller with full state-feedback since x̂u (t) ≡ xu (t) for ∀t ≥ 0.
Furthermore, we chose the initial value of the state vector of the reference model
zr (0) to produce e (0) = 0. This is referred to as trajectory initialization, which
together with full state-feedback (i.e., zero observer errors), eliminates the initial
transients of the closed-loop system.
Figure 9.3 plots three simulations for increasing values of νc. The estimation

errors β̃2 and β̃3 cause errors which destroy the asymptotic tracking properties of
the closed-loop system. However, as illustrated in the figure, the effect of the errors
β̃2 and β̃3 reduces for increasing νc, and the asymptotic tracking performance of the
closed-loop system is approximately recovered for high νc.
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Figure 9.3: Simulations illustrating the effect of the scaling factors ν3 = νc and
ν4 = νcν3.

Analyzing the stabilizing functions (9.54), we see that high ν3, in effect, imple-
ments high gain compensation of the error e2 due the the cancellation term −ν3e2
in the the third stabilizing function α3. Likewise, will high ν4 implement high gain
compensation of the error e3 due to −ν4/ν3 · e3 in α4. However, too high values of
ν3 or ν4 is undesirable, as it may make the controller prone to introduce chattering
– high-frequency switching – in the control input, and sensitive to noise in the
measured output y.

Remark 38 Both the simulations and experimental results show that a good com-
promise between high compensation of β̃2 and β̃3 and a reasonably low gain which do
not introduce too high control effort, is to take v3 and ν4 using (9.59) with νc = 104.
This is, however, a coarse choice, and fine tuning of νc should provide a more optimal
value.

Controller feedback gains c1, c2, c3, and c4

In this subsection, we demonstrate the effect of the controller feedback gains c1, c2, c3,
and c4 on the convergence properties of the output-feedback tracking controller. We
choose the controller gains with a single design parameter cc according to the simple
rule

c1 = c2 = c3 = c4 = cc (9.60)
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When c1, c2, c3 and c4 are given by the above tuning law, we refer to cc as the
controller gain. Like for the ν—parameters, this is a very course choice, such that
fine tuning of each parameter individually for a given application, should provide a
more optimal controller gain setting.
We use observer gains k1 and k2 set according to a bandwidth of λo = 50, and for

the controller scaling factors, we take νc = 104 with ν3 and ν4 determined according
to (9.59). In order to illustrate the strong convergence properties of the closed-loop
control system, the observer is initialized with the simple choice

x̂u (0) = [v̂ (0) , p̂ (0) , x̂v (0) , ẑ (0)]
T = [0, 0, 0, 0]T .

Since we replace x̂u with its saturated and projected version x̂Pu,π in the implemented
controller, the actual initial values of the observer becomes

x̂Pu,π (0) = [v̂ (0) , p̂ (0) , x̂v (0) , ẑ (0)]
T = [0, P0, 0, 0]

T ,

due to the lower bound on the pressure estimate, p̂lb = P0. Also for illustration of
convergence properties, the state of the reference model zr is initialized with the
simple choice zr (0) = 0, rather than using trajectory initialization.
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Figure 9.4: Simulations illustrating the effect of controller feedback gains ci, i =
1, · · · , 4, set according to ci = cc.

Figure 9.4 plots the simulated tracking performance for increasing values of cc.
For cc < 100, the output y of the actuator hits its physical constraint (yub = 18mm)



during the initial transients of the controller convergence. The initial transients in
the controller are caused by initial observer errors, x̃u 6= 0, and initial errors in the
e—system, e 6= 0. For all cc = {10, 25, 100}, the tracking error e1 = y−yr, converges
to approximately zero, i.e., practical tracking is recovered after the exponentially
converging transients. We see from the figure that the control input saturates during
the initial transients, and that the control effort increases with increasing gain.
However, once the tracking task is met, the control effort lies well within the available
control, uv ∈ [−10, 10]V.

Observer feedback gains – bandwidth λo

In this subsection, we demonstrate the effect of the observer feedback gains k1 and
k2 on the convergence properties of the output-feedback tracking controller. As
proposed in Subsection 8.4.4 (page 139), we determine the observer gains according
to (8.111) using the single parameter λo, referred to as the design bandwidth of the
observer.
The parameters and initial conditions are in accordance with the simulations

presented in the previous subsection, except the controller gains, which are set ac-
cording to cc = 50, and the observer gains, which are set according to different
values of the design bandwidth λo.
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Figure 9.5: Simulations illustrating the effect of observer gains k1 and k2, which
are given by the observer bandwidth, λo.

Figure 9.5 plots the simulated tracking performance for increasing values of λo.
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With respect to initial controller transients, the effect of increasing λo is very similar
to the effect obtained when increasing controller gain cc. With a perfect model,
however, the final tracking precision is obviously determined only by cc and not
λo (since the observer error converges to zero, x̃u = 0). For sufficiently high λo
(for a given cc), the controller avoids that the output y of the actuator hits its
physical constraint during the initial transients. High λo also reduces the undesirable
oscillations appearing in the control input during initial transients when the initial
observer error x̃u (0) is large.

Dynamic friction compensation

In this subsection, we illustrate the effect that the dynamic friction compensation
of the backstepping controller has on the tracking performance. Because of the
dynamic friction model

ff (v, z) = Dvv +Kzz +Dz ż

= Dvv +Kzz +Dz

µ
v − Kz

FC
|v|s z

¶
in the observer, the backstepping controller has an inherent dry friction1 compensa-
tion by design. To illustrate the effect of this dry friction compensation, we imple-
mented a simplified backstepping controller design, replacing the dynamic friction
model with the simple static model

ff (v) = Dvv,

including viscous friction only.
We use a controller gain cc = 50 and observer bandwidth λo = 50. Otherwise,

the parameters and initial conditions are identical with the simulations presented in
the two previous subsections.
Figure 9.6 plots the tracking performance with and without dynamic dry friction

compensation in the observer used in the backstepping design. The backstepping
controller whose design is based on a static viscous friction model, and therefore
do not have dry friction compensation, naturally, is not able to track the reference
trajectory during a change of direction in yr (t). In order to be able to track the
reference during a change of direction in yr (t) in the presence of dry (Coulomb)
friction, the controller need to anticipate the change in friction by a corresponding
pulse in the control input. This is seen from the behavior of the control input for
the approximate backstepping controller with a dynamic friction model.

Remark 39 By increasing the feedback gain cc and the observer bandwidth λo, the
backstepping controller design without a dynamic friction model, will to a certain
extent attenuate the lack of dry friction compensation. Furthermore, if changes
in direction of yr (t) are slow, then the resulting tracking error due to dry friction
becomes smaller compared to faster changes. Hence, for slow tracking tasks, the
dynamic friction model may be omitted from the design, without introducing large
tracking errors.

1Dry friction is also commonly referred to as Coulomb friction.
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Figure 9.6: Simulations of the controller with and without dynamic dry friction
compensation.

9.5 Experimental results

Here we present some characteristic experimental results when the approximate
backstepping controller is applied to output-feedback tracking of the electro-pneumatic
clutch actuator of the test rig described in Section 2.1.
The observer and controller are implemented with the model parameters sum-

marized in Table 6.1. The design parameters are generally the same as in the sim-
ulations, and are also printed in each figure: The reference model is implemented
with λr = 50, corresponding to a time-constant τ r = 5/λr = 0.100 s. The robust
reduced-order observer (8.123) is implemented with bounds and smoothing width

x̂u,ub =
£
200mm/ s 995 kPa 1 0.5mm

¤T
x̂u,lb =

£−200mm/ s 105 kPa −1 −0.5mm¤T
επ =

£
1mm/ s 1 kPa 0.01 0.001mm

¤T
,

and observer gains k1 and k2 according to a design bandwidth of λo = 100:

λo = 100 ⇒ k1 = 200 k2 = 8.9 · 103.
The feedback gains l2 and l3 of the derivative observers (9.55) are implemented with
l2 = l3 , lβ = 200, which corresponds to low-pass filtering with time-constants
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τ 2 = τ 3 = 1/lβ = 0.005 s. The controller is implemented with the scaling factors
ν3 = 10

4 and ν4 = 10
8, while we present results using two different gain settings

Moderate gain: (cc = 50) c1 = 50 c2 = 50 c3 = 50 c4 = 50
High gain: c1 = 400 c2 = 50 c3 = 50 c4 = 50.

The logging of an experiment is set up to be triggered after an initialization of the
observer, while the reference input r (t) and the state zr (t) of the reference model
are not initialized at the beginning of a logged experiment. The initial actuator
states

x (0) = [y (0) , v (0) , p (0) , xv (0) , z (0)]
T ,

are different for each experiment, and are printed in the figures in the units [mm],
[ mm/ s], [ kPa], [−], [mm], respectively. Like in the simulations, we illustrate the
strong convergence properties of the output-feedback controller using the simple
choice of initial observer states:

x̂u (0) = [v̂ (0) , p̂ (0) , x̂v (0) , ẑ (0)]
T = [0, 0, 0, 0]T ,

which due to the lower bound p̂lb = P0 on the pressure estimate, becomes

x̂Pu,π (0) = [v̂ (0) , p̂ (0) , x̂v (0) , ẑ (0)]
T = [0, P0, 0, 0]

T ,

after saturation and projection in the implemented observer.

Sine wave reference input r (t)

In this subsection, we validate the performance of the controller with a sinusoidal
reference trajectory. The reference trajectory yr (t) is similar to the simulations in
the preceding sections, i.e., it is generated from the reference model using the sine
wave input

r (t) = R0 +R1 sin

µ
2π

T
· t
¶
,

with bias R0 = 8mm, amplitude R1 = 4mm, and period T = 1.0 s.
Figure 9.7 illustrates the measured tracking performance of the output-feedback

controller for a sinusoidal reference trajectory with the observer and controller gains
set according to λo = 100 and cc = 50, respectively. With these observer and
controller settings, the control law produces a smooth control input, where the
amplification of measurement noise is negligible, and the convergence of the observer
and tracking error is fast and monotonic, i.e., without oscillations. Clearly, the
tracking performance can be said to be good, with reasonably small tracking errors.
For the given controller setting, the plotted experiment is representative for the

tracking performance of the controller when subjected to similar types of reference
inputs. That is, with feedback gain cc = 50, tracking is good for reference trajectories
with a frequency content in the range up to about f = T−1 = 1Hz, like the sine
wave in Figure 9.7. However, the controller is not able to track faster changes
in the reference trajectory without increased tracking errors. In order to ensure
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Figure 9.7: Measured tracking performance with feedback gains in the observer
and controller gains set according to λo = 100 and cc = 50, respectively.

good tracking with this controller setting for all possible reference inputs r (t), the
bandwidth of the reference model must be lowered so that it low-pass filters the
reference input r (t) with a cut-off frequency less than 1Hz. This is achieved with
λr = 25, which gives a time-constant of τ r = 5/25 = 0.200 s, and where the cut-off
frequency in Hz is given by

fc =
1

2πτ r
=

λr
10π

= 0.8Hz.

In this case, the plotted experiment is representative for the tracking performance
of the controller for arbitrary reference inputs r (t).
With the reference model implemented with λr = 50, the time-constant is given

by τ r = 5/λr = 0.100 s, giving a cut-off frequency of fc = 1.6Hz. For the controller
gain set according to cc = 50, the controller is not able to track the reference y (t)
for arbitrary inputs in r (t) without tracking errors. In the following experiments,
rather than reducing the bandwidth of the reference model to λr = 25, we increase
the feedback gains in an attempt to achieve acceptable tracking performance for
λr = 50. This is done at the expense of higher control effort, which reveals a
limitation of the achievable bandwidth of the closed-loop tracking controller caused
by unmodeled valve dynamics.
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Square wave reference input r (t)

In this section, we validate the performance of the controller when tracking a filtered
square wave reference. That is, with the reference trajectory yr (t) generated from
the reference model using the square wave input

r (t) = R0 +R1 sgn

∙
sin

µ
2π

T
· t
¶¸

,

with bias R0 = 8mm, amplitude R1 = 4mm, and period T = 1.0 s.
In the following experiments, we use the controller gains c1 = 400 and c2 = c3 =

c4 = 50. This controller setting is a compromise between high tracking performance
and low control effort.
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Figure 9.8: Measured tracking performance for a filtered square wave reference
trajectory y (t).

Figure 9.8 illustrates the performance when attempting to track a filtered square
wave trajectory, where tracking errors and high control effort occur during fast
changes in yr (t). This experiment is representative for the worst case tracking per-
formance for the approximate backstepping controller with a closed-loop bandwidth
set according to λr = 50. The cause for the high control effort is the high feedback
gain c1 = 400, which is necessary in order to track yr (t) without unacceptable track-
ing errors during step changes in r (t). Furthermore, by increasing the other gains
c2, c3, c4 the tracking performance improves, however, the control effort increases
and produces a more aggressive control input.



Notice that the actuator starts initially with a chamber pressure which equals the
supply pressure PS = 1031 kPa, meaning that the actuator produces the maximum
possible actuation force2. This again means that the actuator is fully disengaging the
clutch, and that the actuator starts initially at its maximum position, yub = 16.2mm.
The high initial pressure p (0) = PS is the reason for the long initial transient period
before practical tracking is achieved, which is caused by the large amount of air
which have to be evacuated from the actuator chamber.
Step inputs in r (t) produces the fastest change in the tracking reference yr (t)

which is possible for a given reference model setting. The fast changes in yr (t)
is probably a triggering factor for the reduced controller performance during step
inputs in r (t), as fast changes in yr (t) results in fast changes in α̇2 and α̇3 which again
results in large errors in their estimates β̂2 and β̂3. As indicated by Proposition 37
(page 182) and simulations, these errors are attenuated for sufficiently high feedback
gains c1, c2, c3 and c4. However, in a practical implementation, measurement noise,
or unmodeled actuator or sensor dynamics, will limit the maximum implementable
feedback gain. Upon examination of the observer performance, the limiting factor
on maximum achievable bandwidth for this application, appears to be unmodeled
valve dynamics which is excited by high-frequency control inputs.
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Figure 9.9: Measured closed-loop observer performance with the approximate
backstepping controller subjected to a filtered square wave reference trajectory y (t).

Figure 9.9 plots the corresponding observer performance for the experiment plot-
ted in Figure 9.8. During step changes in r (t), where the control law produces fast

2The strange peak in the position just before the actuator starts to move is not the actual
movement of the actuator, but an error in the measurement due to an elastic deformation of the
sensor bracket, which occurs when the actuator push towards the physical constraint of the clutch
with excessive force.
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changes in the control input uv, the estimated velocity v̂ exhibits an overshooting es-
timate which is caused by errors in the pressure estimate p̂. This error can be traced
to unmodeled valve dynamics, as the spool position of the valve experiences a slowly
converging overshoot after a fast change in uv, which obviously, is not captured by
the simple linear model of the valve dynamics used by the observer.
Considering the above analysis, we make the following conclusion:

Remark 40 The maximum bandwidth of the tracking controller with which we are
able to achieve acceptable tracking performance for arbitrary reference inputs r (t),
is with the poles of the reference model placed at s = −λr, with λr = 50. This
corresponds to a time-constant of τ r = 0.100 s for the closed-loop system. For higher
λr the observer performance degrades considerably due to the excitation of unmodeled
valve dynamics for high-frequency input uv (t). Since high feedback gains increases
the control effort, which again increases the frequency content of the input, thus, the
excitation of the unmodeled valve dynamics, the disturbance due to observer errors
can not be attenuated using high gain without introducing chattering in the control
input uv.

In the following sections, we further validate the performance of the approximate
backstepping controller implemented with the maximum bandwidth λr = 50, and
feedback gains c1 = 400 and c2 = c3 = c4 = 50.

Arbitrary reference input r (t)

Using a potentiometer as a joystick, we can control the reference input r (t)manually
in order to illustrate the tracking performance for the approximate backstepping
controller when subjected to arbitrary reference inputs.
Figure 9.10 and 9.11 plots the tracking performance and the corresponding ob-

server performance for an arbitrary reference input r (t), generated manually by
hand. Notice the tracking errors which occur for fast changes in yr (t), which are
primarily caused by observer errors due to excitation of the unmodeled valve dy-
namics, as discussed above.

Typical clutch sequence reference input r (t)

A typical clutch sequence during gear-shift, consists of the following sequence:

Full disengagement of the clutch: A gear-shift starts with a full disengagement
of the clutch to disconnect the engine from the drive line. This disengagement
is usually performed as fast as possible.

Disengagement during gear-shift: The clutch is held in fully disengaged posi-
tion during the change of transmission.

Engagement to the slip-point: The engagement to reach the point where the
clutch starts to transfer torque – the slip-point of the clutch – is usually
performed in a precise and relatively fast motion.
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Figure 9.10: Measured tracking performance of the approximate backstepping con-
troller subjected to a reference trajectory yr (t) generated from an arbitrary reference
input r (t).

Engagement through the slip-point: Once the slip-point is reached, it is fol-
lowed by a slow engagement to ensure a smooth torque transfer from the
engine to the drive line.

Remaining full engagement of the clutch: When the clutch engagement has
reached the point where the required torque is transferred by the clutch and the
clutch disks locks up, the remaining full engagement of the clutch is performed
as fast as possible.

Figure 9.12 and 9.13 illustrate the tracking performance and the correspond-
ing observer performance for a reference input r (t) representing a typical clutch
sequence during gear-shift.
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Figure 9.11: Measured observer performance in closed-loop with a reference tra-
jectory yr (t) generated using a potentiometer as a joystick to produce a manual
reference input r (t).

9.6 Summary

Based on a reduced-order observer for the electro-pneumatic actuator, a robust
output-feedback tracking controller is designed by a recursive observer-based back-
stepping procedure in four steps. The backstepping design is simplified for the two
last steps by using high-gain observers to estimate, rather than calculate analyti-
cally, the derivative of the stabilizing function designed at the previous steps. The
approximate backstepping controller achieves exponential practical tracking within
a prescribed tracking precision, where an arbitrary small precision is achieved by
sufficiently high feedback gain in the observer and controller. The controller is ro-
bust to bounded disturbances (e.g. modeling errors) appearing additively in the
system dynamics. Combined with a robust re-design of the observer using smooth
saturation and projection of the estimates to constrain the estimated states to the
region of validity of the design model, these strong properties of the controller hold
globally.
The controller is in essence tuned according to four main design parameters: The

observer gains are set according to the design bandwidth λo, and the feedback gains
and scaling of control law according to cc and νc. The parameters of the reference
model are determined according to the design bandwidth λr, which is also viewed
as the design bandwidth of the closed-loop tracking controller since it determines
the time-constant τ r of the tracking of the reference input r.
The experimental results show that the maximum achievable bandwidth of the

controller is limited by unmodeled valve and pressure dynamics. The controller
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Figure 9.12: Measured tracking performance of the approximate backstepping
controller when subjected to a reference trajectory y (t) representing a typical clutch
sequence for a gear-shift.

achieves accurate tracking for arbitrary reference inputs r for design bandwidths
λr < 50, where λr = 50 corresponds to a time-constant of τ r = 0.100 s.
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Figure 9.13: Measured observer performance in closed-loop with a reference tra-
jectory y (t) representing a typical clutch sequence for a gear-shift.
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Chapter 10

Conclusions

This thesis deals with the design of an position tracking controller for a single-acting
pneumatic cylinder actuator operated by a three-way proportional valve, using only
position feedback. The considered applications are clutch actuation in automated
manual transmissions (AMT), and clutch-by-wire (CBW) solutions, in heavy-duty
trucks. Particularly, the latter application requires precise and fast position tracking.
For electro-pneumatic actuators in general, the main obstacles with respect to

control design, are the high compressibility of air in combination with low damping,
and nonlinear flow and friction characteristics. Additionally for the clutch appli-
cation, the actuator operates against a highly nonlinear clutch compression spring,
which constitutes the main load of the actuator. The lack of sensors to provide state
measurements for feedback, is another severe contraint on the control system, which
further complicate the design.

State of the art

The introduction of Chapter 1, is one of the main contributions of the thesis, provid-
ing a survey of the most relevant literature on the modeling and control of electro-
pneumatic actuators, and reviews selected nonlinear control theory not yet applied
to pneumatic actuators.
The nature of pneumatic actuators is well understood, and accurate models de-

scribing their dynamics exists. Still, there are untapped potentials of improvements
with respect to aspects regarding parameter estimation and control design. That
is, the most accurate models are not particularly suited for control and parameter
estimation, i.e., they are in forms which exclude the application of existing solutions
for nonlinear output-feedback and adaptive control available in the literature.
The literature related to control of pneumatic actuators applied for clutch actu-

ation is scarce, with results reported mainly by two researchers. On the other hand,
the literature on control of pneumatic actuators, in general, is relatively rich, with
several research groups doing research on the topic the last two decades.
With a few exceptions, the results from this research on control of pneumatic

actuators, address full state-feedback control, i.e. , assuming all states being mea-
sured. The introduction of this thesis provides an overview of these results on
state-feedback control strategies applied to pneumatic actuators, grouped into three
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main categories where the essence of the solutions in each category is extracted and
described in detail.
Only a few papers address output-feedback control, or observer design for pneu-

matic actuators, where most results are primarily based on linear control theory.
The reason for the few results on output-feedback control of pneumatic actuators, is
likely due to the lack of constructive procedures for designing observers for nonlinear
systems in general. However, for certain classes of nonlinear systems, solutions for
contructive observer design do exist. The largest of these classes being feedback
linearizable systems which comprises pneumatic actuators, where a constructive
high-gain observer design applies. In the last part of the introduction of this thesis,
we provide a review of the main results in the nonlinear output-feedback control
literature that is applicable to pneumatic actuators.

Modeling

Chapters 2—6 of Part I of the thesis, address the modeling of the system in the con-
text of nonlinear and adaptive control. That is, besides accuracy, emphasis is laid
on deriving models that have particular properties like smoothness and parameter-
affinty. Smoothness makes the resulting model fully feedback linearizable, thus, ap-
plicable for existing solutions for output-feedback control using high-gain observers,
while parameter-affinity, facilitates parameter estimation and the design of adap-
tive controllers. Main contributions in this regard, is the unified treatment of the
modeling of the complete electro-pneumatic clutch actuation system (which until
this has been missing in the literature), and improvements of particular models of
pneumatic actuators. In particular, Chapter 5 on flow modeling provides a refined
review of existing models, and proposes new models with improved, or optimalized,
properties with respect to parameter-affinity, applicability to nonlinear control, and
accuracy.

Observer design

In Chapter 8, the lack of sensors to provide full state-feedback, is solved by designing
nonlinear observers to estimate the unmeasured states based on the measured posi-
tion. Rather than applying the existing constructive design procedure for high-gain
observers that require a transformation to the normal form, the thesis pursues the
more novel approach of designing a nonlinear observer in its original states, based on
insight to the inherent stability properties of pneumatic actuators. The main con-
tribution of the thesis, is the work presented in this chapter on the design of simple
nonlinear observers for pneumatic actuators, where it is shown that by understand-
ing the dynamical properties of pneumatic actuators, simple nonlinear observers can
be designed by utilizing the inherent stabilizing nonlinearities of the pneumatic ac-
tuator. The main advantages of this approach is that the observer states are the
actual physical states rather than the transformed states (e.g. pressure rather than
acceleration); that the observer does not require high-gain to guarantee stability;
and that the observer is compatible with an output-feedback control design by an
observer-backstepping approach. Two specific observer designs are proposed. Their
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most important properties are demonstrated by simulations, and their performance
is validated experimentally, both with open-loop and closed-loop control inputs.

Control design

The high compressibility, combined with the low damping, and the significant nonlin-
earities in the system, makes high-performance tracking difficult, or even impossible,
without model-based nonlinear feedforward compensation of some sort.
In Chapter 9, a model-based nonlinear tracking controller is designed by a re-

cursive observer-based backstepping procedure in four steps, based on the nonlinear
observer design of Chapter 8. In each step of the design, the nonlinearites are
cancelled, i.e., implementing model-based nonlinear feedforward compensation, and
replaced with tunable feedback terms to give the desired closed-loop dynamics. This
type of backstepping designs can be referred to as a cancelling backstepping design.
In contrast to the state-feedback case, where cancellation of stabilizing nonlinearities
may result in a controller which is not robust to model errors, this observer-based
cancellation design is robust because it is applied to the exactly known observer
dynamics.
In addition to a design based on exact backstepping using the exact derivatives

of the stabilizing functions, an alternative approximate backstepping design is also
presented, where the backstepping procedure is simplified for the last two steps using
high-gain observers to estimate, rather than calculate analytically, the derivative of
the stabilizing function designed at the previous step.
The exact and approximate backstepping controllers are shown to possess some

strong theoretical stability properties: The (approximate) backstepping controller
achieves exponential (practical) tracking according to a prescribed tracking preci-
sion, which can be made arbitrary accurate by sufficiently high feedback gain in
the observer and controller. The controller is also shown to be robust to bounded
modeling errors.
The output-feedback backstepping design was implemented and validated ex-

perimentally on the test rig, demonstrating extremely high tracking performance.
The parameters of the reference model are determined according to a design band-
width λr, which can be viewed as the design bandwidth of the closed-loop tracking
controller since it determines the time-constant τ r of the tracking of the reference
input r. With the bandwidth of the reference filter chosen lower than the maximum
achievable bandwidth of the controller, the controller achieves accurate tracking of
the filtered reference trajectory yr for arbitrary reference inputs r, i.e., with tracking
errors in the order of magnitude of the sensor accuracy. The maximum achievable
bandwidth of the controller, which is limited by unmodeled valve and pressure dy-
namics, was found experimentally to correspond to a reference filter with bandwidth
λr,max ≈ 50, corresponding to a time-constant τ r = 0.100 s for this 5th-order refer-
ence model. For comparison, a properly tuned PID controller, requiring the same
accuracy, is able to achieve tracking according to a time-constant τ r = 1.500 s, that
is, 15 times slower tracking.



10.1 Discussions

This thesis has addressed the main problems related to the design of a control sys-
tem for electro-pneumatic clutch actuation, where the emphasis has been divided
between the modeling of the system dynamics, and the design of observer and con-
troller for clutch actuation. A key factor has been the application of recent advances
from research on nonlinear control theory.
Because of this relatively wide scope, there are several aspects of the work that

have been covered unsatisfactory in this thesis. To show that we are aware of (some
of) them, we briefly summarize important weaknesses with our work, and potential
improvements, below:

Model validation and parameter estimation: Much experimental work has been
conducted during the doctoral period to provide the basis for Part I of the the-
sis on mathematical modeling. However, only a fraction of this work has been
included in the thesis, primarily because similar work can be found in the
litterature on pneumatic actuators.

Comparison with existing output-feedback control strategies: Aweak point
of the thesis, is the lack of experimental work that compares conventional con-
trol strategies for pneumatic actuators with the observer-based backstepping
design proposed in this thesis. A main reason for this is that the few output-
feedback control strategies that exists for pneumatic actuators, cause severe
oscillations when implemented on the clutch actuation system, primarily be-
cause they are based on linear techniques which do not handle the clutch
spring nonlinearity. An exception is the simple PID controller, which when
tuned sufficiently slow, i.e., using sufficiently low gain, avoids oscillations.

Comparison with existing state-feedback control strategies: An interesting
analysis would be an experimental comparison of the output-feedback back-
stepping controller, with the existing full state-feedback control strategies for
pneumatic actuators, i.e., the linear PVA controller, the feedback linearizing
controller, and the sliding mode controller, described in the literature review
of Chapter 1.

Observer validation by existing state-feedback control strategies: By imple-
menting experimentally the proposed observers combined with existing state-
feedback controllers, the validity of the proposed observer design, and the
contribution of the thesis with respect to nonlinear observer design and output-
feedback control for pneumatic actuators, would be better emphasized.

Simplifications of the proposed backstepping controller: A main drawback
with the proposed backstepping controller, is its high complexity which makes
implementation time-consuming. With emphasis on simplicity, and avoiding
cancellation of stabilizing nonlinearities, the complexity of the controller has
a significant potential of improvement.
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Experimental analysis of robustness: A thorough analysis of the robustness of
the proposed control system with respect to different types of clutch charac-
teristics, different types of control valves, engine vibrations, wear, etc., would
better demonstrate the validity of the proposed control system.

10.2 Further research

In this section, we briefly outline ongoing and future research that are directly related
to the work presented in this thesis.
The research on nonlinear observer design is currently being refined into a journal

paper, planned submitted by January 2006. The work on a simplified non-cancelling
backstepping design that avoids cancellation of the inherent stabilizing nonlineari-
ties of the pneumatic clutch actuator, will be published in another journal paper,
planned submitted by June 2006. Related ongoing research which will be continued
in the future, is backstepping design applied for clutch actuation using on-off valves
instead of proportional valves, adaptive backstepping and adaptive observer designs
for online estimation of the clutch load characteristic to compensate for wear, and
online estimation of the valve dynamics of on-off valves to compensate for changes
in temperature.
Other more general, but related topics for further research, are improvements of

backstepping in directions of simpler control laws, more relaxed (and optimal) con-
trol laws for reduced control effort, and handling of rate and magnitude constraints
of states. Discrete-time implementation has not been an issue in this thesis, where
a continuous-time design was implemented using a standard Runge-Kutta solver
with a relatively high sampling frequency of 2ms. This approach is justified by the
assumption that computation is cheap, however, this is not always sufficient. The
number of control systems in vehicles increases strongly, hence, in order to avoid an
increase in total cost, an important objective is a reduction in the computational
load, and required sample frequency of each individual control system on the vehicle.
For the electro-pneumatic clutch actuation control system, a reduction of the sample
frequency, e.g. from 2ms to 10ms, dramatically increases the demands on the control
system, particularly in the case of output-feedback. Research on output-feedback
control, in directions of discrete-time nonlinear observer design, and discrete-time
backstepping design, is therefore of particular interest.
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Appendix A

Modeling of Static Nonlinearities

Most existing solutions for adaptive control are restricted to systems with parametric
uncertainties which are linearly parametrizable in the uncertain parameters, that is,
the uncertain static nonlinearity can be expressed in a parameter-affine form. In
general, it is advantageous for parameter identification that the parameters of a
model appear in an affine form, because then, the task of identifying the set of
parameters which provides the best fit to a nonlinear function, amounts to solving a
linear convex optimization problem. Consequently, from a parameter identification
point of view, it will often be preferable to model static nonlinearities by parameter-
affine models, and even substitute complicated nonlinear functions in the system
model with approximations that are parameter-affine.
In general, a smooth nonlinear function can be modeled, or approximated, by a

weighted sum of simple basis functions, where increased complexity, simply requires
a larger number of basis functions in order to meet a prescribed accuracy. This is for
example exploited in neural network (NN) models, which are usually composed of a
large number of simple basis functions. With respect to modeling for control, it may
be of interest to exploit the known structure of nonlinearities in order to construct
customized basis functions where the number of basis functions, hence, number of
parameters, are minimal. In this thesis, we employ simple bell-shaped basis functions
to obtain parameter-affine models of the nonlinear load characteristic of the clutch
as a function of position (see Section 3.1), and the flow conductance characteristic
as a function of spool position of each port of the pneumatic proportional valve (see
Section 5.4). Furthermore, we develop two customized basis functions to obtain
a parameter-affine equation for the flow rate through pneumatic restrictions (see
Section 5.2).
This appendix addresses the empirical modeling of smooth static nonlinearities,

using bell-shaped Gaussian and B-spline basis functions. In Section A.1, the gen-
eral formulation of parameter-affine models is briefly addressed, and some notions
of support and support width are made precise. In Section A.3, the properties of the
Gaussian and the normalized Gaussian basis functions, and in Section A.4, the prop-
erties of the B-Spline basis functions, are explored with respect to their capability
to approximate nonlinear functions.
Most of the theory on neural network models are taken from the textbook by
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Nelles, [67]. The neural networks community have adopted their own terminology,
while in this appendix, we use the terminology from the field of system identification
(and statistics). For a reference on the theory of B-splines, see for e.g. [19, Chapter
7].

A.1 Parameter-affine models

In general, a scalar multivariable function, y = f (x), can be modeled in the
parameter-affine form

ŷ = θ1φ1 (x) + θ1φ1 (x) + · · ·+ θpφp (x) , (A.1)

which can compactly be expressed in vector form as

ŷ =
£
θ1 θ2 · · · θp

¤
⎡⎢⎢⎢⎣

φ1 (x)
φ2 (x)
...

φp (x)

⎤⎥⎥⎥⎦
m

ŷ = θT · φ (x) , (A.2)

where x ∈ X0 ⊂ Rm is a vector of m input variables, ŷ ∈ Y ⊂ R is the modeled
output, and θ ∈ Ωθ ⊂ Rp is a parameter vector. The regressor elements φi (x),
i = 1, 2, · · · p are called basis functions, which can be of various forms. Let the input
set X be defined so that it contains all possible inputs x of practical interest, and
the output set Y such that it contains all possible outputs for x ∈ X . Furthermore,
for a given set of basis functions φ (x) , the parameter vector θ is constrained to be
in the in the set Ωθ.

A.2 Basis functions

In this section we describe some general properties of basis functions, while in fol-
lowing Sections A.3 and A.4, we explore the modeling properties with two types of
bell-shaped basis functions, the Gaussian and B-spline basis functions, respectively.
To better be able to describe the properties of basis functions, we introduce the

notion of support of a scalar function φ (x), and for the single-input case, the notion
of support width for φ (x). A scalar function φ (x) is characterized by its support on
X , which we try to make precise by the following definition:
Definition 41 (Support) A scalar function φ1 (x) ∈ R, x ∈X ⊂ Rm where X is
the input region of interest, is said to have

• local support on X if it is non-zero only on a compact subset X1 ⊂ X , hence,
it is zero on its compliment X −X 1:

∀x ∈X1 =⇒ |φ (x)| > 0
∀x ∈ (X −X 1) =⇒ φ (x) = 0.
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• global support on X if it is non-zero on X , except for some singular points
x∗:

∀x ∈X − {x∗} =⇒ |φ (x)| > 0.
• exponentially local support on X , if it tends asymptotically to zero with in-
creasing distance to a finite subset X1 ⊂ X :

dist (x,X1)→∞ =⇒ φ (x)→ 0,

where dist (z,X1) , infx∈X1 |z− x|.

The above definitions applies for scalar functions φ (x) ∈ R with multiple inputs
x ∈ Rm. In this appendix, we will mainly consider single-input basis functions, φ (x)
with x ∈ R.

Activation functions

In neural networks, the basis functions are usually constructed from a simple single-
variable function g (x), called an activation function. A typical choice of activation
function is the Gaussian function

g (x) = e−
1
2
x2, (A.3)

where the basis functions φi (u) are often defined using a scaling of the input ac-
cording to u , w · x = 1/σ2 · x, producing a Gaussian distribution with standard
deviation σ. Another activation function commonly used in neural networks, is the
inverse multi-quadratic function

g (x) =
a√

x2 + a2
. (A.4)

Both the exponential activation functions are plotted in Figure A.1.

Single-variable input construction

A set of scalar basis functions φi (x) ∈ R, i = 1, 2, · · · , p can be obtained using an
activation function, like the Gaussian function (A.3), according to

φi (x) = g (ui (x)) , (A.5)

where each ui is constructed from the variable x as

ui = wi · (x− ci) . (A.6)

For the ith basis function φi (x), the offset weight ci determines the center position
of φi (x), while the scaling weight wi determines the width of the function. Fol-
lowing this approach, a set of basis functions φ (x) =

£
φ1 (x) , φ2 (x) , · · · , φp (x)

¤T
are completely described by a center vector c = [c1, c2, · · · , cp]T , a scaling vector
w = [w1, w2, · · · , wp]

T , and the characteristics of the activation function g (·).
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Figure A.1: Left: The Gauss function for different scaling of the in-
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ª ≈ {1, 0.71, 0.45}. Right: The inverse multi-quadratic func-

tion for a = {1.0, 0.5, 0.2, 0.05}.

Remark 42 We may usually regard the parameter vectors c andw as pre-determined
and fixed parameters of the basis functions, so that the nonlinear function modeled
by (A.2), can be viewed to be affine in its tunable parameters.

Multidimensional basis functions may be realized either by multivariable input
constructions, or by tensor product constructions, briefly outlined in the following
subsections.

Multi-variable input-constructions

A multivariable basis function φi (x) may be constructed from a scalar activation
function g (·), according to

φi (x) = g (ui (x)) , (A.7)

where x = [x1, · · · , xm]T is a vector of input variables, and the scalar input function
ui = ui (x) can be constructed from x in various ways.

The scalar function input ui can for example be realized by the ridge input
construction

ui = wT
i · (x− ci) (A.8)

= wi1 · (x1 − ci1) + · · ·+ wim · (xm − cim) ,

where x ∈ Rm is the input vector, ci ∈ Rm is the center vector which determines the
distance to the origin, and wi is the scaling vector which determines the slopes in
each direction of the input variable space Rm. For this type of input construction,
the scaling vectorwi points toward the direction of nonlinearity of the basis function,
while orthogonal to wi the basis function stay constant.



APPENDIX A. MODELING OF STATIC NONLINEARITIES 219

The scalar function input ui can alternatively be realized by a radial input con-
struction

ui = |x− ci|Σi , (A.9)

where the vector norm |z|Σi ,
√
zTΣiz determines the slopes in each direction of the

input parameter spaceRm. The scaling matrixΣi is often taken as a diagonal matrix,
where each diagonal element then determines the slope, or scaling in each direction.
The resulting basis functions φi (x), are usually referred to as radial basis functions
(RBF), often without weighting, i.e., with ui = |x− ci|. An early application of the
radial basis functions were in mathematics as multivariable interpolation functions,
see e.g. [76].

Tensor product constructions

Another alternative for the construction of multivariable basis functions is by form-
ing the tensor product. That is, the ith basis function φi (x), is constructed according
to

φi (x) = gi1 (ui1) · gi2 (ui2) · · · · · gim (uim) , i = 1, 2, · · · , p, (A.10)

where x = [x1, x2, · · · , xm]T ∈ Rm is the vector of input variables, and gij (·) is a
scalar function of the jth input variable xj for the ith basis function φi (x). The
scalar inputs ui1, ui2, · · · , uim for the ith basis function φi (x) can be constructed
according to

ui1 = wi1 · (x1 − ci1)

ui2 = wi2 · (x2 − ci2)
... (A.11)

uim = wim · (xm − cim) ,

and alternatively, by a radial input construction. In the simplest case, a complete
set of basis functions can be constructed using the same activation function g (·),
e.g.,

φi (x) = g (ui1) · g (ui2) · · · · · g (uim) , i = 1, 2, · · · , p, (A.12)

which is usually the case in neural networks.

A.3 Gaussian basis functions

Any smooth nonlinear function
y = f (x) , (A.13)

can be approximated with the parameter-affine model

ŷ = θT · φ (x) , (A.14)

where the vector φ (x) = [φ1 (x) , φ2 (x) , · · · , φp (x)]T ∈ Rp is a set of Gaussian basis
functions, defined according to

φi (x) = e
−1
2
w2i (x−ci)2, (A.15)



wherew = [w1, w2, · · · , wp]
T is a vector of scaling parameters, and c = [c1, c2, · · · , cp]T

a vector of center offset parameters.
When choosing scaling and center parameters wi and ci for a basis function φi (x),

it is useful to characterize the region on which it has support. For basis functions
which are symmetric, i.e., radial basis functions like the Gaussian function (A.15),
it is convenient to introduce the notion of support width, which determines the radial
distance from its center on which it has support. For functions with exponentially
local support, the region with support is somewhat imprecise, hence, we introduce
an equivalent notion of approximate support width, which characterizes the region
on which symmetrical basis functions have practical support, i.e., where it is greater
than some small value ε > 0:

Definition 43 (Support width) Let c be a positive parameter that determines the
center of support, and let φ (x) be a symmetric, scalar, single-variable basis function
with strictly local support, defined on the interval X , where φ (x) is non-zero only
on the interval X1 , [c− δ, c+ δ] ⊂ X , and zero on its compliment X −X 1. Then,
the positive parameter δ is defined as the support width of φ (x), and satisfies

∀x ∈ [c− δ, c+ δ] =⇒ |φ (x)| > 0
∀x /∈ [c− δ, c+ δ] =⇒ φ (x) = 0.

Definition 44 (Approximate support width) Let ε > 0 be a small parameter
which determines the level of significance, and c be a parameter that determines the
center of support of the function φ (x). Furthermore, let φ (x) be a scalar, single-
variable basis function φ (x) with exponentially local support, defined on the interval
X , where |φ (x)| > ε only on the interval X1 , [c− δ, c+ δ] ⊂ X , and |φ (x)| ≤ ε on
its compliment X −X 1. Then, the positive parameter δ is defined as the approxi-
mate support width of φ (x), and satisfies

∀x ∈ [c− δ, c+ δ] =⇒ |φ (x)| ≥ ε

∀x /∈ [c− δ, c+ δ] =⇒ |φ (x)| < ε.

The nonlinear test function

y = f (x) =
10x

(x+ 10)
+ e−(x−2)

2

, (A.16)

is used to illustrate some properties with respect to nonlinear function approximation
using the Gaussian basis functions. Some general properties utilizing the Gaussian
basis functions are briefly summarized below. In Figure A.2, some of these properties
are illustrated for the modeling of the above test function (A.16).

• The approximation of increasingly complex nonlinear behavior requires in-
creasing number of basis functions. Too few basis functions, or too small
support width δi, introduce a non-monotonic, oscillating behavior of the mod-
eled output. This is seen in Figure A.2, where in a), the nonlinear test function
is approximated well with p = 9 equally spaced basis functions, while in b),
with p = 5, the output is non-monotonic.
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• The number of basis functions needed to model a particular nonlinear function
may be reduced by customizing the scaling wi and center ci of each basis
function φi (x), which is illustrated in case c) in Figure A.2.

• Since the Gaussian basis functions have exponentially local support, their ex-
trapolation behavior tend towards zero, that is, φ (x) converges to zero with
increasing distance from X .

• The Gaussian basis functions are analytic, i.e., they are C∞ (completely dif-
ferentiable)

Remark 45 When using basis functions with (exponential) local support, it may be
a problem that the modeled output ŷ drop to zero near the boundary of X . This is
seen for example in Figure A.2, where ŷ dips down near center cp = 8 of the last basis
function φp (x) (ci, i = 1, 2, · · · , p). In order to retain adequate support near the
boundary of X , it is often advantageous to extend the set of basis functions somewhat
outside of X , i.e., so that X ⊂ [c1, cp]. In the example, the input of interest is defined
by the set X = {∀x : x ∈ [0, 8]} where the boundary basis functions are placed with
centers at c1 = 0 and cp = 8. The drop in ŷ would be completely removed by placing
the boundary basis functions φ1 (x) and φp (x), e.g., with centers c1 < −1 and cp > 9.
Another common approach, is to redefine the boundary basis functions φ1 and φp so
that they have support outside X .

Normalization

It is sometimes advantageous to use normalized basis functions, defined as

φ̄i (x) ,
φi (x)

Σp
j=1φj (x)

. (A.17)

The set of normalized basis functions φ̄i (x) has some desirable properties. First
of all, normalization usually improves the undesirable non-monotonic behavior that
occurs when the width δi is chosen too small. Due to the unity property

Σp
i=1φ̄i (x) = 1, (A.18)

there is a close relation between the modeled output ŷ at x = ci and the parameter
θi, thus the interpretation of the weighting parameter θi is simpler than for the non-
normalized basis function. Due to the normalization, the boundary basis functions
φ1 (x) and φp (x) no longer have local support, but converge to unity outside X .
Thus, the modeled output ŷ converges to a constant outsideX , and the extrapolation
behavior is said to be constant. As a result, there is no drops in ŷ near the boundaries
of X , which was the case with the non-normalized basis functions. In Fig. A.3, the
nonlinear test function A.16) is modeled using normalized Gauss functions.
Examples of the use of the normalized Gaussian basis functions, is the model-

ing of the clutch load characteristic, illustrated in Figure ??, and the modeling of
the conductance function of the valve ports in the smooth flow rate model of the
pneumatic proportional valve, plotted in Figure 5.7 (page 85).
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Figure A.2: The left column shows the nonlinear test function y = f (x), given
by (A.16), the modeled function ŷ = θTφ (x), and the corresponding error e (x) ,
y − ŷ. The right column shows the corresponding set of basis functions, with input
construction given by the center vector c, and the scaling vector w. In a), the set of
basis functions are of the same width, and equally spaced. In b), the number of basis
functions is reduced. Plot c), illustrates the use of basis functions with customized
width and position.

Filtered interpolation

An interesting observation is that normalized Gaussian basis functions – as an im-
plication of the unity property – can be used for filtered interpolation, or smoothing
of a set of input and output data, {xk}, {yk}, k = 1, 2, · · · , N , without the need to
fit the parameters to the data. By forming the center vector c and the parameter
vector θ from the given data as

c = [x1, x2, · · · , xN ]T (A.19)

θ = [y1, y2, · · · , yN ]T , (A.20)

a smooth approximation of the discrete points {xk, yk} is given by
ŷ (x) = θT · φ (x) , (A.21)
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Figure A.3: The left column shows the nonlinear test function (A.16), the modeled
output ŷ = θTφ (x) using normalized Gauss basis functions, and the corresponding
error e (x) , y− ŷ. The value of the fitted parameter θi are marked with a diamond
(¦) for the corresponding basis function with center at x = ci. The right column
shows the corresponding set of basis functions.

where the amount of smoothing is determined by the support width δi (scaling wi) of
the basis functions. For sufficiently small support width δi, we have that ŷ (xi) ≈ yi,
with negligible error.
Fig. A.4 illustrates the filtered interpolation of the discrete data set

{xk} = {1, 2, 3, 4, 5, 6, 7, 8} , (A.22)

{yk} = {3.0, 3.1, 3.8, 3.3, 1.9, 0.8, 0.3, 0.1} ,

using normalized Gaussian basis functions for different support width δi (which
is determined by the scaling factor wi). For extrapolation, i.e., for x outside X =
{∀x : x ∈ [c1, cp] = [0, 8]} , the output ŷ = θTφ (x) converges to the boundary values
θ1 = 3.0 or θp = 0.1.
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Figure A.4: The left column illustrates the filtered interpolation behaviour of
the discrete data set (A.22), marked with circles (◦). The right column shows the
corresponding normalized Gaussian basis functions. The filtration, or smooting is
illustrated for increasing approximate support width δi: a) δi = 1 b) δi = 2, and c)
δi = 3.

A.4 B-spline basis functions

While the Gaussian basis functions have exponentially local support, the so-called
B-splines, or bell splines, belongs to a group of functions which have strictly local
support.
The B-spline of kth-degree is defined recursively by

φki (x) =

µ
x− ci

ci+k − ci

¶
φk−1i (x) +

µ
ci+k+1 − x

ci+k+1 − ci+1

¶
φk−1i+1 (x) , (A.23)

where the 0th-degree B-spline is defined as

φ0i (x) ,
½
1 , x ∈ [ci, ci+1i
0 , otherwise

. (A.24)

The B-splines form the basis for all kth-degree spline functions, and has the following
properties:
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• The ith B-spline φki (x) has support on the interval [ci, ci+k+1], thus
x /∈ [ci, ci+k+1] =⇒ φki (x) = 0.

Hence, the complete set of basis functions φki (x), i = 1, 2, · · · , p has support
on the interval [c1, cp+k+1].

• The B-splines has the unity property
∞X

i=−∞
φki (x) ≡ 1.

• Since the B-spline functions have strictly local support, their extrapolation
behavior tend to zero, i.e., φk (x) = 0, ∀x /∈ [c1, cp+k+1] . See Remark 45.

• The linear combination of B-splines Pp
i=1 θiφ

k
i (x) = θTφk (x) is Ck−1, i.e., it

has continuous derivatives up to order k − 1.
The recursive definition results in a piecewise defined spline function. For exam-

ple, with degree k = 2 we get

φ2i (x) ,

⎧⎪⎪⎨⎪⎪⎩
a10 + a11x+ a12x

2 , x ∈ [ci, ci+1]
a20 + a21x+ a22x

2 , x ∈ [ci+1, ci+2i
a30 + a31x+ a32x

2 , x ∈ [ci+2, ci+3i
0 , otherwise

. (A.25)

Since the expressions for the polynomial coefficients aji becomes rather messy for
higher order B-splines, it is convenient to use the recursive definition in (A.23).
The 1st-order derivative of the B-spline φki (x) can be expressed recursively as

d

dx
φki (x) =

µ
k

ci+k − ci

¶
φk−1i (x)−

µ
k

ci+k+1 − ci+1

¶
φk−1i+1 (x) . (A.26)

Higher-order derivatives can be obtained recursively by repeated application of
(A.26), e.g.

d2

dx2
φki (x) =

µ
k

ci+k − ci

¶
dφk−1i (x)

dx
−
µ

k

ci+k+1 − ci+1

¶
dφk−1i+1 (x)

dx
. (A.27)

In particular, we have that the 1st-degree B-spline consist of linear line segments,
and is thus denoted linear B-spline. The linear B-spline φ1i (x) has support on the
open interval hci, ci+2i , and the modeled function ŷ = θTφ (x) becomes continu-
ous, but not smooth – it has discontinuous 1st-order derivatives at each knot ci.
The 2nd-degree B-spline consists of 2nd-order polynomial line segments, and is de-
noted quadratic B-spline. The quadratic B-spline φ2i (x) has support on the interval
hci, ci+3i , and the modeled function ŷ = θTφ (x) is C1. The 3rd-degree B-spline
consists of 3rd-order polynomial line segments, and is denoted cubic B-spline. The
cubic B-spline φ3i (x) has support on the interval hci, ci+4i , and the modeled function
ŷ = θTφ (x) is C2. The B-splines of degree k = 1, 2, and 3 are plotted in Figure A.5.
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Figure A.5: The right column shows the B-splines of order a) k = 1, b) k = 2,
and c) k = 3, for the interval (knot sequence) vector c = [0, 1, 2, 3, 4, 5, 6, 7]T . The
corresponding sum of B-splines, ŷ = Σp

i=1φi (x) = θTφ (x), with θ = [1, 1, · · · , 1]T ,
are plotted in left column.

The modeling properties of the B-splines of degree k > 1 are very similar to those
of the Gaussian basis functions. Notice, however, that the linear B-splines, results in
linear interpolation between the knots ci. In Figure A.6, the nonlinear test function
(A.16) is modeled using B-splines of degree k = {1, 2, 3}. The example uses the
same number of basis functions (p = 9), and an equidistant knot distribution which
can be compared to what was used in a) for the non-normalized (Figure A.2) and
normalized (Figure A.3) Gaussian basis functions. Like in the case with the non-
normalized Gaussian basis functions, there is a dip in ŷ near the upper boundary of
X , x = 8, which is due to defining the boundary basis function φp (x) with its center
at the boundary x = 8. The dip would be effectively removed by defining φp (x)
with its center somewhat outside of X , e.g. at x = 10. See Remark 45. Notice,
however, that for higher degree (k > 1) B-splines with unevenly distributed knots,
the interpretation of centers is not straightforward.
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Figure A.6: The left column shows the nonlinear test function (A.16), the modeled
output ŷ = θTφ (x) using B-spline basis functions, where linear, quadratic, and cubic
B-splines are used in a), b), and c), respectively. Additionally, the corresponding
modeling error e (x) , y − ŷ is plotted in each case, and the value of the fitted
parameter θi are marked with a diamond (¦) at the center of the ith B-spline. The
right column shows the corresponding set of basis functions.

A.4.1 Modeling the clutch load characteristic

In Figure A.7 and A.8, the static load characteristic is modeled using cubic B-spline
basis functions. The knot distribution is taken as

c = [−7,−4,−1, 0, 1, 2, 3, 4, 10, 15, 20, 25, 30]T mm, (A.28)

where the number of knots is more frequent on the interval y ∈ [−1, 4] mm in order
to allow for stronger nonlinear behavior in this region and its neighborhood. Fur-
thermore, the boundary basis functions φl,1 (y) and φl,p (y), are positioned somewhat
outside of Y so that adequate support is retained on the entire set Y.
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Figure A.7: The modeled clutch characteristics fl (y) fitted to quasi-static mea-
surements, and the corresponding cubic B-spline basis functions.
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cubic B-splines.





Appendix B

Parameter Estimation

The model of the electro-pneumatic clutch actuator is based on mechanistic model-
ing, which mean that it should be possible to obtain its parameters from its physical
properties by measurements. However, even though the system is relatively simple,
the process of obtaining such measurements of all the parameters can be compli-
cated, and in many cases impossible due to economic considerations. Furthermore,
for in-vehicle testing, several of the measurements that are possible to obtain on
the test rig, are not practically implementable on an actuator mounted on a vehicle.
An alternative to measure the physical properties of the system, is to estimate the
model parameters from measured input-output data, by finding the parameters of
the model which provides the best fit to the measurements. This is often the supe-
rior method with respect to efficient modeling. This appendix briefly review some
methods which can be used for off-line estimation of the model parameters.
We consider two methods: In Section B.1, the linear least squares method for

parameter-affine models, and in Section B.2, a nonlinear least squares optimization
algorithm for the general case when the parameters appear nonlinearly in the model.

B.1 Linear least squares parameter fitting

Anumerically advantageous case, is when the model can be expressed in the parameter-
affine form

ŷk = θT · φ (xk) , (B.1)

where θ ∈ Rp is the vector of p parameters to be estimated, ŷk ∈ R is the modeled
output corresponding to the measured output yk, and xk ∈ Rm is a vector of m
measured input variables at sample k.
An example of a model which can be expressed in the above parameter-affine form

is the clutch load model fl (y), where the parameters are to be fitted to measurements
of the nonlinear clutch characteristic in Section 3.1.

B.1.1 The standard least squares problem formulation

The least squares algorithm can be used to find the parameters that minimizes the
sum of the squared output errors over the set {xk}, {yk}, k = 1, 2, · · · , N . The
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output error at each sample is

ek = yk − ŷk = yk − θT · φ (xk) . (B.2)

The least squares cost criterion is given as

J =
NX
k=1

e2k =
NX
k=1

¡
yk − θT · φ (xk)

¢2
, (B.3)

which has its minimum at ∂J
∂θ
= 0. This gives

∂J

∂θ
= −

NX
k=1

φ (xk) 2
¡
yk − θT · φ (xk)

¢
= 0 (B.4)

m (B.5)
NX
k=1

³
−φ (xk) yk + φ (xk) · φ (xk)T θ

´
= 0, (B.6)

which results in the normal equation

NX
k=1

φ (xk) yk =
NX
k=1

φ (xk) · φ (xk)T θ. (B.7)

The normal equation can be expressed on the compact form

b = Φ · θ, (B.8)

which is straightforwared to solve in e.g. Matlab. Note, however, that solving for θ
from the normal equation may result in a numerically bad conditioned problem. In
the next section, an alternative problem formulation is given.

B.1.2 Alternative least squares problem formulation

The problem of fitting the parameters of models in the form (B.1), can alternatively
be formulated in the following manner, usually resulting in a numerically better
conditioned problem than the solution obtained via the normal equation.
For each data sample xk, yk, the output yk can be expressed by the modeled

output ŷk and the resulting modeling error ek as

yk = ŷk + ek = θTφ (xk) + ek. (B.9)

Listing all the samples k = 1, 2, · · · , N gives

y1 = θT · φ (x1) + e1

y2 = θT · φ (x2) + e2
...

yN = θT · φ (xN) + eN ,
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which can be formulated in vector form as

⎡⎢⎢⎢⎣
y1 − e1
y2 − e2
...

yN − eN

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
φ (x1)

T

φ (x2)
T

...
φ (xN)

T

⎤⎥⎥⎥⎦ · θ (B.10)

m
be = Φ · θ. (B.11)

Since ek is unknown, we instead attempt to find an approximate solution to the
problem by letting ek = 0, i.e., the problem can be stated as

b = Φ · θ, (B.12)

where b = [y1, y2, · · · , yN ]T . Equation (B.12) has a solution only in the case when
we have a perfect model, i.e., when b lies in the range of Φ (b ∈ R (Φ)), such that a
solution exists which gives ek = 0, k = 1, 2, · · · , N . In the case of parameter fitting
to empirical data, we usually have an overdetermined problem, i.e., there are more
equations than parameters in θ. Thus, we are only able to solve the equation such
that the output error ek is minimized in some sense.
In Matlab, the unconstrained linear equation

A · x = b, (B.13)

can be solved using the left division operator

>> x = A\b,

which for an overdetermined problem provides the least squares solution of (B.13),
i.e., the squared error (A · x− b)2 is minimized. The left division operator can also
be used to find a solution when the problem is underdetermined, or when an exact
solution exists.
In many cases we have a priori known bounds on the parameters, i.e., we want

to solve the problem (B.12) with lower and upper bounds on the parameters, given
by

θlb ≤ θ ≤ θub. (B.14)

In this case, the constrained least squares problem can be solved in Matlab using the
lsqlin function in the Matlab Optimization Toolbox. In addition to handle bounds
on the parameters, the algorithm also handles equality and inequality constraints in
the form

Ceq · x = deq (B.15)

and
C1 · x ≥ d1, C2 · x ≤ d2, (B.16)

respectively.



B.2 Nonlinear least squares parameter fitting

The fitting of parameters that appear in a non-affine form can be performed by the
use of a nonlinear optimization algorithm in order to search for a set of parame-
ters which, in some sense, minimizes the error between the empirical data and the
modeled outputs. The approach is to formulate a cost criterion which is a scalar
measure of the goodness of fit of the model, and search for the model parameters
which minimizes it. A cost criterion is usually formulated as a weighted sum of the
model error, ek = ŷk − yk ∈ Rm, between the measurements yk, k = 1, 2, · · · , N
and the modeled outputs

ŷk = f (xk) (B.17)

at each sample k = 1, 2, · · · , N .
Unlike the linear least squares problem, there might exist several local minima to

the nonlinear minimization problem, consequently, the algorithm is not guaranteed
to find the absolute minimum. As a result, nonlinear parameter fitting is usually
a trial-and-error approach, where one has to try various initial parameter values in
order to find a good fit.

Remark 46 When fitting both affine and non-affine parameters of a model, a re-
cursive, two-stage method, briefly described in [59], is often preferable. The method,
called separable least squares, is straightforward: for each iteration step, the least
squares solution of fitting the affine parameters are obtained using the estimated
non-affine parameters from the previous step, and subsequently, their values are in-
serted into the nonlinear problem, and the non-affine parameters are found using a
nonlinear optimization algorithm.

B.2.1 Formulation of the nonlinear optimization problem

The nonlinear optimization algorithm is used to minimize a criterion in the form

J (θ) =
1

2

NX
k=1

ek (θ)
T Qek (θ) , (B.18)

where J (θ) is the function to be minimized, N is the number of samples in the
data set, m is the number of measured outputs, and p is the number of parameters.
Furthermore, ek = [e1,k, e2,k, · · · , em,k]

T are the errors between the measured and
the modeled outputs at sample k, the vector θ = [θ1, θ2, · · · , θp]T contains the
parameters to be identified, and Q = qqT is a diagonal weighting matrix where the
vector q = [q1, q2, · · · , qm]T contains the weights for each of the measured outputs.
The minimization problem can be stated as

θ̂ =argmin
θ∈Θ

J (θ) , (B.19)

where the estimated parameter vector θ̂ is restricted to be in the set

Θ = {θ ∈ Rp : θlb ≤ θ ≤ θub} , (B.20)
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where θlb = [θ1,lb, θ2,lb, · · · , θp,lb]T and θub = [θ1,ub, θ2,ub, · · · , θp,ub]T are the lower
and upper bounds on the parameters, respectively.
The function lsqnonlin in the Matlab Optimization Toolbox may be used for

parameter identification for the nonlinear model of the electro-pneumatic actua-
tor. By default, the function uses the Levenberg-Marquardt algorithm (a modified
version of the Gauss-Newton algorithm) in its search for the optimal parameter val-
ues [65]. For use with the function, the optimization criterion in (B.18) has to be
rewritten on the form

J (θ) =
1

2

NX
k=1

ek (θ)
T qqTek (θ) =

1

2
F (θ)T F (θ) , (B.21)

where a vector of weighted outputs are defined as
F (θ) ,

£
qTe1 (θ) ,q

Te2 (θ) , · · · ,qTeN (θ)
¤T
.

B.2.2 Fitting of parameter of dynamic models

For the fitting of parameters of a dynamic model, the generation of the output error
vector, given by F (θ) , is optionally obtained either by a one-step-ahead prediction
approach, or a ballistic simulation approach1. The first method refers to simulating
the system response between each sample, while resetting the initial output to the
measured output at every sample k, i.e., the error is given as ek = y (tk)−ŷ (tk|tk−1) .
This approach is typically preferred when the model is used to design an observer,
where the estimated output is corrected at each sample. The ballistic approach
is simply a full simulation of the response of the model, where the error at each
sample is computed as ek = y (tk)− ŷ (tk|t0). This approach may be preferred, e.g.,
when the long-term prediction capabilities of the model are important. However,
for nonlinear systems such as the pneumatic actuator, a problem with a ballistic
approach may be that unstable states drifts off from its actual trajectory due to small
errors. To avoid this, we may employ a partitioned ballistic approach, which means
that we partition the measurements into smaller time intervals where the simulation
are re-initialized (corrected according to the measurements) at the beginning of
each interval. For example, a sequence of measurements of length 2.0 s may be
partitioned into 20 subintervals of length 100ms. In most cases, we use the ballistic
simulation approach for identification of parameters of the model of the electro-
pneumatic clutch actuator.

1The denotation ballistic means that the simulation is carried out without any corrections from
the measurements during the simulation.





Appendix C

Derivation of Air Dynamics

In this section we derive the dynamic equations for the air dynamics of chamber A
in detail. The derivation for chamber B is similar. Subscripts A and B are dropped
for notational brevity. Figure 4.1 shows a schematic diagram of the flow control
valve and pneumatic actuator. The following basic assumptions are made:

A1) At the attainable pressures, air behaves like an ideal gas which obeys the ideal
gas equation of state (See (C.1) ) with negligible error.

A2) The specific heats cp and cv of air are assumed to be constant, i.e., not functions
of temperature (or pressure1). For the attainable temperature range for this
application, the deviations are insignificant, see e.g. [16, Section 3.7, pp. 182-
134].

A3) Energy change in the fluid due to elevation is negligible.

A4) The thermodynamic properties are uniformly distributed (homogenous) within
the control volume, i.e., “perfectly mixed”. This is reasonable due to the small
dimensions of the system, and lets us simplify the analysis to a one-dimensional
problem, rather than a more complex distributed problem formulation.

A5) The flow through pipes, valves and restrictions in the system is assumed to be
isentropic2. That is, we assume frictionless flow, and disregard the effect of
heat transfer on the flow (adiabatic flow).

1For an ideal gas (A1), the internal energy u and enthalpy h vary only with temperature.
Furthermore, the specific heats cv and cp will in general vary with temperature: cv = cv (T ) and
cp = cp (T ). However, this temperature dependence is insignificant for this application.

2This is a common approximation in compressible fluid analysis when the system dimensions
are small, [101].
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Figure C.1: Schematic diagram illustrating the pneumatic subsystem and control
valve.

C.1 Thermodynamics

C.1.1 Properties

We first recapitulate some basic thermodynamic properties. The equation of state
(or perfect-gas law) is given as

p = ρRT, (C.1)

where p, ρ and T are the pressure, the density, and the temperature of the fluid,
respectively. The gas constant R is defined by the specific heats of the fluid as

R , cp − cv (C.2)

which for air is R = 288 J/ ( kgK). Furthermore, the ratio of specific heats is defined
as

κ , cp
cv

(C.3)

The specific heat cv is defined as the change of specific internal energy u with
temperature at constant volume. Likewise, cp is defined as the change of the specific
enthalpy h with temperature at constant pressure:

cv ,
µ
∂u

∂T

¶
V=const.

and cp ,
µ
∂h

∂T

¶
p=const.

(C.4)

For ideal gases, u = u (T ) and h = h (T ), such that the partial derivatives in
(C.4) can be replaced by ordinary derivatives, giving

du = cvdT and dh = cpdT. (C.5)

Furthermore, it is convenient to define zero points as u (T = 0) , 0 and h (T = 0) ,
0. Integrating (C.5) we get the following useful expressions for the internal energy
and enthalpy

u = cvT and h = cpT. (C.6)
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C.1.2 Conservation of mass

The conservation of mass is given by the continuity equation

d

dt
(ρV ) = win − wout, (C.7)

where V is the total volume of the considered control volume, ρ is the density of the
fluid, and win and wout are the inlet and outlet mass flows, respectively.

C.1.3 Conservation of energy

The conservation of energy is governed by the energy equation

dE

dt
= εin − εout + Q̇− Ẇ , (C.8)

where E is the total energy in the control volume, εin and εout are the energies
associated with the inlet and outlet flows, respectively, Q̇ is the rate of heat transfer
to the control volume, and Ẇ is the piston work done by the system.

C.1.4 Isentropic flow

In the case of isentropic flow, the energy equation reduces to the simple form

h1 +
1

2
v21 = h2 +

1

2
v22, (C.9)

where the subscripts refer to flow from a point 1 to a point 2. It is important to note
that in a reservoir, the kinetic energy is approximately zero (v ≈ 0). This means that
in the case of isentropic flow through short pipes from a reservoir (h0) into a second
reservoir (h2), part of the enthalpy is first converted to kinetic energy in the pipe line
(h1), which is completely recovered in the second reservoir, i.e. h0 = h1 +

1
2
v21 = h2.

C.2 Pneumatic chamber

The net energy change due to inlet and outlet flows can be expressed as

εin − εout = win ·
µ
hin +

1

2
v2in

¶
− wout ·

µ
hout +

1

2
v2out

¶
, (C.10)

where hin and hout are the enthalpies associated with win and wout, respectively, and
vin and vout are the mean inlet and outlet flow velocities (change in elevation has
been neglected – assumption A3).
The heat transfer from the cylinder wall to the control volume is mainly governed

by convective heat transfer, which in most cases can be adequately described by the
empirical model

Q̇ = HwAw · (Tw − T ) . (C.11)



Here, Hw is the convective heat coefficient, Aw is the cylinder wall area (control
volume boundary), Tw is the cylinder wall temperature, and T is the temperature
within the control volume. For example, for still air (natural convection), the con-
vective heat coefficient is in the range Hw ∈ h3, 23i W/ (m2K), while for moving air
Hw ∈ h11, 55i W/ (m2K), [29, p. 219].
The piston work done by the system can be expressed as

Ẇ = p
dV

dt
, (C.12)

where dV/dt is the rate of volume change, and p is the chamber pressure acting
against the piston.
Substituting (C.10), (C.11), and (C.12) into (C.8), the energy equation is ex-

pressed as

dE

dt
= win ·

µ
hin +

1

2
v2in

¶
−wout ·

µ
hout +

1

2
v2out

¶
+HwAw · (Tw − T )− p

dV

dt
(C.13)

A sketch illustrating the control volume and flow paths of the pneumatic system,
is given in Figure C.1.
The pneumatic chambers can be considered to be reservoirs, where the kinetic

energy within the control volume is negligible. Hence, we add the following assump-
tion to our list:

A6) The kinetic energy (1
2
v2) within the pneumatic chambers (A and B) are neg-

ligible.

In chamber A, the air flows either from the supply reservoir to the pneumatic
chamber, or from the pneumatic chamber to exhaust (atmosphere). The same ap-
plies to chamber B. Consequently, the kinetic energy term can be neglected in the
energy equation. Furthermore, since the flow is isentropic (assumption A5), there is
no energy loss in the flow, which means that the energy equation (C.13) simplifies
to

dE

dt
= winhin − wouthout +HwAw · (Tw − T )− p

dV

dt
. (C.14)

C.2.1 Pressure dynamics

The dynamics of the pressure in the pneumatic chamber is derived from the energy
equation (C.14). Since the change of potential and kinetic energy within the chamber
is negligible (assumptions A3 and A6), the change of total energy within the control
volume can be given as

dE

dt
=

d

dt
(ρV u)

= cv
d

dt
(ρV T ) . (C.15)
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where we have substituted with the expression for u in (C.6). Furthermore, we
substitute with the equation of state (C.1), giving

dE

dt
=

cv
R

d

dt
(V p)

=
cv
R

µ
dV

dt
p+ V

dp

dt

¶
. (C.16)

By substituting this relation with the left-hand side of the energy equation (C.14),
we obtain

cv
R

µ
dV

dt
p+ V

dp

dt

¶
= winhin − wouthout +HwAw · (Tw − T )− p

dV

dt
(C.17)

m
V̇ p+ V

dp

dt
=

R

cv
winhin − R

cv
wouthout +

R

cv
HwAw · (Tw − T )− R

cv
pV̇ (C.18)

m
V
dp

dt
= −V̇ p+ R

cv
winhin − R

cv
wouthout +

R

cv
HwAw · (Tw − T )− R

cv
pV̇

= −
µ
1 +

R

cv

¶
pV̇ +

R

cv
winhin − R

cv
wouthout

+
R

cv
HwAw · (Tw − T ) . (C.19)

We replace the enthalpies in terms of the corresponding temperatures by substituting
with the expression in (C.6), giving

V
dp

dt
= −

µ
1 +

R

cv

¶
pV̇ +

R

cv
cpTinwin − R

cv
cpToutwout +

R

cv
HwAw · (Tw − T ) . (C.20)

Furthermore, we substitute with the relation

R

cv
= κ− 1, (C.21)

which is obtained by combining (C.3) and (C.2), and replace Tout = T , which results
from the homogeneity assumption A4. Finally, the full dynamic equation of the
pressure can be expressed as

dp

dt
= −κV̇

V
p+

κRTin
V

win − κRT

V
wout +

(κ− 1) ·HwAw

V
(Tw − T ) , (C.22)

where the volume V of the pneumatic chamber, and the area of effective heat transfer
Aw, are both functions of the actuator position y.



C.2.2 Temperature dynamics

The derivation of the temperature dynamics proceeds in similar manner as the
pressure dynamics. From (C.15), we can write

dE

dt
= cv

d (ρV )

dt
T + cvρV

dT

dt
(C.23)

= cvTwin − cvTwout + cv
pV

RT

dT

dt
(C.24)

where in the second step we have substituted with the continuity equation (C.7),
and the equation of state (C.1).
As for the pressure dynamics, this relation is substituted for the left-hand side

of the energy equation (C.14), giving

cvTwin − cvTwout + cv
pV

RT

dT

dt
= winhin − wouthout +HwAw · (Tw − T )

−pdV
dt

(C.25)

m
cv
pV

RT

dT

dt
= −pV̇ + (cpTin − cvT )win − (cpTout − cvT )wout

+HwAw · (Tw − T ) . (C.26)

In the first step above, we substituted with the expression for the specific enthalpy
in (C.6), and the second step was just a rearranging of the equation. Isolating the
term dT/dt, and substituting Tout = T due to homogeneity, gives

dT

dt
= −RV̇

cvV
T +

µ
cp
cv
Tin − T

¶
RT

pV
win −

µ
cp
cv
− 1
¶
RT 2

pV
wout +

RTHwAw

cvpV
(Tw − T ) .

(C.27)
Then, by substituting with the ratio of specific heats (C.3) and the relation (C.21),
we obtain the temperature dynamics in its final form

dT

dt
= −(κ− 1) V̇

V
T+

(κTin − T )RT

pV
win−(κ− 1)RT

2

pV
wout+

(κ− 1)THwAw

pV
(Tw − T ) .

(C.28)
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