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SUMMARY

In this paper, the optimal filtering problem for polynomial system states with polynomial multiplicative
noise over linear observations is treated proceeding from the general expression for the stochastic Ito
differential of the optimal estimate and the error variance. As a result, the Ito differentials for the optimal
estimate and error variance corresponding to the stated filtering problem are first derived. The procedure
for obtaining a closed system of the filtering equations for any polynomial state with polynomial
multiplicative noise over linear observations is then established, which yields the explicit closed form of the
filtering equations in the particular cases of a linear state equation with linear multiplicative noise and a
bilinear state equation with bilinear multiplicative noise. In the example, performance of the designed
optimal filter is verified for a quadratic state with a quadratic multiplicative noise over linear observations
against the optimal filter for a quadratic state with a state-independent noise and a conventional extended
Kalman–Bucy filter. Copyright # 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Although the general optimal solution of the filtering problem for nonlinear state and
observation equations confused with white Gaussian noises is given by the Kushner equation
for the conditional density of an unobserved state with respect to observations [1], there are a
very few known examples of nonlinear systems where the Kushner equation can be reduced to a
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finite-dimensional closed system of filtering equations for a certain number of lower conditional
moments. The most famous result, the Kalman–Bucy filter [2], is related to the case of
linear state and observation equations, where only two moments, the estimate itself and its
variance, form a closed system of filtering equations. However, the optimal nonlinear
finite-dimensional filter can be obtained in some other cases, if, for example, the state vector
can take only a finite number of admissible states [3] or if the observation equation is linear
and the drift term in the state equation satisfies the Riccati equation df =dxþ f 2 ¼ x2

(see Reference [4]). The complete classification of the ‘general situation’ cases (this means that
there are no special assumptions on the structure of state and observation equations and the
initial conditions), where the optimal nonlinear finite-dimensional filter exists, is given in
Reference [5]. The last two papers actually deal with specific types of polynomial filtering
systems. There also exists a considerable bibliography on robust filtering for the ‘general
situation’ systems (see, for example, References [6–9]). Apart form the ‘general situation,’ the
optimal finite-dimensional filters have recently been designed [10, 11] for certain classes of
polynomial system states with Gaussian initial conditions over linear observations with
invertible observation matrix.

This paper presents the optimal finite-dimensional filter for polynomial system states
with polynomial multiplicative noise over linear observations with invertible observation
matrix, thus generalizing the results of References [10–12] obtained for polynomial system
states with state-independent noise. Designing the optimal filter with polynomial multiplicative
noise presents a significant advantage in the filtering theory and practice, since it enables
one to address filtering problems with polynomial observation nonlinearities, such as the
optimal cubic sensor problem [13]. The optimal filtering problem is treated proceeding from
the general expression for the stochastic Ito differential of the optimal estimate and the
error variance [14]. As the first result, the Ito differentials for the optimal estimate and error
variance corresponding to the stated filtering problem are derived. It is then proved that a closed
finite-dimensional system of the optimal filtering equations with respect to a finite number of
filtering variables can be obtained for a polynomial state equation with polynomial
multiplicative noise and linear observations with invertible observation matrix. In this case,
the corresponding procedure for designing the optimal filtering equations is established. Finally,
the closed system of the optimal filtering equations with respect to two variables, the optimal
estimate and the error variance, is derived in the explicit form for the particular cases of a linear
state equation with linear multiplicative noise and a bilinear state equation with bilinear
multiplicative noise.

In the illustrative example, performance of the designed optimal filter is verified for a
quadratic state with a quadratic multiplicative noise over linear observations against the optimal
filter for a quadratic state with a state-independent noise and a conventional extended Kalman–
Bucy filter. The simulation results show a definite advantage of the designed optimal filter in
regard to proximity of the estimate to the real state value. Moreover, it can be seen that the
estimation error produced by the optimal filter rapidly reaches and then maintains the zero
mean value even in a close vicinity of the asymptotic time point, although the system state itself
is unstable and the quadratic component goes to infinity for a finite time. On the contrary, the
estimation errors given by the other two applied filters diverge to infinity near the asymptotic
time point.

The paper is organized as follows. Section 2 presents the filtering problem statement for a
polynomial system state with multiplicative noise over linear observations. The Ito differentials
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for the optimal estimate and the error variance are derived in Section 3. Section 3 also
establishes the procedure for obtaining a closed system of the filtering equations for any
polynomial state, which yields the explicit results for linear and bilinear state equations.
Performance of the obtained optimal filter is verified in Section 4.

2. FILTERING PROBLEM FOR POLYNOMIAL STATE WITH MULTIPLICATIVE
NOISE OVER LINEAR OBSERVATIONS

Let ðO;F ;PÞ be a complete probability space with an increasing right-continuous family
of s-algebras Ft; t5t0; and let ðW1ðtÞ;Ft; t5t0Þ and ðW2ðtÞ;Ft; t5t0Þ be independent
Wiener processes. The Ft-measurable random process ðxðtÞ; yðtÞÞ is described by a non-
linear differential equation with both polynomial drift and diffusion terms for the system
state

dxðtÞ ¼ f ðx; tÞ dtþ gðx; tÞ dW1ðtÞ; xðt0Þ ¼ x0 ð1Þ

and a linear differential equation for the observation process

dyðtÞ ¼ ðA0ðtÞ þ AðtÞxðtÞÞ dtþ BðtÞ dW2ðtÞ ð2Þ

Here, xðtÞ 2 Rn is the state vector and yðtÞ 2 Rn is the linear observation vector, such that the
matrix AðtÞ 2 Rn�n is invertible. The initial condition x0 2 Rn is a Gaussian vector such that x0;
W1ðtÞ; and W2ðtÞ are independent. It is assumed that BðtÞBTðtÞ is a positive definite matrix.
All coefficients in (1)–(2) are deterministic functions of time of appropriate dimensions. The
nonlinear diffusion function gðx; tÞ forms a state-dependent multiplicative noise in the state
equation (1).

The nonlinear functions f ðx; tÞ and gðx; tÞ are considered polynomials of n variables,
components of the state vector xðtÞ 2 Rn; with time-dependent coefficients. Since xðtÞ 2 Rn is a
vector, this requires a special definition of the polynomial for n > 1; some of them can be found
in References [10–12]. In this paper, a p-degree polynomial of a vector xðtÞ 2 Rn is regarded as a
p-linear form of n components of xðtÞ

f ðx; tÞ ¼ a0ðtÞ þ a1ðtÞxþ a2ðtÞxxT þ � � � þ apðtÞx . . .p times . . . x ð3Þ

where a0ðtÞ is a vector of dimension n; a1 is a matrix of dimension, a2 is a 3D tensor of dimens-
ion n� n� n; ap is an ðpþ 1ÞD tensor of dimension n� . . .ðpþ1Þ times . . .� n; and x� . . .p times

. . .� x is a pD tensor of dimension n� . . .p times . . .� n obtained by p times spatial
multiplication of the vector xðtÞ by itself. Such a polynomial can also be expressed in the
summation form

fkðx; tÞ ¼ a0 kðtÞ þ
X

i

a1 kiðtÞxiðtÞ þ
X

ij

a2 kijðtÞxiðtÞxjðtÞ þ � � �

þ
X

i1...ip

ap ki1...ip ðtÞxi1 ðtÞ . . . xipðtÞ; k; i; j; i1 . . . ıp ¼ 1; . . . ; n

The estimation problem is to find the optimal estimate #xðtÞ of the system state xðtÞ; based on
the observation process YðtÞ ¼ fyðsÞ; t04s4tg; that minimizes the Euclidean 2-norm

J ¼ E½ðxðtÞ � #xðtÞÞTðxðtÞ � #xðtÞÞjFY
t �
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at every time moment t: Here, E½zðtÞjFY
t � means the conditional expectation of a stochastic

process zðtÞ ¼ ðxðtÞ � #xðtÞÞTðxðtÞ � #xðtÞÞ with respect to the s-algebra FY
t generated by the

observation process YðtÞ in the interval ½t0; t�: As known [14], this optimal estimate is given by
the conditional expectation

#xðtÞ ¼ mðtÞ ¼ EðxðtÞjFY
t Þ

of the system state xðtÞ with respect to the s-algebra FY
t generated by the observation process

YðtÞ in the interval ½t0; t�: As usual, the matrix function

PðtÞ ¼ E½ðxðtÞ �mðtÞÞðxðtÞ �mðtÞÞTjFY
t �

is the estimation error variance.
The proposed solution to this optimal filtering problem is based on the formulas for the

Ito differential of the conditional expectation EðxðtÞjFY
t Þ and its variance PðtÞ (cited after

Reference [14]) and given in the following section.

3. OPTIMAL FILTER FOR POLYNOMIAL STATE WITH MULTIPLICATIVE NOISE
OVER LINEAR OBSERVATIONS

The optimal filtering equations could be obtained using the formula for the Ito differential of the
conditional expectation mðtÞ ¼ EðxðtÞjFY

t Þ (see Reference [14])

dmðtÞ ¼Eðf ðx; tÞjFY
t Þ dtþ Eðx½j1ðxÞ � Eðj1ðxÞjF

Y
t Þ�

TjFY
t Þ

� ðBðtÞBTðtÞÞ�1ðdyðtÞ � Eðj1ðxÞjF
Y
t Þ dtÞ

where f ðx; tÞ is the polynomial drift term in the state equation, and j1ðxÞ is the linear drift term
in the observation equation equal to j1ðx; tÞ ¼ A0ðtÞ þ AðtÞxðtÞ: Upon performing substitution,
the estimate equation takes the form

dmðtÞ ¼Eðf ðx; tÞjFY
t Þ dtþ EðxðtÞ½AðtÞðxðtÞ �mðtÞÞ�TjFY

t Þ

� ðBðtÞBTðtÞÞ�1ðdyðtÞ � ðA0ðtÞ þ AðtÞmðtÞÞ

¼Eðf ðx; tÞjFY
t Þ dtþ EðxðtÞðxðtÞ �mðtÞÞTjFY

t ÞA
TðtÞ

� ðBðtÞBTðtÞÞ�1ðdyðtÞ � ðA0ðtÞ þ AðtÞmðtÞÞ dtÞ

¼Eðf ðx; tÞjFY
t Þ dtþ PðtÞATðtÞðBðtÞBTðtÞÞ�1ðdyðtÞ � ðA0ðtÞ þ AðtÞmðtÞÞ dtÞ

ð4Þ

Equation (4) should be complemented with the initial condition mðt0Þ ¼ Eðxðt0ÞjFY
t0
Þ:

Trying to compose a closed system of the filtering equations, Equation (4) should be
complemented with the equation for the error variance PðtÞ: For this purpose, the formula for
the Ito differential of the variance PðtÞ ¼ EððxðtÞ �mðtÞÞðxðtÞ �mðtÞÞTjFY

t Þ could be used (cited
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again after Reference [14])

dPðtÞ ¼ ðEððxðtÞ �mðtÞÞðf ðx; tÞÞTjFY
t Þ þ Eðf ðx; tÞðxðtÞ �mðtÞÞTÞjFY

t Þ

þ Eðgðx; tÞgTðx; tÞjFY
t Þ � EðxðtÞ½j1ðxÞ � Eðj1ðxÞjF

Y
t Þ�

TjFY
t Þ

� ðBðtÞBTðtÞÞ�1Eð½j1ðxÞ � Eðj1ðxÞjF
Y
t Þ�x

TðtÞjFY
t ÞÞ dt

þ EððxðtÞ �mðtÞÞðxðtÞ �mðtÞÞ½j1ðxÞ � Eðj1ðxÞjF
Y
t Þ�

TjFY
t Þ

� ðBðtÞBTðtÞÞ�1ðdyðtÞ � Eðj1ðxÞjF
Y
t Þ dtÞ

where the last term should be understood as a 3D tensor (under the expectation sign) convoluted
with a vector, which yields a matrix. Upon substituting the expressions for j1; the last formula
takes the form

dPðtÞ ¼ ðEððxðtÞ �mðtÞÞðf ðx; tÞÞTjFY
t Þ þ Eðf ðx; tÞðxðtÞ �mðtÞÞTÞjFY

t Þ

þ Eðgðx; tÞgTðx; tÞjFY
t Þ � ðEðxðtÞðxðtÞ �mðtÞÞTjFY

t ÞA
TðtÞ

� ðBðtÞBTðtÞÞ�1AðtÞEððxðtÞ �mðtÞÞxTðtÞÞjFY
t ÞÞ dt

þ EððxðtÞ �mðtÞÞðxðtÞ �mðtÞÞðAðtÞðxðtÞ �mðtÞÞÞTjFY
t ÞðBðtÞB

TðtÞÞ�1

� ðdyðtÞ � AðtÞmðtÞÞ dtÞ

Using the variance formula PðtÞ ¼ EððxðtÞ �mðtÞÞxTðtÞÞjFY
t Þ; the last equation can be

represented as

dPðtÞ ¼ ðEððxðtÞ �mðtÞÞðf ðx; tÞÞTjFY
t Þ þ Eðf ðx; tÞðxðtÞ �mðtÞÞTÞjFY

t Þ

þ Eðgðx; tÞgTðx; tÞjFY
t Þ � PðtÞATðtÞðBðtÞBTðtÞÞ�1AðtÞPðtÞÞ dt

þ EðððxðtÞ �mðtÞÞðxðtÞ �mðtÞÞðxðtÞ �mðtÞÞTjFY
t Þ

� ATðtÞðBðtÞBTðtÞÞ�1ðdyðtÞ � AðtÞmðt� hÞÞ dtÞ ð5Þ

Equation (5) should be complemented with the initial condition Pðt0Þ ¼ E½ðxðt0Þ�
mðt0Þðxðt0Þ �mðt0Þ

TjFY
t0
�:

Equations (4) and (5) for the optimal estimate mðtÞ and the error variance PðtÞ form a non-
closed system of the filtering equations for the nonlinear state (1) over linear observations (2).
The non-closeness means that the system (4), (5) includes terms depending on x; such as
Eðf ðx; tÞjFY

t Þ; EððxðtÞ �mðtÞÞf Tðx; tÞÞjFY
t Þ; and Eðgðx; tÞgTðx; tÞjFY

t Þ; which are not expressed yet
as functions of the system variables, mðtÞ and PðtÞ: Let us prove now that this system becomes a
closed system of the filtering equations in view of the polynomial properties of the functions
f ðx; tÞ and gðx; tÞ in Equation (1).

As shown in References [10, 11], a closed system of the filtering equations for a system state
with polynomial drift and state-independent diffusion over linear observations can be obtained
if the observation matrix AðtÞ is invertible for any t5t0: The last condition, also assumed for the
observation process (2), implies [10, 11] that the random variable xðtÞ �mðtÞ is conditionally
Gaussian with respect to the observation process yðtÞ for any t5t0: Hence, the following
considerations outlined in References [10, 11] are applicable to the filtering equations (4), (5).
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First, since the random variable xðtÞ �mðtÞ is conditionally Gaussian, the conditional third
moment EððxðtÞ �mðtÞÞðxðtÞ �mðtÞÞðxðtÞ �mðtÞÞTjFY

t Þ of xðtÞ �mðtÞ with respect to observa-
tions, which stands in the last term of Equation (5), is equal to zero, because the process
xðtÞ �mðtÞ is conditionally Gaussian. Thus, the entire last term in (5) is vanished and the
following variance equation is obtained:

dPðtÞ ¼ ðEððxðtÞ �mðtÞÞðf ðx; tÞÞTjFY
t Þ þ Eðf ðx; tÞðxðtÞ �mðtÞÞTÞjFY

t Þ

þ Eðgðx; tÞgTðx; tÞjFY
t Þ � PðtÞATðtÞðBðtÞBTðtÞÞ�1AðtÞPðtÞÞ dt ð6Þ

with the initial condition Pðt0Þ ¼ E½ðxðt0Þ �mðt0Þðxðt0Þ �mðt0Þ
TjFY

t0
�:

Second, if the functions f ðx; tÞ and gðx; tÞ are polynomial functions of the state x with
time-dependent coefficients, the expressions of the terms Eðf ðx; tÞjFY

t Þ in ð4Þ and EððxðtÞ�
mðtÞÞf Tðx; tÞÞjFY

t Þ and Eðgðx; tÞgTðx; tÞjFY
t Þ in (6) would also include only polynomial terms of x:

Then, those polynomial terms can be represented as functions of mðtÞ and PðtÞ using the
following property of Gaussian random variable xðtÞ �mðtÞ: all its odd conditional moments,
m1 ¼ E½ðxðtÞ �mðtÞÞjYðtÞ�;m3 ¼ E½ðxðtÞ �mðtÞ3jYðtÞ�;m5 ¼ E½ðxðtÞ �mðtÞÞ5jYðtÞ�; . . . are equal
to 0; and all its even conditional moments m2 ¼ E½ðxðtÞ �mðtÞÞ2jYðtÞ�;m4 ¼ E½ðxðtÞ�
mðtÞÞ4jYðtÞ�; . . . can be represented as functions of the variance PðtÞ: For example, m2 ¼ P;m4 ¼
3P2;m6 ¼ 15P3; . . . ; etc. After representing all polynomial terms in (4) and (6), that are
generated upon expressing Eðf ðx; tÞjFY

t Þ; EððxðtÞ �mðtÞÞf Tðx; tÞÞjFY
t Þ; and Eðgðx; tÞgTðx; tÞjFY

t Þ;
as functions of mðtÞ and PðtÞ; a closed form of the filtering equations would be obtained. The
corresponding representations of Eðf ðx; tÞjFY

t Þ and EððxðtÞ �mðtÞÞðf ðx; tÞÞTjFY
t Þ have been

derived in References [10, 11] for certain polynomial functions f ðx; tÞ:
In the next subsections, a closed form of the filtering equations will be obtained from (4) and

(6) for linear and bilinear functions f ðx; tÞ and gðx; tÞ in Equation (1). It should be noted,
however, that application of the same procedure would result in designing a closed system of the
filtering equations for any polynomial functions f ðx; tÞ and gðx; tÞ in (1).

3.1. Optimal filter for linear state with linear multiplicative noise

In a particular case, if the functions f ðx; tÞ ¼ a0ðtÞ þ a1ðtÞxðtÞ and gðx; tÞ ¼ b0ðtÞ þ b1ðtÞxðtÞ are
linear, where b1 is a 3D tensor of dimension n� n� n; the representations for Eðf ðx; tÞjFY

t Þ;
EððxðtÞ �mðtÞÞðf ðx; tÞÞTjFY

t Þ; and Eðgðx; tÞgTðx; tÞjFY
t Þ as functions of mðtÞ and PðtÞ are derived as

follows:

Eðf ðx; tÞjFY
t Þ ¼ a0ðtÞ þ a1ðtÞmðtÞ ð7Þ

Eðf ðx; tÞðxðtÞ �mðtÞÞTÞjFY
t Þ þ EððxðtÞ �mðtÞÞðf ðx; tÞÞTjFY

t Þ

¼ a1ðtÞPðtÞ þ PðtÞaT1 ðtÞ
ð8Þ

Eðgðx; tÞgTðx; tÞjFY
t Þ ¼ b0ðtÞbT0 ðtÞ þ b0ðtÞðb1ðtÞmðtÞÞ

T

þ ðb1ðtÞmðtÞÞbT0 ðtÞ þ b1ðtÞPðtÞbT1 ðtÞ þ b1ðtÞmðtÞmTðtÞbT1 ðtÞ
ð9Þ

where bT1 ðtÞ denotes the tensor obtained from b1ðtÞ by transposing its two rightmost indices.
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Substituting expression (7) in ð4Þ and the expressions (8), (9) in (6), the filtering equations for
the optimal estimate mðtÞ and the error variance PðtÞ are obtained

dmðtÞ ¼ ða0ðtÞ þ a1ðtÞmðtÞÞ dt

þ PðtÞATðtÞðBðtÞBTðtÞÞ�1½dyðtÞ � AðtÞmðtÞ dt�; mðt0Þ ¼ Eðxðt0ÞjFY
t ÞÞ

ð10Þ

dPðtÞ ¼ ða1ðtÞPðtÞ þ PðtÞaT1 ðtÞ

þ b0ðtÞbT0 ðtÞ þ b0ðtÞðb1ðtÞmðtÞÞ
T þ ðb1ðtÞmðtÞÞbT0 ðtÞ þ b1ðtÞPðtÞbT1 ðtÞ

þ b1ðtÞmðtÞmTðtÞbT1 ðtÞÞ dt� PðtÞATðtÞðBðtÞBTðtÞÞ�1AðtÞPðtÞ dt
ð11Þ

Pðt0Þ ¼ Eððxðt0Þ �mðt0ÞÞðxðt0Þ �mðt0ÞÞ
TjFY

t ÞÞ

Note that the observation matrix AðtÞ should not even be necessarily invertible to obtain the
filtering equations (10)–(11). Indeed, the only used polynomial equality, EðxðtÞxTðtÞjFY

t Þ ¼
PðtÞ þmðtÞmTðtÞ; is valid for any random variable with finite second moments, not only
Gaussian.

3.2. Optimal filter for bilinear state with bilinear multiplicative noise

Let the functions

f ðx; tÞ ¼ a0ðtÞ þ a1ðtÞxþ a2ðtÞxxT ð12Þ

and

gðx; tÞ ¼ b0ðtÞ þ b1ðtÞxþ b2ðtÞxxT ð13Þ

be bilinear polynomials, where x is an n-dimensional vector, a0ðtÞ is an n-dimensional vector,
a1ðtÞ and b0ðtÞ are n� n-matrices, a2ðtÞ and b1ðtÞ are 3D tensors of dimension n� n� n; and b2ðtÞ
is a 4D tensor of dimension n� n� n� n: In this case, the representations for Eðf ðx; tÞjFY

t Þ;
EððxðtÞ �mðtÞÞðf ðx; tÞÞTjFY

t Þ; and Eðgðx; tÞgTðx; tÞjFY
t Þ as functions of mðtÞ and PðtÞ are derived as

follows (see References [10, 11]):

Eðf ðx; tÞjFY
t Þ ¼ a0ðtÞ þ a1ðtÞmðtÞ þ a2ðtÞmðtÞmTðtÞ þ a2ðtÞPðtÞ ð14Þ

Eðf ðx; tÞðxðtÞ �mðtÞÞTÞjFY
t Þ þ EððxðtÞ �mðtÞÞðf ðx; tÞÞTjFY

t Þ

¼ a1ðtÞPðtÞ þ PðtÞaT1 ðtÞ þ 2a2ðtÞmðtÞPðtÞ þ 2ða2ðtÞmðtÞPðtÞÞ
T ð15Þ

Eðgðx; tÞgTðx; tÞjFY
t Þ ¼ b0ðtÞbT0 ðtÞ þ b0ðtÞðb1ðtÞmðtÞÞ

T

þ ðb1ðtÞmðtÞÞbT0 ðtÞ þ b1ðtÞPðtÞbT1 ðtÞ þ b1ðtÞmðtÞmTðtÞbT1 ðtÞ

þ b0ðtÞðPðtÞ þmðtÞmTðtÞÞbT2 ðtÞ þ b2ðtÞðPðtÞ þmðtÞmTðtÞÞbT0 ðtÞ

þ b1ðtÞð3mðtÞPðtÞ þmðtÞðmðtÞmTðtÞÞÞbT2 ðtÞ þ b2ðtÞð3PðtÞmTðtÞ
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þ ðmðtÞmTðtÞÞmTðtÞÞbT1 ðtÞ þ 3b2ðtÞP2ðtÞbT2 ðtÞ þ 3b2ðtÞðPðtÞmðtÞmTðtÞ

þ mðtÞmTðtÞPðtÞÞbT2 ðtÞ þ b2ðtÞðmðtÞmTðtÞÞ2bT2 ðtÞ ð16Þ

where bT2 ðtÞ denotes the tensor obtained from b2ðtÞ by transposing its two rightmost indices.
Substituting expression (14) in ð4Þ and expressions (15), (16) in (6), the filtering equations for

the optimal estimate mðtÞ and the error variance PðtÞ are obtained

dmðtÞ ¼ ða0ðtÞ þ a1ðtÞmðtÞ þ a2ðtÞmðtÞmTðtÞ þ a2ðtÞPðtÞÞ dt

þ PðtÞATðtÞðBðtÞBTðtÞÞ�1½dyðtÞ � AðtÞmðtÞ dt�; mðt0Þ ¼ Eðxðt0ÞjFY
t ÞÞ ð17Þ

dPðtÞ ¼ ða1ðtÞPðtÞ þ PðtÞaT1 ðtÞ þ 2a2ðtÞmðtÞPðtÞ þ 2ða2ðtÞmðtÞPðtÞÞ
T

þ b0ðtÞbT0 ðtÞ þ b0ðtÞðb1ðtÞmðtÞÞ
T þ ðb1ðtÞmðtÞÞbT0 ðtÞ þ b1ðtÞPðtÞbT1 ðtÞ

þ b1ðtÞmðtÞmTðtÞbT1 ðtÞ þ b0ðtÞðPðtÞ þmðtÞmTðtÞÞbT2 ðtÞ

þ b2ðtÞðPðtÞ þmðtÞmTðtÞÞbT0 ðtÞ þ b1ðtÞð3mðtÞPðtÞ þmðtÞðmðtÞmTðtÞÞÞbT2 ðtÞ

þ b2ðtÞð3PðtÞmTðtÞ þ ðmðtÞmTðtÞÞmTðtÞÞbT1 ðtÞ þ 3b2ðtÞP2ðtÞbT2 ðtÞ

þ 3b2ðtÞðPðtÞmðtÞmTðtÞ þmðtÞmTðtÞPðtÞÞbT2 ðtÞ

þ b2ðtÞðmðtÞmTðtÞÞ2bT2 ðtÞÞ dt� PðtÞATðtÞðBðtÞBTðtÞÞ�1AðtÞPðtÞ dt ð18Þ

Pðt0Þ ¼ Eððxðt0Þ �mðt0ÞÞðxðt0Þ �mðt0ÞÞ
TjFY

t ÞÞ

By means of the preceding derivation, the following result is proved.

Theorem 1
The optimal finite-dimensional filter for the bilinear state with bilinear multiplicative noise (1),
where the bilinear polynomials f ðx; tÞ and gðx; tÞ are defined by (12), (13), over the linear
observations (2), is given by Equation (17) for the optimal estimate mðtÞ ¼ EðxðtÞjFY

t Þ and
Equation (18) for the estimation error variance PðtÞ ¼ E½ðxðtÞ �mðtÞÞðxðtÞ �mðtÞÞTjFY

t �:

Thus, based on the general non-closed system of the filtering equations (4), (6), it is proved that
the closed system of the filtering equations can be obtained for any polynomial state with a
polynomial multiplicative noise (1) over linear observations (2). Furthermore, the specific form
(17), (18) of the closed system of the filtering equations corresponding to a bilinear state with a
bilinear multiplicative noise is derived. In the next section, performance of the designed optimal
filter for a bilinear state with a bilinear multiplicative noise over linear observations is verified
against the optimal filter for a bilinear state with a state-independent noise and a conventional
extended Kalman–Bucy filter.

4. EXAMPLE

This section presents an example of designing the optimal filter for a quadratic state with a
quadratic multiplicative noise over linear observations and comparing it to the optimal filter for
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a quadratic state with a state-independent noise and a conventional extended Kalman–Bucy
filter.

Let the scalar real state xðtÞ satisfy the quadratic equation

’xðtÞ ¼ 0:1x2ðtÞ þ 0:1x2ðtÞc1ðtÞ; xð0Þ ¼ x0 ð19Þ

and the scalar observation process be given by the linear equation

yðtÞ ¼ xðtÞ þ c2ðtÞ ð20Þ

where c1ðtÞ and c2ðtÞ are white Gaussian noises, which are the weak mean square derivative of
standard Wiener processes (see Reference [14]). Equations (19), (20) present the conventional
form for Equations (1), (2), which is actually used in practice [15].

The filtering problem is to find the optimal estimate for the quadratic state with quadratic
noise (19), using linear observations (20) confused with independent and identically distributed
disturbances modelled as white Gaussian noises. Let us set the filtering horizon time to T ¼ 9:2:

The filtering equations (17), (18) take the following particular form for the system (19), (20):

’mðtÞ ¼ 0:1ðm2ðtÞ þ PðtÞÞ þ PðtÞ½yðtÞ �mðtÞ� ð21Þ

with the initial conditions mð0Þ ¼ Eðxð0Þjyð0ÞÞ ¼ m0

’PðtÞ ¼ 0:4PðtÞmðtÞ þ 0:03P2ðtÞ þ 0:06PðtÞm2ðtÞ þ 0:01m4ðtÞ � P2ðtÞ ð22Þ

with the initial condition Pð0Þ ¼ Eððxð0Þ �mð0ÞÞðxð0Þ �mð0ÞÞTjyð0ÞÞ ¼ P0:
The estimates obtained upon solving Equations (21)–(22) are compared first to the estimates

satisfying the optimal filtering equations for a quadratic state with a state-independent noise (see
Reference [10]), based on system (19) where the quadratic multiplicative noise x2ðtÞc1ðtÞ is
replaced by the standard additive noise c1ðtÞ: The corresponding filtering equations are given by

’m1ðtÞ ¼ 0:1ðm2
1ðtÞ þ P1ðtÞÞ þ P1ðtÞ½yðtÞ �m1ðtÞ� ð23Þ

with the initial conditions mð0Þ ¼ Eðxð0Þjyð0ÞÞ ¼ m0

’P1ðtÞ ¼ 0:4P1ðtÞmðtÞ þ 0:01� P2
1ðtÞ ð24Þ

with the initial condition Pð0Þ ¼ Eððxð0Þ �mð0ÞÞðxð0Þ �mð0ÞÞTjyð0ÞÞ ¼ P0:
The estimates obtained upon solving Equations (21)–(22) are also compared to the estimates

satisfying the following extended Kalman–Bucy filtering equations for the quadratic state (19)
over the linear observations (20), obtained by replacing the quadratic multiplicative noise
x2ðtÞc1ðtÞ by the standard additive noise c1ðtÞ; using the direct copy of the state dynamics (19) in
the estimate equation, and assigning the filter gain as the solution of the Riccati equation

’mK ðtÞ ¼ 0:1m2
K ðtÞ þ PK ðtÞ½yðtÞ �mK ðtÞ� ð25Þ

with the initial conditions mK ð0Þ ¼ Eðxð0Þjyð0ÞÞ ¼ m0

’PK ðtÞ ¼ 0:4PK ðtÞ þ 0:01� P2
K ðtÞ ð26Þ

with the initial condition PK ð0Þ ¼ Eððxð0Þ �mð0ÞÞðxð0Þ �mð0ÞÞTjyð0ÞÞ ¼ P0:
Numerical simulation results are obtained solving the systems of filtering equations (21)–(22),

(23)–(24), and (25)–(26). The obtained values of the estimates mðtÞ; m1ðtÞ; and mK ðtÞ satisfying
Equations (21), (23), and (25), respectively, are compared to the real values of the state variables
xðtÞ in (19).
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For each of the three filters (21)–(22), (23)–(24), and (25)–(26) and the reference system
(19)–(20) involved in simulation, the following initial values are assigned: x0 ¼ 1:1; m0 ¼ 0:1;
P0 ¼ 1: Gaussian disturbances c1ðtÞ in ð19Þ and c2ðtÞ in (20) are realized using the built-in
MatLab white noise function.

The following graphs are obtained: graphs of the error between the reference state variable
xðtÞ satisfying Equation (19) and the optimal filter estimate mðtÞ satisfying Equation (21); graph
of the error between the reference state variable xðtÞ satisfying Equation (19) and the estimate
m1ðtÞ satisfying Equation (23); graph of the error between reference state variable xðtÞ satisfying
Equation (19) and the estimate mK ðtÞ satisfying Equation (25). The graphs of all estimation
errors are shown on the simulation interval from t0 ¼ 0 to T ¼ 7:3 (Figure 1) and the entire
simulation interval from t0 ¼ 0 to T ¼ 9:2 (Figure 2). It can be observed that the error given by
the optimal filter estimate (21) rapidly reaches and then maintains the zero mean value even in
a close vicinity of the asymptotic time point T ¼ 9:205; where the reference quadratic state
variable (19) goes to infinity. Evidently, there is oscillatory behaviour of the estimation error
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Figure 1. Graph of the error between the real state xðtÞ satisfying Equation (19) and the optimal filter
estimate mðtÞ satisfying Equation (21) (Optimal estimate error), graph of the error between the real state
xðtÞ satisfying Equation (19) and the estimate m1ðtÞ satisfying Equation (23) (Estimate 1 error), graph of the
error between the real state xðtÞ satisfying Equation (19) and the estimate mK ðtÞ satisfying Equation (25)

(Estimate 2 error), on the simulation interval ½0; 7:3�:

Copyright # 2006 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2006; 16:303–314

M. BASIN, J. PEREZ AND M. SKLIAR312



around the zero mean value near the asymptotic time point T ¼ 9:205; since the multiplicative
noise intensity in (19) diverges to infinity as time tends to the asymptotic time point.
Nevertheless, the peak error absolute values do not exceed 2.5. On the contrary, the errors given
by the other considered filters reach zero more slowly or do not reach it at all, have systematic
(biased) deviations from zero, and clearly diverge to infinity near the asymptotic time point,
taking values that exceed 250. Note that the optimal filtering error variance PðtÞ does not
converge to zero as time tends to the asymptotic time point, since the polynomial dynamics of
fourth-order is stronger than the quadratic Riccati terms in the right-hand side of Equation (22).

Thus, it can be concluded that the obtained optimal filter (21)–(22) for a quadratic state with a
quadratic multiplicative noise over linear observations yield definitely better estimates than the
optimal filter for a quadratic state with a state-independent noise or a conventional extended
Kalman–Bucy filter. Subsequent discussion of the obtained simulation results can be found in
Section 5.

5. CONCLUSIONS

The simulation results show that the values of the estimate calculated by using the obtained
optimal filter for a quadratic state with a quadratic multiplicative noise over linear observations
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Figure 2. Graph of the error between the real state xðtÞ satisfying Equation (19) and the optimal filter
estimate mðtÞ satisfying Equation (21) (Optimal estimate error), graph of the error between the real state
xðtÞ satisfying Equation (19) and the estimate m1ðtÞ satisfying Equation (23) (Estimate 1 error), graph of the
error between the real state xðtÞ satisfying Equation (19) and the estimate mK ðtÞ satisfying Equation (25)

(Estimate 2 error), on the entire simulation interval ½0; 9:2�:
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are noticeably closer to the real values of the reference variable than the values of the estimates
given by the optimal filter for a quadratic state with a state-independent noise or a conventional
extended Kalman–Bucy filter. Moreover, it can be seen that the estimation error produced by
the optimal filter rapidly reaches and then maintains the zero mean value even in a close vicinity
of the asymptotic time point, where the reference quadratic state variable (19) goes to infinity for
a finite time. On the contrary, the estimation errors given by the other two applied filters diverge
to infinity near the asymptotic time point. This significant improvement in the estimate
behaviour is obtained due to the more careful selection of the filter gain matrix in Equations
(21)–(22), as it should be in the optimal filter. Although this conclusion follows from the
developed theory, the numerical simulation serves as a convincing illustration. Study of the
steady-state behaviour of the designed filter for time-invariant polynomial systems is viewed as a
feasible direction of future research.
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