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Abstract

We consider a class of systems influenced by perturbations that are nonlinearly parameterized by unknown constant parameters, and develop
a method for estimating the unknown parameters within an arbitrarily large parameter space. The method applies to systems where the
states are available for measurement, and perturbations with the propertythat an exponentially stable estimate of the unknown parameters
can be obtained if the whole perturbation is known. The main contribution is to introduce a conceptually simple, modular design that
gives considerable freedom to the designer in accomplishing the main task, which is to construct an update law to asymptotically invert
a nonlinear equation. Compensation for the perturbations in the system equations is considered for a class of systems with uniformly
globally bounded solutions and for which the origin is uniformly globally asymptotically stable when no perturbations are present. We
also consider the case when the parameters can only be estimated when thecontrolled state is bounded away from the origin, and show
that we can still achieve convergence of the controlled state. We illustrate themethod through examples, and apply it to the problem of
downhole pressure estimation during oil well drilling.
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1 Introduction

An important issue in control applications is the handling
of unknown perturbations to system equations. Such pertur-
bations can be the result of external disturbances or internal
plant changes, such as a configuration change, system fault,
or change in physical plant characteristics. Frequently, the
perturbations can be characterized in terms of a vector of
unknown, constant parameters.

Adaptive control techniques counteract such perturbations
by using estimates of the unknown parameters that are up-
dated online. When the perturbations are linear in the un-
known parameters, adaptive control design is often straight-
forward, and techniques for handling such cases are well-
developed (see, e.g., Krstić, Kanellakopoulos, and Koko-
tović, 1995; Ioannou and Sun, 1996). In the nonlinear case
the range of available design techniques is more limited.
One approach is to use a gradient algorithm, as in linearly
parameterized systems, which may yield poor results or in-
stability for nonlinear parameterizations. Another common
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strategy is implementing an extended Kalman filter (EKF)
for estimation of the unknown parameters. Although this of-
ten yields good results, analysis of the stability properties of
an EKF is difficult (see Reif, G̈unther, Yaz, and Unbehauen,
1999). Introducing extra parameters to obtain a linear ex-
pression is sometimes possible, but doing so may increase
complexity and affect performance by reducing the conver-
gence rate of the parameter estimates or introducing stricter
persistency-of-excitation conditions.

Some techniques that do not resort to approximations are
found in literature. In Fomin, Fradkov, and Yakubovich
(1981); Ortega (1996), stability and convergence of the
controlled state is proven for a gradient-type approach for
nonlinear parameterizations with a convexity property. An-
naswamy, Skantze, and Loh (1998) exploit the convexity
or concavity of some parameterizations by introducing a
tuning function and adaptation based on a min-max opti-
mization strategy, and achieve arbitrarily accurate tracking
of the controlled states. This approach is extended to more
general nonlinear parameterizations in Loh, Annaswamy,
and Skantze (1999), and parameter convergence is stud-
ied in Cao, Annaswamy, and Kojić (2003). Other results,
such as Bǒskovíc (1995, 1998); Zhang, Ge, Hang, and
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Chai (2000), are focused on first-order systems with cer-
tain fractional parameterizations, proving convergence of
the controlled state, but without studying convergence of
the parameter estimates. In Qu (2003), an estimation-based
approach is introduced for a class of higher-order systems
with a matrix fractional parameterization. Here, an auxiliary
estimate of the full perturbation is introduced, which is used
in the estimation of the unknown parameters. The method
achieves global boundedness and ultimate boundedness to
within a desired precision. In Qu, Hull, and Wang (2006),
an approach for more general nonlinear parameterizations is
presented, where the parameter estimate used in the control
law is biased by an appropriately chosen vector function.
Conditions are given for convergence of the controlled state
and the parameter estimates.

Another way of dealing with undesired perturbations is
found in Chakrabortty and Arcak (2007), where a high-gain
approach is used to estimate the whole perturbation. By in-
creasing the gain, the estimate is made to converge arbitrar-
ily fast, and the performance of the unperturbed system can
therefore be recovered. The approach considered in this pa-
per has similarities to Chakrabortty and Arcak (2007), but it
also exploits available structural information by estimating
an unknown parameter vector in addition to the full pertur-
bation. The parameter estimate is produced by a parameter
estimation module that is designed as if the perturbation
were known. In the actual implementation, however, the
estimate of the perturbation is used. This idea is similar to
the ideas in Tyukin (2003), where adaptive update laws of
a certain structure, calledvirtual algorithms, are designed
as if time derivatives of the measurements were available,
before being transformed into realizable form without ex-
plicit differentiation of the measurements. This idea is used
in Tyukin, Prokhorov, and van Leeuwen (2007) to design a
family of adaptation laws for monotonically parameterized
perturbations in the first derivatives.

The main contribution of this article is to introduce an ap-
proach to nonlinear parameter estimation with a clear mod-
ular structure. The design is split into a perturbation estima-
tor and a parameter estimator constructed by the designer
to asymptotically invert a nonlinear equation. The modular
structure is conceptually simple, and it isolates the task of in-
verting the nonlinear equation, giving the designer freedom
in how to best accomplish this task. We provide constructive
guidelines through a series of propositions, accompanied by
examples. Explicit Lyapunov functions are obtained, prov-
ing exponential convergence of the parameter estimates. The
method is often particularly effective with respect to pro-
viding fast parameter estimates, which may be useful not
only for direct compensation, but as part of other control
schemes where fast parameter estimates are required, for
example traditional adaptive approaches combined with pa-
rameter resetting (see, e.g., Bakkeheim, Johansen, Smogeli,
and Sørensen, 2008).

1.1 Notation and Definitions

We use conventional notation to denote estimates and er-
ror variables. For some quantityz, ẑ represents its estimate
and z̃ = z− ẑ is an error variable. For a vectorz, we de-
note byzi its i’th element when this is clear from the con-
text. The norm operator‖ · ‖ denotes the Euclidian norm
for vectors and the induced Euclidian norm for matrices.
For a symmetric, positive-definite matrixP and a vectorz,
we write ‖z‖P = (zTPz)1/2. The maximum and minimum
eigenvalues of a matrixA are denotedλmax(A) andλmin(A).
The closed ball around the origin with radiusε is denoted
B(ε). We denote byR≥0 andR>0 the non-negative and the
positive real numbers. For two setsE,F ⊂ R

n, we write
(E−F) := {z1−z2 ∈ R

n | z1 ∈ E,z2 ∈ F}. Throughout this
paper, when considering systems of the form ˙z= F(t,z), we
implicitly assume thatF : R≥0×R

n →R
n is piecewise con-

tinuous int and locally Lipschitz continuous inz, uniformly
in t, onR≥0×R

n. The solution of this system, initialized at
time t0 with initial conditionz(t0) is denotedz(t).

2 Problem Formulation

We consider systems that, by the appropriate state transfor-
mations and choice of control law, can be expressed in the
following form:

ẋ = f (t,x)+B(t,x)(g(t,x,θ)+v(t,x)) , (1)

where x ∈ R
n is a measured state vector andθ ∈ R

p is
a vector of unknown, constant parameters. The functions
f : R≥0 ×R

n → R
n, B: R≥0 ×R

n → R
n×m and v: R≥0 ×

R
n → R

m can be evaluated from available measurements,
andg: R≥0×R

n×R
p → R

m is continuously differentiable
with respect toθ and can be evaluated ifθ is known. In most
practical circumstances, it is known from physical consid-
erations thatθ is restricted to some bounded set of values.
This is a significant advantage when it comes to satisfying
the assumptions made later in this paper. To simplify the
exposition, we therefore assume that the set of possible pa-
rameters is bounded. In designing update laws for parameter
estimates, we also assume that a parameter projection can be
implemented as described in Krstić et al. (1995), restricting
the parameter estimates to a compact, convex setΘ ⊂ R

p,
defined slightly larger than the set of possible parameter val-
ues. The parameter projection is denoted Proj(·), and is de-
scribed in Appendix A. All functions on the right-hand side
of (1) are well-defined for all(t,x,θ) ∈ R≥0×R

n×Θ.

3 Parameter Estimation

In this section, we present a method for estimating the
unknown parameter vectorθ when x(t) is bounded. Let
φ := B(t,x)g(t,x,θ) represent the full unknown perturbation
in (1). The idea behind the estimation scheme is as follows:
we first design an update law that exponentially estimates
θ based on the quantityφ , as thoughφ were known. We
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then produce an estimate ofφ and implement the update law
based on this estimate instead of the real perturbation.

3.1 Estimation ofθ from φ

We denote bŷφ the estimate of the perturbationφ . We shall
later explain how to construct this estimate; for now, we
concentrate on how to findθ in the hypothetical case of a
perfect perturbation estimate. For this to work, there needs
to exist an update law

˙̂θ = uθ (t,x, φ̂ , θ̂), (2)

which, if φ̂ = φ , would provide an unbiased asymptotic es-
timate ofθ . This is the subject of the following assumption
on the dynamics of the error variablẽθ := θ − θ̂ .

Assumption 1 For each compact set K⊂ R
n, there exist a

continuously differentiable function Vu : R≥0× (Θ−Θ) →
R≥0; positive constants a1, a2 and a4; and a continuous
function a3 : R

n → R≥0 that is positive outside the origin,
such that for all(t,x,φ , θ̂) ∈ R≥0×K×R

n×Θ,

a1‖θ̃‖2 ≤Vu(t, θ̃) ≤ a2‖θ̃‖2, (3)
∂Vu

∂ t
(t, θ̃)− ∂Vu

∂ θ̃
(t, θ̃)uθ (t,x,φ , θ̂) ≤−a3(x)‖θ̃‖2, (4)

∥

∥

∥

∥

∂Vu

∂ θ̃
(t, θ̃)

∥

∥

∥

∥

≤ a4‖θ̃‖. (5)

Furthermore, the update law(2) ensures that ifθ̂(t0) ∈ Θ,
then for all t≥ t0, θ̂(t) ∈ Θ.

Satisfying Assumption 1 constitutes the greatest challenge
in applying the method in this paper, and this is therefore
discussed in detail in the next section.

3.2 Satisfying Assumption 1

Assumption 1 guarantees that the origin of the error dy-
namics ˙̃θ = −uθ (t,x,φ ,θ − θ̃), which occurs ifφ̂ = φ , is
uniformly exponentially stable with(Θ−Θ) contained in
the region of attraction. Essentially this amounts to asymp-
totically solving the inversion problem of findingθ given
φ = B(t,x)g(t,x,θ). In the following, we shall discuss some
possibilities for how to satisfy Assumption 1. As a useful
reference, we point to Nicosia, Tornambé, and Valigi (1994),
which deals with the use of state observers for inversion of
nonlinear maps.

The most obvious way to satisfy Assumption 1 is to invert
the equalityφ = B(t,x)g(t,x,θ) algebraically, and to let̂θ
be attracted to this solution.

Proposition 1 Suppose that for all(t,x) ∈ R≥0 × R
n,

we can find a unique solution forθ from the equation
φ = B(t,x)g(t,x,θ). Then Assumption 1 is satisfied with the

update law uθ (t,x, φ̂ , θ̂) = Proj(Γ(θ ∗(t,x, φ̂)− θ̂)), where
θ ∗(t,x, φ̂) denotes the solution of the inversion problem
found fromφ̂ , and Γ is a symmetric positive-definite gain
matrix. 2

PROOF The proof follows trivially from using the Lyapunov
functionVu(t, θ̃) = 1

2θ̃TΓ−1θ̃ whenφ̂ = φ . �

Example 1 Consider the perturbationB(t,x)g(t,x,θ) =
h((2+sin(t))θ), whereh is some explicitly invertible, non-
linear mapping. For eacht ∈R≥0, we can solve the inversion
problem and findθ ∗(t,x, φ̂) = h−1(φ̂)/(2+sin(t)). 2

Often it is only possible to invert the equation part of the
time. In this case, Assumption 1 may still be satisfied if
solutions are available with a certain regularity.

Proposition 2 Suppose that there exist a known, piece-
wise continuous function l: R≥0 × R

n → [0, 1], and
that for all (t,x) ∈ R≥0 × R

n, l(t,x) > 0 implies that
we can find a unique solution forθ from the equa-
tion φ = B(t,x)g(t,x,θ). Suppose furthermore that there
exist T > 0 and ε > 0 such that for all t∈ R≥0,
∫ t+T
t l(τ,x(τ)) dτ ≥ ε. Then Assumption 1 is satisfied with

the update law uθ (t,x, φ̂ , θ̂) = Proj(l(t,x)Γ(θ ∗(t,x, φ̂)− θ̂)),
whereθ ∗(t,x, φ̂) denotes the solution of the inversion prob-
lem found fromφ̂ whenever l(t,x) > 0, andΓ is a symmetric
positive-definite gain matrix. 2

PROOF See Appendix B. �

Example 2 Consider the perturbationB(t,x)g(t,x,θ) =
h(sin(t)θ), where h is some explicitly invertible, nonlin-
ear mapping. The inversion problem is poorly conditioned
when sin(t) is close to zero, and unsolvable for sin(t) = 0.
Proposition 2 nevertheless applies by letting, for exam-
ple, l(t,x) = 0 when |sin(t)| < ε and l(t,x) = 1 when
|sin(t)| ≥ ε, where 0< ε < 1. 2

When it is not possible or desirable to solve the inversion
problem explicitly, it is often possible to implement the up-
date function as a numerical search for the solutions.

Proposition 3 Suppose that there exist a positive-definite
matrix P and a function M: R≥0 ×R

n ×Θ → R
p×n such

that for all (t,x) ∈ R≥0×R
n, and for all pairsθ1,θ2 ∈ Θ,

M(t,x,θ1)B(t,x)
∂g
∂θ

(t,x,θ2)

+
∂g
∂θ

T

(t,x,θ2)B(t,x)TM(t,x,θ1)
T ≥ 2P. (6)

Then Assumption 1 is satisfied with the update law
uθ (t,x, φ̂ , θ̂) = Proj(ΓM(t,x, θ̂)(φ̂ − B(t,x)g(t,x, θ̂))),
whereΓ is a symmetric positive-definite gain matrix. 2

PROOF See Appendix B. �

Example 3 Consider the perturbationB(t,x)g(t,x,θ) =
g(θ) = [θ1, θ 2

1 +θ2]
T, with Θ = [−10, 10]× [−10, 10]. Se-

lectingM(t,x, θ̂) = M = diag(KM,1) yieldsM[∂g/∂θ ](θ)+
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[∂g/∂θ ]T(θ)MT = 2
[

KM θ1
θ1 1

]

. Using the fact that|θ1| ≤ 10

within Θ, it is easily confirmed that ifKM is chosen suffi-
ciently large, thenM[∂g/∂θ ](θ)+ [∂g/∂θ ]T(θ)MT ≥ 2P,
whereP is positive-definite. 2

Proposition 3 applies to certain monotonic perturbations for
which a solution can be found arbitrarily fast by increasing
the gainΓ. In many cases, this is not possible, because the
inversion problem is singular the whole time or part of the
time. The following proposition applies to cases where a
solution is only available by using data over longer periodsof
time, by incorporating a persistency-of-excitation condition.

Proposition 4 Suppose that there exists a piecewise contin-
uous function S: R≥0 ×R

n → S+(p), whereS+(p) is the
cone of p× p positive-semidefinite matrices, and a function
M : R≥0 ×R

n ×Θ → R
p×n, both bounded for bounded x,

such that for all(t,x)∈R≥0×R
n and for all pairsθ1,θ2∈Θ,

M(t,x,θ1)B(t,x)
∂g
∂θ

(t,x,θ2)

+
∂g
∂θ

T

(t,x,θ2)B(t,x)TM(t,x,θ1)
T ≥ 2S(t,x). (7)

Suppose furthermore that there exist numbers T> 0 andε >

0 such that for all t∈R≥0,
∫ t+T
t S(τ,x(τ)) dτ ≥ εI, and that

for all (t,x,θ , θ̂) ∈ R≥0×R
n×Θ×Θ, ‖B(t,x)(g(t,x,θ)−

g(t,x, θ̂))‖≤ Lg(θ̃TS(t,x)θ̃)1/2. Then Assumption 1 is satis-
fied with the update law uθ (t,x, φ̂ , θ̂) = Proj(ΓM(t,x, θ̂)(φ̂ −
B(t,x)g(t,x, θ̂))), whereΓ is a symmetric positive-definite
gain matrix. 2

PROOF See Appendix B. �

Example 4 Consider the perturbation from Example 3
multiplied by sin(t); that is, B(t,x)g(t,x,θ) = g(t,θ) =
sin(t)[θ1, θ 2

1 + θ2]
T, with Θ = [−10, ] × [−10, 10]. Us-

ing the same argument as in Example 3, we may choose
M(t,x) = M(t) = sin(t)diag(KM,1) to satisfy (7). We
then have S(t,x) = S(t) = sin2(t)P, where P is the
positive-definite matrix from Example 3. For anyT > 0,
∫ T
t Psin2(τ) dτ ≥ εI for some ε > 0, which means that

the integral condition in Proposition 4 is satisfied. Fi-
nally, we have‖g(t,θ)−g(t, θ̂)‖ ≤ Lg(θ̃TS(t)θ̃)1/2, where
Lg = maxθ∈Θ ‖[∂g/∂θ ](t,θ)‖/λmin(P)1/2. Hence, Proposi-
tion 4 applies. 2

When looking for the functionM, a good starting point is
M(t,x, θ̂) = [∂g/∂θ ]T(t,x, θ̂)BT(t,x). This choice makes
the parameter update law into a true gradient search
in the direction of steepest descent for the function
‖B(t,x)(g(t,x,θ)− g(t,x, θ̂))‖2. Indeed, this choice ofM
often works even if it fails to satisfy either of Propositions
3 and 4. In the special case where the perturbation is lin-
ear in the unknown parameters, this choice ofM always
satisfies (7), and the remaining conditions in Proposition 4

coincide with standard persistency-of-excitation conditions
for paramater identification in linear adaptive theory (see,
e.g., Marino and Tomei, 1995, Ch. 5). Future research will
focus on more systematic ways of finding the functionM
for nonlinear parameterizations.

We end this section with an example illustrating that the
above approaches may be combined.

Example 5 Consider the perturbationB(t,x)g(t,x,θ) =

[θ 1/3
1 , sin(θ1a(t))θ2]

T with θ1 known to be non-zero, and
where a(t) is some persistently exciting signal with a
bounded derivative. Clearly, we can findθ1 by inversion,
simply takingθ ∗

1 (φ̂) = φ̂3
1 . Hence,θ1 is handled according to

Proposition 1. Whenθ1 is known, we can findθ2 by numer-
ical search according to Proposition 4. We therefore imple-
ment the second part of the update law according to Propo-
sition 4, substitutingθ1 with φ̂3, resulting inuθ (t,x, φ̂ , θ̂) =

Proj(Γ[φ̂3
1 − θ̂1, sin(φ̂3

1a(t))(φ̂2−sin(φ̂3
1a(t))θ̂2)]

T). 2

3.3 Estimator

We now introduce the full estimator:

ż= −Kφ
(

f (t,x)+B(t,x)v(t,x)+ φ̂
)

−B(t,x)
∂g
∂θ

(t,x, θ̂)uθ (t,x, φ̂ , θ̂), (8a)

φ̂ = z+Kφ x+B(t,x)g(t,x, θ̂), (8b)
˙̂θ = uθ (t,x, φ̂ , θ̂), (8c)

whereKφ is a symmetric positive-definite gain matrix. The
full estimator consists of two parts: an estimator forφ , de-
scribed by (8a), (8b), and the update law from Section 3.1.
To study the properties of the estimator, we consider the dy-
namics of the errors̃φ andθ̃ . Taking the time derivative of
φ̃ = φ − φ̂ , we may write

˙̃φ = Kφ
(

f (t,x)+B(t,x)v(t,x)+ φ̂
)

+B(t,x)
∂g
∂θ

(t,x, θ̂)uθ (t,x, φ̂ , θ̂)−Kφ ẋ

−B(t,x)
∂g
∂θ

(t,x, θ̂)uθ (t,x, φ̂ , θ̂)+d(t,x, θ̃),

(9)

where

d(t,x, θ̃) :=
∂
∂ t

(

B(t,x)(g(t,x,θ)−g(t,x, θ̂))
)

+
∂
∂x

(

B(t,x)(g(t,x,θ)−g(t,x, θ̂))
)

ẋ.
(10)

The functiond(t,x, θ̃) can be seen as the time derivative of
B(t,x)(g(t,x,θ)−g(t,x, θ̂)) whenθ̂ is kept constant. Using
the expression ˙x− f (t,x)−B(t,x)v(t,x) = φ , we may rewrite
the above expression and write the error dynamics of the
estimator as

˙̃φ = −Kφ φ̃ +d(t,x, θ̃), (11a)
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˙̃θ = −uθ (t,x,φ , θ̂)

+
(

uθ (t,x,φ , θ̂)−uθ (t,x, φ̂ , θ̂)
)

. (11b)

For convenience, we define the error variableξ := [φ̃T, θ̃T]T

and the setΞ := R
n× (Θ−Θ).

Assumption 2 For all (t,x, θ̃) ∈ R≥0×R
n× (Θ−Θ), the

function d(t,x, θ̃) is well-defined; for each compact set K⊂
R

n, there exist continuous functions L1(x) > 0 and L2(x) > 0
such that for all(t,x, θ̃)∈R≥0×K×(Θ−Θ), ‖d(t,x, θ̃)‖≤
L1(x)‖θ̃‖; and for all (t,x,φ , φ̂ , θ̂) ∈ R≥0×K×R

n×R
n×

Θ, ‖uθ (t,x,φ , θ̂)−uθ (t,x, φ̂ , θ̂)‖ ≤ L2(x)‖φ̃‖.

Remark 1 When checking the condition‖u(t,x,φ , θ̂) −
u(t,x, φ̂ , θ̂)‖ ≤ L2(x)‖φ̃‖, the projection in the update law
can be disregarded, because the property is retained under
projection (see Appendix A.1). 2

The Lipschitz-type conditions in Assumption 2 may appear
difficult to satisfy. Note, however, that̃θ ∈ (Θ−Θ), which
means that we are dealing with a local Lipschitz condition
for d. For uθ , we need to satisfy a global condition in the
sense thatφ andφ̂ are not presumed bounded. Indeed, such a
condition may often fail to hold, as demonstrated by Exam-
ple 5, where the term̂φ3

1 is used. In most cases, however, the
perturbationφ depends on physical quantities with known
bounds, and from these a bound onφ can often be found.
It is then possible to include a saturation ofφ̂ in the update
law uθ to reduce the requirement to a local condition, which
is much more easily satisfied. With the inclusion of a satu-
ration, Example 5 does satisfy Assumption 2. The inclusion
of a saturation does not affect the validity of Assumption 1
or the proofs of Propositions 1–4, since the saturation has
no effect whenφ̂ = φ .

Theorem 1 Suppose that Assumptions 1 and 2 hold with
a3(x) ≥ a∗3 > 0 and that for all t∈ R≥0, ‖x(t)‖ is uniformly
bounded. Then there exists kφ > 0 such that if Kφ is cho-
sen such thatλmin(Kφ ) > kφ , then the origin of(11) is uni-
formly exponentially stable withΞ contained in the region
of attraction. 2

PROOF By Assumption 1,θ̂(t0) ∈ Θ implies that for all
t ≥ t0, θ̂(t) ∈ Θ. Henceθ̃ ∈ (Θ−Θ), which means that if
ξ (t0) ∈ Ξ, then for all t ∈ R≥0, ξ (t) ∈ Ξ. By assumption,
x(t) ∈ K, whereK ⊂ R

n is a compact set. We can therefore
make use of Assumptions 1 and 2 for this particularK.
Boundedness ofx ensures thatφ is well-defined for all times.
We define the Lyapunov function candidate (LFC) Vp(t,ξ ) =

Vu(t, θ̃)+ 1
2φ̃Tφ̃ and investigate its time derivative on the set

Ξ along the trajectories of (11):

V̇p(t,ξ ) =
∂Vu

∂ t
(t, θ̃)− ∂Vu

∂ θ̃
(t, θ̃)uθ (t,x,φ , θ̂)

+
∂Vu

∂ θ̃
(t, θ̃)

(

uθ (t,x,φ , θ̂)−uθ (t,x, φ̂ , θ̂)
)

−φ̃TKφ φ̃ + φ̃Td(t,x, θ̃)).

(12)

From the inequalities in Assumptions 1 and 2,

V̇p(t,ξ )≤−a3(x)‖θ̃‖2−λmin(Kφ )‖φ̃‖2+‖φ̃‖‖d(t,x, θ̃)‖

+

∥

∥

∥

∥

∂Vu

∂ θ̃
(t, θ̃)

∥

∥

∥

∥

‖uθ (t,x,φ , θ̂)−uθ (t,x, φ̂ , θ̂)‖. (13)

This expression can be rewritten asV̇p(t,ξ ) ≤ −ζ TQζ ,
whereζ = [‖φ̃‖, ‖θ̃‖]T and

Q =

[

λmin(Kφ ) − 1
2(a4L2(x)+L1(x))

− 1
2(a4L2(x)+L1(x)) a3(x)

]

. (14)

To check for positive-definiteness ofQ, we note that the
first-order leading principal minor ofQ is λmin(Kφ ) > 0. The
second-order leading principal minor isa3(x)λmin(Kφ )−
1
4(a4L2(x)+L1(x))2, which is positive ifλmin(Kφ ) > kφ :=
(a4L∗

2 +L∗
1)

2/(4a∗3), whereL∗
1 andL∗

2 are bounds onL1(x)
and L2(x) on K. Hence, we have onΞ that V̇p(t,ξ (t)) ≤
−λmin(Q)‖ξ (t)‖2. The remainder of the proof follows
from using the comparison lemma (Khalil, 2002, Lemma
3.4). Moreover, we have thatVp(t,ξ ) ≤ max{a2,

1
2}‖ξ‖2.

From the preceding two expressions, we have that
V̇p(t,ξ (t)) ≤ −λmin(Q)/max{a2,

1
2}Vp(t,ξ (t)). By the

comparison lemma (Khalil, 2002, Lemma 3.4), we there-
fore haveV̇p(t,ξ (t))≤Vp(t0,ξ (t0))exp(−2λ (t− t0)), where
λ = λmin(Q)/max{2a2,1}. Furthermore, min{a1,

1
2}‖ξ‖2 ≤

Vp(t,ξ ). Hence, ‖ξ (t)‖ ≤ (Vp(t,ξ (t))/min{a1,
1
2})1/2,

which yields ‖ξ (t)‖ ≤ ke‖ξ (t0)‖exp(−λ (t − t0)), ke =

(max{a2,
1
2}/min{a1,

1
2})1/2. �

Remark 2 We assume in Theorem 1 that the statex is uni-
formly bounded. In pure estimation problems, where no con-
trol is implemented based on the parameter estimates, this is
usually a reasonable assumption, because the states involved
are typically derived from bounded physical quantities.2

4 Closed-Loop Compensation

We now consider how the parameter estimates can be used
to compensate for the perturbation in (1). Suppose that the
control inputs available in the original system can be chosen
to yield a system on the following form:

ẋ = f (t,x)+B(t,x)
(

g(t,x,θ)−g(t,x, θ̂)
)

. (15)

Here,v(t,x) in (1) has been substituted with−g(t,x, θ̂).

Assumption 3 The function f(t,x) is continuously differ-
entiable onR≥0 ×R

n; the origin of the nominal system
ẋ = f (t,x) is uniformly globally asymptotically stable
(UGAS); for any trajectory θ̂(t) ∈ Θ, the solutions x(t) of
the perturbed system(15) are uniformly globally bounded
(UGB); and for each compact set K⊂ R

n there exists a
classK functionγ such that for all(t,x, θ̂)∈R≥0×K×Θ,
‖B(t,x)(g(t,x,θ)−g(t,x, θ̂))‖ ≤ γ(‖θ̃‖).

5



In Assumption 3, we assume thatf (t,x) is a stabilizing func-
tion that ensuresUGB irrespective of the parameter estimate.
In this case, the only control needed is a term−g(t,x, θ̂)
to cancel the perturbation. In many cases, additional control
may be necessary to satisfy Assumption 3. TheUGB condi-
tion of Assumption 3 is most easily satisfied if the growth
rate of the stabilizing term inf (t,x) is greater with respect
to x than the growth rate of the error termB(t,x)(g(t,x,θ)−
g(t,x, θ̂)). In some cases, this requirement may automati-
cally be satisfied; in other cases, the requirement may be sat-
isfied by introducing control in the form of nonlinear damp-
ing with a sufficiently high growth rate. This is similar to
the technique used in adaptive backstepping (Krstić et al.,
1995). We also refer to Panteley and Lorı́a (2001) for an
extensive discussion on how to ensureUGB.

Theorem 2 Suppose that Assumptions 1–3 hold. Then for
each compact neighborhood K′ ⊂R

2n of the origin, there ex-
ist kφ > 0 such that if Kφ is chosen such thatλmin(Kφ ) > kφ ,
then the origin of(15), (11) is uniformly asymptotically sta-
ble with K′×(Θ−Θ) contained in the region of attraction.2

PROOF This proof is based on the proof of Panteley and
Lorı́a (2001, Lemma 2). TheUGAS property of the unper-
turbed system, together with the fact thatf (t,x) is locally
Lipschitz continuous inx, uniformly in t and continuously
differentiable onR≥0×R

n, implies by Panteley and Lorı́a
(2001, Prop. 1) the existence of a Lyapunov functionVx(t,x);
classK∞ functionsα1 andα2; and a classK function α4
such that for all(t,x) ∈ R≥0×R

n,

α1(‖x‖) ≤Vx(t,x) ≤ α2(‖x‖), (16)
∂Vx

∂ t
(t,x)+

∂Vx

∂x
(t,x) f (t,x) ≤−Vx(t,x), (17)

∥

∥

∥

∥

∂Vx

∂x
(t,x)

∥

∥

∥

∥

≤ α4(‖x‖). (18)

Let R > 0 be chosen large enough thatΩ := {(x,ξ ) |
‖(x,ξ )‖ ≤ R} ⊃ K′ × (Θ − Θ). If (x(t0),ξ (t0)) ∈ Ω, this
implies that‖x(t0)‖ ≤ R, and from theUGB property from
Assumption 3, we therefore know that for allt ≥ t0, x(t) is
uniformly bounded. Let thereforeλmin(Kφ ) be chosen large
enough to ensure exponential stability of the estimator ac-
cording to Theorem 1. By the exponential stability property
of (11), we know that if(x(t0),ξ (t0))∈Ω andξ (t0)∈Ξ, then
‖ξ (t)‖ ≤ ke‖ξ (t0)‖e−λ (t−t0). By the UGB property of (15),
we know that for each 0< r ≤ R, there exists acx(r) > 0
such that if‖x(t0)‖ ≤ r, then for allt ∈ R≥0, ‖x(t)‖ ≤ cx(r).
This implies that if‖(x(t0),ξ (t0))‖ ≤ r andξ (t0) ∈ Ξ, then
‖(x(t),ξ (t))‖ ≤ c(r), wherec(r) := (cx(r)2 +(ker)2)1/2.

Define vx(t) = Vx(t,x(t)). We then have ˙vx(t) ≤ −vx(t) +

α4(c(r))β (r, t − t0), whereβ (r, t − t0) := γ(kere−λ (t−t0)) is
a classK L function by Khalil (2002, Lemma 4.2). Let
τ0 ≥ t0. Multiplying by et−τ0 on both sides and rearranging,
we have for allt ≥ τ0, d

dt (vx(t)et−τ0) ≤ α4(c(r))β (r, t −
t0)et−τ0. Integrating fromτ0 to t on both sides and mul-
tiplying by e−(t−τ0), we have vx(t) ≤ vx(τ0)e−(t−τ0) +

α4(c(r))
∫ t

τ0
e−(t−s)β (r,s− t0)ds, which means that re-

placing τ0 with t0 in the above expression yields, for all
t ≥ t0, vx(t)≤ vx(t0)e−(t−t0) +α4(c(r))β (r,0)

∫ t
t0

e−(t−s) ds≤
vx(t0)+α4(c(r))β (r,0)(1−e−(t−t0))≤ γ ′(r). whereγ ′(r) :=
α2(r) + α4(c(r))β (r,0). Hence, ‖x(t)‖ ≤ α−1

1 (γ ′(r)),
and α−1

1 ◦ γ ′ is a classK∞ function by Khalil (2002,
Lemma 4.2). Furthermore, we have, for‖(x(t0),ξ (t0)‖ ≤ r
and ξ (t0) ∈ Ξ, ‖(x(t),ξ (t))‖ ≤ γ ′′(r), where γ ′′(r) :=
((α−1

1 (γ ′(r)))2 + (ker)2)1/2 is a classK∞ function. Let
c≤ R be sufficiently small such that‖ξ‖ ≤ c =⇒ ξ ∈ Ξ.
By the above, we have that for all‖(x(t0),ξ (t0))‖ ≤ r < c
and for allt ≥ t0, ‖(x(t),ξ (t))‖ ≤ γ ′′(r), which means that
the origin of (15), (11) is uniformly stable.

For some ε1 > 0, define T1 large enough that that
α4(c(r))β (r,T1) ≤ ε1/2. Substitutingτ0 = t0 + T1 into the
the earlier bound onvx(t), we obtain that∀t ≥ t0 +T1,

vx(t) ≤ vx(t0 +T1)e
−(t−t0−T1)

+α4(c(r))
∫ t

t0+T1

β (r,s− t0)e
−(t−s) ds

≤ γ ′(r)e−(t−t0−T1) +
ε1

2
.

(19)

Now letT2≥T1 be chosen large enough thatγ ′(r)exp(−(T2−
t0 − T1)) ≤ ε1/2. Then we have for allt ≥ t0 + T2,
vx(t) ≤ γ ′(r)exp(−(T2 − t0 − T1)) + ε1/2 ≤ ε1. Hence,
for all t ≥ t0 + T2, ‖x(t)‖ ≤ α−1

1 (ε1). Define ε such
that ε1 = α1(ε/

√
2) and let T ≥ T2 be large enough

that kereT−t0 ≤ ε/
√

2. Then ∀t ≥ T, ‖(x(t),ξ (t))‖ ≤
(ε2/2+ ε2/2)1/2 = ε. Since ε can be chosen arbitrarily
small, and the above holds for all initial conditions such
that (x(t0),ξ (t0)) ∈ Ω and ξ (t0) ∈ Ξ, it follows that the
whole system (15), (11), is uniformly asymptotically stable
with K′× (Θ−Θ) contained in the region of attraction.�

Remark 3 Theorems 1 and 2 are intended to show that
particular stability properties are guaranteed by choosing the
gainKφ sufficiently high; they are not intended as a practical
guide to tuning the estimator gains. Attempting to find a
numerical value forkφ , the lower bound on the eigenvalues
of Kφ , is likely to be complicated and of little practical use,
owing to the conservative nature of Lyapunov-type analysis.
In practical implementations, the gains are normally found
through a tuning procedure involving simulations or tests
with the actual system. 2

4.1 Vanishing Excitation at x= 0

So far we have only considered perturbations that are persis-
tently exciting in the sense thatθ can always be estimated
from φ with exponential convergence rate. This strict re-
quirement excludes a class of perturbations where we have
persistent excitations as long as the controlled statex is
bounded away from the origin, but where the excitation is
lost at the origin. Most importantly, this includes all pertur-
bations that vanish forx = 0. As an example, consider the
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system ˙x = −x+arctan(θx)−arctan(θ̂x). In the following
theorem, we show that under certain conditions, convergence
of the controlled state to the origin is guaranteed, even when
excitation is lost at the origin.

Theorem 3 Suppose that Assumptions 1–3 hold such
that limx→0(L1(x) + L2(x))2/a3(x) < ∞, and that for all
(t,x,θ , θ̂) ∈ R≥0×R

n×Θ×Θ, ‖ẋ‖ ≤ ρ(‖x‖), whereρ is
a continuous function. Thenlimt→∞ x(t) = 0 and ξ (t) is
bounded. 2

PROOF We start by following the proof of Theorem
1, to find that we have the requirementλmin(Kφ ) >

(a4L2(x) + L1(x))2/(4a3(x)). BecauseL1(x) and L2(x)
are bounded onK, and due to the conditions in Theo-
rem 3, we see that the right-hand side is bounded, and
hence the inequality can be satisfied forλmin(Kφ ) > kφ , for
somekφ > 0. This results inV̇p(t,ξ ) ≤ −zTQ(x)z, where
z = [‖φ̃‖, ‖θ̃‖]T, and whereQ(x) is positive-definite for
each x 6= 0, and positive-semidefinite forx = 0. Define
U(x) = λmin(Q(x))/max{a2,

1
2}, which is a continuous

positive-definite function (due to continuity of the eigen-
values and ofa3(x), L1(x) andL2(x)). Following the same
argument as in the proof of Theorem 1, we can then write
‖ξ (t)‖ ≤ β (t) := ke‖ξ (t0)‖exp(−∫ t

t0
U(x(τ))dτ). Hence,

β is a monotonically non-increasing function which has
exponential decay rate ifx is bounded away from zero.

For the sake of establishing a contradiction, suppose that
x(t) does not converge to the origin. Then there exists a
δ > 0 such that for allt ∈ R≥0, there existτ ≥ t such
that‖x(τ)‖> 2δ . When‖x(t)‖ ∈ [δ , 2δ ], we have‖ẋ(t)‖ ≤
max‖x‖∈[δ ,2δ ] ρ(‖x‖). It follows that there existsT > 0 such
that for eacht ∈ [τ − T, τ + T], ‖x(t)‖ ≥ δ . On this in-
terval, the bounding functionβ experiences a certain de-
crease; in particularβ (τ +T)≤ β (τ −T)e−2λ̄T , whereλ̄ =
minx∈K\B(δ )U(x) is a positive number. Moreover, for any
integern > 0, there exists at1 > t0 such that[t0, t1], con-
tains at leastn disjoint time intervals of length 2T with
‖x(t)‖ ≥ δ . The UGAS property of the unperturbed system
ẋ = f (t,x) implies that ifγ(‖θ̃‖) is sufficiently small, then
x(t) is globally ultimately bounded byδ . Let thereforeε be
chosen small enough that if for allt ≥ t0, ‖ξ (t)‖ ≤ ε, then
x(t) is globally ultimately bounded byδ . Let n ≥ 0 be an
integer chosen large enough thatβ (t0)e2nλ̄T ≤ ε, and lett1
be large enough that there are at leastn disjoint intervals of
length 2T in [t0, t1] with ‖x(t)‖ ≥ δ . This implies that for all
t ≥ t1, ‖ξ‖≤ ε. This, in turn, implies by the ultimate bound-
edness property that there exists at2 ≥ t1 such that for all
t ≥ t2, ‖x(t)‖ ≤ δ . But this contradicts our assumption that
x(t) does not converge to the origin and that consequently
there exist arbitrarily large valuesτ such that‖x(τ)‖ ≥ 2δ .
Hence,x(t) does converge to the origin. Boundedness of
ξ (t) follows from the fact thatβ (t) is monotonically non-
increasing, even whenx = 0. �

The functions L1(x) and L2(x) represent Lipschitz-like
bounds that are typically not explicitly derived in the design

process. The condition in Theorem 3 concerns the growth
rates of these functions asx → 0, which can often be de-
terminened without developing explicit expressions for the
functions.

5 Discussion of Results

The method presented in this paper has its strengths and
weaknesses. Among its strengths is that, for many perturba-
tions, it can provide fast parameter estimates. In particular,
for those covered by Propositions 1 and 3, the estimates can
be made to converge arbitrarily fast.

As mentioned in Section 1, the method presented in this
paper has similarities with Chakrabortty and Arcak (2007),
where an estimate of a lumped perturbation, comparable to
the perturbation estimatêφ , is produced. A strength of the
metod in Chakrabortty and Arcak (2007) is that it deals with
a very general class of time-invariant perturbations, as well
as some time-varying ones. The results in this paper apply
to a narrower class of perturbations, but it has the advan-
tage of exploiting structural information about the pertur-
bation, when such information is available. Using structural
information about the perturbation helps reduce sensitivity
to noise in several ways. Sincêθ represents an estimate of a
constant, it does not have to react quicly to changes, and it
can typically be tuned to be much less noisy than the pertur-
bation estimatêφ . The estimation ofφ is furthermore helped
by usingB(t,x)g(t,x, θ̂) in the perturbation estimator, often
enabling a reduction in gain even for highly time-varying
perturbations. The method presented in this paper does not
require a particular control law to be implemented; it may
be used for parameter estimation alone, without control of
the statex.

Because the method of compensation presented in this pa-
per is based on estimation of the unknown parameter, it sets
strict requirements on the excitation properties of the pertur-
bations. This is restrictive compared to traditional adaptive
approaches; on the other hand, it is often the case that per-
turbations have the necessary excitation when compensation
is necessary. Moreover, we have seen in Section 4.1 that in
the special but common case when the excitation condition
can be fulfilled outside the origin of the controlled system
(but not at the origin), it may still be possible to ensure con-
vergence of the controlled variable, even though the param-
eter estimates themselves may not converge. This is a result
reminiscent of traditional adaptive control results.

It is natural to ask whether the same results could be achieved
by simply differentiating the outputs and thereby extracting
the perturbation termφ . The problem with such an approach
is that in any practical implementation, numerical differen-
tiation must be combined with low-pass filtering to avoid
excessive noise amplification. Low-pass filtering removes
not only noise, but also other time-varying components,
thereby reducing performance. The approach presented in
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this paper implicitly performs a filtered differentiation of
the outputs, but makes full use of the available information
about the perturbation by using an observer structure where
B(t,x)g(t,x, θ̂) is the starting point for estimating the full
perturbationφ = B(t,x)g(t,x,θ). Indeed, this provides fil-
tering while rendering the origin of the error dynamics an
equilibrium point, which is not the case if a simple filtered
differentiation of the outputs is used.

6 Simulation Example

In the next example, we demonstrate the method on a first-
order system with a highly nonlinear and time-varying per-
turbation, and compare it to use of a gradient algorithm.
This example is repeated from Grip, Johansen, and Imsland
(2008), where another simulation example concerning esti-
mation of unknown deadzone parameters can also be found.

Example 6 Consider the system

ẋ = −x+esin(t)θ +u, (20)

whereθ ∈ [θmin, θmax]. Here f (t,x) = f (x) = −x, B(t,x) =

1, andg(t,x,θ) = g(t,θ) = esin(t)θ . We wish to useu to
cancel the perturbation, and letu = −esin(t)θ̂ . The first step
is to design an update law to estimateθ from the full per-
turbation. We first note that[∂g/∂θ ](t,θ) = sin(t)esin(t)θ ,
and hence (7) in Proposition 4 is satisfied by selecting
M(t,x, θ̂) = M(t) = sin(t) with S(t,x) = S(t) = sin2(t)e−θ ′

,
where θ ′ := maxθ∈Θ |θ |. The remaining requirements in
Proposition 4 can be confirmed in the same way as in
Example 4. We now check that the conditions of As-
sumption 2 hold. We have thatd(t,x, θ̃) = (θesin(t)θ −
θ̂esin(t)θ̂ )cos(t). Using the mean value theorem, we
find that |d(t,x, θ̃)| ≤ (1 + θ ′)eθ ′ |θ̃ |. We also see that
|uθ (t,x,φ , θ̂) − u(t,x, φ̂ , θ̂)| = Γ|sin(t)φ̃ | ≤ Γ|φ̃ |. 1 Mov-
ing to Assumption 3, it is straightforward to see that the
nominal, unperturbed system ˙x = −x is UGAS and that the
perturbed system isUGB (becauseθ andθ̂ are restricted to
Θ). Finally, we may useγ(s) = eθ ′

s to satisfy Assumption 3.

We implement the full estimator from (8). After canceling
terms, we obtain

ż= −Kφ (Kφ −1)x−Kφ z

−sin(t)esin(t)θ̂ Proj(Γsin(t)(z+Kφ x)),
˙̂θ = Proj(Γsin(t)(z+Kφ x)).

(21)

We simulate the system withθmin = −10 andθmax = 10,
lettingθ vary in steps between−2 and 4 to get an impression
of the response. We use the estimator parametersKφ = 10,
Γ = 3. The results can be seen in Figure 1, where we have

1 We recall from Remark 1 that we can disregard the projection
when checking this condition.
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Fig. 1. Simulation results for Example 6

also plotted the response using a gradient algorithm˙̂θ =

Γsin(t)esin(t)θ̂ x, with gain Γ = 1. Noise has been added to
the measurement of the statex used in both algorithms. The
noise is added with sample time 0.001, and has variance 1.
The parameter projection is not active at any point in the
simulation. 2

7 Application: Downhole Pressure Estimation During
Oil Well Drilling

When extracting hydrocarbons from underground geologi-
cal formations it is usually necessary to create a well by
drilling a wellbore. During drilling a mud circulation sys-
tem is used to transport cuttings from the drilling out of
the wellbore. The mud is pumped downhole inside the drill
string and through the drill bit, and returns to the top through
the annulus containing the drill string, as illustrated in Fig-
ure 2. The downhole pressure needs to be controlled within
its margins: above the reservoir pore pressure and wellbore
collapse pressure, but below the wellbore fracture pressure.
In many cases, this margin is quite wide and the pressure
can be manually controlled, but as oil and gas reserves be-
gin to be depleted, reservoirs with narrower margins are be-
ing drilled, demanding automated pressure control (see, e.g.,
Nygaard and Nævdal, 2006; Nygaard, Imsland, and Johan-
nessen, 2006). The downhole pressure is usually measured,
but with conventional equipment this measurement has low
bandwidth and is unreliable. Good pressure control there-
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Fig. 2. Schematic overview of drilling system

fore demands pressure estimation based on topside measure-
ments.

7.1 Modeling

Complex models of the drilling process exist, for example
in the simulator Wemod, provided byIRIS (Lage, Frøyen,
Sævareid, and Fjelde, 2000). We shall use a low-complexity
model for the development of the pressure estimation al-
gorithm (see Stamnes, Zhou, Kaasa, and Aamo, 2008). We
assume that the drilling process is described by the follow-
ing dynamic model, derived from mass balances for the drill
string and annulus:

Vd

βd
ṗp = qp−qb, (22)

Va

βa
ṗc = −V̇a +qb +qr +qa−qc, (23)

where the statespp and pc are the pressures in the top of
the drill string (standpipe pressure) and the annulus (choke
pressure), both of which are measured. Furthermore,Vd and
Va denote the volumes of the drill string and the annulus;
andβd andβa are the drill string and annulus bulk moduli,
all known. The volume flows are the inflow to the drill string
(qp), flow from the back pressure (annulus) pump (qa), and
exit flow from the annulus through the choke (qc), all mea-
sured, as well as the flow through the drill bit (qb) and inflow
from the reservoir (qr ), The flow qb is given by a steady-
state momentum balance for drill string and annulus (in a
slight simplification of the model in Stamnes et al. (2008)):

pp− pc = Fdq2
b +Fa(qb +qr)

2−s(t). (24)

The friction parameterFd in the drill string is assumed
known, as is the functions(t) = (ρd(t)−ρa(t))ghb(t), which
describes the difference in drill string and annulus downhole
static head. We shall estimate the two remaining parameters,
Fa andqr , which will allow us to calculate downhole pressure
pb using a steady-state momentum balance for the annulus:
pb = pc +Fa(qb +qr)

2 + ρa(t)ghb. We assume that the pa-
rameters to be estimated are constant, and that(qb +qr)

2 >
α, for someα > 0, which implies that we have flow into
the annulus. In order to put the system in the form used in
this paper, we writex= [Vd/βd pp,Va/βapc]

T, θ = [qr ,Fa]
T,

f (t,x) = [qp,(x2/Va−1)V̇a+qa−qc]
T, B(t,x) =

[−1 0
1 1

]

, and
g(t,x,θ) = [qb,qr ]

T.

7.2 Estimator Design

As before, we start by designing an update law for estimating
Fa and qr as if φ1 = −qb and φ2 = qb + qr were known.
We see that we can use a simple inversion according to
Proposition 1 to create an update law forqr :

˙̂qr = Γ1(φ̂1 + φ̂2− q̂r), (25)

whereΓ1 > 0 is a scalar gain. (For simplicity, we omit the
projection in discussing this example.) ForFa, the approach
is slightly more complicated. According to (24), we may
define an estimated flow ˆqb through the bit, by the equa-
tion pp− pc = Fdq̂2

b + F̂a(q̂b + q̂r)
2 + s(t). Subtracting this

from (24) and rearranging yields the relation−Fd(q2
b− q̂2

b)−
F̂a

(

(qb +qr)
2− (q̂b + q̂r)

2
)

= F̃a(qb + qr)
2. Define the up-

date law

˙̂Fa = Γ2[−Fd(φ̂2
1 − q̂2

b)− F̂a(φ̂2
2 − (q̂b + q̂r)

2)]. (26)

For φ̂ = φ , we then have˙̃Fa = −Γ2(qb + qr)
2F̃a. It is then

straightforward to prove that Assumption 1 holds with
V(θ̃) = 1

2θ̃Tθ̃ . Implementation of the update law requires
calculation of ˆqb, which is found by taking the positive root
of the second-order equation defining the estimated flow
through the bit. This solution is in turn used to find the
partial derivative[∂g/∂θ ](t,x, θ̂), which is needed in the
complete implementation of the system.

In checking Assumption 2, one finds that, due to the
quadratic terms inφ1 and φ2 in the update law forFa, the
Lipschitz condition onuθ does not hold globally. This can
easily be rectified by modifying the update law with a satu-
ration, as described in Remark 3.3. This is mostly of tech-
nical interest, however, and we make no such modification
in the update law above.

7.3 Experimental Results

The estimatior has been tested in simulation using the com-
plex model Wemod (Lage et al., 2000), yielding very accu-
rate results, and on real measured data from drilling at the
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Fig. 3. Results for drilling application using real drilling data

Grane field in the North Sea. The results for the real drilling
data can be seen in Figure 3. The tuning used isΓ1 = 0.005,
Γ2 = 2 andKθ = 10I . It should be noted that, although it
is common to measure the flowqc, no such measurement
is available in the data set used, andqc is therefore esti-
mated from a choke model and the available choke opening.
Given the large uncertainties in this application, the down-
hole pressure estimate is considered good.

8 Concluding Remarks

We have introduced a method for estimating unknown pa-
rameters in systems influenced by nonlinearly parameter-
ized perturbations, and furthermore considered use of the
parameter estimates for compensation of the perturbations.
The main argument in favour of this method is its conceptu-
ally simple, modular structure, where the main design task
is to design an update law to asymptotically invert a non-
linear equation. The modular design allows for some simple
extensions of the perturbation estimator. A focus of current
research is extension of the perturbation estimator for cases
when the perturbation does not occur in the first derivative
of the measurement, by using techniques from high-gain ob-
server theory.
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A Parameter Projection

Let the set of possible parameters be defined byΠ := {θ̂ ∈
R

p | P(θ̂) ≤ 0}, whereP : R
p → R is a smooth convex

function. LetΠ0 denote the interior ofΠ, and letΘ be de-
fined byΘ := {θ̂ ∈R

p |P(θ̂)≤ ε}, whereε is a small pos-
itive number, makingΘ a slightly larger superset ofΠ. Con-
sider the update functionuθ (t,x, φ̂ , θ̂) = Proj(τ(t,x, φ̂ , θ̂)),
where Proj(·) is the projection from Krstíc et al. (1995, Ap-
pendix E): Proj(τ(t,x, φ̂ , θ̂)) = p(t,x, φ̂ , θ̂)τ(t,x, φ̂ , θ̂), with
p(t,x, φ̂ , θ̂) given by

• p(t,x, φ̂ , θ̂) = I if θ̂ ∈ Π0 or ∇θ̂ PTτ(t,x, φ̂ , θ̂) ≤ 0,
• p(t,x, φ̂ , θ̂) =

(

I −c(θ̂)Γ∇θ̂ P∇θ̂ PT/‖∇θ̂ P‖2
Γ
)

if θ̂ ∈
Θ\Π0 and∇θ̂ PTτ(t,x, φ̂ , θ̂) > 0,

whereΓ is a symmetric positive-definite matrix correspond-
ing to the gain matrix in the update law;∇θ̂ PT is the gradi-
ent ofP(θ̂) with respect tôθ ; andc(θ̂) = min{1,P(θ̂)/ε}.

A.1 Lipschitz Continuity

We wish to show that if for each compact setK ∈ R
n,

τ has the property that for all(t,x,φ , φ̂ , θ̂) ∈ R≥0 ×K ×
R

n ×R
n ×Θ, ‖τ(t,x,φ , θ̂)− τ(t,x, φ̂ , θ̂)‖ ≤ L2(x)‖φ̃‖, for

some continuous functionL2(x) > 0, then we also have
‖uθ (t,x,φ , θ̂)−uθ (t,x, φ̂ , θ̂)‖≤ L′

2(x)‖φ̃‖, for some contin-
uous functionL′

2(x) > 0. In the following, we will outline the
proof of this assertion. In order to do this, we have to look
at two distinct cases: when the parameter projection is ei-
ther active or inactive for bothuθ (t,x,φ , θ̂) anduθ (t,x, φ̂ , θ̂)
(Case I); and when the parameter projection is active for
one ofuθ (t,x,φ , θ̂) or uθ (t,x, φ̂ , θ̂), but not the other (Case
II). In the following, we will write uθ (φ) = uθ (t,x,φ , θ̂)

uθ (φ̂) = uθ (t,x, φ̂ , θ̂), and similarly forτ.

In Case I, it can be easily confirmed that we may
write uθ (φ) − uθ (φ̂) = Proj(τ(φ) − τ(φ̂)). Define ζ =
τ(φ)−τ(φ̂). From Krstíc et al. (1995, Lemma E.1), we know
that Proj(ζ )TΓ−1Proj(ζ ) ≤ ζ TΓ−1ζ . From this and the
property thatλmin(Γ−1)‖ζ‖2 ≤ ‖ζ‖2

Γ−1 ≤ λmax(Γ−1)‖ζ‖2,
we find that ‖Proj(ζ )‖2 ≤ λmax(Γ−1)/λmin(Γ−1)‖ζ‖2,
which gives‖Proj(ζ )‖ ≤

√
κ‖ζ‖, whereκ is the condition

number of the matrixΓ−1. It follows that‖uθ (φ)−uθ (φ̂)‖≤√
κ‖τ(φ)− τ(φ̂)| ≤

√
κL2(x)‖φ̃‖.
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Case II occurs if θ̂ ∈ Θ \ Π0, and ∇θ̂ PTτ(φ) and
∇θ̂ PTτ(φ̂) do not have the same sign. Without loss of gen-
erality, we assume that∇θ̂ PTτ(φ)≤ 0 and∇θ̂ PTτ(φ̂) > 0.
In this case, we haveuθ (φ) − uθ (φ̂) = τ(φ) − (I −
c(θ̂)Γ∇θ̂ P∇θ̂ PT/‖∇θ̂ P‖2

Γ)τ(φ̂). Expanding this expres-
sion, we have, after some calculation,‖uθ (φ)−uθ (φ̂)‖2

Γ−1 =

‖τ(φ) − τ(φ̂)‖2
Γ−1 + c(θ̂)/‖∇θ̂ P‖2

Γ
[

c(θ̂)|∇θ̂ PTτ(φ̂)|2 +

2τ(φ̂)T∇θ̂ P∇θ̂ PT(τ(φ)− τ(φ̂))
]

. We now make the cru-
cial observation that, because∇θ̂ PTτ(φ) and∇θ̂ PTτ(φ̂)

do not have the same sign,|∇θ̂ PTτ(φ̂)| ≤ |∇θ̂ PT(τ(φ)−
τ(φ̂))|. Using this for substitution where∇θ̂ PTτ(φ̂) oc-
curs alone, we obtain that‖uθ (φ)−uθ (φ̂)‖2

Γ−1 ≤ ‖τ(φ)−
τ(φ̂)‖2

Γ−1 + (c(θ̂)2 + 2c(θ̂))/‖∇θ̂ P‖2
Γ‖∇θ̂ P‖2‖τ(φ) −

τ(φ̂))‖2. Using the property thatλmin(P)‖z‖2 ≤ ‖z‖2
P ≤

λmax(P)‖z‖2, we find that‖uθ (φ)− uθ (φ̂)‖ ≤ α‖τ(φ)−
τ(φ̂)‖ ≤ αL2(x)‖φ̃‖, where α = [(λmax(Γ−1)λmin(Γ) +

3)/(λmin(Γ−1)λmin(Γ))]1/2.

B Proofs of Propositions 2–4

PROOF (PROPOSITION2) We use the LFC Vu(t, θ̃) =
1
2 θ̃T

(

Γ−1−µ
∫ ∞
t et−τ Il (τ,x(τ)) dτ

)

θ̃ , where µ > 0
is a constant yet to be specified. We first note that
1
2 θ̃T

(

Γ−1−µ I
)

θ̃ ≤ Vu(t, θ̃) ≤ 1
2θ̃TΓ−1θ̃ . Hence, Vu is

positive-definite providedµ < λmin(Γ−1). With φ̂ = φ , we

get ˙̃θ = −Proj(l(t,x)Γθ̃). Using the property (Krstić et al.,
1995, Lemma E.1) that−θ̃TΓ−1Proj(τ) ≤ −θ̃TΓ−1τ, we
have

V̇u(t, θ̃) = −θ̃T

(

Γ−1−µ
∫ ∞

t
et−τ Il (τ,x(τ))dτ

)

·Proj(l(t,x)Γθ̃)+
1
2

µθ̃TIl (t,x)θ̃

− 1
2

µθ̃T

∫ ∞

t
et−τ Il (τ,x(τ))dτ θ̃

≤−(1− 1
2

µ)l(t,x)θ̃Tθ̃ − 1
2

µεe−T θ̃Tθ̃

+ µ
∥

∥

∥

∥

θ̃T

∫ ∞

t
et−τ Il (τ,x(τ))dτ

∥

∥

∥

∥

∥

∥Proj(l(t,x)Γθ̃)
∥

∥

≤−(1− 1
2

µ)l(t,x)‖θ̃‖2− 1
2

µεe−T‖θ̃‖2

+ µ‖θ̃‖
∥

∥

∥

∥

∫ ∞

t
et−τ Il (τ,x(τ))dτ

∥

∥

∥

∥

√
κ‖Γ‖l(t,x)‖θ̃‖

≤ −(1− 1
2

µ −µ
√

κ‖Γ‖)l(t,x)‖θ̃‖2− 1
2

µεe−T‖θ̃‖2,

(B.1)

where κ is the condition number ofΓ−1. Above, we
have used the property (Krstić et al., 1995, Lemma
E.1) that Proj(τ)TΓ−1Proj(τ) ≤ τTΓ−1τ, which im-
plies that ‖Proj(τ)‖ ≤

√
κ‖τ‖. We have also used that

∫ ∞
t et−τ l(τ,x(τ))dτ ≥ ∫ T

t et−τ l(τ,x(τ))dτ ≥e−T ∫ T
t l(τ,x(τ))dτ ≥

e−Tε. From the calculation above, we see that the time
derivative is negative definite providedµ < 1/(1/2 +√

κ‖Γ‖). �

PROOF (PROPOSITION3) For the sake of brevity, we
write M = M(t,x, θ̂) and B = B(t,x). With φ̂ = φ , we get
˙̃θ = −Proj(ΓMB(g(t,x,θ)− g(t,x, θ̂))). We use theLFC

Vu(t, θ̃) = 1
2θ̃TΓ−1θ̃ . Using the property (Krstić et al.,

1995, Lemma E.1) that−θ̃TΓ−1Proj(τ) ≤ −θ̃TΓ−1τ,
we have V̇u(t, θ̃) ≤ −1

2θ̃TMB(g(t,x,θ) − g(t,x, θ̂)) −
1
2(g(t,x,θ) − g(t,x, θ̂))TBTMTθ̃ . Since g(t,x,θ) is con-
tinuously differentiable with respect toθ , we may write,
according to Taylor’s theorem (see, e.g., Nocedal and
Wright, 1999, Theorem 11.1),g(t,x,θ) − g(t,x, θ̂) =
∫ 1

0 [∂g/∂θ ](t,x, θ̂ + pθ̃)θ̃ dp. Hence, we havėVu(t, θ̃) ≤
−1

2

∫ 1
0 θ̃T(MB[∂g/∂θ ](t,x, θ̂ + pθ̃) + [∂g/∂θ ](t,x, θ̂ +

pθ̃)TBTMT)θ̃ dp≤−∫ 1
0 θ̃TPθ̃ dp=−θ̃TPθ̃ , which proves

that Assumption 1 holds. �

PROOF (PROPOSITION4) We use the LFC Vu(t, θ̃) =
1
2θ̃T

(

Γ−1−µ
∫ ∞
t et−τS(τ,x(τ))dτ

)

θ̃ , where µ > 0 is
a constant yet to be specified. First, we confirm that
the Lyapunov functionVu is positive-definite. We have
1
2(λmin(Γ−1) − µλ ′

S)‖θ̃‖2 ≤ Vu(t, θ̃) ≤ 1
2λmin(Γ−1)‖θ̃‖2,

where λ ′
S = sup(t,x)∈R≥0×K λmax(S(t,x)). It follows from

this thatVu is positive-definite providedλmin(Γ−1)−µλ ′
S >

0, which is guaranteed ifµ < λmin(Γ−1)/λ ′
S. When

we insert φ̂ = φ , we get the same error dynamics
as in the proof of Proposition 3. Following a calcu-
lation similar to the proof of Proposition 2, we get
V̇u(t, θ̃) ≤ −(1 − 1

2µ)θ̃TS(t,x)θ̃ − 1
2µεe−T‖θ̃‖2 +

µ
√

κMS‖Γ−1‖MMLg‖θ̃‖(θ̃TS(t,x)θ̃)1/2, whereMS andMM

are bounds on‖S(t,x)‖ and ‖M(t,x, θ̂)‖ respectively, and
κ is the condition number ofΓ−1. We may write this as a
quadratic expression with respect to[(θ̃TS(t,x)θ̃)1/2, ‖θ̃‖]T.
It is then easily confirmed that the expression is negative
definite if µ < 2/(1+κM2

S‖Γ−1‖2M2
ML2

gε−1eT). �
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