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Received Signal Strength Based Gait Authentication
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Abstract—Expansion of wireless body area networks (WBANs)
applications such as health-care, m-banking, and others has lead
to vulnerability of privacy and personal data. An effective and
unobtrusive natural method of authentication is therefore a ne-
cessity in such applications. Accelerometer-based gait recognition
has become an attractive solution, however, continuous sampling
of accelerometer data reduces the battery life of wearables. This
paper investigates the usage of received signal strength indicator
(RSSI) as a source of gait recognition. Unlike the accelerometer-
based method, the RSSI approach does not require additional
sensors (hardware) or sampling of them, but uses the RSSI
values already available in all radio devices. Three radio channel
features namely, the time series, auto-correlation function, and
level crossing rate were extracted from unique signature of the
RSSI in relation to the corresponding subject. The extracted
features were then used together with 4 different classification
learners namely decision tree, support vector machine, k-nearest
neighbors, and artificial neural network, to evaluate the method.
The best performance was achieved utilizing artificial neural
network with 95% accuracy when the features were extracted
from 1 on-body radio channel (right wrist to waist), and 98%
when the features were extracted from 2 on-body radio channels
(right wrist to waist, and left wrist to waist). The developed
RSSI-based gait authentication approach can complement high-
level authentication methods for increased privacy and security,
without additional hardware, or high energy consumption existing
in accelerometer-based solutions.

Keywords—Wireless body area networks, physical layer security,
wireless channel characteristics, biometrics authentication, human
gait.

I. INTRODUCTION

THE advances in microelectronics and wireless communi-
cations have led to the availability of lightweight devices

with wireless communication capabilities that can be used to
monitor the human body functions and its surrounding environ-
ment. Networks made of such devices are known as Wireless
Body Area Networks (WBANs) and have found significant
applications in health monitoring [1]. In such applications,
WBAN sensors collect vital physiological parameters of a
subject, which serve as a reference in medical diagnosis,
treatment and health indicator in industry service as well. Due
to the sensitivity of the data involved, security and privacy
measures are vital to the success of the WBANs [2].

Due to the difficulty for biometrics counterfeit, biometrics
authentication has been proposed as a solution to improve
security in the communication of such personal data [3]. One
of the biometric traits which is attractive in health monitoring
applications security is gait. Studies in medicine and psychol-
ogy have shown that each individual has a distinctive walking
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style that allows his recognition. Unlike other biometrics traits
such as voice, fingerprints, and facial recognition, gait is non-
invasive and can be measured without subject intervention.
This makes it more user-friendly especially in continuous
identity re-verification [4].

Although the first gait recognition systems used video, the
current trend is to use accelerometers included in wearables or
portable smart devices [5]. In [6] a real-time gait recognition
system using the wavelet transform was presented. The sim-
ulation results showed that the proposed method has reliable
recognition accuracy both in the real-time and in the long-term
cases. Machine learning algorithms were used in [7] to train
the classifiers and authenticate the subjects. More specifically
their work concentrates on methods of segmentation of the
accelerometer data and compares between the fixed length
and fixed cycle approach in which fixed length showed better
results. Further research was conducted in [8] on the influence
of walking speeds and surfaces on gait recognition. Different
parameter settings in dynamic time warping were evaluated
to optimize the cycle extraction process. Since most methods
on accelerometer-based gait recognition suffer from cycle
detection failures, [4] proposed a novel algorithm which uses
a multiscale signature point extraction method, and has shown
significant improvements.

accelerometer-based gait recognition systems have a lot
of positive traits, however, they suffer from high energy
consumption due to continuous accelerometer data sampling.
Researcher in [9] tried to solve this problem by proposing a
kinetic energy harvesting device and used its output voltage
signal as the source of gait recognition. In [10] capacitive
coupled human body communication was presented as a bio-
metric authentication method instead. The method requires
S-parameters over wide range of frequencies to be able to
function. With the use of current available devices, [11]–
[13] attempts to exploit propagation characteristics or wireless
channel to obtain behavioral fingerprint and use it in authenti-
cation. They make use of the channel state information (CSI)
of Wi-Fi signal to extract features that identify individuals by
their intrinsic body movement during walking without attach-
ments to the body. It requires a multiple antenna transmitter
and receiver fixed in a certain environment.

In this work a received signal strength indicator (RSSI)
based gait authentication method is proposed. Arm movement
during walking has been chosen as the gait identification
feature as the body mounted sensors on the arm wrists (smart-
watches) are already popular. The method does not require
hardware upgrades as it only relies on regular communication
between body mounted sensors (e.g. smartwatch) and body
mounted access node (e.g. smartphone). This makes the system
mobile and not bounded to a specific location, contrary to Wi-
Fi-based gait recognition systems. Unlike accelerometer-based
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Fig. 1. Example of WBAN with 3 nodes and 1 coordinator. The off-body
node act as communication access point.

gait recognition systems, it does not require sampling of sensor
data, making it more energy efficient. Moreover, it does not
require any additional packet transmission but instead, make
use of the RSSI values available in regular communications.

The paper begins in Section II by discussing the radio
features that are applicable in gait detection. In Section III, 4
different classification learners are presented for use in RSSI-
based gait authentication. Experimental data and performance
analysis is presented in Section IV. Finally, the conclusion is
given in Section V.

II. GAIT RADIO FEATURES

The most common architecture of WBANs consist of body-
mounted sensors known as nodes, and an access node such
as smartphone also mounted on the body, known as central
coordinator as shown in Fig. 1 [14]. The nodes have sensors
that measure various physiological conditions, or other types
of data and transmit it wirelessly to the coordinator. The
coordinator acts as an access point by collecting data from
the nodes, and transmit them to the data center through an
off-body node acting as a communication access point. It is
in the radio channel between the nodes and the coordinator
that the gait information is available and could be extracted,
processed and used for authentication by the coordinator. If
processing power is a concern at the coordinator, the raw gait
information could simply be forwarded to the server together
with the rest of the data, and the authentication process could
be performed there. This kind of authentication will ensure
that the data uploaded to the server are indeed from the
intended subject and will prevent impersonation attacks. It
could be used together with other authentication methods, to
add another security layer for applications in which one-time
validation of the user’s identity is insufficient. Since it can
be measured without subject intervention, it could be used as
a continuous authentication method and set to trigger other
security measures whenever it fails.

Fig. 2. Mean current consummation of common accelerometers connected
to 3.3 V power supply together with typical values given in their respective
data sheets [16].

The gait information available in the radio channels can
be extracted from the measurement of the power present
in the received signal. This measurement is already being
conducted by wireless radio transceivers and is indicated by
their RSSI values [15]. This gives the RSSI method an edge
over the accelerometer-based systems, which needs sampling
of sensor data specifically for gait recognition purpose. The
most commonly available accelerometers have been shown to
consume current of more than 130µA [16] as shown in Fig
2, and that the sampling process consumes around 3 mW for
low power processors [9] and 370 mW for smartphones [17].
The proposed method eliminates the sensor, and all the power
consumption related to it by relying on measurement which
are already conducted by transceivers and are available for
processing. This means the power consumption on the sensor
node (e.g., smartwatch) due to RSSI based method is zero. The
RSSI values are used to obtain radio features such as variation
of power received with time (time series), the measure of
degree of time dependency (auto-correlation function), and
how often does the signal crosses a certain threshold (level
crossing rate). It is through these radio features that one subject
can be differentiated from the other. The considered radio
features are discussed in the following.

A. The Time Series

It has been shown that the power received in a WBANs is
related to the dynamics involved with the specific activity of
the subject . For the case of walking, the power received is
periodic to the relative movement of the body parts where
the nodes are attached to. The period of the signal tends
to correspond to the period of the limb swinging, and the
amplitude variation depends on the size of the limbs, distance
from its rest position, and the amount of shadowing the body
provide during walking [18]. This is normally different enough
from one person to another to a point that it could be used for
individual identification.

Fig. 3. shows the time series of the received signal power of
3 subjects during walking for the duration of 3 seconds. The
transceivers were placed at the right wrist and the right side of
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Fig. 3. Example of time series of the received signal power of WBANs of 3
different subjects during walking. The transmitter was attached to the waist,
and the receiver was attached to the right wrist.

the waist, and the received signal power was smoothed using
a sliding window of length of 0.15 seconds. The time series of
all 3 subjects are periodic with a period of around 1 second,
consistent with the oscillatory movement of the corresponding
arms. However, the series also show that the received signal
power is different between the subjects and hence, the overall
patterns have enough features to distinguish them from one
another. More discussions on the measurement campaign and
the subjects involved are provided in Section IV.

B. The Auto-Correlation Function
The Auto-correlation function (ACF) is a measure of the

degree of time dependency among the observations of signals.
It is used to characterize the periodicity in a fading signal
envelope. For real discrete sampled data x(t), it can be
calculated using [19], [20]:

rxx(τ) =

N−τ∑
t=1

(x(t)− µ)(x(t− τ)− µ) (1)

where τ is the time delay, N is the length and µ is the mean of
the sampled data. The normalized ACF can then be obtained
by using (2) to give an output with a maximum value of 1 at
τ = 0

ρxx(τ) =
rxx(τ)

rxx(0)
(2)

For a perfect periodic signal, the normalized ACF oscillates
with its period corresponding to the period of the signal. If
the signal is limited to a specific number of periods (it does
not go to infinity), the envelope of the normalized ACF tends
to decay exponentially. Take for example the normalize ACF
of periodic signal limited to 3 periods will have a peak of 1 at
τ = 0, a peak of 2

3 at τ = 1 period, and a peak of 1
3 at τ = 2

periods as shown in Fig. 4 for sinusoid, square, and triangle
signals. These peaks values tend to decrease as the noise in the

Fig. 4. Example of normalized ACF of periodic signals of length of 3 periods.
The ACF of all the signals have peaks at τ = 1 of 2

3
, and at τ = 2 of 1

3

Fig. 5. The normalized ACF of the signals shown in Fig.3. The ACFs show
properties of periodic signals with significantly different patterns.

periodic signal increase and hence can be used as an indicator
of change in activity. Take for example if a walking subject
stops in the middle of sampling, the peak value at τ = 1 period
will be significantly smaller than the expected value and hence
the change in activity could be detected.

In addition to that, since the received signal power is
different from one subject to the other during walking, the
normalized ACF has the potential of being different. Fig. 5
shows the normalized ACF of the signals shown in Fig. 3. The
ACF of the 3 subjects show properties of a signal composed
from a number of periodic signals, with the main envelope
having a period of around 1s (0.92 s for Subject 1, 1.02 s
for Subject 2, and 0.96 s for Subject 3), consistent with the
oscillatory movement of the corresponding arms. However,
the composition of these periodic signals are different from
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Fig. 6. LCR representation of signals shown in Fig. 3.

one subject to the other, making the overall pattern of the
ACF significantly different and hence could be used in gait
recognition.

C. The Level Crossing Rate
Another manner of quantifying periodic signals is using the

level crossing rate (LCR), which is the measure of how often a
signal crosses a certain threshold going in a positive direction
[20]. LCR represent signals in such a way that the primary
focus is on power levels and frequency of crossing them. It
clearly shows the signal range, and emphasizes the location of
the high-frequency component of the signal. Fig. 6 shows the
LCR representation of the signals shown in Fig. 3. As expected
the LCR of the 3 subjects are different due to the difference in
the subjects’ gait, and the size of there bodies. The LCR show
clearly the minimum and the maximum power level received
by each subject. LCR could be too simple as a differentiating
factor on its own, however, it could have good contribution as
an additional feature.

III. CLASSIFICATION LEARNERS

Four different classification learners were considered for
distinguishing from the walking pattern of one person to the
other based on extracted radio features discussed in Section II.
The radio features are presented by a vector with a length L,
taken from a period of 3 seconds. The vector length L, varies
with the feature in hand where for time series L = 600, for
ACF L = 300, and for LCR L = 60. All the classification
learners are implemented in MATLAB environment with a
brief introduction of each following in this section.

A. Decision Trees
Decision tree learners comprise a series of logical decisions

taken at decision nodes, in which each possible decision’s
choice results in a tree branch. The tree is terminated by the

leaf nodes that denote the result of following a combination of
decisions. Data that is to be classified begin at the root node,
where it is passed through the various decisions in the tree
according to the values of its features, until it reaches a leaf
node, which assigns it a predicted class [21]. To identify which
feature to split upon at the decision nodes, Gini’s diversity
index was used as a split criterion. For a data set S, Gini
index G is defined as follows [22]:

G(S) = 1−
C−1∑
i=0

(si
S

)2
(3)

where C is the number of predefined classes, and si is the
number of samples belonging to class ci. The quality of a
split on a feature into h subsets Sj is then computed as the
weighted sum of the Gini indices of the resulting subsets:

Gsplit =

h−1∑
j=0

nj
n
G(Sj) (4)

where nj is the number of samples in subset Sj after splitting,
and n is the total number of samples in the given decision
node. Thus, Gsplit is calculated for all possible features, and
the feature with minimum value is selected as a split point.
To limit the growth of the tree, so that the model does not
get over-fitted to the training data, the maximum number of
splits was set to 100. Detailed description of the decision tree
classification learner is found in [21], [22].

B. Support Vector Machine

Support vector machine (SVM) is a type of machine learning
algorithm in which the classification of the outputs depend on
explicit generalization, obtained from analyses of the training
data. In this algorithm, the training data items are put in
a P -dimensional space, and classification is performed by
finding the hyper-planes that differentiate the required number
of classes very well. The obtained hyper-planes are then used
in the classification of test data. The hyper-planes are obtained
by maximizing functional margin which is the distances be-
tween the nearest data point and the hyper-plane. This can be
achieved by [23]:

min
u,b

H(u) =
||u||2

2
subject to cl(uT pl + b) ≥ 1

for l = 1, ..., P

(5)

where pl is the training example, cl represents the labels of
the training examples, P is the total number of features to
be compared, u is the weight vector and b is the bias of the
optimal hyper-plane. The SVM can be extended to non-linear
classification by the usage of kernel method to map the inputs
into high-dimensional feature space. In this work, a quadratic
kernel function was used in the application of SVM. See [23]
for more details on the SVM classification learner.
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C. K-Nearest Neighbors Classifier
k-nearest Neighbors (k-NN) algorithm is a type of machine

learning algorithm in which the classification of the output
does not depend on explicit generalization, but instead com-
pares new problem instances with instances seen in training.
More specifically, it compares the new problem with k nearest
neighbors, and assign it to the class most common among
them [24]. It is among the simplest of all machine learning
algorithms especially in its simplest form where k = 1. The
nearest neighbors are identified by calculating the Euclidean
distance d between a training data pl and the test data ql as

d =

√√√√l=P∑
l=1

(pl − ql)2 (6)

Since (6) is dependent on how features are measured, the
features values were re-scaled so that each one contributes
relatively equally to the distance formula [25]. The algorithm
was implemented with k = 10, in which weight v were
assigned to the contributions of the neighbors using,

v =
1

d2
(7)

so that the nearer neighbors contribute more to the decision. A
detailed description of the k-NN classification learner is found
in [24], [25].

D. Artificial Neural Network
An Artificial Neural Network (ANN) models the relation-

ship between a set of input data and the output class by the
use of network of nodes known as artificial neurons to solve
learning problems. Each node takes M inputs of rm, weight
them with wm according to their importance, and then the
summation is passed on according to an activation function
f(g). Mathematically the processes can be represented by the
formula [21]:

y(x) = f

(
M∑
m=1

wmrm

)
(8)

with a sigmoid activation function defines as:

f(g) =
1

1 + e−g
(9)

The nodes were grouped into 2 layers, hidden layer, and
output layer. The hidden layer processes the input data prior
to reaching the output layer which does further processing
and generates a final prediction. The number of nodes in the
output layer is predetermined by the number of classes in the
outcome, however, in the hidden layer, there is no reliable
rule to determine the number of nodes needed. In this work,
25 nodes were used in the hidden layer as the addition of
more nodes in this layer did not give significant improvement
in performance. The weights wm were adjusted in the training
process using scaled conjugate gradient back-propagation al-
gorithm. In this algorithm, the gradient of activation function
is used to determine which weight should be adjusted in order
to reduce the error between the actual and predicted class. See
[21], [25] for more details on the ANN classification learner.

Fig. 7. Wearable radio transceiver. The device is approximately 50 mm x 20
mm x 20 mm.

TABLE I. VOLUNTEERS DETAILS

# Gender Age Height (cm) Weight (kg)
01 Female 35 168 63
02 Female 23 174 69
03 Female 25 159 53
04 Female 29 171 66
05 Female 24 167 61
06 Male 29 180 83
07 Male 35 185 75
08 Male 25 178 67
09 Male 23 173 80
10 Male 27 168 65
11 Male 28 183 105
12 Male 26 165 66
13 Male 30 160 53
14 Male 21 175 80
15 Male 30 181 75
16 Male 26 175 83
17 Male 26 167 79
18 Male 49 178 75
19 Male 40 170 78
20 Female 60 170 75

IV. EXPERIMENTAL DATA AND ANALYSIS

A. Measurement Data
The experiments conducted in this study are preliminary

towards the validation of the proposed method. The dataset
used to evaluate the RSSI-based gait recognition consist of 20
healthy subjects (14 males and 6 females), with different age,
height, and weight detailed in Table I. During the data collec-
tion phase, 3 transceivers were attached on the participants, a
transmitter on the right side of the waist representing devices
such as smartphones, and a receiver on the wrist of the right
and left arms representing devices such as smartwatches. The
transceivers were attached in such a way that the antennas
were vertically polarized. The participants were asked to walk
at their normal speed in both outdoor and indoor environments
in order to capture the influence of different environment. The
outdoor environment was a parking lot with an asphalt surface,
while the indoor environment was a cafeteria with a tiled
surface. Each participant walked for approximately 4 minutes
outdoors followed by 4 minutes indoors to include natural gait
changes over time and environments. The experiments were
limited to single trial per subject, with no donning/doffing
of the transceivers. The transceivers (see Fig. 7) were made
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using programmable radio CC2500 from Texas Instruments
[26]. The transmitter was set to transmit a packet every 5 ms
with constant transmission power of 1 dBm at the 2.425 GHz
carrier frequency. The receiver was used to store the packet
number together with RSSI on its MicroSD memory card. The
data were later exported from the memory card to a computer
running MATLAB software for analysis.

In MATLAB, the collected data was split into segments of
3 seconds giving us a total of 150 segments from each subject.
In each segment, 3 radio channel features (time series, ACF,
and LCR) discussed in Section II were extracted. The radio
features were later used with classification learners discussed
in Section III for testing the performance of the RSSI-based
gait authentication system. For the case of time series, the
signal was shifted on time axis so that all the segments
have their peaks at t = 0 as in Fig 3. Whenever ACF was
used as a radio feature, an additional process of eliminating
segments with periodicity noise was used. The process was set
to eliminated any segment in which its ACF does not have a
peak greater than 0.3 at τ = 1 period.

B. Performance Metric Index

A reliable gait authentication algorithm has to make a
decision whether the gait measured is of the genuine user or
an imposter. The following 3 success criteria could be used to
measure its performance [9].
• True positive rate (TPR): Also know as sensitivity, is

the probability that the authentication system correctly
accepts the access request from the genuine users. If
TP and FN represents the number of times the genuine
user’s access request is accepted and rejected respec-
tively, then TPR can be calculated as follows

TPR =
TP

TP + FN
× 100 (10)

• True negative rate (TNR): Also known as specificity,
is the probability that the authentication system correctly
rejects the access request from an imposter. If TN and
FP represents the number of times an imposter’s access
request is rejected and accepted respectively, then TNR
can be calculated as follows

TNR =
TN

TN + FP
× 100 (11)

• Recognition accuracy: It represents the percentage of
correct classifications which is simply the number of
true classifications (acceptance from genuine users and
rejection from imposter) over the total number of tests.
It can be calculated as follows

Accuracy =
TP + TN

TP + FN + TN + FP
× 100 (12)

In general, the system should minimize the FPs and FNs,
however, greater emphasis could be set on minimizing FPs
so that the imposter’s access request is rejected all the times.

TABLE II. PERFORMANCE RESULTS USING DATA FROM ONE RADIO
CHANNEL: RIGHT WRIST TO WAIST

Radio Performance Decision Quadratic Weighted
feature metric tree SVM k-NN ANN

TPR 67% 86% 83% 68%
TS TNR 67% 88% 85% 71%

Accuracy 70% 88% 85% 74%
TPR 63% 81% 72% 85%

ACF TNR 64% 84% 77% 86%
Accuracy 66% 83% 75% 86%
TPR 57% 70% 64% 73%

LCR TNR 56% 72% 67% 74%
Accuracy 61% 74% 67% 76%
TPR 77% 92% 87% 90%

TS+ACF TNR 76% 93% 89% 91%
Accuracy 78% 93% 89% 91%
TPR 71% 89% 86% 85%

TS+LCR TNR 71% 89% 88% 85%
Accuracy 73% 89% 88% 87%
TPR 72% 88% 81% 93%

ACF+LCR TNR 72% 90% 85% 94%
Accuracy 73% 90% 84% 94%
TPR 76% 92% 89% 94%

TS+ACF+LCR TNR 76% 93% 91% 95%
Accuracy 78% 93% 91% 95%

C. Results and Discussions

The objective of the analysis is to investigate which radio
channel feature and which classification leaner are suitable for
RSSI-based gait authentication system. For each radio channel
feature obtained from the channel between the right wrist and
the waist, the performance of each classification learner in
terms of TPR, TNR, and accuracy is evaluated independently,
and in combination with each other. The same analysis were
repeated when additional radio features were extracted from
the channel between the left wrist and the waist, and used
together with those from the channel between the right wrist
and the waist. From our experimental data, 150 of 3-second
segments were extracted from each user, giving us a total of
2550 segments for testing. To protect the algorithm against
over-fitting, a 10 folds cross-validation method was employed.
In this method, the data set is partitioned into 10 fold, in which
9 are used for training and 1 is used for validation purposes.
The training and testing process is repeated 10 times so that
each of the 10 partition is used exactly once as the testing
data. The results are then averaged over the 10 validations to
yield the average performance.

Table II and Fig. 8 show the performance of the different
classifiers using time series (TS), ACF, LCR, and different
combination of those features, obtained from radio channel
between the right wrist and the waist. For all the radio features,
the worst performance is shown by decision tree algorithm,
with maximum accuracy of 78% obtained when all the radio
features are used together. When only a single radio feature
is used, LCR has shown to give the worst results, and TS
the best results for all classification learners except ANN, in
which TS gave the worst results and ACF gave the best results.
When the radio features are used in pairs, ACF+LCR pair gives
the best results when ANN is used, while TS+ACF pair gives
the best results for the remaining classification learners. The
combination of all 3 features archives an accuracy of 95%
using ANN as the classification learner. It is also interesting
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Fig. 8. Performance results using data from one radio channel: Right wrist
to waist.

TABLE III. PERFORMANCE RESULTS USING DATA FROM TWO RADIO
CHANNELS: RIGHT WRIST TO WAIST, AND LEFT WRIST TO WAIST

Radio Performance Decision Quadratic Weighted
feature metric tree SVM k-NN ANN

TPR 69% 88% 81% 81%
TS TNR 69% 89% 83% 83%

Accuracy 73% 89% 84% 84%
TPR 66% 82% 75% 90%

ACF TNR 66% 85% 82% 91%
Accuracy 69% 85% 79% 91%
TPR 62% 78% 64% 81%

LCR TNR 63% 81% 69% 81%
Accuracy 66% 81% 69% 83%
TPR 78% 93% 90% 95%

TS+ACF TNR 78% 94% 92% 96%
Accuracy 81% 94% 92% 96%
TPR 75% 89% 84% 93%

TS+LCR TNR 75% 90% 87% 93%
Accuracy 77% 91% 86% 94%
TPR 72% 88% 83% 96%

ACF+LCR TNR 72% 90% 86% 96%
Accuracy 74% 90% 85% 97%
TPR 79% 94% 90% 98%

TS+ACF+LCR TNR 79% 94% 92% 98%
Accuracy 82% 95% 92% 98%

to notice that, moving from the use of a single radio feature
(TS with SVM as classification learner) to radio features in
pair (ACF+LCR pair with ANN as a classification learner)
improves accuracy by 6%, while from the pair to the combi-
nation of all 3 radio features (TS+ACF+LCR with ANN as the
classification learner) the improvement is only 1%.

When additional radio features are extracted from the chan-
nel between the left wrist and the waist, and are used together
with those from the channel between the right wrist and the
waist, we notice improvement in all performance metric (see
Table III and Fig. 9), with the most improvement in accuracy
of 7% achieved when LCR is used as a single radio feature,
and the least of 1% achieved when TS is used as a single
radio feature. We also notice a similar trend in which moving
from the use of a single radio feature (ACF with ANN as
classification learner) to a pair of features (ACF+LCR pair

Fig. 9. Performance results using data from two radio channels: Right wrist
to waist, and left wrist to waist.

with ANN as classification learner) accuracy improves by 6%,
while from the pair to the combination of all 3 radio features
(TS+ACF+LCR with ANN as classification learner) only 1%
of improvement is achieved. Here the accuracy reaches 98%.

Based on the above results, the use of ACF+LCR pair,
extracted from a single radio channel, with ANN as the clas-
sification learner is suggested for practical implementations.
This is due to the level of accuracy achieved (94%), despite
the number of predictors being 67% less than those used to
achieve the best performance. Its confusion matrix is shown in
Fig. 10 with positive predictive values in green, and the false
discovery rates highlighted in red.

V. CONCLUSION

In this study, an RSSI-based gait authentication algorithm
was proposed. The system is applicable when unobtrusive,
natural method of authentication, with low hardware cost
and power demands is needed. The system was based on
extracting features from the radio channels between the wrists
and the waist, through RSSI present in all wireless devices.
The features extracted were time series, ACF, and LCR from
20 subjects walking in outdoor and indoor environment. Four
different classification learners namely decision tree, SVM, k-
NN, and ANN were used for testing of the algorithm.

The overall best performance was achieved using all the
radio features together (TS+ACF+LCR), extracted from 2
radio channels, right wrist to waist, and left wrist to waist, and
using ANN as the classification learner. All the performance
metric namely TPR, TNR, and accuracy were above 97%,
see Table III. In a more practical approach, where the radio
features were extracted from just 1 radio channel (right wrist to
waist), the best performance achieved was above 95% for all
performance metric, while using all the radio features, with
ANN as the classification learner. This suggests that RSSI-
based authentication system could be based on just 2 devices,
(for example a smartwatch and a smartphone) especially when
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Fig. 10. Confusion matrix showing positive predictive values in green, and
false discovery rates in red. The radio features used were ACF+LCR with
ANN as the classification learner.

the system is used as a complementary to other security
features.

In general the RSSI-based authentication method, using a
pair of ACF+LCR extracted from a single radio channel, with
ANN as the classification learner, achieved a good level of
accuracy (94%), with comparatively small number of predic-
tors (67% less than the best performer), and hence has a good
potential for practical implementation.
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