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Abstract
Based on the interessting work done by Michael Basin et. al. we

apply the optimal polynominal �lter to a drilling system. Derivations and
simulations are included. Simulations show interesting results

1 Optimal observer

1.1 Plant

The plant

Vd
�d
_pp = qp � qb; (1)

Va
�a
_pc = qb � qo + _Va; (2)

M _qb = pp � pc � F jqbj qb + (�d � �a) gh; (3)

where qo is total �ow out including choke �ow and back pressure pump �ow.
Assuming

� pp; pc; qp; qo; _Va; Va; h measured.

1.2 Observer derivations

De�ne the state vector

z =

26666664

pp
pc
qb
1
M
F
M

(�d��a)g
M

37777775 (4)
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and the constants �d = Vd
�d
; �a =

Va
�a
: Assume that the system is a¤ected by

noise and that z3 = qb � 0; we then have

_z =

266666664

1
�d
(qp(t)� z3)

1
�a

�
z3 � qo(t) + _Va(t)

�
z4z1 � z4z2 � z5z23 + z6h(t)

0
0
0

377777775
+ bz(t)W1(t) (5)

� fz(z; t) + b(t)W1(t) (6)

where W1(t) 2 R6 is a wiener process (i.e. gaussian white noise) and bz(t) 2
R6x6. De�ning the output with measurement noise

y =

�
1 0 0
0 1 0

�
z � Azz +B(t)W2(t); (7)

where W2(t) 2 R2 is a wiener process. and B(t) 2 R2x2:W1 and W2 are as-
sumed independent and to have identity covariance matrices. The scaling of the
covariance is done using bz and Bz: The �lter design found in [1, 2] minimizes
the Euclidian 2-norm

J = E
h
(z(t)� ẑ(t))T (z(t)� ẑ(t)) jFYt

i
; (8)

at each time t: For tuning/scaling purposes it is desireable to minimize the
following norm instead

J = E
h
(z(t)� ẑ(t))T K (z(t)� ẑ(t)) jFYt

i
; (9)

where K = H�TH�1 is a square diagonal positive de�nite matrix. This can be
achieved by considering the change of coordinates

z = Hx: (10)

Equation (9) can then be written as

J = E
h
(Hx(t)�Hx̂(t))T H�TH�1 (Hx(t)�Hx̂(t)) jFYt

i
; (11)

= E
h
(x(t)� x̂(t))T (x(t)� x̂(t)) jFYt

i
: (12)

Now a �lter can be derived for the state z instead, giving the ability to weight
di¤erent state estimates. We will only consider the case where H consists of
elements h1; h2:::; hn along the diagonal. The system (6) and (7)in x coordinates
is

_x = H�1fz(Hx; t) +H
�1bz(t)W1(t); (13)

� f(x; t) + b(t)W1(t); (14)

y = AzHx+B(t)W2(t); (15)

� Ax+B(t)W2(t); (16)
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where

f(x; t) =

266666664

1
h1�d

(qp(t)� h3x3)
1

h2�a

�
h3x3 � qo(t) + _Va(t)

�
1
h3

�
h4h1x4x1 � h4h2x4x2 � h5h23x5x23 + h6x6h(t)

�
0
0
0

377777775
; (17)

b(t) = H�1bz; (18)

A =

�
h1 0 0
0 h2 0

�
(19)

We are now ready to apply the results found in [1, 2]. The optimal estimate, x̂;
of x is governed by

_̂x = E
�
f(x; t)jFYt

�
+ P (t)AT

�
BBT

��1
(y �Ax̂) ; (20)

_P = E
�
[x� x̂] fT (x; t)jFYt

�
+ E

�
f(x; t) [x� x̂]T jFYt

�
+ bbT � PAT

�
BBT

��1
AP;(21)

with initial conditions x̂(0) = E(x(0)jFY0 ); P (0) = E
h
(x(0)� x̂(0)) (x(0)� x̂(0))T jFY0

i
:

P is the error variance matrix. Equations (20) and (21) is not i a closed form
due to the dependence on x in several functions. However since f(x; t) is poly-
nomic in x closed form relations can be obtained. We need to �nd expressions

for E
�
f(x; t)jFYt

�
and E

�
[x� x̂] fT (x; t)jFYt

�
+E

�
f(x; t) [x� x̂]T jFYt

�
. First

we have the following facts

x̂(t) = E(x(t)jFYt ); (22)

P (t) = E
h
(x(t)� x̂(t)) (x(t)� x̂(t))T jFYt

i
: (23)

For E
�
f(x; t)jFYt

�
we get

E
�
f(x; t)jFYt

�
1
=

1

h1�d

�
qp(t)� h3E(x3jFYt )

�
; (24)

=
1

h1�d
(qp(t)� h3x̂3) : (25)

E
�
f(x; t)jFYt

�
2
=

1

h2�a

�
h3x̂3 � qo(t) + _Va(t)

�
; (26)

E
�
f(x; t)jFYt

�
4�6 = 0: (27)

We will treat E
�
f(x; t)jFYt

�
3
as a special case since it is nonlinear.

E
�
f(x; t)jFYt

�
3
=

1

h3
E
��
h4h1x4x1 � h4h2x4x2 � h5h23x5x23 + h6x6h(t)

�
jFYt

�
; (28)

=
h4h1
h3

x̂4x̂1 +
h4h1
h3

P41 �
h4h2
h3

x̂4x̂2 �
h4h2
h3

P42 + h6x̂6h(t)� h5h3E(x5x23jFYt )(29)
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since E(x4x1jFYt ) = x̂4x̂1+P41 where P41 is the �rst element of the fourth row
of P . For notational simplicity we will use E(z(t)jFYt ) = E(z) in the following.
The last term is

E(x5x
2
3jFYt ) = E(x5x

2
3); (30)

= E((x5 � x̂5)x23) + E(x̂5x23); (31)

= E((x5 � x̂5)
h
(x3 � x̂3)2 + 2x3x̂3 � x̂23

i
) + E(x̂5x

2
3); (32)

= E
�
(x5 � x̂5) (x3 � x̂3)2

�
+ 2E ((x5 � x̂5)x3x̂3)� E

�
(x5 � x̂5)x̂23

�
+ E(x̂5x

2
3);(33)

since E
�
(x5 � x̂5) (x3 � x̂3)2

�
is an odd moment (3rd) it is zero, we thus have

E(x5x
2
3) = 2E ((x5 � x̂5)x3x̂3)� E

�
(x5 � x̂5)x̂23

�
+ E(x̂5x

2
3); (34)

= 2E ((x5 � x̂5) (x3 � x̂3) x̂3)� 2E
�
(x5 � x̂5)x̂23

�
� E

�
(x5 � x̂5)x̂23

�
+ E(x̂5x

2
3);(35)

= 2x̂3P53 � 0� 0 + x̂5E(x23); (36)

= 2x̂3P53 + x̂5P33 + x̂5x̂
2
3 (37)

where P53 is the element in row 5 column 3 of P . And E(x23) = E
�
(x3 � x̂3)2 + 2x3x̂3 � x̂23

�
=

P33 + 2E(x3)x̂3 � x̂23 = P33 + x̂23. Hence we have

E
�
f(x; t)jFYt

�
3
=
h4h1
h3

x̂4x̂1+
h4h1
h3

P41�
h4h2
h3

x̂4x̂2�
h4h2
h3

P42+
h6
h3
x̂6h(t)�h5h3

�
2x̂3P53 + x̂5P33 + x̂5x̂

2
3

�
(38)

Thus we have E(f(x; t)jFYt ) in (20) given by (24)�(27) and (38). This can be
written compactly as

E(f(x; t)jFYt ) = F (x̂; P; t) (39)

where

F (x̂; P; t) =

266666664

1
h1�d

(qp(t)� h3x̂3)
1

h2�a

�
h3x̂3 � qo(t) + _Va(t)

�
h4h1
h3
x̂4x̂1 +

h4h1
h3
P41 � h4h2

h3
x̂4x̂2 � h4h2

h3
P42 +

h6
h3
x̂6h(t)� h5h3

�
2x̂3P53 + x̂5P33 + x̂5x̂

2
3

�
0
0
0

377777775
:

(40)

We proceed with E
�
[x� x̂] fT (x; t)jFYt

�
+E

�
f(x; t) [x� x̂]T jFYt

�
in (21).
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We will use the notation E
�
[x� x̂] fT (x; t)

�
= E

�
[x� x̂] fT (x; t)jFYt

�
.

E ([x� x̂] f1(x; t)) = E

�
[x� x̂]

�
1

h1�d
(qp(t)� h3x3)

��
; (41)

= E

�
[x� x̂] 1

h1�d
qp(t)

�
� h3
h1�d

E([x� x̂]x3); (42)

= 0� h3
h1�d

E([x� x̂] [x3 � x̂3] + x̂3 [x� x̂]) (43)

= � h3
h1�d

E([x� x̂] [x3 � x̂3]); (44)

= � h3
h1�d

P�3; (45)

where P�3 is the third column of the variance matrix P . Similarly for

E ([x� x̂] f2(x; t)) = E

�
[x� x̂]

�
1

h2�a

�
h3x3 � qo(t) + _Va(t)

���
;(46)

=
h3
h2�a

P�3; (47)

E ([x� x̂] f4�6(x; t)) = 0: (48)

The special nonlinear case of E ([x� x̂] f3(x; t)) will be delt with now

E ([x� x̂] f3(x; t)) = E

�
[x� x̂]

�
1

h3

�
h4h1x4x1 � h4h2x4x2 � h5h23x5x23 + h6x6h(t)

���
;(49)

=
h4h1
h3

E ([x� x̂] [x4x1])�
h4h2
h3

E ([x� x̂] [x4x2]) ::: (50)

�h5h
2
3

h3
E
�
[x� x̂]

�
x5x

2
3

��
+
h6
h3
h(t)E ([x� x̂] [x6]) : (51)

Dealing with each term separately

E ([x� x̂] [x4x1]) = E ([x� x̂] [(x4 � x̂4)x1 + x̂4x1]) ; (52)

= E ([x� x̂] [(x4 � x̂4)x1]) + E ([x� x̂] [x̂4 (x1 � x̂1) + x̂4x̂1]) ; (53)

= E ([x� x̂] [(x4 � x̂4) (x1 � x̂1) + x̂1 (x4 � x̂4)]) + E ([x� x̂] [x̂4 (x1 � x̂1) + x̂4x̂1]) ;
= E ([x� x̂] (x4 � x̂4)) + x̂1E ([x� x̂] (x4 � x̂4)) + ::: (54)

:::+ x̂4E ([x� x̂] (x1 � x̂1)) + x̂4x̂1E ([x� x̂]) ; (55)

= P�4 + x̂1P�4 + x̂4P�1: (56)

Similarly

E ([x� x̂] [x4x2]) = P�4 + x̂2P�4 + x̂4P�2; (57)

E ([x� x̂] [x6]) = E ([x� x̂] [x6 � x̂6]� [x� x̂] [x̂6]) ; (58)

= P�6: (59)
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The most complex term is

E
�
[x� x̂]

�
x5x

2
3

��
= E

�
[x� x̂]

�
(x5 � x̂5)x23 + x̂5x23

��
; (60)

= E
�
[x� x̂]

�
(x5 � x̂5)x23

��
+ E

�
[x� x̂]

�
x̂5x

2
3

��
; (61)

E
�
[x� x̂]

�
(x5 � x̂5)x23

��
= E

�
[x� x̂]

h
(x5 � x̂5) (x3 � x̂3)2 + 2x3x̂3 (x5 � x̂5)� x̂23 (x5 � x̂5)

i�
; (62)

= E
�
[x� x̂]

h
(x5 � x̂5) (x3 � x̂3)2 + 2 (x3 � x̂3) x̂3 (x5 � x̂5) + :::

:::+ 2x̂23 (x5 � x̂5)� x̂23 (x5 � x̂5)
��
; (63)

= E
�
[x� x̂]

h
(x5 � x̂5) (x3 � x̂3)2

i�
+ E ([x� x̂] [2 (x3 � x̂3) x̂3 (x5 � x̂5)]) :::

:::+ E
�
[x� x̂]

�
2x̂23 (x5 � x̂5)

��
� E

�
[x� x̂]

�
x̂23 (x5 � x̂5)

��
; (64)

= 0 + 0 + 2x̂23E ([x� x̂] [(x5 � x̂5)])� x̂23E ([x� x̂] [(x5 � x̂5)]) ; (65)

= 2x̂23P�5 � x̂23P�5; (66)

= x̂23P�5: (67)

Where the fact that moments of odd powers are zero has been used.

E
�
[x� x̂]

�
x̂5x

2
3

��
= E

�
[x� x̂]

h
(x3 � x̂3)2 x̂5 + 2x̂3x3x̂5 � x̂23x̂5

i�
(68)

= E
�
[x� x̂]

h
(x3 � x̂3)2 x̂5 + 2x̂3 (x3 � x̂3) x̂5 + 2x̂23x̂5 � x̂23x̂5

i�
(69)

= 2x̂3x̂5E ([x� x̂] (x3 � x̂3)) ; (70)

= 2x̂3x̂5P�3: (71)

Insterting (56), (57), (59),(61),(67) and (71) into (50) gives

E ([x� x̂] f3(x; t)) =
h4h1
h3

(P�4 + x̂1P�4 + x̂4P�1)�
h4h2
h3

(P�4 + x̂2P�4 + x̂4P�2) ::: (72)

:::� h5h
2
3

h3

�
x̂23P�5:+ 2x̂3x̂5P�3

�
+
h6
h3
h(t)P�6 (73)

=
h4
h3
(h1 � h2)P�4 +

h4
h3
(h1x̂1 � h2x̂2)P�4 +

h4h1
h3

x̂4P�1 �
h4h2
h3

x̂4P�2:::(74)

:::� h5h3
�
x̂23P�5 + 2x̂3x̂5P�3

�
+
h6
h3
h(t)P�6: (75)

Stacking the row vectors (45),(47),(74),(48) after each other gives

E
�
[x� x̂] fT (x; t)jFYt

�
= PG(x̂; t) (76)

where

G(x̂; t) =

266666664

0 0 h4h1
h3
x̂4 0 0 0

0 0 �h4h2
h3
x̂4 0 0 0

� h3
h1�d

h3
h2�a

�2h5h3x̂3x̂5 0 0 0

0 0 h4
h3
(h1 � h2) + h4

h3
(h1x̂1 � h2x̂2) 0 0 0

0 0 �h5h3x̂23 0 0 0

0 0 h6
h3
h(t) 0 0 0

377777775
: (77)
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To summarize, the equations (20) and (21) can be written in the closed form

_̂x = F (x̂; P; t) + PAT
�
BBT

��1
(y �Ax̂) ; (78)

_P = PG(x̂; t) +GT (x̂; t)PT + bbT � PAT
�
BBT

��1
AP; (79)

where F (x̂; P; t) is de�ned in (40) and G(x̂; t) is de�ned in (77). Note the
resemblence to a standard Kalman �lter, the di¤erence is that F (x̂; P; t) depends
on the covariance matrix and that G(x̂; t) contains state estimates that appear
nonlinearly.

2 Simulations

Simulated the �lter and model. Noise was added to measurements. Results are
shown below. A simple PI controller is used to keep choke pressure "constant"
during pump variations. Very little tuning of H; b(t) and B(t) was done.
One long simulation to test if parameters converged during PE was also

performed.
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Figure 1: Simulation with varying pump rates. Noise on pressure measurements.
No noise on pBit.
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Figure 2: Simulation with varying pump rates. Noise on pressure measurements
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Figure 3: Long PE simulation
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Figure 4: Long PE simulation, dashed lines are estimates. Note that F and rhoa
converge to their true values while M needs more time.
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3 Conclusion

The results found in [1, 2] seem applicable to the drilling system model. This
could be tested further e.g. in a master thesis.

� Filter handles noise

� Optimal w.r.t. given cost function

� Can deal with parameteric uncertainty

� Can deal with time varying deterministic functions.

� Very similar to Kalman �lter
Future work

� Stability and convergence properties

� PE conditions

� Constraint handling

In addition the fact that there exists an optimal �lter for the system with
noise implies that there should exist an optimal �lter for the system without
noise.
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