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Problem Description
The candidate will consider the problem of dynamic positioning (DP) of
marine surface vessels by unscented Kalman filtering (UKF) and nonlinear
model predictive control (NMPC). The following elements must be considered:
 
1. Review the literature on hydrodynamic damping and parameter estimation,
and estimate the parameters of a nonlinear damping model using optimization
tools and UKF methods.
2. Compare the UKF with the more traditional extended Kalman filter (EKF).
3. Review the literature on NMPC, especially with regard to dynamic
positioning applications.
4. Develop a DP controller based on NMPC theory and integrate it with a UKF
for estimation of currents and wave-induced motion.
5. Implement, simulate, and evaluate the suggested control scheme in Matlab
for a number of relevant 3 DOF DP scenarios. Compare the simulation results
with those associated with a traditional DP controller.
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Abstract

This thesis discusses the theoretical aspects of the unscented Kalman filter
(UKF) and nonlinear model predictive control (NMPC) and try to evaluate
their practical value in a dynamic positioning (DP) system. A nonlinear
horizontal vessel model is used as the basis for performing state, distur-
bance, and parameter estimation, and attempts at controling the vessel us-
ing NMPC are made. It is shown that the extended Kalman filter (EKF),
which is much used in various navigation applications including DP, is out-
performed both theoretically and practically in simulations by the UKF.
Much of which is due to the UKF’s improved approximation of the esti-
mated system’s true stochastic properties. An attempt to estimate the cur-
rent from the hydrodynamical damping forces have been applied and shown
to be working when the vessel is not subjected to other slowly-varying drift
forces. It is implemented a dual estimation approach to try to estimate
hydrodynamic damping, which is a very real problem for actual vessels and
DP systems.

A theoretical evaluation of NMPC is performed and it is concluded that
NMPC schemes could fulfill a need in vessel control and DP. Its combination
of model based control, optimization approach to achieving performance
and predictive properties are indeed useful also for DP. It is found that
NMPC could be a step towards a unified control approach combining low
and high speed reference tracking, station-keeping and several other control
operations which today are handled by separate control approaches. NMPC
provides the control designer with an exceptional amount of freedom when
quantifying the performance, that it is impossible not to find some use for
NMPC.
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Chapter 1

Introduction

So we beat on, boats against the
current, borne back ceaselessly
into the past.

F. Scott Fitzgerald

1.1 Dynamic Positioning Fundamentals

1.1.1 Background

The International Marine Contractors Association defines a Dynamic Po-
sitioning (DP) system as "a system which automatically controls a vessel’s
position and heading exclusively by means of active thrust" [22]. DP sys-
tems was developed to keep a vessel at a fixed position with fixed heading,
an operation known as station keeping.

The first DP system was installed on the drilling ship Eureka in 1961[] and
consisted of an analogue control system receiving position reference from
a taut wire. Prior to this, station-keeping operations had been performed
with the help of anchor spreads and jack-up barges. The introduction of
DP capable vessels made station keeping possible at greater depths and
with greatly simplified setup compared with the existing jack-up barge and
anchoring approaches. By not depending on fixed mechanical installations
or anchors, the vessel has excellent maneuverability and can be positioned
at locations where anchoring are not possible/desired, e.g., coral reefs. All
three systems have their advantages and disadvantages, but the introduction
of DP systems increased the number of possible operations significantly. The
disadvantages of DP systems includes the risks of system failures, high fuel
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costs, and underwater hazards for divers and remotely operated vehicles due
to thrust use. It can be argued that DP systems will overcome some of its
disadvantages as the technology is further developed.

DP systems are now increasingly used for accurate low-speed trajectory
following, assisted anchoring, and weathervaning as well as station keeping,
and to perform these operations, a triplet of actions must be performed;
an accurate estimate of the vessel’s position and heading must be kept, the
forces and moments needed to counteract the environmental disturbances
and position deviation must be calculated, and these forces must be applied
by the vessel’s propulsion units. It is common to divide the functionality of
a typical DP system into several sub-systems, including:

• Operator system

• Position and heading reference systems

• Estimators, including signal processing

• Guidance, navigation and control units

• Thrust allocators

• Propulsion units including power generators

where it is said that the DP-system is only as good as it’s weakest link.
Figure 1.1 shows how these systems are interconnected. Many commercial
operators deliver complete DP-systems and the largest by far is Kongsberg
Maritime [65], with several other actors including Rolls Royce Marine, Con-
verteam, L-3 Communications, Marine Technologies and Navis Engineering
Oy. These commercial systems offer several operational modes such as man-
ual operator control, station keeping, mixed manual and automatic control,
low-speed-tracking, and target following. Commercial DP-systems are sub-
jected to several safety and reliability requirements which are enforced by
international certification societies such as Det Norske Veritas, Lloyd’s Reg-
ister of Shipping, and The American Bureau of Shipping.

1.1.2 Development of Estimation and Control Systems for
DP

The first automatic ship steering mechanism was constructed by Elmer
Sperry in 1911 [13]. The first DP system was implemented 50 years later
on a drilling ship. Two important reasons for the long development time
was the need for a position reference system and that the vessel had to be
capable of applying individual forces and moments in the different degrees
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Figure 1.1: Figure depicting control part of DP system. Courtesy of [36].

of freedom (DOF). Vessels that are capable of applying individual forces
and moments in all DOFs are known as fully-actuated, Figure 1.2 shows the
thruster configuration of a fully-actuated vessel.

The first DP systems made use of linear decoupled PID-controllers in each
DOF in cascade with simple low-pass and notch-filtered position measure-
ments. The filters were used to remove the rapid 1. order wave induced mo-
tion from the feedback loop, but their averaging effect induced a phase lag
into the closed-loop feedback system. The performance was further halted
as important coupled effects were ignored.

The second age of DP-control came in the 1970s when model-based LQG-
control was implemented. This was suggested in [2] and further developed
in cite grimble and several other articles by the same authors. These model
based approaches were computationally heavy, but allowed for a more cou-
pled approach as well as an improved separation of low-frequency vessel
motion and the high-frequency wave induced motion. They also calculated
a slowly-varying bias force that could be used for feed-forward control. The
initial implementations used gain-scheduling approaches and later on the ex-
tended kalman filter. These aoproaches are still found in use in commercial
DP-systems today.

Further research in the 1990s and 2000s lead to the use of nonlinear con-
trollers and estimators which improved the handling of the inherent non-
linear characteristics of the vessel dynamics. Notable contributions include
[60] and [63].
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Figure 1.2: Illustration depicting the actuator configuration of Cybership
II. Courtesy of [57].

1.1.3 State, Parameter and Disturbance Estimation for DP

The DP system needs measurements of heading and position. The simplest
way to obtain these are from the Global Positioning System and gyrocom-
passes, but any accurate position reference system will do. Measurements
of the vessel motion and acceleration can be obtained from inertial naviga-
tion systems, but are often not available due to cost issues. An estimate
of the vessel’s velocity must therefore be obtained using the available mea-
surements and a model of the vessels dynamics. The model should try to
accomodate for the external disturbance forces as well. It is obvious that
more accurate modeling, and optimal use of the model, will improve the es-
timates of vessel velocity and disturbances. The modeling problem consists
of finding a model that approximates the complex vessel mechanics, and
the even more complex systems describing the environmental disturbances,
to a satisfactory degree. In an actual implementation, the estimator may
also perform sensor integration, i.e., the task of combining measurements
from different sensors, performing fault-detection, and error handling. If
measurements are lost, the model-based state estimator is also responsible
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for keeping an estimate, using only the mathematical model, i.e., dead-
reckoning.

It is also desired that the estimator obtaining estimates of the disturbance
forces affecting the vessel due to the disturbing sea, wind, and current effects.
The wind force and direction is often simply measured and a look-up table
is used to approximate the forces due to wind disturbance. The forces due
to waves and currents are a bit more difficult to obtain, firstly there are no
available measurement systems for obtaining these, nor are they easily sepa-
rated effects. They are therefore often lumped together and rather separated
into a low-frequency (LF) component and a high-frequency (HF) component.
The HF component is mostly due to the oscillating wave induced forces and
is often denoted wave-frequency (WF) , while the LF components appear as
drift forces. Figure 1.3 shows how the motion from the LF component and
the WF component are assumed to be superpositioned.

Figure 1.3: Illustration depicting LF and WF motion. Courtesy of [15].

The motion induced by the WF components are typically substantially faster
than the vessel’s bandwidth, and it is accordingly not able to counteract
them. Trying to counteract them would only lead to unnecessary strain on
the actuator system and wasted energy since no increased performance can
be achieved. The motion estimates are therefore subjected to wave-filtering
to remove the WF components. In the earliest DP implementations wave-
filtering was performed with the use of low-pass and notch filters, but the
induced phase-lag lead to sub-optimal performance. An implementation
using optimal filtering methods, i.e., the Kalman filter, was proposed in
[2]. The first applications made use of gain-scheduled linear approximations
about the yaw axes where the Kalman gain was dependent on the head-
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ing. These approaches were difficult to implement since there were so many
tuning parameters. Later implementations made use of a extended Kalman
filter and thus drastically reducing the number of tuning parameters and
included a framework for performing parameter estimation, see for instance
Grimble [16]. Recent approaches by Strand and Fossen includes nonlinear
passive observers that are simpler to tune [60]. The trend have been to de-
velop observers that were globally and thus decreased the number of tuning
parameters. Adaptive estimators estimating vessel parameters and gains for
varying sea-states are also proposed [63].

1.1.4 Guidance, Navigation and Control Units

The guidance and navigation units are responsible for creating set-points for
the controller. For DP, this task entails setting simple position references,
but also path-generation when changing set-points and when the set-point
is moving. Such path generation is done using a model reference generator
to allow the vessel to keep close to the set-points and not lag at distances
that can lead to poor control performance.

The focus here is on the control unit, i.e., the computer program that use
measurements, estimates, and setpoints to calculate the necessary thrust-
force to perform the necessary maneuvers. The controller consists of a PID
controller or a model-based controller, combined with feedforward from es-
timates of disturbing forces and/or a pathfeedforward. The thrust is most
often calculated as forces and moments in the various DOFs and the task
of allocating these to the actual thruster system is performed by a separate
thrust allocator.

The first DP system consisted of 3 independent, analog linear feedback con-
trollers, one for each DOF. This decoupled approach suffered from neglected
coupled effects and phase lag from the filtered feedback error. The LQG ap-
proach in the 1970s made way for model-based controllers which inherently
considered the coupled effects. Modern approaches include acceleration feed-
back [36], nonlinear controllers, and coupled PID controllers combined with
feedforward terms. A recent commercial system called GreenDP developed
by Kongsberg [20], makes use of model predictive control to allow constraint
handling and reduced thrust use for operations where high-precision position
accuracy is not necessary.

1.1.5 Vessel Models for DP

DP entails low-speed motion, which is a control problem that fits very nicely
in the linearization framework. Low velocities means that linear hydrody-
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namic effects will dominate higher order effects and the coriolis and cen-
trifugal effects will be negligible. Figure 1.4 shows a common separation of
velocity ranges for vessel control. If the heading angle is reasonably fixed,
i.e., held within a 10 degree range and, for the duration of the operation,
there isn’t even a need for considering the vessels heading relative to the
earth. Operations such as station keeping are simple set-point regulation
and disturbance rejection problems.

Figure 1.4: The figure shows a common separation of velocity ranges for
vessel control. Courtesy of [60].

Yet, as computing power has grown manyfold and improved system identi-
fication methods have appeared, there is no good reason for not developing
vessel models that are valid for larger velocity ranges by including more com-
plex hydrodynamical damping effects. More accurate modeling can lead to
large performance improvements during more complex operations through
improved estimation and control calculation.

1.2 Motivation

DP is a mature field and good results are achieved with existing technology,
but new marine operations appear and with them the demands on control
strategies evolve. PID control, LQR and other feedback controllers seeks
to control the position and heading in a bulls-eye fashion and always keep
the deviations as small as possible. This aggressive control is not always
necessary and reduced thrust force may be valued over position accuracy
during some operations. Examples of operations where reducing thrust use
can be more important than position accuracy include waiting operations
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where anchoring is not an option and to some degree operations as cable-
laying and trench digging at great depths, where a position accuracy within
5 percent of depth is required [21].

Kongsberg Maritime has implemented GreenDP, which seeks to reduce the
fuel consumption and remove power surges. It divides the control problem
into two parts; compensation of the slow drift due to environment forces and
then handles other disturbances only when absolutely necessary, instead of,
as direct feedback controllers do, acting instantaneously on all disturbances.
This leads to a calmer set of control forces and less control peaking. Pre-
diction can also be used for tracking purposes, as the controller can predict
that it will need to change the outputs for a turn, or change in set-point.
The prediction horizon offers perspective and allows for elements of feed-
forward control. This detuning can obviously be achieved using PID-control
or LQR as well, but model predictive control offers constraint handling as
well, meaning that the vessel can be commanded to use minimize the thrust
use, yet still be demanded to stay within a given region. Other constraints
can be applied to limit thrust use or thrust change.

Marine control has traditionally been divided into low-speed control, i.e. DP,
and high-speed control, i.e., autopilots. This division occurs mainly because
of the use of simplified models. By developing a vessel model that is valid
for both low- and high-speed maneuvers and include effects due to environ-
mental disturbances, a unified control approach could be made [5]. As this
model will be used to predict future behaviour, infer knowlegde about states
that are not measured and be used by the controller it is important that
the model portrays the dynamics of the system in an adequately accurate
manner. It is regrettably impossible to obtain perfect models so a trade-
off between identification cost and model accuracy is performed, developing
complex models are futile if we are not able to identify the empirical param-
eters and are clueless about the state of the environmental disturbances.

The environmental disturbances are usually estimated using a triple ap-
proach. Wind forces are found by from look-up tables depending on the
wind direction, speed and the vessel shape and load. Current and wave ef-
fects are typically lumped together and the WF component is separated from
the estimates using wave filtering. The slowly varying forces are estimated
as a general force bias which also includes other unmodeled effects including
unmodeled dynamics. Unmodeled thrust dynamics and poor modeling of
hydrodynamical damping will contribute heavily to this force bias [26]. It is
known that DP operators wish for a separate estimate of the current veloc-
ities as well, and an estimate of those will also lead to improved estimations
of the hydrodynamic damping.

It is known that the extended Kalman filter can be troublesome to tune,
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and suffer from a lack of robustness. A newly developed alternative named
unscented Kalman filtering could be implemented to improve the quality of
the estimates.

1.3 Previous Work

The commercial operator Kongsberg has a product called greenDP that in-
cludes an extended kalman filter and a nonlinear model predictive controller.
Unscented Kalman filter is gaining increased usage as a state estimator for
problems where extended Kalman filter has been the selected state estima-
tor. The author knows of two ukf applications in vessel estimation [47], [46].
In addition there are several implementations of ukf used for navigation
purposes and sensor integration, see for instance [64] and [12].

A recent PhD Thesis by J. Refsnes [55], focuses on obtaining estimates of
current and tracking control of a submersible slender body. His approach is
done using nonlinear controllers and nonlinear luenberger observers.

1.4 Contribution

1.5 Thesis Outline

• Chapter 1 is the introduction. Describes the motivation, previous
relevant work , the contribution of this thesis and details the applied
notation.

• Chapter 2 describes the marine vessel model

• Chapter 3 is a short introduction to Unscented Kalman Filter and
details on how model parameters and state variables are estimated.

• Chapter 4 details Model Predictive Control and discusses my imple-
mentation of a NMPC controller.

• Chapter 5 containts simulations and results from my application of a
UKF state estimator and a NMPC based DP controller

• Chapter 6 discusses the results.

• Chapter 7 contains the conclusion and relevant future work possibili-
ties.

• Appendix A is a short introduction to stability theory.
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• Appendix B contains some background material on classical mechan-
ics.

• Appendix C is a primer on statistics needed to develop the UKF.

1.6 Notation

1.6.1 System Description

This paper evolves around dynamical state-space models (DSSM). A system
is any set of actions and behaviour that we see fit to evaluate simultane-
ously. The model is a mathematical description of the system’s behaviour.
It describes how variables relate to each other and how they evolve. Mathe-
matical modeling consists of mapping the state of the system into variables
and then describing with equations how the variables relate to each other.
The models can be either continous- or discrete-time. The nature as we
observe it is continous-time, but discrete-time models are used for imple-
mentation on computers. The part of reality that we attempt to model is
known as the plant. The term system is used to describe both the plant and
our mathematical description of it. The expressions inputs and outputs are
used to relative to the plant and measurements and outputs describe the
same vector.

It is attempted to keep the notation consistant in this report; with all vec-
tors, matrices, and vector-functions given in bold, and scalars and sets given
in regular math font. If a semicolon is used in a function, the parts following
the semicolon are parameters. Time dependency is generally not expressed,
but sample indexes are applied in subscript for discrete time variables. In
Chapter 2; subscript will be used to denote which reference frame vectors
are given relative to.

The notation on Kalman filters generally follow the notation of [56], but the
sigma-point notation is taken from [64]. The notation on vessel modeling is
taken from [45] and [13].

Both Leibniz and Newton notation for differentation is used. The Newton
notation is used if simple variables or expressions are differentiated with
regards to time and Leibniz notation is used everywhere else.
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Variable Description
η Position vector; given relative to NED-frame
ν Velocity vector; given relative to BODY-frame
x Position along the xn-axis
y Position along the yn-axis
ψ Angle about the zn-axis
u Speed in the xb-direction
v Speed in the yb-direction
r Angular speed about the zb-axis
τ Force and moment vector
η̇c Current speed; given relative to the NED frame
νr Vessel speed relative to fluid; given relative to the BODY frame
xG x coordinate of center of gravity

Table 1.1: The most important variables in the section on vessel model

Variable Description
k Sample number
x State
y Measurement
x̂−k A priori estimate
x̂+
k A posteriori estimate
P+
k (Estimated) A priori error covariance

P−k (Estimated) A posteriori error covariance
P xkyk Covariance
P ỹkỹk (Estimated) Measurement covariance
Kk Kalman gain
Wm
i Weights for mean

W c
i Weights for covariance
X Sigma points
Y Transformed sigma points

Table 1.2: The most important variables in the section on Kalman filtering
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1.6.2 Abbreviations

AWGN Additive white gaussian noise
CFD Computational fluid dynamics
DOF Degrees of freedom
ECEF Earth-centered Earth fixed
ECI Earth-centered inertial
EKF Extended Kalman filter
GPS Global Positioning System
LP Linear programming
LQR Linear quadratic regulator
MMSE Minimum mean square error
MPC Model predictive control
NED North-east-down
NLP Nonlinear programming
NMPC Nonlinear model predictive control
pdf Probability density function
PDF Probability distribution function
QP Quadratic programming
RV Random Variable
SNAME Society of Naval Architects and Marine Engineers
SQP Sequential quadratic programming
SCP Sequential convex programming
UKF Unscented Kalman filter
UT Unscented transform
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Chapter 2

Vessel Model

The mathematical description of a system’s behaviour is given by a model.
Modern developments in control theory has lead to an increased use of model
knowledge when designing control systems. It is natural that these model-
based controllers benefits from accurate modeling. State estimation also
benefits from accurate modeling. The best model is one that is accurate and
descriptive enough, yet not too complex to implement or develop. Marine
mechanics is a well-known field and a model is derived based on Newto-
nian and Lagrangian mechanics combined with a semi-empiric evaluation of
hydrodynamic forces. The model described here is developed by T.I. Fos-
sen, and more can be found in [13] and [57]. Also, [18] presents a more
hydrodynamical study to hydrodynamic damping.

2.1 Kinematics

2.1.1 Reference Frames

A vessel’s position and velocity, as well as the forces affecting it, must be
defined relative to a reference frame. The dynamics of the evaluated system
will determine which frames are used. In terrestrial navigation1 there are
four reference frames of special importance. Two of these are Earth-Centered
and two are geographical, i.e., local frames. They are all 3-dimensional
(x, y, z) Cartesian frames and follow the right-hand rule.

The two Earth-Centered frames are:

Earth-Centred-Inertial (ECI) frame The ECI frame is defined relative
to the position of two distant stars, with the x-axis pointing towards

1Navigation on the earth, compared with celestial navigation, i.e., navigation in space.
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Figure 2.1: Illustration depicting relationship between ECI, ECEF and NED
frame. Courtesy of [4].

the Aries point in the Vernal Equinox and the z-axis pointing to the
Stella Polaris through the north pole. The y-axis is given from the
right-hand rule. The origin is located in the center of the Earth. The
ECI-frame is assumed inertial when compared with the remote fixed
stars that it is defined relative to. It is further the basis of terrestrial
navigation. Points in the ECI frame are given by a vector (xi,yi,zi).

Earth-Centred-Earth-Fixed (ECEF) frame The ECEF frame is de-
fined as a rotation of the ECI frame around the z axis. The x and the y
axes rotate as the Earth does with a rate of rotation ωei = 7.2921 · 10−5

about the z axis. A physical point on the earth’s sphere is thus fixed
when given in ECEF coordinates and continuously rotating (moving)
if given in ECI coordinates. The rotational ECEF frame is obviously
not inertial, but the forces attributed to the rotation is often negligable
and the frame is thus often viewed as inertial. A point in the ECEF
frame is given by (xe,ye,ze).

The two geographical frames are:
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North-East-Down (NED) frame The most familiar reference frame is
the local NED frame we project all around us. It is defined as a flat-
earth approximation of the ECEF frame, i.e., it is a Euclidean frame
rotating around the Earth. The origin of the frame is located in a
selected point, typically the earth’s surface. As the ECEF frame is
often assumed inertial, so is the NED frame. The NED frame is the
most common reference frame used for local navigation. A position in
the NED frame is given by (xn,yn,zn).

Body (B) frame The B frame is fixed to the vessel’s hull. The vessel’s
centre of gravity is usually chosen as the origin of the frame and the
coordinate axes are chosen to coincide with the vessel’s principle axes
of symmetry, see Figure 2.2 This frame is defined to simplify the mod-
eling of the kinetic differential equations relating forces and moments
to movement and rotation, velocity and rate measurements are also
found relative to this frame. As the B frame is fixed to the vessel, it is
continuously rotating and translating relative to the NED frame. Its
motion will also typically dominate the acceleration due to the rotation
between the ECEF and ECI frame further justifying the assumption
that the NED frame is inertial. Position in the B frame is given by
(xb,yb,zb).

Figure 2.2: Illustration depicting the vessel-fixed body frame axes. Courtesy
of [13].

Vectors can be transformed from one frame to another with the use of rota-
tion and homogenous transformation matrices. The general theory on these
matrices are not given here, but can be found in several other sources, for
example [7], [13].
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2.1.2 Vessel States

The vessels pose is composed of position and orientation. The general nota-
tion for vessel coordinates comes from [45] and is summarized in tables 2.1
and 2.2 taken from [13].

DOF Position Linear velocities Forces
1 motions in the x-direction,(surge) x u X
2 motions in the y-direction (sway) y v Y
3 motions in the z-direction (heave) z w Z

Table 2.1: Notation for vessel position [45].

2.1.3 3DOF Horizontal Kinematics

This thesis focuses on horizontal control of surface vessels, which means that
the vessel model covers only surge, sway and yaw motion, i.e., DOFs 1 and 2
from Table 2.1 and DOF 6 from Table 2.1. This simplification is justified in
Section 2.2. The position and orientation angles are gathered in a vector η,
and the linear and angular velocities are gathered in ν, from here on denoted
simply as position and velocity. As shown in B.1.2, positions, velocities and
accelerations can easily be transformed between frames by using a trans-
formation matrix. In the horizontal 3DOF case, this is a rotation matrix
R(ψ) ∈ SO(3), which is easily found as

R(ψ) =

cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 (2.1)

by examining Figure 2.3.

The position η will be given relative to the NED frame while the velocity ν is
given relative to the body frame. More thorough introductions to reference
frames and transformations can be found found in [7] and [13].

DOF Euler Angles Angular velocities Moments
4 Rotation about x-axis, (roll,heel) φ p K
5 Rotation about y-axis, (pitch,trim) θ q M
6 Rotation about z-axis, (yaw) ψ r N

Table 2.2: Notation for vessel orientation [45].
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Figure 2.3: Illustration depicting the relationship between the NED frame
and the BODY frame, courtesy of [57].

2.2 Kinetics

2.2.1 Maneuvering and Seakeeping

Marine kinetics modeling has traditionally been divided into seakeeping and
maneuvering. Seakeeping refers to vessels keeping constant course and speed
while subjected to wave excitation, while maneuvering entails more compli-
cated movements in calm waters. These two modeling modes are useful be-
cause they explain different hydrodynamic behaviour that fits two separate
marine control operations; dynamic positioning and autopilots. The sepa-
ration allows for different simplifications apropriate for different dominating
dynamics. A unified modeling approach that seeks to combine seakeeping
and maneuvering is presented in [14] and [48], but will not be considered
here. Due to the difficulty of estimating the wave excitation, maneuvering
models are often used for DP control as well.

The simulation model developed here will apply a superpositioning of forces
that appear due to still-standing vessels in sea, and forces due to vessel mo-
tion in calm waters, i.e., a maneuvering model with added forces dependent
on wave encounter frequency. This differs from a unified model since all
memory effects are neglected.

2.2.2 3DOF Horizontal Kinetic Model

The 6DOF modeling problem includes the motion in surge, sway and heave
directions as well as the respective rotations in roll, pitch and yaw. This
thesis focuses on DP control, which entails mostly low-speed motion with
U =

√
u2 + v2 ≤ 4 knots.
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It will be assumed throughout that the controlled vessel is port-starboard
symmetric and metacentrically stable. If the vessel is port-starboard sym-
metric, as most surface vessels are, the dynamics in the surge direction can
be decoupled from dynamics in the sway and yaw directions. As most vessels
are not aft-fore symmetric, the sway and yaw dynamics are inherently cou-
pled. Metacentric stability depends on the location of the center of gravity
and the center of bouancy and the water plane area. Metacentric stability
implies that the restoring horizontal forces will limit the deviations from the
neutral pitch, roll and heave states. When the vertical states are close to
constant, their contribution towards horizontal motion are negligible and as
such a 3DOF description of the horizontal dynamics is a suitable approxi-
mation.

From Appendix B.1, it is evident that the differential equations describing
horizontal motion can be written relative to the B-frame as

MRBν̇ +CRB(ν)ν = τRB, (2.2)

where τRB is a generalized vector of forces and moments,MRB is the rigid-
body inertia matrix and CRB is the Coriolis matrix. They are found from
Newton-Euler considerations of the vessel dynamics. The Coriolis effects
can be described in a number of different ways, here a skew-symmetric rep-
resentation developed in Theorem 3.2 in [13] is chosen. They are given as

MRB ,

m 0 0
0 m mxG
0 mxG Iz

 (2.3)

CRB(ν) ,

 0 0 −m(xGr + v)
0 0 mu

m(xGr + v) −mu 0

 . (2.4)

For more details on how these matrices are found, see Chapter 3 in [13].

The components of τRB are the net force components in each direction.
They consist of the forces produced by the actuators τ , forces due to hydro-
dynamic effects τH and a vector w containing the unmodeled disturbances
including all unmodeled dynamics, i.e.,

τRB , τ + τH +w (2.5)

When the fluid is moving, i.e., the vessel’s NED velocity given relative to
the B frame is different from the vessel’s velocity relative to the fluid in the
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B frame, where the relative velocity is given as νr = ν−νc in B coordinates.
The forces that appear from hydrodynamic considerations depend on this
relative velocity.

The vessel system can be compared with a mass-spring-damper system
where the spring forces will move the vessel when the position deviates
from the steady state and the damping will counter the movement, i.e.,
absorb energy. The restoring forces are the gravity and buoyancy forces
and they only appear in the vertical direction. The horizontal motion is as
such a mass-damper system. It is known that these systems are passive,
see for instance [4], and the vessel will, if no propulsion forces are applied,
achieve a steady state of velocity νr = 0, and drift with the current, i.e.,
both BIBO stability and asymptotic stability is shown when the dynamics
of ν̇r is considered. This entails that the vessel control problem consists of
counteracting the environmental disturbances and applying force to move
the vessel to the desired position.

2.2.3 Hydrodynamic Damping

The hydrodynamic forces affecting a vessel submerged in a fluid are often
denoted as hydrodynamic damping or simply as damping. The nature of
hydrodynamic damping is inherently complex and analytic approaches are
not possible. Approximations applying numerical computational fluid dy-
namics (CFD) are possible, but not tractable when developing models for
control systems. The total damping force is commonly viewed as a super-
position of several phenomena including radiation damping appearing from
wave excitation, and several types of viscous damping due to vessel motion
relative to the surrounding fluid.

The basis for modeling hydrodynamical forces is Morison’s equation

τH = −Mij
dUj
dt −

1
2ρACij |Ui|Ui,where i, j ∈ [1, 2, ..., 6] (2.6)

from [40]. As quoted from [18], "for practical marine application, no known
model is better suited." Morison’s equation is not based on first principles,
but is rather a semi-empirical approach that covers the most dominant effects
for typical fluid properties and motion ranges. It includes damping due to
motion and radiation, but neglects the dependencies on Reynolds number
and vortex shedding in the lift direction. This simplification is valid when
the Froude number is small Fr = u√

gLpp
< 0.3. This implies, for a vessel

of 87.85 meters, that is valid for up speeds up to 26[ms ]. For more on this
claim, see [18].
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A modeling approach based on Morison’s equation is found in [13], but
with a somewhat differing notation and with additional damping phenomena
included. The notation from [13] will be applied from here on, where

τH , τR + τD, (2.7)

where

τR = −MAν̇r −CA(νr)νr −DP (νr)νr (2.8)
τD = −DS(νr)νr −DW (νr)νr −DM (νr)(νr), (2.9)

τR contains the forces appearing from wave excitation, while τH describes
the different viscous damping phenomena.

When a seagoing vessel is exposed to waves, it is forced into a high-frequency
harmonic forced motion, induced from pressure differences around the ves-
sel. The resulting forces and moments are dependent on the wave encounter
frequency ωe, i.e., the frequency that the waves hit the vessel with, depend-
ing on both the actual wave frequency and the vessel velocity, the accel-
eration of the vessel and the shape of the hull. As a result, these forces
can be interpreted as the result of an added mass which depends on the
wave encounter frequency, i.e., MA(ωe). This added mass is generally not
a symmetric matrix, i.e., MA(ωe) 6= MA(ωe)T . However, a common sim-
plification in maneuvering models, and for DP-applications, is to assume a
constant MA = limωe→0MA(ωe) and this constant MA is often symmet-
ric. Since the kinetic equations are given in the B frame, a coriolis term
CA is added to include the effects of the B frames acceleration. CA is
found using the same calculations as for CRB, but the guaranteed symmet-
ric MA = 1

2(MA + MT
A) is used for the calculation. This leads to the

following expressions

MA ,

−Xu̇ 0 0
0 −Yv̇ −Yṙ
0 −Nv̇ −Nṙ

 (2.10)

CA(νr) ,

 0 0 Yv̇vr + 1
2(Nv̇ + Yṙ)r

0 0 −Xu̇ur
−Yv̇vr − 1

2(Nv̇ + Yṙ)r Xu̇ur 0

 . (2.11)

The interactions between the waves and the vessel are generally well known
and the parameters of MA can be calculated using computer software or
estimated from experiments with scale models. A potential damping term
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DP (νr)νr from (2.8) is included to explain the energy which is carried away
by the waves and the surrounding fluid.

The latter part of (2.7) is the viscous damping. Several different phenom-
ena are described in (2.9) and all of them appear when the vessel is moving
relative to the fluid. These effects are much more difficult to calculate and
separate for practical considerations. As a result they are often lumped to-
gether with the potential damping in a general velocity dependent damping
term D(νr)νr.

Skin friction and vortex shedding are described as the most important hy-
drodynamic damping phenomena in [13]. Skin friction describes the friction
forces occuring between the fluid and the vessel hull. This is usually modeled
as a linear effect and is a dominating effect for low-frequency motion and low
velocities. Vortex shedding is also known as viscous quadratic damping or
eddy making and is the cause of cross-flow drag. This force appear because
the surrounding fluid is pushed around the vessel when it is moving relative
to the fluid, i.e., cross-flow.

Figure 2.4: Illustration of eddies resulting from vessel motion relative to
surrounding fluid. Courtesy of [8].

Since the hydrodynamic forces are impossible to measure, and difficult if
not impossible to separate, empirical modeling approaches using Taylor ex-
pansions are commonly used. Since the damping is dissipative, or in other
words passive, only odd terms should be included. The simple linearization
has been used succesfully for DP applications and other operations where
the vessel speed is low. Generally, inclusion of more terms leads to smaller
errors and thus increasing the range of velocities which the model is valid
for. A third-order approach was proposed by Abkowitz in 1963 [1], while
a series including quadratic modulus terms were developed by Fedyaevsky
and Sobolev [9] and Norrbin [44]. The wish for unifying control applications
[5], e.g., applying positioning control at higher velocities, has created a need
for more accurate descriptions of the damping forces, and as of late most
control applications include nonlinear damping. When choosing a descrip-
tion of the damping effects, parameter estimation should be performed with
both models and then choosing the best fit.
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The viscous damping terms can then be given by

D(νr) = DLνr +DNL(νr)νr (2.12)
= D(νr)νr,

where

DL =

−Xu 0 0
0 −Yv −Yr
0 −Nv −Nr

 , (2.13)

and the nonlinear damping is given as one of the following:

DNL(νr) =

−X|u|u|ur| 0 0
0 −Y|v|v|vr| − Y|r|v|r| −Y|v|r|vr| − Y|r|r|r|
0 −N|v|v|vr| −N|r|v|r| −N|v|r|vr| −N|r|r|r|


(2.14)

or

DNL(νr) =

−Xuuuu
2
r 0 0

0 −Yvvv2
r − Yvvrvrr −Yvrrvrr − Yrrrr2

0 −Nvvv
2
r −Nvvrvrr −Nvrrvrr −Nrrrr

2

 (2.15)

2.2.4 Model Parameters

Finding the model parameters is not a straight-forward task. The param-
eters of the inertia matrix are easily obtained by measurements, while the
added mass parameters can be calculated using strip-theory software such
as WAMIT or VERES (ShipX). When these matrices are known, the cori-
olis terms can be calculated using analytical methods. The real problem
consists in calculating the viscous damping parameters. The decoupled pa-
rameters can be obtained from simple regression analysis of vessel motion
data, while the coupled parameters in sway and yaw are more difficult to
obtain. Adaptive methods and online parameter estimation methods are
commonly used. It is time-consuming and difficult to perform parameter
estimation on full-scale vessels.

The parameters used in the simulation model in this thesis is found in [57].
Measurements, towing tests and adaptive control were performed with the
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scale model Cybership II to estimate the parameters. The damping forces
are described using a 2nd order modulus damping including an extra third
order term in surge. The parameters are summarized in, Table 2.3.

In practice, obtaining accurate parameters is a huge and difficult task, and
especially true for the damping parameters. Since they do not consider all
effects, they should actually be found anew at every sea-state and vessel
operation. As a result, simpler model descriptions are often used for vessel
control.

Figure 2.5: Picture of Cybership II. Courtesy of [4].

2.2.5 Scaling of Vessel Parameters and Variables

Scaling is a way to compare variables and parameters of differently sized
vessels, e.g., for comparing scaled models with the full-sized vessel. The
variables are commonly normalized to a dimensionless form by dividing with
the normalization variables relating to the SI-units of the variable. The
scaling systems are separated by the selection of normalization variables.

Two common scaling systems exist; the Prime system [45] and the Bis system
[44]. The Prime system was originally developed for maneuvering models,
and the normalization variable for velocity is simply the total vessel speed
U. As a result, the Prime-system can not be used for DP or other low-speed
applications where the vessel speed tends to 0.

The Bis scaling is based on vessel mass µρ∇ and length Lpp (perpendicular),
where ρ is the mass density of the fluid, and µ and ∇ describe the displace-
ment. It avoids making use of the vessel speed by defining the normalization

23



Parameter Value SI-units
m 23.800 kg
xG 0.046 m
Iz 1.760 kgm2

Xu̇ -2.0 kg
Yv̇ -10.0 kg
Yṙ -0.0 kgm
Nv̇ -0.0 kgm
Nṙ -1.0 kgm2/s
Xu -0.72253 kg/s
Yv -0.88965 kg/s
Yr -7.250 kgm/s
Nv 0.03130 kgm/s
Nr -1.900 kgm2/s
X|u|u -1.32742 kg/m
Xuuu -5.88643 kgs/m2

Y|v|v -36.47287 kg/m
Y|r|v -0.805 kg
Y|v|r -0.845 kg
Y|r|r -3.450 kgm
N|v|v 3.95645 kg
N|r|v 0.130 kgm
N|v|r 0.080 kgm
N|r|r -0.750 kgm2

Table 2.3: Parameters belonging to the scale-model Cybership II.
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parameter to time as
√
Lpp/g, where g is the gravitation acceleration con-

stant. The scaling parameters for velocity, acceleration, etc. are found as
combinations of these. The basic Bis scaling parameters are summarized in
2.4

SI-unit Scale parameter
kg µρ∇
m Lpp

s
√

Lpp
g

Table 2.4: Basic Bis/scaling parameters.

2.3 Disturbance Modeling and Unmodeled Dynam-
ics

A seagoing vessel will be affected by environmental disturbances due to
wind, waves and current. It is desirable to know the effects due to these dis-
turbances such that the control system can counteract them in an optimal
fashion. It is common to separate the disturbances in high-frequency and
low-frequency components, where it is generally not desired to counteract
the high-frequency component. Counteracting very quick and often oscilla-
tory motion is often not possible when considering actual thrust capabilities.
It would also often induce an unnecessary strain on the propulsion units.

2.3.1 Current

Current is implemented in the simulation model as 2 dimensional nonrota-
tional current modeled by

η̇c =

Vc cosβc
Vc sin βc

0

 , (2.16)

where Vc and βc are slowly-varying 1st-order Gauss-Markov processes given
by

V̇c + µ1(Vc − Vc0) = ω1 (2.17)
β̇c + µ2(βc − βc0) = ω2 (2.18)

where µ1, µ2 > 0 and Vc0 and βc0 are the mean values.
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Both of these variables are given relative to the NED-frame. In the simu-
lation model the vessel motion is affected by current through the hydrody-
namic damping.

2.3.2 Waves

This section on wave modeling is based on seakeeping theory and is based
on [27]. Waves are generated by wind and are described as developing or
fully developed sea. Fully developed seas appear when the wind conditions
have been stable over a period and consists of long, stable low-frequency
waves that are almost unidirectional. Developing seas, on the other hand,
are much more difficult to describe, as the wave composition will be domi-
nated by short crested waves with no single dominant frequency or direction.
The mathematical description of the sea state is given by a wave spectrum.
which is a stochastic description of the power distribution. It is typically
parameterized with the dominant wave height Hs and wave-frequency ω0.
Different wave-spectra are defined for different kinds of sea states and loca-
tions.

Here, a modified Pierson-Moskowitz spectrum S(ω) is combined with a
spreading spectrum to allow for several wave-directions. The spreading spec-
trum is defined with χ0 as the main wave direction. The wave-directions are
found from the range −π

2 ≤ (χ− χ0) ≤ π
2 .

Figure 2.6 shows how the power-distribution with regards to frequency and
wave-direction for the spectrum

S(ω, χ) = 2
π

cos2(χ− χ0)S(ω). (2.19)

The wave-induced forces are typically assumed to consist of a high-frequency
(HF) part and a low-frequency (LF) part also known as the 1st and 2nd order
wave-induced forces. They appear as HF oscillations and a more stable LF
drift force.

In seakeeping theory, it is common to model the total wave-induced force as a
superpositioning of the Froude-Krilov forces and the diffraction forces. The
Froude-Krilov forces are due to pressure differences on the wetted surface
of the hull from undisturbed waves. They are calculated by integrating
the pressure around the vessel hull. Strip-theory is a simplification of this
integation assuming that the vessel hull is divided into strips and summing
the force working on each of these strips. The diffraction force is the result
of the vessel disturbing the waves, i.e., the vessel stands in the way of the
waves.
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Figure 2.6: The plot shows the power distribution with regards to frequency
and wave-direction. Courtesy of [27].

A force-response amplitude operator (Force-RAO) relates wave-elevation and
wave-acceleration into forces affecting the vessel. The total wave-induced
force is then found by summing the effects of several sine waves, all with
different amplitude, frequency, direction and phase-shift. N frequencies are
picked from the range ∆ω. They are picked randomly to avoid repeating
wave elevation every 2π

∆ω seconds and the wave-amplitude is found from the
wave spectrum. But, a too large or small number of N should be avoided
since the total force is equal to the sum of the N waves. Here, a number of 60
waves have been found to be reasonable. If the waves are multi-directional,
a random set of M wave directions χ must be found as well. Figure 2.7
shows how the waves are superpositioned.

The total wave elevation in a fixed point is then found from

ζ(t) =
N∑
i=1

M∑
j=1

√
2S(ω, χ)∆ω∆χ sin(ωit+ εi), (2.20)

and the wave accelerations are found as
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Figure 2.7: The plot shows how several random sine-waves are combined.
Courtesy of [27].

a1(t) =
N∑
i=1

M∑
j=1

ω2
i

√
2S(ω, χ)∆ω∆χ cos(ωit+ εi) (2.21)

a3(t) =
N∑
i=1

M∑
j=1
−ω2

i

√
2S(ω, χ)∆ω∆χ cos(ωit+ εi) (2.22)

Assuming that the forces are distributed evenly along the vessel’s main di-
mension the Froude-Krilov forces can be found as

τFK =

ρV a1 cosχ0
ρV a1 sinχ0
ρV Da3

 . (2.23)

This is a crude simplified version of strip-theory, but is sufficiently accurate
for simulation purposes in this thesis. The 2nd order drift forces are modeled
as

τWD =

 1
8ρg(Rx(ω)ζ)2B cosχ0

1
8ρg(Ry(ω)ζ)2Lpp sinχ0
1
8ρg(Rψ(ω)ζ)2BLppD

 (2.24)
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,

where Rx(ω), Ry(ω), and Rψ(ω) are reflection coefficients.

Because these forces are calculated relative to the NED-frame, the wave-
direction must also be found from χ = χN − ψ. The equations for wave-
elevation (2.20) and wave-accelerations (2.21), (2.22) assume that the ves-
sel’s center of gravity stays at a constant point. In addition the wave en-
counter frequency is considered independent of total vessel speed U. These
assumptions are fitting for station-keeping, but is obviously false when per-
forming trajectory-following. The waves are nevertheless modeled in this
fashion for both operations.

The total force from the wave-excitation are then given as

τW = RT (ψ)(τFK + τWD). (2.25)

2.3.3 Unmodeled dynamics

An actual vessel is obviously also affected by disturbing forces due to wind.
The wind-speed and direction are usually measured and the disturbing forces
are then approximated from a look-up table. The approximated forces are
then used for feed-forward control. This means that they would be han-
dled in the same way regardless of controller design and are therefore not
considered.

Another important aspect is how the thrust τ appears. They are typically
the sum of several thrusters, propellers and other propulsion units. The
control of these propulsion units and the distribution of forces between them
is done in a thrust-allocation system. In addition the propulsion units will
have dynamics such as saturation limits, time-delays and coupled effects.
None of these effects are considered in this work.

2.4 Complete model

This leads to the following complete vessel model used for simulation

η̇ = R(ψ)Tν (2.26)
MRBν̇ +MAν̇r +CRB(ν)ν +CA(νr)νr +D(νr)νr = τ + τW +w,

(2.27)

where the relative speed νr and its derivative are defined as
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νr , ν −R(ψ)T η̇c

ν̇r = ν̇ − d
dt
(
R(ψ)T η̇c

)
l η̈c = 0

= d
dt
(
R(ψ)T

)
η̇c

.
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Chapter 3

Estimation

Knowing a system’s state is essential when deciding upcoming control ac-
tions. Since most systems have a dual nature, consisting of hidden states
and measured variables, estimation is typically necessary to obtain full state
knowlegde. Models are developed to explain how the states develop over time
and how they relate to the measurements. There will always be unmodeled
dynamics. The main reasons for this are limited knowledge of the physical
properties, and by choice due to simplifications. These unmodeled dynamics
can be handled mathematically in two ways, deterministic as a perturbed
systems or in a stochastic fashion. The first method is much used in non-
linear control and robust stability, but will not be mentioned here, whilst
the second has found great usage in state estimation. From a stochastic
viewpoint the unmodeled dynamics are denominated as noise. The noise
is then described by stochastic processes, often depicted as additive white
gaussian noise (AWGN) or as augmented states driven by AWGN. Stochas-
tic variables are also known as random variables (RV). A stochastic variable
is defined by its probability density function (pdf)1 and a stochastic process
is defined by its model and the pdfs of the contributing RVs.

[17] describes estimation as the problem of extracting information from data,
i.e., separating the signal from the noise. The estimation problem is further
divided into three classes; filtering, smoothing, and prediction. The filter-
ing problem consists of estimating the optimal value at current time given
all measurements up to and including the current one. Smoothing is esti-
mating something that has happened prior to the current measurement and
prediction is estimating a future variable.

1NB! Note the difference between probability density function (pdf) and its integrated
counterpart the probability distribution function (PDF). For details, see Appendix C.
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3.1 Discrete Systems

All physical dynamics are continous2, but computer calculations are inher-
ently discrete. As such, a discretized model xk+1 = f(xk,uk,dk) must be
found from ẋ(t) = f(x,u,d). This discretization is usually performed as a
simple forward euler integration, where T is the discrete time step.

The forward Euler integration is given as

ẋ = f(x,u)
l Discrete version, Euler’s method

xk+1 = xk + Tf(xk,uk), (3.1)

where xk is the discretized analogue of the continous x(kT ). A linearized
version can be found as xk+1 = F kxk +Bkuk +Lkdk, where

F k = (I + T
d

dx (f(x,u,d)) |x=xk,u=uk,d=dk) (3.2)

Bk = T
d

du (f(x,u,d)) |x=xk,u=uk,d=dk (3.3)

Lk = T
d

dd (f(x,u,d)) |x=xk,u=uk,d=dk . (3.4)

The numerical integration errors must be kept within an acceptably large
bound. If the system has dynamics that are dominantly faster than T,
divergence problems, i.e., instability, can occur. Two typical methods to
increase numerical accuracy, and thus the numerical stability, is to shorten
the sample time or use more complex discretization schemes, e.g., Runge-
Kutta methods. The much used fourth order Runge-Kutta is given by

2Unless a quantum-physics view of the world is taken, but this would also lead to
the potentially catastrophic loss of causality through nonlocality. Luckily, the events we
assume causal have a probability of almost 1.
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ẋ = f(x,u)
l Discrete version, Runge Kutta 4 method

k1 = f(xk,uk)

k2 = f(xk + Tk1
2 ,uk)

k3 = f(xk + Tk2
2 ,uk)

k4 = f(xk + Tk3,uk)

xk+1 = xk + T (k1 + 2k2 + 2k3 + k4)
6 . (3.5)

More information on numerical stability and Runge-Kutta methods can be
found in [7].

3.2 Probabalistic Inference

Probabalistic inference is defined in [64] as "the problem of estimating the
hidden variables (states and parameters) of a system in an optimal and
consistent fashion (using probability theory) given noisy or incomplete ob-
servations". When states and parameters are estimated simultaneously it is
known as dual estimation.

The systems that are considered are 1. order markov processes described by
nonlinear discrete-time dynamic state-space models

xk+1 = f(xk,uk,wk) (3.6)
yk = h(xk,vk), (3.7)

where xk is the hidden system state, yk the measured variables, uk the
exogenous inputs, and vk and wk are stochastic noice processes given by
their respective distributions p(vk) and p(wk).

The conditional pdf p(xk | xk−1) is then given by (3.6) and p(vk) while
p(yk | xk) is given by (3.7) and p(wk). The discrete system can then be
described as a bayesian network as shown in Figure 3.1.
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Figure 3.1: The discrete probabilistic system depicting the relationship be-
tween states and measurements. Courtesy of [64]

3.3 Recursive Filtering

Recursive filtering is a sequential filtering process where only the current
measurement and previous state estimate are used to compute the current
estimate. Compared with iterative batch methods, they trade some accu-
racy for a significant reduction in memory demands and computation cost,
allowing on-line estimation.

One choice of filter estimate is the conditional mean,

E[xk | yk] =
∫
xkp(xk | yk) dxk, (3.8)

also known as maximum likelihood.

The conditional mean can be considered as a statistic least squares estimate.
Calculating E[xk | yk] is done in two steps, a time-update step (prediction)
calculated prior to obtaining the current measurement and a corrector step
(filtering) after the the measurement is available. They are known as the a
priori estimate x̂−k and the a posteriori estimate x̂+

k . Mathematically they
are defined as

x̂−k , E[xk | yk−1] (3.9)
x̂+
k , E[xk | yk]. (3.10)

We wish to use this in a recursive (sequential) setting such that the estimate
is updated using only the previous estimate at every time step. As previously
mentioned, the alternative is to propagate all previous measurements and
performing a much more computational demanding integral calculation.
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If x is a 1. order Markov process, the recursive estimate will be identical
with the batch estimate. If x is a Markov process equation (3.8) shows that
the recursive estimation task consists of finding the posterior distribution
function p(xk | yk) from p(xk−1 | yk−1). Given p(xk | xk−1) and p(yk | xk)
and the following bayesian equations

p(xk | xk−1) =
∫
δ(xk − f(xk−1,uk−1,vk−1)) dvk (3.11)

p(yk | xk) =
∫
δ(yk − h(xk,wk)) dwk (3.12)

p(xk | yk−1) =
∫
p(xk | xk−1)p(xk | yk−1) dxk−1 (3.13)

p(xk | yk) =
p(yk | xk)p(xk | yk−1)∫

p(yk | xk)p(xk | yk−1) dxk−1
. (3.14)

the optimal posterior estimate is found from (3.8).

Calculating (3.14) proves difficult in general, but is tractable for simple cases
such as linear gaussian systems. If the system is nonlinear or the noise is
neither gaussian nor uniformly distributed, approximations are needed. Sev-
eral approximative methods are known. One method is to approximate the
values of the Bayesian integrals (3.11) through (3.14) using finite sums, an-
other to approximate the disturbing noise as gaussian or approximating the
general system f and h with linear functions. A third way, which is the fo-
cus of this chapter, is to directly approximate the transformed distributions
of the non-linear system’s states. Option two and three are both contained
in the Kalman filter approach and will be presented here, while the first will
not be considered here.

3.4 Introduction to the Kalman Filter

The Kalman filter is a recursive linear state estimator. New estimates are
made from stochastic calculations and a linear feedback of the innovation
error. The innovation error is the deviation between the measurement and
an estimated measurement ỹk = yk− ŷ−k . The Kalman filter framework can
be viewed as a stochastic extension of least squares methods and recursive
Bayesian estimation. It consists of a set of simple equations and has been
the most applied state-estimator for the last 40 years. In addition to provid-
ing a state estimate, the filter also calculates a covariance matrix P+

k that
describes the filter’s measure of the quality of the estimate. The covariance
also shows how states are statistically coupled. The Kalman filter has a
recursive structure as given in Figure 3.2.
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Figure 3.2: The Kalman filter works by recursively updating the estimate
and covariance.

3.4.1 Development of the Kalman Filter

The Kalman filter was developed by Rudolf E. Kalman in [31] as an extension
to the Wiener filter proposed by Norbert Wiener. Where the Wiener filter
was a single input single output filter, the Kalman filter was a multiple input
multiple output filter. He also showed that the estimation problem was the
dual of the noise-free regulator problem. An important assumption is that
the measurement errors and model-mismatch problems can be attributed to
random processes.

Kalmans goal was to develop an optimal linear recursive estimator that
minimized the mean square error (MMSE), Jk, of the estimate. The error
vector is defined as x̃k , xk − x̂+

k and Jk is given by

Jk , E[x̃Tk x̃k]
= TrE[x̃kx̃Tk ]
= Tr(P+

k ). (3.15)

This is similar to the projections performed in the deterministic least-squares
method. As mentioned previously, Kalman filtering is based on recursive
Bayesian estimation with some added assumptions:

1. Consistent minimum variance estimators of the RVs can be recursively
maintained from the latest mean and covariance.
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2. The a posteriori estimate is chosen as a linear function of the a priori
estimation and the new measurement.

3. The system model must be known and observable.

Assumption 1 implies that the pdfs used by the recursive bayesian esti-
mation can be approximated by recursively updating the stochastic first
order moment and the stochastic second order central moment of the es-
timate. Assumption 2 defines the structure of the recursive estimator as
x̂+
k = x̂−k +Kk(yk− ŷ−k ). The third assumption states that there must be a

observable model of the system and the noise characteristics. An observable
model is one where the development of the states can be uniquely calculated
from the initial value of states, the applied inputs and the measurements.

As a recursive estimator, the Kalman filter consists of a predictor step

x̂−k = E[xk | yk−1] = E[f(xk−1,uk−1,vk−1)] (3.16)

and a corrector step (statistic estimator)

x̂+
k = x̂−k +Kk(yk − ŷ−k ), (3.17)

where

ŷ−k = E[h(xk,wk)]. (3.18)

The remaining part of the Kalman filter are equations that calculate the
aposteriori error covariance matrix P+

k and the Kalman gain Kk.

The following derivation of the Kalman filter is known as the statistical
derivation and is independent of the system structure, i.e. it is not assumed
that the state-update f and measurement h equations are linear. Only the
assumptions made by Kalman are needed. It is found in the Appendix in
[64] and in Chapter 10.5.1 in [56].

P+
k = E[x̃kx̃Tk ] (3.19)

= E[(xk − x̂+
k )(xk − x̂+

k )T ]
l x̂+

k = x̂−k +Kk(yk − ŷ−k )
= E[{(xk − x̂−k )−Kk(yk − ŷ−k )}{(xk − x̂−k )−Kk(yk − ŷ−k )}T ]
= E[{xk − x̂−k −Kk(yk − ŷ−k )}{(xk − x̂−k )T + (yk − ŷ−k )TKT

k }]
= P−k − P x̃kỹkK

T
k −KkP x̃kỹk +KkP ỹkỹkK

T
k . (3.20)
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We wish to find the Kk that minimize the trace of (3.20). It is found from

∂Jk
∂Kk

= 0 (3.21)

l Solve for Kk

Kk = P x̃kỹk(P ỹkỹk)−1. (3.22)

This Kk is inserted into (3.20) to get

P+
k = P−k −KkP ỹkỹkK

T
k . (3.23)

This derivation leads to a set of equations, (3.23) and (3.22), that differs
from those typically developed for linear systems, but are mathematically
identical. This derivation is more suited to show how gaussian approxima-
tive methods can be implemented in the Kalman filter framework. If the
system is linear, then (3.16), (3.17) and (3.20) can be evaluated analytically.
Otherwise they generally have to be approximated. Two common ways of
doing this will be presented later, the extended Kalman filter (EKF) and the
unscented Kalman filter (UKF). It is important to note that the Kalman fil-
ter is not the optimal solution to the nonlinear estimation problem, as it is
to the linear estimation problem, but is often the best linear estimator. The
optimality discussion is of course strictly theoretical as model mismatch,
limited numerical accuracy and several other calculational problems will ap-
pear when performing estimation on real systems. But, the extensive use of
the EKF shows that the Kalman filter extends nicely to nonlinear problems
in spite of its assumptions.

3.4.2 Implementation Issues with the Kalman Filter

The Kalman filter is a theoretical algorithm and as such makes some im-
possible assumptions. Firstly, it assumes that no model-mismatch occurs,
including parameter values. Further, optimality is a property of the theoret-
ical filter, same as stability is a property of mathematical equations. Luck-
ily, the filter is generally robust enough to provide converging estimates for
most problems. Another important source of error is finite precision arith-
metics on computers. Several methods have been implemented to improve
robustness for arithmetic problems and model errors. The most important
are implementing fictious noise, square root filtering, symmetrizing or other
ways of increasing arithmetic presision. More on this can be found in [56].
Observability is a fundamental requirement; if the given model is not ob-
servable, another model description must be defined or other measurements
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must be obtained. Kalman found simple tests for evaluating observability
in [31], while no simple test exists for nonlinear systems.

Divergence, or unstable estimation, is another issue arising in implemen-
tations. This appears when the estimator is not consistent, generally be-
cause the covariance is under-estimated. Common reasons for this is model-
mismatch, poor tuning or poor initialization of the filter. The EKF struggles
a lot with model-mismatch when updating the covariance and are often la-
beled as difficult to tune and troubled with divergence problems.

3.5 Kalman Filter for Linear Systems

The Kalman filter is the optimal solution to

minE[εTk εk]

for linear systems if wk and vk are zero-mean white Gaussian uncorrelated
noise and the optimal linear solution if they are zero-mean white and un-
correlated. The latter part is often misunderstood as if the Kalman filter
is only optimal if the noise is Gaussian. The Kalman filter is still the op-
timal linear filter if the assumptions hold. There are different equivalent
expressions for updating the Kalman gain and the error covariance matrix
for linear systems, the ones presented here are common and known for their
good numerical properties.

3.5.1 Linear Discrete-Time System Kalman Filter

1. Initialize the system

(a) Model the system

xk = F k−1xk−1 +Bkuk−1 +Lkvk−1 (3.24)
yk = Hkxk +Dkwk (3.25)

E[wk] = 0 (3.26)
E[vk] = 0 (3.27)

E[vkvTj ] = Rkδk−j (3.28)
E[wkw

T
j ] = Qkδk−j (3.29)

E[vkwT
k ] = 0 (3.30)
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(b) Initialize the initial guess of estimation values x̂+
0 and covariance

matrix P+
0 .

x+
0 = E[x0] (3.31)

P+
0 = E[(x0 − x+

0 )(x0 − x+
0 )T ] (3.32)

2. For each time step k = 1, 2, ..., calculate the updated estimates and
covariance

(a) Predictor step

x−k = F k−1x
+
k−1 +Bkuk−1 (3.33)

P−k = F k−1P
+
k−1F

T
k−1 +Lk−1Qk−1L

T
k−1 (3.34)

(b) Correction step

Kk = P−kH
T
k (HkP

−
kH

T
k +DkRkD

T
k )−1 (3.35)

x+
k = x−k +Kk(yk −Hkx

−
k ) (3.36)

P+
k = (I −KkHk)P−k (I −KkHk)T +KkRkK

T
k (3.37)

3.6 The Extended Kalman Filter

The Extended Kalman filter (EKF) algorithm is the simplest extension of
the Kalman filter algorithm for nonlinear systems. It is based directly on
the original derivation of the Kalman filter, but approximates the nonlinear
transformations of wk and vk through fk and hk. The time-update and
measurement equations are implemented in their nonlinear form, but the
covariance is propagated through a linearized approximation. This simplifi-
cation is poor when the nonlinearities are severe and divergence is a common
problem. Severe nonlinearities basically entails that the first of Kalmans as-
sumptions are not fulfilled. Due to these problems, the EKF is known as
troublesome and difficult to tune. It will also be difficult to decide whether
the problems are due to poor tuning or simply from the structure of the
problem.

Yet, the EKF has been the de facto standard for non-linear estimation since
the 60s. A reason for this is that the theory of nonlinear estimation have not
been sufficiently developed combined with the fact that nonlinear problems
are much more difficult to generalize than linear problems. Linearization is
a well known approach to handling nonlinearities and for many problems
it provides sufficient accuracy. The linearisation errors in the EKF can be
decreased by implementing higher order linearizations, shorter sample-times
or iterated kalman filtering, but all of these methods increase the computa-
tional expense. EKF is approximately as computationally expensive as the
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linear Kalman filter, but calculating the Jacobian can be a difficult mathe-
matical operation.

3.6.1 Nonlinear Discrete-Time System Extended Kalman Fil-
ter

1. Initializing

(a) Model the system

xk = fk−1(xk−1,uk−1,vk−1) (3.38)
yk = hk(xk,wk) (3.39)

E[wk] = 0 (3.40)
E[vk] = 0 (3.41)

E[vkvTj ] = Rkδk−j (3.42)
E[wkw

T
j ] = Qkδk−j (3.43)

E[wkv
T
k ] = 0 (3.44)

(b) Initialize the initial guess of estimation values x̂+
0 and covariance

matrix P+
0 .

x̂+
0 = E[x0] (3.45)

P+
0 = E[(x0 − x̂+

0 )(x0 − x̂+
0 )T ] (3.46)

2. For each time step k = 1, 2, ..., calculate the updated estimates and
covariance

(a) Predictor step

F k−1 = ∂

∂x
(fk−1(x̂k−1,uk−1,wk−1))|x=x̂+

k−1,u=uk,w=wk (3.47)

Lk−1 = ∂

∂w
(fk−1(x̂k−1,uk−1,wk−1))|x=x̂+

k−1,u=uk,w=wk (3.48)

P−k = F k−1P
+
k−1F

T
k−1 +Lk−1Qk−1L

T
k−1 (3.49)

x̂−k = fk−1(x̂+
k−1,uk−1,0) (3.50)

(b) Correction step

Hk−1 = ∂

∂x
(hk(xk,vk))|x=x̂−

k
,v=vk (3.51)

Dk−1 = ∂

∂v
(hk(xk,vk))|x=x̂−

k
,v=vk (3.52)

Kk = P−kH
T
k (HkP

−
kH

T
k +DkRkD

T
k )−1 (3.53)

x̂+
k = x̂−k +Kk(yk − hk(x̂−k ,0)) (3.54)

P+
k = (I −KkHk)P−k (I −KkHk)T +KkRkK

T
k (3.55)
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3.7 The Unscented Kalman Filter

The motivation for developing the UKF was improved treatment of nonlin-
ear systems in Kalman filters. The goal was to find an approximate gaus-
sian method that was derivativeless and yet computationally comparable to
existing methods. Several differential-free Monte Carlo methods were devel-
oped, e.g., Ensemble Kalman Filter, but they were difficult to implement for
on-line estimation due to a high computational cost. They approximated
x+
k and P+

k by selecting many random points, transforming them through
the nonlinear function and then findind the mean and covariance of the
transformed points. Julier and Uhlmann imagined that by finding a specific
collection of points they could achieve similar accuracy with fewer points.
This lead to the development of the unscented transform.

UKF was first presented in [28]. It is still in an initial phase of implementa-
tion, but is used in an increasingly number of problems that was previously
solved by the EKF. It was the subject of R. van der Merwe’s PhD degree
[64] which compared it with other state estimators as well as applied it for
navigational estimation. In addition, one Masters Thesis[12] at Department
of Engineering Cybernetics at NTNU submitted in 2007 implemented the
filter for use with sensor integration for underwater navigation.

3.7.1 The Scaled Unscented Transform

The unscented transform is a method to approximate the transformations
of RVs through nonlinear systems. Especially it calculates the transform of
the mean and covariance with up to fourth order accuracy., i.e., as accurate
as a fourth order truncated taylor expansion. This is the same precision as
truncated second order Gauss filter. It also seeks to estimate the covariance
matrix in a consistent, and as such a more conservative, matter such that the
covariance is never underestimated. Mathematically, consistency is given as
(3.56). This is essential, as the lack of consistency was one of EKF’s great
deficiencies,

Tr[P ỹkỹk − E[(yk − ŷk)(yk − ŷk)T ]] ≤ 0. (3.56)

An efficient filter implementation will have a minimal value on the right-
hand side of (3.56).

The scaled unscented transform is an extension of the unstended transform
first described in [29].

A transformation of variables x through function h into y the scaled un-
scented transform is performed as follows:
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1. Choose a set of ns = 2nx+ 1 points that capture the mean and covari-
ance of x ∈ Rnx

2. Transform them through the function h

3. Calculate the weight parameters Wm
i and W c

i , where i = 1, 2, ..., ns

4. Approximate the statistics of y as the statistics of the transformed
points

The selected points are named sigma points and are found using the scaled
unscented transform

X =
[
x̄ x̄+ γ

√
P x x̄− γ

√
P x

]
(3.57)

γ = α
√
L+ κ (3.58)

W c
0 = λ

L+ λ
(3.59)

Wm
0 = λ

L+ λ
+ (1− α2 + β) (3.60)

Wm
i = W c

i = 1
2(L+ λ) , i ∈ [1, 2L]. (3.61)

The estimates and covariances are then approximated as

Yk|k−1 = h(X x−
k|k−1) (3.62)

ŷ−k =
2L∑
i=0

Wm
i Y i,k|k−1 (3.63)

P ỹỹ =
2L∑
i=0

W c
i (Y i,k|k−1 − ŷ−k )(Y i,k|k−1 − ŷ−k )T (3.64)

P x̃ỹ =
2L∑
i=0

W c
i (X x

i,k|k−1 − x̂
−
k )(Y i,k|k−1 − ŷ−k )T , (3.65)

where i denotes the column number.

3.7.2 Nonlinear Discrete-Time System Additive Noise Un-
scented Kalman Filter

The additive noise case is a very common special case of the UKF. It can
be employed anytime the system can be modeled as
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xk = fk−1(xk−1,uk−1) +wk−1 (3.66)
yk = hk(xk) + vk. (3.67)

The equations are similar to the linear Kalman filter since no additional state
augmentation occurs as would be the case for general noise implementations.
The performance and estimation accuracy will be similar to what one get if
implementing an the general algorithm. A reduction in calculation time is
expected since fewer sigma-points are created.

1. Initializing

(a) Model the system

xk = fk−1(xk−1,uk−1) +wk−1 (3.68)
yk = hk(xk) + vk (3.69)

E[wk] = 0 (3.70)
E[vk] = 0 (3.71)

E[vkvTj ] = Rkδk−j (3.72)
E[wkw

T
j ] = Qkδk−j (3.73)

E[vkwT
j ] = 0k (3.74)

(b) Initialize the initial guess of estimation values x̂a+
0 and covariance

matrix P a+
0 .

x+
0 = E[x0] (3.75)

P+
0 = E[(x0 − x+

0 )(x−0 x
+
0 )T ] (3.76)

2. For each time step k = 1, 2, ..., calculate the updated estimates and
covariance

(a) Predictor step
i. Calculate sigma points and weight factors

X k−1 =
[
x+
k−1 x+

k−1 + γ
√
P k−1 x+

k−1 − γ
√
P k−1

]
(3.77)

W c
0 = λ

L+ λ
(3.78)

Wm
0 = λ

L+ λ
+ (1− α2 + β) (3.79)

Wm
i = W c

i = 1
2(L+ λ) , i ∈ [1, 2L] (3.80)
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ii. Time-update equations

X ∗−k|k−1 = f(X k−1,uk−1,0) (3.81)

x̂−k =
2L∑
i=0

Wm
i X ∗−i,k|k−1 (3.82)

P−k =
2L∑
i=0

W c
i (X ∗−i,k|k−1 − x̂

−
k )(X ∗−i,k|k−1 − x̂

−
k )T +Qk−1

(3.83)

(b) Correction step
i. Recalculate sigma points

X k|k−1 =
[
x̂−k x̂−k + γ

√
P−k x̂−k − γ

√
P−k

]
(3.84)

ii. Measurement update

Yk|k−1 = h(X ∗−i,k|k−1,0) (3.85)

ŷ−k =
2L∑
i=0

Wm
i Y i,k|k−1 (3.86)

P ỹkỹk =
2L∑
i=0

W c
i (Y i,k|k−1 − ŷ−k )(Y i,k|k−1 − ŷ−k )T +Rk

(3.87)

P x̃kỹk =
2L∑
i=0

W c
i (X i,k|k−1 − x̂−k )(Y i,k|k−1 − ŷ−k )T (3.88)

Kk = P x̃kỹkP
−1
ỹkỹk

(3.89)
x+
k = x−k −Kk(yk − ŷ−k ) (3.90)

P+
k = P−k −KkP ỹkỹkK

T
k (3.91)

3.8 Tuning of UKF

Tuning of a Kalman filter relates to modeling the stochastic processes affect-
ing the evaluated system and approximating the initial state of the system.
This is usually performed in a trial and error setting, but adaptive, i.e.,
self-tuning, methods exist [34], [59].

If the initial state of the system is unknown, it is often simply set to zero with
an accompanying high valued initial state covariance matrix, otherwise the
best estimate is used as an initial value and the covariance is set as a diagonal
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matrix, i.e., only variances are assumed, that expresses the uncertainty of
this estimate, e.g., if a state is assumed to be within the range 2 ± 2 an
initial value of 2 is used and the variance is chosen as a value larger than 22.

The kalman filter should be tuned to be robust enough to compensate for ini-
tial errors. By introducing fictitious random processes a robustness towards
model error is achieved. The general tuning problem therefore consists of
defining the noise covariance matrices Q and R such that the filter achieves
satisfactory robust behaviour. They are usually diagonal which implies that
each state and each measurement is affected by its own random additive vari-
able and larger values relates so larger degree of uncertainty. The weighting
of Q related to R is a simple way to express what we are most certain of;
the predictor step using the model or the corrector step depending on the
measurements. The initial values of the system covariance must also be ap-
proximated, but these can be simply set high if they are unknown, similar
to the approximated initial state values.

It is quite simple to find the parameters belonging to R if the estimated
system can be kept in a fixed state, as they then are found directly as the
covariance of the measurement noise, i.e., if there is no state deviation the
entire measured covariance is due to measurement noise. The parameters
belonging to Q on the other hand are much more difficult to obtain, and
this is why the Kalman filter is known as difficult to tune. They must either
be tuned using a combination of model knowlegde and trial and error or via
adaptive methods that estimate the covariances while performing the actual
estimation.

The discrete prediction step depends on the sample time, and as such, the
sample time could also be viewed as a tuning coefficient. The accuracy of
the linearization in EKF is highly correlated with the numerical accuracy
of the discrete integrator, which again is directly depending on the sample
time. Shorter sample times will lead to a higher accuracy, but will increase
the number of function evaluations. Iterative Kalman filter approaches exist
where the the kalman filter sample time is smaller than the actual time be-
tween two sets of measurements [33]. Measurement values are then assumed
to be constant during the time it takes for them to be updated.

When tuning the UKF, additional tuning parameters are found in the un-
scented transform. Three variables α, β, and κ can be chosen to influence
the selection of sigma points. α is a variable that determines the spread of
the sigma points around x̄, while κ is used to assure positive-definiteness of
the calculated covariances. Usual values for the two variables are 0 ≤ α ≤ 1
and κ = 0. The β variable is used to incorporate knowlegde of the RVs
distribution, β = 2 is optimal for gaussian processes.
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3.9 Dual Estimation

Dual estimation is the problem of estimating hidden states and unknown
parameters simoultaneously. Two approaches exist within the Kalman filter
framework and they are known as joint Kalman filtering and dual Kalman
filtering [41]. Both approaches lead to nonlinear equations so EKF or UKF
must be used for the estimations.

Joint kalman filtering implies augmenting the state estimation vector with
the unknown parameters, and estimating the states and the parameters
within the same Kalman filter. This leads to an approach with a strong
stochastic coupling between the states and the parameters and have the best
theoretical properties [64]. Dual Kalman filters are applied if one wishes to
stochastically decouple the parameters and states [19], e.g., if the param-
eters are completely unknown, and works by estimating the states in one
Kalman filter using the previous best estimate of the parameters as known,
while the parameters are estimated in its own Kalman filter using the pre-
vious best estimate of the state as known. Otherwise the Kalman filters are
implemented as usual.

Figure 3.9 illustrates the concepts of joint and dual Kalman filtering.

The parameter dynamics are modeled as random walks,

pk+1 = pk + rk (3.92)
dk = gxk,pk + ek (3.93)

,

where rk and ek are RV and dk is a measurement related to the parameters,
quite often it is the same measurement as used for the state estimation.
It has been shown that it is advantageous to use UKF instead of EKF for
parameter estimation even though the time-update function (3.92) is linear,
this is due to the nonlinear measurement function. The UKF also includes
stochastic information lost in the linearization process which leads to more
robust estimation behaviour.

The measurement noise covariance Re cancels out of the algorithm when
it is diagonal, as it almost always is, and hence can be set arbitrarly, e.g.,
Re = kI, where k is a constant. A diagonal Re implies that the parameters
pk are independent. Three approaches on how to tune the covariance Rr
describing rk in the parameter estimation are given in [64].

• Set Rr as a fixed diagonal matrix. This leads to a tracking approach
and should be used if the parameter is known to change value. Large
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values lead to a high weight on the newest measurements. If the param-
eter is constant, a similar approach could be used by slowly decreasing
the value towards zero as the parameter converges towards the true
value.

• Set Rr = (λ−RLS1 − 1)Pwk , where0 < λRLS ≤ 1 and Pwk is the co-
variance a posterori covariance matrix calculated in the Kalman fil-
ter. This approach lets the Kalman filter control the noise covariance,
meaning that the covariance is assumed to be larger, and thus allows
faster changes, when the Kalman filter estimates its own estimate of
the parameter to be poor.

• Set

Rr = (1+αRM )Rrk−1+αRMKk

[
dk − g(xk, p̂−k

] [
dk − g(xk, p̂−k

]T
KT

k

(3.94)
. This approach is known as the Robbins-Monro stochastic approxi-
mation scheme and assumes that the covariance of the Kalman update
step should be consistent with the actual update model.

3.10 Comparison of Linearized Transformation and
Unscented Transformation

The approximations of the stochastic transformations are the only differing
evalution in when comparing the EKF with the additive noise UKF algo-
rithm. Thus, when comparing EKF and the UKF it is natural comparing
them. Here, a nonlinear transformation from polar to cartesian coordinates
are performed to demonstrate the accuracy of the unscented transform com-
pared with the linearized transform.

The transformation is given as

y1 = x1 cos(x2) (3.95)
y2 = x1 sin(x2). (3.96)

The comparison is down with x1 uniformly distributed between 0.99 and
1.01 and x2 uniformly distributed between ±0.35 rad.

Figure 3.4 shows how the mean and covariance is approximated with a lin-
earized transformation and the unscented transform. It is easy to see that
the linearization is miscalculates both the mean and the covariance while the
unscented transform is unbiased and consistent. The unscented transform
could probably benefit from tuning though, as the estimated covariance is
unnecessarily large.
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Another important issue to address, is the linearization approach can stochas-
tically decouple states that are inherently coupled. This will in some cases
lead to a Kalman gain that is not controllable. An example based on the
estimation of sea current from vessel motion using the model developed in
Chapter 2.

Consider the vessel system given by (2.26) and (2.27). The current is also
estimated and it is modeled as two separate velocities, one in surge direc-
tion and the other in sway direction relative to the NED-frame. No other
disturbances are included. An augmented state vector consisting of x and
d is created where

x = [η ν]T (3.97)
d = [ẋc ẏc]T . (3.98)

The current states are assumed to be random walks

ḋ =
[
ω1
ω2

]
. (3.99)

where ω1 and ω2 are RVs.

The linearized dynamics of the system is then given by

[
ẋ

ḋ

]
= F

[
x
d

]
+Lw (3.100)

y = H

[
x
d

]
+Dv, (3.101)

where

F =
[
F xx F xd

F dx F dd

]
(3.102)

is the system Jacobian. In addition, we know that the other system matrices
are given by
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L =
[
0 0 0 0 1 0
0 0 0 0 0 1

]T
(3.103)

H =

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0

 (3.104)

D =

1 0 0
0 1 0
0 0 1

 (3.105)

F dx = 0 ∈ R2x6 (3.106)
F dd = 0 ∈ R2x2 (3.107)
F xx ∈ R6x6 (3.108)
F xd ∈ R6x2. (3.109)

The following calculations do not depend on the actual parameter contents
of F xx and F dx, but we know from evaluations in matlab that the linearized
system is observable and this is sufficient. We will here show that the ele-
ments of the Kalman gain that relate to the current estimate will always be
zero. Expressed differently, this implies that the stochastic coupling between
the current and the position of the vessel is lost.

As shown previously, the calculation of the Kalman gain is done by recur-
sively updating a covariance. Given a previous a posteriori covariance

P+
k =

[
P+
xx,k P+

xd,k

P+
dx,k P+

dd,k

]
, (3.110)

the current Kalman-gain Kk is found from

P−k+1 = F kP
+
k F

T
k +LRkL

T

=
[
(F xxP

+
xx + F xdP

+
dx)F xx (F xxP

+
xx + F xdP

+
dx)F T

dx

(F dxP
+
xx + F ddP

+
dx)F xx (F dxP

+
xx + F ddP

+
dx)F T

dx

]
+[

(F xxP
+
xd + F xdP

+
dd)F

T
xd (F xxP

+
xd + F xdP

+
dd)F dd

(F dxP
+
xd + F ddP

+
dd)F

T
xd (F dxP

+
xd + F ddP

+
dd)F dd

]
+

LRkL
T (3.111)

Kk = P−k+1H
T
k (HP−k+1H

T +DRkD
T )−1. (3.112)

The elements that are marked with red in (3.111) are zero-matrices for the
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evaluated system. Inserted the specific matrices found for the vessel system
we find the covariance and the Kalman gain as

P−k+1 =
[
(F xxP

+
xx + F xdP

+
dx)F xx 06x2

02x6 02x2

]
+
[
0 0
0 Rk

]
(3.113)

Kk+1 = P−k+1(1 : 8, 1 : 3)(P−k+1(1 : 3, 1 : 3) +Qk)−1, (3.114)

where (3.113) shows that the covariance is block diagonal and that the ves-
sel states are decoupled from the current states. As is seen in (3.114) this
means that no feedback occurs from the measurements of vessel state into
the current estimate. It is important to note that this is not an observability
problem as the system is locally observable at every time-step. Yet, (3.111)
shows that this could be rectified by including disturbance-dynamics similar
to (2.17) and (2.18) such that F dd is non-zero. This is however not neces-
sarily desired, as it would demand extra tuning to find the mean-velocities
uc0 and vc0 or need extra added ficticious noise. The approach of adding
fictitious disturbance dynamics have been shown to not work in 5.4, but
it could turn out to work for other tuning parameters. The deviation in
current estimation leads to extreme deviations in the estimate of the vessel
state as well, as seen in 5.5 and the estimation basically fails.
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Figure 3.3: Figure illustrating the estimation approaches of joint Kalman
filtering and dual Kalman filtering. Courtesy of [64].
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Figure 3.4: Figure depicting the transformation of mean and covariance
through linearization and unscented transform

.
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Chapter 4

Nonlinear Model Predictive
Control

Model predictive control (MPC), also known as receding horizon control
(RHC), is a class of advanced controllers first thought of by the process
industry in the 1960s with the first implementations dating from the 1970s
[42]. MPC makes use of a system model and optimization to predict and
find an optimal set of inputs relating to maximimize the future performance
of the system. By re-solving this optimization problem on-line, a closed-loop
behaviour is achieved. Since the optimal parameters are found from solving
an optimization problem, constraint handling is inherently supported.

Predictive control is dependent on full state knowlegde, so state estimators
must usually be implemented. The alternative is to use a reduced model.
Figure 4.1 shows the connection between controller, state estimator and
plant.

This chapter will focus on discrete-time systems and discrete-time MPC
problems.

4.1 Optimization

Optimization is the problem of finding the minimum or maximum of an
objective function. The objective function is a function f : Rn → R that
returns a performance index, where n is the number of optimization vari-
ables, i.e., the dimension of the optimization variables x. The performance
index is typically viewed as a cost or a penalty, and smaller values means
increased performance. Here we will discuss minimizing, but generality is
not lost since similar arguments could be made about maximizing. An un-

55



Figure 4.1: The illustration shows the relationship between state estimator,
controlller, and, plant. Courtesy of [10].

constrained optimization problem is given as

min
x∈Rn

f(x). (4.1)

An optimization problem may be subjected to constraints. We separate be-
tween two kinds of optimization constraints; hard and soft. Hard constraints
are constraints that must be satisfied at all times, while violations of soft
constraints entails only added penalties. Constraints are further divided
into equality and inequality constraints. Consider a set of hard constraints
c given by

ci(x) = 0, i ∈ E (4.2)
ci(x) ≤ 0, i ∈ I, (4.3)

where E and I are sets defining the equality and inequality indices. The
feasible set Ω is then defined as the set where the hard constraints c(x) are
satisfied, i.e.,

Ω = {x | ci(x) = 0, i ∈ E ; ci(x) ≤ 0, i ∈ I}. (4.4)

As previously mentioned, violating soft constraints do not affect the feasibil-
ity, but rather induce penalties depending on the magnitude of the violation
s. The optimization problem given by (4.1) subjected to the hard and soft
constraints as

min
x∈Ω

f(x) + p(s), (4.5)

56



where p(s) is the added penalty function due to the soft constraints. Points
x ∈ Ω are said to be feasible.

4.1.1 Types of Optimization Problems

A specific optimization problem is characterized by the form of its objec-
tive function and its constraints. Several classes exist, the most relevant here
are linear programming (LP), quadratic programming (QP), convex program-
ming (CP) and, nonlinear programming (NLP):

• LP problems are given by a linear objective function and any con-
straints are linear.

• QP problems have only linear constraints and a quadratic objective
function.

• CP problems have convex objective functions and convex constraints.
CP problems are most importantly characterized by the fact that any
local minima are global minima. LP and QP problems are examples
of CP problems. A strict CP problem have only a single minimum.

• Any problem with nonlinear constraints are characterized as NLP.
NLPs are generally not convex.

4.1.2 The Solution to the Optimization Problem

The solution x∗ to a optimization problem is also known as a minimum. Two
types of minima exist, local minima and global minima. A global minimum
is defined by

f(x∗) ≤ f(x), ∀x ∈ Ω. (4.6)

A local minimum is defined as

f(x∗) ≤ f(x), ∀x ∈ N ∩ Ω, (4.7)

where N is a neighbourhood of x∗ not containing x∗, i.e. N (x∗) = {x ∈
Rn | ‖x∗−x‖ < r}. If the inequalities (4.6) and (4.7) are strict, it is referred
to as a strict global minimum and strict local minimum respectively. Figure
4.2 shows an objective function with both local and global minima.

The functions (4.8) and (4.9) are known as the gradient vector and Hessian
matrix.
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Figure 4.2: The plot shows an objective function f(x) with both local and
global minima. Courtesy of [43].

g(x) = d
dx (f(x)) (4.8)

H(x) = d2

dxTx (f(x)) . (4.9)

A zero gradient vector tells us that we are at a stationary point, but not
whether it is a minimum, a maximum, or a saddle point, see Figure 4.3.
The Hessian matrix provides this information; if it is positive semi-definite
the point is a minimum, if it is negative semi-definite, a maximum, and if it
is neither we are at a saddle point. It is known that gradient and Hessian
satisfy

g(x∗) = 0
H(x∗) ≥ 0

for unconstrained minimization problems.

4.1.3 Constrained Optimization Problems or Unconstrained
Optimization Problems

Constrained optimization problems are typically harder to solve than un-
constrained problems. For line-search methods this is especially true since
they are based on descent-directions, i.e., directions where the gradients

58



Figure 4.3: The plot shows the minimum, maximum, and, saddle point of a
function f(x).

are negative, and these are found directly from the objective function with-
out considering if they are contained in the feasible set. Luckily, we know
that equality-constrained optimization problems can be redefined as uncon-
strained by defining the Lagrangian function

L(x,λ) = f(x)−
∑
i∈E∪I

λici(x), (4.10)

where λ is known as the vector of Lagrange multipliers.

This can be combined with active set methods to construct general uncon-
strained optimization problems that have the same minima as the original
optimization problems. Active set methods are optimization solvers that
only consider the set of active inequality constraints, i.e., those that are
zero-valued. Given the active set, A = E ∪ {i ∈ I | ci(x) = 0}, the gradient
of the Lagrangian,

d
dx (L(x,λ)) = g(x)−

∑
i

λi
d

dx (ci(x)) , i ∈ E , (4.11)

shows that the λi, i ∈ A must all be zero for the constraints that are nonzero
at the solution. These conditions are summed in the 1st order KKT con-
ditions found on page 328 in [43]. The second order condition demands
that the Hessian of the Lagrangian must be positive semidefinite. These
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two conditions assure that the optimal solution to the constrained and the
unconstrained problems are identical.

4.1.4 Solving the Optimization Problem

Methods that find the minimum are known as solvers and exist in many dif-
ferent flavours. We will here present three methods for solving NLP prob-
lems; interval analysis, sequential QP (SQP) methods, and the sequential
CP (SCP) methods.

Interval analysis methods are based on a set of complex mathematical eval-
uations using interval calculus and can gurantee finding a global minimum,
even for non-convex problems, but are typically not performed unless computation-
time is a non-issue. Details on interval analysis are found in [25].

SQP methods solve the optimization problem and consists of solving a lo-
cal QP approximation of the NLP repeatedly until a satisfying solution is
found. The approximate QP is based on information from the gradient and
Hessian of the Lagrangian function. SQP solvers are obviously not guar-
anteed to find a global solution, as the approximations can lead to entirely
false conditions or feasibility problems. A typical problem is reaching a lo-
cal minimum and not being able to step out of it and eventually assuming
that it is the final minimum. The approximation can also lead to feasibility
problems and problems that are impossible to solve, e.g., problems where
the solver steps between points eternally without finding a satisfying solu-
tion. This last problem is usually solved by limiting the number of allowable
steps. If the analytical gradients and Hessians are not supplied, it is pos-
sible to approximate them with numerical derivatives, but the solvers are
more accurate, faster, and have smaller computational demands when ana-
lytical gradients and Hessians are supplied. Both trust-region methods and
line-search methods can be applied to solve the local QP problem. See for
instance Chapter 3 in [62] or Chapter 12 in [61] for more on SQP solvers.

Line-search and trust-region methods are iterative QP solvers, i.e., they are
used to find the minimum of QP problems by stepping from one point to
another towards the final solution. Line-search methods work by finding a
descent-direction from the objective function and finding the optimal step-
length along this direction. Conditions such as the Wolfe conditions or the
Goldstein conditions are used to aid the search for the step-length.

Trust-region methods, as line-search methods, approximate the objective
function with a quadratic function. This approximation is assumed valid
for a certain region, known as the trust-region. Based on the quality of the
approximation, the region is expanded or contracted. When the region is
found, a solution is found within the region by calcualting both a direc-
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tion and a step-length. Since they only search within the trust-region, trust
region methods are also known as restricted step methods. Figure 4.4 illus-
trates the difference in how line-search methods and trust-region methods
find the next point during an optimization.

Figure 4.4: The illustration shows the calculated step found from a line-
search and a trust-region method. The objective function f is approximated
with the quadratic model mk. Courtesy of [43].

SCP methods apply a similar approach to SQP, by approximating the NLP
problem as a general convex problem. As previously mentioned, QPs are
convex, meaning that SQP methods are actually included in the SCP frame-
work. SCP methods besides SQP are not that commen, but they have found
applications in large scale problems. For more on SCP methods see [11] or
[66].

4.2 Optimal Control

Optimal control is about quantifying performance in a objective function
and seeking to maximize it, where performance is typically quantified as a
cost depending on the state’s deviation from reference values and the use of
or changes in input. Maximizing the performance therefore means finding
the minimum value of the objective function. Since the performance is re-
garded over a horizon, i.e., a time range, optimal control offers perspective
as well. Constraint handling is the final selling point for optimal control
methods using online optimization. The controller will use its knowlegde of
the system model and its constraints to assure that the system will behave
in an allowable fashion. But some problems must be considered, optimiza-
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tion takes time. Predictions (simulations) must be made and the actions
maximizing the performance must be found. Luckily, advances in comput-
ing makes this problem smaller and smaller. Another issue is modeling,
prediction is useless if the model is poor. Another point of view is that
a predictive controller can get much more out of a good model than for
instance PID-controllers, i.e., predictive control makes modeling worth the
effort.

4.2.1 Development of Optimal Control

The development of optimal control is highly related to the development of
optimal filtering, which is the topic of Chapter 3. It started with Wiener’s
work in the 1940s and reached maturity in the 1960s with R.E. Kalman’s
development of Linear-Quadratic-Gaussian (LQG) control [30],[58]. LQG is
a linear optimal control problem that includes state estimation. The estima-
tion was done using Kalman filtering, there denoted as Linear-Quadratic-
Estimation (LQE) and the control was done in a deterministic setting with
a Linear-Quadratic-Regulator (LQR). The LQR control problem consists of
finding the optimal control input u to

min
u
Jk = lim

n→∞

∫ n

t=0
(x− xr)TQ(x− xr) + uTkRuk d t (4.12)

subject to:
ẋ = Ax+Bu. (4.13)

where Q and R are positive-semidefinite and positive definite respectively.
This unconstrained, no constraints are placed on the actual states nor the
inputs, optimization problem has a simple optimal and stabilizing solution1

given by u = −Kx where the time-varying K is found from solving the
algebraic Riccati equation [23] or simply computing a sub-optimal constant
gain matrix using pole-placement techniques. Anyhow, the LQR control
problem does not depend on on-line computations. Aerospace engineering,
including the Apollo program, took great advantage of this and implemented
LQC from the very beginning, while other industries, and particularly the
process industry, did not develop many LQC applications [58]. The process
industry struggled to fit their nonlinear models into the linear assumptions,
leading to poor robustness, and they wanted more flexible performance cri-
terions. But, most importantly they saught a control scheme that would
handle inequality constraints directly [50]. These problems lead to the pro-
cess industry discarding the theoretically developed stabilizing LQR control
and instead developed their own heuristic methods.

1An infinite horizon controller can never be optimal if it is not stable!
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The first online optimization based control implementation came in 1959
at a Texaco refinery in Texas where a computer calculated optimal set-
points online [42]. The computational power was naturally limited and the
optimization was only performed once every few hours using steady-state
models, while the actual set-point tracking was performed by a lower layer
of controllers. Other early implementations include ethylene units and oil
refinery processes. The industry saw the potential in this new computer
assisted control scheme. "The objective function was generally an economic
one, but we had the flexibility to select alternative ones if the operating
and/or business environment suggested another, e.g., maximize ethylene
production, minimize ethylene costs, etc. We were getting the tools to be
more sophisticated and we took advantage of them where it made economic
sense." [3].

Further implementations were developed by the process industry, and in the
late 1960s [51] presented an model predictive control (MPC) algorithm that
is essentially the same as those currently applied. As the computing ca-
pacity and power grew, the first MPC implementations appeared in process
plants during the 1970s, and today MPC stands as one of the most widely
implemented advanced control technology for process plants [62].

4.3 Model Predictive Control

Model predictive control is a control strategy that involves on-line solving of
an optimization problem. The system dynamics during a prediction horizon
is simulated using a known model and a set of inputs are found as the solution
to a constrained open-loop optimal control problem. The calculated inputs
are applied and the optimization problem is solved a new when new state
knowlegde appears. As a result, only the first part of the calculated input
from each optimization is used, which provides a robust feedback scheme.
Since the inputs are found from an on-line optimization problem, MPC
supports constraint handling.

Linear MPC is used to refer to MPC implementations described by lin-
ear system dynamics, quadratic objective functions, and linear constraints,
while the term nonlinear MPC (NMPC) usually refers to MPC implemen-
tations using nonlinear process models. Linear MPC will form a convex QP
problem, but NMPC will always be associated with an NLP problem. This
difference is essential when it comes to calculating the optimal inputs and
three important problems related to NMPC are presented in [42]:

• "Nonlinear programming, required for the solution of the MPC on-line
optimization problem, does not produce exact solutions but rather
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Figure 4.5: The figure displays the MPC principle. Courtesy of [23].

solutions that are optimal within a certain prespecified precision tol-
erance, or even locally optimal if the optimization problem is noncon-
vex."

• "Even if the global optimum of the on-line optimization problem is
assumed to be exactly reached, MPC behavior may show patterns
that would not be intuitively expected. For instance, [53] discuss two
simple examples of MPC applied to nonlinear systems, where the state
feedback law turns out to be a discontinous function of the state, either
because of stability requirements, or due to the structure of MPC. As a
result, standard stability results that rely on continuity of the feedback
law cannot be employed."

• "A finite prediction horizon may not be a good approximation of an
infinite one for nonlinear processes."

It is therefore not recommended to implement NMPC if the nonlinearities
are not severe or the process does not operate in several steady states char-
acterized by differing dynamics [23], [49].

The typical MPC optimization problem is stated as

min
np∑
k=1

(x− xr)TkQk(x− xr)k + uTkRkuk (4.14)

subject to:
ci = 0, i ∈ E (4.15)
ci ≤ 0, i ∈ I, (4.16)
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where the constraints typically represent control demands, e.g., maximum
allowed deviation, and given physical relations, e.g., the system model, max-
imum thrust levels, or valve openings. Unconstrained optimization prob-
lems are generally easier to solve than constrained optimization problems so
adding constraints will affect the calculation time.

The prediction will be for a finite horizon since infinite-horizon prediction is
generally not tractable in finite-time. The predictions far into the future are
also of small value since they most certainly will not be as accurate as the
first part of the prediction due to model mismatch, numerical issues, etc. It
is a rule of thumb to make the prediction horizon long enough to let all the
dynamics of the process stabilize after an input-step.

The Objective Function

The objective function can be considered as a general performance index,
where decreasing values indicate improved performance. We will here con-
sider only objective functions of the form

Jk =
np∑
k=1

xTkQkxk + uTkRkuk, (4.17)

where Q is positive-semidefinite and R is positive-definite.

Prediction Shooting Strategies

The prediction shooting strategy is fancy name for how the equality con-
straints arising from the system model are handled, i.e., assuring that xk+1−
f(xk,uk) = 0, k ∈ N ∩k ≤ np. Two different approaches exist; single shoot-
ing methods and multiple shooting methods [10].

The single shooting approach is also known as sequential approach, reduced
space approach, and feasible path approach and works by solving the pre-
diction as a single initial value problem, i.e., given an initial state value and
a set of future inputs, the future states are found by a single shooting, i.e.,
simulation. It is known as a feasible path approach because its implicit han-
dling of the model constraints assures model feasibility at all times during
the optimization. This property can be exploited in implementations if the
maximum allowable calculation time it is approaching. Another advantage
of this approach is that no added optimization variables, nor constraints,
are needed to handle the model constraints. One disadvantage with this ap-
proach though, is the optimizer’s lack of control over the simulated states,
which could be troublesome for unstable modes.
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The second shooting method is the multiple shooting method which is also
known as full space approach and collocation. This approach implements
all states in the prediction horizon, xk, k ∈ N ∩ k ≤ np, as optimization
variables and model feasibility is assured by adding the model constraints,
xk+1 = f(xk,uk) = 0, k ∈ N ∩ k ≤ np, as explicit optimization constraints.
This approach leads to a potentially large increase of optimization variables
and model feasibility of the states are only guaranteed when the algorithm
has converged. The advantages of this model include; the generally sim-
pler formulations of the objective and constraint functions as well as easier
calculations of their respective gradients and Hessians compared with sin-
gle shooting, and the optimizers’ increased control of the future states, i.e.,
more intuitive handling of unstable modes.

It is of course possible to combine the aforementioned approaches and ap-
ply an approach where the total prediction horizon is divided into a set
of shooting intervals. Each shooting interval is then calculated as a single
shooting and the end-point constraints are handled with multiple shooting,
i.e., a form of multiple single shooting. A computationally advante could
occur from such formulations as calculating each shooting interval could be
done in parallell. Figure 4.6 illustrates how a multiple shooting or combined
approach could appear.

Figure 4.6: The plot illustrates how a multiple shooting strategy depends
on the solution of several single shootings. Constraints are added to assure
that the endpoints of each shooting are connected. Courtesy of [10].
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Discretization

The MPC prediction depends on the selection of discretization method. The
approximative discretization is subjected to limited numerical accuracy and
these inaccuracies can be influential for the solver. An increase in numeri-
cal accuracy is typically attained from increasing the number the function
evaluations and simoultaneously decreasing the sample times. This leads to
higher computational cost and potentially added states. A comparison of
SQP based MPC applications using different numerical integration methods
are found in [39] with a comparison of numerical integration methods and
different SQP algorithms. A consideration of accuracy vs. consistency is
necessary when deciding to use fixed or variable step integrators.

Parameterizing the Inputs

Until now it has never been specified how the inputs u are parameterized in
the optimization scheme, where u is given by the vector

u ,


u0
u1
u2
...
unp

 ∈ Rm, (4.18)

where the vectors ui, i = 0, 1, ..., np are the input vectors belonging to step
i in the prediction horizon. The dimension of the the vector is given us as
the number of system inputs multiplied with the length of the prediction
horizon, i.e., m = nunp. The most common parameterizing approach is to
define every element of u as a free optimization variable. Another approach
is to use increment values ∆ui, i ∈ N∩ i ≤ nc as optimization variables and
implement the inputs as

u ,


∆u0

∆u0 + ∆u1
∆u0 + ∆u1 + u2

...∑nc
i=0 ui

 ∈ Rm (4.19)

.

These two approaches lead to a high number of optimization variables, but
blocking methods, i.e., keeping the input constant for a number of samples
and keeping the last inputs constant can reduce the number of the variables.
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The horizon where the input is allowed change is called the control horizon.
A blocked input vector combined with a control horizon which is shorter
than the prediction horizon is shown below.

u ,



u0
u0
u1
u1
...
unc
unc
unc
unc


∈ Rm

.

A third possibility is to use parameters p belonging to a state feedback
function g, including linear feedback, as optimization variables and find the
input vector from these as

u ,


g(z0;p)
g(z1;p)
g(z2;p)

...
g(znp0;p)

 ∈ Rm.

Combinations of the various formulations are also possible.

The approaches using direct parameterization and incremental parameteri-
zation are most commonly used as they lead to the simplest problem formu-
lations, since they will exhibit a highly structured form, while calculating
analytical gradients and Hessians using the feedback parameterization can
be quite tricky. On the other hand, the state-feedback approach is usually
more robust due to continous disturbance rejection [23].

4.3.1 Solving the NMPC problem

The optimization problem solved by the NMPC controller will be a NLP
problem. The solver strategy is often depending on the NMPC formulation
Many NMPC formulations are structured and these structures should be
made use of when solving the optimization problem. SQP is the preferred
solver strategy for NMPC [39], [62], [23], but approaches using interval anal-
ysis do also exist [35], [37].
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4.3.2 Nominal Stability of NMPC

MPC was initially developed as a heuristic control approach and stability
were not considered. The first stability results appeared in [54] in 1993, and
they lead to a surge in research evaluating stability and robustness for MPC.
It was shown in [6] that closed-loop stability is not guaranteed by sequential
finite-horizon open-loop optimal control approaches.

To evaluate the stability of the closed-loop system, we must examine the
infinite horizon properties of the system. As the closed-loop system consist-
ing of constrained MPC, including constrained linear MPC, are inherently
nonlinear, methods used to show nonlinear stability must be applied. The
common approach thereforce considers Lyapunov stability.

Consider a system described by a function xk+1 = f(fk,u + k), where
f : RnxRm → Rn is continous and f(0,0) = 0. Consider that the infinite-
horizon optimization problem can be separated into a finite-horizon opti-
mization problem and another infinite-horizon problem as

min
ū
Jk = min

ū

np∑
i=0

L(x̄k+i, ūk+i) +
∞∑

i=np+1
L(x̄k+i, ūk+i)

(4.20)
subject to:

¯xk+i+1 = f( ¯xk+i, ¯uk+i)
x̄ ∈ X
ū ∈ U,

where L is a positive definite function, and X ∈ Rn and U ∈ Rm are
convex sets containing the origin. We know from Barbalat’s lemma that, if
Jk < limn→∞ n, then limn→∞ x̄n = 0, meaning asymptotic stability. Since
we consider a nominal system, it is guaranteed that once xk reaches the
origin it will stay at the origin if no input is applied. It is therefore sufficient
that it is feasible to reach the origin in finite time to show stability.

Showing stability is then simply done by assuming a sufficiently high np,
but it is simpler to add a terminal constraint demanding that x̄np = 0 if
this is feasible. The difference lies in concept as the first relies on tuning,
while the second restricts the NMPC formulation. A more general approach
than demanding that the terminal state is at the origin, is to add a terminal
constraint demanding that the terminal state is contained in some termi-
nal region Ω, i.e., xnp ∈ Ω, for which we know a feedback controller g(xk)
that assures that the closed-loop (using the known feedback controller) sys-
tem is locally exponentially stable. If either of these terminally constrained
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approaches are feasible at a time k, it can be shown that Jk+1 ≤ Jk by
simply shifting the previous feasible input vector and applying Bellmans
optimality principle. As such there is no need to consider the residual of the
infinite-horizon optimization as it is guaranteed to be finite. The optimiza-
tion problem can then be formed as

min
ū
Jk = min

ū

np∑
i=0

L(x̄k+i, ūk+i) (4.21)

subject to:
¯xk+1 = f(x̄k, ūk)

x̄ ∈ X
¯xk+np ∈ Ω
ū ∈ U,

which is called a quasi-infinite-horizon NMPC formulation.

Another possible way to guarantee nominal stability is by adding constraints
that demands that the input-output system fulfills some passivity demands
[52].

No general separation theorem for nonlinear control exists, which basically
means that every combination of estimation and control has to be evaluated
when examining the stability properties of nonlinear output feedback ap-
proaches. Some recent work on the subject of output-feedback NMPC has
been done in [24], and several others by the same authors, but considering
only a class of nonlinear observers named high-gain observers. Estimators
based on Kalman filtering and receding horizon estimation are not included
amongst them and no such similar proofs exist.

4.3.3 Robust Stability

Robust stability means that the system is stable for some perturbations,
i.e., model uncertainty. This uncertainty can be due to either unknown
parameter values, unknown disturbances, or some unknown model structure.
Robust stability is shown by assuring that Jk+1 ≤ Jk even when considering
the unknown, but bounded, perturbations. Assuring Jk+1 ≤ Jk is done
either through tuning or by adding constraints.

It is unrealistic to assume that a nominal model is known when MPC is
applied in practice and the MPC must show some robustness to achieve
good control performance2. As the MPC is based on optimal control, it has

2This is true for all control strategies, and not only NMPC.
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some inherent robustness. Unconstrained MPC can even be shown to have
gain and phase-margins [38].

Several approaches to achieve robust stability exist. One method is to solve
an open-loop min-max problem [42], i.e., formulate the optimization problem
as

min
u

max
p

J(u,p)k, (4.22)

where p are parameters that express the model uncertainties. This entails
finding the worst-case dynamics or a set of models defined by the pertur-
bations and then using the worst-case model in a normal MPC scheme.
Conservative results and feasibility issues should be expected as the cal-
culated inputs have to be feasible for all possible seets of models. A less
conservative approach is using H∞ methods, [58], but they are very costly
and require finding a global minimum.

Methods using interval analysis can be shown to provide a guaranteed outer
bound on the reachable states and a robust MPC scheme guaranteeing con-
vergence [35].

As previosly mentioned, it is also possible to apply continous feedback con-
trol by using the parameters of a feedback as optimzation variables in the
MPC problem. Continous feedback control is more robust than discrete
outputs because it provides continous disturbance rejection.

4.3.4 Feasibility

MPC relies on online solving of an optimization problem and severe problems
can occur when no feasible solution can be found. Feasibility is defined in
relation to the hard constraints. Feasibility problems are usually solved
by relaxing constraints, but optimal constraint relaxation is an NP-hard
problem [42]. Penalty functions are introduced in [43] and [10] as a way
ensure that hard constraints are only relaxed if necessary due to feasibility
problems.

It is highly advantageous to be able to prioritize which constraints should be
relaxed first, although all hard constraints should be modeled as hard for a
reason. As it is futile to assume that model constraints or other constraints
imposed due to physical relations can be relaxed, this basically means that
the hard constraints that are implemented due to for instance human safety,
environmental considerations, or product quality, must be relaxed. If these
are truly hard, it could be a better approach to shut down the controlled
system or initiate other extreme measures instead of relaxing the constraints.
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Chapter 5

Simulations and Discussion

Anyone can hold the helm when
the sea is calm.

Publilius Syrus

5.1 Simulation Model

The vessel dynamics are modeled as in Section 2 with 2. order modulus
damping. Wave disturbances are implemented using only the Froude Krilov
forces as the wave-drift is assumed to be contained in the current. Other
disturbances or noise are not added.

5.2 Simulations

5.2.1 Parameter Estimation

The linear and nonlinear damping, described by Abkowitz damping model,
are estimated using nonlinear least squares method from Tomlab package
and Dual UKF. The parameters that are not dependent on both sway speed
and yaw rate are found using nonlinear least squares while the four param-
eters Yvvr, Yvrr, Nvvr, and, Nvrr are found using a dual Kalman filtering
approach. A PID controller applied reference tracking control for the vessel
and only current disturbance is included.

Figures 5.1 and 5.2 show how the least-squares estimated Abkowitz formu-
lations of the damping forces and moments, compare with the 2nd order
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modulus formulation provided from [57]. A linear approximation is also
seen. The weighted least-squares estimation requires higher accuracy for
lower velocities than for higher velocities.

Figure 5.1: Decoupled Abkowitz parameters found using least squares
method.

The coupled parameters Yvvr, Yvrr, Nvvr, and, Nvrr were found using a
dual Kalman approach explained in Chapter 3. The blue dotted line (UKF1)
is the vessel state estimates found using the dual UKF estimation, while
UKF2 is an UKF estimate using the nominal model.

A fixed diagonal matrix description was used Rr and as 5.5 shows, reason-
able estimates were obtained even from this poorly excitated experiment
after about 100 samples. Figure 5.4 shows that the current estimate does
not converge to the true value, since the vessel estimates are so good this
implies that the correct damping parameters are not found, this is most
likely due to poor excitation.

5.5

The Figures 5.4 and 5.5 also compares the UKF, given as (UKF2), the
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Figure 5.2: Coupled Abkowitz parameters found using least squares method.

green dashed line and a EKF, the red dashed line. Both of these perform
estimation using the 2nd order modulus damping model. And it is seen the
EKF fails horribly since it does not manage to estimate the current velocity.
The reason for this is shown in Chapter 3.

5.2.2 NMPC

Two simulations showcasing the failure of the NMPC controller is provided.
The first is a simple pathfollowing operation where constraints are placed
on the forces and moments and limiting them to

−108

−108

−109

 ≤ uk ≤
108

108

109

 . (5.1)

No disturbances are applied during the simulation, but the NMPC receives
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Figure 5.3: Coupled Abkowitz parameters estimated by dual Kalman filter.

its state knowlegde from a UKF estimation. This estimation performed
flawlessly, due to lack of disturbances and general unmodeled dynamics, and
is therefore not considered to be a source of error. The model implemented
in the NMPC is the 2. order modulus model.

Figure 5.6 shows that the NMPC controller fails to follow the path and
instead simply follows another straight path with a surge speed which is
about 3 times higher than commanded. Figure 5.7 shows that the calculated
thrust force is constant during the entire simulation period and it is blatantly
obvious that this is not the optimal input. This wrong input occurs either
because of errors in my implementation, or from poor solutions due to lack
of robustness in the fmincon solver. It is obvious that no feedback effect
has been included. These poor solutions can stem from the solver getting
"stuck" in a local minimizer and have been able to escape from there.

Figure 5.8 shows a similar failed control operation where the controller was
supposed to perform station keeping when subjected to wave motion. The
model used in this simulation has linearized dynamics and it is as such not
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Figure 5.4: Current estimated by dual Kalman filter.

the discontinous damping matrix that causes the poor optimization.

5.2.3 Wavefiltering

Figures 5.9 and 5.10 show how the UKF estimator is capable of estimating
correct current values and perform wave filtering when the wavedirection is
180 degrees and the current direction comes from 60 degrees. Only a small
deviation in angle is observed. The wave filtering is also performed well
as is seen in 5.9. No wave model is implemented here, because the best
estimation results when modeling only current disturbance. When the wave
model was included the bias force estimation was very poor and made the
current estimate deviate. Only the Froude Krilov forces are used as it is
assumed that wave drift is absorbed by the current and thus appear as a
single disturbance.

Figures 5.11 and 5.12 show that the UKF estimator is unable to correctly
separate the current and the wave disturbance when they appear from the
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Figure 5.5: Vessel state estimated by dual Kalman filter.

same direction. The wave filtering still works but the deviations in the
current estimate leads to deviations in the velocity and state estimations.
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Figure 5.6: Vessel state controlled using NMPC. The vessel is trying to
follow a straight line.
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Figure 5.7: Figure shows the thrust values calculated by the NMPC algo-
rithm when trying to follow a straight line.
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Figure 5.8: Figure showing poor control performance of NMPC during SK
mission. The vessel was subject to implemented hard constraints.
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Figure 5.9: Vessel state estimated by UKF. The vessel is subjected to current
and wave disturbances coming from separate directions.

82



Figure 5.10: Vessel state estimated by UKF. The vessel is subjected to
current and wave disturbances coming from separate directions.
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Figure 5.11: Vessel state estimated by UKF. The vessel is subjected to
current and wave disturbances coming in the same direction.
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Figure 5.12: Estimate of current found by UKF. Current and waves share
direction
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

The Unscented Kalman filter and the extended Kalman filter have been
compared both theoretically and with simulations. The UKF has consis-
tently outperformed the EKF in all categories. The UKF is much simpler to
implement for nonlinear systems as it has no need for the linearized model
equations which can be quite hard to calculate for large systems. It is sim-
pler to tune because of its superior handling of the stochastic propagation.
Higher accuracy in the calculation of the transformed mean and covariance
also reduces the need for increasing robustness by adding fictitious noise,
in comparison with the EKF which has to include such noise to overcome
the errors developing from the linearized approach to mean and covariance
propagation. When little or no fictitious noise have to be added the quality
of the estimate also improves. Another problem with the EKF relating to
stochastic decoupling of states is identified and simulations show that the
UKF has no such problems. Parameter estimation attempts using dual UKF
shows there are still more to get from the UKF.

State estimation was performed on a horizontal vessel model to estimate the
velocities which are not available through measurements and to estimate the
disturbances due to current and wave excitation. The disturbances due to
wave excitation are divided into a rapid 1st order oscillating motion and a
slower 2nd order drift force, while the effects of the current are appearing
due to viscous hydrodynamic damping. It is observed that the slow effects
stemming from wave drift and the current are difficult to separate if they act
in the same direction. And this will be an even more difficult task for prac-
tical considerations where much larger uncertainties, especially regarding
hydrodynamic damping coefficients will appear. It has been shown that the
estimation of the current velocity through the hydrodynamic damping forces
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is possible using the UKF, but impossible using the same system model if
an EKF estimator is used. Wave-filtering effects appear in the UKF without
the need for modeling the WF motion as a spring damper system.

A control approach using NMPC was reviewed and found to be exciting, but
implementations failed as the solutions to the on-line optimization problem
were extremely poor. If better solvers were available it is the authors honest
belief that the NMPC controller would be a very promising controller for DP
operations. NMPC is model based and uses the model to optimize the future
performance. This optimization involves a prediction which can be used for
feedforward approaches. A DP system developed by Kongsberg Maritime
called greenDP uses a NMPC controller and its main advantages have been
the possibility to combine reduced thrust use and changes in thrust while
still assuring, through the use of state constraints, that the vessel will stay
inside a selected region. The prediction strategy lets the controller see the
big picture and act calmer instead of using bulls-eye control using rapidly
changing thrust and much fuel. A problem that have not been considered
here, is how much the NMPC scheme will deteriorate when it is implemented
in real life with much poorer model knowlegde than was available in these
attempted simulations. If a robust NMPC scheme could be implemented,
the NMPC could be imagined being a unified controller as it shows great
flexibility in defining the performance function and including state dynamics,
i.e., the operations which are now performed by separate types of controllers
could all be performed by an NMPC. A final problem with NMPC is the
calculation time, this could be difficult problem depending on the length of
the prediction horizon and the number of optimization variables.

6.2 Future Work

There are several aspects that should be considered for future work. The
most important being implementing a NMPC controller that actually works.

• A functioning NMPC algorithm should be implemented. A better
solver must be found. Possible one using analytical gradient informa-
tion in a better way then fmincon.

• Try to extract information from the predictions to implement feed-
forward control.

• Combine optimization and thrust allocation. As of today these are
two separated tasks, both depending on optimization. Could they be
combined?
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• Implement a fast solver so the NMPC problem can be solved in real-
time

• Compare the accuracy of linear MPC with NMPC for this system. Is
nonlinear control necessary? Which nonlinearities are dominating?

• A decoupled approach using one NMPC for surge control and one for
controlling yaw and sway should be considered as it could drastically
reduce the number of optimization variables

• A continous model of the vessel dynamics should be found and imple-
mented, i.e., find abkowitz damping paramters.

6.3 State Estimation

• Improve the simulations with regards to parameter values etc. Test
for model mismatch.

• Consider auto-tuning methods for the filter

• Implement faster square-root versions of the UKF

• Compare 3 DOF model with 6 DOF model
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Appendix A

Stability

A.1 Definitions

Stability is loosely defined as boundedness. A system is said to be stable if
its states will stay bounded until the end of time. Nominal stability is used
to express that a system is stable with no model uncertainty and robust
stability implies that the system will be stable for also when there are some
uncertanties. The uncertainty can appear both in parameter values and
formulation. In addition two kinds of stability definitions exist, relating to
forced and unforced system. A system is unforced if no exogenous inputs
are applied, i.e., the system can be modeled as ẋ = f(x). This includes the
special case of state-feedback systems, since their inputs can be described as
u = g(x). The two stability definitions are essentially equivalent for linear
systems, but separate considerations must be made when nonlinear systems
are considerinm.

Some definitions are needed to study stability. Consider a vector x ∈ Rn.
The norm ‖x‖ is a function that satisfies:

• The norm of x is zero only when all elements of x are zero and is
otherwise positive definite, i.e., ‖x‖ > 0 for all x 6= 0 and ‖x‖ = 0 for
all x = 0.

• The norm of a scaled x is equal to the norm of x multiplied by the
absolute value of the scale, i.e., ‖kx‖ = |k|‖x‖.

• The norm satisfies the triangle equality, i.e., ‖x1 +x2‖ ≤ ‖x1‖+‖x2‖.
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The p-norm of a vector is a general expression of it’s magnitude defined by

‖x‖p ,

( ∞∑
k=1
‖xk‖p

) 1
p

, (A.1)

where 1 ≤ p ≤ ∞ and ‖xk‖ is any norm in Rn.

A.1.1 Stability for Unforced Systems

Consider the general nonlinear system

ẋ = f(x) (A.2)
y = h(x). (A.3)

If f(xe) = 0, then xe is an equilibrium point. But, it is not known whether
this equilibrium point is attracting (stable) or repelling (unstable).

From [32], stability is defined as:

• The equilibrium point is stable if:

‖x(0)‖ < δ → ‖x(t)‖ < ε,∀t ≥ 0 (A.4)

• Asymptotically stable if it is stable and δ can be chosen such that

‖x(0)‖ < δ → lim
t→∞

x(t) = 0 (A.5)

• And unstable if it is not stable

A.1.2 Stability for Forced Systems

Consider the general nonlinear system

ẋ = f(x,u) (A.6)
y = h(x), (A.7)

where u is an exogenous input.

A forced system is said to be input-output stable if a bounded input leads
to a bounded output. This is expressed mathematically as
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‖u‖p <∞⇒ ‖y‖q <∞, (A.8)

where 1 ≤ p ≤ ∞ and 1 ≤ q ≤ ∞. Input-output stability is often not
satisfactory and finite-gain stability is typically desired. A system is said to
be finite-gain stable if supu

‖y‖q
‖u‖p <∞.

An excellent in-depth study of nonlinear stability is found in [32].
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Appendix B

Mechanics

B.1 Rigid-Body Mechanics

Mechanics is a branch of physics including kinematics and kinetics. Kine-
matics is the study of how an object is affected by forces and especially how
motion is initialized and altered. Kinetics is a purely geometrical consid-
eration of motion. A rigid body is an ideal physical object that does not
suffer deformation when affected by forces, i.e., the sum of the object’s in-
ternal forces is zero. In short, rigid-body mechanics describes how forces
contributes to the motion of a rigid-body.

B.1.1 Kinematics

Position and motion have to be given relative to a reference frame. A refer-
ence frame is a set of axes allowing observation of position relative to a point.
This reference frame can be subject to lateral motion, lateral acceleration
and rotation. A frame that is neither accelerated nor rotating is known as
an inertial frame. This distinction is essential since Newton’s laws are only
valid in inertial frames. Only Cartesian1 frames will be considered here.

The physical space is given in three dimensions, typically (x, y, z), and po-
sition is defined as a point in this space. Speed is defined as the change of
position, acceleration as the change of speed. If objects are considered, op-
posed to point-particles2, orientation3 and the position of the object’s point
of origin, are needed to describe the volume of points covered by the object.

1Cartesian frames are also known as orthogonal frames.
2Point-particles are infinitesimally small and therefore cover no volume
3Orientation is a set of angles describing how the object is rotated around the axes of

the reference frame.
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The combination of position and orientation is also known as pose.

Figure B.1: Illustration depicting an objects pose. Courtesy of [7]

Velocity and acceleration are defined mathematically as

ṙ , v (B.1)
v̇ , a, (B.2)

and angular velocity and acceleration as

θ̇ , ω (B.3)
ω̇ , α. (B.4)

It is often useful to define several reference frames when modeling a physical
system. Subscripts are used to indicate which frame a vector is given in.
pa and pb will then refer to the same vector, but given relative to two
separate frames. If frame b is defined as a rotation around the axes of frame
a, coordinates can be transformed from a to b with the help of a rotation
matrix, pb = Rb

apb. Another important property of rotation matrices is
that several rotations can be done in succesion by taking the product of the
individual rotation matrices. Mathematically this is formulated as
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pc = Rb
cR

a
bpa (B.5)

pa = Rb
aR

a
bpa. (B.6)

Transformations due to different points of origin, motion or acceleration are
simply done by adding the coordinate, velocity or acceleration given relative
to the frame of desired reference. More on transformations can be found in
[7] and [13].

B.1.2 Kinetics

The laws of classical mechanics state that changes in an objects momentum
(and its rotational counterpart angular momentum), relative to a inertial
frame, is equal to the sum of the forces (moments) acting on the object.
Mathematically this is expressed as

d
dt (mv) =

∑
i

Fi (B.7)

l dm
dt = 0 (B.8)

ma =
∑
i

Fi, (B.9)

where the rotational counterpart is given as

d
dt (Iω) =

∑
i

ri × Fi (B.10)

l dI
dt = 0 (B.11)

Iα =
∑
i

ri × Fi. (B.12)

The assumptions (B.8) and (B.11) are extensions of the rigid-body assump-
tion.

As mentioned above, Newton’s laws are only valid in inertial reference
frames. When forces are described in non-inertial frames, fictitious forces4

4A fictitious force is also known as a pseudo force or as a d’Alembert force and can be
applied for cases where the reference frame is accelerating as well as rotational, as rotation
is just a form of acceleration.
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must be added to explain the observed motion, i.e., one actually describes
the forces relative to a inertial frame. These fictitious forces are not real, in
the sense that they do not appear from physical interactions, but are rather
calculational tools. A special case of fictitious forces known as Coriolis forces
appear when the reference frame is rotating around a fixed point relative
to an inertial frame. The Coriolis force can be observed from the Coriolis
effect; if an object is moving in a straight line and the reference frame is
rotating relative to an inertial frame, the object will appear to deflect from
its straight path when observed from a point in the inertial frame.

Consider an object with position 0b, velocity vB and acceleration ab relative
to frame b. Frame b is rotating with a non-constant angular speed ωab
relative to an inertial frame a, where the rotation vector is given relative to
frame a. From (6.405) in [7], we find that the object has an acceleration of

aa = ab + 2ωab × vb. (B.13)

The term 2ωab×vb is known as the Coriolis term. When applying Newton’s
laws on the system, the acceleration has to be given relative to the inertial
system, giving

maa =
∑
i

F i (B.14)

l (B.13)
mab =

∑
i

F i − 2mωab × vb. (B.15)

This derivation shows that Newton’s laws can be extended to rotational
reference frames by including a Coriolis term.
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Appendix C

Stochastic Background
Material

This section is a short survey of stochastic theory needed to follow the
section on Kalman filters and probabilistic inference. The equations in this
section is mostly derived for scalars, but similar derivations can be made
with vectors. If something is valid only for vectors or scalars, it will be clear
from context.

C.1 Probability

A deterministic event will always have the same outcome, whilst the outcome
of a random action will be randomly distributed. A specific outcome is also
known as a sample. The probability of outcome A occuring is defined as:

P (A) = Number of times A occurs
Total numbers of occurances . (C.1)

The conditional probability is defined as the probability of an action A
occuring given that action B has already occured P (A | B). Bayes’s formula
says that the conditional probability is equal to the probability of both
actions occuring divided by the probability of B occuring.

P (A | B) = P (A ∧B)
P (B) (C.2)

If the outcome of one have no effect on the outcome of the other, the two
events are called independent
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P (A | B) = P (A). (C.3)

Bayes’s theorem then says

P (A ∧B) = P (A)P (B). (C.4)

C.2 Random Variables and Probability Density Func-
tions

A Random Variable (RV) is a mapping from events and actions to numbers
and functions. The RV is defined by it’s Probability Distribution Function
(PDF) <>

FX(x) = P (X ≤ x), (C.5)

or its Probability Density Function (pdf) <>

fX(x) = dFX(x)
dx . (C.6)

The PDF is a function that describes the probability that a RV X ∈ R will
take a value less than or equal to some value x, and the pdf is defined as
the derivative of the PDF. Some properties of the PDF are given by the
definition:

FX(x) ∈ [0, 1] (C.7)
FX(−∞) = 0 (C.8)
FX(∞) = 1 (C.9)
FX(a) ≤ FX(b) if a ≤ b (C.10)

P (a ≤ X ≤ b) = FX(b)− FX(a) (C.11)

From the above properties of the PDF, the pdf will by definition have the
following properties:
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FX(x) =
∫ x

−∞
fx(z) d z (C.12)

fx(x) ≥ 0 (C.13)∫ ∞
−∞

fx(x) dx = 1 (C.14)

P (a ≤ X ≤ b) =
∫ b

a
fx(x) dx (C.15)

Two important descriptors of an RV is themean and the variance. The mean
is the average value of infinitely many samples and the variance is a number
describing the spread of the samples around the mean. The expectated value
of a continous RV, x̄, is defined as

x̄ = E[X] (C.16)

=
∫ ∞
−∞

xfX(x) dx, (C.17)

and the variance defined as

Var(X) = σ2 (C.18)
= E[(x− x̄)2]. (C.19)

σ is known as the standard deviation. The mean and variance are also known
as the first moment and second central moment of the pdf respectively. A
nth order moment is defined as E[xn] and an nth order central moment is
defined as E[(x− x̄)n]

Sometimes we wish to evaluate the joint probability of two or more variables
simultaneously. For the case of two RVs, the joint PDF and joint pdf are
given by:

F2(x, y) = P (X ≤ x ∧ Y ≤ y) (C.20)

f2(x, y) = ∂F2(x, y)
∂x∂y

(C.21)

From the definition of the joint PDF and given the properties of the PDF
it is clear that

101



F (x) = F2(x,∞) (C.22)

F (x) =
∫ ∞
−∞

f2(x, y) d y. (C.23)

The covariance is similar to the variance and is an indirect measure of how
two RVs relate to each other,

Cov(X,Y ) = E[(x− x̄)(y − ȳ)T ]. (C.24)

For vector expressions this is known as the covariance matrix.

Cov(X,Y )) = E[(x− x̄)(y − ȳ)T ] (C.25)

Notice the special case where the variance can be found from the covariance
matrix.

Var(X,X) = Tr(Cov(X,X)) (C.26)

The two most common distributions are the uniform distribution and the
gaussian distribution. The gaussian distribution, also known as the normal
distribution, has a pdf given by

fX(x) = 1
σ
√

2π
exp

−(x−x̄)2

2σ2 .. (C.27)

As C.1 shows, the pdf is symmetric about the mean. The mean is the most
probable value of a gaussian RV.

The pdf and PDF of a gaussian RV X are thus uniquely given when x̄ and
σ are provided. A common notation for normal RVs is

X ∼ N(x̄, σ2)

The central limit theorem says that the sum of many indepedent and identically-
distributed RVs will tend to a normal distribution if the variance of the sum
is finite. The normal distribution is therefore often chosen to represent other
probability distributions. Another common probability distribution is the
uniform distribution where every value in a range is equally probable. If a
random variable maps a range from a to b the pdf is given as
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Figure C.1: Graph showing the shape of the normal pdf.

fX(x) = 1
b− a

, x ∈ [a, b] ⊂ R (C.28)

Figure C.2: Graph showing the shape of the uniform pdf.

A random process is a process that is driven by a random variable and
as such attributes randomness. An example of a random process is any
dynamical system driven by stochastic noise. Some random processes fulfills
the Markov property and are known as Markov processes. The Markov
property says that the the conditional pdf of future states, given the past
and present states are dependent on a fixed number of states. The number
of states that needs to be maintained give the degree of the Markov process.
A first order Markov process fulfills p(xk | xk−1, xk−2, . . .) = p(xk | xk−1).

Any nonlinear function can be written as a linear Taylor series expansion
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f(x̄+ x̃) = f(x̄) + 1
1!D

1
x̃ + 1

2!D
2
x̃ + 1

3!D
3
x̃ + . . . , (C.29)

where

Dk
x̃f =

(
n∑
i=1

x̃i
∂

∂xi

)k
|x=x̄.

C.3 Random Processes and Transformed Random
Variables

If an RV is input to a function, the outcome of the function will be a trans-
formed RV. The stochastic moments of the RV will obviously be transformed
as well. Here we will show how the mean and covariance will develop for an
RV x transformed through a function y = g(x). Defines x = x̄ + x̃ where
x̄ is the mean of x and x̃ the deviation, i.e. separates the RV into one zero
mean RV and a constant.

X ∼ N(x̄, σ2) (C.30)
l x = x̄+ x̃

X̃ ∼ N(0, σ2) (C.31)

The transformed mean and covariance is derived for a linear function g(x) =
ax+ b by simple use of

ȳ = E[g(x)]
= E[ax+ b]
= E[ax] + E[b]
= aE[x] + b (C.32)

Cov Y, Y = E[(g(x)− E[g(x)])(g(x)− E[g(x)])T ] (C.33)
= E[(ax+ b− aE[x]− b)(ax+ b− aE[x]− b)T ] (C.34)
= E[a2(x− E[x])(x− E[x])T ] (C.35)
= a2E[(x− E[x])(x− E[x])T ] (C.36)
= a2Cov(X,X) (C.37)
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Note that a gaussian RV transformed through a linear function remains a
gaussian RV.

If g(x) is a nonlinear function the exact transformations are generally not
tractable to derive. It is therefore common to approximate the nonlinear
function with a Taylor series expansion.

ȳ = E[g(x)] (C.38)
= E[g(x̄+ x̃)] (C.39)
l Taylor series expansion around x̄

= E[g(x̄) + 1
1!D

1
x̃ + 1

2!D
2
x̃ + 1

3!D
3
x̃ + . . .] (C.40)

l

= g(x̄) + E[g(x̄) + 1
1!D

1
x̃ + 1

2!D
2
x̃ + 1

3!D
3
x̃ + . . .] (C.41)

C.4 Estimators

An estimator is a function depending on sampled data that calculates an es-
timate of a variable. Here we will deal with point estimators, i.e. estimators
that calculate a single value estimate. The optimal estimator is one that
is unbiased, consistent, and minimum variance. An unbiased estimator has
the same expected value as the true parameter, if it is consistent then the
estimation error |θ̂−θ| will be strictly decreasing as the number of evaluated
samples grow, i.e., it will converge with probability. A minimum-variance
unbiased consistent estimator is the unbiased consistent estimator with the
smallest variance for all possible values of the parameter. A consistent esti-
mator will never have smaller variance than the real value.
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