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Problem Description
In several important applications there is a need to deliver large equipment from heavy transport
ships onto shores that do not have seaports and are not easily accessible by land. One possible
solution to this problem is based on reloading the equipment from the transport ships onto
smaller crafts capable of delivering the equipment onshore.

The Cymer Center for Control Systems and Dynamics at UCSD is exploring the concept of
employing a ramp between the two vessels for this problem. The main difficulty in safely
transporting equipment between two ships is due to the waves. To counteract the effect of the
waves, an active ramp system needs to be designed.

The task of this thesis is explore the concept of an active ramp between the ships. The system can
include active control of the ships for their synchronization and compensation of the wave effect.
The design goal is to minimize the wave-induced motion of the ramp. The student is free to choose
between a configuration with ships being placed side-to-side or bow-to-stern, and to decide where
and how it is feasible to place the actuators. The design should be supported analytically and
verified in simulations.
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Abstract

Cargo transfer between two vessels at sea requires the ramp connection between
the vessels to be as stable as possible. The complex nature of the system makes
employing control methods difficult. This thesis explores two ideas for improving
performance of the interconnected system.

First idea examines the possibility of actuating the smaller of the vessels with
fins, so as to reduce the relative movement between the two points where the
ramp is connected to the ships.

The second idea using the larger ship to shield the smaller one from incoming
waves. It is assumed that the total disturbance is minimized at a certain angle to
the waves, and an Extremum-Seeking based controller is used to find this angle.
To allow ship models to change dynamically as cargo offloads, the technique of
extremum seeking is extended in this thesis to allow a certain type of model
uncertainties.



Assignment Text

In several important applications there is a need to deliver large equipment from
heavy transport ships onto shores that do not have seaports and are not easily
accessible by land. One possible solution to this problem is based on reloading
the equipment from the transport ships onto smaller crafts capable of delivering
the equipment onshore.

The Cymer Center for Control Systems and Dynamics at UCSD is exploring
the concept of employing a ramp between the two vessels for this problem. The
main difficulty in safely transporting equipment between two ships is due to the
waves. To counteract the effect of the waves, an active ramp system needs to
be designed.

The task of this thesis is explore the concept of an active ramp between the
ships. The system can include active control of the ships for their synchro-
nization and compensation of the wave effect. The design goal is to minimize
the wave-induced motion of the ramp. The student is free to choose between
a configuration with ships being placed side-to-side or bow-to-stern, and to de-
cide where and how it is feasible to place the actuators. The design should be
supported analytically and verified in simulations.

1



Acknowledgements

I did most of the work on this thesis on exchange at University of California,
San Diego. I would like to thank Professor Miroslav Krsti’̧ of UCSD for being
my supervisor on this project, and high-quality scientific guidance he provided.
I would also like to thank Professor Alexey Pavlov of NTNU for always being
there when I needed him, despite the distance. The other students in my project
group, Joe Doblack and Jacob Toubi, have consistently contributed with day-to-
day research, as well as helping me understand the American culture. Further,
I would like to give special thanks to my family, Rosa and Edgar Kristiansen.

This document was written in LYX

2



Chapter 1

Introduction

The transfer of cargo over a ramp from a LMSR (large, medium-speed, roll-
on/roll-off) vessel to a connector vessel in high sea states represents significant
challenges for ship and control system designers. This thesis is part of a project
the goal of which is to ultimately determine the actuation/sensing requirements
and to devise control and real-time optimization algorithms for reducing the
oscillations of the pitch, roll, and yaw angles between the ramp and each vessel.

The system investigated consists of a Sea Base (the large vessel) and a T-Craft
(the connector vessel) connected by a ramp that can vary in length. Designs
with ships placed side-by-side and aft-to-fore are considered. Due to the number
of degrees of freedom involved in this system, deriving the equations of motion
is challenging, even when the hydrodynamic force laws are known. For this
reason, limiting the complexity of the model down to what is strictly necessary
to achieve a particular design goal is an important part of this work.

The study group working on this project consists of three students in addition to
myself and were headed directly by Professor Miroslav Krstić. Several strategies
for compensating for the wave motion were considered at the time the present
author joined the project in the end of September 2008.

One proposal that was an extention mechanism on the ramp that would allow it
to change length dynamically, although not fast enough to be effective on wave
frequencies. Another proposal was to set up variable dampeners and/or springs
with variable constant at connection points between the ships and the ramp.
Orientation of the ships relative to wave fronts was also experimented with.
Given that the disturbance caused by the waves has its minimum for a certain
length of the ramp, for a certain damping and for a certain spring constant and
for a certain orientation into the wave front according to some representative
performance criterion, Extremum Seeking technique can be used to keep those
controlled parameters at their optimal values. The simulations were carried out
in a Matlab package called SimMechanics, which allows simulation of mechanical
systems by specifying components such as springs, rigid connections, joints etc.
However, none of the solutions were close to maturity at the time this author
joined the project, and there was need to increase the breadth of the work by
exploring additional concepts.
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CHAPTER 1. INTRODUCTION

In this thesis, the decision was made to explore two different approaches. The
first approach that was considered, was adding two sets of fins in front and in
the back of the smaller vehicle in aft-to-fore configuration. This allows creating
force in heave (for the smaller vehicle), as well as a torque in pitch. Theoretically
this also allows creating a torque in roll, but because of the way the ramp is
connected this would only serve to break the ramp. This approach is the one
used for illustration on the front page of this thesis. After some consideration,
only pitch of the smaller vehicle was put under control, attempting to hold the
angle of the ramp as small as possible. The control task for this part turned
out to be very simple, with an LQR controller doing the job adequately.

The second approach considered in this work is used for side-to-side configura-
tion and exploits the fact that ships have different sizes. This means that the
smaller ship is more affected by the waves, and it makes sence for the larger
ship to shield it. Maximal shielding is attained when the ships are turning their
sides towards the wave front with the large ship shielding the small one from
the waves. However, most ship designes are far less affected by the waves when
sailing into the wave fronts. This means that the ships should sail into the
waves on an angle which is optimal according to some performance criterion.
Extremum Seeking technique is to be used to find this optimal angle. To some
extend this overlaps work of the other team members. However, while the work
done by the other team members focuses on simultaneus regulation of orien-
tation, spring constants and ramp length in a SimMechanics model, this work
uses only a very simple model for the ship dynamics in yaw and focuses on
compensating for changes in the weight of the ships through the transfer. This
involves an extension of Extremum Seeking was necessary to allow it to handle
models that exprience a priori unknown variations in time.

In the begining of the project, an extensive attempt was made to find similar
solutions through relevant professional publications, which was not successfull.
Neither were such solutions known to the client of this project. [5] contains
useful results on ships equiped with fins for different purposes, and those results
are extensively used here. As to probing frequency phase lag tracking which will
be presented in Chapter 4, no similar extention was attempted in the litterature
before before.

This thesis is a part of a large, ongoing project early in its developement. The
goal of this thesis is limited to concept exploration, and the it does not intend
to present a complete solution for the task in hand.

The system is described in more detail in chapter two. The concept of controlling
the smaller ship with fins is explored in Chapter 3, and Chapter 4explores
the idea of shielding the smaller ship by positioning the larger ship between
it and the incoming waves, controlled by an extremum-seeking controller with
extension mentioned above.

4



Chapter 2

General Description of the
System

Since the project was already well underway when this author joined the team,
some space needs to be devoted to introduce the reader to the project, the
assumptions made as well as the solutions considered.

To transport equipment between the vessels, a ramp is proposed to be extended
between them. In the beginning of the project, little was known about the
expected sizes of the ships, weight and tolerance limits of the ramp and the
system to be used to attach it to the vessels. It became known later that the
smaller ship (the T-craft) is likely to be a Surface Effect Ship (SES).

As is usual in engineering, when something is not known, reasonable working as-
sumptions have to be made temporarily in order to allow the project to continue
until the assumptions may be replaced with real data. Some of the assumptions
were decided by the project leader, while others were made by this author.

Following assumptions are part of given specifications:

1. The ramp has a flexibility to rotate up and down on attachment points,
but the attachment point itself does not move.

2. The length of the ramp can not be changed on wave frequency.

(a) “Up-and-down” move-
ments OK

(b) One ship can not rotate
in roll without the other also
rotating

(c) The two ships have to
have the same heading

Figure 2.1: Illustration of how the ramp limits the degrees of freedom of the
ships

5



CHAPTER 2. GENERAL DESCRIPTION OF THE SYSTEM

Figure 2.2: Joint for a passively extendable ramp. Instead of having a mech-
anism on the ramp that extends it to a given length, the proposed ramp has
flexible length. The length may be set by positioning of the ships. The T-
shaped green part is free to move sideways inside the blue part. Equipment can
be moved on top.

3. The length of the ramp were to be controlled by an unspecified mecha-
nism on the ramp, but not fast enough to have significant effect on wave
frequencies.

4. It is preferred that the stabilization of the ramp is achieved by steering
the T-craft.

5. The ramp is infinitely strong, constraining the distance between the points
where it is attached to a constant. In 3-dimensional case, the ramp will
also keep the ships on a straight line (seen from above).

In addition, for the system where the ramp is attached at the bow of one of the
ships and stern of the other (bow-to-stern configuration), the ramp is assumed
to be strong enough to keep the ships on the same orientation in roll. An
interesting simplification can be made as a consequence of this assumption.
Decomposing the wave action into lateral and head-on forces, it is apparent
that that lateral wave forces only affect roll and sway, as well as yaw of the
system as a whole without changing relative positions of the bodies in this
three-body system. While roll can cause significant problems for cargo transfer,
research into roll stabilization of ships is already at a very mature state and
several practical solutions are mentioned in [5] and are directly applicable here
because the ramp essentially forces the two vessels to behave as a rigid body
in roll. For stabilization of the ramp in heave and in pitch, a two-dimensional
model is sufficient.

This author also proposed a system with passively extendable (i.e. flexible) ramp
as desribed in Figure 2.2. Results from [9] or [10] could be used to keep the
two ships on a specified distance, implicitly controlling the ramp length without
any additional machinery. The design was however rejected. Another design
that was discussed was a connection that would allow the ramp full flexibility
to rotate on attachment points.

6



Chapter 3

Fin Stabilization

In this chapter, the ability to actuate the smaller vessel with fins in the pitch
DOF to reduce the roll of the ramp1 will be considered. A simplified version
of the system is simulated, and an estimate for the necessary size of the fins is
provided. Because few people familiar with control theory are also familiar with
aerodynamics, the first section is short introduction to foil theory.

The contents of this chapter are practically oriented. Fin stabilization of an
interconnected ship system is a novel idea, and this work makes no attempt to
bring it beyond the conceptual stage. A significant effort has gone into keeping
the model mathematically simple, in order to concentrate on understanding of
the general properties of the system.

3.1 Key concepts in foil theory and application
to hydrofoils

In this section, basic concepts from hydrodynamics are introduced. This intro-
duction by no means intends to be exhaustive. Many good books are written on
the subject, and this introduction does not. [4] comes highly recommended, and
[5] pages 178-205 also covers quite well, but reading it without prior knowledge
may prove to be a formidable challenge. [3] is excellent for general reference,
[7] provides a quick and very interesting introduction (more detailed than the
presentation in this chapter but less complicated than the presentation in [4]).

A hydrofoil is a device designed to operate in a flow of water in such a way as
to produce maximal force tangential to the flow (lift), while keeping the force
parallel to the flow direction (drag) as low as possible. Both water and air are
considered incompressible and inviscid in a wide range of engineering applica-
tions. Indeed, subsonic flows where compressibility effects are insignificant are
similar in water and in air for the same Reynold’s number. It is therefore not

1The way coordinates for the ramp are defined in this project, the ramp orientation is
“perpendicular” on the ships. For example, when one of the ships lifts in heave, the ramp
rolls, not pitches.

7



3.1. KEY CONCEPTS IN FOIL THEORY AND APPLICATION TO
HYDROFOILS CHAPTER 3. FIN STABILIZATION

Figure 3.2: Kutta-Zhukovsky explanation of the generation of lift by adding
large scale circulation to potential flow

surprising that both [5], a book about marine applications, and [4], a book about
aerodynamics, use potential theory to approximate lifting force of a foil2, and
theory from the two books is used in this thesis interchangably. This introduc-
tion is meant as a very superficial background for the material in this chapter.
The reader is also assumed to have basic knowledge of fluid dynamics, such as
potential and stream functions, superposition of flows, basic flow patterns such
as uniform flow, sources and sinks, doublets, and not least the vortex flow.

Figure 3.1: Potential flow
around an airfoil. Air flows
around the trailing edge of the
foil, generating no lift as "pre-
dicted" by DÁlembert’s para-
dox. A real flow, at least for
any Reynold’s number signifi-
cantly above zero, the flow will
detatch at the trailing edge, cre-
ating lift.

D´Alembert’s paradox suggests that no force
- neither lift nor drag - is exerted on a body
in an incompressible and inviscid flow. This
obviously contradicts empirical data. Indeed,
potential theory, which is both limited to
and fully describes incompressible and invis-
cid flow, predicts the flow pattern as shown
on Figure 3.1. Since the trailing edge is (in-
finitely) sharp, the fluid has experiences (in-
finitely) high acceleration while rounding the
edge, which leads to (infinitely) high viscocity
and thus (infinitely) high viscous forces. To
resolve this situation, the so-called Kutta con-
dition is introduced, which postulates that at
the trailing edge the fluid flowing from over-
side of the foil has exactly same velocity as the
fluid flowing from underside of the foil. This
can be achieved by modifying the potential
field with vortices.
A single vortex is a fluid circulation around a single point, with circulation
velocity expressed in polar coordinates vθ = − Γ

2πr , vr ≡ 0, where Γ is the
stength of the vortex. An interesting property of a vortex is that it generates
lift proportional to the incoming uniform flow and the strength of the vortex.
A rough drawing of the effect of a vortex on the potential field around a wing
profile is shown on Figure 3.2. For a thin airfoil of infinite span at a small angle
of attack, a good approximation of the lift (but not drag) can be achieved by
placing a vortex sheet, which is a contiuous distribution of vortices.
When airfoil has a finite span, the fluid begins to move in spanwise direction,
and not only along the chord. This flow is caused by pressure difference between

2But not the drag.
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3.2. PRELIMINARY ANALYSIS CHAPTER 3. FIN STABILIZATION

overside of the airfoil (where there normally is suction) and underside (where
there normally is overpressure). This pressure spillage causes a wing of finite
span to have a lower lift per unit length than a foil of ininite span. One way
to limit this spilage is to employ wingtip devices such winglets. They to limit
pressure spillage, but they also induce drag and they add to the weight of the
wing so advantage of using them is less obvious than one can assume intuitively.

Figure 3.3: A vortex sheet. The airfoil is the blue
line going through the centers of the ininitesimal
vortices with strength s = s(x), assumed to be thin
and infinite in both directions perpendicular to the
paper. The total strength Γ of the vortices is Γ =´ c

0 s(x)dx. The strength distribution of the vortices
has to be such that flow through the airfoil is always
zero, while satisfying the Kutta condition

One way of modeling
wing of finite span is by
using vertices formed as
horseshoes to form a lat-
tice in such way as two
give a good approxima-
tion of the flow around
the wing. This approach
is described in [4] page
260 and [5] page 184.

Because of the pressure
spillage, airfoils with high
aspect ratio (i.e. “longer”
wings) generate more lift
per unit area and thus
have better lift/drag ra-
tio. For a sailplane,
where lift/drag relationship is the decisive characteristic, wings with aspect
ratio of up to 35 may be used, only limited by the structural strength of a wing
at a given weight. On a fighter jet, the wing may experience significant stresses,
it has to be optimized for trans- and supersonic flight as well as other consid-
erations such as vibrations, place on deck of an aircraft carrier etc, and wings
with aspect ratio as low as 2 are used.

To round off the this theoretical introduction it should be mentioned that the
potential flow-based methods mentioned above have long since been replaced
with more rigorous numerical formulations (199 in [4]). [7] goes as far as to
calls the vortex placement method “mathematical fiction”. However, vortex
placement does provide a valuable intuitive insight into flows around a wing,
and are still taught in indroductory aerodynamics classes.

The speed of sound in water is about 1550 m/s so no hydrofoil will be going
transsonic in the near future and hydrofoils with high aspect ratio are prefered.
However, because sea water is about 850 times denser than air, the lift of the
same section is also greater, which puts a bigger strain on the structure of the
foil. Because of this, as well as consideration to physical space at the sides of
the vehicle, aerofoils with aspect ratio of about 5 are suggested.

3.2 Preliminary analysis

The goal of this chapter is to propose a device capable of reducing the distur-
bances on the ramp in addition to solutions proposed by the other members of

9



3.2. PRELIMINARY ANALYSIS CHAPTER 3. FIN STABILIZATION

the team. In order to calculate what it is natural to estimate the forces required
to move a ship in heave or in pitch.

The calculation of the restoring forces - both for heave and pitch displacement -
presented here is based on the calculations in [6] section 3.2.3 and makes many of
the same assumptions. The mathematical representation is simpler here, mainly
because it does not need to concern itself with the concept of metacentric height.
This is necessary in [6], because it also treats forces in roll, and the distance
between center of gravity and center of buoyancy at rest is significant for that
purpose. At least for this author simpler mathematical representation results
in better understanding of the physical system, and thus better understanding
of which simplifications can be made and which would result in critical details
being lost.

Since the project is at conceptual stage, nothing more than a rough estimate is
needed. Refering to Table 3.1, estimating the area of the cross-section between
the water plane and the shape of the vessel simply as width of the ship multiplied
by its length.

While this approach may appear overly rough - the ship is after all not rectan-
gular - the reader must remember that the ship dimensions in Table 3.1 are a
very rough approximations to begin with, and little precision is lost while the
model is greatly simplified. There is also a communicational advantage: this
approach avoids creating an impression that the this analysis is more precise
than it really is.

In this estimation work, it is calculated how much force is needed to displace one
of the ends of the ramp a distance of two meters up or down either by displacing
the vessel in heave by pitching it around its center of buoyancy. Even though we
are projecting for seastate 4 where largest waves are about 2.5 meters, putting
two of those meters under control is a significant improvement. When the ramp
is fully extended to 20 meters, a three meter rise in each of the ends would result
in asin

( 2
20
)

= 6◦ change of its angle, while on fully contracted ramp the two
meter rise gives a change of asin

( 2
10
)

= 12◦.

First, we calculate the force needed to keep the Seabase two meters above or
below the equilibrium point in heave:

Fsb = LW zρsw · g︸ ︷︷ ︸
pressure

= 200m · 30m · 2m · ρsw · g ≈ 60 · 106 · 2N ≈ 121 ·MN (3.1)

The numerical values are from Table 3.1. For the T-craft, the number is

Ftc ≈ 40m · 16m · ρcw · g · 2m ≈ 13 ·MN (3.2)

So how large fins are needed to provide this forces at speed of 10 m/s? The
kinematic viscousity of water νw ≈ 1m2

s · 10−6, for air it is νa ≈ 15m2

s · 10−6.
This means that for same geometry, a flow in water will have same Reynold’s
number Re = V D

ν as a flow in air at velocity V fifteen times lower than velocity
in the air. Thus, a flow in water at 10 m/s is similar to the flow in air at 150

10
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Length of the larger ship (Seabase) 200 m
Width of the larger ship (Seabase) 30 m
Length of the smaller ship (T-craft) 40 m
Width of the smaller ship (T-craft) 16 m
Length of the ramp 10-20 m
Seastate 4
Wave height observed (according to Table 4.2 in [6]) 1.25-2.5 m

Table 3.1: Rough approximations of numeric values for dimensions of the ships
and environment

m/s, the latter being a typical value in aviation. Airspeed of 150 m/s is not
transsonic with a very good margin, so compressibility effects are not significant
here[4].
According to table 7.10 in [4], the maximal lift coefficient for a wing of aspect
ratio of 6 is 1.2. Since lift coefficient is defined per

CL = L
1
2ρv

2A
(3.3)

We have

1.2 = L
1
2ρswv

2A
(3.4)

Solving the above for A while substituting ρsw = 1030 kg
m3 , v = 10ms and L =

121MN for the seabase and L = 13MN for the T-craft, results in A = 1958m2

for the Seabase and A = 210m2 for the T-craft. Even for the T-craft, four
fins sized 3x18 meters would be needed, which is somewhat above the practical
limitations.
Now considering pitch actuation. In order for a 40 meter long craft to lift its
bow a distance of two meters, it has to be rotated at an anle of atan

( 2
20
)

= 5.7◦.
Again a few more approximations are needed. When the ship is tilted in pitch,
for small angles it can be approximated as deforming the profile of the ship
as drawn in Figure 3.4b. In this approximation, every geometrical point is
displaced vertically instead of a circular path around the rotation center. This
geometrical appoximation is valid when the ship’s length is large compared to
its height, and tilting angle is small. The total moment of the gravity force is

τg =
ˆ
~g × ~rolddm (3.5)

Since every mass element is displaced vertically, the cross product of displace-
ment with the gravity force is zero, i.e. ~g × ~rnew = ~g × (~rold + ∆~r) = ~g × ~rold.
This means that only the buoyancy force has changed.
Now, we want to calculate the total moment created by the buoyancy force
when the ship is displaced in pitch from its equilibrium position. We define L

11
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a: Tilted in pitch

b: Parallelogram approximation

c: Parts entering and leaving water

Figure 3.4: Rotation around the center of buoyancy is approximated with par-
alellogram deformation.

to be the length of the ship and a coordinate system at the center of buoyancy.
On most ships center of gravity will be placed under the center of buoyancy
for additional stability. The arrangement could be thought of as ship’s weight
hanging on a thread as long as the difference between the center of buoyancy
and center of gravity, with buoyancy force “holding” the thread (notice that
if center of buoyancy is below the center of gravity, this force will make the
ship more unstable). For torque in pitch however, this torque is completely
dominated by the buoyancy force described here. We have

τr =
ˆ +L2

−L2
F (l)l dl (3.6)

Where F (l) is the force density of the restoring force per unit length along
the ship (Newton/meter). To calculate F (l) we can think of elements dl as
independent columns going up and down from equilibrium positions. Setting
up the force ballance on a body floating in water:

F +mg − ρgV = 0 (3.7)

Where V is the submerged volume. At equilibrium, mg = ρgV0, transforming
the above to3

3A minor point that F in this equation is not per unit length.
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F = ρg(V − V0) (3.8)

For each element dl, the volume change compared to equilibrium position is

V − V0 = l tan(θ)︸ ︷︷ ︸
height

wdl︸︷︷︸
area

(3.9)

Where θ is the current pitch angle. This allows tranformation of (3.6) to

τr =
ˆ +L2

−L2
ρgl tan(θ)W︸ ︷︷ ︸

F (l)

l dl (3.10)

Solving the integral,

τr = ρg tan(θ)W
[
l3

3

]+L2

−L2

= ρg tan(θ)W L3

12 (3.11)

Now, placing two fins in front of the vehicle and two in the back and configuring
them to create force pairs acting on the center of gravity with a torque ~Ff ×~r ≈
Ff · L2 .This means that to create torue τr , a force

Ff = τr/L · 2 (3.12)

is needed. Also, we can use tan(θ) = 2
0.5L . Substituting this into (3.11) yields

Ff = ρg · 2 ·W L

3 (3.13)

Thus, to keep the T-craft tilted on an angle of 5.7◦, a total force of about
4.3MN is needed. The size of fins needed can be calculated using (3.4) to be
70m2. This can be provided with four fins 1.7m x 10m, which is completely
practical. Indeed, comparing (3.1) and (3.13) shows that actuation in pitch is
(roughly) three times more efficient than actuation in heave.

Why not do both heave and pitch? Consider the situation where the fins in
front an in back are configured so as to create maximal torque in pitch. This
means that they must create forces in opposite directions, ideally creating zero
force in heave. If we want to create force in heave, either fins in the front or in
the back have to turn away from this optimal position, cancelling some of the
torque from the other set of fins. Since it is already established that actuation
in pitch is more efficient, diverting effort to actuation is heave is suboptimal.

Thus, a practical estimate has been made with mininal information about the
product in design. Although this result allows making the decision to proceed
with the project and explore fin actuation further, this kind of modeling can
also be dangerous if used without understanding it properly. The assumptions
made throughout this section make the model very particular as to what to

13
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result actually means. For example, the task assigned to fins was to keep the
T-craft at a certain angle in pitch. This will never be the case because the
T-craft will have to move so as to track the Seabase. Perhaps the waves will
lift the two vessels together? Are waves large enough to disturb the operation
of the fins? Will the fins create too much drag when operating with maximal
lift, or is maximal lift only needed small percentage of the time? How will the
fins interact with improvements proposed by the other members of the team?
Could the fins be downsized and still provide a significant boost to performance
of the system? The model in this section address none of those questions, and
the engineer to design the system has to be aware that those problems exist
when using this model4.

3.2.1 Fin actuation in side-to-side configuration?

It is obvious that bow-to-stern configuraton is prefered when fin stabilization is
used, in order to provide the fins ample space. There is however another reason
why fin actuation is less practical for side-to-side configuration.
It has been shown in the previous chapter that actuation in heave using fins is
not pratical. For bow-to-stern configuration the solution was actuation in pitch,
and for side-to-side configuration the solution would be actuation in roll. This
is less efficient. Since the ship is 16 meters wide, in order to lift one side of
the ship 2 meters, it has to roll on an angle of atan(2/8) = 14◦, which is about
twice as much as pitch angle for the similar rise at bow or at stern. This can
significantly reduce other seakeeping characteristics.
However, the force necessary to roll a typical ship is usually much less than
the force necessary to pitch it. This means that smaller fins could be used in
side-to-side configuration and yield some improvement in stabililty of the ramp.

3.3 Simulation

3.3.1 Physical model

In order to design a controller, a state space model is needed. The status of the
project when this author joined was that the project was simulated in a Matlab
package called SimMechanics. This package is an extension of simulink which
allows simulation of mechanical blocks such as springs, rigid bodies, connections
etc. The numerical values used were set so as to make simulation appear natural,
without any other source.
In this section, a state-space model is developed. The physical model is based
on Hamiltonian mechanics, due to similarity of the Hamiltonian function to
Lyapunov function, and potential usage in proving stability. Although it is
not assumed that the reader is familiar with the Hamiltonian Mechanics, this
author can not hope to do any better than to refer the reader to either [13] or

4On a sidenote, one of the main cause of the present economic crisis is that people used fi-
nancial models without properly understanding they were based on, thus accepting unrealistic
results.
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[12], both excellent publications covering the subject from somewhat different
angles. If time constraints do not allow the reader to become familiar with those
publications, he will have to take many of the stated equations for granted.
The purpose of this model is to provide a mathematical description of the dy-
namics to the controller. The model also has to create naturally-looking simu-
lations.
Wave forces are then modeled as a combination of Response Amplitude Oper-
ators (RAOs). The motivation for this will be discussed below.
In general, a tremendous emphasis was given on simplicity of the model, as
opposed to its fidelity. The reason for that is two-fold. First, although significant
effort is put into research of nonlinear models for marine applications in the
litterature, in practice simple linear models work just fine for most applications
and non-linear models are highly unusual in the industry. The task of this
project is to create a working solution using as simple means as possible, so
implementation of complex nonlinear models is not necessary. Second, the only
way to model a system that involves fluid dynamics with a reasonable precision
is CFD, which can not be used for control (perhaps except for MPC, but running
MPC on a CFD model is far ahead of the state of the art). This means that
large increases in the complexity of the model may lead to little increase in its
fidelity.

3.3.2 General setup of the model

For both Hamiltonian and Lagrangian mechanics, the complexity of the model
is highly dependent on the state variables chosen to express a system. In this
section, the state variables used to model this sytem are presented. This choice
of state variables may appear odd, but it has in fact been thoroughly thought
though in order to simplify simulation and controller design.

The full state vector is

x =
[
x1 z1 θ1 x2 z2 θ2

]T (3.14)

This vector consists of six variables, while the system only has five degrees of
freedom. A choice is made to express x2 in terms of other variables, and define
vector q to consist exclusively of independent states:

q =
[
x1 z1 θ1 z2 θ2

]T (3.15)

Also, defining

ν = d

dt
q =

[
ẋ1 ż1 θ̇1 ż2 θ̇2

]T (3.16)
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p2

δδ
p1

(a) Equilibrium position.
x1

(b) The entire system has moved in surge.

z1

θ1

(c) The front ship has pitched, point p1 is also dispalced in heave.

Figure 3.5: Illustration of state variables for the first ship. The variables are
similar for the second ship.

The variables are independent and thus can be used as generalized coordinates.
The variables in vector q figures 3.5 and 3.6 and table 3.3.

In the following, angles θ1 and θ2 will be assumed to be small enough for the
linear approximations to be applicable.

3.3.3 Building up of the Hamiltonian function

In order to set up a Hamiltonian function, both potential energy and kinetic
energy functions need to be stated as functions of the state variables.
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Figure 3.6: Horizontal cross-section of the ship, in the plane of where the water
intersects the hull when the vessel is at equilibrium in calm water.

p1 The point where the ramp is attached to the first vessel (Seabase)
p2 The point where the ramp is attached to the first vessel (T-Craft)

Table 3.2: Definitions of the geometrical points on figure 3.5

3.3.3.1 Potential energy function

The effects of buoyancy and gravity are treated together as the restoring force.
The calculations and assumptions are similar as those which led to (3.11). First
potential energy for displacement in heave is calculated, then potential energy
for pitch around p1.
For heave, have, by integrating the force in (3.1) from zero to some heave dis-
placement z, we get

Vρ,z =
ˆ z

0
LWžρsw · gdž = LWρswg

z2

2 (3.17)

For pitch displacement around the Center of Buoyancy, we integrate (3.11) from
zero to an angle θ

ˆ θ

0
ρswg tan(θ̌)W L3

12 dθ̌ ≈
1
24ρswgWL3θ2 (3.18)

When the ship is rotated around p1, center of buoyancy experiences a displace-
ment in heave. The additional potential can be calculated using (3.17). The
displacement in heave is approxiamtely θL2 , so the additional term will be

LWρswg
L2θ2

8 = Wρswg
L3θ2

8 (3.19)

Adding (3.18) and (3.19), yields

Vρ,θ1 = 1
24ρswgW1L

3
1θ

2
1 +W1ρswg

L3
1θ

2

8 = 4
24ρswgW1L

3
1θ

2
1 (3.20)

Thus the total potential due to restoring forces for the Seabase is

VSB = 1
2L1W1ρswgz

2
1 + 1

6ρswgW1L
3
1θ

2
1 (3.21)
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x1

Position of the first vessel as measured at the point p1where it is
connected to the ramp. Positive direction forward

z1

Vertical displacement of the point p1 from its equilibrium position.
Positive direction down.

θ1

Rotation of the first vessel around point p1. Positive direction is
when the ship “sinks”, as required for the right-hand coordinate
system

x2

Position of the second vessel as measured at the point p2where it is
connected to the ramp. Positive direction forward. In this
representation, x2 is not independent.

z2

Vertical displacement of the point where the ramp is attached to the
second vessel (similar to p1 for the first vessel) from its equilibrium
position. Positive direction down.

θ2

Rotation of the second vessel around point where the ramp is
attached to the second vessel (similar to p1 for the first vessel).
Positive direction is when the ship “rises”, as required for the
right-hand coordinate system

Table 3.3: Definitions of the state variables for the aft-to-fore ramp connection

The similar expression for the T-craft is

VT = 1
2L2W2ρswgz

2
2 + 1

6ρswgW2L
3
2θ

2
2 (3.22)

with the total potential energy being

V = VSB + VT (3.23)

3.3.3.2 Kinetic energy function

To compute the kinetic energy of the vessels, mass tensors in the connection
points between the bridge and the hulls are calculated. The lead vessel is given
full freedom in 2D (3DOFs), while the second vessel is constrained in x.

The mass tensor in the point where the ramp is connected to the ship could
be using either the formula (3.217) in TIF, or using the parallel axis theorem,
which gives

T = 1
2 ν̌

T M̌ν̌ (3.24)

Where

ν̌ =
[
ẋ1 ż1 θ̇1 ẋ2 ż2 θ̇2

]T
i.e. includes the dependent state x2. In this setup,M̌ is the block-diagonal
combination of the mass tensors of the two vessels expressed at the connection
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point between the ramp and each of the vessels, which will be calculated in
section 3.3.3.3.

Further, notice that for reasonably small ∆z, defined as ∆z = z2 − z1

x2 ≈ x1 − lr cos(δ) + ∆z tan(δ) (3.25)

The basis for this approximation is illustrated on Figure 3.7. Assumption that
the ramp length varies slowly compared to the other variables gives

ẋ2 ≈ ẋ1 + ∆ż tan(δ) (3.26)

In vectorial form,

ν̌ =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
1 −t(δ) 0 t(δ) 0
0 0 0 1 0
0 0 0 0 1


︸ ︷︷ ︸

Y

ν = Y ν

where t(δ) = tan(δ) and ν defined in (3.16). This allows transforming (3.24) to

T = 1
2ν

T Y T
1
2

(
(M̌ + M̌T ) + (M̌ − M̌T )

)
Y︸ ︷︷ ︸

M

ν = 1
2ν

T Y T
1
2

(
M̌ + M̌T

)
Y︸ ︷︷ ︸

M

ν = 1
2ν

TMν

(3.27)

Notice thatM is positive definite as long as M̌ satisfies xT M̌x > 0∀x 6= 0. This
is necessary because, although physical mass tensor is always positive definite,
added mass, which is used to represent the part of the hydrodynamic force
proportional to acceleration, in general is not symmetric. This will be discussed
further in subsection 3.3.3.3.

The standard procedure to derive q̇ is using (3.38). However, since in this case
T is expressed as function of \dot qH(q, p, t) = V (q) + T (p), and the conjugate
momenta p is defined in [12] (2.44) as

p = ∂L

∂q̇
= ∂T (q̇)− V (q)

∂q̇
= ∂T

∂q̇

we have that

p = Mq̇ (3.28)

ν = q̇ = M−1p (3.29)
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Figure 3.7: Drawing on top is an illustration of the connection in the equilib-
rium position with z1 = z2 = 0. When z2 deviates from the equilibrium, the
dependent variable x2must also change. lr is the length of the ramp. This
approximation discards the part of triangle shown in red.
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Some readers will insist on using Hamiltonian equations thoughout the deriva-
tion. To accomodate those, setting up

q̇ = ∂H(q, p, t)
∂p

= ∂(T (p) + V (q))
∂p

= ∂T (p)
∂p

=
∂( 1

2p
TM−TMM−1p)

∂p
= M−T p = M−1p.

Which is same as (3.29).

3.3.3.3 Calculating the mass

The mass tensor M̌ in (3.24) is a block-diagonal combination of the two-dimensional
mass tensors of the two vessels expressed at the points where the ramp is at-
tached to the vessels. To calculate those, let Mp

1 and Mp
2 be the generalized

mass tensors in the xz-plane of the sea base and of the T-craft respectively given
on arbitrary points on those crafts, p1 and p2 (not to be confused with similarly
named points on Figure 3.5). Next, let ~rp1 and ~rp2 be vectors from attachment
points of the ramp to the points p1 and p2 . By application of [6] equation
(3.217) and substitution into the formulas above,

M̌ =
[
HT (~rp1)Mp

1H(~rp1) 0
0 HT (~rp2)Mp

2H(~rp2)

]
Where H(r) is given by [6] equation (3.210).

3.3.4 Listing of the partial derivatives

In this section, the partial derivatives are listed for the purpose of being im-
plemeted in a computer model.

q =
[
x1 z1 θ1 z2 θ2

]T (3.30)

ν = q̇

p = Mν

For this particular application, Hamiltonian was checked to beH = T+V . Since
T (p) does not depend on q explicitely, and V (q) does not depend on either p or
ν, we have ∂H

∂q = ∂V
∂q and ∂H

∂p = ∂T
∂p . Writing out the Hamiltonian equations of

motion:

−ṗ1 = ∂V

∂x1
= 0 (3.31)
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−ṗ2 = ∂V

∂z1
= L1W1ρswgz1 (3.32)

−ṗ3 = ∂V

∂θ1
= 1

3ρswgW1L
3
1θ1 (3.33)

−ṗ4 = ∂V

∂z2
= L2W2ρswgz2 (3.34)

−ṗ5 = ∂V

∂θ2
= 1

3ρswgL
3
2W2θ2 (3.35)

And finally

q̇ = ν = M−1p (3.36)

Notice that the formulation above exclues any hydrodynamic forces or actuation.

3.3.5 Numerical values

In order to do a meaningful computer simulation of the system, there is a need
for realistic numerical values for a lot of parameters, such as ship’s mass, the hy-
drodynamic damping coefficients including the added mass, moments of inertia
et cetera. An attempt was made to find data for similar ships on the Internet,
however, no satisfactory data was found available.
However, the GNC Matlab toolbox provided by Marine Systems Simulator de-
velopement group provides models for a wide range of ship types, non-dimensionalazied
by Prime-system I (see [6] page 313). The model for mariner class vehicle was
used for both Seabase and T-craft, dimensionalized with the ships’ length in
Table 3.1.

3.3.6 Other forces

The forces listed in Section 3.3.4 is not complete in the sence that it does not
include the hydrodynamic and actuation forces.
Lagrange’s equations, the way they are set up in [12], allow to add a generalized
force which either are not derivable from a scalar potential or not included in
the scalar potential for other reasons using

d

dt

(
∂L

∂q̇j

)
− ∂L

∂qj
= Qj (3.37)

where L = T − V and Qj are the generalized forces that are not included in
potential V . The equation is valid for every degree of freedom j. Goldstein
did not provide any similar device the Hamiltonian Mechanics. Those will be
derived in the following theorem
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Theorem 3.1. With Hamiltonian defined as H = piq̇i − L and in presence
of generalized force Qj, the Hamiltonian equations of motion can be set up as
follows

ṗj = −∂H
∂qj

+Qj

q̇j = νj = ∂H

∂pj

(3.38)

Proof. Although this equation was shown by the author independently, this
theorem was undoubtedly known for centuries. For this reason, only a rough
outline of the proof will be given. It is similar to proof presented in [12] for the
same statement without the generalized force. In [12], equation (3.37) is used
without the generalized force on the right hand side to deduce the differential
dH, i. e

∂L

∂qj
= d

dt

(
∂L

∂q̇j

)
= ṗj (3.39)

Accounting for Qj in (3.37), (3.39) is transformed to

∂L

∂qj
= ṗj −Qj (3.40)

changing the differential dH to

dH = q̇jdpj − (ṗj-Qj)dqj −
∂L

∂t
dt (3.41)

yielding

∂H

∂qj
= -(ṗj-Qj) (3.42)

thus proving (3.38).

3.3.6.1 Actuator Forces

The actuators on this system are the main propellers on both ships, and the
fins on the second vessel, configured so as to act only in pitch. The input vector
is defined as

τ =
[
τx1 τx2 τpitch

]
(3.43)
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with τx1 being the force from the propeller on the seabase, τx2 the force from
probeller on the T-craft, and τpitch is the torque on the T-craft created by the
fins.

The propeller on the second vessels acts along the direction of the generalized
co-ordinate x1 , but the other two actuators do not act along any generalized
co-ordinate. A generalized force Qj in direction of the generalized coordinate j
is defined per

Qj =
∑
i

Fi
∂xi
∂qj

(3.44)

According to (3.25), the value of x2 is a function of x1 , z1 and z2. A mathe-
matically rigorous analysis would include the second propeller’s contribution in
directions z1 and z2 . However, it is apparent from the practical considerations
that a force the second propeller could practically generate is not going to force
the T-craft significantly down and especially not force the sea base up. Because
of the ramp, τx1 and τx2 are acting essentially in the same degree of freedom,
and should be coordinated so as to limit the strain on the ramp.

In vectorial form, the generalized force from the actuators is

Qτ =


1 1 0
0 0 0
0 0 0
0 0 0
0 0 1

 τ (3.45)

Notice that the matrix does not have full rank.

3.3.6.2 Hydrodynamic damping forces

In the general form usually used in maritime literature, the hydrodynamic force
FH for a solid body moving through a fluid is a function of velocity and accel-
eration in six degrees of freedom, i.e.

FH = FH(ν, ν̇) ∈ R6

where ν is the velocity in the Body coordinate system following the SNAME
standard. In this application, the ships’ position in the water is also relevant,
because a ship that is “lifted” out of the water in general has its drag reduced.
The FH itself is non-linear and highly coupled. In hydrodynamic control appli-
cations, the hydrodynamic force is usually linearized, sometimes with the second
degree polynomial used on surge direction where the speed may be significant.
We can set this up as following

FH(ν, ν̇) = ∂FH
∂ν̇︸ ︷︷ ︸
−MA

ν̇ + ∂FH
∂ν︸ ︷︷ ︸
−D

ν = −MAν̇ −Dν + h.o.t. (3.46)

24



3.3. SIMULATION CHAPTER 3. FIN STABILIZATION

In the equation above linearization has to be performed at (ν = 0, ν̇ = 0), but
this doesn’t have to be the case in general. MA is so-called Added Mass, which
arises because movement of a body creates motion in fluid that would not be
present there otherwise. An interesting point is that no concept of added mass
exists in aerodynamics. This is due to different densities of working fluids in
that discipline - even though air is moving in same pattern due to flows being
similar, the momentum carried by the air is much less than that of water.

In an ideal fluidMA is constant with speed, but varies with encounter frequency
with waves. It thus resembles the mass tensor that was discussed above. Un-
less certain symmetries are present, the added mass tensor does not possess a
structure of any particular interest, except that MA + MT

A is positive definite.
In control application we often consider the “total mass” of a marine vessel as
sum of its physical mass and the added mass.

Damping force is both non-linear and coupled, and given the other concerns
mentioned above it can only be guessed upon. That is exactly what is done
in this work. Damping tensor is modeled as diagonal at CG of each ship, then
moved to the points of ramp connection using equations in [6], section 3.4:

F̌H,D = −DCGνCG,1-ship = −HT (rCG,1 )DCGH(rCG,1 )ν̌1−ship

for one ship; for two ships two-ship system the force is

F̌H,D = −
[
HT (rCG,1)DCG,1H(rCG,1) 0

0 HT (rCG,2)DCG,2H(rCG,2)

]
︸ ︷︷ ︸

Ď

[
ν̌1
ν̌2

]
= −Ďν̌

Transforming to generalized force:

QH,D = ∂x

∂q

T

F̌H,D = Y T F̌H,D = −Y T Ďν̌ = −Y T ĎY︸ ︷︷ ︸
D

ν = −Dν (3.47)

The total generalized force coming from hydrodynamic damping and from ac-
tuators is thus

Q = Qτ +QH,D (3.48)

3.3.7 Wave forces

The waves that are of interest in engineering applications is a gravitational phe-
nomenon. If fluid acquires potential energy, then the continuity, energy conser-
vation and pressure equilibrium conditions imply that the energy will be spread
in the fluid as waves. Deriving models for undisturbed waves is a non-trivial,
but tractable task if certain linearizations and a few other approximations are
allowed. Interaction between the waves and the hull of a vessel is even more
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complicated and can only be done using CFD simulations. This approach is not
directly applicable to control task.

Instead, the approach based on model in [6] (6.62)-(4.64) is used, with wave
forces modeled as second-order colored noise acting as on the vessel as Re-
sponse Amplitude Operator (RAOs). This approach was preferred to use of
force transfer functions out of practical considerations for this particular prob-
lem - when a wave lifts a ship, the action more resembles a spatial displacement
than a force. In other problems, wave action in different DOFs, such as yaw and
sway, is modeled, and FAO may be considered more appropriate.

As such, waves are modeled as either (4.50)- (4.53) or (4.54)-(4.55) in [6], in
both cases

ẋw = Awxw + ewww (3.49)

yw = cTwxw (3.50)

with an independent system for each of the five degrees of freedom. The values
of Aw, ew and cw are given in [6] and will not be reiterated here.

3.3.8 Controller

The available model of the system is very coarse, so any controller to be used
needs to be robust with respect to models that are not robust. Also, the fact
that this is a five-dimensional system, makes LQR an apparent choice for a
controller.

In order for an LQR controller to work, the system needs to be either controllable
or stabilizable. In the following, it will be proven that the system is in fact stable.

Theorem 3.2. The unforced system (3.31)-(3.36) excluding the surge degree of
freedom and including the damping is asymptotically stable.

Proof. Since Hamiltonian is in this case sum of energies, it must be at least
positive semi-definite. Obviously, kinetic energy can only be zero if there is
no movement. Mathematically, since H = T + V , we have that T = 1

2ν
TMν

is positive definite because M is positive definite. V is also obviously positive
definite by inspection of (3.21)-(3.23).

The time derivative of the Hamiltonian will be shown to be negative semidefinite:

dH(q, p, t)
dt

= ∂H

∂q

T dq

dt
+ ∂H

∂p

T dp

dt
+ ∂H

∂t
(3.51)

Substituting ∂H
∂p using the first part of (3.38) and dp

dt with the second part of
(3.38), and using that the Hamiltonian is not explicitely dependent on time,
have
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∂H

∂q

dq

dt
+ ∂H

∂p

dp

dt
+ ∂H

∂t︸︷︷︸
0

= ∂H

∂q
q̇ + q̇

(
−∂H
∂q

+Q

)
(3.52)

Now, using that Q = QH,D = −Dν = −Dq̇ for an unforced system. Also, since
damping is positive definite, we have that

dH

dt
= −q̇TDq̇ (3.53)

This proves that Ḣ is negative semidefinite, not negative definite, since it is
also a function of p.

However, examination of equations (3.31)-(3.35) shows that the system can not
remain in p = Mq̇ = 0 unless q = 0, proving stability per Krasovskii theorem.

3.3.8.1 Model setup

In order to design a simulation, it is desired to present the model as a linear
system in the matrix form ẋ = Ax+ Bu. This is done in the present section.

First, let vector p be the combination of generalized momenta p1 . . . p5, and q
still defined as q =

[
x1 z1 θ1 z2 θ2

]T . (3.31)-(3.35) and (3.45), can now
be combined to

ṗ = −ρswg


0 0 0 0 0
0 L1W1 0 0 0
0 0 1

3W1L
3
1 0 0

0 0 0 L2W2 0
0 0 0 0 1

3W2L
3
2


︸ ︷︷ ︸

Γ

q −Dν +


1 1 0
0 0 0
0 0 0
0 0 0
0 0 1


︸ ︷︷ ︸

B

τ

= Γq −Dν +Bτ

(3.54)

Also, per (3.36).

q̇ = ν = M−1p (3.55)

Combining (3.54) and (3.55),

[
ṗ
q̇

]
=
[
−DM−1 Γ
M−1 05x5

] [
p
q

]
+
[

B
05x3

]
τ (3.56)
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3.3.8.2 Controller

The controller to be designed needs to be optimal with respect to difference
between heights of the attachment points, namely z2 − z1. This is equivalent
to minimizing the roll angle of the ramp, since z2 − z1 is a diffeomorphism of
the roll angle. To accomplish that, we need a representation of (3.56) which
includes z2 − z1. This is done with a linear state transformation

q̆ =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 −1 0 1 0
0 0 0 0 1


︸ ︷︷ ︸

Λ−

= Λ−q (3.57)

and

[
p
q̆

]
=
[
I5x5 0

0 Λ−
]

︸ ︷︷ ︸
Λ

[
p
q

]
= Λ

[
p
q

]

This allows transforming (3.56) to

[
ṗ
˙̆q

]
= Λ

[
−DM−1 Γ
M−1 0

]
Λ−1

[
p
q̆

]
+ Λ

[
B

05x3

]
τ

Since those equations are linear, both simulation and design of an LQR controller
is a trivial task and will not be discussed in a great detail; an interested reader
can refer to the code on the attached DVD. The result of the LQR algorithm is
a matrix K, so that controller becomes

τ = K

[
p
q̆

]
= KΛ

[
p
q

]

3.4 Results

Figure 3.8 shows behavior of the system in the unactuated and actuated case.
The dashed red line showing the difference in displacement of the attachment
points. In unactuated case, this difference goes up to 2.2 meters, while in actu-
ated case this difference is reduced to 0.7 meters. This is a clear improvement.
Figure 3.9 shows the torque that the fins are required provide in order to change
the behavior of the system from Figure 3.8a to 3.8b. This is interesting, because
while the preliminary results from Section 3.2 are calculations based on how
much force is required to keep a ship in certain constant displacement in water,
Section 3.3 produces results from simulation with relatively realistic models for
waves and for the ships in a more realistic situation. The maximal torque the
fins need to output is 60MN ·m. Each fin is about 20 meters from the Center
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(a) Unactuated case. The maximal difference between the connection points is 2.2 meters
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(b) Unactuated case. The maximal difference between the connection points is now 0.7 meters

Figure 3.8: The system before and after actuation. The green line shows the
vertical movement of the connection point between the T-craft and the ramp,
the blue line similarly shows the connection between the ship and the seabase,
and the red dashed line shows the difference.
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Figure 3.9: Required torque, MN ·m

of Gravity on the T-craft (ref Table 3.1). Thus, the total force to be produced
by the fins is 3MN , which is somewhat lower than the figure of 4.3MN from
the preliminary analysis. Consequently, the fins that are required are somewhat
smaller. Again using (3.4), the total fin area needed is 48m2, and four fins
1.4m× 8.5m are engough to do the job.
This is of course somewhat arbitrary, since there is a tradeoff between the degree
of dampening and the size of the fins. Still, the nature of this tradeoff has been
clearly illustrated.

3.5 Conclusion and suggestions for future research

In this section, the possibility of actuating the T-craft with fins was examined
and estimates for needed fin size have been made. Although the estimation
work had to be rough due the system being in conceptual stage, the results
achieved suggest that a fin-actuated T-craft can in fact be built, and it would
yield significant boost in overall system performance.
This idea has not been proposed before and was received with significant in-
terest. It has been presented for the Office of Naval Research conference on
February 4th, 2009 by Miroslav Krstić, and it will also be presented at 2009
Conference on Grand Challenges in Modeling and Simulation (GCMS’09) in
Istambul.
There are quite a few opportunities to pursue the active control of the T-craft
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further. Current design limits the attachment points so that the ships cannot
roll independently. If this requirement is lifted, so that the pitch of the ramp
follows the roll of the T-craft, the fins could be used to stabilize the ramp in
pitch, as well as in roll. Another possible direction is to use a Surface Effect
Vehicle for the T-craft, and actuating its heave by changing the air pressure in
its cushion. Also, the attachment points between the ramp and the ships could
be mounted on a heave-compensated platform. All in all, there are exciting and
promising opportunities for further research.
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Chapter 4

Side-To-Side Configuration

Unlike the previous chapter, this chapter deals with a configuration where ships
sail side-to-side, with the ramp extending from starboard of one vessel to the
port of the other. Since one of the vessels is much larger than the other, it opens
up for a possibility of the larger ship shielding the smaller one from the waves.
This involves a trade-off: most ship designs are least affected by the waves when
heading straight into the wave fronts. When waves are coming from side, even
large ships tend to become very sensitive to the waves. This means that there is
an optimal angle ψ∗ at which the ramp has least undesired movement, according
to some performance criterion f(·) which is assumed has a minimum f∗ at ψ∗.

An extremum-seeking based controller will be designed in this chapter to find
angle ψ∗ dynamically. The first section proposes a simple model for the system.
It desired that the extremum-seeking controller concentrates on finding the op-
timal yaw angle ψ∗. Thus, a simple linear controller is designed to bring the
ship system at a specified angle.

Then, reader is introduced to various techniques of extremum seeking. While
the reader is still highly recommended to read the excellent introduction in [1],
introduction in this work covers the subject from a different angle, with intention
of reducing the effort for the reader, and potentially also making the technique
accessible for a wider audience.

Section 4.5 desrcibes a technique for extending extremum seeking to systems
with a certain class of uncertainties. This technique is original contribution of
this thesis.

This technique is then applied to the ship model described in Section 4.1, and
results are discussed.

4.1 Physical model and stabilizing controller

The system to be designed consists of a large ship and a small ship. Usually,
this means that the smaller ship is more maneuverable than the large one, and a
controller can be set up to make the small ship follow the large one. Results from
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Figure 4.1: Open loop Bode diagram of controller (4.1) and system (4.2). Phase
lag never goes below 180◦.

[9] or [10] can be applied here. Only the dynamics of the larger ship are modeled
here. Neither does this work intend to develope any kind of high-performance
navigation controller. Thus, for this purpose, the linear second order Nomoto
model is considerered suffisient. It connects the ship’s rudder angle δ and yaw
angle ψ per

ψ

δ
(s) = K

s(1 + Ts) (4.1)

where , for a mariner class vessel, T = 107.3s, and K = 0.185. This model is the
most popular model for ship autopilot design due to its simplicity and accuracy
([6] p 309).

An extremum seeking controller is capable of handling time-variant maps. It
is therefore possible to put 4.1 directly into the extremum seeking loop, and
this type of system has indeed been tested and worked as a part of research
for this thesis. However, to make the solution more clean, the task of taking
the system to ψ∗ is accomplished with a separate linear controller, while the
extremum-seeking controller is left with the task of finding ψ∗. An integrator
is already present in the system, so a PD controller is selected, with Td = 14s,
Kp = 0.1, and implemented as

G(s) = (Td +Kp)s+Kp

s+ 2 (4.2)
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The denominator s + 2 is there to make the controller proper and thus imple-
mentable. An open-loop Bode diagram of controller and system is shown on
Figure 4.1.

A cost function needs to be modeled as a function having a minimum at some
unknow value of ψ between zero and π/2. Function f(ψ) = (ψ−0.4)2 is chosen.

4.2 Introduction to Extremum Seeking

A reader who is not familiar with Control Theory or the higher mathematics in
general could be inclined to believe that Extremum Seeking involves something
like parachuting, expeditions to high mountains or handling poisonous snakes.
This is however not the kind of extremes pursued in the present work. Instead,
Extremum Seeking is a real-time optimization technique used for a class of
problems where there exist a cost map f(θ) ∈ R with θ(t) ∈ RN having a
possibly time-varying extremum f∗(t) at θ∗(t). The goal of an extremum seeking
controller is to keep the output of this map close to that extremum.

This is not very hard to do for a memoryless SISO system. A simple scheme from
[2] will be repeated in the next section. Extremum Seeking as presented in [1]
can handle more complicated plant dynamics and also the seeking perturbations
on it are more smooth. It superposes a harmonic modulation signal on the input
signal of the plant, and uses the resulting periodic perturbations in the output
signal to “navigate” towards the extremum point in the plant dynamics. If phase
lag on the modulation frequency is not known exactly or is not constant, the
Extremum Seeking controller may become unstable if error is sufficiently large.
In particular, if the uncertainty reaches 180◦, ES is guaranteed to move away
from the extremum.

The major contribution of this chapter is a scheme that tracks the phase lag on
the modulation frequency.

4.3 Extremum Seeking Scheme for a memory-
less SISO system

An extremum could be either a minimum or a maximum. The theory, both in
the present work and in [1], limits itself to looking for a minimum. This does
not result in any loss of generality, since a maximum problem can be turned into
a minimum problem by multiplying output with −1. Consider a memoryless
SISO system with input θ(t) ∈ R and output f(θ) ∈ R, with f(θ) having a
clear, possibly time-dependent, minimum at f∗(t). Algorithm 4.1 will keep the
system close to this minimum. An example of execution is shown on Figure 4.2.
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Figure 4.2: An example for execution of a simple extremum seeking scheme on a
memoryless SISO map. Algorithm starts at point p1 and initial v being positive.
This means that the plant is initially moving away from the minimum of the
map. Because f(θ) is increasing, fm will stay at f(θ(p1)), and f(θ(t))− fm will
increase until the threshold is reached at p2. The direction of θ turns around
and f(θ) goes towards the extremum while keeping fm = f(θ). The plant will
pass the extremum. When this happens fm will stay at the minimal value, and
f(θ(t))− fm will increase again until the threshold value is reached at p2.

Algorithm 4.1 Extremum Seeking on memoryless SISO system
1. Start with some initial guess for θ, set v to some practically appropriate rate
of change of θ, and tt = t0
2. Set θ̇ = v and apply the resulting signal θ on the plant, while remembering
the minimal value of output f(θ), so that

fm = min

t ≥ tt
f(θ) (4.3)

3. If f(θ) − fm > ∆, with ∆ being some practical threshold value, then it is
determined that the controller is moving the plant away from the minimum.
Turn the plant around by setting v ← −v. Reset the minimal recorded value
fm by setting tt to the current time t (time of turn), ie tt ← t and per (4.3)
fm ← f(θ(t)). Go back to step 2, which now moves the plant in the opposite
direction.

This technique can be extended to MISO system f(θ1, θ2, . . . , θn) taking turns
in changing directions of thetas. The details of this will however not be included
in this work.
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Figure 4.3: Simplified Extremum Seeking Scheme. Copyright: Miroslav Krstic

4.4 Extremum Seeking with harmonic modula-
tion signal

An guide to Extremum Seeking is available in a “Real-Time Optimization by
Extremum-Seeking Control”, an excellent book co-authored by Kartik B. Ariyur
and Miroslav Krstić. Chapter 1.1 provides a greatly simplified introduction.

This work aims to present an even more simplified introduction. It takes mat-
ters further by approximating the cost map as a piecewise-linear function shown
on Figure 4.5, instead of second order (Taylor expansion) polynomial approxi-
mation which is used throughout [1]. The diagram of the method is shown on
Figure 4.3. It also defines the variables to be used throughout this chapter.

Propagation of the signal through the system is shown on Figure 4.6 for values of
θ where f(θ) has negative slope, i.e. the estimate θ̂ is too small. It is shown that
in this case, ξ will remain negative thus increasing the value of θ̂. For values of
θ where f(θ) has negative slope, the situation is opposite, ξ will remain positive
and θ̂ declines. This is illustrated on 4.7.

The challenges for the engineer implementing the above scheme are:

• Finding a probing frequency ω high enough to allow quick convergence
(low frequency = slow controller), but still low enough to allow the plant
enough time to respond.

• Finding an amplitude of the probing signal large enough for the pertur-
bations in the plant output to dominate measurement noise, while not
disturbing the operation of the plant significantly.
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Figure 4.4: An example of signal θ. Signalθ̂ is assumed to vary slowly due to
an integrator before it.

θ

f(θ
)

Figure 4.5: Approximation of f(θ)in proximity of the extremum, in this case
a minimum. While [1] uses a second order polynomial, this approximation is
piecewise linear.
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(a) The signal θ, same as on Figure 4.4.

(b) After passing through the plant on Figure 4.5, or more precisely the left part of, the signal
becomes y. Compared to θ, it is “turned upside down” because of the negative factor (−b1).
Some constant is also added to it, but the y-axis is deliberately not shown.

(c) The signal after passing through the high-pass filter s/(s + h) from Figure 4.3. Signal
sin(ωt) is also shown with green dashed line.

(d) Signal ξ from Figure 4.3, which is the product of the signals shown in (c). Since it is always
negative, its integral multiplied with a negative constant will be a monotonically increasing
function, which means that the signal θ̂ will increase, carrying f(θ) towards its minimum.

Figure 4.6: Signal propagation through the system for values of θ where f(θ) =
a1 − b1θ.
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• Finding the constant h in for the high-pass filter s/(s + h) to dampen
out constant components in plant output y quickly, while still letting the
probing frequency ω through.

• Finding constant k for controller −s/k high enough to allow quick conver-
gence, but not so high as to make system unstable.

The scheme on Figure 4.8 introduces further details to the scheme on Figure
4.3. First, it has input dynamics Fi(s) and output dynamics Fo(s). Here, the
advantage of using a harmonic probing signal comes into focus - since both
of Fi(s) and Fo(s) are linear, their response to a harmonic signal sin(ωt) is a
constant lag and multiplication by some factor. To cope with that, demodulation
signal sin(ωt) is replaced with sin(ωt− φ), where φ is the sum of the phase lag
of input dynamics Fi(s), output dynamic Fo(s) and possibly also the washout
filter s/(s+ h) if the latter has significant lag on the probing frequency.
Also, the minimum of the map f∗ and the parameter θ∗ are allowed to have
dynamics described by

L{θ∗(t)} = λθΓθ(s) (4.4)

L{f∗(t)} = λfΓf (s) (4.5)

with known Γθ(s) and Γf (s), but unknown - and possibly slowly varying - λθ
and λf . The setup in Figure 4.3 us thus a special case of setup in Figure 4.8,
withΓθ(s) = Γf (s) = 1/s, Ci(s) = k and Co(s) = 1/(s+ h).

4.4.1 Mathematical proof

The rough analysis above by no means amounts to mathematical proof. The
proof is also used for the investigation in the next section, Before the proof itself,
a list of necessary conditions is presented, and certain variables are defined. The
material presented in this section is copied from section 1.2 up till and including
1.2.1 in [1], with minimal additional commentary. Definitions from Figure 4.8
and Table 4.1 are used throughout this section.

Assumption 4.1. Fi(s) and Fo(s) are asymptotically stable and proper

Assumption 4.2. Γf (s) and Γθ(s) (as defined in (4.4), (4.5)) are strictly
proper rational functions and poles of Γθ(s) that are not asymptotically stable
are not zeros of Fi(s).

Assumption 4.3. Co(s)
Γf (s) and Ci(s)Γθ(s) are proper.

This assumption ensures that those filters are implementable. Since Ci(s) and
Co(s) are created by the designer, this assumption can always be satisfied.

Theorem 4.1 (Single Paraneter Extremum Seeking: LTV Test). For the system
in Figure 4.8, under Assumptions 4.1, 4.2 and 4.3, the output error ỹ achieves
local exponential convergence to an O(a2) neighborhood of the origin provided
n = 0 and:
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Figure 4.7: Signal propagation through the system for values of θ where f(θ) =
a2 +b2θ. While on Figure 4.6 the output y from the plant and the demodulation
signal sin(ωt) had opposite phase, here they are in same phase. This results in
ξ being always positive in this figure, driving its negative integral θ̂ = −

´
kξ dt

down, which is the right direction towards the minimum of f(θ), as shown on
Figure 4.5.
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Figure 4.8: Full (linear SISO) Extremum Seeking scheme. Capable of handling
input and output dynamics, dynamics in position of the extremum point as well
lag of the plant on the probing frequency. Measurement noise n is also drawn,
but will be set to zero in the proofs. The figure is a copy of Figure 1.2 in [1]

1. ±jω is not a zero of Fi(s).

2. Zeros of Γf (s) that are not asymptotically stable are also zeros of Co(s).

3. Poles of Γθ(s) that are not asymptotically stable are not zeros of Ci(s).

4. Co(s) is asymptotically stable and the eigenvalues of the matrix Φ(T, 0)
lie inside the unit circle, where T = 2π/ωand Φ(T, 0) is the solution at
time T of the matrix differential equation

Φ̇ = Ȧ(t)Φ(t, 0), Φ(0, 0) = I,

and ẋ = A(t) x(t, 0),x(0) = x0 is a state space representation of the LTV
differential equation

den{Hi(s)}[θ̃] = −f ′′ num{Hi(s)}
[
sin(ωt− φ)H0(s)[θ0(t)θ̃]

]
Proof. Setting n = 0 and substituting (4.7) and (4.10) in (4.9) yields

θ̃ = θ∗ +Hi(s)[ξ] (4.15)

Further, substitution for ξ from (4.8) and for y from (4.6) yields

θ̃ = θ∗ +Hi(s)
[
sin(ωt− φ)Ho(s)

[
f∗ + f ′′

2 (θ − θ∗)2
]]
. (4.16)

Using θ − θ∗ = θ0 − θ̃ from (4.9), we get

41



4.4. EXTREMUM SEEKING WITH HARMONIC MODULATION
SIGNAL CHAPTER 4. SIDE-TO-SIDE CONFIGURATION

Statements:

y = Fo(s) [f∗(t)] + f ′′

2 (θ − θ∗(t))2 (4.6)

θ = Fi(s)[asin(ωt)− Ci(s)Γθ(s)[ξ]] (4.7)

ξ = k sin(ωt− φ)Co(s)Γf (s) [y + n] (4.8)

Definitions:
Tracking error

θ̃ = θ∗(t)− θ + θ0 (4.9)

θ0 = Fi(s)[asin(ωt)] (4.10)

Output error:

ỹ = y − Fo(s)[f∗(t)] (4.11)

Hi(s) = Ci(s)Γθ(s)Fi(s) (4.12)

Ho(s) = k
Co(s)
Γf (s)Fo(s) (4.13)

y2 = k
Co(s)
Γf (s) [y] = Ho(s)[f(θ)] (4.14)

Table 4.1: Statements and definitions necessary to prove Theorem 4.1

θ̃ = θ∗ +Hi(s)
[
sin(ωt− φ)Ho(s)

[
f∗ + f ′′

2 (θ0 − θ̃)2
]]

= θ∗ +Hi(s)
[
sin(ωt− φ)Ho(s)

[
f∗ + f ′′

2
(
θ2

0 − 2θ0θ̃ + θ̃2)]] (4.17)

We drop the higher order term θ̃2(this is justified by Lyapunov’s first method, as
we have already written the system in terms of error variable θ̃ thus transforming
the problem to stability of the origin) and simplify the expression in (4.17) using
Lemmas 6.1, 6.2 and assumptions 4.1, 4.2 and 4.3 and asymptotic stability of
Co(s)/Γf (s) and Co(s):
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sin(ωt− φ)Ho(s)[f∗(t)] = λfsin(ωt− φ)L−1(Ho(s)Γf (s))
= sin(ωt− φ)(ε−t)

(4.18)

sin(ωt− φ)Ho(s)
[
θ2

0
]

= C1a
2sin(ωt+ µ1) + C2a

2sin(3ωt+ µ2) + ε−t (4.19)

where C1, C2, µ1, µ2are constants (these can be determined from the frequency
response of Ho(s)), and ε−t denotes exponentially decaying terms. Now denote

u12(t) = a2 f
′′

2 [C1sin(ωt+ µ1) + C2sin(3ωt+ µ2)]. (4.20)

The tracking error equations, (4.17) after linearization (effected simply by drop-
ping θ̃2 terms as we have expressed the system as an ODE in θ̃) can be rewritten
as

θ̃ = θ∗ +Hi(s)
[
u13(t) + ε−t − f ′′sin(ωt− φ)Ho(s)

[
θ0θ̃
]]
. (4.21)

Multiplying both sides of (4.21) with the denominator of Hi(s), we get

den {Hi(s)}
[
θ̃
]

= ε−t+num {Hi(s)}
[
u13(t) + ε−t − f ′′sin(ωt− φ)Ho(s)

[
θ0θ̃
]]
.

(4.22)

The term θ∗drops out or becomes an exponentially decaying term when operated
upon by den{Γθ(s)} contained in term den{Hi(s)}. We now write a state space
representation of the LTV system in (4.22):

ẋ = A(t)x + Bu13(t), A(t+ T ) = A(t), T = 2π/ω. (4.23)

The system has a state transition matrix Φ(t, 0) given by the solution of

Φ̇ = A(t)Φ(t, 0), Φ(0, 0) = I (4.24)

The system is exponentially stable if the eigenvalues of the matrix Φ(T, 0)
(numerically calculated above) lie within the unit circle by Property 5.11 in
[14]. As the persistent part of the non-homogeneous forcing term in (4.22) is
O(a2), we have convergence of θ̃ to O(a2), and therefore the convergence of
ỹ = y − Fo(s)[f∗(t)] = Fo(s)

[
f ′′/2(θ̃ − θ0)2] to O(a2).

While the result above permits determination of stability of extremum seeking
loops in a wide variety of classes, it is not a convenient design tool as it requires
calculation of the state transition matrix of an LTV system. Such design tool
is presented in section 1.2.2 of [1], and it is not intention of the present work to
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repeat this section in its entirety. It is sufficient to say mention that tools that
make it practical to design systems that satisfy conditions in Theorem 4.1 exist.

This system described in Figure 4.8 is very tolerant about the modeling errors.
Nothing needs to be known about the plant except a rough estimate of input
and output dynamics Fi(s) and Fo(s), and knowledge that function f(θ) has a
minimum or a maximum (Figure 4.8 is searching for a minimum, to search for
a maximum the filter −Ci(s)Γ(s) has to be replaced with +Ci(s)Γ(s)).

However, if the phase lag on the probing frequency is not known exactly or is
not constant, the ES process may become unstable if error becomes sufficiently
large. In particular, if phase error reaches 180◦, ES is guaranteed to move away
from the extremum. Especially if the plant dynamics is of high order, phase lag
on the probing frequency may be sensitive to changes in working parameters.

The technique presented in the next section is an addition to the Figure 4.8
that allows it to track the phase lag in input dynamics Fi(s), which solves this
problem for a large class of systems. The technique is particularly useful for
systems which a time-variant (such as a cargo ship which is being offloaded), or
there is variation between fabrication units.

4.5 Phase lag tracking

Phase lag tracking is a technique developed in this thesis. It can be used on
a class of problems where lag of the probing frequency in the input dynamics
Hi(s) is either unknown or time-variant. This technique has its limitations: it
is not GAS, it needs to be slow to allow exponentially decaying terms to settle,
and it can do nothing to determine the lag of the output dynamics Ho(s).

Possible areas of application are systems that are time-variant, for example a
ship that is being offloaded, or if there is variation between manufacturing units.

Idea with multiplication with the second harmonic of the modulation frequency
mentioned in [2], but neither proof nor an implementation suggestion provided.

The setup is an addition to extremum seeking scheme. The principal change
compared to the standard ES setup is that demodulation factor sin(ωt− φ) is
replaced with sin(ωt − φ̂), with φ̂ being the estimate of the phase lag on the
modulation frequency.

4.5.1 Motivational analysis

The idea behind phase lag tracking is simple. Consider a system as described
on Figure 4.8, but without output dynamic (Ho(s) ≡ 1) . Define y2 = kCo(s)Γf (s) ,
and assume that kCo(jω̄)

Γf (jω̄) = 1 for ω̄ > ω, with ω being the particular probing
frequency and not frequency in general. It can be shown that if y2 = kCo(s)Γf (s) [y]
is multiplied by signal κ = cos(2ωt−2φ̂), the low-frequency part of the product
p(φ̂) will have its maximum when φ̂ = −∠Fi(jω).
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To find this maximum, the controller plays a kind of hide-and-seek game. It
starts with an initial guess φ̂. To find which direction it should go, it compares
values of p(φ̂+ φ̄) and p(φ̂− φ̄). If p(φ̂+ φ̄) > p(φ̂− φ̄), then p(φ̂+ φ̄) is “warmer”
than p(φ̂ − φ̄), and φ̂ should increase. The situation is of course vice versa if
p(φ̂+ φ̄) < p(φ̂− φ̄), and φ̂− φ̄ would be closer to the maximum.

Interestingly, the first method to find the minimum of the function in (??) was
to use another extremum seeking loop, with φ̂−b as controlled variable and the
expression in (??) as the function to be minimized. This solution was imple-
mented and worked, but was eventually discarded for the solution described in
Figure 4.9.

4.5.2 Lag tracking scheme

PlantPlant

Figure 4.9: Extremum Seeking with modulation frequency lag tracking
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4.5.3 Stability test

The first thing that needs to be shown is that the ES loop remains stable in
presence of a small, non-constant error in phase lag estimate.
Theorem 4.2. For the system on Figure 4.9, the output error ỹ achieves local
exponential convergence to O(a2) in presence of a phase lag estimation error
φ̃ = φ− φ̂ under the same assumptions as for the Theorem 4.1.

Proof. An error in the estimate of the phase lag demodulation frequency means
that the demodulation signal changes from sin(ωt− φ) to sin(ωt− φ+ φ̃). To
make the proof easier, the phase lag error is represented by changing the input
to asin(ωt − φ̃) by applying time shift told = tnew − φ̃

ω . The rest of the proof
closely follows proof of the Theorem 4.1. Compared to equations in Table 4.1
this time shift means that (4.7) changes to

θ02 = Fi(s)
[
asin(ωt− φ̃)

]
(4.25)

Sub-index “2” is added to separate it from the original equation 4.10. Next, since
f∗ = Γf (s), and Co(s) is asymptotically stable, L−1{Ho(s)[y∗]} = L−1{Ho(s)Γf (s)} =
ε−t and (4.18) holds. Examining if (4.19) holds as well:

sin(ωt− φ)Ho(s)
[
θ2

02
]

=sin(ωt− φ)Ho(s)
[
a2sin2(ωt− φ̃)

]
=a2sin(ωt− φ)Ho(s)

[
1− cos(2ωt− 2φ̃)

2

]
=a2sin(ωt− φ)Ho(s)

[
1
2

]
︸ ︷︷ ︸

ε−t

−1
2a

2sin(ωt− φ)Ho(s)
[
cos
(
2ωt− 2φ̃

)]

=− 1
4a

2|Ho(j2ω)|
(
sin(3ωt− 2φ̃− φ+ ∠Ho(j2ω))− sin(ωt− 2φ̃+ φ+ ∠Ho(j2ω))

)
+ ε−t

=1
4 |Ho(j2ω)|a2 (sin(ωt− 2φ̃+ φ+ ∠Ho(j2ω))− sin(3ωt− 2φ̃− φ+ ∠Ho(j2ω))

)
+ ε−t

(4.26)

Just as in Theorem 4.1, we define

u132(t, φ̂) = 1
4a

2 f
′′

2 |Ho(j2ω)|
(
sin(ωt− 2φ̃+ φ+ ∠Ho(j2ω))− sin(3ωt− 2φ̃− φ+ ∠Ho(j2ω))

)
(4.27)

and notice that |u132(t, φ̂)| ≤ 1
8a

2f ′′ after the exponentially decaying terms ε−t
settle.
Continuing to follow the proof in Theorem 4.1, writing down the linearized form
of equation (4.17), and multiplying both sides with the denominator of Hi(s),
get

den{Hi(s)}[θ̃] = ε−t+num{Hi(s)}
[
u132(t, φ̃) + ε−t − f ′′sin(ωt− φ)Ho(s)[θ02θ̃]

]
(4.28)
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The difference between this and equation (4.22) is that variables θ0 and u13 are
replaced with θ02 and u132. Looking at θ02θ̃

θ02θ̃ = asin(ωt− φ̃)θ̃
= a

(
sin(ωt)cos(φ̃)− cos(ωt)sin(φ̃)

)
θ̃

(4.29)

Since we are doing a local analysis, we can linearize by removing the second
order term sin(φ̃)θ̃, and set cos(φ̃) = 1, yielding

θ02θ̃ ≈ θ0θ̃ (4.30)

with θ0 being exactly as defined in Table 4.1. This transforms equation (4.28)
to

den{Hi(s)}[θ̃] = ε−t+num{Hi(s)}
[
u132(t, φ̃) + ε−t − f ′′sin(ωt− φ)Ho(s)[θ0θ̃]

]
(4.31)

Now, −num{Hi(s)}
[
f ′′sin(ωt− φ)Ho(s)[θ0θ̃]

]
is a periodic linear time-varying

function of θ̃ with θ0 and sin(ωt− φ) being the time-varying terms with period
T = 2π/ω. This means that (4.31) can be represented as a periodic LTV system

ẋ = A(t)x+Bu132(t, φ̃), A(t+ T ) = A(t), T = 2π/ω (4.32)

With A(t) being exactly the same as in equation in (4.23) and u132, the persis-
tent part of the forcing term, being O(a2), and thus we have convergence of θ̃
to O(a2) and therefore also convergence of ỹ = y − Fo(s)[f∗(t)] to O(a2) under
the same conditions as in Theorem 4.1.

Assumption 4.4. θ̂ is sufficiently dampened on frequencies ω and higher.

This assumption means that modulation signal asin(ωt) dominates over θ̂ on
frequency ω. This is not a very far far-fetched assumption since Γθ(s) is a
low-pass filter.

Assumption 4.5. ∠Fo(2jω) is known.

Since kCo(s)Γf (s) is specified by designer and Ho(s) = kCo(s)Γf (s)Fo(s) , Assumption 4.5
implies that also ∠Ho(2jω) is also known. This assumption is obviously quite
limiting and it requires a good model of output dynamics. Of course, this is not
limiting at all if there are no output dynamics, i.e. Fo(s) ≡ 1.

Notice that ω is in this context the particular probing frequency and not the
frequency in general, so s = jω does not apply.

Theorem 4.3 (Vannsjø Theorem). The part of the system on figure 4.9 with
φ̃ as input and −ξ2 as output is passive, with φ̃ = −∠Fi(jω)− φ̂−a = φ− φ̂ being
the error in the estimate of the phase lag in the input dynamics on the probing
frequency.
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φ The total phase lag on the probing frequency of Fi(s)
and Ho(s); φ = −∠Fi(jω)Ho(jω)

φ̂ Estimate of φ
φ̂−a Estimate of phase lag of the plant input dynamics on

the probing frequency, i.e. −∠Fi(jω)
φ̃ Error in the estimate φ̂. φ̃ = φ− φ̂ = φ−a − φ̂−a

Table 4.2: Definitions of variables related to phase lag

Proof. Using definitions in Table 4.1, and in addition defining θi so that θ =
Fi(s)[θi] and ˆ̃θ = Fi(s)[θ̂]− θ∗, and stating that f(θ) = f∗ + f ′′

2 (θ − θ∗(t))2 in
some neighborhood of θ∗(t) we get

θi = θ̂ + asin(ωt)

θ = Fi(s)[θ̂] + Fi(s) [asin(ωt)] = θ∗ + ˆ̃θ + Fi(s)[asin(ωt)]

Notice that the time shift from Theorem 4.2 is not used. Calculating y2
∆=

kCo(s)Γf (s) [y]:

y2 = Ho(s)[f(θ)] = Ho(s)
[
f∗ + f ′′

2

( ˆ̃θ + Fi(s)[a sin(ωt)]
)2
]

= Ho(s)

·
[
f∗ + f ′′

2
ˆ̃θ2 + f ′′

2 Fi(s)[asin(ωt)]Fi(s)[asin(ωt)] + f ′′

2 2ˆ̃θFi(s)[asin(ωt)]
]

+ ε−t

= Ho(s)[f∗] + f ′′

2 |Fi(jω)|2a2Ho(s)[sin2 (ωt+ ∠Fi(jw))]

+ f ′′ ˆ̃θH0(s)Fi(s)[asin(ωt)] + f ′′

2 Ho(s)[ˆ̃θ2] + ε−t

(4.33)

By substituting sin2(x) = 1
2 (1− cos(2x)), have

Ho(s)[sin2 (ωt+ ∠Fi(jw))] = Ho(s)
[

1
2

]
︸ ︷︷ ︸

ε−t

−1
2Ho(s)[cos (2ωt+ 2∠Fi(jw))]

= −1
2 |Ho(j2ω)|cos (2ωt+ 2∠Fi(jw) + ∠Ho(j2ω)) + ε−t

This allows transforming (4.33) to

y2 = Ho(s)[f∗]

− f ′′

4 |Fi(jω)|2a2|Ho(j2ω)|cos (2ωt+ 2∠Fi(jw) + ∠Ho(j2ω)) +

+ f ′′ ˆ̃θH0(s)Fi(s)[asin(ωt)] + f ′′

2 Ho(s)[ˆ̃θ2] + ε−t

(4.34)

Next, this signal is multiplied with

cos(2ωt− 2φ̂−b − φ̄)− cos(2ωt− 2φ̂−b + φ̄) (4.35)
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and put through low-pass filter Cl(s) which dampens out frequencies from ω
and higher, so that Cl(0) = 1, Cl(jω̄) � 1 for ω̄ > ω. Only one term in (4.34)
contains frequency 2ω. The other terms will become exponentially decaying
when multiplied with (4.35) and then acted upon by Cl(s). In particular ˆ̃θ
is sufficiently dampened on modulation frequency ω per Assumption 2 and is
bounded per Theorem 4.2. Thus, after low-pass filtering, we have

ξ2 =− f ′′

4 |Fi(jω)|2a2|Ho(j2ω)|·

· Cl(s)[cos (2ωt+ 2∠Fi(jw) + ∠Ho(j2ω))(
cos(2ωt− 2φ̂−b − φ̄)− cos(2ωt− 2φ̂−b + φ̄)

)
] + ε−t =

=− f ′′

4 |Fi(jω)|2a2|Ho(j2ω)|·
1
2 · Cl(s)[cos(4ωt+ 2∠Fi(jw) + ∠Ho(j2ω)− 2φ̂−b − φ̄)−

− cos(4ωt+ 2∠Fi(jw) + ∠Ho(j2ω)− 2φ̂−b + φ̄)+

+ cos(2∠Fi(jw) + ∠Ho(j2ω) + 2φ̂−b + φ̄)−

− cos(2∠Fi(jw) + ∠Ho(j2ω) + 2φ̂−b − φ̄)] + ε−t

(4.36)

cos(a) · cos(b) =

1
2(cos(a− b)

+ cos(a+ b))

Again, Cl(s) acting on parts of the sum with frequency 4ω, which - still assuming
that Cl(jω̄) � 1 for ω̄ = 4ω - results in only exponentially decaying terms.
Looking at the low-frequency part

cos(2∠Fi(jw) + ∠Ho(j2ω) + 2φ̂−b + φ̄)

−cos(2∠Fi(jw) + ∠Ho(j2ω) + 2φ̂−b − φ̄)

=cos(2∠Fi(jw) + ∠Ho(j2ω) + 2φ̂−b + φ̄)

+cos(2∠Fi(jw) + ∠Ho(j2ω) + 2φ̂−b − φ̄+ π)

=2cos
(

4∠Fi(jw) + 2∠Ho(j2ω) + 4φ̂−b + π

2

)
cos

(
2φ̄− π

2

)
=− 2 sin(φ̄)︸ ︷︷ ︸

constant

sin
(

2∠Fi(jw) + ∠Ho(j2ω) + 2φ̂−b
)

(4.37)

Substituting the above into (4.36), we get

ξ2 =− f ′′

4 |Fi(jω)|2a2|Ho(j2ω)|12Cl(s)[
−2sin(φ̄)sin

(
2∠Fi(jw) + ∠Ho(j2ω) + 2φ̂−b

)]
+ ε−t =

=f ′′

4 |Fi(jω)|2a2|Ho(j2ω)|sin(φ̄)|Cl(0)|sin(φ̄)·

· sin
(

2∠Fi(jw) + ∠Ho(j2ω) + ∠Cl(0) + 2φ̂−b
)

+ ε−t

(4.38)
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Substituting φ̂−b = φ̂−a − 1
2∠Ho(j2ω) and Cl(0) = 1,

ξ2 = f ′′

4 |Fi(jω)|2a2|Ho(j2ω)|sin(φ̄)sin
(

2∠Fi(jw) + 2φ̂−a
)

+ ε−t (4.39)

Next, since φ̃ = −∠Fi(jω)− φ̂−a have 1

ξ2 = f ′′

4 |Fi(jω)|2a2|Ho(j2ω)|sin(φ̄)sin
(
−2φ̃

)
+ ε−t (4.40)

Discarding the exponentially decaying tern ε−t, we have

−ξ2φ̃ ≥ 0 , φ̃ ∈ [−π/2, π/2] (4.41)

The part of system with φ̃ as input and −ξ2 as output is passive. Any passive
controller can be used as regulator R(s), as long as it is slow enough to allow
the exponentially decaying terms to settle.

Corollary 4.4. Controller φ̂−a = −k1
s [ξ2]− k2ξ2 is passive with ξ2 as input and

φ̃ as output for any k1, k2 ∈ R+.

Proof. Substituting

φ̃ = −∠Fi(jω)− φ̂−a = −∠Fi(jω) + k1

s
[ξ2] + k2ξ2 (4.42)

and defining a positive semi-definite storage function V per relationship

2k1V =
(
k1

s
[ξ2]− ∠Fi(jω)

)2
(4.43)

Then, assuming that d
dt∠Fi(jω) is negligible have

V̇ =
(
k1

s
[ξ2]− ∠Fi(jω)

)
ξ2 (4.44)

Substituting for k1
s [ξ2] from (4.42),

V̇ = (φ̃− k2ξ2)ξ2 ≤ φ̃ξ2 (4.45)

Thus, the scheme on figure (??) with R(s) = k1
s + k2ξ2 is an interconnection of

two passive systems (with one negative connection because passivity in theorem
4.3 is proven for −ξ2 as output. The entire system is therefore passive and since
it is unforced it is also stable.
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Figure 4.10: Simulink implementation of optimal direction controller

Figure 4.11: Contents of the Plant box on Figure 4.10
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Figure 4.12: Cost function

4.6 Applying Extremum Seeking to this model

Implementation of controller locating the otimal direction for the system is
shown on Figure 4.10. Contents of the Plant box are shown on Figure 4.11.
The implementation follows the scheme on Figure 4.9, with exception of a sat-
uraion element in regulator R. Due to implementational concern, instead of
continuous transition the model of the ship changes its time constant T to
213.6s at simulation time 8000s. The probing frequency ω = 0.5s was selected,
giving probing period of T = 2π/ω = 12s. This is high enough frequency to
allow quick convergence, but could lead to intereference with waves if they will
be included in the model.
The main difficulty encountered is that the system is that exponentially decaying
terms from Theorem 4.3 can take too long time to decay. For that reason, high-
order filters are employed as both as Co(s) and Cl(s). Also, a saturation element
after Cl(s) limits the effects of the disturbance until the exponentially decaying
terms settle.

4.7 Results

The results of simulation are shown in Figures 4.13-4.15. The controller success-
fully converges the cost function towards its minimum, which is zero. The lag

1Think of φ̂−a as an estimate of −∠Fi(jω)
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Figure 4.13: Estimate of lag, before and after the system changes. Theoretical
value is shown with black dashed line, estimate is given with the blue line.
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Figure 4.14: Error signal ξ2. Large transients are observed before the expone-
tially decaying terms settle
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Figure 4.15: Figure 4.14 magnified. Effects of the saturation element are clearly
seen.

on the modulation frequency can was calculated using the Control System tool-
box as well, by adding frequency responses of plant input dynamics and Ho(s).
The code is shown in Algorithm 4.2. The calculated lag of the mutated system
is shown on Figure 4.13 as a black dashed line. It shows that the value found
using the method described in this work converges towards the value calculated
with Control System Toolbox.

It is worth commenting that the phase estimation error converges after about
700 seconds, while the main extremum seeking loop converges only about 1500
seconds. This confirms the results from the theory, that phase lag tracking does
not need θ̃ to be close to zero in order to work.

4.8 Conclusion

In this chapter, possibility of doing the transfer operation on an optimal angle
into the wave fronts using extremum seeking was considered. To allow the model
to change underway, a modification of the Extremum Seeking scheme was made
to allow it to cope with continuous changes in model parameters. This allows
use of probing frequencies that can change significantly during an operation.
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Algorithm 4.2 Calculating frequency response of Hi(s) and Ho(s)

f unc t i on w = getOmega ( )
omega = 0 . 5 ;
K = 0 . 1 8 5 ;
T = 107 . 3∗2 ;
nom = [K] ;
den = [T, 1 , 0 ] ;
sys = t f (nom, den ) ;

K_p = 0 . 1 ; T_d = 14 ;
cntrl_nom = [T_d + K_p, K_p ] ;
cntrl_den = [1 2 ] ;
c n t r l = t f ( cntrl_nom , cntrl_den ) ;
H_o1 = t f ( [ 1 0 ] , [ 1 omega / 1 0 ] ) ;

c lo se_loop = cn t r l ∗ sys / (1+ cn t r l ∗ sys ) ;
sys_lag = f r e q r e s p ( c lose_loop , omega ) ;
H_o_lag = f r e q r e s p (H_o, omega )∗3 ; % Three H_o’ s in s e r i e s
w = sys_lag + H_o_lag ;
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Chapter 5

Conclusion

This thesis contains two different approaches to solve the same practical problem
of transforming heavy equipment in heavy seas. Both approaches yielded some
results. Chapter 3 proposes attaching fins to the sides of the smaller craft, and
achieves sufficient improvement in stability. Chapter 4 yields interesting theo-
retical results. It has been shown that the proposed scheme can in fact handle
sudden changes in the plant, but further testing is necessary to demonstrate
applicability of this technique.
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Chapter 6

Appendixes

6.1 Frequency response lemmas

Lemma 6.1. If the transfer function H(s) has all of its poles with negative real
parts, then for any real ψ,

H(s)[sin(ωt− ψ)] = Im
{
H(jω)ej(ωt−ψ)

}
+ ε−t,

where ε−t denotes exponentially decaying terms.

This is simply the frequency response of an asymptotically stable LTI system.

Lemma 6.2. For any two rational function A(·) and B(·, ·), the following is
true:

Im
{
ej(ωat−ψ)A(jωa)

}
Im
{
ej(ωbt−φ)B(s, jωb)[z(t)]

}
=1

2Re
{
ej((ωb−ωa)t+ψ−φ)A(−jωa)B(s, jωb)[z(t)]

}
−1

2Re
{
ej((ωb+ωa)t−ψ−φ)A(+jωa)B(s, jωb)[z(t)]

}
.

Proof. Follows by substituting the representations for the real and imaginary
parts of a complex number z, Rez = z+z̄

2 , and Imz = z−z̄
2 .

6.2 Contents of the attached DVD

Name Type Description
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6.2. CONTENTS OF THE ATTACHED DVDCHAPTER 6. APPENDIXES

Name Type Description
waves_comp Folder Folder containing simulation of the system in

bow-to-stern configuration as described in
Chapter 3.

waves_comp/init.m Matlab script Initializes variables for the simulation.
waves_comp/Seabase.mdl Simulink model Simulink model.
actuation.avi Video, cinepak Animation of fin-acutated system.
no_actuation.avi Video, cinepak Animation of the same system as in

actuation.avi, with fins inactive. Notice large
angular movements of the ramp.

direction Folder Folder containing simulation in side-to-side
configuration.

direction/init.m Matlab script Initializes variables before the simulation.
direction/autolag.mdl Simulink model Simulink model
direction/getOmega.m Matlab script Algorithm 4.2
direction/sinus_with_lag.mdl Simulink

library function
Simulink block for a sinus with variable phase.
Add π/2 to the to the phase to get a cosine.

ControlFinal.pdf PDF documen-
t/presentation

Presentation given by Professor Miroslav
Krstić to ONR.
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