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Abstract

Regulated hydropower is a flexible resource that is well suited for the provision
of ancillary services. Given the opportunity to participate in different markets, the
difficult task is to find the optimal allocation between them. The scope of this thesis
is to investigate the multi-market problem and provide models for the optimal
utilization of regulated hydropower in the Medium-Term Hydropower Schedul-
ing (MTHS) setting. This is conducted from the view of a hydropower producer,
participating in the day-ahead electricity market and in reserve capacity markets
for providing rotating reserves.

A major part of Norway’s electricity generation comes from hydropower. Since the
annual inflow displays considerable fluctuation, it is imperative that hydropower
reservoirs are efficiently managed. The stored water should be exerted when it is
required, i.e. when the market prices are high compared to the value of storing it
for later use, at the same as spillage should be avoided and market revenues maxim-
ized. With better grid connection to the rest of Europe and tighter market coupling,
flexible hydropower producers have an edge in providing their flexible resources
to larger market shares. The tighter market coupling also ensures a higher secur-
ity of supply in the Nordics and the ability to absorb more renewable energy at
times when there is, alternately, a great deal of wind or sun in continental Europe.
The objective of this thesis is thus to provide methods for decision support for
hydropower producers in a changing power market.

The initial work in this thesis investigates how effectively a current Medium-Term
Hydropower Scheduling (MTHS) model, based on Stochastic Dual Dynamic Pro-
gramming (SDDP), performs in a multi-market setting. The SDDP algorithm is
a state-of-the-art method for solving multistage stochastic programming problems
with extensive adoption for Hydropower Scheduling (HS) problems. The work
found that the SDDP model overestimated the hydropower system’s ability to
provide reserve capacity. For the given case studies it was around 30%, illustrating
the importance of detailed modeling when considering reserve capacity.

vii



viii Abstract

To undertake the issue with modeling details the newly proposed Stochastic Dual
Dynamic integer Programming (SDDiP) method was applied to the MTHS prob-
lem. It was shown that the method provided convergence of a nonconvex MTHS
problem, but with a substantial computational burden. A new type of cut in the
SDDiP framework, called a strengthened Benders cut, showed beneficial proper-
ties in terms of an improved optimality gap and manageable computation time.
These results were further sustained by another study that included more detailed
modeling of the hydropower system with a recently proposed method to include
uncertainty in objective term coefficients for Dynamic Programming (DP) prob-
lems. The study showed that an approach based on Benders cuts was inferior
when the problem formulation was so complex.

Furthermore, a study of a constructed power system with increasing shares of wind
power was investigated, with an emphasis on the provision of both upwards and
downwards reserve capacity from hydropower and wind power. The study was
conducted with a SDDP model showing that wind power could effectively provide
downwards reserve capacity, and in certain cases when the wind penetration was
very high some upwards reserve could also be provided.

Based on the possibility of including nonconvexities in the MTHS problem with
the SDDiP method, a study on the modeling of the generation function from a
hydropower station was also conducted. It was found that the convex relaxation
of this function leads to an overestimation of what is physically possible. This
is particularly true when environmental constraints and a reserve capacity market
was included.

In short, this thesis investigated both current and recently proposed algorithms
used for solving the MTHS problem. Realistic case studies were applied with the
aim of presenting state-of-the-art algorithms that are applicable in operational use.
This is especially evident for an improved type of Benders cuts called Strengthened
Benders cuts, used by the SDDiP method.
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Definitions and Terms Used

Ancillary services
Necessary services provided to a system operator to ensure reliable
operation of the power grid.

Central dispatch
The scheduling of production to cover net load is performed simul-
taneously in an integrated process. The entity performing the process
thus defines which power stations should be operational or not, at a
given time.

Energy system
Includes, for a region, all units generating, consuming and transport-
ing energy.

Hydropower system
Includes all reservoirs, power plants and other connected components
used for the purpose of generating hydropower in a river system.

Marginal pricing
The highest accepted bid in a market sets the price for the commodity.

Net load
Total demand of electricity subtracted by intermittent energy.

Power system
Includes, for a region, all units generating, consuming and transport-
ing electric energy.

Reserve capacity
Spinning or rotating capacity that a power producer can provide to
the system operator to quickly react to deviations in scheduled system
operation.
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xii Definitions and Terms Used

Stability The power system’s ability to return to an acceptable steady state after
a disturbance.

Structural imbalances
Imbalance of generation and consumption caused by the market struc-
ture, e.g. rapid changes of net load around whole hours.

System operator
Entity responsible for the reliable transfer of electricity from produ-
cers to consumers.

Water value
The expected opportunity cost of water associated with storable hydro
reservoirs.
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Chapter 1

Introduction

The Regulation establishing a guideline on electricity balancing (EB) entered
into force on 18 December 2017. The Balancing guideline will set down rules on
the operation of balancing markets, i.e. those markets that Transmission System
Operators (TSOs) use to procure energy and capacity to keep the system in
balance in real time. The objectives of the guideline include increasing the
opportunities for cross-border trading and the efficiency of balancing markets.

—European Commission, on Electricity network codes and guidelines

Hydropower scheduling is a complex problem that aims at utilizing the water re-
sources in the most efficient manner. The electricity generated in Norway is pre-
dominantly derived from hydropower, in 2016 this share was 96.3% [1]. It is clear
that the tools used for managing the country’s hydropower resources should en-
sure as much value creation as possible. Storable hydropower with ample installed
capacity provides a unique flexibility to shift generation to the hours throughout
the year that provide the highest value, either the value is created in the wholesale
energy market or by providing ancillary services for the System Operator (SO).

The Norwegian power system is not the only one which is predominately depend-
ent on hydropower. The Brazilian system generates around three-quarters of its
electric energy from hydropower, where the country’s largest hydropower system1

consists of 20 turbines with an installed capacity of 700 MW each. Other sys-
tems with large shares of hydropower include China, Canada, New Zealand and
the USA. In fact, 16.4% of the electricity generated in the world came from hydro-
power in 2016 [2]. Given the large share of electricity generated by hydropower,
it is thus imperative to have good tools for performing hydropower scheduling.

1Itaipu river system
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2 Introduction

This thesis aims at tackling the Medium-Term Hydropower Scheduling (MTHS)
problem from a Nordic hydropower producer. Many of the concepts in this work
are applicable for use in other Hydropower Scheduling (HS) problems, as the prob-
lems are similar except on the market side. Since the Nordic electricity market is
a liberalized market, the producers have no commitment to supply electricity, they
merely do so to maximize their profits in the free market. HS in Brazil, on the other
hand, aims at minimizing the overall system costs, and does so by performing a
central dispatch of the power system. Moreover, a HS problem in Canada aims
at fulfilling the load requirements from metal smelters and any excess production
can be sold to a market. The remainder of this thesis therefore take the Nordic
hydropower perspective, unless stated otherwise.

In recent years, the majority of the income for hydropower producers has come
from selling energy. A more extensive power market consisting of multiple com-
modities from which the hydropower producer can capitalize from requires tools
that incorporate this added complexity. This can be seen in context with the expec-
ted need for more flexible power plants that can provide rapid changes in power
output, resulting in greater volumes traded in these balancing reserve markets. In
essence, this thesis provides models that are suited for the framework of a fu-
ture power market where balancing services are highly valued and remunerated,
and where higher levels of modeling details are required. The main objective has
focused on making more comprehensive MTHS models that can supply reserve
capacity in addition to selling energy.

1.1 Motivation
In order for the power system to transition into a sustainable system with high
shares of renewable energy, some fundamental aspects have to change. Tradition-
ally the flow of electricity has been from large power producers to end-users. The
price of electricity has generally been stable and driven by the price of fuel by
thermal units, such as nuclear and coal power plants [3]. Deviations in forecasted
net load have been low and, subsequently, the grid stability has been good. With
increasing shares of renewable power generation the deviations of the forecasted
net load have significantly increased. The term "duck curve" has been repeatedly
discussed and describes the rapid change in net load in the afternoon when the
solar generation is low while the demand increases, resulting in a sharp increase of
net load [4], an illustration is given in Figure 1.1. The marginal costs of renewable
energies are also very low compared to thermal power plants. For wind turbines the
marginal cost may even be negative due to feed-in tariffs. The generation is also
often on the distribution grid, which can, in some cases, make the power flow in
the opposite direction to that of the grid’s original purpose. It is evident that there
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Figure 1.1: Illustration of the duck curve. It clearly illustrates the increasing ramping
requirements a power system would need if the levels of solar generation increases [5].

are major changes happening within the power systems, that will require different
market structures to better handle imbalances than the power system of the past.
Therefore, it is imperative that hydropower producers adapt and develop tools that
are suited for a future with higher uncertainty and variability.

In addition to the abovementioned challenges, a tighter grid connection between
European countries is expected. This will enable the renewable energy to be trans-
ported from rural areas, which often have favorable conditions for renewable gen-
eration, to high load areas. Moreover, when the wind is not blowing and the sun
is not shining, flexible power plants can balance out the net load. For Norway,
this means more High-Voltage Direct Current (HVDC) cables to the European
continent, which enable us to import cheap renewable energy and export from our
flexible hydropower plants. This push towards a tighter coupled power system was
outlined in 1996 when the European Union (EU) issued a directory (1996/92/EC)
to gradually open the electricity markets for all member states. Following this,
other legislation has appeared that aims to ensure a fully functional Internal Elec-
tricity Market (IEM) in the EU, such as the third energy package that came into
force in 2009. The package aimed at liberalizing the European energy markets and
obtaining a level playing field for all market participants. To oversee and ensure
this vision two agencies were established; Agency for the Cooperation of Energy
Regulators (ACER) and European Network of Transmission System Operators for
Electricity (ENTSO-E). Even though Norway is not a member of the EU, it is
a member of European Free Trade Association (EFTA) that gives access to the
internal markets in the EU, and is therefore encompassed by the EU directives.
Such regulations include the recently developed Network Codes that ENTSO-E
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and ACER are harmonizing [6]. It is evident that the EU has very ambitious tar-
gets for a renewable energy sector, with a vision of being climate-neutral by 2050
[7]. With common rules, guidelines, the merging of markets and tighter grid con-
nection across Europe, one can expect that power markets will be more streamlined
and products standardized [8].

In central Europe, the revenue of hydropower obtained from balancing markets is
significantly higher than in the Nordic market. Given the current focus on integ-
rating European electricity markets, one can expect this gap to close in the years to
come. One can therefore expect that a larger share of the income from hydropower
generation is likely to come from markets other than the day-ahead market. The
impression Nordic producers have given implies that this development has already
started and that their revenues from reserve and regulating markets are increasing.

The Norwegian hydropower producers are in a unique position to both facilitate a
sustainable power system and capitalize on it. This requires, however, sufficient
support tools that can be relied upon to make the best operational decisions in a
multi-market setting. The support tool will also assist hydropower producers when
constructing new or refurbishing old plants. Without these tools, a significant risk
of lost future market opportunities may occur, as stated in [9].

1.2 PhD Project Scope
The overall goal is to analyze and develop methods for Medium-Term Hydro-
power Scheduling (MTHS), considering participation in multiple power markets.
The PhD project is a part of a research project investigating how balancing markets
affect Hydropower Scheduling (HS) and how methods for generation scheduling
in multiple markets can be incorporated in existing operative models [10]. The
methodological approaches used in this thesis have therefore been based on im-
provements of the renowned Stochastic Dual Dynamic Programming (SDDP) al-
gorithm [11], a sampling-based nested Benders decomposition algorithm for solv-
ing multistage stochastic programming problems [12].

This thesis has investigated the different power markets in which a Norwegian
hydropower producer can participate, with a discussion of potential future markets.
It has also been motivated by new algorithms that have been published during the
course of this PhD work, and a substantial amount of work has been conducted
towards applying and developing these algorithms for MTHS problems.

1.3 Contributions
Hydropower producers rely on proficient decision support software to assist their
generation scheduling. This thesis has investigated methods for benchmarking



1.3. Contributions 5

existing methods, new models that provide a better description of the underlying
hydropower system and develop them to solve the MTHS problem. The main
contributions can be summarized as having:

• Built a simulator used to benchmark the performance of a standard SDDP
implementation used for solving multi-market problems and other problems
where the underlying problem cannot be modeled in sufficient details as a
Linear Programming (LP) problem.

• Applied SDDiP to an MTHS problem that included nonlinear constraints
such as minimum generation limits and variable head. This work was fur-
ther extended to include generation with variable head and to emphasize the
promising properties strengthened Benders cut have for solving nonconvex
problems.

• Implemented and tested a recent methodology for objective term uncertainty
in SDDP, to model correlation between different stochastic processes, such
as inflow, energy and reserve capacity price. The approach included variable
head and combined methods used in SDDiP to provide a dominant solution,
compared to an existing approach.

• Proposed a method to include correlation between inflow and price in the
SDDiP framework.

• Developed methods to describe the generation function, representing the
power stations power output, in an MTHS problem.

• Proposed a new method to visualize the Expected Future Profit (EFP) func-
tion, in order to determine the extent of nonconvexity of the underlying prob-
lem.

Furthermore, the main contributions deducted from the case studies have been to:

• Analyze how a current MTHS model based on the SDDP framework per-
forms when including sales of reserve capacity. The model has proven to be
state-of-the-art when only selling energy in a day-ahead market, but when a
reserve capacity market is included the precision of the model was shown to
be inadequate.

• Analyze the impacts of more low load generation in an MTHS problem. The
results showed that when minimum discharge was added, the current model
overestimated its available generation capacity.
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• Analyze the provision of reserve capacity from wind power in a constructed
power system. It was found that wind power can effectively provide down-
wards reserve capacity, and only in some extreme cases, with extensive wind
penetration, provide upwards reserve capacity. The study also expressed
how well hydropower can facilitate intermittent energy sources.

1.4 List of Publications
The following is a list of publications associated with this thesis.

I. M. N. Hjelmeland, M. Korpås, and A. Helseth, “Combined SDDP and simu-
lator model for hydropower scheduling with sales of capacity,” in 2016 13th
International Conference on the European Energy Market (EEM), pp. 1–5,
June 2016. c© 2016 IEEE

II. M. N. Hjelmeland, A. Helseth, and M. Korpås, “A case study on medium-
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1.5 Thesis Outline
This thesis is a collection of seven publications carried out during the PhD. The
publications are provided in Appendix A. The remainder of this thesis is carried
out as follows.

The research context and background is outlined in Chapter 2. The chapter gives
insights into the Norwegian power market, the fundamentals of hydropower schedul-
ing with a main focus on MTHS and methods to solve these types of problems. The
main findings and results of the thesis are presented in Chapter 3. Finally, Chapter
4 presents conclusions and recommendations for further work.
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Chapter 2

Research Context and
Methodology

The Nordic market solution for automatic secondary reserves will enable
allocation of transmission capacity between bidding zones when this is
beneficial. This market will, indirectly, also result in increased demand for
Norwegian flexibility and thus greater value creation.

—Statnett, System operations and market development plan 2017-2021

The following chapter provides an insight into the markets in which a Norwegian
hydropower producer can participate and their turnover. Following this, the HS
problem is outlined. Lastly, some background on the methods used in this PhD is
given.

Due to the physical properties of the power system, power markets with different
timescales and usages are required to ensure stable grid operation. A list of the
markets in the Nordic countries is provided in Table 2.1. For HS it is primarily the
physical markets that are of interest, which are presented in the following.

2.1 Energy Markets

2.1.1 Elspot

Elspot is the day-ahead auction for power in Northern Europe. The auction con-
sists of demand and supply bids for every hour for the following day. For each
hour a system price is calculated under the assumption of unlimited grid capa-
city [22]. Due to congestion management by the Transmission System Operators

9



10 Research Context and Methodology

Table 2.1: List of power markets in the Nordic system.

Market place Physical trade Financial trade

Nord Pool Spot Day-ahead (Elspot)
Intraday (Elbas/XBID)

NASDAQ OMX Futures
Commodities DS Futures

options
CfDs

TSO Primary reserve market
Secondary reserve market
Tertiary reserve market

DK1

DK1

53.84

53.84

DK2

DK2

54.05

54.05

SE1

SE1

53.76

53.76

SE2

SE2

53.76

53.76

SE3

SE3

53.76

53.76

SE4

SE4

53.93

53.93

NO1

NO1

53.76

53.76

NO2

NO2

51.98

51.98

NO3

NO3

53.66

53.66

NO4

NO4

50.74

50.74

NO5

NO5

51.98

51.98

FI

FI

55.50

55.50

EE

EE

55.50

55.50

LV

LV

56.76

56.76

LT

LT

56.80

56.80

DE

DE
GB

GB

65.41

65.41

NL

NL
PL

PL

BE

BE

RU

RU

FR

FR

CZ

CZ

BLR

BLR

UKR

UKR

LU

LU

EIRE

EIRE

FRE

FRE

Figure 2.1: Overview of the Elspot areas.
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(TSOs) different price areas are made, as seen in Figure 2.1. Grid congestion is
thus implicitly taken into consideration between price areas, reducing the balan-
cing management for the TSO. Currently, there are 15 areas in the Elspot area: five
in Norway, four in Sweden, two in Denmark, and Finland, Estonia, Lithuania and
Latvia each comprise of one price area. Producers and consumers have to place
their bid in their respective price area. The price in one area is set such that the
capacity to other areas is within limits.

The monthly historical system and NO2 price are shown in Figure 2.2, illustrating
the large seasonal variations that can be observed. The NO2 area has a surplus of
production and is thus a net exporter, that normally observes a lower energy price
than the system price when the grid capacity is fully utilized. Since the bidding on
Elspot is portfolio based, producers have the opportunity to move production or
consumption in-house within each Elspot area, after clearing, rather than adjusting
their Elspot commitment in the balancing market or paying the TSO for imbalance.

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

Year

0

10

20

30

40

50

60

70

80

90

E
ls

p
o
t 

p
ri

ce
 [

E
U

R
/M

W
h
] System price

NO2

Figure 2.2: Historic monthly prices on Elspot for the system and the NO2 area.

Elspot is currently the largest day-ahead market in the world. A total of 512 TWh
were traded on the entire Nord Pool platform in 2017. Moreover, 394 TWh were
traded in Nord Pool Spots Nordic and Baltic day-ahead market, with a turnover of
approx. 100 billion NOK [23]. Likewise, the turnover in NO2 alone was around
13 billion NOK. This high liquidity is one of the main reasons why the system
price on Elspot is used to value the financial contracts traded on NASDAQ OMX
Commodities.

2.1.2 Elbas

Elbas is an intraday market for power trading. Through the European Cross-Border
Intraday Market (XBID) solutions 12 different intraday markets can be accessed,



12 Research Context and Methodology

2013 2014 2015 2016 2017 2018
[Year]

0

1

2

3

4

5

6

7

V
o
lu

m
e
 [

T
W

h
]

DE

LT

LV

BE

NL

KT

EE

DK

FI

SE

NO

UK

Figure 2.3: Sales volume traded on Elbas for the different countries. DE includes both
the German and the Austrian market. It should be noted that the UK market was included
in 2018.

which encompass the Nordic, Baltic, German, Luxembourg, French, Dutch, Bel-
gian, Austrian and UK markets [24]. Elbas works as a balancing market to the
Elspot market since it offers near real-time power trading, reducing the economic
risk for participants and enhancing system stability as the market participants can
balance any potential imbalance from the day-ahead schedule themselves. At
14:00 CET the TSO announces available transfer capacity and Elbas opens. It
is open until an hour before delivery, the following day. Settlements are bilateral,
anonymous and set on a first-come, first-served principle. Matching bids, lowest
sell and highest buy price, will be settled independently of the time of bidding.
The volume on Elbas was 6.7 TWh in 2017 [23]. The volume traded on Elbas in
Norway was only 0.33 TWh the same year. Figure 2.3 shows the yearly traded
volume on Elbas for different countries. Compared to previous years, the volume
is increasing, but is still only a fraction of the volumes in Elspot.

A study from 2009 analyzed the optimal bidding strategy for a medium-sized hy-
dropower producer. It was found that the value from considering Elbas was minor,
never greater than 0.12% [25]. Since the study was performed new initiatives have
come from the EU, aiming at an integrated intraday market across Europe, such as
XBID. The volume on Elspot has also almost tripled since 2009. Another study,
from 2016, investigated the trading behavior on Elbas over a year from February
2012 to March 2013 [26]. It was pointed out that a reason for the low Elbas trading
in Norway could be due to the fact that there is no available transmission capacity
towards Continental Europe, with the same holding true for limited export possib-
ilities to Finland and Denmark that had higher Elbas prices. Another finding from
the study was that the most trades occur in the last hours before closure, which is
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reasonable considering that renewable generation predictions are better closer to
delivery. An in-depth study of trading in Elbas for a single hydropower plant was
carried out in [27]. The thesis showed only a slight overall gain from participating
in the Elbas market but argued that a producer with a larger plant portfolio, i.e.
more flexibility, could have more to gain. However, an interesting remark is that
the gain was considerably higher when it was assumed to be an Elbas market with
greater more liquidity, that should represent a future power market with a large
share of intermittent renewable energy.

It is clear that Elbas does and will play a role in the future for renewable energy
producers that have to balance their generation commitments. Since 2012/2013,
the period analyzed by the abovementioned study [26], the volumes on Elbas have
increased by around 40% in 2017 [23]. With the launch of XBID in 2018 and
more automated market solutions by the market participants, one can expect that
the volumes will continue to increase.

2.2 Reserve Capacity Markets
The balancing markets refer to the three markets for providing primary, secondary
and tertiary reserves. The main distinctions between them are on their responsive-
ness and time of activation. Figure 2.4 shows the principal reaction of the balan-
cing reserves after a fault has occurred. The illustration shows how the markets
complement each other to bring the frequency back to nominal value.

Figure 2.4: Principal activation of balancing reserves after imbalance.

The Elspot and Elbas markets are used for scheduling before the hourly physical
delivery. Since the system’s balance of generation and consumption will almost
never be as predicted, the balancing markets are needed in order to ensure a stable
operation of the grid in real time. Typical causes of imbalance include tripping of
lines, transformers, generators or other components in the grid, forecasting errors
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and increasing amount of uncontrollable renewable power production. In recent
years, structural imbalances have reduced the frequency quality, mainly by in-
creased trade in the Nordic region with a more loaded grid, and interconnection
to the continent while the amount of automatic reserves has been low [28]. In
Norway, this increasing trend has, however, improved after the use of automatic
secondary reserves from 2013, see Figure 2.5. The procurement of Frequency Res-
toration Reserves - Automatic (FRR-A) was halted in 2016, leading to the spike in
the figure, more on this in Section 2.2.2.

Figure 2.5: Frequency deviation outside 49.9 - 50.1 Hz given in minutes per week. The
light green line portrays minutes per week, while the darker green shows moving average
over 52 weeks. [28]

With increasing transmission capacity to continental Europe even more reserve
capacity could be required, to back-up the expected increased changes of net load.
[29] shows the positive effects of interconnections between countries and that a
wind and solar production share above 30% would dramatically increase the need
for flexible capacity. In 2017 this threshold was reached with a German renewable
energy generation of 33.3% of the generation mix [30]. Comparably, in 2007, the
share was 13.7%. A study from 2015 gave Germany a 76% chance of reaching
the 30% level by 2020 [31]. The fact that this target has already been achieved
proves how fast transitions can occur, and how difficult forecasting can be. The
International Energy Agency (IEA) has recently been criticized for being overly
conservative in their predictions [32]. In fact, they have always underpredicted the
renewable generation.

In the following sections, the different reserve capacity markets will be outlined.
Subsequently, a summary of the different markets is given in Section 2.4 to put
them into context for the remainder of this thesis.
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2.2.1 Primary Reserve Market

Figure 2.4 shows how the first reaction to an imbalance comes from the primary
reserves, also called Frequency Containment Reserves (FCR). These energy re-
serves are automatic and fast acting, typically up to 30 seconds of activation and
symmetric [33]. In a hydropower system FCR is assured by the droop settings
in the turbine governors. With a negative imbalance1 the turbine governor would
increase the power output from the generator and vice versa for a positive imbal-
ance. In a thermal system, the most common way to provide FCR is to throttle
the inlet valves on the high-pressure turbine in conventional coal power plants.
This process would reduce the overall efficiency by around 0.5% and additional
investments and fuel costs are needed [22].

In Norway, a market for primary reserves was first established in 2008. Before this
point, primary reserves were considered to be balanced out over time, so there was
no market or any remuneration of the service. If the available primary reserves
were too low, the Norwegian TSO Statnett would ask power producers to increase
their droop settings [34].

Weekdays Weekend 

1 2 3 4 5 6

Figure 2.6: Visualization of the capacity allocation periods for FCR-N weekly reserves.
There is a total of 6 different periods.

The primary reserve market consists of two products; Frequency Containment Re-
serves - Normal (FCR-N) and Frequency Containment Reserves - Disturbance
(FCR-D), where FCR-N is divided into a weekly and daily market. FCR-N is
automatically activated if the frequency deviates from 50 Hz by ± 0.1 Hz. FCR-
D is partially activated when the frequency falls below 49.9 Hz and fully if the
frequency reaches 49.5 Hz [33]. Statnett decides which offers that will be ac-
cepted based on marginal pricing. Local grid-structure may force Statnett to buy
contracts over marginal price with a pay-as-bid principle. Pricing for the weekly
market (only FCR-N) is divided into three periods for weekdays and weekends:
night (00:00-08:00), day (08:00-20:00) and evening (20:00-00:00). A visualiza-

1Lower production or higher demand than planned will result in a reduced frequency.
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tion of the allocation periods can be seen in Figure 2.6. The bids are given by
12:00 Thursday for the coming weekend and Friday 12:00 for coming weekdays.
The daily market is open for both FCR-N and FCR-D. The bids are symmetric, i.e.
an equal amount of positive and negative power should be provided, and should be
sent in by 18:00 the day before delivery.
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Figure 2.7: Turnover for the FCR-N daily and weekly market.

Figure 2.7 shows the turnover for the FCR-N weekly and daily market since 2013.
It is clear that the turnover in the daily market is larger than the weekly market
and that the turnover in 2018 was higher compared to previous years. This can be
seen in context with the hydropower producers requirement for a higher premium
to commit their generation before the day-ahead market is cleared. Thus, the TSO
can acquire the primary reserves more cheaply the day before as the hydropower
producers now know their commitments and can more easily price their primary
reserves. Moreover, it should be noted that the turnover in the NO2 is significantly
higher than in the other areas. This can be seen in context with the share of large
and flexible hydropower stations located in this area. According to Statnett, 95%
of the primary reserves in Norway come from hydropower [28].

Figure 2.8 and 2.9 depict the FCR-N price and volume in NO2 for the daily and
weekly market, respectively. The values are averaged over 50 days to reduce some
of the variability of the data, for purpose of visualization. It can still be observed
that the prices can be correlated with the inflow; high in the spring and some peaks
in the fall. The reason is that when the inflow is high the Elspot prices tend to
be low as well and the large flexible hydropower producers will, therefore, shut
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down and store water for later use, leading to a scarce supply of rotating reserves.
This aspect illustrates a core issue of this dissertation; how to optimally allocate
the resource between the markets.
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Figure 2.8: Price and volume for the daily FCR-N market in NO2. Values are averaged
over 50 days to reduce noise.
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Figure 2.9: Price and volume for the weekly FCR-N market in NO2. Values are averaged
over 50 days to reduce noise.

2.2.2 Secondary Reserve Market

The objective of FRR-A is to relieve the primary reserves, which may be activated
up to 2 minutes while the activation period for FRR-A is from 2-15 minutes [28].
FRR-A is also a spinning reserve, but activation is performed directly by a signal
from Statnett to either increase or reduce the set-point of the production unit. This
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requires some physical infrastructure installed in the hydropower station, therefore
only certified power stations are granted access to the market [35]. The volume of
FRR-A is set by Statnett on a basis of system requirements.

2013 2014 2015 2016 2017 2018
[Year]

0

2

4

6

8

10

12

14

16

V
o
lu

m
e
 [

M
N

O
K

]

Up

Down

Figure 2.10: Turnover in the FRR-A market.

Figure 2.10 shows the turnover in the secondary reserve market since 2013. In
2016 the procurement of FRR-A was halted as a result of an effort to harmonize
a Nordic platform for FRR-A. In 2018 the turnover has recovered and could be
expected to continue to increase as the common Nordic market becomes operative
from mid-2019, giving flexible hydropower producers access to a larger market
share.

The price is based on marginal bidding, as with the primary reserve market, but this
is dependent on potential bottlenecks in the system, which are treated separately
(outside the market) by the TSO. Therefore the resulting prices might sometimes
be higher than the marginal price. The time periods that active bids should operate
in are set 2 weeks in advance of bidding. Some details about the specifications for
bidding in the secondary reserve market can be seen in Table 2.2.

Table 2.2: FRR-A specifications.

What Specifications
Allocation period One week
Product Up-regulating or down-regulating
Volume Min 5 MW, max 35 MW and dividable by 5
Price [NOK/MW/h]

According to Statnett’s concession to build the two new HVDC interconnectors
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to Germany and UK, there will be requirements for more FRR-A to handle rapid
variations of net load [36]. It is also planned to have a dynamic allocation of up
to 300 MW on each cable for FRR-A. It is dynamic as the TSOs will analyze
the social benefits of allocating to FRR-A compared to the spot market. Their
prediction is that this would result in 100 MNOK/yr added value. This follows
from the conclusion from a technical report by Statnett stating that the potential to
export highly valued FRR-A to other Nordic countries and Europe is substantial
[28].

2.3 Additional Ancillary Services
In addition to the abovementioned reserves in Section 2.2, there are other ancillary
services that the TSOs rely on to ensure reliable operation of the power grid. In the
following section, the tertiary reserve market is outlined followed by a discussion
on other ancillary services.

2.3.1 Tertiary Reserve Market

The tertiary reserve market, called Regulating Power Market (RPM), in the Nordic
system, is used as a third mechanism by Statnett to stabilize the grid. Capacity
traded on the tertiary market, called Frequency Restoration Reserves - Manual
(FRR-M), is used to release the primary and secondary control, so that these re-
serves may be ready to act on other imbalances. The reaction time for FRR-M is
considerably longer than FCR and FRR-A. The activation is performed by a tele-
phone call from Statnett to the load dispatch center of the activated producer, called
Balance Service Provider (BSP). The activation time is up to 15 minutes after the
call is received. In Norway, Statnett requires a total volume of 1200 MW and addi-
tional 800 MW to handle local bottlenecks in the grid [28]. In periods with scarce
volume in the RPM an additional market is used to stimulate the volume. This
is achieved by introducing the Regulating Power Options (RPO) market, where
power producers can sell options to Statnett on their balancing capacity.

The tertiary reserve market is somewhat different for each Nordic country, de-
pending on the specific needs for the TSO. A pilot study is currently carried out by
Statnett to assess the possibility for exchanging tertiary control out of the Nordic
countries [28]. In the future, this might open up new market shares for Norwegian
power producers.

Figure 2.11 shows how the different balancing markets restrict the production set
point for a single turbine. As FCR and FRR-A are both automatically handled,
the sum of these allocations subtracted from the maximum power output restricts
the new power set point upwards, and vice versa with the minimum generation
limit downwards. This, in turn, limits how much FRR-M reserves the hydropower
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Pmax

Pmin

Pset

Figure 2.11: Illustration of allocation in the primary, secondary and tertiary reserve mar-
kets. Pset represents the set-point of the hydropower unit, given available capacity between
the maximum and minimum generation limits, the unit may participate in the different
markets with the remaining capacity.
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station can deliver.

Predictions with the two HVDC interconnectors show that during the summer
months, with low load and high generation from nonstorable hydro, there might be
a scarcity of flexible power stations to deliver downward FRR-M. This is similarly
to the issue during winter when there is a scarcity of upwards FRR-M, as the prices
are good and flexible producers generate close to maximum. Statnett is, therefore,
considering including an RPO market during summer for selling downwards FRR-
M, providing additional reveneue potential for flexible hydropower producers. An
alternative would be to reduce the transmission capacity on the HVDC intercon-
nectors [36].

2.3.2 Discussion

Other ancillary services are often restricted spatially and are not suitable for in-
corporation in a market structure, e.g. reactive power control for voltage stability.
They are thus more suitable for inclusion on a case-to-case basis, rather than in a
generic hydropower scheduling approach.

An intriguing grid stability issue is the amount of rotating inertia in the system.
More inertia gives a sturdy system that can handle contingencies better than a
system with low inertia. With many HVDC cables and a high share of electricity
generation from intermittent energy sources the inertia may become too low for
the TSOs to ensure reliable grid operation. In the Nordic power system the TSOs
have set a lower limit of 100 GWs of inertia.

According to [28] the amount of inertia in the Norwegian power system is now
reaching critical limits in certain hours throughout the year. This is especially true
during the night and some hours during summer, when energy prices are low. Pro-
jections show that this falling trend will continue, in such a way that measures to
combat this should be implemented. This issue is discussed in [15] from a hydro-
power producers’ perspective. Even though the impacts of an inertia market were
moderate in the study, such a future market will contribute to another complicating
layer for hydropower producers in their scheduling.

2.4 Market Overview
In order to systematize the different markets, Table 2.3 shows which time periods
the markets are active, the resolution of the time periods, what the commodity is
and the time-sequence for participating in the markets. The table is deducted from
[37].
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Table 2.3: Time-sequence for the different power markets in Norway. The table shows the
time period for the market, the resolution and what the commodity is. N/D/E refers to the
periods Night/Day/Evening. The right-hand side of the table indicates the gate closure of
the different markets.
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RKOM Winter Season Capacity
FFR-M Week N/D/E Capacity
FCR-N Weekend N/D/E Capacity
RKOM Week N/D Capacity
FCR-N Weekday N/D/E Capacity
Elspot Day Hour Energy
FCR-N/D Day Hour Capacity
Elbas Cont. Hour Energy
FRR-M Hour Hour Energy

After the clearing of Elspot at 12:422, it is crucial for the producer to perform an
appropriate planning on which market to participate in, maximizing profits and
ensuring sufficient capacity for every market.

To sum up the turnover in the different markets in Norway, Figure 2.12 illustrates
the relative turnover in 2017. It is undeniable that turnover in the balancing markets
and Elbas constitutes only a small share compared to that of the Elspot market.
According to the Ministry of Petroleum and Energy, 75% of the installed capacity
in Norway is hydropower generators with upstream reservoir capacity [38]. These
are the stations with the flexibility that can participate in the balancing markets
and will take most of the turnover in them. A flexible hydropower producer could,
therefore, have a larger share of its turnover from Elbas and the balancing markets,
than which is illustrated in Figure 2.12.

2The system and area price are published at this time given that the market clearing was success-
ful. In case of the contrary, a new clearing is needed and 4 minutes’ notice is sent to the participants.
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Figure 2.12: Pie chart of the relative turnover for the different power markets in 2017 in
Norway. The turnover is calculated as price times the volume in the different markets.

2.5 Expectations for the Future Power Market
This section has, until now, shown that hydropower producers have many different
markets to consider in their scheduling. Nonetheless, the volumes in the Elspot
market are significantly more substantial for the overall profits than the other mar-
kets. Some already highlighted studies show, however, that flexible hydropower
producers will acquire added profits by taking multiple-markets into considera-
tion, e.g. [39, 40, 41, 9, 42, 43].

Studies taking into consideration a potential future power market, such as [44,
45], show that the overall costs for balancing, provided by secondary reserves,
were significantly lower with an integrated power market. Compared to the case
when the power market was not integrated, Norwegian hydropower also delivered
considerably more of the balancing reserves. With this in mind and the ongoing
integration of European power markets and increasing cross-border capacity, one
can expect in the future that a larger share of Norwegian hydropower producers’
profit will come from the balancing markets.

2.6 Hydropower Scheduling
The following chapter aims to clarify how storable hydropower scheduling is gen-
erally performed. An important matter for storable hydropower is the reservoir’s
Degree of Regulation (DOR), i.e. the ratio of the reservoir’s storage capacity to
the yearly expected inflow. An illustration of the DOR from an extensive case
study is shown in Figure 2.13 [46]. The figure provides an insight into the size
and DOR of different Norwegian hydropower reservoirs. Note that some reser-
voirs have been aggregated in order to reduce the computation time in the study.
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Figure 2.13: DOR overview over Norwegian reservoirs.

Nonetheless, the key question for storable hydropower producers in a liberalized
market is to decide when best to generate power in order to maximize the expec-
ted profits. A highly simplified illustration of the HS process is given in Figure
2.14. If the water value is known, one can better decide whether to store the wa-
ter for later use or to participate in the power market. The difficult part however
is how to set the water value, as it should take into consideration all future profit
opportunities for which the water may be used. In order to compute this, the differ-
ent markets in which to participate in should be modelled, and both their, and the
inflow’s uncertainty should be accounted for. This shows how important, and ap-
plicable, stochastic programming is for hydropower scheduling, as it is necessary
to consider the different outcomes and find a scheduling plan that hedges against
them. The HS problem has been applied to numerous optimization models and an
extensive review of some of them can be found in [47].

A literature review on HS in multiple markets is given by [42]. The review states
that eventhough the profit potential is limited, hydropower producers can provide
gains by providing flexibility and ancillary services. Services that are expected to
be remunerated more beneficially in the future. Another literature review on the
same subject can be found in [40].

For a power system with a central dispatch, such as the Brazilian, the HS process
shown in Figure 2.14 is somewhat different. The aim is to perform a total system
cost minimization rather than maximizing the individual power plant’s profit. The
HS decision must, therefore, store water until the hours with the highest system
cost, avoiding spillage and rationing of energy. It is clear that both methods solve
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the same problem, they simply approach it from two different angles.

Figure 2.14: Illustration of the decision problem for a hydropower producer in a liberal-
ized electricity market, such as the Nordic. Price refers to what the hydropower producer
can obtain for their water in the power market.

The hydropower scheduling problem is ultimately a Multistage Stochastic Pro-
gramming (MSSP) problem. It is multistage due to the long time periods that
must be considered, and stochastic, as mentioned, due to the uncertainty of inflow,
and also future energy and reserve capacity prices. The MSSP problem is a class
of problems that are particularly difficult to solve and a distinct classification is
used for hydropower scheduling to divide and conquer the problem. The problem
is typically divided into a long-term, medium-term and short-term hydropower
scheduling problem [48, 49, 50], depending on the analyzed time period and sys-
tem details. A study on the contrary, with an integrated long- and short-term HS
model can be found in [39]. Still, the fundamental principle of the segregation
of different HS models can be seen in Figure 2.15. Since the water is storable it
has some opportunity costs associated with it, in contrast to thermal power plants,
where a marginal cost is given by the cost of the fuel. Since the inflow ("fuel")
to the hydropower station is free, it’s the opportunity cost, defined as the water
value, that provides insight to whether or not the water should be dispatched, as
illustrated in Figure 2.14. Thus, the water value is an important term within the
field of hydropower scheduling. One can, very briefly, state that if the energy price
is lower than the water value, then the hydropower should not dispatch, as there is
an expectancy for higher income in the future. The water value must, therefore, be
able to incorporate all future income opportunities for the stored water. This is the
essential idea behind the different HS models, described with further detail in the
following.

2.6.1 Long-Term Hydropower Scheduling (LTHS)

In an effort to describe the entire power system, the Long-Term Hydropower
Scheduling (LTHS) problem is defined as a fundamental market model describing
the power market with producers and consumers. Power producers and consumers
are typically aggregated and the time resolution is normally on a daily, weekly or
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Figure 2.15: Illustration of a Nordic hydropower scheduling problem with different layers
of models. The overall problem is unbundled into different tractable models with different
objectives. Aggregated water values refer to an aggregated reservoir, whereas the disag-
gregated water values are given for individual reservoirs.

monthly basis to make the problem tractable. A main concern of the LTHS prob-
lem is to tackle the long-term uncertainty of inflow. It is often used for expansion
planning, price forecasting, system studies and finding aggregated water values
[51]. The aggregated water values typically describe the value of the water in an
aggregated reservoir, describing an area in the power system.

Since some reservoirs have storage capacity over several years3, the LTHS problem
should have a sufficiently long time horizon to ensure that the initial stages (weeks)
in the MTHS are not affected by the prices in the final stages. Thus, using the
LTHS model for price forecasting the time horizon is typically set from 5-10 years.
For expansion planning and system studies the time horizon may be even longer,
spanning up to decades ahead.

An example of a LTHS model is the NEWAVE model in Brazil [52], used with
monthly decision stages and four aggregated reservoirs. Another model, more
widely used in the Nordics, is the EMPS model [51], that uses a heuristic approach
for aggregating and disaggregating the hydropower reservoirs in the system. It is
not only used for LTHS but also for general power system studies, such as what-if
analysis where one can study how certain changes in the power system affect the
system as a whole, e.g. [53] and [54].

2.6.2 Medium-Term Hydropower Scheduling (MTHS)

The MTHS problem can be seen as a refinement of the LTHS problem, where
the level of detail is increased with a shorter time horizon. For example from the
LTHS model one can obtain aggregated water values that the MTHS problem uses
as an end-value statement and prices of the market clearing can be used for input.
In the Nordics the MTHS problem typically describes a hydropower river system

3DOR is greater than one.
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with individual reservoirs, instead of an aggregated representation. In contrast, in
Brazil the MTHS problem can describe the same region, but in greater detail and
a shorter time horizon.

Again, the different market structures decide how the MTHS problem is defined.
For example in the Nordics it is assumed that the prices in the MTHS problem
are exogenous, the hydropower station is thus a risk-neutral price taker. This is
an assumption that is often debated, as it requires the market players to withstand
any opportunity to exploit market power and behave rationally. Due to the market
structure in Brazil the central dispatch has gone from being a risk-neutral to a risk-
averse problem. This is due to the fact that the worst outcomes (scarce inflow)
have a significantly worse societal impact than the best outcomes.

The MTHS problem is a well studied, and often the go-to problem when validating
new MSSP methods. An extensive exploration of MTHS can be found in the PhD
dissertation [41], which also investigates the MTHS problem in a multi-market
setting.

2.6.3 Short-Term Hydropower Scheduling (STHS)

After individual water values are computed a more complex problem can be solved
in order to obtain as detailed results as possible. The Short-Term Hydropower
Scheduling (STHS) problem normally has a time horizon of 1-2 weeks, where the
water values from the MTHS problem indicate the opportunity cost of storing the
water after this period. The STHS problem is generally divided into two problems.
The first problem is often referred to as the bidding problem, where the aim is to
generate bids to the power market. After market clearing the hydropower producer,
if the bids were activated, has some obligations to fulfill in the respective markets.
Following this, the second problem of the STHS is to be solved, often described as
the Unit Commitment (UC) problem. The UC problem is a complex combinatorial
optimization problem, where the aim is to decide the optimal combination of units
that should be operating [55, chp. 14].

Due to the high degree of modeling details in the STHS problem, most commer-
cial models solve a deterministic problem, where the assumption is that the time
periods are so small that uncertainty can be neglected. With more computational
force and faster mathematical solvers stochastic STHS models have been more
prevalent, such as the work in [56], where a slight gain of stochastic optimization
is observed.

[43] is another recent study on hydropower bidding in multiple markets. The study
tackles the STHS problem with participation in the primary and tertiary reserve
markets and finds a maximum gain of coordinating the bidding process of 1%,
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compared to a sequential one. The effect decreased to around 0.5% for larger
hydropower systems with more flexibility.

2.6.4 Discussion

The proposed approach is predominantly focused on the Norwegian HS case. In
other systems, such as the Brazilian, a central dispatch is performed so that even
though the methodology of dividing the HS problem is used, the main objective is
to minimize the entire system cost [57]. Moreover, in the Canadian power system
the hydropower may be owned by large energy-intensive industries for self-use,
sold over long-term contracts or sold to a day-ahead market. Regardless of the
objective for the hydropower, it all essentially relates to maximizing the utilization
of the water.

Some work, however, has been conducted on how to integrate the STHS model
with a more long-term model [39]. The fundamental principle was to use a fine
time resolution early in the model and a more coarse resolution going forward.
The case study consisted of one reservoir, deterministic inflow and a time horizon
of 6 months, which resulted in a Mixed Integer Programming (MIP) with approx-
imately 70 thousand constraints and 1 million variables. The procedure might
therefore not be adequate for scaling larger problems, which is the essential idea
behind dividing the HS problem into different models.

2.7 Stochastic Optimization
The models used for solving HS problems are confined by the discipline of Oper-
ations Research (OR). The discipline originated from World War I where the task
was to schedule convoys. It was later advanced in World War II where around 200
OR scientists worked in the British Army [58, p. 117]. Today, the field has matured
and its applications are widely used around the world. Stochastic Programming
(SP) is a sub-field of OR and consists of decision making under uncertainty. For
example, the hydropower producer’s task of scheduling the water discharge over
a time period considering uncertain inflow and market price(s). The first known
publication where SP was applied to HS comes from [59]. An interesting discus-
sion on the early history of HS and how it matured until recent years can be found
in [60].

Even though [59] described a DP approach, i.e. the problem is divided into sub-
problems for each time stage, DP was formally proposed by R. Bellman. The
framework is described in [61], where the original version came out in 1957. The
concepts of DP form the basis for the models adopted in this thesis, where the
focus has been on the SDDP algorithm [62] with extensions.
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Figure 2.16: Illustration of the decision process for multistage stochastic programming
problems.

In the following section, some concepts of multistage stochastic programming will
be outlined. The concepts are then used to show how SDDP and the extension
SDDiP are solved.

2.8 Multistage Stochastic Programming (MSSP)
MSSP is used when the underlying problem has a structure as illustrated in Fig-
ure 2.16. The problem consists of four time stages where for each time stage t,
some decision xt has to be made. After a decision has been made some new in-
formation, ξt, is revealed described by a random or stochastic process. It is clear
that the complicating part of this problem is to perform an action in the early
stages without knowing what will happen in the later stages. Stochastic program-
ming therefore aims at finding an action that is robust for the potential outcomes
of the stochastic process [63]. For completeness, the following problem describes
a canonical deterministic programming problem

max
(x1,y1),...,(xT ,yT )

{
T∑

t=1

ft(xt, yt) : (xt−1, xt, yt) ∈ Xt,∀t = 1, . . . , T

}
, (2.1)

where xt and yt describe state and stage variables, respectively. The state variable
carries information about the state/condition of the underlying problem between
time stages and x0 is the known initial state of the problem. For HS the reservoir
level is a state variable. The stage variables, yt, are decision variables for the given
time stage, e.g. how much water should be discharged from a hydro reservoir. The
objective value, i.e. what function should be maximized/minimized, is described
by ft. For a Norwegian hydropower producer the objective would be to maximize
the profit from its hydropower system. The set Xt describes the solution space
or feasible region of the problem, thus consisting of constraints and bounds that
describe the underlying problem. These would include the efficiency of a power
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Figure 2.17: Illustration of a scenario tree and relationships between the nodes.

station, reservoir limits, etc. The reservoir constraint, also called water balance
constraint, is a time-coupling constraint as it is used to carry information between
the time stages, written on the form

Wtxt + Tt−1xt−1 +Gtyt = ht. (2.2)

Gt, Tt−1 and Wt are matrices of suitable dimensions, the latter two are often re-
ferred to as the technology and recourse matrix, respectively. The term recourse
comes from the fact that given an action in the former stage and with new revealed
information it is possible to perform another action in the next stage. The action in
the latter stage would thus be a recourse action. The flow of how new information
is disclosed can be given by a scenario tree, as depicted in Figure 2.17.

The scenario tree, T , describes the underlying stochastic process. For each node,
n, in the tree, new information is disclosed. The set C(n) describes the children
nodes, whereas a(n) is a node’s parent or ancestor node. The cardinality of C(n)
also refers to the number of branches for node n. The set P(n1) contains all parent
nodes of node n1 and the node itself and is thus describing a unique path in the
scenario tree. For the nodes in the final stage T , the unique paths of each of them
describe a scenario. For a scenario tree with T > 1 stages and 2 branches for each
stage, the amount of nodes will equal 1 + 2T−1. For problems over larger time
periods, it is therefore evident that the stochastic process has to be described in a
reasonable manner for the problem to be tractable. The modeling of stochastic pro-
cesses is a topic in itself, and is therefore in the broader sense not a core topic for
this work. Some important resources for the topic should, however, be mentioned.
The following book on time series analysis gives a comprehensive introduction
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to different stochastic processes [64]. The work by [65] and [66] describes some
methods for constructing scenario trees. A key concept of generating scenario trees
is how to optimally describe the underlying stochastic process, thus the concept of
distance measurements is important. The problem can be described by minimizing
the difference in shape (distance) between two probability distributions, i.e. how
to optimally design a distribution that resembles an original distribution. Given a
scenario tree, the following extensive formulation of a MSSP is given as

max
(xn,yn)

{∑

n∈T
pnfn(xn, yn) : (xa(n), xn, yn) ∈ Xn, ∀n ∈ T

}
. (2.3)

Here the objective function is multiplied with the total probability, pn, associated
with node n. As discussed above, this formulation is not very convenient for solv-
ing MSSPs with many time stages. In an effort to combat this issue a stagewise
decomposition is applied to divide the problem into smaller sub-problems.

2.8.1 Dynamic Programming (DP)

DP aims at solving sequential decision problems by dividing a large problem into
smaller stagewise problems. This was the key idea behind the methods proposed
by [59] and [61]. The well known Bellman equation is thus given as the stagewise
problem that can be solved recursively to solve (2.1). It is defined as

Qt(xt−1) := max
(xt,yt)

{
ft(xt, yt) +Qt+1(xt) : (xt−1, xt, yt) ∈ Xt

}
. (2.4)

Qt+1(xt) is referred to as the value function, profit-to-go function or future profit
function, since it describes the future value for the state xt. The backward DP
approach discretizes the state variables and starts from the last time stage with a
known end value QT+1(xT ) and solves (2.4) for all discrete state variables. The
process moves backward in time since QT (xT−1) is already computed it is pos-
sible to solve QT−1(xT−2), and thus continue the process until the first time stage
is reached. Thereby, the DP approach evaluates all possible states so that for a
given initial state one can compute the optimal (shortest) path between the stages.
There are numerous ways to implement a DP problem, the common concept is to
discretize the state space and use a recursive approach, either forward or backward.

There is, however, an obvious downside with the DP approach; the requirement to
discretize the state space. For a problem with T time stages and D discretizations
for the state variables with dimension d, it would be necessary to solve T times Dd
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Figure 2.18: Illustration the EFP in a SDDP problem (left) and DP problem (right).

problems, which clearly becomes untractable for problems with a high dimension
of state variables.

To handle the drawback of exponentially growing subproblems4 of DP and nodes
in a scenario tree an approximate Stochastic Dynamic Programming (SDP) ap-
proach was proposed by [12], followed by the Stochastic Dual Dynamic Program-
ming (SDDP) alogorithm in [62, 11].

2.8.2 Stochastic Dual Dynamic Programming (SDDP)

In essence, the SDDP method circumvents the curse of dimensionality of DP prob-
lems by approximating the Expected Future Profit (EFP) function by a piecewise
linear function and by sampling a subset of scenarios from the scenario tree. Then
statistical bounds can be computed for controlling convergence of the method. The
piecewise linear EFP function does not require discretization of the state variables,
as illustrated in Figure 2.18. The SDDP method is an iterative method that gradu-
ally builds the EFP function by using Benders cuts [67]. Consider the following
DP formulation of (2.3)

Q1(x0) := max
(x1,y1)

{f1(x1, y1) + Eξ̃1
[Q2(x1, ξ̃1)]} (2.5a)

s.t. (x1, y1) ∈ X1(x0), (2.5b)

and

Qt(xt−1, ξt−1) := max
(xt,yt)

{ft(xt, yt) + Eξ̃t|ξ̃t−1
[Qt+1(xt, ξ̃t)]} (2.6a)

s.t. (xt, yt) ∈ Xt(xt−1, ξt−1), (2.6b)

where (2.5) is the problem in the first stage, referred to as the overall or master
problem. (2.6) describes the recursive problems for the rest of the time stages,

4often referred to as the curse of dimensionality
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where QT+1 is a known function. We assume that for all feasible xt−1 solutions
and realizations of the random data vector ξ̃t the problem (2.6) is feasible, i.e.
relative complete recourse. Outcomes of the random data vector are denoted as ξt.

For a Nested Benders Decomposition approach the expectation is taken over ξt+1|ξt.
The outcome of the stochastic process is therefore dependent on the previous
nodes. Consequently, the problem must be solved for all nodes in the scenario tree.
A key aspect for the success of SDDP is that the stochastic process is assumed to
be stage-wise independent, so it does not matter which node you are in at stage t
for the outcome of ξt+1. The expectation is thus taken over ξt+1 instead of ξt+1|ξt .
The number of nodes in the scenario tree effectively collapses to

∑T−1
t=1 |ξt| nodes

instead of
∏T−1

t=1 |ξt|. This means, in practice, that the EFP function for a node n
in time stage t is valid for all other nodes in the same time stage. Even though
the stage-wise independent sampling might seem like a significant drawback it is
possible to use normalization and affine functions to better describe the stochastic
process, such as autoregressive processes [68].

The SDDP method consists of two main procedures, the forward and backward
iteration, given in Algorithm 1. The stagewise decision problem in iteration i is
given by (2.7) and (2.8), where (2.7) is the master problem given as

Si1 : Qi
1(x

i
0) := max

(xi
1,y

i
1)
{f1(xi1, yi1) + φi

1(x
i
1)} (2.7a)

s.t. (xi1, y
i
1) ∈ X1(x

i
0), (2.7b)

and for the rest of the stages t and stochastic outcomes ξikt the problem is given as

Sit : Qi
t(x

ik
t−1, ξ

ik
t−1) := max

(xik
t ,yikt )

{ft(xikt , yikt ) + φi
t(x

ik
t )} (2.8a)

s.t. (xikt , yikt ) ∈ Xt(x
ik
t−1, ξ

ik
t−1). (2.8b)

The piecewise linear function φi
t is given as

φi
t(xt) := {θt ≤ Ut, (2.9a)

θt ≤ πj
txt + bjt ,∀j ∈ Cit}, (2.9b)

representing an upper bound of the EFP function, where φi
T is known5. The for-

ward iteration is used to sample a set of scenarios, Ωi, from the scenario tree and
5If not taken from a LTHS model or estimated by future market prices it is typically set to zero,

given sufficient long time horizon.
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generate candidate solutions xikt that will be used in the backward iteration to im-
prove the piecewise linear EFP function. More information on the cut generation
cab be found in Section 2.9.2. By computing the expected objective values from
the candidate solutions a lower statistical convergence bound can be computed.
The deterministic upper bound comes from the solution of the master problem
(2.7), that is solved after the backward iteration6. It is in the backward iteration
that most of the computational work is performed, with the complicating part be-
ing how to generate the EFP function. Given that the problem is a LP problem
and uncertainties are in the right-hand-side parameters of the constraints, the EFP
functions are concave functions that can be upper approximated by Benders cuts.
The backward iteration starts at the final stage with a given candidate solution
to compute a cut for the earlier stage. Thus, by iterating between the forward
and backward iteration the description of the EFP improves and convergence can
eventually be observed. The method is described in Algorithm 1.

2.8.3 Solution Approach

The SDDP algorithm has benefited from the fact that the stagewise decision prob-
lems are LP problems and thus effectively utilize efficient resolving methods such
as the dual simplex method [69]. The dual simplex is especially efficient when
the number of constraints is large. The traditional approach for efficiently solving
SDDPs has therefore been to solve the stagewise decision problem without any
cuts and after a solution is obtained, perform a check over the set of cuts which
violate the current solution the most. The cut is added to the problem, dual simplex
is applied, and a new solution is obtained. This continues until there are no cuts
that violate the given solution. The approach is explained in Algorithm 2. The
algorithm has proven to be very effective in practice. For a majority of stagewise
decision problems one only one or two cuts need to be added to find the optimal
solution. The list of cuts can, therefore, be extremely large without affecting the
computational burden considerably.

2.9 Stochastic Dual Dynamic Integer Programming (SD-
DiP)

The SDDP has become a widely used method for solving MSSP problems. A
drawback has, however, been that it does not easily support nonconvex problems.
By including binary or integer variables in the problem the EFP function is no
longer convex with respect to the state variables, and may not be accurately de-

6Note that this is a maximization problem. For a minimization problem, the master problem
would provide the lower bound and a statistical upper bound is computed from in the forward itera-
tion.
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Algorithm 1 The SDDP Method

1: Set xi0, ξi0, i← 1, UB = +∞ and LB = −∞,
2: while i < imax or some other stopping criteria do
3: Sample N scenarios Ωi = ξik1 , . . . , ξikT k=1,...,N
4: /* Forward iteration */
5: for k = 1, . . . , N do
6: for t = 1, . . . , T do
7: Solve Qi

t(x
ik
t−1, ξ

ik
t−1) given by (2.8)

8: Collect solution ft(x
ik
t , yikt , ξikt ), xikt , yikt

9: lbk ← Σt=1,...,T ft(x
ik
t , yikt , ξikt )

10: /* Compute lower bound */
11: µ← 1

NΣN
k=1lb

k and σ2 ← 1
N−1Σ

N
k=1(lb

k − µ)2

12: LB← µ+ zα
σ√
N

13: /* Backward iteration */
14: for t = T, . . . , 2 do
15: for k = 1, . . . , N do
16: for m ∈ C(t) do
17: Solve Qi

m(xikt , ξikt ) given by (2.8)
18: Collect cut coefficients and parameters
19: Add Benders cut(s)
20: /* Compute upper bound */
21: Compute UB← Qi

1(x
ik
0 ) from (2.7)

22: i← i+ 1
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Algorithm 2 Cut Relaxation

Stagewise decision problem Sit
Set of cuts Cit from (2.9b), where cjt (x) = πj

tx+ bjt
Choose cut violation parameter ε
Set v = −∞
/* Remove all cuts from the stagewise decision problem */
for all cjt ∈ Cit do

if cjt ∈ Sit then
Sit = Sit \ cjt

while v < ε do
Compute

z = max{Sit}
x = argmax

xt

{Sit}

/*Find the most violating cut*/
for all cjt ∈ Cit do

if z − cjt (x) > v then
v = z − cjt (x)
cmax = ctj(x)

/* Add the most violating cut to the stagewise decision problem */
Sit = Sit ∪ cmax
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scribed by piecewise linear functions. For problems that are not very nonconvex
the piecewise linear functions could provide sufficient solutions. One could, there-
fore, use the nonconvex problem formulation in the forward iteration and solve
the LP relaxation in the backward iteration to generate the EFP function. If the
convergence gap is within reasonable limits, this could be considered satisfactory,
more on this in Article VII. This might work for some problems, but not in general.

A trade-off with improved modeling details associated with MIP problems over
LP problems is the computational burden affiliated with them. Moreover, it is
possible to utilize the dual simplex method used in the cut relaxation technique
in Algorithm 2. Nonetheless, recent years’ developments in mathematical solvers,
like Gurobi and CPLEX, along with the utilization of multiple cores makes MIP
increasingly more tractable.

The recent work by [70], and as a part of the PhD thesis [71], proposed the SDDiP
method for solving nonconvex MSSP problems that is general with finite conver-
gence, under some assumptions. The main assumption is that the state variables
have to be binary. There are three pillars that separate the method from SDDP:

Binary state variables
All state variables have to be binary.

Copy variables and constraints
Some auxiliary variables and constraints have to be added.

A set of cut families
Different types of cuts that can be used.

In order to transform all state variables into binary variables, the binary expan-
sion approach is used [72]. The method is based on the fact that if λt is an
integer variable, λt ∈ {0, . . . , L}, it can be represented by κ binary variables,
κ = blog2(L)c + 1, such that λt = Σκ

j=12
j−1λtj . Similarly, for the continu-

ous case, λt ∈ [0, L], where λt is given with ε accuracy; κ = blog2(L/ε)c + 1,
hence λt = Σκ

j=12
j−1ελtj . The binarization does in essence mean that the state

space is discretized to finite values. It is, however, not similar to the discretiza-
tion performed in the DP method. An illustrative example of why this method can
approximate a nonconvex EFP function is given in the following sections.

2.9.1 Visualization of the Approximation of a Nonconvex EFP Func-
tion

Figure 2.19 illustrates a function φt(xt) that is to be upper approximated by some
cuts. The cut C3 illustrates the tightest cut that can be used to approximate the
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Figure 2.19: (Left) The EFP function in the continuous state space. (Right) The EFP
function in the discrete state space via the transformation xt = xt1 + 2xt2, where xt1 and
xt2 are binary variables. C3 represents the tightest cut one can generate with continuous
state variables. The cuts C1 and C2 illustrate how discrete state variables can be used to
provide cuts to approximate a nonconvex function. c© IEEE.

function for continuous state variables. However, if the state variables are trans-
formed to binary variables, as seen in the right figure, cuts that are tight for the
discretized points can be computed. Binary expansion is used, and the continuous
state variable xt is transformed to xt = xt1 + 2xt2. Observe that the state space is
reduced from xt ∈ [0, 3] to xt ∈ {0, 1, 2, 3}. Nevertheless, this transformation en-
ables us to generate cuts that are tight for the discrete state space. For instance, cut
C1 can then be enumerated in the following way; along the xt1 dimension the cut
will have a coefficient of (2−1)/(1−0) = 1, in xt2 dimension the coefficient will
be (6−2)/(1−0) = 4. Moreover, it can easily be observed that the right-hand-side
parameter will be 1. This yields the cut θt ≤ xt1 + 4xt2 + 1. The same approach
is used for computing cut C2. Hence, we have found two cuts that are tight at
the discrete state space values. The cuts C1 and C2 are given in the left figure, in
an effort to visualize them in the continuous state space. In the given example it
was fairly straightforward to enumerate the cuts. When the dimension of the state
space becomes larger, this is, however, not so straightforward. The complicating
problem is thus how to find these cut coefficients and right-hand-side parameters
that provide tight cuts. [70] proposed a family of cuts that can be used to solve the
overall problem, outlined in the following section.

2.9.2 Cut Families

The second pillar of SDDiP tackles the issue of computing cut coefficients and
right-hand-side parameters. By introducing the copy variable zt ∈ [0, 1] and copy
constraint zt = xt−1 it was proved in [70] that it is possible to compute cuts that
are guaranteed to be tight. Cuts that might not be tight can also be used, as long as
they provide an upper approximation of the EFP function. The stagewise problem
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solved in SDDiP is given by

Q̄1(x0) := max
(x1,y1,z1)

{f1(x1, y1) + φ1(x1)} (2.10a)

s.t. (x1, y1, z1) ∈ Xt (2.10b)

z1 = x0 (2.10c)

x1 ∈ {0, 1}, y1 ∈ R× Z, z1 ∈ [0, 1], (2.10d)

and

Q̄t(xt−1, ξt−1) := max
(xt,yt,zt)

{ft(xt, yt) + φt(xt)} (2.11a)

s.t. (xt, yt, zt) ∈ Xt(ξt−1) (2.11b)

zt = xt−1 (2.11c)

xt ∈ {0, 1}, yt ∈ R× Z, zt ∈ [0, 1], (2.11d)

where the EFP function is given as

φt(xt) := {θt ≤ Ut, (2.12a)

θt ≤ πj
txt + bjt ,∀j ∈ Ct}. (2.12b)

The iteration and scenario indices, i and k, are neglected for simplicity. The dif-
ferent types of cut families that can be used are accordingly

Benders Cuts (B)

The well-known Benders cut [67] was initially proposed as a method for solving
MIP problems and is used by the standard SDDP approach. The cut is generated
by solving an LP relaxation of 2.11, Q̄LP

t (xt−1, ξt−1),

θt ≤
∑

m∈C(t)

qtmQ̄LP
m (x∗t , ξt) +

∑

m∈C(t)

qtm(πLP
m )>(xt − x∗t ), (2.13)

where (∗) indicates that it is the candidate solution from the forward iteration and
πLP is the dual value for the copy constraint of the LP relaxation. The cut is not
guaranteed to be tight, but on the upside it is very quick to generate as it involves
solving LP problems.
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Lagrangian Cuts (L)

This cut family is based on Lagrangian relaxation and provides cuts that are tight.
The copy constraint (2.11c) is relaxed and the Lagrangian relaxation problem is
given as

Rt(πt) := min
πt

{
Lt(πt) + π>xt−1

}
, (2.14)

where Lt is defined as

Lt(πt) := max
xt,yt,zt

ft(xt, yt) + φt(xt)− π>
t zt (2.15a)

s.t. (zt, xt, yt) ∈ Xt(ξt−1) (2.15b)

zt ∈ [0, 1] (2.15c)

xt ∈ {0, 1}, yt ∈ R · Z. (2.15d)

Lagrangian relaxation often aims to relax complicating constraints and divide the
problem into smaller subproblems that can more easily be computed. Our aim,
however, is to find good multipliers that make the Lagrangian cuts as tight as pos-
sible. It is essential for the convergence of SDDiP that the Lagrangian cuts can be
generated in a sufficient manner, in regard to both computation time and tightness.
There are several methods to solve the Lagrangian problem, such as sub-gradient
and bundle methods. Regardless of which method is used to get the Lagrangian
multiplier, π̄i

t, the cuts we construct are on the following form

θt ≤
∑

m∈C(t)

qtm[Lm(π̄m) + (π̄m)>xt]. (2.16)

Since solving the problem, (2.11), is not too time consuming it is possible to com-
pute the optimal value of the stagewise decision problems, denoted QMIP

t−1 , allow-
ing for a more rapid solution of the Lagrangian problem, since we then know the
lower bound of the problem. Figure 2.20 illustrates the concave function Ri

t(πt)
with an optimal value ofRi

t(π̄t) = QMIP
t .

A common method to solve the Lagrangian problem is by a subgradient method
[73]. This initilly involves solving the relaxed LP problem to obtain an initial solu-
tion for the Lagrangian multipliers, πi

t. Then, by setting the step size parameters at
desired values, iteratively compute π̄t. The process is computationally consuming
as it requires solving a MILP problem for each iteration of the subgradient method
until a convergence criterion is reached.

Another promising method for solving the Lagrangian problem is the level method
[74]. One of the benefits from this approach is that when the optimal value solu-
tion is known, it is possible to cleverly tune a step size parameter for describing
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Figure 2.20: Illustration of the convex outer Lagrangian problem.

the level set, yielding a rapid solution. The drawback with the method is that it
is necessary to compute the l2-norm and hence a Mixed Integer Quadratic Pro-
gramming (MIQP) problem for each iteration of the method. Practical experience
has, nevertheless, shown that it is less time consuming to compute the MIQP than
the entire Mixed Integer Linear Programming (MILP) problem (2.14), as in the
subgradient method.

Strengthened Benders Cuts (SB)

The Lagrangian cut was made by solving a Lagrangian problem and obtaining both
cut coefficients and right-hand-side parameters. The Lagrangian formulation does,
however, also provide a valid cut for all Lagrangian multipliers that solves (2.15).
Thus, by using the cut coefficients from the LP relaxation and solving (2.15) once,
one can obtain a new cut with a right-hand-side parameter that is at least as tight
as the Benders cut, called the Strengthened Benders cut, given as

θt ≤
∑

m∈C(t)

qtm[Lm(πLP
m ) + (πLP

m )>(xt)]. (2.17)

Figure 2.21 depicts a Benders and Strengthened Benders cut. It illustrates how
the Strengthened Benders cut may improve the tightness of the cut from the LP
relaxation to the original function.
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𝑥𝑡

Figure 2.21: Illustration of a Benders (B) and Strengthened Benders (SB) cut. The blue
EFP function refers to the LP relaxation of the true function (in black).

Integer Optimality Cuts (I)

Another type of cut that can be used for solving the SDDiP problem is the integer
optimality cut [75, 76]. The integer optimality cuts are valid, tight and finite and
will, therefore, guarantee convergence. They are also very fast to generate, as they
only rely on the candidate solution obtained in the forward iteration.

θt ≤ (vt − Vt)

( ∑

j∈S(x∗
t )

xtj −
∑

j /∈S(x∗
t )

xtj − |S(x∗t )|
)

+ vt, (2.18)

where vt =
∑

m∈C(t) qtmQ̄i
m(xit, ξ

i
t), Vt is an upper boundary to the EFP function

and S(xit) := {j : xitj = 1}, given that xit is a candidate solution. The integer
optimality cut is tight for the candidate solution from which it was made, but very
loose at other solutions. In practice, these cuts have been proven to contribute
moderately to improving the convergence properties, while the computation time
has increased as a result of large coefficients in the constraint matrix. The integer
optimality cuts have therefore limited usefulness for practical purposes.

2.9.3 Stochastic Processes in SDDP

In the following, the core aspects of the uncertainty modeling in this thesis are
presented.

For the MTHS problem, the key stochastic processes are energy price and inflow
to the reservoirs. There are numerous approaches to model these stochastic pro-
cesses. A common approach for modeling the inflow is by an Autoregressive-
Moving-Average (ARMA) process [64] and a Markov process for the energy price
[77]. This is done in order to circumvent the complex task of solving the bilinear
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Figure 2.22: Illustration of integer optimality cut.
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Figure 2.23: Standard box plot with outliers of the inflow measured in Bulken, a hydro
system in south-western Norway. A line depicting the mean and a 95% confidence inter-
val is added on top. The figure illustrates an important aspect when considering inflow
modeling; inflow may not be sufficiently well described by a normal distribution, e.g. neg-
ative inflows may occur. It is, nonetheless, a requirement in the SDDP framework that
the stochastic variables are independent and identically distributed to ensure convergence.
Notice the correlation between the inflow and FCR-N prices, in Figure 2.8 and 2.9, as
mentioned in Section 2.2.1.

term of energy price and generation. First, we elaborate on the stochastic process
affiliated with the inflow.

The inflow is typically given on a weekly basis, due to a strong weekly correlation.
The inflow is normalized in an effort to remove the seasonal variations of the in-
flow, as observed in Figure 2.23. This is primarily derived from the accumulation
of snow in the winter that is followed by the melting in the spring. The inflow can
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Figure 2.24: Illustration of a Markov chain, describing the uncertainty of the energy price.
The transition probabilities, ρij , is given as probability of going from a node i to a node j.

then be described by a VAR1 model, given by (2.19) in the following

δt = Φδt−1 + ãt (2.19)

It = µt + σtδt., (2.20)

where δt is the vector of the normalized stochastic process, Φ is a time-invariant
correlation matrix and ãt is a vector of white noise. The realized inflows It are
given by Eq. (2.20), where µt and σt are the expected value and standard deviations
for time stage t.

The approach can be seen as a compromise between accuracy and computational
feasibility [77]. For this reason, the same approach of using a VAR1 model for
the inflow was adapted in this thesis. The SDDP algorithm also requires a convex
stochastic model. This is not the case for the SDDiP model but is deemed to be
outside of the scope for this thesis.

The discrete-time Markov process describing the underlying energy price process,
pt, can be given as

P (pt = ζjt |pt−1 = ζit−1) = ρij(t),∀i, j ∈M(t). (2.21)

For all t ∈ {2, . . . , T}, where T is the time horizon,M(t) is the set of nodes in
the Markov process for stage t, ζjt represents the realized energy price for a node j
and ρij(t) is the transition probability of going from node i to j. An illustration of
the Markov process can be seen in Figure 2.24. IT shows how the Markov chain is
constructed as given by [78].
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Observe that incorporating correlations between the two different stochastic pro-
cesses is not straightforward and is considered a drawback of the approach. How-
ever, the energy price process is generated by an LTHS that takes into considera-
tion the inflow uncertainty, thus the realized inflow and energy prices exhibit some
correlation, but not in the noise term.

A recent publication by [79], and followingly [80], proposes a method to include
objective term uncertainty for DP problems. The key concept in [80] comes from
the fact that the outcomes of the stochastic process are sampled a-priori in the
forward iteration of SDDP and that the problem is convex with respect to the un-
certain objective coefficient. The objective term therefore becomes a parameter
in the stagewise decision problem, and an additional term in the Benders cut is
added. The method proposes a very elegant approach for including correlations
between the different stochastic processes, such as the inflow and energy price.
It is also possible to avoid the exponential growing set of nodes in the discrete
Markov process when adding additional price uncertain parameters.
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Chapter 3

Results and Discussion

The following chapter gives a brief presentation of the results from the articles that
form the main contribution of this thesis.

7%

91%

2%

24%

51%

25%

Figure 3.1: Illustration of the hydropower system used for case studies in this thesis.
There are three reservoirs, each represented by their relative storage capacity and inflow
compared to the system as a whole. As an example, Reservoir 3 has 2% of the system’s
reservoir capacity and 25% of the system’s inflow. Note that Reservoir 2 and 3 are con-
nected to the same power station.

3.1 Convex Medium-Term Hydropower Scheduling with
Sales of Reserve Capacity

In the first two articles, a SDDP model that included sales of reserve capacity
was developed and tested. The model was a prototype of an operative MTHS

47
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Figure 3.2: Overview of the model structure. The strategy model refers to the SDDP
model that was developed. The results from the strategy model were then validated by the
simulator model.

model that is currently used by many hydropower producers in the Nordics [81].
The overall aim of the research project, of which this dissertation forms a part of,
was to investigate methods to include reserve capacity markets in that model [10].
Since the model is based on LP it was interesting to investigate how one could
approximate minimum generation limits, start-up costs and other nonconvexities.
In order to benchmark the results a simulator model was developed.

3.1.1 Article I: SDDP and Simulator Methodology

In the first article, a more detailed description of the SDDP and Simulator model
was given. An illustration of the information flow between the models is given in
Figure 3.2. The EFP function that was generated by the SDDP model, referred
to as the strategy model, was used in the simulator model that had minimum gen-
eration limits, binary start-up costs, binary hydraulic coupling and a nonconcave
generation function, dependent only on discharge.

The stagewise problem for the simulator model had approximately 2 and 4 times
as many variables and constraints, respectively, indicating the rate at which the
problem grows in size for more complex modeling. Both models had 21 time
periods within each weekly stage, i.e. three periods per day. This appears as a
natural choice since the included reserve capacity market described the weekly
primary reserve market.

In order to ensure an even comparison between the results the simulator model
used the same scenarios as the final iteration in the strategy model. The results
showed good convergence properties of the strategy model after only a couple of
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iterations. Moreover, the computed lower bound from the simulator model was
also close to that of the strategy model. This indicated that the nonconvexities
included did not alter the policy to any undue extent. On the other hand, the sched-
uled generation achieved more realistic results and a significant drop in income
from providing reserve capacity was observed, at around 30%. As there was no
firm lower generation limit on the hydropower stations in the strategy model it op-
erated at low power outputs during periods where the energy price was low but the
reserve capacity price was good.

3.1.2 Article II: Validation of Results

A more in-depth investigation of the results from the same model was performed
in the second article. The two models had one inconsistency, and that was a con-
straint in the strategy model that aimed at limiting the amount of reserve capacity
the model could provide for operation at low capacity, as described in [37]. The
constraint, which was not included in Article II, was given as

ct ≤
cmax

Pmin + cmax
pt, (3.1)

where ct and pt was the reserve capacity and generation capacity, respectively.
Pmin was the minimum generation of the power station and cmax was the max-
imum reserve capacity the station could provide. It should be observed that for the
station to deliver the maximum available reserve capacity the generation capacity
had to be greater or equal than Pmin + cmax, thus limiting the available reserve
capacity for lower power outputs. This led to an even larger gap in revenue from
reserve capacity from the strategy to the simulator model of approximately 40%.

Another compelling differentiation between the Strategy and Simulator models
was the generation schedule they provided. The power output of one of the power
stations, for a period of 10 weeks, is shown in Figure 3.3. The power station
is connected to two different reservoirs with a DOR of 0.8 and 0.05, and with
an almost equal amount of inflow in both. A good dispatch strategy is therefore
needed to avoid spilling of the smallest reservoir. Due to the different heads at
the two reservoirs, the power station cannot generate from both of them at the
same time. As seen from the figure, the strategy model is not able to include
this, as it dispatches some from both reservoirs at the same time. In the simulator
model, however, this is included and one can clearly see that the model switches
its generation between the reservoirs.

The study of the marginal costs for providing reserve capacity was also invest-
igated, see Figure 3.4. One could observe a clear differentiation of the marginal
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Figure 3.3: Generation capacity/power output for a power station that is connected to two
reservoirs. The columns refer to the two different reservoirs. The top row is the result for a
scenario in the strategy model and the bottom row is for the same scenario in the simulator
model.

costs due to the different sizes of the reservoirs and installed capacity. For example,
Reservoir 1, with small volume and low installed capacity of the connected power
station, had a high marginal cost for providing more capacity when the spring flood
occurred, around week 20. Since the station was generating at maximum capacity
to avoid spillage there was no capacity left to provide reserve capacity. On the
other hand, if the reservoir size and installed capacity is large, as with Reservoir
2, it can be observed that for the same period the marginal cost was very negative,
indicating that the profits would be lower if more power was needed to be gener-
ated to deliver reserve capacity. This comes as a result of the low energy price in
these periods and that the model wanted to store water for use in the winter when
the energy price was higher.

Lastly, it was shown that the overall profits were increased by 2.56% for the Sim-
ulator model when comparing a simulation with both sales of energy and reserve
capacity to sales of energy only. This number could be seen as a theoretical upper
bound for the given price series as it can assumed that the reserve capacity market
was modeled as an exogenous price, thus not taking into account the current low
liquidity in the reserve market. Nevertheless, the study shows that there is potential
for additional profits when participating in different power markets.
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Figure 3.4: Marginal cost and simulated marginal cost for reserve capacity for the Strategy
(top) and Simulator (bottom) model, respectively. The simulated marginal costs are com-
puted first by solving the Simulator model, then fixing the binary variables and solving
the resulting LP problem. Reservoir 1, 2 and 3 are given from left to right. The Marginal
Cost of Capacity Spinning (MCCS) and Marginal Cost of Capacity Up (MCCU) refer to
the dual values from the two constraints limiting the provision of reserve capacity.

3.2 Provision of inertia
As discussed in Section 2.3, another commodity that a hydropower producer can
deliver to the power system is inertia. When the hydropower station is operating it
provides inertia to the system. Given the proper equipment, the hydropower station
might also operate as a synchronous condenser without having to discharge water
to provide inertia. Given large-scale integration of renewable energies and HVDC
cables, the TSO might be forced to keep more synchronous generators running to
ensure sufficient inertia in the system.

3.2.1 Article III

How a market for inertia would influence a hydropower producer was studied in the
thesis’s third article [15]. A thorough discussion about the subject was presented.
Three measures for ensuring sufficient system inertia were discussed:

Reducing dimensioning fault. This would, in practice, mean to split up the largest
active power unit into smaller units to reduce the risk of losing a large unit
in the system. Not very applicable in practice.

Existing market solutions. Since the primary and secondary reserve market re-
quire the BSPs to be rotating, they indirectly motivate inertia. This would,
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however, give both small and large units the same incentive for operating.
Tertiary reserves, on the other hand, could be used to regulate up large units,
while regulating down smaller units. If current market solutions were to be
used, this could be an effective way to ensure sufficient inertia for certain
periods.

New market designs. If required, the TSO could set up an additional market for
providing inertia, i.e. after the day-ahead market is cleared an analysis could
be conducted to determine any potential inertia requirements. A discussion
of whether all units or just additional units providing inertia should be re-
munerated is also provided.

Regardless of the approach to ensuring sufficient inertia by the TSO, it is imperat-
ive that the exploitation of market power is mitigated. This could involve holding
back generation in the day-ahead market due to expected higher profits by being
active in the inertia market. By limiting the available technologies which particip-
ate, i.e. only flywheels or hydropower plants operating in synchronous condenser
mode, the issue of exploiting market power could be diminished, as the profits
from participating in the day-ahead market are assumed to be dominating.

It was further studied how a market for providing inertia would affect the MTHS
problem, while considering participation in the day-ahead and a primary reserve
market. The background for the study was that it could be expected that a shorter
period in the summer that would require additional inertia in the system. In or-
der to estimate a price for supplying the inertia the price was set so that if the
hydropower producer was active in the period when the inertia market was open
they would recover the investment cost. A case where the hydropower produ-
cer could co-optimize/speculate all markets (run 1) and where they could not co-
optimize/speculate in the inertia market (run 2) was performed. Run 2 thus con-
sidered that the hydropower producer scheduled in the two markets up-front and
whatever capacity was available for the inertia market could be sold.

The results showed that run 1 achieved sufficient income from the inertia market to
recover its investment costs, whereas run 2 did not. This indicates that a price for
inertia of approx. 10.5 NOK/MWs/h is was not sufficient for providing investment
incentives for the hydropower producer. The results should be seen in context with
the modeling framework, since a STHS model could provide more operational
details and thus more robust conclusions could be drawn. Nevertheless, the study
highlighted some of the important aspects that should be considered in the multi-
market setting for a hydropower producer.



3.3. Future Power System with High Shares of Intermittent Wind Energy 53

3.3 Future Power System with High Shares of Intermit-
tent Wind Energy

As the introduction of this thesis and that others have expressed, it is expected
that the amount of variable renewable energy in the generation mix will only con-
tinue to grow. Given such a system, would it be economically reasonable for wind
turbines to provide reserve capacity1, or would flexible hydropower provide this
service? Another interesting question is, what would be the expected price for
providing this service?

3.3.1 Article IV: Provision of Rotating Reserves from Wind Power in
a Hydro-Dominated Power System

The abovementioned research questions were investigated in the fourth article
of the thesis. A power system that resembled the Nordic was constructed and
modeled with no internal grid limitations. A connection to the continental European
power system was given by an exogenous power price. The reserve capacity mar-
ket resembled the market for secondary reserves, consisting of two products; up-
wards and downwards reserve capacity. The case study consisted of two main
cases, one where only hydropower could provide reserve capacity and the other
where wind turbines could also provide it. For a wind turbine to provide upwards
reserve capacity the possible generation has to be reduced in such a way that if the
reserve is activated the wind turbine could increase power output. The problem
was modeled with SDDP to solve the problem with the uncertainty of inflow and
winds, on a weekly basis.

The work from [82] was used to estimate the required amount of reserve capa-
city for different wind penetrations. It was assumed that the Nordic system would
require less reserve capacity than the UK system but somewhat more than what
was found for the Swedish system. It is trivial that the amount of reserve require-
ments is not linearly dependent on the wind penetration, due to grid integration
between areas, geographical distribution of wind turbines and improved forecast-
ing techniques. Further discussion on large-scale wind integration was thoroughly
performed in [83].

The results showed that after a wind penetration of 20% the average price for
providing upwards reserve capacity significantly increased, as seen in Figure 3.5.
This was seen in context with increased energy and reserve capacity requirements
in the system, in such a way that the hydropower units required a higher price for
providing upwards regulation as it would limit discharge and subsequently increase
the risk of spillage during the spring flood, and that it also limited the amount of

1referred to as rotating reserves in the article.
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Figure 3.5: The black and blue lines indicate the expected cost of providing downwards
and upwards reserve capacity, respectively. The results are from two case studies, where
wind turbines also could contribute.

energy that could be sold during the highest paying hours in the winter. Another in-
teresting result occurred when wind turbines could provide reserve capacity, where
the price for upwards reserve capacity increases for wind penetrations of 30% and
above, as the average price is higher than when only hydropower could deliver this
service. Even though this seems counter-intuitive since the system is more flexible,
the overall gain is higher as hydropower can generate more during high price hours
and wind power can alleviate the reserve capacity requirements. Moreover, it was
found that wind turbines could deliver downward reserve capacity at a cheap cost,
freeing up some of the hydropower units so they are not required to be generating
at periods with low energy price just to deliver reserve capacity.

It should be stated that the study has several limitations and may require potential
improvements for future work. The time resolution is coarse, in such a way that
the short-term uncertainty of wind power is not sufficiently included. Therefore,
the inclusion of a short-term model for better describing the problem within the
week and conducting a more detailed study could provide more rigorous results.
Internal grid congestion is also likely to have an impact on the results. The problem
is so complex and compelling that a research project has been started with the title
Pricing Balancing Services in the Future Nordic Power Market [84].

3.4 Generation Function Modeling
The generation function describes the efficiency of the outputted power from a
hydropower station. In MTHS and LTHS it is often assumed that it is a concave
function, only dependent on the water discharge in the station. For more detailed
STHS models the generation function can be given for each unit in the hydropower
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station and with head dependency. A research question for the following work was
to find a method for how to describe a nonconcave generation function, given some
measurement data. Due to advancements in modeling details, as discussed in the
next section, the results from the work are further used for modeling a nonconvex
MTHS problem.

At the beginning of this work a hydropower producer in Norway that had an ongo-
ing project of online measurements of the power station was contacted [85]. The
goal was to obtain data from online measurements on the power output, water head
and discharge for a power station and subsequently generate a generation function
that could further be used in a HS model. The complicating aspect of performing
these measurements is how to accurately measure the water discharge, which is
one of the main topics in [85]. Such an online measurement system of the power
station could provide an up-to-date generation function, as the efficiency tends to
decrease over time, real-time surveillance with fault detection and as an initial con-
trol that the turbine and generator efficiencies are in line with the manufacturer’s
specifications. Currently, hydropower producers perform an initial measurement
of the power station to determine the station’s overall efficiency and use this data
as input for the generation function. The work in this section comes from these
measurements from two different hydropower stations where head dependencies
have been neglected.

3.4.1 Article V: Impact of Modelling Details on the Generation Func-
tion for a Norwegian Hydropower Producer

As discussed earlier, more profit opportunities in additional markets than the day-
ahead energy market may lead to different generation scheduling. In recent years,
there has also been an increased focus on environmental issues associated with
hydropower. This has led to more environmental constraints for hydropower sys-
tems, e.g. ramping restrictions and minimum discharge in rivers to facilitate a
strong stock of fish in the rivers. This work therefore also considered a case with
and without a minimum discharge limit in the summer months to comply with
these restrictions. The environmental aspect of hydropower scheduling has been
studied in detail in the research project CEDREN [86].

The main contribution from the paper comes from finding a method to reduce the
dimensionality of the generation function, with the trade-off between the repres-
entation of the generation function and reduced computational time. Figure 3.6(a)
shows the generation function with all data points. After removing eight data
points the generation function is shown in Figure 3.6(b).

The work proposed two procedures for reducing the dimension of the data points
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(a) Original data points.
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(b) Removed 8 data points using the area re-
moval algorithm.

Figure 3.6: Generation function for a power station with two units. Note that the y-axis is
not given by power but the energy equivalent to normalize the plot for better visualization.
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Figure 3.7: Duration curve for a selection of the results. (A Rem) refers to the area
removal algorithm and how many points on the generation function were removed from
the original one. (Seg Reg 8) refers to the segmented regression approach where eight
points were removed. The grey line refers to the concave generation function.

in the generation function; the area removal algorithm and a segmented regression
method. The goal was to find a method that kept the inherent shape of the gen-
eration function while reducing the data dimension. The first method computed
the area the different points had with two adjacent points and removed the point
that had the least area associated with it. The procedure persisted until a given
amount of points was removed. The segmented regression approach used a library
implemented in R to find linear regression lines that most accurately fit the data.

The results showed, first of all, that a significant amount of data points could be re-
moved by the area removal algorithm with little impact on the generation function,
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compared to the original data. It also had the benefit of notably reduced computa-
tion time. A comparison to a concave representation of the generation function was
performed, where the computational time was considerately lower, ranging from
about half to 10 times lower. As expected, the objective value was also just over
2% better, for both stations, compared to the original generation function. This
difference increased even more when a limit on minimum discharge was included
in the summer months, where the concave generation function had a 14.1% higher
expected generation compared to the original.

Given the nature of the data that described the generation function, it was also
found that the segmented regression method did not perform as well. The oper-
ating point that had the highest efficiency was slightly shifted compared to the
original data and different generation schedules were observed. It is believed that
the method would perform considerably more effectively had there been more data
available.

The given work consisted of a compelling topic for hydropower producers and
much work could be done in order to more accurately describe the generation
function and how it should be incorporated in HS models. This article has only
scratched the surface of methods that could be used. The usage of a nonconcave
generation function becomes more clear in the next section.

3.5 Nonconvex Medium-Term Hydropower Scheduling
A significant contribution from this thesis is the work on nonconvex2 MTHS,
where the SDDP algorithm has been the main focus due to its applicability for
solving Multistage Stochastic Programming (MSSP) problems. In the early work
of this thesis, models to test how well SDDP performed in a multi-market setting
was created. It was found that the models overestimated the profits from selling
reserve capacity, even though they contributed to a fraction of the overall profit.
With increasing volume and, potentially, price in these markets, it can be expec-
ted that their shares of the profits will increase. In such a future market setting,
it is therefore imperative that good decision-support tools are available such that
the hydropower producer can allocate its resources in an optimal way. Improved
modeling of the hydropower system would also contribute to more realistic results
that are currently left for the STHS problem to handle.

The complicating aspect for nonconvex SDDP problems is how to model the EFP
function. There have been several publications focusing on solving nonconvex
MTHS problems, and until recently none of them could guarantee that the method

2The terms nonconvex and nonconcave are used interchangeably, both referring to a problem that
cannot directly be described by a piecewise linear function, as a concave or convex problem can.
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Figure 3.8: An illustration of the upper bound for a validation study of the SDDiP method.
The optimal value is given as a base.

actually converged to an optimal solution [87, 88, 89]. In the following section, the
results from Article VI and VII are presented. The work is based on the recently
published SDDiP method, discussed in Section 2.9.

3.5.1 Article VI: Nonconvex Medium-Term Hydropower Scheduling
by Stochastic Dual Dynamic Integer Programming

This article was written during the author’s research visit with Dr. Shabbir Ahmed
at the Georgia Institute of Technology. The visit was conducted in the wake of the
SDDiP publication, where the aim was to assess the method for an MTHS problem
with sales of reserve capacity.

A drawback with the SDDP method is that it did not easily incorporate stochastic
objective term coefficients, e.g. energy price. In an effort to test whether this
could be implemented in a satisfactory manner, the case study that was tested in-
cluded some cases with an uncertain energy price. In order to circumvent the
bilinear/nonconvex issue of a stochastic variable of price times generation in the
objective term, McCormick envelopes were used [90]. Moreover, other noncon-
vexities including a nonconcave generation function, minimum generation limit
and other hydraulic constraints were modeled.

To validate the convergence of the different cut families a validation study was
performed. The convergence for the different cuts can be seen in Figure 3.8. The
study consisted of a simplified MTHS problem that enabled us to compute the
optimal value prior to using SDDiP. The illustration shows the gap provided by
Benders cuts and the improvement provided by strengthened Benders cuts. To
obtain convergence of the SDDiP algorithm Lagrangian cuts had to be used.
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The study showed that SDDiP is more computationally demanding than SDDP.
The Lagrangian cuts that are required for guaranteeing convergence require signi-
ficant computational force to generate a cut. For comparison it could be required
to solve around 50 MILP problems, compared to a single LP problem, to generate
a Benders cut. The strengthened Benders cuts did, however, provide promising
results in terms of computation time and improved convergence.

The case with uncertain energy price led to very large upper bounds, but by using
Jensen’s inequality it was found that the provided policy was adequate. The pro-
posed method to include uncertain energy price could not be deemed very practical
in practice as it requires solving an additional problem to verify the solution.

3.5.2 Article VII: Medium-Term Hydropower Scheduling with Vari-
able Head under Inflow, Spot and Reserve Capacity Price Un-
certainty

In the thesis’s final article an aim was to assess how the strengthened Benders
cuts from the SDDiP framework would perform with even more complexity than
what was included in Article VI. This included modeling head dependencies in a
nonconvex generation function. The modeling of the energy price in Article V was
considered a drawback, that used the McCormick envelopes to relax the bilinear
objective terms. The final article therefore included a recent method to incorporate
uncertain objective term coefficients for DP problems [79, 80]. The SDDP model
used in the earlier articles was extended with strengthened Benders cuts and used
to perform the case studies.

Another contribution from the article was to propose a method to visualize the EFP
function. This enables an inspection of the shape of the EFP function and insight
to the modeler as to whether a piecewise-linear approximation is sufficient or more
complex methods has to be performed for adequate results.

The case study was performed on the system given in Figure 3.1. The uncertain
parameters were inflow, energy and reserve capacity price. Studies with only un-
certainty of inflow were also conducted to compare how well the approach from
[80] performed. The inflow to the system was described by historical data, the
energy price from a fundamental market model and the reserve capacity price was
described by historical data from the daily primary reserve market.

To benchmark the performance of the strengthened Benders cuts, some studies
that made use of Benders cuts were also performed. Convergence of the prob-
lem for the two different types of cuts and with uncertainty of inflow, energy and
reserve capacity price can be seen in Figure 3.9. A total of 50 iterations were per-
formed with a final simulation to evaluate the policy from both approaches. It can
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Figure 3.9: Convergence when using either strengthened Benders (SB) or Benders (B)
cuts.

observed that even though the strengthened Benders cuts provided a significantly
tighter upper bound, the gap between the upper and lower bound is still signific-
ant; approximately 36%. The approach would benefit from increasing the number
of iterations, with the cost of added computational time. Verification studies that
were performed for the implementation of the uncertainty modeling did provide
convergence, but at a significantly slower rate than without the uncertain objective
term coefficients.

One of the findings from the article was that when more complex nonconvexities
were modeled, such as a nonconvex generation function, Benders cuts were in-
ferior to the strengthened Benders cuts. This is expressed in the way the reservoir
handling is performed, where the approach with Benders cuts resulted in very high
reservoir levels as the model overestimated the value of the water in the future,
leading to a higher risk of spillage. This phenomenon can be observed in Figure
3.10, where the water values for week 173 are shown. The water values are given
by the coefficients of the binding cuts, thus representing the marginal costs of wa-
ter for different reservoir volumes. From Figure 3.10 it can can be observed that
the Benders cuts generally provide higher water values, but a significant drop is
observed for high fillings as high inflow may lead to floods and subsequently the
water value would be zero. The strengthened Benders cuts provide lower water
values and consequently lower reservoir volumes.

To summarize, the article showed how superior strengthened Benders cuts are

3Around the time when the spring flood occurs.



3.6. Putting the Research in Context 61

0 100 200 300 400 500
Reservoir volume [Mm3]

0

50

100

150

200

250

300

350

400

450

W
a
te

r 
V

a
lu

e
 [

kN
O

K
/M

m
3

]

SB
B

Figure 3.10: Water values for week 17.

compared to Benders when solving nonconvex problems. A drawback is the in-
creased computational time required to solve the problem. With appropriate paral-
lelization of the model this drawback can be diminished. Furthermore, the uncer-
tainty modeling provided a unified stochastic model that can handle correlations
and time lags in a more tractable way for SDDP problems, with the downside of
reduced convergence rate.

3.6 Putting the Research in Context
There is a great deal of ongoing research on MSSP, both theoretical work and
applied, such as the work carried out in this thesis. Alongside the proposed SDDiP
algorithm the research in [87, 88, 89, 91, 92] all investigates nonconvex MSSP
problems.

[87], which used McCormick envelopes [90] to approximate the nonconvex re-
lations between head, discharge and power output. In Article VII of this thesis,
another method to model this function was proposed where the function was di-
vided into concave regions, similar to using McCormick envelopes, and a set of
hyperplanes was used to describe the function. The idea of using hyperplanes to
describe the generation function is also proposed in [93], where a concave function
of hyperplanes was fitted to the generation function.

[88] investigated both convexification of the hydropower systems’ properties and
a method with Lagrangian relaxation on the EFP function, for approximation. The
work concluded that the selection of the convexification approach is highly de-
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pendent on the given system and that choosing the correct approach can prove
challenging task. It is with this in mind that the approach for visualization of
the EFP function in Article VII was presented, yielding an insight into how it is
affected by different nonconvexities.

Another model using Lagrangian relaxation was proposed in [89]. The work also
proposed a method to use locally valid cuts, i.e. dividing the EFP function into
convex regions, where the model performed well compared to a SDP model used
as a benchmark. The most recent work, built on the SDDP framework, is the
SDDiP method proposed in [70], more on this in the next section.

A method that uses step-functions instead of hyperplanes to model the EFP func-
tion is given in [91]. This is a novel approach that would be very interesting to
pursue, but has not been undertaken by this thesis.

As already specified, there is also a great deal of ongoing research on multi-market
scheduling. The previously mentioned work in [41] is one example of extensive
research on the topic. A key contribution was to apply the method of multi-horizon
modeling for a MTHS problem. The underlying concept of the method is to divide
the problem into two stages with different temporal composition, e.g. investment
and operational stages. This thesis has primarily based its uncertainty modeling
on the conventional approach of using a VAR-1 process to model the inflow and a
Markov chain for the energy price. Extensions were, however, included in Article
VI and VII with two different methods for modeling the uncertainty of energy price
with use of McCormick envelopes and with use of the recent work by [80]. Both
methods are able to include correlations between the stochastic processes and are
unambiguous in extending its dimension to higher orders. The complicating task is
to construct these stochastic processes, which has not been investigated in greater
detail but rather left for future work.

Looking at more work conducted on MTHS in the multi-market setting the re-
search by [37, 9, 94] requires acknowledgment. [37] extended the Markov chain
to include a primary reserve market in addition to the energy market. Moreover,
the primary market was cleared the week prior to delivery, resembling how the
weekly market for primary reserves is cleared today. The work showed how com-
putationally demanding the problem becomes when extending the dimension of
the Markov chain. Which is why other methods were pursued in Article VI and
VII.

In [9] an SDP model was used to model the small nonconvex MTHS problem.
SDP requires a small state dimension to be tractable with the benefit of being
able to solve nonconvex problems. As with the work in [94], the work aimed at
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understanding how the water values change in a multi-market setting. This work
shows how the water values become more sensitive to changing reservoir levels
and states the importance of taking reserve capacity markets into consideration
when refurbishing old power plants. The work gives a great deal of insight into
how the multi-market setting affects the hydropower scheduling, which is what
this thesis also aims to achieve.
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Chapter 4

Conclusions

We still expect increased imbalances that the system operator must handle close
to and in real time through the use of balancing services for up- and
down-regulation of generation or consumption.

—Statnett, System operations and market development plan 2017-2021

The following chapter summarizes the conclusions drawn from the work in this
thesis.

4.1 Main Results
Article I and II outlined how existing MTHS models could be used to include
sales of reserve capacity and how viable the results were. It was found that the
existing models significantly overestimated the hydropower system’s flexibility to
provide reserve capacity and that more detailed modeling is desired. Moreover, it
was found that even though the provision of reserve capacity was overestimated it
still amounted to a fraction of the overall profit compared to selling energy. The
expectation is, however, that there will be an increased demand for flexibility in
the future in such a way that models that include more complexity will have a more
prominent value.

A commodity that can provide additional profits for hydropower producers in the
future is the provision of inertia, which was discussed in Article III. Much is still
uncertain on how scarcity of inertia in the power system should be handled to
ensure a reliable power grid. It is especially during periods with low demand, high
intermittent renewable generation and import over HVDC cables that can come
below a certain security threshold. Since the electricity prices are typically low
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in these periods, flexible hydropower producers with the proper equipment can
provide inertia without using any water. The article discussed these issues and
concluded that such a market would have a small impact on the MTHS with a
short period of critically low inertia.

In Article IV the provision of reserve capacity from wind and hydropower was in-
vestigated. It was found that wind power can provide downward reserve capacity
at a low cost. The activation of the energy would, however, be expensive as the
opportunity cost of wind power is zero. It was only for the most extreme wind
penetration scenarios, 30% and 50%, that there was observed some provision of
upwards reserve capacity from wind power, the rest was provided by the hydro-
power. This can be seen as an indicator of how effectively wind power can be
facilitated in a power system with a larger share of hydropower.

Extending on the work carried out in the previous articles the method of SDDiP
was tested on a MTHS problem in Article VI. It was concluded that the method was
significantly more computationally demanding than the standard SDDP method,
but it was able to better handle nonconvexities such as minimum generation lim-
its and start-up costs. A validation study of the MTHS problem showed that the
method provided convergence when the Lagrangian cuts were used, but proved
too computationally demanding for the full problem formulation. Nonetheless,
the strengthened Benders cuts provided a significantly tighter optimality gap com-
pared to the classical Benders cuts.

In order to improve the representation of the generation function in each power
station Article VI proposed two methods. It was concluded that representation of
the function could be reduced without compromising the accuracy of the results
and with favorable reduction of computational time. Moreover, the results from
the two methods were dependent on the underlying data used to describe the gen-
eration function, and if more data had been available the accuracy of the results
would be more reliable. For instance, it was found that slightly shifting the operat-
ing point with the best efficiency had great impact on how the station was operated.

The favorable aspects with the strengthened Benders cuts used for MTHS were
further supported in the seventh and final article, where the results were superior
compared to that which the Benders cuts could provide. The method to visualize
the EFP function showed that the nonconvexities of the problem were not too pro-
found, in such a way that a piecewise linear approximation would be sufficient.
Furthermore, the modeling of the price uncertainty gave a slower convergence and
more iterations would be required to reduce the optimality gap even further.
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4.1.1 Concluding Remarks

This thesis has investigated the impacts of additional markets and more detailed
modeling has been performed on the MTHS problem. Current approaches based
on a convex problem formulation, such as SDDP, are not able to incorporate the
level of detail required to describe the hydropower system with sales of reserve ca-
pacity and environmental constraints. The proposed methods based on SDDiP are
able to do this, but with the cost of significantly increasing the computational bur-
den. The strengthened Benders cuts from the SDDiP framework should, however,
be pointed out as a very promising tool for solving nonconvex MTHS problems.
The main conclusions from this thesis can thus be summarized by the following.

• A MTHS model based on SDDP will overestimate the hydropower system’s
opportunity to sell reserve capacity. For the case studies performed in this
thesis the profit was overestimated with around 30%.

• A market for providing inertia to the power system may be a solution for
ensuring reliability of the power grid, especially during low load and price
hours. The provided case study showed that a inertia market had little impact
on the HS, mainly due to the few hours it was open and that the price that
was used was too low. A higher price could lead to the hydropower producer
to switch operation from generating energy to provide inertia in synchronous
condenser mode, making it a very inefficient market. This could be mitig-
ated by choosing wisely the operating hours for the inertia market or apply
other mechanisms, such as a fixed premium and/or investment support.

• The cost of providing reserve capacity, for the case study representing the
Nordic system, significantly increases for wind penetration levels above
20%.

• Wind power is able to provide downwards regulating reserve capacity at a
cheap cost. The activation of the reserves will, however, come at a cost that
can be represented by the value of the curtailed energy.

• How the generation function for a hydropower station is constructed has
high impact on how the station is operated. It is especially evident to model
the generation function accurately when environmental constraints and mar-
kets for reserve capacity are included, such that the generation capacity is
not overestimated.

• The SDDiP algorithm enables a nonconvex problem formulation, enabling
high levels of details for MTHS problems. Eventhough the SDDiP algorithm
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is computationally demanding, the strengthened Benders cut is superior when
solving nonconvex problems, compared to the Benders cut.

• Bilinear objective terms, as imposed by an uncertain energy price, are hard
to solve by McCormick envelopes in the SDDiP framework.

• The shape of a hydropower reservoir’s head function highly determines the
shape of the EFP function. By visually inspecting the EFP function it is
easier to decide which solution approach to use.

Furthermore, the methodology proposed by the SDDiP algorithm is also relevant
to use as a benchmark when new convexification methods are developed in the
SDDP framework. More research is, however, required for generalizing SDDiP
for a variety of hydropower systems, reducing the computational time and adapt-
ing methods to the different problems, such as when is binaryzation needed, how
accurate should it be, and so on.

As a final remark to put some perspective on the multi-market HS problem, the
turnover from selling energy on Elspot, only in NO2 area, was approx 1.46 billion
NOK in 2017. Comparing this to 100 million NOK in both the primary and sec-
ondary reserve market it is obvious that there is some way to go until the market
for reserve capacity plays a greater role in the power market. Nonetheless, finding
methods that better describe the underlying problem is imperative for generating
good and useful results. For a hydropower producer with a yearly turnover of 1
000 MNOK, hydropower scheduling models that provide just a 1% increased util-
ization of the water would make a significant impact on the bottom line. For a
nation where over 96% of the electricity comes from hydropower it is therefore
imperative with efficient scheduling models.

4.2 Recommendations for Future Research
In this thesis, the MTHS problem has been investigated. It is therefore hard to
make concise conclusions on the impacts additional markets have on the HS prob-
lem. It would, therefore, be beneficial to combine the MTHS with a detailed STHS
model to better verify the impacts of multi-market modeling.

The time resolution of the problem in Article IV is also too coarse to capture
the short-term variability of the wind power. The results would, therefore, be
more viable if a stochastic short-term model had been included to describe this.
Furthermore, for the results to be applicable and potentially provide price-forecasts
for energy and reserve capacity, the power grid should be included. This could, in
turn, be used as price input to a MTHS problem.
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All the studies rely on data that should describe the underlying hydropower system
in the best manner. Obtaining these data is not straightforward and, as seen in
Article VI, the format of the data highly influences the results. It would, therefore,
be beneficial to perform an in-depth data collection, such as online measurements
used to generate the generation function.

The results have shown that it is possible to include a higher level of modeling
details at the cost of a higher computational burden. For the models proposed in
this thesis to be used for operational use, it would therefore almost certainly be
required to include parallel processing to utilize computers with multiple cores
and reduce the computation time.

In addition to the above-mentioned, further testing on other hydropower systems
could be done to further strengthen the findings of this work. Case studies on
revision planning could also be an interesting problem for investigation using the
models in this thesis.
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Abstract—In following work, we investigate the importance
of detailed hydropower scheduling modelling when including
sales of capacity, which adds complexity that is not easily
incorporated in a Linear Programming (LP) problem. In the pro-
posed approach, we use the profit-to-go function obtained from
a Stochastic Dual Dynamic Programming (SDDP) scheduling-
model in a Simulator Model, based on Mixed Integer Program-
ming (MIP), and perform detailed simulations. The Simulator
Model allows a more complex problem description, than by the
LP formulation in the SDDP model. The Simulator Model may
therefore be used to give an estimate of the LP approximation,
which is used for providing the opportunity cost in short-
term hydropower scheduling models or conceivably for making
investment decisions.

For the given case study, the expected profit from selling
capacity was 29.2% higher than the linear SDDP Model to the
Simulator Model. The overall profit loss was reduced by 0.93%,
quantifying the overestimation of profit in the SDDP Model. This
illustrates the importance of detailed modelling when considering
sales of capacity.

Index Terms—Stochastic processes, Power system analysis
computing, Optimal scheduling, Hydroelectric power generation

I. INTRODUCTION

With the introduction of a liberalized power market, power
producers have been more eager for robust and efficient
optimization models for their power scheduling. In Norway the
liberalization started in 1991 after the Energy act, stating that
power producers were no longer obliged to supply electricity
but instead could maximize their profits. In the following
year a paper on the EMPS model (EFI’s Multi-area Power-
market Simulator), which had been developed and used in the
Nordic regions since the 1970’s, was published [1]. The model
mimics the market clearing process and is frequently used by
market players to provide price forecasts. A single producer’s
hydropower strategy need to consider relevant uncertainties,
such as inflows and energy prices. The decision process consist
of the choice to either store water today and produce tomorrow
or vice-versa, i.e. a multi-stage stochastic problem.

Funded by The Research Council of Norway, Project No. 228731/E20

In 1996, the European Union issued an internal electricity
market directive (1996/92/EC) to gradually open the electricity
markets for all member states. Alongside the political agenda
to assemble a common European energy market there has
been an even greater push towards a sustainable energy
development. With the large-scale entry of non-dispatchable
generation, strengthened and possible new market mechanisms
are required to attain secure operation of the electricity grid.
Due to the flexibility of hydropower, volumes in the balancing
markets in Norway have been low, and therefore low incentives
for hydropower producers to assess models with multiple
market clearing. With an increasing share of renewables and
stronger grid connection to other countries, this perception
may alter.

Due to the complexity and large computation time detailed
model imposes, a clear differentiation has been done for
hydropower scheduling. Typically the scheduling comprises
a long-, medium- and short-term model depending on the
modelling objective [2]. The long-term model may represent
an aggregated system model and is e.g. used for expansion
planning, price forecasting, and system studies, preferably with
large system boundaries [3]. The medium-term model is linked
with the long-term model by price and individual water values
are calculated for a more detailed part of the larger system.
Detailed water values for a river-system may then be used as
the opportunity cost as the end-of-horizon valuation of water
when running the short-term scheduling, a detailed model
often defined as a Mixed Integer Programming (MIP) problem
[4–6].

Around 1990, two papers on the Stochastic Dual Dynamic
Programming (SDDP) algorithm for multi-stage stochastic
optimizations problems was presented in [7, 8]. In the years
to come numerous alternations and improvements on the
algorithm has been presented. Such as grid modelling in [9],
convergence properties in [10] and bidding strategy for a
large hydropower portfolio in [11]. Latter years developments
include the relations of non-convexities. [12] was treated
with use of McCormick envelopes to model the non-convex
relationship between power, discharge and water head. Later,
[13] used Lagrangian relaxation to assess two procedures on
convexification of the cost-to-go function and the non-convex



components. In [14] a SDDP algorithm with local cuts was
proposed in order to capture the non-convexities resulting from
a detailed system description and supply of spinning reserves.

The primary frequency reserve (PFR) market in Norway for
providing weekly Frequency Containment Reserves - Normal
(FCR-N) has especially shown an income potential for hy-
dropower producers during the summer months. With high
reservoir fillings, low prices and high inflow, hydropower
producers are set to either produce at maximum to avoid
spillage or not produce due to allegedly low power prices.
The market for PFR in Norway displays many of the same
characteristics to other markets and minor changes are need
to represent these differences. Comprehensive market details
can be found in [15].

In this paper a combined Stochastic Dynamic Program-
ming (SDP)/SDDP method presented in [16] and extended
to incorporate capacity reservation in [17], is applied together
with a simulator. First, a strategy (represented by the profit-
to-go function) is found from a updated version of the
SDP/SDDP model described [17], hereby referred to as the
Strategy Model. This model allows both delivery of energy
to the day-ahead market and sales of capacity to the PFR
market. Subsequently the obtained strategy is applied in the
MIP-based Simulator Model over the two year period of
analysis to find detailed schedules for hydropower stations
considering operation in both markets. The Simulator Model
has the capability to represent more accurately a non-convex
generation-discharge relation, minimum power requirement
and head dependencies, if desirable. These details are of
particular importance when considering operation in a capacity
reserve market, which requires the committed capacity to be
spinning. The Simulator Model can therefore act as benchmark
to quantify the approximation errors that the Strategy Model
impose.

The purpose of the presented approach is to quantify the
influence a capacity reserve market has on the medium-term
hydropower scheduling, considering accurate modelling of the
physical system.

In Section II the Strategy Model and the Simulator Model
will be presented. Section III describes a case study on
a Norwegian hydropower system followed by results and
discussions. Conclusions from the research and case study are
finally given in Section IV.

II. METHODOLOGY

An overview of the two models can be seen in Figure 1.
Inflow series and power prices used in this model has weekly
stochastic time stages. In order to scale the model further
down, a weekly profile with resolution similar to the PFR
market is added, represented by 21 time steps within the week.

It is assumed that the reader has previous knowledge about
SDDP, such that details regarding the method are neglected.
For interested readers the following articles are suggested [7,
8, 16, 17].

•

•

•

•

•

•

Figure 1. Simplified overview over the models. The Simulator Model is
run after convergence is reached in the Strategy Model. Cuts refer to the
hyperplanes that the profit-to-go function consists of.

A. Strategy Model

For each time stage, t, and realizations of stochastic vari-
ables, ωt, the hydropower scheduling problem is solved, called
the one-stage dispatch problem. The forward and backward
iterations of the Strategy Model are carried out iteratively
to generate an improved representation of the profit-to-go
function until convergence. The LP problem representing the
one-stage dispatch problem in the Strategy Model will be
discussed in this section. Section II-B will cover the one-stage
dispatch problem for the Simulator Model.

αt(xt−1, ωt) = max
{
Lt(xt,ut, ct) + αt+1(xt, ωt+1)

}
(1)

subject to

Axt +But = Cxt−1 +Dat(ωt) (2)
Eut = dt (3)
Fut + ct ≤ bt (4)

ulb ≤ ut ≤ uub (5)

xlb ≤ xt ≤ xub (6)

clb ≤ ct ≤ cub (7)

Problem (1)-(7) exhibit the main structure in the one-stage
dispatch problem with state variables, xt, decision variables,
ut, and realization of the stochastic parameter ωt. xt repre-
sents, in this model, the amount of water in a reservoir and
the state of the power station, while ut includes the water dis-
charge, spillage and bypass. The function Lt in the objective
function is made up by three major terms; income from selling
energy and capacity, and a penalty function. The penalties
includes spillage, tank water and start-up costs. Inflow to the
reservoir is modelled with a first order autoregressive model,
elaborated in [18], such that for extreme cases when the
reservoir is empty you might also receive negative inflow. The
model can therefore use the very costly tank water to fill up
the reservoir. This ensures that relatively complete recourse of
the stochastic model is obtained.

One of the characteristic with hydropower scheduling mod-
els is the relation between state variables from one time
stage to another. This is expressed in constraint (2), where



the reservoir balance is included. Matrices A, B, C and D
represent coupling between reservoirs and E consists of the
efficiencies regarding production and discharge in the energy
balance constraint (3). Linearized start-up costs, included in
(2), were implemented in a similar manner as in [19,20], with
a linear approximation of the power stations state (on/off).

The delivery of capacity is incorporated in (4), where
ct is the amount of capacity available for sale, hence also
included in the objective function. The constraints includes a
symmetrical delivery of capacity, such that for delivering a
certain amount of capacity the power station must be able to
regulate both up and down an equal amount. The matrix F
represents the relations between power and discharge and bt

the power limits.
The delivery of PFR is limited by the turbine governor,

such that both the droop setting and size of the power station
limits the amount for providing PFR, included in (7). The other
variables are bounded by (5) and (6).

Impacts of head variations impose non-convex properties
that hydropower scheduling models should consider. Due to
its complexity and minor significant impact for the proposed
case study, this was currently not treated.
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Figure 2. (Left) Illustration of the dynamic recursion between time stages
for energy and capacity prices. For the energy price, different price nodes are
used with probabilities from going to one price node to another in next time
stage. The figure illustrates the underlying modelling of the prices and not
the magnitudes. (Right) Illustration of the six different time-blocks for the
weekly PFR market, i.e. the capacity for time-block 1 must be available for
certain hours for all weekdays, i.e. time step 1,4,7,10 and 13.

1) Price models: In order to ensure a convex function in
SDDP, the power price will have to be described in other
terms than in the continuous state space. This is achieved
by discretizing the power price and using a Markov chain
to describe the transition for the power price between time
stages. In short, the SDDP model is solved for each of the
discretized power prices and transitions between them are used
to calculate the expected profit-to-go function, illustrated by
the transition between different price nodes from one time
stage to another in Figure 2. The PFR price is also described by
a deterministic price series in this work, but could be described
stochastically as in [21], this would however significantly
increase the problem size.

As seen in Figure 2 there are six different periods for
providing PFR. If you commit a certain amount in period 1
you must provide the same amount every weekday.

TABLE I. PROBLEM CHARACTERISTICS FOR CASE STUDY.

Strategy Simulator

Variables 1 036 2 233 (585 binary)
Constraints 567 2 121
Dispatch problems, per iteration 293 600 5 200

For both markets it is assumed that the hydropower producer
is a risk-neutral price-taker. With many actors and the large
energy volumes traded on the day-ahead market this is a good
assumption. However, the volumes for the PFR market are
low, such that an improved representation could be beneficial
for this market.

B. Simulator Model
The core distinctions of the Simulator Model is the MIP

formulation of the one-stage dispatch problem. This enables
a more complex modelling and subsequently more realistic
results. The hydropower system for both models are the same,
however, the Simulator Model is able to include binary state
variables, non-convex power-discharge function and distinct
operation from different reservoirs, such that a power station
could not generate while discharging from multiple reservoirs.

During the research it was found that one of the main issues
with a linear model when considering provision of PFR is
that in time periods with low power prices and high PFR
prices, the model tended to operate the power station at a
minimum level. E.g. the power station was operated at 10 MW
in order to provide 10 MW of PFR, even though the technical
lower limit of the station was 50 MW. This weakness was
significantly improved by reducing the solution space, such
that when selling maximum amount of PFR, the power station
had to operate above minimum generation limit. This issue
was omitted by introducing binary variables in the Simulator
Model. Together with the restriction to only generate from one
reservoir at the time, this significantly improved the validity
of the results given by the Simulator Model.

As Figure 1 illustrates, after the Strategy Model has con-
verged and a solution is obtained, the profit-to-go function,
represented by cuts, is utilized in the Simulator Model. Since
the profit-to-go function was made for a different optimization
problem, a distinct convergence gap is expected. This may be
seen as the main drawback of the model, but it ensures a quick
and efficient evaluation of the results obtained by the Strategy
Model.

III. CASE STUDY

The case study is based on a hydropower system under
construction in south-west of Norway, shown in Figure 5.
Power station 1 and 2 has installed capacity of 13.8 MW
and 400 MW, respectively. The price series for capacity
reserves are given by the actual prices from 2013 and 2014.
A simulation with the EMPS model from 2013 gave the price
series for energy, such that the capacity and energy prices were
coupled in time.

In order to get a honest comparison between the two models,
all Simulator Model runs utilized the scenarios for inflow and
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spot price that were sampled in the last forward iteration by
the Strategy Model.

The simulation was carried out with 50 scenarios in the
forward iteration of the Strategy Model and hence the same
amount in the Simulator Model. The sampling of 50 scenarios
could favourably have been increased, but due to long com-
putation time and promising in-sample stability this was not
done. The power prices were discretized into 7 price nodes
while the number of inflow samples in the backward iteration
were 8. There were carried out 15 iterations of the Strategy
Model and a final simulation with the Simulator Model.

The number of variables and constraints in the one-stage
dispatch problem for the two models is displayed in Table I,
together with the total number of problems. It can be seen
that the Simulator Model has a significant increase in both
variables and constraints for the problem described in the case
study.

A. Results and Discussion

All simulations were carried out on a Dell Latitude E7240
with an Intel Core i7-4600U processor with a 2.7 GHz clock

TABLE II. EXPECTED VALUES FOR THE SIMULATOR MODEL, GIVEN IN

PERCENTAGE WITH THE STRATEGY MODEL AS BENCHMARK.

Generation -1.0 Profit -1.48
Energy Profit -0.99 End Value of Water 3.26
Capacity Profit -29.18 Total Profit -0.93

rate and 16 GB RAM. The CPU time for the Strategy Model
was 11 h and 4 min and 41 min for the Simulator Model.

Some selected results, in percentage with the Strategy
Model as benchmark, are given in Table II. It is shown that
the expected total profit, referring to the sum of profits and
the end value of the water, was reduced by 0.93%. The profit
from sales of capacity was reduced by 29.2%. This significant
reduction from sales of capacity comes as a result of the
tightened system description with minimum generation and
operating reservoir constraints, and it shows how vital the
system description is when considering provision of PFR.

Figure 3 shows the convergence of both models. It can
be seen that there is some uncertainty concerning the gap
in the Strategy Model, as a new sampling of inflow and
power price is carried out for each iteration. As expected
an convergence gap is observed in the Simulator Model, in
percentage calculated to 0.68%.

The duration curve depicted in Figure 4 shows how gener-
ation, for the entire hydropower system, is shifted from less
high power output to increased output at around 150 MW.
This is first seen because of the binary constraints, but also
as a result of the detailed power-discharge modelling, where
the power station 2 has beneficial properties around this point.
Also, due to the minimum generation limit in the Simulator
Model, no generation beneath this limit is obtained, as opposed
to the Strategy Model where this is observed with some power
outputs of around 50 MW.

The proposed method does not improve the profit-to-go
strategy used by short-term models, as in [12–14], but in-
stead gives a rapid benchmark of how far away the linear
approximation is from the true value. This can be very efficient
for making investment decisions, where additional electricity
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markets are included. An example could be to either invest in
a Pelton turbine that provides good generation efficiency over
a large amount of different discharge values, such that delivery
of reserves are fairly cheap, or to invest in a Francis turbine
with a higher maximum efficiency but with a higher cost of
providing capacity reserves.

IV. CONCLUSION

A realistic approach for medium-term hydropower schedul-
ing operating in both day-ahead and capacity reserve mar-
kets has been formulated and tested. The Simulator Model
proposed has a detailed description of the power-discharge
function and minimum generation for hydropower. When mod-
elling the accurate power-discharge function, generation will
give more realistic results regarding the unit’s operating point.
The minimum generation restriction also provides realistic
results concerning how the hydropower units are operated.
Following by the reduced flexibility in the system a profit
reduction was observed, adjusted with the end value of water,
by 0.93%.

By generating the profit-to-go function from the Strategy
Model and applying it in the same system with above-
mentioned modifications, a prompt solution is obtained, de-
pendent on the system size and simulation period. It can
be observed that the Strategy Model overestimated the value
of selling capacity by around 29%. Even though this value
is case-specific, it demonstrates the importance of detailed
modelling when considering sales of capacity.

Further work should consist of generating an improved
representation of the profit-to-go function that is to be used
by the Simulator Model and hence reducing its convergence
gap. Nevertheless, the finding from the case study with 0.68%
gap demonstrate encouraging properties in terms of finding
the optimal solution. Improvements of the representation of
the capacity market should also be empathized in regard to
validity of prices and conceivable volumes.

NOMENCLATURE

ωt Stochastic parameter for time stage t.
A,B,C,D,E,F System specific matrices. Representing

coupling between reservoirs, relations between water
discharge, energy and capacity.

at(ωt) Inflow as a function of a realization of the stochastic
parameter ωt.

ct Capacity for sale.
ut Decision variable. Representing discharge of water.
xlb,ulb, clb Lower bounds for the variables.
xub,uub, cub Upper bounds for the variables.
xt State variable. Representing reservoir volume and

state of a power station.
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Abstract

This paper conducts a case study on hydropower scheduling considering sales of capacity reserves and impacts of detailed mod-
elling. In latter years a growing demand for reserve capacity has been needed to ensure stable operation in the power grid which
has given the power producers incentives to commence methods for co-optimization of energy and capacity. In this paper we will
assess the value of providing primary reserves and how decisive accurate modelling is for sale of capacity. The results are based
on a model consisting of a Strategy and a Simulator part. The Strategy Model is based on a combined Stochastic Dynamic Pro-
gramming (SDP)/Stochastic Dual Dynamic Programming (SDDP) model where variables and functional relationships are linear.
Subsequently the obtained profit-to-go function is used in the Simulator Model; a Mixed Integer Program (MIP) based simulator
allowing a more detailed system description. The case study represents a Norwegian water course comprising of two minor and a
large regulating reservoir. The Simulator Model manages to incorporate a binary unit commitment and to represent the non-convex
relationship between power and discharge, giving more viable results and identifying dependencies between the reservoirs. As a
result it was found that the expected profit from sales of capacity was reduced by 40 % when comparing results from the Simulator
with the Strategy Model. Correspondingly, sales of capacity gave a clear shift of power outputs between the models as unrealistic
results were eliminated in the Simulator Model.

c© 2014 The Authors. Published by Elsevier Ltd.
Peer-review under responsibility of SINTEF Energi AS.

Keywords: Hydropower scheduling, capacity reserves, Primary Frequency Reserve (PFR) market, Stochastic Dual Dynamic Programming
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1. Introduction

For many years the Nordic power market has been isolated from the European continental power grid. The large
share of flexible hydropower has secured a stable grid operation and incentives for providing reserve capacity has
been scarce. Recent years grid connection to both Denmark and Netherlands has tightened the coupling between the
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systems, belittling the boundary between the hydro and thermal power system. Recent licence to build two new cables
to UK and Germany will enhance this effect even further, utilizing synergies between the systems where flexibility
and back-up capacity will play an even greater role as the share of intermittent energy resources continue to increase.
For a hydropower producer this transition towards the new energy system will require improved scheduling models
that can incorporate additional markets.

There has been conducted a large amount on studies regarding the amount of optimal capacity and energy reserves
in order to fulfil the system operators requirements to obtain stable grid operation. The authors of [1] investigates the
topic with regard to optimal allocation of spinning and non-spinning reserves in a system with a high share of wind
on a short-term basis. Co-optimization of both energy, spinning and non spinning reserves was performed through a
detailed market representation in [2] where a demand curve for the operating reserves was constructed. The proposed
work outlined in this paper will focus on the optimal amount of capacity reserves in regard of a hydropower pro-
ducer, rather than an optimal overall system optimization, where energy and reserve prices are given as an exogenous
parameter.

A SDDP model for long-term hydropower scheduling in a hydrothermal system considering sales of energy was
proposed by the authors in [3]. Furthermore, a hybrid SDP/SDDP scheduling model was presented in [4] to include
spot price uncertainty that has been further developed and in [5] to incorporate scheduling of both energy and Primary
Frequency Reserves (PFR). The outlined method described a model that performed a simultaneous optimization,
which is a simplification of the original market with sequential allocation. The common factor the above-mentioned
papers shares is the requirement of a convex system description with linear state and decision variables.

The novel contribution from this work is to analyze and quantify the impacts detailed modelling imposes when
including capacity sales. Long- and medium-term hydropower operational strategies are traditionally found using
linear models, and drawbacks with the linear models should be estimated. A Simulator Model is used to evaluate
the validity of a linear and convex Strategy Model. The model is performed on the hydro system Lysebotn in the
south-western part of Norway. Firstly the weekly generation dispatch is analysed, followed by the simulated marginal
cost for providing capacity and the amount of capacity reserves. Lastly, impacts on the duration curve over the period
of analysis.

Section 2 contains a brief overview of the applied model and description of the analysed hydropower system. An
extensive outline of graphical and quantitative simulation results are given in Section 3 followed by an conclusions in
Section 4.

2. Methodology

A thorough outline of the mathematical description and model limitation can be found in [6]. The model has been
slightly improved as a tighter bound on the minimum production level when supplying spinning reserve has been

•
•

•
•

•
•

Fig. 1: Overview of the Strategy and Simulator Model presented in this paper.
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introduced in the Strategy Model. A narrative representation of the model and case system description is given in the
following section.

2.1. Short Model Description

The Strategy consist of a hybrid SDP/SDDP model with incorporation of start-up cost and restrictions on available
capacity reserves for sale. The Simulator Model is representing the same physical system and with the same time
resolution as the Strategy Model, however with a MIP structure, enabling much higher details in regard to start-
up cost, hydraulic connection, representation of the power-discharge function and minimum production level. The
forward loop in the Strategy Model provides sampling of spot prices and inflow while the backward loop generates
cuts, representing the future profit-to-go function, that is added to the one-stage dispatch problem. The one-stage
dispatch problem represents the weekly scheduling problem as the uncertainty in inflow and power price is given
with weekly resolution, the week is then divided into 21 time-blocks, all representing a time-block in the 6 different
weekly PFR bidding intervals, c.f. [7]. To obtain an equal comparison as possible the exact same sampling of inflow
and price scenarios performed by the Strategy Model is applied to the Simulator Model, such that the only difference in
modelling is the one-stage dispatch problem. A flowchart of the fundamental model description and how the one-stage
dispatch problem is built up can be seen in Figure 1.

The inflow model was based on a first-order autoregressive model, where the statistical properties were extracted
from 70 years of weekly inflow data. Day-ahead prices came from a simulation with the fundamental market model
Efi’s Multi area Power market Simulator (EMPS) [8], while the PFR market price came from historical price data
extracted from [9]. PFR market were represented by the historical prices from the years 2013 and 2014. In order to
achieve a good comparison in prices as possible the day-ahead prices used came from a EMPS simulation in the start
of 2013.

2.2. Case Study Description

A new power station, Lysebotn-2 c.f. Figure 2, is under construction in the hydro system replacing an old one. The
input values to the model are hence based on expectations. A slight simplification is made by aggregating the reservoir

Fig. 2: Physical system (left), Strategy Model system (middle), Simulator Model system with figure explanations (right). Reservoir capacity and
expected inflow is given as percentage of the total.
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Fig. 3: (Left) Strategy Model. (Right) Simulator Model. Percentile plot of
reservoir volume in all reservoirs. (Top) Nilsebutvatn, (middle) Lyngsvatn
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Fig. 4: Production from (left) Lyngsvatn and (right) Strandvatn around
from week 60 to 80 for both Strategy Model (top), Simulator Model
(middle) and the residual (bottom).

Lyngsvatn and Breiava, while for the Strategy Model a constraint on outflow for Lyngsvatn and Strandvatn is added
as the power station, Lyngsvatn-2, can only operate from one reservoir at the time. In the Simulator Model, binary
variables were added and hence a rigid unit commitment is obtained. In Figure 2 both expected inflow and reservoir
values are given as percentage of the whole system. The Degree of Regulation (DOR) represents how the reservoir
size is compared to its annual expected inflow. It can be seen that the upper and lower reservoir act as short-term
storages, while Lyngsvatn acts as a regulating reservoir with long planning horizon.

Over the simulation period of two years 50 scenarios were sampled, in the backward iteration 8 inflow samples
were applied and there were 7 different price nodes for the day-ahead price. For comparison there were done two
simulations of the system; the single scenario where the model had only access to the day-ahead market and a dual
scenario where the model had access to both day-ahead and the PFR market. The Strategy Model was not connected
to a long-term model, resulting in some complications when calibration the end-of-horizon statement. The following
results is therefore given for the first 78 weeks of the simulation, starting from week 5.

3. Results and Discussion

3.1. Dual Case Scenario

A percentile plot of the hydro reservoir handling for the dual scenario is given in Figure 3. It is clear that both
Nilsebuvatn and Strandvatn has a much higher utilization of the reservoirs with rapid filling an emptying, whereas
Lyngsvatn follows the characteristics of a regulating reservoir; storing water during low price periods and depletion
during high price periods.

As seen from the illustration of percentile reservoir filling in Figure 3, the are hardly any noticeable differentiable
patterns between the two models reservoir handling. However, there are two observable changes in regard to the
production; firstly, due to the rigid production schedule from Lyngsvatn and Strandvatn a much more jagged reservoir
filling pattern is observed in the Simulator Model for Strandvatn. Secondly, lower production in the Simulator Model
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Fig. 5: Simulated marginal cost for capacity reserve for both Strategy Model (top) and Simulator Model (bottom). Nilsebuvatn (left), Lyngsvatn
(middle) and Strandvatn (right).

results in an overall higher reservoir fillings as the gain from providing capacity reserves has been reduced due to the
tightened system description.

A clear evidence for the above mentioned matter is illustrated in Figure 4, that shows the production from week 60
to 80. Since the Strategy Model could operate from both Lyngsvatn and Strandvatn it tended to operate at the best point
of Lyngsvatn and with the rest of the available water capacity from Strandvatn. It could then sell energy from both
reservoirs and still provide PFR. Similar the start-up cost is also held at a modest level. The production pattern for the
Simulator Model differs significantly. As it is no longer possible to operate the power station from both reservoirs the
model will now have to switch between them. In addition a constraint on minimum production level is added, ensuring
proper utilization of the power aggregates. The Simulator Model therefore chooses to produce at higher power outputs
for short time-periods. This will subsequently result in less capacity reserves available and increased start-up costs.
This effect of increasing costs of providing capacity reserves can be seen in Figure 5, where the simulated marginal
cost of providing capacity are significantly increased. Both Marginal Cost of Capacity Spinning (MCCS) and Marginal
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Fig. 8: Duration curve for all market scenarios and models. The duration curve displays values for all power stations in the power system.

Cost of Capacity Up (MCCU) respectively the simulated marginal cost of moving the power station set-point up and
down. This comes as a result of the restriction that the power station has to supply symmetrical amounts of capacity.
The positive values of MCCS and negative value of MCCU indicates the change in profit obtained if the set-point
was increased by one unit. In Nilsebuvatn a considerable increase of profits would be obtained if additional capacity
was available in the Strategy Model, which can be seen as a result of the high degree of inflow and minor installed
capacity in the power station. As Strandvatn and Lyngsvatn were no longer able to deliver a sufficient amount of
capacity, added capacity from Nilsebuvatn would have been highly favourable and hence and the magnified spike of
MCCS in the Simulator Model.

The scheduling change in the Simulator Model between Lyngsvatn and Strandvatn from week 60 to 80 is distinc-
tively represented by the high MCCS in both reservoirs. How this affected the actual sales of capacity reserves is
shown in Figure 6 and 7, respectively from the Strategy and the Simulator Model. It is evident from Figure 6 that the
period around week 20 and 70 served as high income periods from both the day-ahead and PFR market. Nevertheless,
in the Simulator Model operation from Lyngsvatn and Strandvatn was not allowed, such that in order to avoid spillage
production was set to maximum and almost no sale of capacity reserves were observed.

3.2. Case Scenario Comparisons

Figure 8 depicts the different duration curves of sum hydropower generation for the different models and scenarios,
indicating the impact both a dual scenario and detailed modelling has on the hydropower scheduling. From the single
to the dual scenario the Strategy Model shows a small shift from production around 350 MW, to a larger amount around
170 MW and down. A similar effect is seen for the Simulator Model, then however the shift in production comes from
high power outputs around 400 MW to increased outputs around 150 MW, which has a favourable operating point
in regard to efficiency. Both indicating the influence a capacity reserve market constitute, with higher amount of low
power outputs.

For the dual scenario the low power outputs around 40 MW in the Strategy Model has almost completely dispersed
in the Simulator Model to outputs around 150 MW. This follows from the previous discussed results from the pro-
duction scheduling in Figure 4. The amount is however modest as the tightened constraint on the spinning reserve at
minimum production level has performed well.

In Table 1 some of the important performance and economic factors are displayed. With a total amount of 3.00
TWh generated electricity over the two year period and profit of 1 213 MNOK the average day-ahead price obtained
for the Strategy Model would be around 400 NOK/MWh.In the dual market scenario the model tended to store more
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Table 1: Overview over significant results for scenario with and without sales of capacity. For comparison reasons the objective value is given by
the lower objective value. Values in [MNOK] and [GWh].

Single market Dual market

Strategy Simulator Strategy Simulator

Objective Value 1 418.90 1 410.74 1 447.64 1 436.01
Total Generation 3 002.78 2 960.31 3 060.01 3 014.06
Energy Profit 1 212.52 1 195.55 1 251.97 1 232.87
Capacity Profit - - 25.09 15.06
Terminal Value 207.75 217.09 190.22 200.83
Total Profit 1 420.27 1 412.64 1 467.28 1 448.76
CPU Time 7 h 37 min 33 min 10 h 37 min 39 min

Table 2: Percentage differentiation between the different models and different market scenarios.

Comparing Strategy �→ Simulator Single �→ Dual

Single Dual Strategy Simulator

Objective Value -0.58 -0.80 2.03 1.79
Total Generation -1.41 -1.50 1.91 1.82
Energy Profit -1.40 -1.53 3.25 3.12
Capacity Profit - -39.98 - -
Terminal Value 4.50 5.58 -8.44 -7.49
Total Profit -0.54 -1.26 3.31 2.56

terminal water, which is the value of the water left in the reservoirs after the simulation period, and thereby reducing
the profits compared to the single market scenario. In order to compare both scenarios the terminal values of the
water were calculated, and hence the model calculated overall total profit gain of 3.31% and 2.56% for respectively
the Strategy and Simulator Model. Compared to the Strategy Model obtained the Simulator Model a reduced total
expected profit of 0.54% and 1.26%, respectively for the single and dual scenario. It should be pointed out that the
objective value includes a number of penalty function and the terminal value of water and is hence somewhat lower
than the total profit.

It is clear that there is a profit potential for co-optimizing energy and sales, though limited and with added complex-
ity. The detailed modelling also shows that the actual profit potential is significantly lower than the Strategy Model
produces, with a total capacity profit reduction of 52%, c.f. Table 2.

As a result of added options by the PFR market the CPU time was somewhat increased. All simulations were
carried out on a Intel Core i7-4600U processor with 2.7 GHz clock rate and 16 GB RAM. It would be reasonable to
assume that an parallel processing implementation of the model would significantly reduce computation time [10].

4. Conclusion

The case study presented in this paper has assessed the differentiation in hydropower scheduling between a energy
only and energy with sales of capacity scenario. The analysis was performed with the SDP/SDDP based Strategy
Model and the Simulator Model, which is a more accurate model of the physical system. The study has achieved to
give a quantitative valuation of including sales of capacity and the impact a detailed system description impose. It
should be noted that the findings from the paper may be case specific, considering that coupling between reservoirs
strongly influenced the results.

Firstly, a short description of the applied model and case study was revised. Following results on reservoir handling
and production scheduling were outlined with a discussion on validity, the value of providing capacity was discussed
where findings showed a strong link between two of the reservoirs and how this was encapsulated in the detailed
modelling. It showed that the Strategy Model overestimated the amount of available capacity reserves. This was
especially evident in periods where prices where beneficial but risk of spillage resulted in maximum production and
sales of energy only. Lastly, a thorough comparison of the two case scenarios were carried out. It were deducted
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that the total profit from the dual scenario were 3.31% and 2.56% higher than the single scenario for respectively the
Strategy and the Simulator Model. The profit from capacity sales alone were reduced by 40% in the Simulator Model,
hence quantifying the impacts of detailed modelling.

The evidence from this case study indicates that The Simulator model proposed promising results in regard to
validity of the scheduling and numerical values. The robustness and comprehension of the results could however
be improved by drastically increase the number of sampled scenarios. This would however come at the expense of
even longer CPU time, but could i.e. simulate with a modest sampling amount and in the last iteration increase it
significantly.

It should be addressed that the profit-to-go function is not the true one for the Simulator Model. The importance
of generating viable cuts should hence be emphasized . Other important considerations are the amount of volume
allocated in the PFR market and the validity of using historical PFR prices, further work should therefore consider
these limitations and investigate improvements.
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Abstract—This paper investigates how wind power can con-
tribute to the provision of rotating reserves in a hydro-dominated
power system with limited transmission capacity to an exogenous
power market. We emphasize on the impacts different schemes
for providing rotating reserves has on the generation dispatch
and rotating reserve (RR) cost. Due to the flexibility provided
by hydropower, the system is well suited for facilitating a large
share of intermittent energy.

We approached this by building a model based on Stochastic
Dual Dynamic Programming (SDDP), which efficiently handles
multistage stochastic problems.

A case study is presented based on the properties from the
Nordic power system. Results shows that for wind penetration
levels above 20%, some wind power is used for the provision of
upwards RR at higher costs than the hydropower could provide,
but freeing up more flexibility for the hydropower units and
subsequently higher overall gain. The use of wind power to
provide downwards RR proved to be very cost efficient, as there
is no opportunity cost associated with the use of wind power.

NOMENCLATURE

A. Indices
c Capacity reserve period
i, j Power station unit
k Time-step within week
l Cut
s Discharge segment
t Weekly time-stage
B. Sets
C Periods within week for capacity reserves
K Time-steps within the week
K(c) Time-steps for capacity reserve period c
L(t) Cuts for time-stage t
S(i) Discharge segments for unit i
T Weekly time-stages
U Hydropower units
U(i) Upstream hydropower units of i
UT Thermal power units
UW Wind farm
C. Parameters
αt Future expected value of water [e]
βl Right-hand-side of cut l [e]
ε Purchase fee [1.01]
ηkis Discharge segment energy equivalent [MWh/Mm3]

γi Scalar limmiting the use of downward capacity re-
serves ≥ 1

λD Curtailment price [e/MWh]
λR Load curtailment price [e/MWh]
λS
k Energy price for time-step k [e/MWh]

λT
i Marginal energy cost of thermal unit i [e/MWh]

τk Duration of time-step k [h]
τ̃k Relative duration of time-step k
Dt Demand [MWh]
KDn Downward RR requirement [MW]
KUp Upward RR requirement [MW]
Pmax
i Maximum installed capacity for unit i [MW]

D. Stochastic Parameters
EW Weekly wind energy [MWh]
Ii Weekly inflow to hydropower unit i [Mm3]
E. State and Decision Variables
κDn
c Total downward RR in period c [MW]

κDn
ki Downward RR from unit i in time-step k [MW]

κPenDn
c Artificial capacity for downward RR in period c

[MW]
κPenUp
c Artificial capacity for upward RR in period c [MW]

κUp
c Total upward RR in period c [MW]

κUp
ki Upward RR from unit i in time-step k [MW]

eDk Curtailed energy [MWh]
ePk Purchased energy [MWh]
eRk Curtailed load [MWh]
eSk Sold energy [MWh]
eTk i Thermal energy for unit i [MWh]
eWk Generated wind energy in time-step k [MWh]
qDkis Discharge in time-step k for unit i and segment s

[Mm3]
qSki Spillage in time-step k for unit i [Mm3]
vki Reservoir volume in time-step k for unit i [Mm3]
wki Artificial resource (wind/water) supply for unit i

[Mm3/MWh]

I. INTRODUCTION

To deal with the impact of climate change, the need for
a more sustainable power industry has never been more
prominent[1]. This shift towards renewable electricity genera-
tion does, however, require different mechanisms to facilitate
high penetration levels of intermittent energy sources. In recent



years, the European power system has experienced a revolu-
tionary growth of reneweables, where renewables accounted
for 77% of new installations in 2015, the amount from wind
power was 44% [2]. Independent of large-scale integration of
renewables or not; it is crucial to ensure a sufficient high level
of power quality, such that the stability of the power grid is
not diminished.

Reduced net load caused by wind and PV generators re-
sults in a reduced amount of dispatchable generators, mainly
displaced by non-synchronous generators. Subsequently, the
system’s ability to stay balanced in terms of frequency and
sufficient amount of inertia is reduced, and serious reliability
issues might emerge [3]. Issues with power system relia-
bility and security are foremost observed for larger shares
of renewable generation, as the net demand fluctuations are
comparable to the gross demand for low levels [4]. Thus,
additional rotating reserves (RR) are foremost required when
the renewable share is high. A collection of studies regarding
the systems rotating reserve requirements can be found in [5],
where the authors have summarized experiences regarding the
topic of wind integration into power systems.

It is perceived that in the future, generation companies will
profit less from selling energy and more from capacity markets
and ancillary services [6]. The reduced income from energy
markets is a result from the merit order effect [7], as renew-
ables with low marginal costs are replacing more expensive
conventional power generation. From a power system perspec-
tive it is therefore necessary to have enough flexible power
generation that can provide ancillary services, e.g. the authors
in [8] pointed out that for a renewable share of more than
30% this flexibility requirement was evident from a system
perspective. With a large share of non-dispatchable generation
this might require expensive reserve capacity. Nevertheless, an
aspect that should be examined further is how wind power can
contribute as a provider of capacity reserves, and thereby not
only being a sustainable solution for electricity generation but
also to provide balancing services to the grid.

Automatic generation control of variable speed turbines has
given wind power plants the possibility to provide Primary
Control Reserves (PCR) [9]. The feasibility of the approach
was confirmed in [10]. The approach does, however, require
that the wind turbines are operated below their maximum wind
power curve, i.e. some energy is curtailed in order to provide
reserve capacity. It is evident that the benefit from providing
such a service should exceed the benefit of selling the energy.

A central issue with wind power is its uncertain and variable
nature. There are, however, several factors that contribute to
improve this, such as; increased grid integration, technical
and geographical distribution of wind turbines, improved
forecasting and, as investigated further in this work, flexible
generation which can provide capacity reserves and energy
storage. All these issues are thoroughly discussed in [11].
Another mechanism mentioned by the authors to facilitate
large shares of wind generation is power curtailment. This
would unfortunately lead to loss of energy and lost income
to the generation company. An interesting aspect, and a

contribution from this work, would be to investigate if the wind
power could operate below maximum output and then provide
rotating reserves for upward regulation, in a power system with
large share of wind power. Consider the following scenario;
if the wind share is high, the requirement of reserve capacity
could be so high that there is a limited amount of conventional
generators available to deliver this service, and potentially at
a very high price. This is especially evident during summer
period in the Scandinavian power system, when the marginal
cost of hydro is high, compared to the energy price. It could
therefore become more efficient to curtail some wind power
that can provide balancing reserves than using the water.

A stochastic time resolution of one week is considered
suitable to describe inflow uncertainty [12], but is probably
too coarse to describe wind uncertainty properly. Given the
fluctuating nature of wind, it can seem unreasonable to assume
that the wind generation is known for a whole week in
advance. One can argue that such a representation is not able
to capture the actual need for balancing wind power. However,
the model aims to mange the hydro reservoirs on a long-term
basis, a problem in itself that is difficult enough to solve.
Such that the short-term variations and uncertainty of wind,
and more complex modelling of the power stations and river
systems, should be handled by the short-term planning.

From a system perspective the possibility to co-optimize
hydro- and wind-generation has proven beneficial as the study
in [13] has pointed out, and the impact storage has for
integration of wind and solar power is investigated in [14].
Therefore, in a hydro dominated system, added wind power
could efficiently be absorbed. The hydropower producer will
receive a price signal in hours were there is substantial wind
power, such that the producer would then store the water until
sufficient energy prices are obtained.

The novel contribution of this paper is to investigate whether
it is economical viable to use wind power as source for
providing capacity reserves and demonstrate how a power
system could react to such a scheme. It is important to
clarify that this is not a feasibility study on the technical
side. We have demonstrated this by building a Stochastic
Dual Dynamic Programming (SDDP) model used for solving
multistage stochastic problems. The model is based on weekly
stochastic time-stages, which overestimates the predictability
of wind power, nonetheless, it enables us to very neatly
incorporate correlations between the stochastic parameters and
thus analyze how hydropower and wind power operate together
to fulfil the load and capacity reserves by the system.

The paper is outlined as follows. First, the generic market
for providing rotating reserve, used in the study, is discussed
and outlined. Secondly, a brief methodology of the SDDP
algorithm is given with details on how the weekly dispatch
problem is modelled. Then the case study is described, fol-
lowed by results and discussions. Lastly, a conclusion of the
study is drawn.
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Fig. 1. Illustration of the time and rotating reserve periods within the week.
The days are divided into 3 time periods, from 00:00-08:00, 08:00-20:00 and
20:00-00:00. As illustrated in the figure the there are 21 time-steps during a
week with 6 different time-periods for providing rotating reserves (RR).

II. MARKET FOR ROTATING RESERVES

One of the mandates for a Transmission System Operator
(TSO) in Europe is to handle real-time balancing of the
electricity grid [15]. A set of mechanisms are set up by
the TSO for this purpose, such as markets for providing
primary, secondary and tertiary control reserves, congestion
management and other measures to uphold both reliability
and security of the power system. The exact specifications for
the different mechanisms may vary between different TSOs,
depending on their system characteristics, but the overall
objective is still the same.

The objective for secondary control reserves (SCR) is ini-
tially to alleviate the primary control reserves (PCR) such that
these reserves are available to react if a new disturbance should
occur. Both SCR and PCR requires that the power station is
rotating, whereas PCR requires a turbine governor with droop
settings to react immediately if a deviation in normal frequency
is observed. SCR requires that the TSO have a direct access
to the power station and can thus alter the stations power
output. Should the disturbance persist for longer time periods
the tertiary control reserves (TCR) should be activated.

The design of control reserve markets varies between coun-
tries, and in this work we consider what can be seen as a
generic weekly market for providing rotating reserves (RR),
i.e. what is typically provided by PCR and SCR. A weekly
market implies that the reserves have to be available through-
out the entire week. The market consists of three different
periods for weekdays and three for weekends, indicated in
Figure 1. To deliver RR in time period 1 (weekday morning)
the same amount has also to be delivered in time period 4,
7, 10 and 13, and so on for the other periods. Furthermore,
we assume that the generic RR market allows asymmetric
provision of up-and downward reserve capacity.

III. METHODOLOGY

The purpose of this work is to evaluate the long-term
economic benefit of using wind power, in addition to hy-
dropower, for providing rotating reserves to the power system.
We consider a hydro-dominated region which also comprise
wind and thermal generation. There is no internal congestion
within the region, which is connected to the rest of the power
system through a transmission line with limited capacity. The
region operation is centrally planned, where the objective is
to maximize expected revenue from trades in the day-ahead
market while satisfying a given requirement for RR, as well
as other system constraints.

The problem is a multistage stochastic programming prob-
lem which in compact notation can be formulated as

max

{ T∑

t=1

ft(xt) + F (xT ) : Axt ≤ b, (1)

Txt−1 +Wxt = h,xt ∈ Xt,∀t
}
.

The function, ft(xt), in the objective includes sales of en-
ergy and penalty functions, i.e. for ensuring relative complete
recourse. State and decisions variables are represented by the
vector xt, which is subject to a set of constraints. It is assumed
that the initial state x0 is known. The second equation reflects
the dynamic structure of the problem. Due to the reservoirs
ability to store water from one period to another, the decisions
made today will impact future decisions. F (xT ) denotes the
end-value function, which estimates the value of water left
in the reservoirs by the end of the planning horizon and is
included to ensure reservoirs are not emptied completely in
the last stage.

The problem in (1) constitute a large-scale multistage
stochastic programming problem, which is generally hard to
solve. The problem is therefore stage-wise decomposed into a
sequence of one-stage problems and solved using Stochastic
Dual Dynamic Programming (SDDP) [16]. SDDP is an iter-
ative algorithm that employs a combination of sampling and
Benders decomposition, and is considered the state-of-the-art
approach to solve such problems.

In SDDP each one-stage problem consists of immediate
profit, plus the ’profit-to-go’ function which represents the
expected future profit. The technique of Benders decompo-
sition is used to find a set of cuts that constructs a linear
approximation to the profit-to-go function in each stage. One
main iteration of the algorithm consist of a forward pass and
a backward pass. Each forward pass samples outcomes of the
stochastic parameters and generates trial solutions which are
used in the next backward pass. At the end of each forward
pass a lower bound to the objective function is calculated.
The backward pass updates the solutions by adding Benders
cuts to the profit-to-go function and provides an upper bound
to the objective function. By iterating over this procedure
an enhanced representation of the profit-to-go function is
achieved and lower and upper bounds to the optimal objective
function value can be calculated. The algorithm is stopped
when a predefined convergence criterion is met. For more
details on SDDP we refer to [16], [12].

A. Weekly Dispatch Problem

For conciseness only the weekly one-stage problem is
presented. The problem where only hydropower has the op-
portunity to provide rotating reserves is described by (2) -
(12). The problem when also wind power can contribute in
providing rotating reserves is defined in Section III-A2.



αt = max
∑

k∈K
[λS

k (e
S
k − εePk ) + λDeDk − λReRk (2)

−
∑

i∈UT

λT
i e

T
ki]− Φ(qSki, wki, κ

PenDn
c , κPenUp

c ) + αt+1

s.t.
∑

i∈U

∑

s∈S(i)

ηkisq
D
kis +

∑

i∈UT

eTki + eWk − eSk (3)

+ePk − eDk + eRk = Dk ∀k

vki +
∑

s∈S(i)

qDkis + qSki − wki −
∑

j∈U(i)

[ ∑

s∈S(j)

qDkjs (4)

+qSkj
]
= vk−1,i + τ̃kIi ∀k, ∀i

eWk − wki ≤ τ̃kE
W ∀k,∀i ∈ UW (5)

∑

s∈S(i)

1

τk
ηkisq

D
kis − γmκDn

ki ≥ 0 ∀k, ∀i ∈ U (6)

∑

s∈S(i)

1

τk
ηkisq

D
kis + κUp

ki ≤ Pmax
i ∀k, ∀i ∈ U (7)

∑

k∈K(c)

∑

i∈U
κDn
ki − κDn

c = 0 ∀c ∈ C (8)

∑

k∈K(c)

∑

i∈U
κUp
ki − κUp

c = 0 ∀c ∈ C (9)

κDn
c + κPenDn

c ≥ KDn ∀c ∈ C (10)

κUp
c + κPenUp

c ≥ KUp ∀c ∈ C (11)

αt+1 −
∑

i∈U
πkilvki ≤ βl k = |K|, l ∈ L(t) (12)

The objective function (2) comprise income from selling
energy eSk , the possibility to curtail energy and load, a penalty
function Φ() for ensuring relatively complete recourse, and the
profit-to-go function αt. Energy and hydro reservoir balances
are respectively given by (3) and (4). The relationship between
generation and discharge, is linearized by different discharge
segments, qDkis. (5) represents the wind energy balance, where
the system is not required to use all the wind. An artificial
variable wki, associated with a high cost, is included in
the reservoir- and wind-balance, subsequently (4) and (5), to
ensure that the stochastic model has complete recourse. Values
for the stochastic variables, inflow to reservoirs Ii and wind
energy EW , are distributed over the time-steps in the week,
by the weighting factor τ̃k. Representing the number of hours
for time-step k divided by the hours in a week.

Each hydropower unit has the possibility to provide both
upwards and downward RR, given by (6) and (7). The amount
of available upwards and downwards RR for each hydropower
unit is illustrated in Figure 2. [17] showed that the potential
income for selling PCR was overestimated with almost 30% by
SDDP, for the given case study. This indicates the importance
of detailed modelling when considering provision of rotating
reserves. In order to improve the representation of available
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Fig. 2. Illustration of a hydropower unit discharge segments, operating point
and the upwards and downwards RR. The amount of downwards RR is
dependent on the factor γi, such that the available amount is dependent on
this linear approximation of the lower limit.

downwards RR, the factor γm is added to the problem, as in
[18].

Equations 8 and 9 allocates the available capacities to the
different capacity reserves periods over the week, as illustrated
in Figure 1. The amount of RR required is then set in (10)
and (11), where a penalty variable is included to ensure
feasibility. The required amount of RR, depicted in Figure 3
and represented by KDn

t and KUp
t , does also depend on the

average weekly load, such that weeks with load above average
requires more RR, and vice versa for low demand weeks.

1) Wind and Inflow Model: Reservoir inflow and available
wind generation are the stochastic parameters in this problem.
The stochastic time resolution in the optimization model is one
week, and the wind and inflow model is based on a stochastic
time series model fitted to weekly data. A finer stochastic time
resolution could be used, but would increase computational
complexity substantially.

We use a vector autoregressive model of order one (VAR-
1), as proposed in [19]. Both processes exhibit a seasonal
pattern, and are as such non-stationary processes. Seasonality
is first extracted by subtracting the sample seasonal mean and
dividing by the seasonal standard deviation. The seasonally
adjusted series are then assumed to be (weekly) stationary and
modelled jointly by a VAR-1 model. This model accounts for
seasonal effects, serial correlation (within and between series)
and covariation in the stochastic error term.

The optimization model requires the stochastic component
to be discretized into a moderate number of wind-inflow
outcomes with corresponding probabilities. This is achieved
through a combination of scenario generation and reduction.
First, a large discrete sample is generated from the stochastic
model by random sampling from the multivariate error distri-
bution. Each outcome in this sample has the same probability
of occurrence. Subsequently, this distribution is reduced to a
manageable number of scenarios with corresponding probabil-
ities using the ’Fast forward selection’ algorithm of Heitsch
and Römisch [20].

2) Rotating Reserves from Wind:

eWk − τkκ
Dn
ki ≥ 0 ∀k, i ∈ UW (13)

eWk + τkκ
Up
ki ≤ τ̃kE

W ∀k, i ∈ UW (14)

In order to model the possibility of using wind for providing
rotating reserves (13) and (14) is added to the problem,
subsequently (8) and (9) are updated to:
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∑

k∈K(c)

∑

i∈U∪UW

κDn
ki − κDn

c = 0 ∀c ∈ C (8a)

∑

k∈K(c)

∑

i∈U∪UW

κUp
ki − κUp

c = 0 ∀c ∈ C (9a)

IV. CASE STUDY

The system in the case study comprise a multi-reservoir
hydropower system, a wind farm and two types of thermal
generators - representing base- and peak load units, illus-
trated in Figure 4. The hydropower system consists of five
interconnected reservoirs and power units, their properties are
given in Table I. The system is connected to a exogenous
power market through a single transmission line with limited
capacity. There is a local load which can be fulfilled either
by own generation or by purchase from the power market.
In such a way the system can be seen as a simplification
of the Nordic power system, with limited connection to
the European continent, hydro-dominated with some thermal
generation. Table II shows the characteristics of the different
system components, except for the wind farm for which we
let installed capacity vary.
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Fig. 4. Power system overview with watercourse topology and associated
variables and parameters.

TABLE I
OVERVIEW OVER HYDROPOWER UNITS PROPERTIES.

Unit Size [Mm3] Exp. Inflow [Mm3] Inst. Cap. [MW]

1 145.0 423.3 90
2 896.6 1289.4 140
3 26.2 50.5 350
4 86.9 240.8 20
5 11.2 357.3 400

TABLE II
GENERATION AND DEMAND CAPACITY [MW].

Hydro 1000
Base thermal 300
Peak thermal 200
Exchange 300
Peak Demand 1200
Average Demand 777

We evaluate 12 cases, differing in the amount of RR for
up- and downward regulation the system as a whole must
provide, the share of wind power installed, and whether
both wind and hydro, or only hydro, can provide RR. The
amounts chosen for RR was based on the work by [5], where
studies on wind integration from 15 countries was summarized
and presented. We considered six different levels for wind
penetration, amounting to 5, 10, 15, 20, 30 and 50 percent of
gross energy demand. Figure 3 displays the values chosen for
RR requirement for the various wind power penetrations (blue
line) together with values estimated in two previous studies
described in [21] and [22].

We consider a planning horizon of one year, starting January
1. The model is, however, run for a period of two years in
order to reduce the impact of the end value function which
is generally difficult to estimate. To evaluate and compare the
results from the different cases a final forward simulation was
performed using 500 sampled scenarios of wind and inflow.
The scenarios were kept fixed across cases.

For the purpose of this study, a deterministic representation
of energy price and demand is used.

V. RESULTS AND DISCUSSION

To illustrate the operation of the power system, the energy
generation for a given scenario with a 30% wind power
penetration is illustrated in Figure 5. The figure also depicts
the load and the exogenous energy price. It can be seen that the
system has a typical dispatch profile for a Nordic country, with
low load and energy prices during summer and the opposite
during winter. The system therefore chooses to export energy
in high-price periods and import during summer when the
prices are low.

An assessment over different metrics for flexibility in a
power system was conducted in [23]. As the paper states there
are numerous metrics for assessing the flexibility of a power
system as a whole, each fitted for the purpose of the study. For
the analysis of a hydro dominated system a valuable metric
is the amount of spillage, i.e. the hydro system’s ability to
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move water between time-periods for maximum utilization of
available energy (water). As expected, we observed that as
the wind penetration increases the amount of spillage also
increases, due to the transmission constraint.

A. RR by hydropower

For analyzing the cost aspects of providing capacity reserves
the shadow price of the reserve requirements, given by (10)
and (11), is used. The average expected values for both
upward and downward RR are illustrated in Figure 6. The
optimal operation point for the hydropower stations is around
80% of installed capacity, such that the provision of upward
RR is fairly cheap for low levels of wind penetration. As
the provision of downward RR requires the machines to be
rotating, a moderate cost is observed for this service, even for
low levels of wind penetration. For wind penetrations above
20% more striking results are observed, as provision cost of
upward RR increases significantly. This is seen as a result of
the increase of available energy in the system and the increased
requirement for upwards RR, limiting the maximum discharge,
such that in order to avoid spillage in the hydro reservoirs a
large marginal cost is associated with providing upward RR.
Consequently, the hydropower stations have to discharge more
at hours with low energy prices.

B. RR by hydro- and wind power

For the case when wind can also provide RR, a considerable
change is observed for the downward RR. As expected the
cost is reduced as the system does no longer have to use
water for this service, that instead can be stored and used at a
later stage with more beneficial income conditions. This can
be seen in Figure 7, where a large amount of the available
wind power offers downwards RR. The impact of actually
activating this reserve could, however, impose a higher cost
than for hydropower, as the energy that has to be curtailed
cannot be stored for later purpose. For upwards RR an higher
cost is observed, compared to the hydropower case. This result
seems counter-intuitive at first sight, as the system now is more
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flexible, but the fact that wind power now can alleviate some of
the upward RR, which is observed for wind penetration levels
above 30% (ref. Figure 7), the hydropower units can now
generate more during periods with high prices. This therefore
results in a higher cost of upwards RR, but also an increase
in objective function value, as seen in Figure 8.

It is evident that even-though the costs of providing upwards
RR increase for the hydro and wind case, the correspond-
ing objective value also increase, as seen in Figure 8. To
investigate this results further, we constructed another case
study where wind power only could provide upwards RR.
The results is displayed by the dark bar in Figure 8 and
the triangles in Figure 6. It is seen that the objective value
is somewhat similar to the hydro-only case, but the costs
for upwards and downwards RR increased and decreased,
correspondingly. Even though the amount of wind power for
provision of upwards RR is only minor (see Figure 7), it comes
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at a higher cost than hydropower since some energy has to
be curtailed. Nevertheless, hydropower stations now have a
higher generation capacity and can use this to generate more in
periods with higher prices, and then provide more downwards
RR. Consequently, the results are similar as for the case when
wind could provide both upwards and downwards RR.

VI. CONCLUSION

In this work we have presented a long-term model for
weekly generation scheduling of a power system which con-
siders uncertainty in available wind generation and reservoir
inflow. The model was used to assess the value of using wind
power to contribute in providing rotating reserves. The model
was applied to a power system with limited transmission
capacity to an exogenous market.

In order to determine the amount RR required by the system,
this work built on previous studies that analyzed the impact of
large-scale integration of wind power. A novel contribution of
this work was then to investigate how provision of RR by wind
power affected the generation dispatch and the costs associated
with providing RR. We found that the system operation and
costs changed significantly when allowing wind power to
deliver RR. The provision of downwards RR are cheap as there
is no opportunity cost associated with wind power, and since
activation was neglected in this study. For upwards regulation
the cost of RR increased slightly for the case when wind
could provide RR, then again this freed up capacity for the
hydropower such that it could be utilized more efficiently.

For future studies a higher resolution of the stochastic time-
stages could be evaluated, as the weekly resolution for wind
power overestimates its capabilities to provide RR. Another
interesting extension is to include activation of the different
reserves, as this could potentially impact which power station
the system will procure for RR.
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Abstract. In the following work the generation function relating water discharge to power output 

for a hydropower station is considered. The conventional approach to modelling the generation 

function has been to simplify it as a concave function. In the future it is expected that the stations 

will operate at more varied power outputs, motivating the need for a more detailed modelling of 

the generation function. Therefore, an investigation on how the nonconcave generation function 

may be simplified, without having to lose the function’s inherent geometric shape, is performed. 

A greedy algorithm and a Minimum Least Square Error (MLSE) approach is used. It was found 

that the function can be reduced until a point where the changes become too prominent. A 

benchmark test against the conventional modelling approach found that it is important with a 

detailed modelling of the generation function when environmental constraints, such as minimum 

discharge, are included.  

1. Introduction 

The following work is founded on recent advancements in hydropower scheduling methods that enables 

a higher level of modelling details. There has been a fundamental change in the electricity sector with 

large shares of renewables entering the market and increased cross-border exchange. It is expected that 

this will lead to increased demand of flexible power plants that can provide ancillary services [1]. Given 

a market environment where these services can be traded across the European countries it is estimated 

that there is a income potential for Norwegian hydropower producers [2]. Due to the flexibility storable 

hydropower possesses they have an opportunity to provide many of the ancillary services at a 

competitive cost. However, in order for them to adapt to this changing market environment and provide 

these services it is evident that adequate decision support tools are needed to optimally allocate 

generation between different markets. Earlier studies have shown that conventional scheduling 

algorithms based on linear programming (LP) tend to overestimate the amount of capacity reserves that 

the hydropower producer can deliver [3]. There is also a tendency to increase the environmental 

restrictions on new concessions for hydropower systems in Norway, leading to more complex 

constraints in the optimization problem. Developing more advance methods should there be of priority 

to include these constraints and capture the added income potential by participating in multiple-markets. 

2. Hydropower Scheduling 

Due to the uncertainty of inflow, energy prices and the possibility of storing water over longer time 

periods, the hydropower scheduling problem is generally handled as multistage stochastic programming 

problem. An important element of hydropower scheduling is the water value; even though inflow to the 

reservoirs are free, there is an opportunity cost associated with the water stored in the reservoirs. The 

producer can choose to use the water for selling energy today and earn an immediate income or store it 
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for future use with a potential higher profit. In terms of hydropower scheduling, this opportunity cost is 

referred to as the water value. 

  

Given the complex nature of the hydropower scheduling problem, it can be divided into three problems 

with different time horizon and modelling details [4]. The Long-Term Hydropower Scheduling (LTHS) 

problem aims at solving a fundamental market problem that provides energy price forecasts and 

aggregated water values [5] [6]. The Medium-Term Hydropower Scheduling (MTHS) problem can then 

use the aggregated water values as end statement and price forecasts to provide individual water values 

for each reservoir in a local hydropower system [7]. Further, these individual water values can be used 

as an end statement for the Short-Term Hydropower Scheduling (STHS) problem that has high 

modelling details, e.g. modelling of individual generators and water courses. The time resolution is fine, 

typically hourly for a period of one or two weeks. For liberalized electricity markets this problem aims 

at first generating bids to the power market and after the market clearing perform a re-optimization that 

incorporates any commitments that occurred in the clearing [8]. 

2.1. Multistage Stochastic Optimization 

This paper depicts an application that will be used in further studies on the MTHS problem. A time 

horizon of 1-2 years is typical for this problem type, using weekly decision stages as the inflow is highly 

correlated on a weekly basis. The problem is cast as a Stochastic Dynamic Programming (SDP) problem, 

with weekly decision stages. To circumvent the “curse of dimensionality” associated with conventional 

(S)DP problems, a method called Stochastic Dual Dynamic Programming (SDDP) is widely used [9]. 

The method approximates the expected profit function (EPF), also referred to as cost-to-go function for 

minimization problems. One of the drawbacks with the method is that it requires the decision stages to 

be modelled as LP problems, ruling out the possibility of modelling nonlinearities without 

simplifications. A recent extension of the method has been proposed called the Stochastic Dual Dynamic 

integer Programming (SDDiP) method [10]. The method can solve nonlinear problems with finite 

convergence. However, it comes at a cost of added computation time and some adjustments on the 

structure of the problem, i.e. it requires all the state variables to be binary. Previous work has tested the 

method on a MTHS problem with promising results, compared to the SDDP method [11]. With this in 

mind, the following work investigates how the generation function of a hydropower plant can be 

modelled in the SDDiP framework and how it can be simplified to reduce the computational burden.  

2.2. Contributions 

The following paper applies a greedy algorithm and a Minimum Least Square Error (MLSE) approach 

to simplify the generation function of a hydropower station. The greedy algorithm is based on the idea 

of reducing the number of points on a bid curve in [12]. The approach is tested on two real power station 

equivalents and the importance of detailed modelling of the generation function is shown. The following 

section outlines the hydropower scheduling problem, followed by case studies and results.  

 

3. Medium-Term Hydropower Scheduling 

The problem aims at allocating resources simultaneously in an energy market and a capacity market. 

For the sake of simplification, only uncertainty of inflow is considered. The weekly decision problem 

can be written on dense form as  

 

max
(𝑥𝑡,𝑦𝑡)

   𝑓𝑡(𝑥𝑡, 𝑦𝑡) + 𝛼𝑡(𝑥𝑡) (1) 

s.t. 𝑊𝑥𝑡 + 𝐺𝑦𝑡 = ℎ𝑡(𝜉𝑡) − 𝐻𝑥𝑡−1 (2) 

 𝐵𝑦𝑡 = 0 (3) 

 𝐶𝑦𝑡 −𝐷𝑥𝑡 ≥ 0 (4) 

 𝐶𝑦𝑡 +𝐷𝑥𝑡 ≤ 𝐶𝑦max  (5) 

 𝑥𝑡 , 𝑦𝑡 ∈ 𝑌𝑡 (6) 

 𝑥𝑡 ∈ ℝ𝑘1 ∙ ℤ𝑘2 , 𝑦𝑡 ∈ ℝ𝑙1 ∙ ℤ𝑙2, (7) 
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where the objective function (1) consists of a present profit function, 𝑓𝑡(𝑥𝑡, 𝑦𝑡), and the expected future 

profit function, 𝛼𝑡(𝑥𝑡). 𝑥𝑡 and 𝑦𝑡 are respectively the state and stage variables. State variables carry 

information between stages, e.g. reservoir levels, whereas the stage variables only represent variables 

within the stages. The inflow is given by the function ℎ𝑡(𝜉𝑡), where 𝜉𝑡 is the normalized inflow. The 

matrices 𝑊,𝐺,𝐻, 𝐵, 𝐶, 𝐷 are of suitable dimensions, representing the given hydropower system. The 

time-linking constraint (2) includes all reservoir balances and generator state time-couplings. The energy 

balance is given by (3) and the constraints describing the system’s ability to provide capacity reserves 

is given in (4) and (5). The generation function and other miscellaneous constraints, such as bypass 

limits, spillage limits and other system dependent constraints are included in (6).  

 

3.1. Generation function 

The generation function describes how the hydropower station’s discharge relates to the output power, 

usually modelled as a piecewise linear function. The function is typically computed when the 

hydropower station is built. This function provides data input to the scheduling models and as a control 

that the station meets the efficiency as promised by the contractors. As the efficiency may deteriorate 

over time, the more recent the measurements, the better. Advantageously, a system with continuous 

measurement could give the best result in terms of describing the generation function most accurately. 

The methods proposed in this work will work irrespective of the measurement approach, it would just 

require some prepossessing of the data. 

 

 
Figure 1: Illustration showing the mathematical notation of the generation function. 

 

The line between two points in the generation function is referred to as a segment. Extending on the 

notation from previous section, the generation function is modelled as follows 

 
 0 ≤ 𝑞𝑖(𝑄𝑖

Max − 𝑄𝑖
Min)𝑥𝑖 ∀ 𝑖 ∈ 𝑆 (8) 

 𝑝𝑖 = 𝑃𝑖
min𝑥𝑖 + 𝜂𝑖𝑞𝑖 ∀ 𝑖 ∈ 𝑆 (9) 

 ∑𝑥𝑖
𝑖∈𝑆

≤ 1 
 (10) 

 

 𝑝 = ∑ 𝑝𝑖𝑖∈𝑆 ,  (11) 

 

where 𝑞𝑖 is the discharge (in 𝑀𝑚3) for segment 𝑖, 𝑄𝑖
Min and 𝑄𝑖

Max are the minimum and maximum 

discharge for each segment, 𝑝𝒊 is the generation (in MW) for each segment, 𝑃𝑖
Min is the minimum 

generation for each segment, 𝑥i is a binary variable indicating whether the segment 𝑖 is active or not, 𝑝 

and 𝑝𝑖 is, respectively, the overall generation and generation for the individual segments in the set 𝑆 of 

segments. An illustration of the generation function is given in Figure 1. Observe that even though the 

illustration depicts a concave function the method also applies to the nonconcave case, which is an 

important aspect in this paper. A concave generation function would imply that the first segment has the 

best efficiency, i.e. best power output for a given discharge, while the other segments are decreasingly 
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worse. This case would need no binary variables to ensure that the efficiency of each segment is used 

correctly, since the model will always use the segment with the best efficiency first and the rest 

followingly. 

 

3.1.1. Area removal algorithm 

The following section describes the greedy algorithm used to reduce the number of segments in the 

generation function. The idea is taken from [12], where the authors apply the method on bid curves for 

a hydropower producer. The underlying idea is that you should remove points in the function that alter 

its geometric shape as little as possible. Illustration given in Figure 2. 

 

das  
Figure 2: The figure shows a part of the generation function and how the area (A) is computed between 

three adjacent points.  

 

The algorithm computes the area between two adjacent point for all the points on the curve.  The point 

that has the lowest computed area is removed. This procedure is repeated until a desired amount of 

points are removed.  

 

 

 

 

 
 

Figure 3: Illustration of the generation function. Right axis indicates the area of the 

triangle computed with the two adjacent points. Note that we are illustrating the energy 

equivalent [𝐤𝐖𝐡/𝐦𝟑]. This is done to get a better visualization of the curve. Left: The 

original generation function. Right: The generation function after eight points have 

been removed by the area removal technique. 

 

  

Figure 3 shows the generation function and the area between the adjacent points for the original function 

and for the function when eight points have been removed. As expected the geometric shape of the 

function is very much kept, even though half of the points on the curve has been removed. Below, in 

Figure 4, the accumulated area that is removed from the function is plotted. It is evident that there are 

many points on the curve that can be removed with almost no impact. After a certain threshold the 

accumulated area increases significantly, giving an initial indication for how much the function can be 

reduced. 
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Figure 4: Bar graph of the accumulated area between adjacent points in the generation function that are 

removed. As illustrated, there are many points that can be removed with little impact on the shape of the curve, 

followingly the more points removed, the more significant this impact becomes.  

3.1.2. Segmented regression method 

Segmented regression is applied to reduce the number of points in the generation function. This is done 

with the R library segmented [13]. It is an iterative approach where the user suggests starting 

breakpoints. Being a statistical approach, it would be beneficial with a lot of data to fit the curve. In such 

sense, the approach would be well suited for a system that does continuous measurements. Nonetheless, 

the approach provides results well fitted to the original data, as seen in Figure 5. 

 

 
Figure 5: The generation function is given by the filled dots. The line going through the circles are the results 

from the segmented regression. Observe that there are two generators in the power station, each fitted 

individually. 

4. Case Study 

Two power stations are investigated in the study. The first, Station A, consists of a single generator unit 

with 45 MW installed capacity. The second, Station B, consists of two generator units, each with 210 

MW installed capacity. Both stations only have Francis turbines installed.   

 

The two systems are solved with a time horizon of two years with weekly uncertainty of inflow. For 

simplicity, the energy prices and capacity reserve prices are modelled as deterministic. The week is then 

separated into 21 time periods, three for each day indicating morning, mid-day and evening.  

 

The SDDiP approach is applied, described in [10] [11], to solve the hydropower scheduling problem. 

The problem is solved with the original generation function and an EFP function is obtained, which in 

turn is used to simulate with the different reductions of the generation function. For each simulation 100 

different scenarios are generated that are used to evaluate the expected results, for all simulations. To 

compare the results to what is normal approach for this problem type in operative models today, a case 
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where the generation function is concave is performed. Lastly, some tests are performed on how Station 

A would be operated given that there is a time period in the summer months that requires a minimum 

discharge, due to environmental constraints. 

 

5. Results and Discussion 

The following section outlines some results from the case studies and discusses its implications. 

 

Table 1 and Table 2 shows some of the results obtained from the different simulations. The area removal 

algorithm (A. Rem.), segmented regression method (Seg. Reg.) and Concave case (Conc.) was run. The 

tables depict the computation time of each simulation, the expected objective value, deviation in shape 

of the duration curve and total generation from the original problem, given by the first column. The 

second row of the table indicates how many points on the curve has been removed from an original total 

amount of 18 and 11 in System A and B, respectively.  

 
Table 1: Results from System A. Simulation time is given in seconds, whereas the other values are given as a 

percentage. Val. represents the expected objective value, Dur. indicates the percentage deviation of the duration 

curve compared to the original problem. Gen. is the expected generation for the two years. 

 A. Rem  Seg. Reg.  Conc. 

 0 2 4 6 8 10  8 9A 9B 10   

Time 920 895 763 668 614 523  555 522 521 475  59 

Val. 0.00  0.00 0.01 0.00 0.00 -0.03  -0.01 -0.02 -0.01 -0.01  2.22 

Dur. 0.00  0.67 0.69 0.67 1.33 2.62  3.10 4.39 4.77 4.28  13.02 

Gen. 0.00  -0.01 0.02 -0.01 -0.30 -0.15  -0.14 0.46 -0.24 -0.11  0.34 

 

As expected the computation time drops significantly with the number of points being removed. This is 

especially evident for the concave case where there are less constraints and binary variables in the 

problem. Moreover, one can observe that the expected objective is not changed much between the cases. 

This is due to the fact that points on the generation curve are being removed regardless whether it results 

in an increase or decrease in overall efficiency. The changes in shape of the duration function increases 

the more points are removed from the generation function. This is especially clear for the segmented 

regression case, but not unexpected as seen from Figure 5, where the best operating points shift slightly. 

Lastly, another expected result occurs where there is a positive change in generation for the concave 

case.  

 
Table 2: Results from System B. Simulation time is given in seconds, whereas the other values are given as a 

percentage. Val. represents the expected objective value, Dur. Indicates the percentage deviation of the duration 

curve compared to the original problem. Gen. is the expected generation for the two years. 

 A. Rem.  Seg. Reg.  Conc. 

 0 2 4 6 8  6 7   

Time 335 284 238 218 180  197 178  77 

Val. 0.00 -0.03 -0.01 -0.05 -0.58  0.01 0.09  2.05 

Dur. 0.00 0.16 0.50 0.52 9.99  1.04 2.95  15.09 

Gen. 0.00 0.00 -0.04 0.06 -0.76  0.09 0.01  1.02 

 

The duration curve for selected simulations are shown in Figure 6 illustrates some duration curves for 

System A. The degree of regulation, i.e. the system’s ability to store water for usage at a later stage, is 

very high for the system. Thus, the model will shift as much of the generation as possible to the hours 

in the winter where the prices are highest. Also, considering that the efficiency of the station is low at 

low power outputs the model will tend to avoid such operation. The best efficiency of the station is 

obtained around 180 MW, where a large portion of the generation comes from. Note that the concave 
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generation function is not able to represent the low efficiency at low power outputs, some generation is 

therefore observed around 60 MW for this simulation. The yellow line shows the duration curve for the 

simulations with the segmented regression method applied. As expected the generation points are 

somewhat shifted from the original problem. This illustrates the importance of the generation function 

modelling on the operation of the power station. This method would, as above-mentioned, get a much 

more robust representation of the generation function had there been more measurements to fit. 

 

 

 

 
Figure 6: Duration curve for a selection of the 

results from System A. A. Rem. refers to the Area 

removal method and how many points are remove. 

Seg Reg 8 is for the segmented regression and the 

grey line is for the concave generation function.  

 Figure 7: Duration curve for a selection of the 

results from System B. Minimum discharge limit 

during summer months.  

 

Figure 7 shows the duration curve when Station B ran with a minimum generation requirement during 

the summer months. This would result in much less flexibility in terms of storing the water for the hours 

of the year with highest prices. The simulations were performed as a test to investigate how the system 

reacts to generation on lower power outputs. The minimum power output for the station is 15 MW, as 

seen in the figure where most of the power station operation is performed. The tests were performed 

with the original generation function and the concave one. It can be seen that the shape of the duration 

curves is very much similar, but with much less generation for the original, nonconcave, problem. This 

shows a significant drawback with the concave generation function, it overestimates the efficiency of 

the station and therefore assume that it can generate more electricity than what is possible. For the given 

case the simulation with concave generation function had an expected generation of 14.1% more than 

the original one, indicating how much the generation can be overestimated for simplifications of the 

generation function. For the other simulations this number was lower (1.02% and 0.34%), showing that 

how the station is operated has an impact on how much detail should be included in the generation 

function. Since it is expected that the market for ancillary services will grow and increased 

environmental constraints will occur, more operation of power stations at low power output can be more 

common in the future. 

 

6. Conclusion and Further Work 

In the given paper a segmented regression approach and a greedy algorithm have been proposed and 

tested to simplify the piecewise linear generation function used to model hydropower stations. Impacts 

from environmental constraints and how they alter the operation has been examined, demonstrating the 

importance of a more detailed modelling of the generation function.  

 

The assumption that the generation function is only dependent on discharge is reasonable for stations 

with high head and less regulation of the reservoirs. On the contrary, if this is not the case further work 

will investigate methods that can include the head dimension in the generation function.  
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Nonconvex Medium-Term Hydropower Scheduling
by Stochastic Dual Dynamic Integer Programming

Martin N. Hjelmeland, Student Member, IEEE, Jikai Zou, Arild Helseth, Member, IEEE
and Shabbir Ahmed, Senior Member, IEEE

Abstract—Hydropower producers rely on stochastic optimiza-
tion when scheduling their resources over long periods of time.
Due to its computational complexity, the optimization problem is
normally cast as a stochastic linear program. In a future power
market with more volatile power prices, it becomes increasingly
important to capture parts of the hydropower operational char-
acteristics that are not easily linearized, e.g. unit commitment
and nonconvex generation curves.

Stochastic dual dynamic programming (SDDP) is a state-
of-the-art algorithm for long- and medium-term hydropower
scheduling with a linear problem formulation. A recently pro-
posed extension of the SDDP method known as stochastic dual
dynamic integer programming (SDDiP) has proven convergence
also in the nonconvex case. We apply the SDDiP algorithm to
the medium-term hydropower scheduling (MTHS) problem and
elaborate on how to incorporate stagewise dependent stochastic
variables on the right-hand sides and the objective of the opti-
mization problem. Finally, we demonstrate the capability of the
SDDiP algorithm on a case study for a Norwegian hydropower
producer.

The case study demonstrates that it is possible but time-
consuming to solve the MTHS problem to optimality. How-
ever, the case study shows that a new type of cut, known as
strengthened Benders cut, significantly contributes to closing the
optimality gap compared to classical Benders cuts.

Index Terms—Stochastic processes, Dynamic programming,
Hydroelectric power generation, Integer programming.

I. INTRODUCTION

THE hydropower scheduling problem is difficult given its
stochastic and multistage nature, and a variety of different

solution techniques have been applied to it, see e.g. [1], [2].
In a liberalized power market, one typically decomposes the
overall problem into three hierarchies (long-, medium-, and
short-term) according to the system boundary, the level of
required details in the hydro system and the representation
of different stochastic variables [3], [4], [5]. In this work we
consider the medium-term hydropower scheduling (MTHS)
problem, aiming at maximizing a single producer’s profit.
The MTHS problem links the long-term fundamental market

M. N. Hjelmeland is with the Department of Electric Power Engineering,
NTNU Norwegian University of Science and Technology, Trondheim, Nor-
way, e-mail: martin.hjelmeland@ntnu.no.

A. Helseth is with SINTEF Energy Research, Trondheim, Norway.
J. Zou was with the H. Milton Stewart School of Industrial & Systems

Engineering, Georgia Institute of Technology, Atlanta, GA, USA. He is now
a Research Scientist at Amazon Web Services.

S. Ahmed is with the H. Milton Stewart School of Industrial & Systems
Engineering, Georgia Institute of Technology, Atlanta, GA, USA.

Manuscript received March 13, 2017; revised August 12, November 28,
2017 and January 17, 2018; accepted February 1, 2018. This work was
supported by the Research Council of Norway under Grant 228731/E20.

model problem with the short-term (ST) operational schedul-
ing problem, as discussed in [3]. The MTHS problem can be
formulated as a multistage stochastic programming (MSSP)
problem, with many decision stages and uncertainty of inflow
and market prices.

Due to the complexity of the MTHS problem, it is typically
approximated as a multistage stochastic linear programming
(MSSLP) problem. To further exploit the flexibility of hy-
dropower by contributing in ancillary service markets, it
becomes increasingly important to capture parts of the opera-
tional characteristics that are inherently nonconvex. Noncon-
vexities arise from binary variables used to model minimum
generation limits and unit commitments, and are vital for
capturing the generation units’ capability to provide reserve
capacity. There are also other types of nonconvexities that
occur in the MTHS problem, such as the generation-discharge
function that is dependent on the water head, discharge from
multiple reservoirs to one power station and other topological
constraints in the hydropower system. These nonconvexities
should not only be represented in the ST operative models
but also in the MTHS models that provide the expected
opportunity cost of water to them.

A. MSSP Problems

The MTHS problem can be formulated as a multistage
stochastic program, of the following general extensive form

max
(xn,yn)

{∑

n∈T
pnfn(xn, yn) : (xa(n), xn, yn) ∈ Xn,∀n ∈ T

}
.

(1)
In the above formulation, T is a scenario tree given by a set
of nodes, n, that describes the underlying stochastic process
{ξ̃t : ∀t = 1, . . . , T}. Each node is assigned a probability
pn, and has a unique ancestor node a(n) and set of children
nodes C(n). For each node we define xn and yn as vectors
comprising the state and stage variables, respectively. The
state variables are those used to carry information from one
period to the next. The initial state of the system is x0, fn
is the objective function and Xn is the set of constraints.
Note that the constraint set comprises time-linking constraints,
connecting the state variables in xa(n) and xn.

The size of the MSSP in (1) grows dramatically with the
number of decision stages and number of children nodes
considered in the scenario tree. Thus, MSSP problems are
often solved by decomposition [6]. Stagewise decomposition
[7] has become a popular technique for efficiently solving
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the hydropower scheduling problems [8], [9]. Such a decom-
position scheme involves dividing (1) into subproblems for
each decision stage. Each subproblem comprises a part of the
objective function corresponding to that stage and an expected
future profit (EFP)1 function.

B. Stochastic Dual Dynamic Programming

The stochastic dual dynamic programming algorithm
(SDDP) presented in [10] is a stagewise decomposition
method for solving the long- and medium-term hydropower
scheduling problem. For a scenario tree corresponding to a
stagewise independent stochastic process, the SDDP method
proceeds by sampling in the scenario tree and sharing Benders
cuts between nodes belonging to the same stage. Proof of
almost sure convergence for the SDDP algorithm has been
given by [11], and for risk averse problems in [12], [13].
The SDDP algorithm has been frequently addressed in the
recent literature. Some of the work involves time-inconsistent
policies [14], co-optimization of hydro- and wind power [15],
joint treatment of energy and ancillary services [16], [17],
uncertainty in price [18] and uncertainty in inflow [19].

In spite of considerable research effort, see e.g. [20], [21],
[22], [23], [24], the SDDP method does not easily facili-
tate nonconvexities. As mentioned previously, nonconvexities
arise, for example, when representing the detailed relationship
between power output and water discharge [25], and the exact
unit commitment of generators [26]. The core issue is how the
nonconvex EFP function can be modeled. In [21] McCormick
envelopes were applied to regions of the nonconvex function
between power, discharge and water head. In [22] Lagrangian
relaxation was used to convexify the EFP function, whereas
[24] applied locally valid cuts to represent the nonconvex EFP
function. All the above methods produce solutions to different
forms of relaxations rather than the original problem.

Recently [27] proposed a method referred to as stochastic
dual dynamic integer programming (SDDiP) allowing integer
variables within the SDDP method, i.e. a solution to the
multistage stochastic integer programming (MSSIP) problem.
By approximating all state variables with binary variables, the
authors were able to prove finite convergence as long as the
cuts satisfy some sufficient conditions.

Another new and promising method that can be used to
solve the nonconvex MTHS problem is reported in [28]. As
SDDiP it is an extension of SDDP for handling nonconvexities.
The significant difference is that instead of using cutting planes
to describe the EFP function, step functions are used and that
a monotonic increasing EFP function is required.

C. Contributions

In this work we apply the SDDiP method presented in [27]
to the MTHS problem with a nonconvex function of power and
discharge, incorporate stagewise dependencies in stochastic
variables and correlations between them (inflow and energy
price). We particularly extend the modeling from [27] with
stagewise dependency in energy price, since this dependency

1or expected future cost when considering cost minimization problems.

enters the objective function and thus introduces a nonconvex
term that is challenging to handle.

The SDDiP method is tested and verified on a hydropower
system in Norway. We evaluate the performance of the SDDiP
algorithm on the MTHS problem using different types of cuts
and provide recommendations for which types of cuts are most
efficient in solving the MTHS problem.

The paper is organized as follows. In the next section,
we will describe the basic modeling of the MTHS problem
followed by the fundamentals of the SDDiP method. The case
study is presented in Section VI and computational results in
Section VII followed by concluding remarks in Section VIII.

II. THE MTHS PROBLEM

In a liberalized electricity market the hydropower producer’s
primary objective is to find operational strategies for each
decision stage and maximize the total profit. For the Nordic
electricity market, it is assumed that there is a sufficient num-
ber of players such that a price-taker assumption is reasonable.

The state variables, xt, in the MTHS problem considered
here are reservoir levels, generator status, inflow and energy
price. The stage variables are represented by yt and include
the operational decisions at that stage. First, let us assume
that the set of state variables consists of both continuous and
binary variables. For the MTHS problem, given by (2), we
want to find an operating strategy that maximizes profit in
(2a), comprising the revenues from selling energy and capacity
reserves, start-up cost and penalty functions ensuring relatively
complete recourse. The expectation in (2a) is taken over the
stochastic parameter ξ̃t, representing energy price and inflow.

max
(x1,y1),...,(xT ,yT )

E

{
T∑

t=1

ft(xt, yt)

}
(2a)

s.t. Wxt +Hxt−1 +Gyt = h(ξ̃t) (2b)
Byt = 0 (2c)
Cyt −Dxt ≥ 0 (2d)
Cyt +Dxt ≤ Cymax (2e)
xt, yt ∈ Yt (2f)

xt ∈ Rk1 · Zk2 , yt ∈ Rl1 · Zl2 (2g)
∀t ∈ {1, 2, . . . , T}, (2h)

where the initial state vector x0 is given and W , H , G, B,
C and D are matrices of suitable dimensions. The right-hand-
side parameter vector, h(ξ̃t), is dependent on the random data
vector ξ̃t whose distribution is known, and where ξt are the
realizations. Due to strong autocorrelation, both inflow and
the energy price should be considered as an affine function of
state variables. Thus the profit function for stage t is

ft(xt, yt) = ct(xt)y
G
t + gt(yt), (3)

comprising the energy price, ct(xt), multiplied with gener-
ation, yGt , and the remaining linear relationships in gt(yt).
Treatment of the bilinear expression in (3) will be addressed
in Section III-B.
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Fig. 1. Illustration of the nonconvex function of power, Pt, and discharge, qt
in a power station with two units in blue. It is conditioned that the first unit
is started before the second. The dotted line illustrates the convex relaxation
of the function.

The time-linking constraint, (2b), contains all reservoir
balances, generator state time-couplings and the Vector Au-
toregressive model with lag-1 (VAR-1) constraints, outlined
in Section III-A. The energy balance is given by (2c), where
we assume that all power is sold to the market. Generation
and reserve capacity limits are included in (2d) and (2e).
We assume that the hydropower producer can offer spinning
reserve capacity, meaning that the generator has to be op-
erating to provide this service. The reserve capacity is also
assumed symmetric, i.e. an equal amount of both upwards and
downwards reserve capacity is sold. For conciseness, we also
include constraints that limit spillage, bypass and generation
from different reservoirs in (2f). In practice, spillage may
only occur when the water head is greater than the bottom
of the spillway. If, however, the optimization model finds that
the water has better utilization in a lower reservoir, it will
spill or bypass water to that reservoir, even-though this might
not be feasible in practice. By including binary variables and
additional constraints in (2f), we can prohibit this behavior of
the model. Similar to when a power station can operate from
two different reservoirs with uneven head, we can restrict the
model to only operate from one reservoir at the time.

As an extension to the MTHS problem we include a
nonconvex relationship between power and discharge for each
hydropower station, referred to as the generation function.
Much work has been done recently, see [21], [22], to include
a nonconvex generation function, also with water head depen-
dencies. Considering the modest water head variations of most
Norwegian hydropower stations and to limit the complexity of
the modelling, with added computational time, we omit this in
our approach. Our experience has shown that it is important to
include the nonconvex generation function when selling both
energy and reserve capacity in order not to overestimate the
sales of capacity reserves [15]. This is especially imperative
for periods with low energy price and high capacity price.
Then the model wants to operate the units at low power
outputs in order to participate in the capacity reserve market.
An illustration of a generation function is given in Figure 1.

For presentation simplicity, the reserve capacity price is
assumed to be deterministic, but as the work done in [16]
shows, it could be extended to a stochastic variable.

III. THE SDDIP FORMULATION

In this section, we reformulate the problem (2) to a form
suitable for SDDiP. First, we describe how the stochastic
processes are handled.

A. Stochastic Processes

We consider two types of uncertainties in the problem;
inflow to the hydro reservoirs and energy price. For the
sake of simplicity both processes are assumed to have a
normal distribution. Since both stochastic processes exhibit a
seasonal pattern and are non-stationary processes, these are
normalized by subtracting the seasonal mean and dividing
by the seasonal standard deviation. Moreover, we shift the
mean of the normalized value to ensure non-negative values.
The normalized and shifted series are then assumed to be
stationary and fitted to a Vector Autoregressive model with lag-
1 (VAR-1), which enables us to account for seasonal effects
and capture correlations between the time series within the
SDDiP framework. In order to get a manageable number
of stochastic outcomes of ξ̃t, we applied the “Fast forward
selection” scenario reduction algorithm in [29], resulting in a
confined amount of scenarios with a corresponding probability.
Another known method to handle the uncertainty of energy
price in SDDP is by an outer Markov chain as proposed in
[30]. The drawback is then that there are two independent
stochastic processes in the model.

The VAR-1 model includes a state variable, δt. Since it
is a state variable, binary expansion has to be applied to it.
After the scenario reduction and sampling of the stochastic
parameters are completed, a bound can be computed so that
a finite support is guaranteed. Subsequently, we need to shift
the mean of the process by U such that δt is non-negative.
The bound is then given by (4b) and δt is the normalized and
shifted values. We can derive the following VAR-1 model,
which is included in (2b)

δt = Φδt−1 + ξ̃t (4a)

δt ∈ [0, 2U ]2, (4b)

where Φ is the correlation matrix. Note that E[δt] = U and
E[ξ̃t] = U . The stochastic parameters for inflow and energy
price are respectively given by

[
It(δt)
ct(δt)

]
= σt

(
δt − U

)
+ µt. (5)

where the inflow, It(δt), is the right-hand side of the reservoir
constraints and the energy price, ct(δt), is expressed in the
objective function (3). Note that δt in the stochastic model
is identical with xt in (3) as the stochastic model was not
yet introduced. In order to solve the bilinear term in (3) an
approximation is applied.

B. Approximation of the Energy Price

To circumvent the computational complexity introduced
by the bilinear term in (3), we apply an approximation by
linear relaxation of the objective function term, ct(δt)yGt . The
relaxation is applied by using the binary expansion method to
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the energy price state variable, δt. The method is based on
the fact that if λt is an integer variable, λt ∈ {0, . . . , L}, it
can be represented by κ binary variables, κ = blog2(L)c+ 1,
such that λt = Σκ

j=12
j−1λtj . Similarly, for the continuous

case, λt ∈ [0, L], where λt is given with ε accuracy; κ =
blog2(L/ε)c+1, hence λt = Σκ

j=12
j−1ελtj . See e.g. [31] for

further details about the binary expansion. In the following
we use the notation λt =

∑κ
j=1Atjλtj . Thus, we redefine

δt =
∑r

j=1Atjxtj , with r = blog2(2U/ε)c+ 1 and substitue
δt in (5). Moreover, we then replace the bilinear terms xtjyGt
with auxiliary variables wtj , and constrain these by (6b)-(6e),
for all j ∈ {1, . . . , r}. The objective function becomes,

ft(xt, yt) =σt

r∑

j=1

Atjwtj + (µt − σtU)yGt + g(yt) (6a)

s.t. wtj − yGt ≤ 0 (6b)
wtj −Mtjxtj ≤ 0 (6c)

wtj − yGt +Mtj(1− xtj) ≥ 0 (6d)
wtj ∈ Rr, xtj ∈ {0, 1}r (6e)
∀j ∈ {1, . . . , r}. (6f)

We fix Mtj to yG,max for all j, in order to get an accurate
relaxation.

Note that after the binary expansion is applied to the
state variable, δt, (4a) becomes a constraint with only binary
variables and a stochastic parameter. Thus, in order to ensure
feasibility of the model with all possible outcomes of ξ̃t,
the constraint is altered to a less than or equal constraint.
Implications of this are discussed in Section VII.

C. Dynamic Programming (DP) Formulation

From the MTHS problem given by (2) and the energy price
approximation in (6), we have the following DP equation

Qt(xt−1,ξt−1) := max
xt,yt

ft(xt, yt) + φt(xt) (7a)

s.t. (xt, yt) ∈ Xt(xt−1, ξ̃t) (7b)

xt ∈ Rk1 · Zk2 , yt ∈ Rl1 · Zl2 . (7c)

Problem (7) consists of the present objective function
f(xt, yt), the true EFP function φt(xt) and constraint set Xt,
with parameters xt−1 and ξ̃t, described by (2b)-(2f) and (6b)-
(6f).

As the MTHS problem contains integer stage variables the
EFP function is nonconvex with respect to the state variables.
Existing nested decomposition methods rely on convex relax-
ation to approximate the EFP function, and convergence can
therefore not be guaranteed.

The traditional approach to solving the nonconvex problem
in (7) has been to relax the problem formulation to an LP. We
are then able to define a convex relaxation of the EFP function
given by,

Qi
t(xt−1,ξt−1) := max

xt,yt

ft(xt, yt) + ϕi
t(xt) (8a)

s.t. (xt, yt) ∈ X
′
t(xt−1, ξ̃t) (8b)

xt ∈ Rk3 , yt ∈ Rl3 . (8c)

The EFP function is then ϕi
t(xt), for a given iteration i of

the SDDP method, and constraint set X
′
t that describes a LP

relaxation of Xt. We see that this DP formulation is similar
to the SDDP method, where the EFP function is described by
hyperplanes, defined as

ϕi
t(xt) := max{θt ≤ Vt (9a)

θt ≤ vlt+1 + πl
t+1xt, ∀l ∈ H(i), (9b)

xt ∈ Rk3}. (9c)

Where the set H(i) contains the cuts that are used to approx-
imate the EFP function up to iteration i. The cuts are repre-
sented with a right hand side parameter vlt+1, the coefficient
πl
t+1 and θt is a scalar variable representing the value of the

EFP function. The different type of cuts that we have used in
our implementation will be outlined in Section IV-A.

To solve the nonconvex MTHS problem we apply the SD-
DiP method proposed in [27]. The key concept of the method
is that any function of binary variables can be represented as
a convex polyhedral function. This can, therefore, be achieved
by applying the above-mentioned binary expansion to all
integer and continuous state variables of the original problem.

After the binary expansion is applied to the state variables
in (2g), xt ∈ Rk1 × Zk2 , it is reformulated to xt ∈ {0, 1}k,
such that all state variables in the MTHS problem are binary
and representing the original continuous state variables to ε-
accuracy. Note that k 6= k1 + k2, as it depends on the binary
expansion.

Since the possible state variables solutions are given by a
finite set of binary variables, we can generate a finite number
of cuts to approximate it, as the convex hull of the binary state
space ensures that we can compute tight bounds. See Figure 2
and its explanation below.

Another reformulation used in the SDDiP method is to
generate local copies of the state variables. This reformulation
is crucial to ensure that one is able to generate cuts that
accurately approximate the EFP function. The DP formulation
of the problem with binary state variables becomes

Qi

t
(xt−1,ξt−1) := max

xt,yt,zt
ft(xt, yt) + ψi

t(xt) (10a)

s.t. (xt, zt, yt) ∈ X
′′
t (ξ̃t) (10b)

zt = xt−1 (10c)

zt ∈ [0, 1]k (10d)

xt ∈ {0, 1}k, yt ∈ Rl1 · Zl2 . (10e)

Where (10c) is the essential copy constraint, connecting the
previous state solution, xt−1, and the copy variable zt. The set
X

′′
t is obtained by transforming all state variables in Xt into

binaries. The EFP function, ψi
t(xt), is defined as (9), with the

differentiation that all the state variables has to be binary.

IV. REVIEW OF THE SDDIP APPROACH

The SDDiP approach builds on the same principles as
SDDP, where each main iteration comprises a forward and
a backward iteration, as shown in Algorithm 1. We can sum-
marize the main differences between SDDiP and SDDP into
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Fig. 2. Illustration of the nonconvex EFP function (left) and the transformation
into the binary state (right). Note that we are solving a maximization problem
and thus the function is nonconcave, but in line with standard terminology, we
refer to it as a nonconvex function. Assume that the continuous variable xt is
transformed by two binary variables xt1 and xt2, such that xt = xt1+2xt2.
By constructing two hyperplanes (C1 and C2) in the binary state space, we can
illustrate how they are projected to the continuous space. This illustrates how
by using binary state variables we are able to construct cuts that approximate
a nonconvex function. The hyperplane C3 is added to show the tightest cut
we are able to generate from the convex relaxation of the nonconvex function.

three pillars; the requirement of discretization of state variables
into binary variables, introduction of the copy variable and the
different cut families it facilitates.

Scenarios are sampled from the underlying stochastic pro-
cess in line 4 in Algorithm 1. The forward iteration solves
the problem given in (10) for each stage and scenario, pro-
viding candidate solutions to the problem in line 9 and an α
confidence lower bound on the optimal value.

The backward iteration operates along the N state trajecto-
ries obtained in the previous forward iteration to compute cuts
that are passed backward in time. The different types of cuts
considered are described in the next section. The value of the
objective function in the first stage will then represent an upper
bound of the true optimal solution in line 23. Convergence is
achieved if the lower bound is within a statistical confidence
interval of the upper bound.

A. Cut Families

SDDiP is defined on a notion of valid and tight cuts. A
cut is valid and tight if it supports the EFP function. For
maximization problems, it is only valid if it provides an upper
approximation of the EFP function. An illustration is given in
Figure 2, where the cuts C1, C2 and C3 are all valid, but only
C1 is tight when the state variable has the value 1.

The different cut families that could be used within SDDiP
are briefly described below.

1) Benders Cuts (B): Benders cuts (see [32]) are con-
structed by solving the LP relaxation of problem (10). We
obtain the following Benders cut for stage t in iteration i

θt ≤
∑

m∈C(t)
qtm

[
QLP

m
+ (πi

m)>(xt − xit)
]
. (11)

Where πi
m is a vector of dual values corresponding to

(10c), qtm is the probability of going to a child node m, in
decision stage t and QLP

m
is the optimal LP relaxation value.

Convergence is not guaranteed with only Benders cuts for
SDDiP. In some practical scheduling cases, the Benders cuts
may be far from tight, as we will see in the Section VI-B.

Algorithm 1 The SDDiP Method
1: Set xi0, ξi0, i← 1, UB = +∞ and LB = −∞,
2: Apply binary expansion on continuous and integer state

variables
3: while i < imax or some other stopping criteria do
4: Sample N scenarios Ωi = ξk1 , . . . , ξ

k
T k=1,...,N

5: /* Forward Iteration */
6: for k=1,. . . ,N do
7: for t=1,. . . ,T do
8: Solve Qik

t
(xikt−1, ξ

ik
t−1)

9: Collect solution ft(xikt , y
ik
t , ξ

ik
t ), xikt , y

ik
t , z

ik
t

10: lbk ← Σt=1,...,T ft(x
ik
t , y

ik
t , ξ

ik
t )

11: /* Compute lower bound */
12: µ← 1

NΣN
k=1lb

k and σ2 ← 1
N−1Σ

N
k=1(lb

k − µ)2
13: LB← µ+ zα

σ√
N

14: /* Backward Iteration */
15: for t=T,. . . , 2 do
16: for k=1,. . . , N do
17: for m∈ C(t) do
18: Solve a suitable relaxation of
19: Qik

m
(xikt , z

ik
t , ξ

ik
t )

20: Collect cut coefficients and parameters
21: Add desired cut(s) as described in Sec. IV-A
22: /* Compute upper bound */
23: UB← Qi

1
(xi0, ξ

i
0)

24: i← i+ 1

2) Lagrangian Cuts (L): This cut family is based on La-
grangian relaxation, where we relax the copy constraint (10c).
The Lagrangian multiplier is obtained by

π̄i
t := argmin

π̄t

{
Li
t(π̄t) + π̄>

t xt−1

}
, (12)

and Li
t is defined as

Li
t(π̄t) := max

xt,yt,zt
ft(xt, yt, ξt) + ψi

t(xt)− π̄>
t zt (13a)

s.t. (zt, xt, yt) ∈ X
′′
t (ξ̃t) (13b)

zt ∈ [0, 1]k (13c)

xt ∈ {0, 1}k, yt ∈ Rl1 · Zl2 . (13d)

Lagrangian relaxation often aims to relax complicating con-
straints and divide the problem into smaller subproblems that
can more easily be computed. Our aim, however, is to find
good multipliers that make the Lagrangian cuts as tight as
possible. It is essential for the convergence of SDDiP that the
Lagrangian cuts can be generated in a sufficient manner, in
regard to both computation time and tightness. By repeatedly
solving (12) and updating the Lagrange multipliers π̄t, e.g.
using the subgradient [33] or level [34] methods, one can
construct tight and valid Lagrangian cuts, as described in [27].
Nevertheless whichever method we use to get the Lagrangian
multiplier, π̄i

t, the cut we construct is of the following form,

θt ≤
∑

m∈C(t)
qtm[Li

m(π̄i
m) + (π̄i

m)>xt]. (14)
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Fig. 3. Illustration of improvement for the strengthened Benders cut (C2)
compared to Benders cut (C1) by generating a tighter right-hand-side param-
eter, equaling the distance of A. ϕt(xt) is the LP relaxation of the original
nonconvex function φt(xt).

3) Strengthened Benders Cuts (SB): The strengthened Ben-
ders cuts presented in [27] are parallel to the regular Benders
cut and are at least as tight. They are not guaranteed to be
tight, but they may improve the solution quality significantly
compared to the Benders cuts, as illustrated in Figure 3. The
increased precision comes at a modest increase in computation
time.

Strengthened Benders cuts are constructed as follows. First,
we solve the LP relaxation of problem (10). Then problem
(13) is solved with π̄t equals to the optimal LP dual solution
with respect to constraint (10c), πi

t. From the solution of the
latter problem we obtain the right-hand side Li

t(π
i
t) and then

construct the following strengthened Benders cut

θt ≤
∑

m∈C(t)
qtm[Li

m(πi
m) + (πi

m)>xt]. (15)

The strengthened Benders cuts do not require the state
variables to be binary and can such be used to achieve good
solutions to problems that do not possess highly nonconvex
properties.

4) Integer Optimality Cuts (I): The last family of cuts we
have used in our method is the integer optimality cuts [35],
[36]. The integer optimality cuts are valid, tight and finite and
will, therefore, guarantee convergence. They are also very fast
to generate, as they only rely on the solution obtained in the
forward iteration.

B. Cut Discussion

As mentioned in Section I-B, the Lagrangian cuts proposed
by [27], and used in this paper, differentiate from the La-
grangian cuts proposed by [22], [21]. Instead of introducing
copy constraints they dualize the time-linking constraints and
are therefore not able to guarantee tight cuts, even-though they
in many cases are stronger than the Benders cuts. This can be
shown by a small example. Consider,

Q(x) = min
y1,y2

{y1 + y2 : 2y1 + y2 ≥ 3x, (16)

y1 ∈ {0, 1, 2}, y2 ∈ [0, 3]}

Where Q(x) is a value function dependent on the binary
state x, and y1 and y2 are local variables. First, by dualizing
the time-linking constraint and providing x = 1 as a candidate
solution one gets the following Lagrangian cut θ ≥ 1.5x, this
is essentially the method proposed by [22], [21] and as the
small example shows it does not necessarily provide tight cuts.
Furthermore, let’s add a copy constraint z = x, z ∈ [0, 1] and
swap x with z in the time-linking constraint. By dualizing
the copy constraint we can compute the Lagrangian cut θ ≥
−1 + 3x, with x = 1 as a candidate solution. For x = 0
we get that θ ≥ 0, such that we are able to provide a tight
approximation of Q(x).

As proven in [27] and partially illustrated above, the SDDiP
algorithm will converge if Lagrangian or integer optimality
cuts are added. Benders and strengthened Benders cuts will
not guarantee convergence, but will often serve to improve
convergence rate in concert with Lagrangian or integer opti-
mality cuts. Benders cuts are by far the least computational
demanding type of cuts since their construction only involves
solving LP problems. For this reason, we only add Benders
cuts until a stable upper bound is reached. Subsequently, we
add the other cut families to further tighten the EFP functions.

C. The Approximate SDDiP Problem

The SDDiP method depends on the aforementioned three
pillars to ensure finite convergence. However, we are still able
to use some of its features if we do not restrict the state
variables to be binary. Finite convergence can then no longer
be guaranteed, with the trade-off of reduced computational
complexity. We reformulate (7) by applying the same concepts
of copy variables and copy constraints. For this problem we
can only compute Benders and Strengthened Benders cuts.
This is done in the same manner as for the (10) in Section
IV-A1 and IV-A3. Results from this approach is also reported
in Section VI-B

V. BOUNDING THE EFP FUNCTION

Due to the bilinear objective term introduced when consider-
ing uncertain energy price, we relaxed the problem by artificial
variables and constraints containing the big-M notation in (6).
As we will elaborate, it is difficult to obtain tight bounds for
that problem formulation. Consider the case where a given
energy price state variable is xtj = 1, we then have

πE
t,j =

∂Qi

t

∂xtj
=

∂Qi

t

∂wtj
· ∂wtj

∂xtj
=

∂Qi

t

∂wtj
·Mtj , (17)

where πE
t,j is the dual value for the copy constraints for that

energy price state variable in (10c).
From a practical standpoint, it is obvious that there are time

periods and scenarios where yGt is far from yG,max. In this
sense the proposed relaxation method has the same drawback
as the integer optimality cut, but now the big-M notation
cascades into all types of cuts, making it hard to compute
cuts that are tight for not only the given candidate solution
but nearby solutions as well. A modest upside is that the big-
Ms depend on a physical value and not the expected future
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profit, contributing to a tighter formulation than for the integer
optimality cuts.

Given the nature of the problem at hand, different techniques
could be applied in order to make the big-Ms tighter by adding
some heuristics on the bounds of yt. Nevertheless, for an
MTHS problem with a price taker assumption and no demand,
this has proven difficult, as the only limiting constraints are
generation limits and available water in the reservoirs.

Observe that the big-M formulation is only required for our
implementation of the uncertainty of the energy price. The
following theorem establishes a method for constructing an
upper bound to this problem so as to be able to evaluate the
policy quality.

Theorem 1. Let v∗ be the optimal value of the MTHS problem
in (2) with price uncertainty, and vLP be the optimal value
of its LP relaxation. Let v̄LP be the optimal value of the LP
relaxation where the uncertain energy price is replaced by its
expected value. Then

v∗ ≤ vLP ≤ v̄LP.
For brevity, we omit a detailed proof of the above result and

provide a sketch. Note that the first inequality is simply owing
to the LP relaxation. Since the price uncertainties are only on
the right-hand side (recall the modeling approach discussed in
Section III-B), we know that the optimal value of LP relaxation
is a concave function of the uncertain parameters [6]. It follows
by Jensen’s inequality that vLP ≤ v̄LP, hence an upper
bound to the original problem can be constructed by using
the upper bound computed with only Benders cuts applied to
the problem where energy price is modeled by its expected
value.

VI. CASE STUDY

For the case study, we considered a Norwegian hydropower
reservoir system that consists of reservoirs with both short-
and long-term storage capacity. The case study is documented
in previous publications [15], [26]. The system contains three
hydropower reservoirs, with two power stations and a total
installed capacity of 414 MW. One of the modeling issues
with this system is that the two lower reservoirs, with uneven
water head, are connected to the same power station, such
that the station can only generate from one of them at a
time. Considering that one of the reservoir’s size is 2% of
the other with an equal amount of inflow, linear SDDP tended
to overestimate its ability to avoid spillage. This is handled
more precisely in the SDDiP framework.

The mean and standard deviation parameters for the stochas-
tic processes were extracted from price forecasts obtained from
a fundamental market model using inflow from 70 years of
historical data as input. For simplicity, we only use a single
inflow and energy price series in this work, as extensions to
multiple are straightforward.

The stagewise decision problem of the SDDiP formulation
consists of 137 constraints, 182 variables (120 continuous and
62 binary), 52 decision stages and 9 branches for each decision
stage. In each forward iteration we sampled 2 scenarios and
restricted the number of forward and backward iterations to

iteration
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Fig. 4. Illustration of the upper bound for SDDiP of the MTHS problem with
6 stages, convex generation function and expected values for the stochastic
parameters. Values are given with the optimal value as base.

50. Lastly, a final simulation of 300 forward scenarios was per-
formed to evaluate the policy by calculating a 95% confidence
interval of the lower bound. For an even comparison between
the different methods we use the same scenarios in the forward
iteration. Computations were performed on a Dell Latitude
E7240 with an Intel Core i7-4600U processor with 2.7 GHz
clock rate and 16 GB RAM. The problem was formulated in
Python 3.5 with Gurobi 7.0 as the mathematical solver. We
did not implement any parallel processing except from default
settings in the MIP solver.

A. Validation
In order to validate the convergence properties of our imple-

mentation of the SDDiP method for the MTHS problem, a case
was constructed with only 6 decision stages, convex genera-
tion function and the stochastic parameters modeled by their
expected value. The upper bounds for different combinations
of cut families are illustrated in Figure 4. Due to the reduced
scale of the problem it is possible to compute the true optimal
value, illustrated by the lower line in the figure. The figure
shows the results from iteration 3 to 567, where convergence
is obtained using strengthened Benders and Lagrangian cuts
(SB+L). The reason to use Lagrangian and integer optimality
cuts combined with strengthened Benders is that strengthened
Benders cuts rapidly find a good stable solution, that the
other cuts can start from. From the figure, it is clear that
Benders (B) and strengthened Benders (SB) does improve
only up to a certain point, from there either Lagrangian or
integer optimality cuts are required to obtain convergence.
This does, however, come at a cost of significant increase of
computational time. The benefit of using strengthened Benders
cuts compared to Benders cuts is also evident, as we see the
gap is almost reduced by half.

B. Results

Now we turn to the 52-stage MTHS problem defined in
Section II where two different case studies were performed.
First, in Case I we modeled only uncertainty of inflow, then
in Case II we also included uncertainty of the energy price.
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TABLE I
CASE I, INFLOW UNCERTAINTY. SDDIP (TOP) AND APPROXIMATE

PROBLEM (BOTTOM).

UB stat. LB gap time
[kEUR] [kEUR] [%] [s]

B 47 353.72 40 776.87 13.89 16 792
B-SB 42 907.58 41 135.43 4.13 17 716
B-SB-I 42 854.80 41 197.25 3.87 30 277

B 47 030.08 40 973.28 12.88 742
B-SB 42 906.90 41 350.85 3.63 1 176

Subsequently, we tested the SDDiP method using Benders,
strengthened Benders and integer optimality cuts. Lagrangian
cuts were omitted due to computational requirement. We
also computed the approximate problem, as defined in Sec-
tion IV-C, with the Benders and strengthened Benders cut
families. Recall that for the approximate problem the state
variables are not required to be binary. The solution of the
approximate problem, when only using Benders cuts, will also
give an indication on how well the generic SDDP method
performs for the MTHS problem.

The expected profit for the given case study with a final
simulation of 300 forward scenarios is shown in Table I
and Table II for Case I and II, respectively. The reported
computation time includes final simulation and the gap is given
as UB−LB

UB .
We obtained good solutions after 50 iterations in both the

SDDiP and for the approximate problem. The approximate
problem is solved faster as there are less binary variables,
and the convergence gap is better for the given amount of
iterations. When comparing the solutions from the Benders to
the strengthened Benders cut families, for both SDDiP and
the approximate problem, a significant improvement of the
convergence gap is observed. This can also be seen in the
convergence plot in Figure 5. We see that after iteration 20
when the strengthened Benders cuts were added, both the
upper and lower bound for both cases improves.

The case with uncertain energy price results in a large
gap. When using strengthened Benders cuts a significant
improvement is observed compared to only Benders cuts.
By using the upper bound from Theorem 1 we can use the
approximate problem’s value with Benders cuts and compute
a tighter gap, referred to as gap in Table II. It shows that even-
though the upper bound initially was very high, the policy that
it provides is quite good. Notably is the improvement with
strengthened Benders cuts for the approximate problem with
superior policy and computation time compared to the other
results.

VII. DISCUSSION

We found that the integer cuts are not very computationally
efficient compared to solution improvement when applied for
the given case study. Lagrangian cuts were omitted from the
large case due for the same reason, and are therefore not
represented. On the other hand, the strengthened Benders cut
significantly improves solution quality compared to ordinary
Benders cuts with only a modest increase in computational

TABLE II
CASE II, INFLOW AND ENERGY PRICE UNCERTAINTY. SDDIP (TOP) AND

APPROXIMATE PROBLEM (BOTTOM).

UB stat. LB gap gap time
[kEUR] [kEUR] [%] [%] [s]

B 107 469.94 42 276.74 60.66 11.24 11 788
B-SB 84 380.16 43 802.85 48.09 7.37 13 896
B-SB-I 84 291.78 43 748.69 48.10 7.50 18 966

B 107 449.36 42 444.20 60.50 10.80 2 279
B-SB 84 367.26 43 891.43 47.98 7.15 2 869
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Fig. 5. Convergence plot for the different case studies with Benders and
strengthened Benders cuts. The solid line indicates the upper bound and the
other the expected lower bound. One can clearly observe how large the gap
difference is between Case I and II. The approximate method also follows
SDDiP close as seen for the dashed and dash-dot lines.

effort. We believe this is due to the characteristics of the
presented MTHS case; it seems more important to adjust the
right-hand side of the EFP function than to fine-tune its shape
by adjusting the cut coefficients. Many Norwegian hydropower
stations have high water head and their generation functions
are not significantly affected by head variations. It may be that
a nonconvex generation function with water head dependencies
found in other systems, e.g. as reported in [22], will lead to a
more pronounced shape of the EFP function, further justifying
the need for Lagrangian and integer cuts.

Due to the introduction of very large numbers in the
constraint matrix when adding integer optimality cuts, we have
observed increased computation time for the subproblems.
When comparing the computation time between the first stage
subproblem for Case II after 50 iterations with SB and SB+I
we observe an increase from 0.02 to 0.08 seconds. It is clear
that the added constraints with large coefficients make it diffi-
cult for the solver to find a solution quickly. Subsequently, the
integer optimality cuts do not provide good enough solution
improvements to justify the added computational burden we
observe, as seen in Table I and II.

Lastly, we observed that the lower bounds are higher for
the approximate problem, when comparing computations with
the same cut families, e.g. for Case I with Benders cuts the
approximate problem has a lower bound of 40 973.28 and
the SDDiP problem has 40 776.87. This follows from how
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the VAR-1 model is altered to a less than or equal constraint
to ensure feasibility of the model, as discussed in Section
III-B. In the final simulation, where we compute the lower
bound, there are some extreme scenarios where the model
are required to use an artificial penalty variable that ensures
relative complete recourse. Since the inflow state in the SDDiP
formulation is somewhat less than that of the approximate,
due to the relaxation of the equality constraint, a subsequently
higher penalty is observed in the order of the difference of the
lower bounds that explains this observation.

VIII. CONCLUSION

With the earlier mentioned challenges flexible power pro-
ducers encounter, we believe that binary state expansion and
the SDDiP algorithm gives the producers a useful tool to
address new challenges that involve nonconvexities in the
modeling.

We observed that our method performs very well when
omitting the uncertainty modeling of energy price, due to the
drawback of the big-M formulation. Nonetheless, it allowed us
to model the stochastic processes within a unified framework
and we showed that the resulting policy from SDDiP is
very good. Methods to improve the implementation of the
uncertainty of the energy price will be investigated in future
research, including methods on how to avoid the relaxation of
the VAR-1 constraint.

In the case study, we found that the strengthened Benders
cuts are superior to Benders cuts in finding good policies and
bounds. We also found that the strengthened Benders cuts
can be used in an approximate SDDiP method to provide
satisfying results for nonconvex MTHS problems, that also
includes a nonconvex generation function. To eventually close
the optimality gap, however, one would have to use SDDiP and
add either Lagrangian or Integer optimality cuts. Further, we
observed that adding Integer optimality cuts did not improve
the results enough to justify the increased computational time.
We emphasize that these findings are case-specific, and expect
that the efficiency of Lagrangian and Integer optimality cuts
will be higher in scheduling problems with more pronounced
nonconvexities.
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Abstract: We propose a model for medium-term hydropower scheduling (MTHS) with variable head
and uncertainty in inflow, reserve capacity, and energy price. With an increase of intermittent energy
sources in the generation mix, it is expected that a flexible hydropower producer can obtain added
profits by participating in markets other than just the energy market. To capture this added potential,
the hydropower system should be modeled with a higher level of detail. In this context, we apply
an algorithm based on stochastic dual dynamic programming (SDDP) to solve the nonconvex
MTHS problem and show that the use of strengthened Benders (SB) cuts to represent the expected
future profit (EFP) function provides accurate scheduling results for slightly nonconvex problems.
A method to visualize the EFP function in a dynamic programming setting is provided, serving as
a useful tool for a priori inspection of the EFP shape and its nonconvexity.

Keywords: hydropower scheduling; stochastic programming; integer programming

1. Introduction

Increasing rates of renewable energy generation are resulting in a higher demand for flexible
power units to balance the power system and to deliver ramping capacity. Regulated hydropower is
a flexible renewable energy source that is well suited to provide such services. The increased demand
for flexibility has led to the requirement of more detailed optimization models, such that the flexible
power units can perform an optimal allocation of resources in the different power markets for energy
and ancillary services. In this work, we focus on rotating reserve capacity, providing what is normally
referred to as primary and secondary reserves.

The stochastic dual dynamic programming (SDDP) algorithm proposed in [1] is commonly
used for hydropower scheduling and can be seen as a sampling-based approach of the nested
Benders decomposition proposed in [2]. The sampling-based method for solving multistage stochastic
programming problems consists of two main procedures: the forward and backward pass. Instead of
visiting all nodes in the scenario tree, the forward pass samples a set of scenarios used to generate
candidate solutions. The backward pass follows the trajectories of the candidate solutions computed in
the forward pass, starting from the final stage, to approximate the expected future profit (EFP) function.
Subsequently, a statistical confidence interval can be computed for controlling the convergence of the
method. A more in-depth explanation of the method can be found in [3–5].

In this work, we investigate how improvements in the SDDP algorithm, derived from the
stochastic dual dynamic integer programming (SDDiP) algorithm [6], can be used to improve the
medium-term hydropower scheduling (MTHS) problem under uncertainty. The MTHS problem
normally covers a planning horizon of one to three years, aiming at maximizing a single producer’s
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expected profit. We have from ongoing research experienced that SDDiP requires considerably more
computational force than SDDP [7]. Nevertheless, an improved type of the Benders (B) cuts, called
strengthened Benders (SB) cuts, derived from the SDDiP method, show promising results by improving
the convergence of the algorithm with a reasonable increase in computation time. The generation of
SB cuts requires solving an additional mixed integer programming (MIP) problem to compute the
right-hand-side parameter of the cut. This provides an at least as good a cut as the original B cut.

A considerable amount of research has been conducted for solving the nonconvex MTHS problem,
such as [8–11]. Except [10], which proposed a novel approach that uses step functions to model
a nonconvex EFP function, they all rely on solving some relaxation of the original problem. This is also
the case for the SB cuts applied in this work. However, instead of solving the Lagrangian problem to
convergence to obtain the cuts, one solves the Lagrangian problem only once, as elaborated in Section 3.2.

For the MTHS problem, a hybrid stochastic dynamic programming (SDP)-SDDP method
is currently the state-of-the-art in the Nordic power system. This method was developed in the
late 1990s and uses a discrete Markov chain to describe the price uncertainty and an autoregressive
model to describe the inflow to the reservoirs [5,12]. The discrete Markov chain is used to circumvent
the nonconvexity caused by the bilinear term where the energy price and the generation are multiplied.
As the uncertainty is described by two different stochastic processes, it is challenging to model
correlations between these processes. For an MTHS problem with weekly decision stages, it has
been shown that the correlation between inflow and energy price has not been too significant
on a weekly basis, yielding sufficient results by the hybrid SDP-SDDP method [12]. Nonetheless,
adding additional markets would extend the dimension of the Markov chain. This comes at a
significant increase of computational cost, as presented in [13], where a reserve capacity market
was added to the Markov process for an MTHS problem. The recent works [14,15] proposed an
elegant approach for including uncertainty in the objective function for dynamic programming (DP)
problems, utilizing the fact that the EFP function is a saddle function that is convex w.r.t. to the
objective coefficient and concave w.r.t. the state variables. In the following work, we build on the work
in [15] to model the MTHS problem with uncertainty of inflow, energy, and reserve capacity price.

Contributions

The work carried out in this paper is based on earlier work on developing improved methods to
solve the MTHS problem, as in [7,16]. The main contributions are:

• A procedure to visualize and evaluate the shape of the EFP function to give a better insight into
the nonconvexities in dynamic programming problems.

• The application of SDDP with SB cuts on a realistic nonconvex MTHS case study. The SDDP
model considers correlated stochastic processes of inflow, energy, and reserve capacity price.

• The representation of nonconcave generation functions that are dependent on discharge and water
head by concave regions.

2. The Medium-Term Hydropower Scheduling Problem

A dense formulation of the MTHS problem is given as the following multistage stochastic
programming problem:

max
(x1,y1),...,(xT ,yT)

Eξ̃

{
T

∑
t=1

ft(xt, yt, ξ̃t)

}
(1)

s.t. Wxt + Hxt−1 + Gyt = h(ξ̃t) (2)
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Byt = 0 (3)

Cyt − Dxt ≥ 0 (4)

Cyt + Dxt ≤ Cymax (5)

(xt, yt) ∈ Yt (6)

xt ∈ Rk1 ·Zk2 , yt ∈ Rl1 ·Zl2 (7)

∀t ∈ {1, 2, . . . , T}. (8)

The state variables, xt, carry information between stages with a known initial state, x0.
Stage variables are given by yt. The objective is to maximize the expected value of some real
value function ft that describes the profit the system can obtain. The expectation is taken over
ξ̃t, which describes a stochastic process of the inflow to the reservoirs as well as energy and reserve
capacity prices. The matrices W, H, G, B, C, D are of suitable dimensions and define the parameters
for a given hydropower system. The time-linking constraints in Equation (2) constrain the unit
commitment of hydro stations and provide reservoir balances, where the function h(ξ̃t) describes the
inflows to the reservoirs. The energy balance is given by Equation (3). The system’s ability to provide
reserve capacity is included in Equations (4) and (5). The generation function defining the relationship
between power output, discharge and net head for each station, and the head function, describing
how the head is related to reservoir volume, are also described by these constraints. More details on
the these functions are given in Section 2.1. Other system constraints, not imperative for this study,
are given in Equation (6).

In contrast to earlier characterizations of the MTHS problem, such as [5], where the objective
was to maximize income from selling only energy, we extend this to include sales of reserve capacity.
In order to keep the MTHS tractable, we define the reserve capacity as a composition of the provision
of primary and secondary reserves. Further operational details associated with participation in the
different markets are left for the short-term hydropower scheduling (STHS) problem [17] to handle.

2.1. Generation Function

The generation function describes a power station’s power output. An illustration is given in
Figure 1, where the generation is a function of discharge and net head. Since the generation function
describes the station’s overall power output, one must assume that the units are started by a given
sequel. The station consists of two units, as can be seen from the two concave regions along the water
discharge in Figure 1.

Due to the computational complexity of the MTHS problem, the generation function is normally
cast as a concave function, where the power output only depends on discharge. For a well-regulated
and loosely-constrained hydropower system where the producer only considers sales of energy,
this assumption is reasonable. Roughly speaking, the optimal solution is to discharge as much water
as possible in the hours with the highest energy prices and produce nothing the rest of the year.
However, as discussed in Section 1, we expect that hydropower plants will more frequently run at
low-level power output in the future to provide ancillary services. Similar behavior might also be
imposed by environmental constraints, such as minimum discharge limits for certain periods of the year.
While operating at low power outputs, the linear optimization model will observe a higher power output
than what is physically feasible and thus overestimate the system’s potential profit, as discussed in [7,16].
This overestimation can be avoided by more accurate modeling of the generation function. However,
such improvements bring about increased model complexity and computation time. In the following,
we define the generation function as a nonconcave function of net head and discharge. The generation
function of a power station, for a given stage t, is defined by the following:
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pc ≤ αiqc + bixc + βih, ∀i ∈ K(c), ∀c ∈ C (9)

Qmin
c xc ≤ qc ≤ Qmax

c xc, ∀c ∈ C (10)

Pmin
c xc ≤ pc ≤ Pmax

c xc, ∀c ∈ C (11)

∑
c∈C

xc ≤ 1 (12)

xc ∈ {0, 1}, (pc, qc) ∈ R+ (13)

where h is the net head, i.e., height difference between the station’s upstream reservoir and
the tailwater level. The set C contains concave regions of the generation function, where the
discharge, qc, and generation, pc, are constructed for each of these regions. For each concave
region, the generation function is bounded above by a set of hyperplanes, K(c), with coefficients
αi(c) and βi(c), and a right-hand side parameter bi(c). The generation function describes the entire
station’s power output; therefore, one must make an assumption that the units are started in a certain
sequence. This sequence of starting up new units leads to nonconcavities in the generation function,
as seen in Figure 1. Furthermore, another source of nonconcavity comes from the fact that power
output for a hydropower station is a nonconcave function w.r.t. head. Therefore, one must make a
trade-off between accurate problem formulation and computation time. To tackle this, we base our
implementation on the generation function presented in [16].
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Figure 1. A generation function dependent on net head and discharge. For the purposes of illustration,
the z-axis is given by the energy equivalent [MWh/m3].

Several authors have investigated how to include variable head in the hydropower scheduling
problem. Most of the publications are related to solving the STHS problem; see [17–20]. There has also
been some work conducted on how to include variable head in MTHS problems [8,21]. A nonconcave
generation function is described in [8], using a piecewise-linear approximation. The formulation
in [8] requires one binary variable for each discrete point of the generation function, compared to one
binary variable for each concave region in the generation function, as in Equations (9)–(13). In [21],
the generation function is approximated by hyperplanes, and the authors propose a quadratic function
to describe the relationship between head and reservoir volume. The bilinear terms are divided into a
grid with different cells, where each cell is represented by McCormick envelopes [22]. Our approach
avoids the bilinear term as the generation function is described by a set of hyperplanes for each of the
concave regions. The method of using hyperplanes to describe the generation function is not novel,
e.g., as proposed in [20], so our approach is thus an extension to an already established methodology.

The head function, relating head and reservoir volume, can for most Norwegian reservoirs be
approximated by a concave function without significantly compromisingaccuracy. Most Norwegian



Energies 2019, 12, 189 5 of 15

hydropower plants have a relatively high head, and generation is typically less dependent on head
variations than it is for hydropower systems in other parts of the world. An illustration of the head
function is given in Figure 2, where the head function is illustrated with some constructed reservoirs.
One can observe that the head function is concave for a reservoir with a monotonically-increasing
cross-section, but it may be nonconcave for a reservoir that inhabits a subsurface cave.
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Figure 2. (Right) Cross-section of some artificial hydropower reservoirs. (Left) Head as a function of
reservoir volume for the same reservoirs (corresponding line style). It is assumed that, from the view
of the cross-section, the reservoirs has a depth of one unit.

2.2. Stochastic Processes

To solve the MTHS problem with uncertain inflow, energy, and reserve capacity price, we apply a
vector autoregressive model of order one (VAR-1); see Equation (14).

nt = Φnt−1 + ξ̃t (14)

rt = µt + σtnt. (15)

where nt is the vector of the normalized stochastic processes, Φ is a time-invariant correlation matrix,
and ξ̃t is a vector of white noise with realizations denoted as ξt. The physical realizations rt of
the normalized variables are given by Equation (15), where µt and σt are the expected value and
standard deviation of the processes. pt is defined as the subset of rt that describes the objective term
coefficients. As described in [15], these coefficients must be computed a priori to solving the stage-wise
decision problem. Thus, the energy and reserve capacity prices are found beforehand and provided
as parameters to the stage-wise decision problem, while the constraints on the normalized inflows
are included in the weekly decision problem. Note that the normalized inflows can be calculated
a priori and provided to the optimization problem as a parameter, but for modeling convenience,
they are added as constraints. The treatment of objective term uncertainty in the SDDP method was
first described in [15] and is further discussed in Section 3.3.

3. Methodology

The following section first describes how one can visualize and inspect the EFP function.
Following that, it gives some insight into how the uncertain objective function is included and how the
SB cuts introduced in [6] are used to solve the MTHS problem with variable head and price uncertainty.
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3.1. The EFP Visualization Approach

In order to gain insight into the shape of EFP function, we solve the extensive form of the MTHS
problem given by Equations (1)–(8). By visually inspecting the EFP function, one can get a first-hand
impression whether it can be approximated using SB cuts with sufficient accuracy or not.

To solve the extensive MTHS problem, we rely on a tractable scenario tree representing some of
the underlying uncertainty with a one-year planning horizon. Then, by looping over different initial
reservoir levels, re-solving the MTHS problem, and storing the objective value, one can obtain an estimate
of the EFP function for the first stage. This procedure is performed for some cases of the MTHS problem
with and without capacity reserves, as seen in Figure 3.
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Figure 3. (Left) EFP with sales of reserve capacity and energy. (Middle) EFP with sales of energy.
(Right) Different head functions. The colors of the lines in the two leftmost figures refer to the head
function, h(V), in the right figure. The different head functions are constant (Const), concave (Conc),
original (Orig) and nonconcave (NConc), respectively. The ConstLP function refers to the linear
programming relaxation of the MTHS problem. Both dashed lines refer to the constant head function;
thus, the power output only depends on discharge.

The approach is limited in the sense that it only provides an approximation of the EFP function
for a given time stage. Moreover, it can only provide meaningful visualizations a few state variables
at a time. The results should therefore only assist the modeler in the choice of what approach to use.
Note that this visual approach can be combined with numerical indices, such as those presented in [23],
to indicate the degree of nonconcavity of the MTHS problem.

Inspecting the EFP for the MTHS at Hand

The MTHS problem, given by Equations (1)–(8), was defined with different head functions;
a highly concave, highly nonconcave, constant and the actual function for a given reservoir. They are
illustrated in the right plot in Figure 3. The resulting EFP function is given in the two leftmost plots,
where the plot to the left includes sales of reserve capacity. It is clear that the shape of the head function
has a significant impact on the corresponding shape of the EFP function, yielding information that can
be used for deciding which solution strategy, and possible required simplifications, one should use.

The two EFP functions corresponding to a constant head are plotted (in black, dashed lines).
One of them is the linear programming (LP) relaxation, denoted as PQHLP. As expected, the LP
relaxation yielded a concave EFP function. Moreover, the LP relaxation significantly overestimates
the EFP function. Since the EFP function with the actual head function is not a highly nonconcave
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function, we expect that representing the generation function by piecewise-linear functions (cuts)
provides acceptable results.

3.2. DP Formulation

In SDDP, the forward pass is used to generate valid candidate solutions that are used for computing
the EFP function in the backward pass. All possible candidate solutions generated in the forward
pass must, therefore, be present in the solution space in the problem used in the backward pass. The EFP
function is described by an upper approximated piecewise-linear concave function, generated in the
backward pass. For the forward pass, we define the following DP problem for iteration i:

FPi
t : Qi

t(xt−1, ut−1, ξt) := max
xt ,yt ,zt ,ut

ft(xt, yt, ut, ξt) + φi
t(xt, ut, ξ̃t+1) (16)

s.t. (zt, xt, yt) ∈ Xt(ξt) (17)

zt = xt−1 (18)

(zt, ut) ∈ R, (xt, yt) ∈ R ·Z. (19)

The objective function (16) consists of the present profit function, ft, and the EFP function φi
t.

The problem is constrained by the set Xt and the copy constraint Equation (18) as described
in [6] together with the copy variable zt. In addition to the state and stage variables (xt and yt),
the additional state variable ut is included in the formulation to include the uncertain objective
coefficients, as discussed in [15].

In order to compute the EFP function, we define a backward pass problem, BPi
t, where integrality

has been relaxed.

BPi
t : Qi

t(xt−1, ut−1, ξt) := max
xt ,yt ,zt ,ut

ft(xt, yt, ut, ξt) + φi
t(xt, ut, ξ̃t+1) (20)

s.t. (zt, xt, yt) ∈ Xt(ξt) (21)

zt = xt−1 (22)

(zt, ut, xt, yt) ∈ R. (23)

By solving BPi
t, we obtain the cut coefficients πi

t, from the dual values of the copy constraint in
Equation (22). The cut coefficients aligned with the objective-term uncertainty are purely given by the
sampled value, as described in [15]. Further, the cut used to describe the EFP function is enhanced by
solving the following Lagrangian problem based on a Lagrangian relaxation of problem FPi

t.

LGi
t : Li

t(πt) := max
xt ,yt ,zt ,ut

ft(xt, yt, ut, ξt) + φi
t(xt, ut, ξ̃t+1)− π>t zt (24)

s.t. (zt, xt, yt) ∈ Xt(ξt) (25)

(zt, ut) ∈ R, (xt, yt) ∈ R ·Z, (26)

By solving the Lagrangian problem, one can obtain the SB cut, as proposed in [6]. Note that the
constant term π>t xt−1 is neglected in the Lagrangian problem as it would be subtracted in the SB cut,
which is given as;

θt ≤ ∑
m∈C(t)

qtmLm(π
i
m) + ∑

m∈C(t)
qtm(π

i
m)
>xt − (pi

t)
>µt. (27)

Similarly, the B cut is given as:

θt ≤ ∑
m∈C(t)

qtmQi∗
m + ∑

m∈C(t)
qtm(π

i
m)
>(xt − x∗t )− (pi

t)
>µt. (28)
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where Qi∗
m is the objective value of BPi

m and x∗t is the candidate solution. The problem is solved for
m ∈ C(t), where C(t) is the set of children nodes from a node in stage t and qtm is the conditional
probability. Recall that SDDP requires the stochastic variables to be stage-wise independent; therefore,
the set C(t) is the same for all nodes in time stage t. The function φi

t(xt, ut, ξ̃t+1) is thus confined by
some upper bound and the acquired set of B or SB cuts.

3.3. Uncertainty Modeling

In the following, we provide some insight into how the objective term uncertainty modeling
is done. For the purposes of illustration, we assume that all state variables are fixed and that we only
look at the terms where the auxiliary term ut is present. Assume that two samples of the objective term
coefficient p1

t and p2
t are available and that two cuts were constructed around these. Subsequently,

a third sampling is done, and the problem to be solved can be given as:

max
ut

{
p3

t ut + θt : θt ≤ Ci
t − pi

tut, (θt, ut) ∈ R+, ∀i ∈ {1, 2}
}

. (29)

Since the state variables are assumed fixed, they are embedded in the constant term Ci
t. One can

see that the problem consists of maximizing the present profit, p3
t ut, and future profit, described by

the two cuts. The problem given by Equation (29) is, therefore, able to assert whether there is an
expectancy for greater profits in the future or not, depending on the current realization of the objective
term coefficient. An illustration of this is given in Figure 4.

𝜙𝑡 𝑢𝑡

𝑢𝑡

𝑝𝑡
3𝑢𝑡𝜃𝑡 ≤ 𝐶1 − 𝑝𝑡

1𝑢𝑡

𝜃𝑡 ≤ 𝐶2 − 𝑝𝑡
2𝑢𝑡

Figure 4. Illustration of the representation of the uncertain objective term price. The EFP function w.r.t.
to the auxiliary variable ut is given, and xt is assumed fixed and added to the parameter C. Observe that
the cuts represent the potential for future profit, whereas the sampled objective term coefficient p3

t
describes the present profit potential. Thus, the model can compute the trade-off between them.

The algorithm for how the MTHS problem is solved is given in the next section.

3.4. Solution Approach

We define Algorithm 1 based on the SDDP framework. As seen from Lines 14 and 16 in the
algorithm, one can choose which type of cut (B or SB) to use. After a certain amount of iterations, a final
simulation is carried out on a larger set of scenarios.

Note that convergence cannot be guaranteed as FPi
t is a nonconcave function w.r.t. the state

variables. However, the approach will give an approximate solution that can yield good results
depending on how nonconcave the true EFP function is. The nonconvexity of the EFP function can be
visualized by the approach proposed in Section 3.1. Other measures to characterize how prominent
the nonconcavities are could also be performed, as in Chp. 7.2. of [23].
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Algorithm 1: Solving the MTHS problem.

1 Set xi
0, i← 1, UB = +∞, and LB = −∞

2 while i < imax or some other stopping criteria do

3 Sample N scenarios Ωi = ξk
1, . . . , ξk

Tk=1,...,N
/* Forward iteration */

4 for k = 1,. . . ,N do
5 for t = 1,. . . ,T do
6 Solve FPi

t, and collect solution ft from Equation (16)
7 lbk ← Σt=1,...,T ft

/* Compute lower bound */
8 µ← 1

N ΣN
k=1lbk and σ2 ← 1

N−1 ΣN
k=1(lb

k − µ)2

9 LB← µ + zα
σ√
N

/* Backward iteration */
10 for t = T, . . . , 2 do
11 for k = 1,. . . , N do
12 for m∈ C(t) do
13 Solve BPi

t, and collect πi
m from Equation (22)

14 if B cuts then
15 Collect Qi

t from Equation (20)
16 else if SB cuts then
17 Solve LGi

t, and collect Li
t from Equation (24)

18 Collect pt ⊂ rt from Equation (15)
19 Add desired cut to φi

t
/* Compute upper bound */

20 UB← Qi
1(xi

0, u0, ξ i
0)

21 i← i + 1
/* Final simulation */

22 Sample M scenarios Ωi = ξk
1, . . . , ξk

Tk=1,...,M
23 for k = 1,. . . ,M do
24 for t = 1,. . . ,T do
25 Solve FPi

t, and collect solution ft, xik
t , yik

t from Equation (16)-(19)

26 lbk ← Σt=1,...,T ft

/* Compute lower bound */

27 µ← 1
M ΣM

k=1lbk and σ2 ← 1
M−1 ΣM

k=1(lb
k − µ)2

28 LB← µ + zα
σ√
M

4. Case Study

The case study is a representation of a Norwegian hydropower system, comprised of three
reservoirs and two power stations. The power stations have 13.8 MW and 365 MW of installed capacity.
There is a short-term and long-term reservoir connected to the largest power station, as seen in Figure 5.
Thus, the aim for the long-term reservoir is to store as much water for usage in the most remunerated
hours during the year, while the short-term reservoirs need to be properly managed in order to avoid
spillage. This system was also used as a study case in [7,24].

The VAR-1 model representing the stochastic processes was fitted to 70 historical years of inflow
and energy prices obtained from a fundamental market model generating energy prices for those
70 years [25]. Historical prices for the primary reserve market are used to describe the reserve capacity prices.
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Figure 5. Illustration of the hydropower system. There are three reservoirs, each represented by its
relative storage capacity and inflow compared to the system as a whole. As an example, Reservoir 1 has
7% of the system’s storage capacity and 51% of the inflow. Reservoirs 2 and 3 have a hatch downstream
that controls which reservoir is depleted. Only one of the reservoirs can be depleted at a time, due to
their different head. Reservoir 2 can also bypass water, indicated by the arrow between the reservoirs.
The hydropower stations are represented by their maximum power at nominal head, discharge and the
energy equivalent ( MW

m3/s MWh/m3). Since the lower power station is connected to two reservoirs, it has
different efficiencies, depending on which reservoir is depleted.

We use weekly decision stages. Each weekly decision problem consists of 1858 constraints
(not considering the cuts) and 1152 variables (837 continuous and 315 binary). There are 104 weeks in
the scheduling horizon, and we consider 15 branches in the backward pass of the SDDP algorithm.
Each week has 21 time-steps representing three time blocks of the day. Three scenarios are sampled for
each forward SDDP iteration, and the final simulation is carried out with 300 scenarios. We use the
same sampled scenarios for all cases. From the final simulation, a confidence interval is computed.
The problem was formulated in C++ with Gurobi 7.5 as the optimization solver. The computations were
carried out on a computer cluster with two Intel Xeon E5-2690 v4 processors, 2.6 GHz, and 384 GB RAM.
No parallelization was carried out except the one from the optimization solver. Parallelization in
the SDDP framework is well studied, as in [26], and thus neglected in this work. It would, however,
contribute to significantly reducing the CPU time.

Results and Discussion

In the following, the results from Algorithm 1 are outlined with the use of both B and SB cuts.
The MTHS problem was first solved with uncertainty of inflow, reserve capacity, and energy price.
A case with only uncertainty in inflow was performed for comparison.

The convergence plot for Algorithm 1 is shown in Figure 6, when B and SB cuts were used. It is
clear that the SB cuts provided significantly tighter cuts and a better policy. One can also observe that
the upper bound converged slowly and would most likely continue to improve with more iterations.
The computation time did, however, become more prominent for SB cuts, as seen in Table 1. Algorithm 1
required approximately five-times more time with SB cuts than with B cuts. The use of parallel processing
could easily drive the computation time down, making the use of SB cuts better suited for daily
operational use.
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Figure 6. Convergence of the approach with Benders and strengthened Benders cuts.

Table 1. Economic and computational performance of the two case studies with use of either B or SB
cuts. Uncertainty of inflow, reserve capacity, and energy price (top) and uncertainty of inflow (bottom).

UB stat. LB Gap Time
(kNOK) (kNOK) (%) (h min)

B 1,209,510 502,838 58.4 5 17
SB 820,466 525,493 36.0 23 59

B 1,017,580 537,808 47.1 5 52
SB 614,616 563,280 8.4 34 31

The expected value of water, or water values (WV), for the largest reservoir in the system are
shown in Figure 7. The WVs were computed by fixing all the other state variables in the EFP function
and finding the coefficients of the binding cuts. One can observe that even though the cut coefficients
from both B and SB cuts came from the problem BPi

t, the water values for the SB cuts were generally
lower than the B cuts. This can be seen as a result of the right-hand-side in the SB cuts being lower,
therefore lowering the cuts, which resulted in a lower water value for the same state, as the EFP
function is concave. An illustration of this is given in Figure 8, where two cuts are generated in the
first iteration of the SDDP algorithm. The coefficients of the cuts were the same for both SB and B cuts,
but as seen from the top left and right plot, the SB cuts had a tighter right-hand side. This results in
the water values given in the lower plot. After consecutive iterations, the water values with SB cuts
tended to stabilize on lower values, which is a reasonable observation as the SB cuts made the model
see less expected profit in the future.

A percentile plot of the reservoir trajectories for the largest reservoir is shown in Figure 9, for both
B and SB cuts. The figure clearly shows how the algorithm was able to utilize the reservoir better when
SB cuts were used. When B cuts were used, the algorithm saw a higher expected future profit than
what was achievable, resulting in a simulated operation at very high reservoir volumes. Implications
of this can be seen in Figure 7b,d, where the change in water values is substantial around Week 18,
due to the spring flood, giving a high risk of spillage for large reservoir volumes.

In Table 1, the bounds of the algorithm are shown, computed from the final simulation, together with
the percentage-wise gap and computation time for the 50 forward and backward iterations. For comparison,
the problem was solved with only uncertainty of inflow, which is given in the bottom half of the table.
Observe how the convergence properties improve, indicating that the approach of including objective
term uncertainty in SDDP by [15] requires more iterations. In validation studies using a smaller system
with fewer decision stages, it was observed that the approach does slowly converge. This illustrates the
difficulty of solving multi-stage stochastic problems with high dimensions of uncertainty.
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(a) With SB cuts.
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(b) With B cuts.
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(c) With SB cuts and only uncertainty of inflow.
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(d) With B cuts and only uncertainty of inflow.

Figure 7. Water values for Reservoir 2 for the different case studies.
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Figure 8. Illustration of the B and SB cuts and how this affects the water value.
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Figure 9. Percentile plot of reservoir trajectories for Reservoir 2. (Top) With Benders cuts and (bottom)
with strengthened Benders cuts.

5. Conclusions

A medium-term hydropower scheduling (MTHS) problem with variable head and uncertainty
in inflow, reserve capacity, and energy price was investigated. The proposed model based on the stochastic
dual dynamic (SDDP) method included correlations between the different stochastic processes and allowed
for representation of a detailed hydropower system.

By means of visualization, we found that the expected future profit (EFP) function for the MTHS
case study was not highly nonconcave, and we argue that the approximation of the EFP as a concave
function within the SDDP method is a fair compromise between accuracy and computation time.
We compared two types of Benders cuts to approximate the EFP function, namely the Benders (B) and
the strengthened Benders (SB) cuts.

In the presented case study, it was found that the use of SB cuts provided a significantly better
policy than with the use of B cuts. The policy improvement comes at an increased computational time,
around five-times higher for SB than B in the case study. Moreover, we found that the inclusion of
objective term uncertainty led to significantly slower convergence.
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Abbreviations

The following abbreviations are used in this manuscript:

B Benders
DP Dynamic programming
EFP Expected future profit
LP Linear programming
MIP Mixed integer programming
MTHS Medium-term hydropower scheduling
SB Strengthened Benders
SDDiP Stochastic dual dynamic integer programming
SDDP Stochastic dual dynamic programming
SDP Stochastic dynamic programming
WV Water values
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