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Abstract

We consider a class of systems influenced by perturbations that diheeaoly parameterized by unknown constant parameters, and develop
a method for estimating the unknown parameters within an arbitrarily largereder space. The method applies to systems where the
states are available for measurement, and perturbations with the prapErgn exponentially stable estimate of the unknown parameters
can be obtained if the whole perturbation is known. The main contribution isttadunce a conceptually simple, modular design that
gives considerable freedom to the designer in accomplishing the mainvth&lh is to construct an update law to asymptotically invert

a nonlinear equation. Compensation for the perturbations in the systemticetuis considered for a class of systems with uniformly
globally bounded solutions and for which the origin is uniformly globally agtotically stable when no perturbations are present. We
also consider the case when the parameters can only be estimated witenttioled state is bounded away from the origin, and show
that we can still achieve convergence of the controlled state. We illustratadtieod through examples, and apply it to the problem of
downhole pressure estimation during oil well drilling.
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1 Introduction strategy is implementing an extended Kalman filtekg)
for estimation of the unknown parameters. Although this of-

An important issue in control applications is the handling ten yields good results, analysis of the stability projesrof

of unknown perturbations to system equations. Such pertur-aN EKF is difficult (see Reif, Gnther, Yaz, and Unbehauen,
bations can be the result of external disturbances or iatern 1999). Introducing extra parameters to obtain a linear ex-
plant changes, such as a configuration change, system faultPréssion is sometimes possible, but doing so may increase
or change in physical plant characteristics. Frequertty, t complexity and affect performance by reducing the conver-
perturbations can be characterized in terms of a vector of 9ence rate of the parameter estimates or introducingestrict
unknown, constant parameters. persistency-of-excitation conditions.

Adaptive control techniques counteract such perturbation Some techniques that do not resort to approximations are
by using estimates of the unknown parameters that are up-found in literature. In Fomin, Fradkov, and Yakubovich
dated online. When the perturbations are linear in the un- (1981); Ortega (1996), stability and convergence of the
known parameters, adaptive control design is often sttaigh controlled state is proven for a gradient-type approach for
forward, and techniques for handling such cases are well-nonlinear parameterizations with a convexity property- An
developed (see, e.g., KrstiKanellakopoulos, and Koko- naswamy, Skantze, and Loh (1998) exploit the convexity
tovi€, 1995; loannou and Sun, 1996). In the nonlinear caseor concavity of some parameterizations by introducing a
the range of available design techniques is more limited. tuning function and adaptation based on a min-max opti-
One approach is to use a gradient algorithm, as in linearly mization strategy, and achieve arbitrarily accurate fragk
parameterized systems, which may yield poor results or in- of the controlled states. This approach is extended to more
stability for nonlinear parameterizations. Another commo general nonlinear parameterizations in Loh, Annaswamy,
- and Skantze (1999), and parameter convergence is stud-
* This research is supported by the Research Council of Norway. ied in Cao, Annaswamy, and Kgji(2003). Other results,
Email addressgrip@itk.ntnu.no (Havard Fjeer Grip). such as B&kovic (1995, 1998); Zhang, Ge, Hang, and
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Chai (2000), are focused on first-order systems with cer- 1.1 Notation and Definitions
tain fractional parameterizations, proving convergente o

the controlled state, but without studying convergence of \we use conventional notation to denote estimates and er-
the parameter estimates. In Qu (2003), an estimation-basedor variables. For some quantity 2 represents its estimate
approach is introduced for a class of higher-order systemsang 7= z— 2 is an error variable. For a vectar we de-
with a matrix fractional parameterization. Here, an aaxifi note byz its i'th element when this is clear from the con-

estimate of the full perturbation is introduced, which isdis  text. The norm operatof - || denotes the Euclidian norm
in the estimation of the unknown parameters. The method for vectors and the induced Euclidian norm for matrices.

achieves global boundedness and ultimate boundedness tgor 5 symmetric, positive-definite matrikand a vector,

within a desired precision. In Qu, Hull, and Wang (2006),. we write ||Z|p = (z'P2)Y/2. The maximum and minimum

an approach for more general nonlinear parameterizatsons i igenvalues of a matrid are denotedmax(A) andAmin(A).
presented, where the parameter estimate used in the controfa ¢josed ball around the origin with radiess denoted

law is .blased by an appropriately chosen vector function. B(e). We denote byR-o andR- the non-negative and the

Conditions are given fqr convergence of the controlledestat positive real numbers. For two sesF C R", we write

and the parameter estimates. (E—F):={zs— 2 €R"| z1 € E,z € F}. Throughout this
paper, when considering systems of the farmF (t, z), we
implicitly assume thaF : R>o x R" — R" is piecewise con-

Another way of dealing with undesired perturbations is tinuous int and locally Lipschitz continuous iny uniformly

found in Chakrabortty and Arcak (2007), where a high-gain int, onR>o x R". The solution of this system, initialized at

approach is used to estimate the whole perturbation. By in-time to with initial conditionz(to) is denotedz(t).

creasing the gain, the estimate is made to converge asbitrar

ily fast, and the performance of the unpertur_bed system can, proplem Formulation

therefore be recovered. The approach considered in this pa-

per has similarities to Chakrabortty and Arcak (2007), but i

also exploits available structural information by estiimet

an unknown parameter vector in addition to the full pertur-

bation. The parameter estimate is produced by a paramete

estimation module that is designed as if the perturbation .

were known. In the actual implementation, however, the x= f(t,x) +B(t,x) (9(t,x, 6) +v(t,x)), (1)

estimate of the perturbation is used. This idea is similar to ) )

the ideas in Tyukin (2003), where adaptive update laws of Wherex € R" is a measured state vector afidc RP is

a certain structure, calledrtual algorithms are designed @ Vector ofnunknﬁwn, constant parameters. The functions

as if time derivatives of the measurements were available, f;RZO ER — R, B: R>o x R" — R™™ and v: Rxo x

before being transformed into realizable form without ex- K" — R™ can be evaluated from available measurements,

plicit differentiation of the measurements. This idea iedis ~ andg: R>o x R" x RP — R™is continuously differentiable

in Tyukin, Prokhorov, and van Leeuwen (2007) to design a With respect tcd and can be evaluated@fis known. In most

family of adaptation laws for monotonically parameterized Practical circumstances, it is known from physical consid-
perturbations in the first derivatives. erations tha® is restricted to some bounded set of values.

This is a significant advantage when it comes to satisfying
the assumptions made later in this paper. To simplify the
) o ) o ) exposition, we therefore assume that the set of possible pa-
The main contribution of this article is to introduce an ap- rameters is bounded. In designing update laws for parameter
proach to nonlinear parameter estimation with a clear mod- estimates, we also assume that a parameter projection can be
ular structure. The design is split into a perturbationnesti implemented as described in Kisgt al. (1995), restricting
tor and a parameter estimator constructed by the designegne parameter estimates to a compact, conveXosetRP,
to asymptotically invert a nonlinear equation. The modular defined slightly larger than the set of possible parameter va
structure is conceptually simple, and itisolates the tdsk-0  yes. The parameter projection is denoted Proand is de-

verting the nonlinear equation, giving the designer freedo  scribed in Appendix A. All functions on the right-hand side
in how to best accomplish this task. We provide constructive of (1) are well-defined for alit,x, 6) € Rso x R" x ©.

guidelines through a series of propositions, accompanjed b

examples. Explicit Lyapunov functions are obtained, prov- o

ing exponential convergence of the parameter estimates. Th 3 Parameter Estimation

method is often particularly effective with respect to pro-

viding fast parameter estimates, which may be useful not In this section, we present a method for estimating the
only for direct compensation, but as part of other control unknown parameter vectd® when x(t) is bounded. Let
schemes where fast parameter estimates are required, fop:= B(t,x)g(t, X, 8) represent the full unknown perturbation
example traditional adaptive approaches combined with pa-in (1). The idea behind the estimation scheme is as follows:
rameter resetting (see, e.g., Bakkeheim, Johansen, Simogelwe first design an update law that exponentially estimates
and Sgrensen, 2008). 6 based on the quantity, as thoughg were known. We

We consider systems that, by the appropriate state transfor
mations and choice of control law, can be expressed in the
following form:



then produce an estimate @fand implement the update law
based on this estimate instead of the real perturbation.

3.1 Estimation oB from ¢

We denote byp the estimate of the perturbatign We shall
later explain how to construct this estimate; for now, we
concentrate on how to fin@ in the hypothetical case of a
perfect perturbation estimate. For this to work, there seed
to exist an update law

é: ue(tuxa é)ué)v (2)
which, if ¢ = @, would provide an unbiased asymptotic es-
timate of. This is the subject of the following assumption
on the dynamics of the error variabfe= 6 — 0.

Assumption 1 For each compact set K R", there exist a
continuously differentiable function,¥VR>o x (© —0) —
R>0; positive constants @ ax and &; and a continuous
function &: R" — R that is positive outside the origin,
such that for all(t,x, ,0) € R x K x R" x ©,

2|8 < Vult. 8) < 2|8, ©
Ny . = N, = R -
Zu _ M <
o 1.0)- T2 B)ua(t.x.0.0) < ~a(9 87, (@)
oM, = ~
U t,8)| < a8 5
|750.8)| <audl ©)

Furthermore, the update la\{2) ensures that i@(to) € 0,
then for all t>tg, B(t) € ©.

Satisfying Assumption 1 constitutes the greatest chafleng
in applying the method in this paper, and this is therefore
discussed in detail in the next section.

3.2 Satisfying Assumption 1

Assumption 1 guarantees that the origin of the error dy-
namics@ = —ug(t,x, @, 0 — 8), which occurs ifq?) =@, is
uniformly exponentially stable witi® — ©) contained in
the region of attraction. Essentially this amounts to asymp
totically solving the inversion problem of findin@ given
@=B(t,x)g(t,x, 8). In the following, we shall discuss some
possibilities for how to satisfy Assumption 1. As a useful
reference, we point to Nicosia, Tornaétand Valigi (1994),

which deals with the use of state observers for inversion of

nonlinear maps.

The most obvious way to satisfy Assumption 1 is to invert
the equalityp = B(t,x)g(t,x, 8) algebraically, and to le@
be attracted to this solution.

Proposition 1 Suppose that for all(t,x) € R>p x R",
we can find a unique solution fof from the equation
@ = B(t,x)g(t,x, 8). Then Assumption 1 is satisfied with the

update law @(t,x, ®,6) = Proj(r(6%(t,x, @) — 8)), where
6%(t,x, ) denotes the solution of the inversion problem

found from(f), andl is a symmetric positive-definite gain
matrix. o

PrRoOOF The proof follows trivially from using the Lyapunov
functionVy(t, 8) = 26T ~16 wheng = ¢. -

Example 1 Consider the perturbatiomB(t,x)g(t,x,8) =
h((2+sin(t))0), whereh is some explicitly invertible, non-

linear mapping. For eadle R0, we can solve the inversion
problem and findd*(t,x, @) = h=1(¢@)/(2+sin(t)). o

Often it is only possible to invert the equation part of the
time. In this case, Assumption 1 may still be satisfied if
solutions are available with a certain regularity.

Proposition 2 Suppose that there exist a known, piece-
wise continuous function :IR>¢ x R" — [0, 1], and
that for all (t,x) € Rsg x R", I(t,x) > O implies that
we can find a unique solution fof from the equa-
tion @ = B(t,x)g(t,x,0). Suppose furthermore that there

exist T> 0 and € > 0 such that for all te Rxo,
ftt” [(7,x(1)) dT > €. Then Assumption 1 is satisfied with

the update law pi(t, x, @, 6) = Proj(I (t, )T (6" (t,x, @) — 6)),
where6”(t,x, @) denotes the solution of the inversion prob-
lem found fromp whenever (t,x) > 0, andl" is a symmetric

positive-definite gain matrix. o

PROOF See Appendix B. n

Example 2 Consider the perturbatiom(t,x)g(t,x, 8)
h(sin(t)8), whereh is some explicitly invertible, nonlin-
ear mapping. The inversion problem is poorly conditioned
when sitt) is close to zero, and unsolvable for @&in= 0.
Proposition 2 nevertheless applies by letting, for exam-
ple, I(t,x) = 0 when |sin(t)| < € and I(t,x) = 1 when
|sin(t)| > €, where O< € < 1. o

When it is not possible or desirable to solve the inversion
problem explicitly, it is often possible to implement the-up
date function as a numerical search for the solutions.

Proposition 3 Suppose that there exist a positive-definite
matrix P and a function MR>g x R" x ©@ — RP*" such
that for all (t,x) € R>o x R", and for all pairs6;, 6, € O,

Mt % 80)B(t, ) 52

+@T(t X, 02)B(t,x) TM(t,x, 61)"
y Ny ) y Ny l) ZZP (6)

26

(t’ X7 62)

Then Assumption 1 is satisfied with the update law
Ug(t,x, ¢, 0) ProjrM(t,x,8)(¢ — B(t,x)g(t,x,6))),
wherel is a symmetric positive-definite gain matrix. o

PROOF See Appendix B. n

Example 3 Consider the perturbatiomB(t,x)g(t,x,0) =
9(6) = [61, 67 + 6], with © = [-10, 10] x [-10, 10]. Se-
lectingM(t,x, 8) =M = diag(Km, 1) yieldsM[dg/d6](0) +



[0g/26]T ()MT = 2 [KQT 911}. Using the fact that6:| < 10
within ©, it is easily confirmed that iKy is chosen suffi-
ciently large, therM[dg/d6](0) + [0g/d0]T(6)MT > 2P,
whereP is positive-definite. o

Proposition 3 applies to certain monotonic perturbatiams f
which a solution can be found arbitrarily fast by increasing

the gainl". In many cases, this is not possible, because the

inversion problem is singular the whole time or part of the
time. The following proposition applies to cases where a
solution is only available by using data over longer periafds
time, by incorporating a persistency-of-excitation coiod.

Proposition 4 Suppose that there exists a piecewise contin-
uous function SR>o x R" — S, (p), whereS_(p) is the
cone of px p positive-semidefinite matrices, and a function
M: R>o x R" x ® — RP*", both bounded for bounded x,
such that for allt, x) € Rxo x R" and for all pairsé, 6, € O,

M(t, X, 91)B(t,x)g—g(t,x, 6)

0T
L 99

T (t,x,82)B(t,x) TM(t,x,61) " >29(t,x). (7)

Suppose furthermore that there exist numbers@ande >
0such that for all te R>, /™7 S(1,x(7)) d1 > €l, and that
for all (t,x,0,0) € R-gx R"x @ x ©, ||B(t,X)(g(t,x,0) —
g(t,x, 0))|| < Lg(8TS(t,x)8)Y/2. Then Assumption 1 is satis-
fied with the update lawgit, x, @, 8) = Proj(TM(t, x, 8) (¢ —
B(t,X)g(t,x, 8))), wherel is a symmetric positive-definite
gain matrix. O

PROOF See Appendix B. n

Example 4 Consider the perturbation from Example 3
multiplied by sir(t); that is, B(t,x)g(t,x,8) = g(t,0) =
sin(t)[61, 62 + 6,]T, with © = [-10,] x [-10,10]. Us-

ing the same argument as in Example 3, we may choose

M(t,x) = M(t) = sin(t)diagKw,1) to satisfy (7). We
then have S(t,x) = S(t) = sir?(t)P, where P is the
positive-definite matrix from Example 3. For afly > 0,
/T Psir?(t) dr > &l for somee > 0, which means that
the integral condition in Proposition 4 is satisfied. Fi-
nally, we have|g(t, 8) —g(t, 8)| < Lg(éTS(t)é)l/Z, where
Lg = maxgeo [|[09/06](t, 0)]|/Amin(P)*/2. Hence, Proposi-
tion 4 applies. o

When looking for the functioM, a good starting point is
M(t,x,0) = [dg/d0]"(t,x,0)BT(t,x). This choice makes

coincide with standard persistency-of-excitation candi

for paramater identification in linear adaptive theory (see
e.g., Marino and Tomei, 1995, Ch. 5). Future research will
focus on more systematic ways of finding the functidn
for nonlinear parameterizations.

We end this section with an example illustrating that the
above approaches may be combined.

Example 5 Consider the perturbatiomB(t,x)g(t,x,8) =
[611/3, sin(61a(t))62] T with 6; known to be non-zero, and
where a(t) is some persistently exciting signal with a
bounded derivative. Clearly, we can firtd by inversion,
simply takingf; (¢) = (pf Hencef; is handled according to
Proposition 1. Whe; is known, we can find, by numer-

ical search according to Proposition 4. We therefore imple-
ment the second part of the update law according to Propo-
sition 4, substitutingd;, with @2, resulting inug (t,x,,0)

Proj(T'[@} — 81, sin(@a(t)) (@ —sin(@fat)8)]T). o

3.3 Estimator

We now introduce the full estimator:

2= —Kp(f(t,x) +B(t,X)V(t,X) + @)
ag

—B(t,X)%(t,X,é)Ug(t,X, (ﬁ?é)a (8a)
@ = 2+ Kyx+B(t,x)g(t, %, §), (8b)
é = Ue(tv)(,&é)» (8C)

whereK, is a symmetric positive-definite gain matrix. The
full estimator consists of two parts: an estimator §grde-
scribed by (8a), (8b), and the update law from Section 3.1.
To study the properties of the estimator, we consider the dy-
namics of the errorg and 6. Taking the time derivative of

¢ = @— @, we may write

@ =Ko (f(t,%)+B{t,)V(t,X) + Q)

—l—B(t,x)%(t,x,é)u@(t,x, ?,0) — Kyx )
- B(t,x)%(t,x, B)ug(t,x, @, 0) +d(t,x 0),
where
d(t,x,8) := %(B(t,x)(g(t,x,e) —g(t,x0))) )
+ ;—X (B(t,x)(g(t,x, 8) —g(t,x, 0)))x.

the parameter update law into a true gradient searchThe functiond(t,x,é) can be seen as the time derivative of

in the direction of steepest descent for the function
IB(t,x)(g(t,x,0) — g(t,x, 6))||%. Indeed, this choice oM
often works even if it fails to satisfy either of Propositsn

3 and 4. In the special case where the perturbation is lin-

ear in the unknown parameters, this choiceMbfalways

satisfies (7), and the remaining conditions in Proposition 4

B(t,x)(g(t,x, 8) —g(t,x,8)) when@ is kept constant. Using
the expressior— f (t,x) — B(t,x)v(t,x) = @, we may rewrite

the above expression and write the error dynamics of the
estimator as

= —Kop+d(t,x0), (11a)



6 =—ug(t,x q, é)

+ (UG (t,X, o, é) —Ug (11b)

(t,X, (b, é))

For convenience, we define the error variable- [@" GT]
and the seE :=R" x (0 —0).

Assumption 2 For all (t,x,0) € R>g x R" x (© —©), the
function dt,x, 8) is well-defined; for each compact set
R", there exist continuous functiong(k) > 0and Ly(x) > 0
such that for all(t, x, 8) € R-o x K x (©—0), ||d(t,x,8) <
L1(x)||8]; and for all (t,x, (p,cp,e) ER>px KxR"xR" x

O, |[ug(t,x..8) — Ug(t.x, @, 8)| < L2(x)]| @]l

Remark 1 When checking the conditiorju(t,x, 0,0) -
u(t,x,@,0)|| < L2(x)||@|l, the projection in the update law

From the inequalities in Assumptions 1 and 2,

Vo(t, €) < —ag(X)[|6|* — Amin(Ko) | @l|* + [ @]l |d(t, x, )|
oy

+Haé(t7é)’ ||U9(t,X,(p,é)—UQ(I,X,(b,é)H (13)
This expression can be rewritten ¥(t,&) < —{7QC,
where{ = [||¢], [[6]]]" and
_ Amin(Kgp) 7%(a4L2(X)+L1(X))
Q= [%(EMLz(X)JrLl(X)) ag(x) (14)

To check for positive-definiteness @J, we note that the
first-order leading principal minor @ is Amin(Kg) > 0. The

can be disregarded, because the property is retained unde$econd -order leading principal minor &(X)Amin(Kg) —

projection (see Appendix A.1). o

#(aul2(x) +L1(x))2, which is positive ifAmin(Kg) > kg :=
(a4L +L3)?/(4a3), whereL; andL; are bounds orty(X)

The Lipschitz-type conditions in Assumption 2 may appear and Lz(x) on K. Hence, we have OE that Vp(t, & (1)) <

difficult to satisfy. Note, however, th# € (© — ©), which
means that we are dealing with a local Lipschitz condition
for d. For ug, we need to satisfy a global condition in the

~Amin(Q)[|E(®)||?. The remainder of the proof follows
from using the comparison lemma (Khalil, 2002, Lemma

3.4). Moreover, we have that(t, &) < max{az, 3}/&|/°.

sense thap and@ are not presumed bounded. Indeed, such a From the preceding two expressmns we have that

condition may often fail to hold, as demonstrated by Exam- Vp(t &t ))

ple 5, where the terrg? is used. In most cases, however, the
perturbationg depends on physical quantities with known
bounds, and from these a bound @rcan often be found.
It is then possible to include a saturationg@fn the update
law ug to reduce the requirement to a local condition, which

is much more easily satisfied. With the inclusion of a satu-
ration, Example 5 does satisfy Assumption 2. The inclusion

of a saturation does not affect the vaIidity of Assumption 1

—Amin(Q)/ max{ay, 3}Vp(t,€(t)). By the
comparison lemma (Khalil, 2002, Lemma 3.4), we there-
fore haveV,(t, & (t)) < Vp(to, & (to))exp(—2A (t —to)), where

A = Anmin(Q)/ max{2az, 1}. Furthermore, mifiay, 3 }[| € [|? <

Vo(t,€). Hence, [IE(t)]| < (Vp(t,&(t))/min{ag, 3})¥?,
which yields ||&(t)[] < kel|&(to)|lexp(—A(t —to)), ke =
(max{ap, 3}/ min{ay, 3})¥2. -

Remark 2 We assume in Theorem 1 that the stats uni-

or the proofs of Propositions 1-4, since the saturation hasformly bounded. In pure estimation problems, where no con-

no effect whenp = ¢.

Theorem 1 Suppose that Assumptions 1 and 2 hold with
ag(x) > a5 > 0 and that for all te Rxo, ||x(t)]| is uniformly
bounded. Then there existg k& 0 such that if K, is cho-
sen such thadmin(Ky) > Ky, then the origin of(11) is uni-
formly exponentially stable witk contained in the region
of attraction. o

PROOF By Assumption 1,6(to) € © implies that for all

t > tg, O(t) € ©. Henceb € (© — ©), which means that if
&(to) € =, then for allt € R>, &(t) € =. By assumption,
X(t) € K, whereK c R" is a compact set. We can therefore
make use of Assumptions 1 and 2 for this particutar
Boundedness ofensures thap is well-defined for all times.
We define the Lyapunov function candidat&¢) Vp(t,&) =

Vu(t, é) + %@T&) and investigate its time derivative on the set
= along the trajectories of (11):

0 Vu d Vu

Ph1.6)- 2%
5 Uit 9)(u9(t,x, ®,0) —ug(t,x, (p,G))
_~TK¢¢+¢Td(t’X7é))'

Vo(t,€) =
Ly

—(t, 9)u9(t X, (p,G)
(12)

trol is implemented based on the parameter estimatessthis i
usually a reasonable assumption, because the statesddvolv
are typically derived from bounded physical quantities.

4 Closed-Loop Compensation

We now consider how the parameter estimates can be used
to compensate for the perturbation in (1). Suppose that the
control inputs available in the original system can be chose
to yield a system on the following form:

= f(t,x) +B(t,%)(g(t,x,0) —g(t,x,8)).  (15)

Here,v(t,X) in (1) has been substituted withg(t, X, é).

Assumption 3 The function ft,x) is continuously differ-
entiable onR> x R"; the origin of the nominal system
x = f(t,x) is uniformly globally asymptotically stable
(ucAs); for any trajectory 8(t) € ©, the solutions §&) of
the perturbed systerfl5) are uniformly globally bounded
(ucB); and for each compact set K;Ri” there exists a
class.#” functiony such that for all(t,x, 8) € R>g x K x 0,

IB(t, x)(g(t, % 8) — g(t,x, 6)) | < v([|6]))-



In Assumption 3, we assume thigt, x) is a stabilizing func-
tion that ensuresGB irrespective of the parameter estimate.
In this case, the only control needed is a terg(t,x, 0)

to cancel the perturbation. In many cases, additional obntr
may be necessary to satisfy Assumption 3. Tles condi-
tion of Assumption 3 is most easily satisfied if the growth
rate of the stabilizing term irf (t,X) is greater with respect
to x than the growth rate of the error teft,x)(g(t,x, 0) —
g(t,x, 8)). In some cases, this requirement may automati-

cally be satisfied; in other cases, the requirement may be sat ((ag

isfied by introducing control in the form of nonlinear damp-
ing with a sufficiently high growth rate. This is similar to
the technique used in adaptive backstepping (Krstial.,
1995). We also refer to Panteley and 1202001) for an
extensive discussion on how to ensures.

Theorem 2 Suppose that Assumptions 1-3 hold. Then for
each compact neighborhood K R?" of the origin, there ex-

ist ky > 0 such that if Ky is chosen such thaltyin(Kgp) > Ko,
then the origin of(15), (11)is uniformly asymptotically sta-
ble with K x (@ —©) contained in the region of attraction.

PrROOF This proof is based on the proof of Panteley and
Loria (2001, Lemma 2). TheGAs property of the unper-
turbed system, together with the fact thdt,x) is locally
Lipschitz continuous irx, uniformly int and continuously
differentiable onR>o x R", implies by Panteley and L
(2001, Prop. 1) the existence of a Lyapunov functipft, x);
class. 7, functionsa; anday; and a class#” function as
such that for allt,x) € R>o x R",

as(I]) <Va(t.X) < () (16)
%(t,x)Jr%(t,x)f(t,x) < =W (t,X), 17)
%5 00| < antin 18)

Let R> 0 be chosen large enough thét:= {(x,¢&) |
l(x,&)]]| <R} DK x (©—0). If (X(t),&(to)) € Q, this
implies that||x(to)|| < R, and from theuGs property from
Assumption 3, we therefore know that for alb to, x(t) is
uniformly bounded. Let therefordmin(Ky) be chosen large
enough to ensure exponential stability of the estimator ac-
cording to Theorem 1. By the exponential stability property
of (11), we know that ifx(tg), & (tp)) € Q andé (to) € =, then

1€ < kell&(to)|e~* "), By theucB property of (15),
we know that for each & r <R, there exists a(r) >0
such that if||x(to) || <r, then for allt € Rxg, ||X(1)| < cx(r).
This implies that if|| (X(to), & (to))|| <r and&(to) € =, then

1(x(1), & ()] < c(r), wherec(r) := (cx(r)? + (ker)?) ",

Define w(t) = Vx(t,x(t)). We then havex(t) < —w(t) +
as(c(r)B(r,t —to), whereB(r,t —to) := y(kere (%)) is
a class.#.Z function by Khalil (2002, Lemma 4.2). Let
To > to. Multiplying by €~ on both sides and rearranging,
we have for allt > 1o, % (W (1)ET0) < au(c(r))B(r,t —
to)€ 7. Integrating fromtp to t on both sides and mul-
tiplying by e (=), we have v(t) < w(To)e - +

aa(c(r)) [y, e 9B(r,s — to)ds, which means that re-
placing 19 with to in the above expression yields, for all
t > to, e (t) < Vi(to)e™(710) - aa(c(r)) B(r,0) fis €~ ds <

Vy(to) + aa(c(r))B(r,0) (1~ (9)) < y/(r). wherey/(r) :=
az(r) + aa(c(r))B(r,0). Hence, |x(t)]| < a;*(V(r)),
and a;toy is a class.#, function by Khalil (2002,
Lemma 4.2). Furthermore, we have, ffix(to), & (to)|| <r
and &(to) € =, [|(x(t).£()|| < y'(r), where y'(r) :=
Yy ()2 + (ker)?)Y/2 is a class.#, function. Let
¢ < R be sufficiently small such thgif|| <¢c = & € =.
By the above, we have that for al(x(to), ¢ (to))|| <r <c
and for allt > to, ||(x(t),&(t))|| < y'(r), which means that
the origin of (15), (11) is uniformly stable.

For some g > 0, define Ty large enough that that
ag(c(r))B(r,T1) < €/2. Substitutingry = to + T1 into the
the earlier bound om(t), we obtain thawt > to+ Ty,

V(1) < W (to+ Ty ) (t-to=To)

+ au(c(r)) /t B(r,s—to)e 9 ds

Jto+T1
&

2

(19)

< )/(r)ef(tftO*Tl) +

Now letT, > T; be chosen large enough thyafr )exp(— (T, —

to — T1)) < &/2. Then we have for allt > tp + T,
w(t) < Y(r)exp(—(T2 —to — T1)) + €1/2 < &. Hence,
for all t >to+ T, |X(t)| < a;Y(e1). Define € such
that & = a1(¢/v/2) and let T > T, be large enough
that kere" © < £/4/2. Then vt > T, ||(x(1),&(t))| <
(€2/2+ €2/2)Y/2 = €. Since & can be chosen arbitrarily
small, and the above holds for all initial conditions such
that (x(t), € (to)) € Q and &(tp) € =, it follows that the
whole system (15), (11), is uniformly asymptotically st&bl
with K’ x (© — ©) contained in the region of attractiong

Remark 3 Theorems 1 and 2 are intended to show that
particular stability properties are guaranteed by chapiie
gainKy, sufficiently high; they are not intended as a practical
guide to tuning the estimator gains. Attempting to find a
numerical value foky, the lower bound on the eigenvalues
of Ky, is likely to be complicated and of little practical use,
owing to the conservative nature of Lyapunov-type analysis
In practical implementations, the gains are normally found
through a tuning procedure involving simulations or tests
with the actual system. o
4.1 Vanishing Excitation at x 0

So far we have only considered perturbations that are persis
tently exciting in the sense thét can always be estimated
from @ with exponential convergence rate. This strict re-
quirement excludes a class of perturbations where we have
persistent excitations as long as the controlled sxate
bounded away from the origin, but where the excitation is
lost at the origin. Most importantly, this includes all pert
bations that vanish fox = 0. As an example, consider the



systemx'= —x+ arctar{6x) — arctar{fx). In the following
theorem, we show that under certain conditions, convergenc
of the controlled state to the origin is guaranteed, evermwhe
excitation is lost at the origin.

Theorem 3 Suppose that Assumptions 1-3 hold such
that limy_o(L1(X) 4+ L2(x))?/ag(x) < », and that for all
(t,x,0,0) e R>o x R"x O x O, ||X|| < p(|IX||), wherep is
a continuous function. Thelim;_..x(t) = 0 and &(t) is
bounded.

PROOF We start by following the proof of Theorem

1, to find that we have the requirementyin(Ky) >

(ayla(X) + L1(x))?/(4ag(x)). Becauseli(x) and Ly(x)
are bounded orK, and due to the conditions in Theo-

[}

process. The condition in Theorem 3 concerns the growth
rates of these functions as— 0, which can often be de-
terminened without developing explicit expressions far th
functions.

5 Discussion of Results

The method presented in this paper has its strengths and
weaknesses. Among its strengths is that, for many perturba-
tions, it can provide fast parameter estimates. In pasicul
for those covered by Propositions 1 and 3, the estimates can
be made to converge arbitrarily fast.

rem 3, we see that the right-hand side is bounded, andAs mentioned in Section 1, the method presented in this

hence the inequality can be satisfied Ain(Ky) > Ky, for
someky > 0. This results inVy(t,&) < —2"Q(x)z, where
z=[||@l,1|6]]7, and whereQ(x) is positive-definite for
eachx # 0, and positive-semidefinite fox = 0. Define
U(X) = Amin(Q(X))/max{az, 3}, which is a continuous
positive-definite function (due to continuity of the eigen-
values and oBgz(x), L1(x) andLy(x)). Following the same
argument as in the proof of Theorem 1, we can then write
IE®)] < B(t) := Ke||& (to) exp(— fg, U (x(1))dT). Hence,

B is a monotonically non-increasing function which has
exponential decay rate ¥is bounded away from zero.

For the sake of establishing a contradiction, suppose that

X(t) does not converge to the origin. Then there exists a
0 > 0 such that for allt € R>q, there existt >t such
that ||x(7)|| > 25. When||x(t)|| € [9, 2d], we have||x(t)] <
maXye(s,25) P([IX[]). It follows that there exist3 > 0 such
that for eacht € [T —T, 7+ T], [[x(t)|| > &. On this in-
terval, the bounding functio8 experiences a certain de-
crease; in particulg(t+T) < B(1—T)e T, whereA =
Mincx\g(5)U (X) is a positive number. Moreover, for any
integern > 0, there exists & >ty such that]to, t1], con-
tains at leasn disjoint time intervals of length 2 with
|X(t)|| > &. The UGAS property of the unperturbed system
x = f(t,x) implies that ify(]|6||) is sufficiently small, then
X(t) is globally ultimately bounded bg. Let therefores be
chosen small enough that if for &l to, || (t)|| < €, then
X(t) is globally ultimately bounded by. Letn> 0 be an

integer chosen large enough thito)e® T < ¢, and lett;

be large enough that there are at leadisjoint intervals of
length 2T in [to, t1] with ||x(t)|| > &. This implies that for all

t >y, ||€|| < €. This, in turn, implies by the ultimate bound-
edness property that there exista> t1 such that for all

t > to, ||X(t)]| < d. But this contradicts our assumption that

paper has similarities with Chakrabortty and Arcak (2007),
where an estimate of a lumped perturbation, comparable to
the perturbation estimaig, is produced. A strength of the
metod in Chakrabortty and Arcak (2007) is that it deals with
a very general class of time-invariant perturbations, at we
as some time-varying ones. The results in this paper apply
to a narrower class of perturbations, but it has the advan-
tage of exploiting structural information about the pertur
bation, when such information is available. Using struaitur
information about the perturbation helps reduce sensijtivi
to noise in several ways. Sinéerepresents an estimate of a
constant, it does not have to react quicly to changes, and it
can typically be tuned to be much less noisy than the pertur-
bation estimatep. The estimation ol is furthermore helped

by usingB(t,x)g(t,x, 6) in the perturbation estimator, often
enabling a reduction in gain even for highly time-varying
perturbations. The method presented in this paper does not
require a particular control law to be implemented; it may
be used for parameter estimation alone, without control of
the statex.

Because the method of compensation presented in this pa-
per is based on estimation of the unknown parameter, it sets
strict requirements on the excitation properties of theyver
bations. This is restrictive compared to traditional adlapt
approaches; on the other hand, it is often the case that per-
turbations have the necessary excitation when compensatio
is necessary. Moreover, we have seen in Section 4.1 that in
the special but common case when the excitation condition
can be fulfilled outside the origin of the controlled system
(but not at the origin), it may still be possible to ensure-con
vergence of the controlled variable, even though the param-
eter estimates themselves may not converge. This is a result
reminiscent of traditional adaptive control results.

X(t) does not converge to the origin and that consequently Itis natural to ask whether the same results could be aatieve

there exist arbitrarily large valuassuch thaf|x(1)|| > 20.
Hence,x(t) does converge to the origin. Boundedness of
& (t) follows from the fact tha3(t) is monotonically non-
increasing, even whex= 0. n

The functionsLi(x) and Lz(x) represent Lipschitz-like
bounds that are typically not explicitly derived in the dgsi

by simply differentiating the outputs and thereby extragti

the perturbation termp. The problem with such an approach

is that in any practical implementation, numerical differe
tiation must be combined with low-pass filtering to avoid
excessive noise amplification. Low-pass filtering removes
not only noise, but also other time-varying components,
thereby reducing performance. The approach presented in



this paper implicitly performs a filtered differentiatiof o 8
the outputs, but makes full use of the available information
about the perturbation by using an observer structure where
B(t,x)g(t,x, 8) is the starting point for estimating the full
perturbationg = B(t,x)g(t,x, 8). Indeed, this provides fil-
tering while rendering the origin of the error dynamics an
equilibrium point, which is not the case if a simple filtered
differentiation of the outputs is used.

Controlled variablex

0 5 10 15 20 25 30 35 40
Time (s)
(a) Controlled variable, nonlinear method (solid), and gradient
In the next example, we demonstrate the method on a first- method (dotted)

order system with a highly nonlinear and time-varying per-
turbation, and compare it to use of a gradient algorithm.
This example is repeated from Grip, Johansen, and Imsland
(2008), where another simulation example concerning esti-
mation of unknown deadzone parameters can also be found.

6 Simulation Example

5 g

Example 6 Consider the system

Parameter estimates

X=—x+eMo Ly (20)
where6 € [6nin, Omax]. Here f(t,x) = f(x) = —x, B(t,x) = 0 5 10 15 20 25 30 35 40
1, andg(t,x,0) = g(t,08) = "V We wish to useu to Time (s)

(b) Unknown parameter (dashed), estimate with nonlinear

; _ esint)é .
cancel the perturbation, and let= —e . The first step method (solid), and estimate with gradient method (dotted)

is to design an update law to estimd#tdrom the full per-
turbation. We first note thaidg/d6)(t,0) = sin(t)esnte,
and hgnce (7) in Proposition 4 is satisfied by selecting _
M(t,x,8) = M(t) = sin(t) with S(t,x) = S(t) = sirf(t)e~?, also plotted the response using a gradient algorithm
where 6’ '= MaXgep 6|. The remaining requirements in rsin(t)esin(t)éx, with gain I = 1. Noise has been added to
Proposition 4 can be confirmed in the same way as in {he measurement of the statesed in both algorithms. The
Example 4. We now check that the conditions of As- ise js added with sample time001, and has variance 1.
sumption 2 hold. We have thal(t,x,6) = (6e""V¢ — The parameter projection is not active at any point in the
6esnV9) cogt). Using the mean value theorem, we simulation. o

find that [d(t,x,0)] < (1+6')e?[6]. We also see that

|Ug(t,x,@,6) — u(t,x, @, 0)] = I'|sint)g| < Tg].* Mov- 7 Application: Downhole Pressure Estimation During

ing to Assumption 3, it is stra_lghtf_orward to see that the Oil Well Drilling

nominal, unperturbed systeri= —x is UGAS and that the
perturbed system isGB (becauseéd and @ are restricted to
©). Finally, we may usg(s) = e sto satisfy Assumption 3.

Fig. 1. Simulation results for Example 6

When extracting hydrocarbons from underground geologi-
cal formations it is usually necessary to create a well by

i i , drilling a wellbore. During drilling a mud circulation sys-
We implement the full estimator from (8). After canceling tem is used to transport cuttings from the drilling out of

terms, we obtain the wellbore. The mud is pumped downhole inside the drill
] string and through the drill bit, and returns to the top thyiou
2= —Ky(Kp—1)x—Kgyz the annulus containing the drill string, as illustrated ig-F
_ sin(t)eSi““)éProj(Fsin(t)(z+ KeX), (21) ure 2. The downhole pressure .needs to be controlled within
R its margins: above the reservoir pore pressure and wellbore
8 = Proj(I" sin(t) (z+KyX)). collapse pressure, but below the wellbore fracture pressur
In many cases, this margin is quite wide and the pressure
We simulate the system witByin = —10 and Gnax = 10, can be manually controlled, but as oil and gas reserves be-
letting 8 vary in steps between?2 and 4 to get an impression  gin to be depleted, reservoirs with narrower margins are be-
of the response. We use the estimator paramétgrs 10, ing drilled, demanding automated pressure control (sge, e.

' = 3. The results can be seen in Figure 1, where we haveNygaard and Neevdal, 2006; Nygaard, Imsland, and Johan-
nessen, 2006). The downhole pressure is usually measured,

1 We recall from Remark 1 that we can disregard the projection but with conventional equipment this measurement has low

when checking this condition. bandwidth and is unreliable. Good pressure control there-
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Fig. 2. Schematic overview of drilling system

The friction parametelry in the drill string is assumed
known, as is the functios(t) = (pq(t) — pa(t))ghy(t), which
describes the difference in drill string and annulus dovwaho
static head. We shall estimate the two remaining parameters
F, andgy, which will allow us to calculate downhole pressure
pp using a steady-state momentum balance for the annulus:
Pb = Pe+ Fa(0b + G )% + pa(t)ghy. We assume that the pa-
rameters to be estimated are constant, and(that ¢ )2 >

a, for somea > 0, which implies that we have flow into
the annulus. In order to put the system in the form used in

this paper, we write = [V /BdPp, Va/Babc] ", 6 [qh Fal ",
f(t,x)= [Qpa(xz/va—l)va+Qa—QC]Tv B(t,x) = [ 1 1] and
g(t,X, 9) = [va‘:Ir]T-

7.2 Estimator Design

As before, we start by designing an update law for estimating
F, andg, as if ¢ = —gp and @ = gy + 0 were known.

We see that we can use a simple inversion according to
Proposition 1 to create an update law &pr

G =@ +®—0a), (25)

fore demands pressure estimation based on topside measuravherel'; > 0 is a scalar gain. (For simplicity, we omit the

ments.

7.1 Modeling

Complex models of the drilling process exist, for example -

in the simulator Wemod, provided hbwis (Lage, Fragyen,

Seevareid, and Fjelde, 2000). We shall use a low-complexity
model for the development of the pressure estimation al-
gorithm (see Stamnes, Zhou, Kaasa, and Aamo, 2008). We

assume that the drilling process is described by the follow-
ing dynamic model, derived from mass balances for the drill
string and annulus:

Vy .
B—d Po = Up — G, (22)
Va

Pec = —Va+ Ob+0r +0a—Qc, (23)

Ba

where the statepp and p; are the pressures in the top of
the drill string (standpipe pressure) and the annulus (€hok
pressure), both of which are measured. Furthermgrand

V, denote the volumes of the drill string and the annulus;
and 4 and 3, are the drill string and annulus bulk moduli,
all known. The volume flows are the inflow to the drill string
(ap), flow from the back pressure (annulus) pungg){ and
exit flow from the annulus through the cholag); all mea-
sured, as well as the flow through the drill ki) and inflow
from the reservoird;), The flow q, is given by a steady-
state momentum balance for drill string and annulus (in a
slight simplification of the model in Stamnes et al. (2008)):

Pp—Pc = qub + Fa(Gp + Qr) —s(t). (24)

projection in discussing this example.) H&y, the approach
is slightly more complicated. According to (24), we may
define an estimated flowy, Through the bit, by the equa-
tion pp— pc = qub+Fa(qb+qr) s(t). Subtracting this
from (24) and rearranging yields the relatiofq (g2 — G2) —

Fa((db+ )%= (Go+6r)?) = Fa(dp + 0 )?. Define the up-

date law

Fa=To[~Fa(¢F — &) — Fa(¢f — (G +G)%)).  (26)
For qo @, we then haveFa = —I'z(qb+Qr)2Fa It is then
straightforward to prove that Assumption 1 holds with
V(6) = 1676. Implementation of the update law requires
calculation ofgp, which is found by taking the positive root
of the second-order equation defining the estimated flow
through the bit. This solution is in turn used to find the
partial derivative[dg/d6](t,x,8), which is needed in the
complete implementation of the system.

In checking Assumption 2, one finds that, due to the
quadratic terms i, and ¢ in the update law foF,, the
Lipschitz condition orug does not hold globally. This can
easily be rectified by modifying the update law with a satu-
ration, as described in Remark 3.3. This is mostly of tech-
nical interest, however, and we make no such modification
in the update law above.

7.3 Experimental Results

The estimatior has been tested in simulation using the com-
plex model Wemod (Lage et al., 2000), yielding very accu-
rate results, and on real measured data from drilling at the
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242 : : : : : : : : function. LetMNg denote the interior ofl1, and let® be de-
5 fined by®:={0 e RP | #2(6) < €}, whereg is a small pos-
§ o AR 1 itive number, making® a slightly larger superset &f. Con-
£ 238 i | 1 sider the update functiong(t,x, @, 6) = Proj(t(t,x, @, 0)),
g »a6l d,’ ‘l | where Prof-) is the projection from Krséi et al. (1995, Ap-
y AT T T \ pendix E): Profr(t,x, @, 6)) = p(t,x, @,6)1(t,x,@,0), with
e \ 1 p(t,x, @, 6) given by
8 2321 VN A

o p(t,x,®,0)=1if BcNOor 0327 1(t,x,9,8) <0,

230
0

1o 20 30 4 5 60 70 80 90 o p(t,x,9,8) = (1—c(O)r0; 20,27 /|05 22) if 6 €
Ry - ©\ N and0; 2T 1(t,x,¢,8) >0
(b) Measured (dashed) and estimated (solid) downhole pressure \Mand0y 2" 1(t,%,9,6) >0,
Pb
wherel is a symmetric positive-definite matrix correspond-
Fig. 3. Results for drilling application using real drilling data ing to the gain matrix in the update lawiz 27T is the gradi-

ent of 2(8) with respect td; andc(8) = min{1, 2(8) /¢}.

Grane field in the North Sea. The results for the real drilling
data can be seen in Figure 3. The tuning uséd is 0.005,

N, =2 andKg = 10l. It should be noted that, although it
is common to measure the flog¢, no such measurement We wish to show that if for each compact déte R",

is available in the data set used, agdis therefore esti- T has the property that for allt,x, @, (];,é) € Rog x K x
mated from a choke model and the available choke opening.gn . jn @, ||7(t,x, ¢, 8) — 7(t,x, , 0)|| < Lo(x)|@||, for
Given the large uncertainties in this application, the down some continuous functioh,(x) > 0, then we also have
hole pressure estimate is considered good. Ug (t, %, @, 8) — Ug(t,x, @, 8)[| < L, (x)|| @]/, for some contin-
uous functiorL}(x) > 0. In the following, we will outline the
proof of this assertion. In order to do this, we have to look
at two distinct cases: when the parameter projection is ei-
ther active or inactive for bothg (t, x, @, ) andug(t, X, o, 6)
(Case I); and when the parameter projection is active for
one ofug(t,x, @, 0) or ug(t,x, @, 6), but not the other (Case

We have introduced a method for estimating unknown pa- I1)- In the following, we will write ug(¢) = u(t,x, @,6)
rameters in systems influenced by nonlinearly parameter-Us(®) = Us(t,x, ¢, 8), and similarly forr.

ized perturbations, and furthermore considered use of the

parameter estimates for compensation of the perturbationsin Case |, it can be easily confirmed that we may

The main argument in favour of this method is its conceptu- write ug(¢p) — Ue(@ = Proj(1(¢) — T(‘Z’))- Define { =

ally simple, modular structure, where the main design task (@) — (). From Krstt et al. (1995, Lemma E.1), we know
is to design an update law to asymptotically invert a non- that ProjZ)Tr—Proj(¢) < Tr~1Z. From this and the
linear equation. The modular design allows for some simple Z T ' _

d J P property thatAmin(T ) [1Z|I? < 1121 < Amax(T Y1212,

extensions of the perturbation estimator. A focus of curren _ . ) 1 1 2
research is extension of the perturbation estimator foescas We_ find that [|Proj({)[[¢ < Amax(I™")/Amin(F)IIC |
when the perturbation does not occur in the first derivative Which gives|[Proj({)|| < v/k||{]|, wherek is the condition
of the measurement, by using technigues from high-gain ob- number of the matrix ~*. It follows that||ug (@) — ug(¢)|| <

server theory. VK[ T(9) = 1(9)] < VKL2(X)]|@]l.

A.1 Lipschitz Continuity

8 Concluding Remarks

10



Case Il occurs iff € ©®\M° and 02 "1(9) and
Oa 27 1(@) do not have the same sign. Without loss of gen-
erality, we assume that; 2T () <0andd; 2T 1(@) > 0.
In this case, we haveue((p) —ug(@) = 1() — (I —
c(B)r0; 20527 /|05 2112)1(9). Expandlng this expres-
sion, we have after some calculati¢ing (@) — ug( )||r 1=
I7(9) ~ 7@+ +c(8)/ |0 2|1 ()| 07 1 (@) +
21(9)"0, 20,27 (1(9) — 1(9))]. We now make the cru-
cial observation that, becaust, 2T t(¢) and Uy 27 1(@)
do not have the same sigii); 2T 1(¢)| < |T5 27 (1(@) —
(). Using this for substitution wher&lz 2T 1(¢g) oc-
curs alone, we obtain thiue( @) —up(@)|2 4 < ||T(9) —
(@2 1 + (c(8)? + 2c(8))/1105 2121104 WH (@) —
7(9))|[?. Using the property thalmin(P)|Z|? < [12|3 <
Amax(P)[12%, we find that |ug () — ug(@)|| < alT(¢) —
(@)l < aL2(0)[¢ll, where a = [(Amax(T™4)Amin(T) +
3)/ (Amin(T 1) Amin(1)]*/2.
B Proofs of Propositions 2—4
PROOF (PROPOSITION2) We use theLFC Vy(t,8) =
10T (rt—p e T(r,x(1))dr) B, where pu > 0
is a constant yet to be specified. We first note that
18T (11— p1) 6 < V(t,8) < 38™r18. Hence,V, is
positive-definite provideq: < Amin(T~1). With P= 0, we
get & = —Proj(l(t,x)I8). Using the property (Krstiet al.,

1995, Lemma E.1) that-8TT ~Proj(1) < —6'T 11, we
have

Vult,8) = —87 <r1_u/t°°e”|| (r,x(r))dr)
~Proj(|(t,x)l‘é)+%uéTll(t,x)é
—%uéT/wé*Tn T x(r))dré
(8T8

éT/tmet*TII(r,x(r))dr

use 7o

+H‘ |Proj(I(t,x)r )|

1 A2 Lo TiA2
(1= 21812 Suee T8
*“”é”H/t ¢TIl (1,x(1)) d

(L G pVRIT D081

T

‘ﬁnrnl(t,x)né

Suee T2
(B.1)

where k is the condition number of ~1. Above, we
have used the property (Krétiet al., 1995, Lemma
E.1) that Projr)"r—tProjr) < t'r~1r, which im-
plies that ||Proj(t)|| < v/k||1]|. We have also used that
JEe T (T, x(1)dr > [T e TI(T,x(1))dr > e T T 1(1,x(T))dr >

11

e Te. From the calculation above, we see that the time
derivative is negative definite provideg < 1/(1/2+
VKT -
PROOF (PROPOSITION3) For the sake of brevity, we
write M = M(t, X, 6) andB = B(t, x) With ¢ = @, we get

6 = —ProjrMB(g(t,x,0) — g(t,x,8))). We use theLFc
Vu(t,é) 19TF 16. Using the property (Krsti et al.,
1995, Lemma E.1) that—8Tr'Proj(1) < —@7r1r,
we have Vy(t,8) < —38TMB(g(t,x,8) — g(t,x,8)) —
1(g(t,x,0) — g(t,x,8))TBTMTA. Since g(t,x,0) is con-
tinuously differentiable with respect t8, we may write,
according to Taylor's theorem (see, e.g., Nocedal and
Wright, 1999, Theorem 11.1)g(t,x,0) — g(t,x,8) =
J3109/08](t, %, 6 + p6)B dp. Hence, we have/,(t,6) <
—1 [387(MB[ag/d6](t,x,6 + pd) + [3g/db](t,x,8 +
pf)TBTMT)8 dp< — /3 8TPAdp=—BTPA, which proves
that Assumption 1 holds. -

PROOF (PROPOSITION4) We use theLFC Vy(t,8) =
10T (rt—p f°e-TS(1,x(1))dr) 8, where u > 0 is

a constant yet to be specified. First, we confirm that
the Lyapunov functionV, is positive-definite. We have
3Anin(T=1) = LAYIBI? < Vu(t,8) < FAmin(TY)[6]2,
where Ag = SUR; xR o<k Amax(S(t;X)). It follows from
this thatV, is positive-definite providedmn(F 1) — HAS >

0, which is guaranteed ifu < Amin(T~1)/AL When
we insert @ = @, we get the same error dynamics
as in the proof of Proposition 3. Following a calcu-
lation similar to the proof of Proposition~ 2, we get
Vu(t.8) < —(1 - 1w)8TSt,8 — uee T|BIZ  +
py/KMs||F 2 MuLg| 8]/ (8T S(t,x)8 )1/2 whereMs andMy,
are bounds on|S(t,x)|| and |[M(t,x, 8)| respectively, and

K is the condition number of ~1. We may write this as a
quadratic expression with respec((teTS(t X)0 )1/2 HE)H]

It is then easily conflrmed that the expressmn is negative
definite if pu < 2/(1+kMZ||F~||2MZ L2~ teT). -
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