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Abstract
Observer for estimation of the downhole flowrate and pressure with a passive identifier for

estimation of friction and density.

1 Model

1.1 Design model

We base our design on the following simplified dynamical model of the system

Vd
βd

ṗp = qp − q (1a)

Va
βa

ṗc + V̇a = q − qc (1b)

Mq̇ = pp − pc − F (q, θ) +∆ρgh, (1c)

where F (q) is the total friction loss through the system, and ∆G = ∆ρgh is the difference in
gravitational (hydrostatic) pressure between the drillstring and annulus caused by differences in
the mean densities ρ̄a and ρ̄d. The frictional pressure drop is typically a nonlinear function of the
flow q with nonlinear friction parameters θ.

Example 1 As an example, the friction can be modelled such as

F (q,a) = a0 + a1q + a2q
2, ∀q > 0,

with friction parameters
a =

£
a0 a1 a2

¤T
.

...
The downhole bit pressure can be given as

pbit =

½
pc + Fa (q) +Ga(hbit) +Maq̇
pp + Fd (q) +Gd(hbit)−Mdq̇

,

with the hydrostatic pressure term

Gi(h) = ρ̄ih

= βi

³
eβ
−1
i ρigh − 1

´
, i = {d, a} ,

based on a linearized equation of state for the liquid...
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2 Adaptive observer design

2.1 Parametrization

Consider first the case with the simple quadratic friction model

F (q, F0) = F0 |q| q, (2)

where F0 > 0 is typically an unknown friction coefficient, and the remaining parameters are known.
The flow dynamics of (1c) can then be written

q̇ =
1

M
(pp − pc)−

F0
M
|q| q + ∆ρ

M
gh.

Defining

f0 (t) , 1

M
(pp (t)− pc (t)) +

∆ρ

M
gh (t)

θ , F0
M

, φ (q) , − |q| q

the flow dynamics can be expressed in the compact form

q̇ = f0 (t) + θTφ (t, q) , (3)

where f0 (t) denotes the known, time-varying part of the dynamics, and θ
Tφ (t, q) = θφ (q) denotes

the unknown part, written in a generalized, time-varying vector form.

Remark 2 Note that it is straightforward to rewrite the unknown part of the flow dynamics to
include more unknown parameters. For example, if in addition M and ∆ρ are unknown, the flow
dynamics can be expressed simply as

q̇ = θTφ (t, q) , (4)

with

θ =

⎡⎣ 1
M
F0
M
∆ρ
M

⎤⎦ , φ (t, q) ,

⎡⎣pp (t)− pc (t)
− |q| q
gh (t)

⎤⎦ . (5)

2.2 Observer design

The objective is to estimate the unmeasured flow q and the uncertain parameter θ. To design our
basic reduced-order observer for q, introduce the change of coordinate

ξ , q + lppp. (6)

The time-derivative of ξ gives

ξ̇ = q̇ + lpṗp

= f0 (t) + θTφ (t, q) + lp
βd
Vd
(qp − q) ,
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Let an estimate of q be given by

.

ξ̂ = f0 (t) + θ̂
T
φ (t, q̂) + lp

βd
Vd
(qp − q̂) (7)

q̂ = ξ̂ − lppp, (8)

In the absence of parameter errors, this provides exponential estimates of the unmeasured q, and
input-to-state stability (ISS) with respect to parameter errors θ̃ if the regressor φf (q̂) of the friction
model is monotonic in q̂ and bounded.
Proof (Outline). The estimation error

q̃ = q − q̂ = ξ̃

is governed by

.
q̃ =

.

ξ̃

= θTφ (t, q) + lp
βd
Vd
(qp − q)

−
µ
θ̂
T
φ (t, q̂) + lp

βd
Vd
(qp − q̂)

¶
+θTφ (t, q̂)− θTφ (t, q̂)

= −lp
βd
Vd

q̃ + θ̃
T
φ (t, q̂) + θT (φ (t, q)− φ (t, q̂)) .

Noting that
θT (φ (t, q)− φ (t, q̂)) = θ [φ (q)− φ (q̂)] ,

and using the Mean value theorem, the error dynamics can be written in the linear, time-varying
form .

q̃ = −l (q, q̂) q̃ + θ̃
T
φ (t, q̂) , (9)

where

l (q, q̂) , lp
βd
Vd
− k (q, q̂) ,

and

k (q, q̂) , θ
∂φ (q̄)

∂q

¯̄̄̄
q̄∈[min(q,q̂),max(q,q̂)]

= −2θ |q̄| .

Notice that since φ (q) is monotonically decreasing in q, lp ≥ 0 implies that the nonlinear gain
l (q, q̂) > 0. More precisely, the nonlinear gain l (q, q̂) = lp

βd
Vd
− k (q, q̂) will be strictly positive for

∀lp > inf k (q, q̂).
The stability properties of the q̃—system can then be establised by considering the function

V (q̃) =
1

2
q̃2.
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The time-derivative of V (q̃) is

V̇ = q̃
³
−l (q, q̂) q̃ + θ̃

T
φ (t, q̂)

´
= −l (q, q̂) q̃2 + q̃θ̃

T
φ (t, q̂) ,

which is negative if

|q̃| > θ̃
T
φ (t, q̂)

l (q, q̂)
.

Hence, ISS with θ̃
T
φ as input and q̃ as output is established.

Remark 3 A more flexible observer with weighted injection from both measurements pp and pc, is
obtained by the choice ξ , q + lppp + lcpc. However, this alternative design is not persued in this
note.

In the following, we will extend the observer design with different parameter identifiers to
estimate the unknown parameters in θ.

2.3 Stamnes identifier

Passive parameter identifier based on coordinate transformation...See [Stamnes08].

2.4 Passive identifier driven by q

Since k (q, q̂) < 0 in (9), the error q̃ is strictly passive from input θ̃ to output φq̃:

d

dt

µ
1

2
q̃2
¶

= −l (q, q̂) q̃2 + θ̃
T
φ (t, q̂) q̃

≤ −lp
βd
Vd

q̃2 + θ̃
T
φ (t, q̂) q̃.

⇓Z t

0

θ̃
T
φq̃ ≥

Z t

0

d

dτ

µ
1

2
q̃ (τ)2

¶
dτ + lp

Z t

0

q̃2dτ

=

∙
1

2
q̃ (τ)2

¸t
0

+ lp
βd
Vd

Z t

0

q̃2dτ.

Since the system is strictly passive, the adaptation law

.

θ̂ = −
.

θ̃ = Γφ (t, q̂) q̃, (10)

would make the resulting error system strictly passive, thus ensuring that q̃ converges to zero.
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Figure 1: Negative feedback connection of the strictly passive q̃—system and the passive identifier
Γ/s.

The estimation error q̃ = q − q̂ is not directly known, however, we have from (??) that

ṗp =
βd
Vd

qp −
βd
Vd

q

⇓

q = qp −
Vd
βd

ṗp,

which gives

q̃ = qp −
Vd
βd

ṗp − q̂. (11)

The passive identifier can thus be implemented as

.

θ̂ = Γφ (t, q̂) q̃

= Γφ (t, q̂)

µ
qp −

Vd
βd

dpp
dt
− q̂

¶
. (12)

Remark 4 The integral of φ (t) ṗp (t) is implementable if pp (t) is known:Z t

0

φ (τ)
dp

dτ
dτ =

Z p(t)

p(0)

φ (τ (p)) dp.

2.5 Parameter identifier driven by filtered q

Alternatively, we may let the parameter identifier be driven by the low-pass filtered estimation error

q̃f =
1

τfs+ 1
q̃, (13)
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simply by modifying the identifier according to

.

θ̂ = −Γφ (t, q̂) q̃f

= −Γφ (t, q̂) 1

τfs+ 1
q̃

= −Γφ (t, q̂) 1

τfs+ 1
(qp − q̂)

−Γφ (t, q̂) s

τfs+ 1
pp, (14)

which is causal, thus implementable. The identifier can be implemented in state-space form as

.

θ̂ = −Γφ (t, q̂) 1
τf

µ
xf −

Vd
βd

pp

¶
(15)

ẋf = − 1
τf

xf +
Vd

τfβd
pp + qp − q̂. (16)

s
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Figure 2: The negative feedback connection of the augmented q̃—system and the passive identifier
Γ/s.

2.6 Grip identifier driven by q

An alternative parameter identifier can be derived based on the results in [Grip09#]. The design
is based on q to be known, and is performed in a two-step design procedure, which we will outline
below. Note that this approach also may be designed to enable estimation of unknown parameters
that appear nonlinearly in the system.
Start by rewriting the system (3) as

q̇ = f0 (t) + ψ (17)

by defining
ψ , φ (t, q)T θ.
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2.6.1 Virtual adaptation law for θ

First step is to design a virtual adaptation law for θ̂, which would be exponential convergent if ψ
was known. Assuming ψ known, we could use the gradient adaptation law

.

θ̂ = Γφ (t, q)
³
ψ − φ (t, q)T θ̂

´
, (18)

where Γ > 0 is a constant adaptation gain matrix. The parameter estimation error θ̃ would then
satisfy

.

θ̃ = −Γφ (t, q)
³
ψ − φ (t, q)T θ̂

´
= −Γφ (t, q)

³
φ (t, q)

T
θ − φ (t, q)T θ̂

´
= −Γφ (t, q)φ (t, q)T θ̃. (19)

In the scalar case, stability properties can be established by considering the function

U
³
θ̃
´
=
1

2
θ̃
T
Γ−1θ̃, (20)

whose time-derivative is
U̇ = −θ̃Tφ (t, q)φ (t, q)T θ̃.

With θ̃ =θ̃ and φ (t, q) = φ (q) = − |q| q, we get

U̇ = −θ̃2φ (q)2

= −θ̃2 (− |q| q)2

= −θ̃2q4,

which obviously is strictly negative for ∀ , q > 0. Thus, provided q 6= 0, we would get exponential
convergent estimates of θ̂.

Remark 5 Extention to the case with more unknown parameters is straightforward, such as para-
metrization of friction in several parameters, or having an unknown density ∆ρ. With more un-
known parameters, exponential convergence is still possible by using data over longer periods of time,
provided we have sufficient excitation. Proving exponential stability in this case, involves a more
complicated Lyapunov function, and typically incorporates the persistancy-of-excitation conditionZ t+T

t

φ (τ , q (τ))φ (τ , q (τ))T dτ ≥ εI.

Since ψ is not known, the adaptation law for θ̂ is implemented with an estimate ψ̂ of ψ, according
to .

θ̂ = Γφ (t, q)
³
ψ̂ − φ (t, q)T θ̂

´
. (21)

Replacing ψ̂ = ψ − ψ̃, gives the parameter error dynamics
.

θ̃ = −Γφ (t, q̂)φ (t, q̂)T θ̃ − Γφ (t, q) ψ̃. (22)
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2.6.2 Estimator for ψ̂

Next step is to design an exponentially convergent estimate of ψ̂. This is obtained by introducing
the state predictor

.

q̂ = f0 (t) + ψ̂ + γ−10 φ (t, q)
T

.

θ̂, (23)

and let an estimate of ψ be given by

ψ̂ = γ0 (q − q̂) + φ (t, q)
T
θ̂, (24)

where γ0 > 0 is a tunable feedback gain. Notice that the derivative of ψ̂ becomes

.

ψ̂ = γ0 (f0 (t) + ψ)

−γ0
µ
f0 (t) + ψ̂ + γ−10 φT

.

θ̂

¶
+φ̇

T
θ̂ + φ

T
.

θ̂

= γ0

³
ψ − ψ̂

´
+ φ̇

T
θ̂,

and since
ψ̇ = φ̇

T
θ,

the resulting estimation error will satisfy

.

ψ̃ = −γ0ψ̃ + φ̇
T
θ̃.

The Grip estimator, given by (21) and (23)—(24) can be given as

.

θ̂ = γ0Γφ (t, q) (q − q̂) (25)
.

q̂ = f0 (t) + γ0 (q − q̂) + φ (t, q)
T
θ̂ + γ−10 φ (t, q)

T
.

θ̂. (26)

The estimator is governed by the error dynamics

.

θ̃ = −Γφ (t, q̂)φ (t, q̂)T θ̃ − Γφ (t, q) ψ̃
.

ψ̃ = −γ0ψ̃ + φ̇
T
θ̃, (27)

which can be shown to be exponentially stable for some γ0 > 0 and Γ > 0, provided φ̇ and φ are
bounded and Z t+T

t

φ (τ , q (τ))φ (τ , q (τ))T dτ ≥ εI.

### NOTATER ###
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