
June 2008
Alexey Pavlov, ITK
Neil Stembridge, ABB

Master of Science in Engineering Cybernetics
Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Engineering Cybernetics

Optimal 3D Path Planning for a 9 DOF
Robot Manipulator with Collision
Avoidance

Kristoffer Aasland

Problem Description
Oil and gas (O&G) companies are continuously aiming to reduce both capital and operating costs of
O&G installations, whilst maintaining an absolute focus on Health, Safety and Environment (HSE).
As a means of achieving these goals, it is proposed to develop a fully automated offshore O&G
installation, which can be operated from an onshore site. If a fully automated offshore installation
concept is to prove feasible, the robot manipulator must be able to access all areas of the process
equipment, such that relevant inspection and maintenance tasks can be conducted.

Previous project on this subject provided algorithms for path planning with collision avoidance for
a simplified model of the robot manipulator in a simplified environment. In this project the
emphasis should be on improving the efficiency of the proposed algorithms, achieving optimality of
the planned paths and implementing the algorithms for a realistic model of the ABB robot
manipulator for simulations as well performing experiments on a test rig either at ABB in Oslo.
The main tasks of this project are outlined as follows:

• Create a realistic model of the 9 DOF ABB robot manipulator.
• Try out different methods for making a sample-based global path planner, in the specific
case of the robot and environment used by ABB, to increase the chance of finding a feasible path.
• The planner should be optimized at the following areas: 1. High chance of finding a
feasible path. 2. Short query time. 3. Short path
• Investigate the path planning problem for the
case of given initial and final configurations and optionally for the case when only the position and
orientation of the end effector are specified.
• Investigate the obtained results with simulations
• Implement the path planner and perform experiments on the test rig at ABB in Oslo.
• Document the obtained results.

Assignment given: 07.01.2008
Supervisor: Assistant Professor Alexey Pavlov, ITK NTNU
Co-supervisor: Dr. Neil Stembridge, ABB

Assignment given: 07. January 2008
Supervisor: Alexey Pavlov, ITK

Preface

This paper is the result of a 30 credits master thesis in the 10th term of the
Master of Engineering Cybernetics education at the Norwegian University
of Science and Technology (NTNU). In this paper an optimal 3D path plan-
ning scheme with collision avoidance for a robot manipulator is described.
The optmail 3D path planning scheme is based on the well know Probabilis-
tic RoadMap (PRM) method. It is optimal in the sense of greatest chance
finding a feasible path, if it exsists, query time and path length. The effect
of using a powerful local path planner based on the potential field method
is also investigated.

I would like to thank my supervisor at NTNU, Alexey Pavlov, for guiding
me through this project and help keeping me on the right track. Also thank
to ABB for providing the task and connecting it to a practical application.
And last, a great thank to my co-supervisor Neil Stembridge at ABB that
has made a great effort working on the implementation of the path planner
on the real system.

Kristoffer Aasland
28 May 2008

i

Abstract

This paper describes development of an optimal 3D path planner with col-
lision avoidance for a 9 DOF robot manipulator. The application of the
robot manipulator will be on an unmanned oil platform where it will be
used for inspection. Most of the time the robot manipulator will follow
a pre-programmed collision-free path specified by an operator. Situations
where it is desirable to move the end effector from the current position to a
new position without specifying the path in advance might occur. To make
this possible a 3D path planner with collision avoidance is needed.

The path planner presented in this paper is based on the well known Prob-
abilistic Roadmap method (PRM). One of the main challenges using the
PRM is to make a roadmap covering the entire collision free Configuration
space, Cfree, and connect it into one connected component. It is shown
by empirical testing that using a combination of the Bridge Sampling tech-
nique and a simple Random sampling technique gives best Coverage of the
Cfree space and highest Connectivity in the roadmap for the given environ-
ment. An algorithm that increase the Connectivity and sometimes provide
MaximalConnection is also described. A bacup procedure that can be ex-
ecuted on-line if a query fails is also presented. The backup procedure is
slow, but it increases the chances of succeeding a query if the goal is in a
difficult area. It is also investigated if the coverage and connectivity can be
further improved by using the potential field planner when connecting the
waypoints. Empirical testing showed that the improvements of Coverage
and Connectivity were limited, and the sampling and query time increased.

The query time for a roadmap containing 400 nodes and one containing
1000 nodes was compared. It turned out that a large roadmap did not
necessarily affect the query time negative because it made it easier to con-
nect the start and goal nodes. Three existing path smoothing algorithms
and a new algorithm, called Deterministic Shortcut, were implemented and
tested. Empirical testing showed that the Deterministic Shortcut algorithm
outperformed the others when it came to path smoothing versus time.

ii

Contents

1 Introduction 4

1.1 Motivation . 4

1.2 Optimal 3D Path Planning with collision avoidance 5

1.3 Project Scope . 5

1.4 Paper layout . 5

2 Preliminaries 7

2.1 The Robot Manipulator . 7

2.2 The Configuration Space . 7

2.3 The Workspace . 8

3 Literature study 9

3.1 Potential Field Planner . 10

3.1.1 The Attractive field 11

3.1.2 The Repulsive field . 12

3.1.3 Mapping Workspace Forces to Joint Torques 13

3.1.4 Gradient Descent Planning 13

3.2 Cell Decomposition . 14

3.3 Probabilistic RoadMaps (PRM) 15

3.3.1 The Learning Phase 18

1

3.3.2 Sampling tecniques . 19

3.3.3 Collision Detection and Path Planning 21

3.3.4 Defining neighbors and connecting strategy 22

4 Robot Representation And Modeling 24

4.1 Forward Kinematics . 24

4.2 Manipulator Jacobian . 27

4.3 Robot Modeling in Matlab . 27

4.4 Modeling the Process Equipment 28

4.5 Distance Metric . 29

5 Optimal 3D path planner 32

5.1 Optimization criteria . 32

5.2 Test set up . 33

5.3 Learning phase . 35

5.3.1 Gaussian Sampling . 35

5.3.2 Bridge test . 37

5.3.3 Grid Based . 40

5.3.4 Comparison of test results 41

5.3.5 Connection Sampling 44

5.4 Query phase . 48

5.4.1 Connecting start and goal node 48

5.4.2 Backup Procedure . 52

5.4.3 Path Smoothing . 53

5.5 Robust path . 62

5.6 Local planner . 63

5.7 Connect to point . 65

2

6 Implementation at ABB 70

6.1 Differences between real system and model 70

6.2 Implementation and implementation issues 71

6.3 Communication between programs 72

7 Final Discussion and conclusion 74

A Matlab Program 77

B Robot data sheets 79

*

3

Chapter 1

Introduction

1.1 Motivation

In petroleum industry, as in all industry, there is always a demand of in-
creasing efficiency, lower production costs and at the same time more focus
on EHS, environment, health and safety. In addition to this the access to
hydrocarbon reservoirs is getting harder and often lead in to very harsh en-
vironment, such as arctic areas and distant deserts. One way of facing these
challenges is to make the oil platforms unmanned and control them from
a remote control station. This would result in better EHS and decreasing
costs due to less off shore manpower and considerably smaller and lighter
platforms. Realization of unmanned oil platforms would make it econom-
ically reasonable to extract oil and gas from small reservoirs that is not
economically reasonable with existing technology.

One of the main challenges on an unmanned platform is to be able to control
and measure everything that’s happening to be sure it works satisfactorily.
One way of solving this challenge is to equip the platform with a lot of
different sensors. But to be able to get a satisfactorily monitoring this would
demand a enormous amount of sensors, which would be very expensive. A
cheaper and more flexible solution is letting robots do the job. Using robots
brings new challenges in to the light. One of them is to move the robot
from one position on the platform to a completely different position on the
platform without colliding it into any of the process equipment.

4

1.2 Optimal 3D Path Planning with collision avoid-
ance

An extensive research has been done regarding path planning with collision
avoidance for different kinds of robots, both in 2D and 3D environments.
There exists many different methods that work well for robots with a low
degree of freedom and in 2D environments. Problems for path planners with
collision avoidance arise when dealing with robots with many degrees of
freedom in 3D environments. Then a lot of the path planning methods fails
or gets to complex to implement. Another factor that add the demand to the
path planner is the complexity of environment and surrounding obstacles.
For the robot manipulator and the environment used in this project, all the
mentioned factors that complicates the task above is presented.

For some of the path planners developed earlier years the computation-
ally cost and storage has been a problem, especially working with robot
manipulators with many degrees of freedom. As known has the computer
performance increased many times the last 10 years and storage has be-
come incredible cheap. This has made it possible to develop very accurate
path planners with collision avoidance that finds a collision free path for a
many degree of freedom robot manipulators in a complex environment in a
satisfactorily amount of time.

1.3 Project Scope

In this project is an optimal 3D path planner with collision avoidance for a
9 DOF robot manipulator developed. The path planner is optimized for a
9 DOF ABB Robot manipulator moving within a limited and static envi-
ronment with processing equipment as complex obstacles. The requirement
that the robot manipulator should be able to move between and close to the
obstacles is emphasized. The path planner is optimized given the following
criteria. Highest chance as possible of finding a feasible path when this ex-
ists. The feasible path should be as short as possible and be found as fast
as possible.

1.4 Paper layout

This paper starts with explaining common terms used in robotics in Chapter
2. Chapter 3 summaries the knowledge gained from the literature study
done in the project. Information about different existing path planners is

5

described, some of them in more detail than others. What adds the demand
of the task in this project is the complexity of the robot system. A detailed
description of the 9 DOF robot system and how it is modelled is therefore
given in Chapter 4. The chapter also provide a sketch of the robot and
its corresponding DH table. It also describes how the robot manipulator
is modelled in Matlab. In Chapter 5 the main work done in this project
is presented. It presents how an optimal path planner is developed for
the given robot system and environment. The implementation and real
experiments performed at ABBs test rig in Oslo is presented in Chapter 6.
Implementations issues are described and how they are dealt with. Chapter
6 is then followed by a final discussion and conclusion in Chapter 7.

6

Chapter 2

Preliminaries

In this section a selection of basic terms are explained. They are necessary
to be familiar with to fully understand the content of this paper. The
terms described below is common terms in robotics and are based on the
introduction chapter in [SHV06]

2.1 The Robot Manipulator

A robot manipulator consist of many links connected together. Between to
links there is a joint which can either be prismatic or revolute. A revolute
joint is like a hinge and allows rotation around one axis between two links.
A prismatic joint allows linear motion between two links. The combination
of links and joints forms a kinematic chain.

2.2 The Configuration Space

A robot manipulators pose is referred to as a configuration and gives a com-
plete specification of the location of every point on the manipulator. The set
of all configurations is known as the configuration space. The joint variables
is used to describe a robot in configuration space. The joint variable for joint
number i is qi and is an angle, qi = θi, for a revolute joint and distance,
qi = di, for prismatic joint. A vector q then represent a configuration.

The number of ”degrees of freedom”, DOF, of a robot manipulator is given
by its number of joints. To be able to reach a point in workspace in an
arbitrary orientation a robot manipulator needs 6 DOF, 3 for positioning

7

and 3 for orientation. The number of DOFs is equal to the dimension of the
configuration space. The robot used by ABB, an ABB IRB 2400/16, has
6 revolute joints and is connected to a gantry crane which has 3 prismatic
joints. Hence the configuration space of the entire system has 9 dimen-
sions. When a manipulator has more than 6 DOF it is called a redundant
manipulator.

When dealing with collision avoidance the configuration space is often bro-
ken up in two parts. The configuration space of interest is then the Cfree
space which is the set of configurations where the manipulator do not inter-
sects with any obstacles.

2.3 The Workspace

The workspace of a manipulator is the total volume swept out by the end
effector as it executes all possible motions. The workspace is constrained by
the manipulators joint limits and its geometry. The robot used by ABB is
operating in a 3 dimensional works space.

The Denavit Hartenberg link frame convention (DH) and the Manipulator
Jacobian are also two common terms in robotics. If the reader is not familiar
with these terms please see Chapter 4 for details.

8

Chapter 3

Literature study

Path planning with collision avoidance treats the problem of finding a path
for a robot, with one or many DOFs, in a static or dynamic environment.
It is important to distinguish between path and trajectory. A path is a
geometric description of robot motions and is made independent of time and
has no dynamic aspects such s velocity or accelerations taken into account.
One usually distinguishes between static and dynamic environments. In a
static environment the location of obstacles is know in advance and can be
modelled in some 3D modelling format. A dynamic environment changes
through time and has mobile obstacles. In this case a priori knowledge of
obstacles is often limited and requires use of sensors to achieve information
about the surroundings. In this project path planning of a robot manipulator
with collision detection in a static environment is considered.

During the last three decades extensive research has been done in the field
of path planning with collision avoidance for robots in a static environment,
from now on just referred to as path planning. This is due to growth in
number of robot applications and greater challenges in the tasks accom-
plished. In addition, planning in many degrees of freedom is becoming more
and more important in emerging applications, e.g. computer animations
[GD98]. Another reason that has increased the research in path planning
and made new methods functional in practice is increase of computer power
and cheap storage.

The solutions to the path planning problem can be divided into to main
methods, graph methods and potential field methods. The graph method
can be further divided into two distinct areas, roadmap and cell decompo-
sition approaches [MC94].

9

3.1 Potential Field Planner

In path planning, knowledge of the Cfree is of great interest. Unfortunately,
making an explicit representation of Cfree is hard, very time consuming
and often impossible. One path planning approach that does not need in-
formation about Cfree in advance is the ”Potential Field” method. The
potential field method incrementally explores the configuration space while
always making sure its inside the Cfree space. This is done by setting up
an artificial potential field, U, to guide the search.

The potential field is set up in a way that it attracts the manipulator to the
goal and repulses it from the obstacles. The closer the robot manipulator
gets to the obstacles the greater is the force repelling it. The repulsive force
can be thought of the same force that occurs when two positive loaded mag-
nets approaching each other. The force attracting the manipulator is greater
the further away it is from the goal, and decreases as it approaches the final
configuration, qf . When the manipulator stops in its final configuration it
has found a global minimum. The challenge of this method is to construct U
such that only one global minimum exist and no local minima exists. This
can be very difficult and sometimes impossible, which is a very big draw-
back of this method. Different extensions of the potential field method is
developed that decrease the chance of getting stuck in local minima. Some
of these extended methods are described in the sub sections below.

As described above the potential field U is the sum of the attractive field
and the repulsive field

U(q) = Uatt(q) + Urep(q)

To be able to find the global minimum of U the problem can be treated as
a optimization problem given a start configuration, qs. One of the simplest
method to solve the optimization problem is gradient descent. In this case
the gradient of U can be considered as a generalized force acting on the
robot in configuration space

τ(q) = −∇U(q) = −∇Uatt(q)−∇Urep(q)

in which τ is a vector of joint torques, if a revolute arm is considered. When
this force or torque is acting on the robot it will follow the steepest descent
toward its final configuration.

Calculating a potential field and finding its gradient in configuration space is
quite difficult. The potential field and its gradients are therefore constructed
in the workspace. All the attractive and repulsive forces acting on the links
are found in workspace and then converted to torques acting on the joints

10

in the configuration spaces using the manipulator Jacobian matrix. When
all the torques acting on one joint are found they are summarized together
to find the final torque acting on that joint.

3.1.1 The Attractive field

The attractive field acts on each of the manipulator joints and will force the
robot towards its final configuration. It should be calculated in such way that
the further away from the goal a joint is, the greater the potential field is. An
attractive potential field is calculated for each joint. Joint i is located at the
origin of the ith DH frame denoted by oi(q). An attractive field that fulfill
the ”increasing” requirement is a conic well potential which has a gradient
with unit magnitude everywhere except of in the final configuration where
it is zero. Unfortunately this means that it is not continuously differentiable
and might lead to stability problems.

To solve this problem a function where the field increase quadratic with the
distance from the goal is introduced. This field is called a parabolic well po-
tential. One problem with this function is that it grows without bounds as q
moves away from qf which could give a very large initial force. A solution to
this problem is to combine both the conic and the parabolic potential field.
The parabolic potential attracts the manipulator when it is close to the goal,
as shown in the first equation below, and the conic potential attracts when
its far away. Such an attractive field could be defined by

Uatt,i(q) =


1
2ζi ‖ oi(q)− oi(qf) ‖2, if ‖ oi(q)− oi(qf) ‖≤ d

dζ ‖ oi(q)− oi(qf) ‖ −1
2ζid

2, if ‖ oi(q)− oi(qf) ‖> d

(3.1)

where d is the distance that defines the transition from conic to parabolic
well potential. ζi is a parameter used to scale the effect of the attractive
potential and can be different for each joint. Typically a larger value is
assigned to one of the joints to get some kind of ”follow the leader” motion.
The workspace attractive force is thus defined by

Fatt,i(q) =


−ζi(oi(q)− oi(qf)), if ‖ oi(q)− oi(qf) ‖≤ d

−dζ
(oi(q)−oi(qf)
‖oi(q)−oi(qf)‖ , if ‖ oi(q)− oi(qf) ‖> d

(3.2)

The gradient is well defined at the boundary of the two fields since at the
boundary d =‖ oi(q) − oi(qf) ‖ and the gradient of the quadratic potential
is equal to the gradient of the conic potential Fatt,i(q) = −ζi(oi(q)− oi(qf)).

11

3.1.2 The Repulsive field

The repulsive potential field is responsible for repelling the manipulator
from the obstacles. It should be constructed in such way that when the
manipulator approach an obstacle the repelling field increase to infinity such
that the manipulator will never collide into an obstacle. In addition, when
the manipulator is a certain distance from an obstacle it should not be
affected by the repulsive field at all.

The attractive field was calculated for each of the joints on the manipulator.
This is not sufficient for the repulsive field to avoid collision because other
points on a link could be closer to an obstacle than the corresponding joint.
Therefore for every link on the manipulator, closest points between the link
and each obstacle in the workspace in a given radius need to be found. These
closest points are then used to calculate the closest distance between a link
and the obstacles. The alternating point on link i is called a floating point,
ofloat,i. One potential function that meets the criteria given above is

Urep,i(q) =


1
2ηi(1

ρ(ofloat,i(q))
− 1

ρ0
)2, if ρ(ofloat,i(q)) ≤ ρ0

0 if ρ(ofloat,i(q)) > ρ0

(3.3)

where ρ0 is the distance limit in which a link should be affected by an obsta-
cle and ρ(ofloat,i(q)) is the closest distance between a link and an obstacle.
ηi is a parameter used to scale the effect of the repulsive potential. This
value could vary for each obstacle. It could be small for obstacles near the
goal to avoid the the repulsive field pushing the robot away from its final
configuration. When this repulsive potential is given the negative gradient
is determined as

Frep,i(q) =


ηi(1

ρ(ofloat,i(q))
− 1

ρ0
) 1

ρ2(ofloat,i(q))
∇ρ(ofloat,i(q)), if ρ(ofloat,i(q)) ≤ ρ0

0 if ρ(ofloat,i(q)) > ρ0

(3.4)

in which ∇ρ(ofloat,i(q)) indicates the gradient evaluated at ofloat,i(q). If b
is the point on the boundary of an obstacle that is closest to a point 0float,i

on link i then the distance between them is ρ(ofloat,i(q)) =‖ ofloat,i(q)− b ‖
and its gradient is

∇ρ(ofloat,i(q)) =
ofloat,i(q)− b

‖ ofloat,i(q)− b ‖

12

that is the unit vector directed from b toward ofloat,i(q) .

3.1.3 Mapping Workspace Forces to Joint Torques

When the attractive, Fatt, and repulsive, Frep, artificial forces in workspace
are found, they need to be mapped to artificial joint torques, τ in configu-
ration space. This is done by using the manipulator Jacobian.

τ = JT
v F (3.5)

where Jv includes the three top rows in the manipulator Jacobian. The
three bottom rows are not used since workspace torqueses are not dealt
with. When mapping the attractive forces the ordinary manipulator Jaco-
bian corresponding to the DH table is used. When mapping the repulsive
forces a dynamic manipulator Jacobian is used that corresponds to a DH
table with varying origins. This has to be dynamic because of the ofloat,i

that is changing due to where on the link the workspace force acts. It is
very important to map the workspace forces to configuration torques before
they are added together and not before.

3.1.4 Gradient Descent Planning

To solve the optimization problem the gradient descent algorithm can be
used. This is a fairly simple version and other versions and extensions exists
[SHV06]. The algorithm goes like this

Algorithm 1 Gradient Descent
1: q0 = qs, i = 0;
2: while ‖ qi − qf ‖> ε do
3: qi+1 = qi + αi τ(qi)

‖τ(qi)‖
4: i = i + 1;
5: end while
6: return[q0, q1,, qi]

As seen from the algorithm it returns a vector with all the configurations
from q0toqi = qf . Note that qi is the ith configuration in the loop and
not the ith component of the vector q. The αi in the algorithm determines
the step size of the ith iteration. This value should be determined small
enough such that the robot don’t jump into any obstacles and large enough
to making the algorithm efficient. ith could be chosen on an ad-hoc or
empirical basis. In optimization literature several systematics methods for

13

finding ith can be found. The ε value is used because it is unlikely to find the
exactly configuration as qf . Therefore ε determine when the manipulator is
close enough to let the algorithm terminate.

As mentioned the main disadvantage with the potential field planning method
is the problem with local minima. One commonly used method to deal with
the local minima problem is an extension of the algorithm above called ran-
domized method. When the manipulator gets stuck in a local minimum
the planner makes a random walk to escape the local minimum. Different
methods for how to detect when the manipulator is stuck a local minimum
and how to make the random walk to escape could be used, but are not
dealt with in this paper because other methods are emphasized.

An intelligent choice of the tuning parameters ρ0, ζi, ηi and especially αi is
crucial to avoid or reduce the local minima problem. For a robot with many
DOF operating over large distances in a complex environment a perfect
tuning of these parameters is very hard and often impossible. But, for
small distances between two configurations the algorithm is more likely to
avoid local minima and return a feasible solution. This motivates to try to
combine the potential field method with the other path planners, such as
the probabilistic roadmap planner described further below.

3.2 Cell Decomposition

A method that gives a representation of the free space is called exact cell
decomposition. This method represents the free space by the union of simple
regions called cells. The boundaries of the cells are often determined because
of a physical reason. The reason might be a change of the closest obstacle or
a change in line of sight to surroundings obstacle. If two cells have common
boundary they are adjacent. To represents the combination adjacent cells an
adjacent graph is used. The nodes correspond to cells and the edges between
nodes connect adjacent cells. When the cell decomposition is done a path
is found by first finding the cells that contain start and goal. When these
cells are found a search through the adjacent graph is done to determine a
feasible path.

Cell decomposition has the advantage that it can be used to achieve coverage.
A coverage path planner determines a path where the robot or end effector
moves through the entire free space by passing by all the cells. This feature
would be useful if dealing with e.g. a floor cleaning robot or a painting
manipulator. In this project such application is not considered which makes
the advantage of the cell decomposition of less value.

14

There exist several methods for cell decomposition. One of the most popu-
lar is the Trapezoidal Decomposition which relies heavily on the polygonal
representation of the planar configuration space. A more general method
for decomposition is called the Morse Decomposition. This method allow
for representations of non-polygonal and non-planar spaces. Methods that
are based on visibility constraints are also often used.

The main drawback with cell decomposition methods is that they are not
suitable for configuration spaces of higher order. When the configuration
space is of higher order the cell composition methods get very complicated
or even impossible to implement. Because of this, cell decomposition has
not been studied in deeper detail in this project.

3.3 Probabilistic RoadMaps (PRM)

While the path planners mentioned in Section 3.2 use a pre-specified model
of Cfree the PRM planner use the fact that to check if a robot configu-
ration is in Cfree or not is a very cheap operation. PRM makes a lot of
nodes/samples that describes random robot configurations, keeps the nodes
not intersecting with any obstacles and discards the ones intersecting. The
robot configurations are made by using a sampling technique in either a
random selection or in a more deterministic way. Different methods have
success in different environments [CLH05]. After this is done a roadmap is
made by connecting the adjacent nodes using edges, which is the free path
between the nodes. The edges are weighted using a so called ”distance met-
ric” which comes to use when the shortest path is found. Connecting of
edges is done in a fine sampling to obtain a roadmap. All the operations
mentioned above are part of the first phase, known as the learning phase,
which is executed off-line.

The pseudocode for the learning phase is given in algorithm 2 where ∆ rep-
resents the local planner using q and q′ as input. It returns either a collision
free path in Cfree from q to q′ or NIL if a path is not found. dist is the
distance function returning the distance between two given configuration.
How the distance function is defined is presented in 4.5.

After the learning phase comes the query phase which is executed on-line. In
this phase a path from the start to the goal is found in the following way. A
given start node and goal node are attempt connected to the same connected
component in the roadmap. If successful, then the shortest path is found
between the start and goal by doing a search in the roadmap using some
sort of a shortest path algorithm such as Dijkstra’s algorithm or similar. An
algorithm from [CLH05] describing the query phase is given in algorithm 3.

15

Algorithm 2 Roadmap Construction Algoritm
Input:
n: number of nodes to put in the roadmap
k: number of closest neighbors to examine for each configuration
Output:
A roadmap G = (V,E)
1: V ← Ø
2: E ← Ø
3: while ‖ V ‖< n do
4: repeat
5: q ← a random configuration in C
6: until q is collision free
7: V ← V ∪{q}
8: end while
9: for all q ∈ V do

10: Nq ← the k closest neighbors of q chosen from V according to dist
11: for all q′ ∈ Nq do
12: if (q, q′) /∈ E and ∆(q, q′) 6= NIL then
13: E ← ∪{(q, q′)}
14: end if
15: end for
16: end for

16

Algorithm 3 Solve Query Algorithm
Input:
qinit: the initial configuration
qgoal: the goal configuration
k: the number of closest neighbors to examine for each configuration
G = (V,E): the roadmap computed by algorithm 2
Output:
A path from qinit to qgoal or failure
1: Nqinit ← the k closest neigbors of qinit from V according to dist
2: Nqgoal ← the k closest neigbors of qgoal from V according to dist
3: V ← {qinit} ∪ {qgoal} ∪ V
4: set q′ to be the closest neighbor of qinit in Nqinit

5: repeat
6: if ∆(qinit, q

′) 6= NIL then
7: E ← (qinit, q

′) ∪ E
8: else
9: set q′ to be the next closest neighbor of qinit in Nqinit

10: end if
11: until a connetion was succesful or the set Ninit is empty
12: set q′ to be the closest neighbor of qgoal in Nqgoal

13: repeat
14: if ∆(qgoal, q

′) 6= NIL then
15: E ← (qgoal, q

′) ∪ E
16: else
17: set q′ to be the next closest neighbor of qgoal in Nqgoal

18: end if
19: until a connetion was succesful or th set Nqgoal is empty
20: P ← shortest path(qinit, qgoal, G)
21: if P is not emtpy then
22: return P
23: else
24: return FAILURE
25: end if

17

One of the greatest advantages of the PRM is that the main part of the
computations is only done once and executed off-line, as long as the envi-
ronment is static. The main part is the learning phase where the roadmap
is made. The query phase is then executed on-line every time a new path
planning query is specified. If the roadmap is to be used for several queries
a great effort should be done to make a roadmap covering the entire Cfree
space with all the nodes connected in to one connected component, if possi-
ble. Another advantage is that sampled based planners can deal with many
constraints such as closed-loop kinematics, stability constraints, energy con-
straints, contact constraints, visibility constraints and others[CLH05].

As described above the the PRM path planner consist of many sub algo-
rithms. On of the main challenges, and most likely the most important one,
is to build a roadmap consisting of only one connected component and that
covers the entire Cfree space. What combination of different sub algorithms
that best provide this, depends on the features of the robot and what kind
of environment it is supposed to be used in, [CLH05] and [RG06]. One com-
bination might be very useful for one application but provide poor results
for another application. A possibility is also to use several different methods
in one sub algorithm to increase finding a feasible path in the graph. Ac-
cording to this it is hard to conclude which sub algorithms should be used
without trying it on a detailed model of the real system. As a consequence
of this the different sub algorithms in the Learning phase have been studied
in closer detail in the following subsections. All the information in the fol-
lowing sub sections regarding Probabilistic Roadmap planners are provided
from [CLH05] and [RG06] unless something else is mentioned

3.3.1 The Learning Phase

The process of constructing the roadmap can be divided in to several sub
problems and to solve each sub problem there exists several optional meth-
ods:

• How to determine the density and distribution of configuration sam-
ples. e.g. Random, Grid, Halton, Cell-Cased, Bridge and Gaussian.

• Collision detection to determine if a configuration is feasible or not.
E.g the GJK Separating axis algorithm or The Lin-Canny collision
detection algorithm

• How to define a neighbor configuration. What method to use to cal-
culate the distance between to configurations which can be used to
determine if they are neighbors.

18

• Determine how to connect neighbors and which of them to connect.
E.g. Component, Component-k, Visibility

• Choice of local planner to find paths between the node. Simple and fast
local planner using interpolation or more powerful but slower planner,
such as the potential field planner descibed earlier.

3.3.2 Sampling tecniques

The first step in developing a PRM planner is to make a lot of samples
of the robot manipulator in different configurations in Cfree space. The
samples are stored as nodes in the roadmap. It is often desirable to get a
reliable cover of the Cfree space as possible while at the same time limit
the number of nodes. Some reasons to limit the size of the roadmap are
usually to reduce the storage space and save time in the learning phase. A
small roadmap reduce the shortest distance search which will help reduce
the query time.

Several sampling techniques are mentioned in the literature and they can be
divided into two groups, uniform and non-uniform methods. The uniform
methods are Random, Grid, Halton and Cell-based. The Random method
simply choose the configuration parameters by random. In the Grid method
the samples are distributed over a grid. The resolution is unknown in ad-
vanced and the grid is made by starting with a coarse grid. By halving each
cell in the grid many times the resolution increase. Halton point set, which
is used in discrepancy theory to obtain coverage of a region that is better
than a grid, is also used with success to determine the samples. In the Cell-
based approach random configurations are made inside decreasing cells in
the workspace. First a random configuration is made. Then the workspace
is divided into 23 sub cells. A new configuration is chosen inside every cell
and then each cell is divided one more time and so on.

Non-uniform sampling methods are developed to add more samples around
obstacles and in narrow passages. Some of these methods are Gaussian,
Obstacle-based and Bridge Test. In the Gaussian sampling two random
samples with a distance σ between them are considered at each time. Only
if one of them is inside Cfree and the other is outside Cfree the free sample is
added. The distance σ is determined by a Gaussian distribution. Obstacle-
based sampling selects a sample by random. If it lie inside Cfree its added to
the graph. If not, a random direction is chosen and a step in that direction
is made. It the new sample at the new point lie inside Cfree it is added to
the graph, if not the procedure continuous with increasing step size. The
step initial size is chosen in advance. An extended version of this method is
to discard a sample if it initially lie inside Cfree. The Bridge Test selects two

19

random samples with a distance σ, chosen by Gaussian distribution, between
them. Only if both samples lie outside Cfree and if a third sample located
equally between them lie inside Cfree, the sample in Cfree is added. While
the first two methods intend to add more samples near obstacles the latter
method aims to add more samples between obstacles, in narrow passages.

Two other non-uniform methods exist. One of them requires the closest
distance to obstacles and the other requires in addition the penetration
depth calculations. Since Robot Studio at ABB does not have any of these
features the two sampling methods will have no priority in this project but
are still worth mentioned. The first on, which is very expensive to use,
is called Medial Axis and generate samples near the medial axis in Cfree.
All samples have at least two equidistant closest points on the obstacle.
This results in a large clearance from the obstacles which help the roadmap
to provide more robust paths. The other one is called Nearest Contact
and generates samples on the boundary of Cfree. If a random sample lie
inside Cfree it is discarded. If not, a new sample is found by moving in the
direction of the penetration between the configuration and the obstacle. The
configuration is then placed inside the boundary of Cfree. It is important to
place it at a certain distance from the boundary or else could the samples
become very hard to connect.

In [RG06] a new version of the PRM, the Reachability Roadmap Method
(RRM), is presented. This method is based on finding the reachability re-
gion of each node in the graph. It is shown that it generate one connected
component covering the entire Cfree space using few nodes. In addition
it is very fast. A detailed description can be found in [RG06]. Calculat-
ing the reachability region for a node gets very complex for more than 3
dimensions and the RRM is therefore limited to 2 and 3 dimensional config-
uration spaces. Since the configuration space dealt with in this project has
9 dimensions the RRM is useless for this projects application.

In the different experiments done in [RG06] it turns out, not surprisingly,
that the Bridge test performs well in environments with narrow passages,
but moderately or even poor in less dense environments. In the environment
in this project the robot will mainly operate around and between pipes and
tanks. In the 9 dimensional configuration space some of those regions will
probably appear as narrow passages, because many of the joints have very
limited possibilities of motion in those regions. By this evaluation, both the
Gaussian and Bridge sampling techniques seems to be good candidates to
provide a reliable roadmap of the Cfree space. Those two sampling tecniques
are therefore chosen to be implemented, tested and investigated further in
this project.

20

3.3.3 Collision Detection and Path Planning

To find out whether a configuration is inside the Cfree space or not, colli-
sion detection is needed. Several algorithms doing this exist. In the project
last fall the GJK distance calculation algorithm was implemented. A sim-
pler version of this algorithm, The Separating Axis algorithm, does collision
checking between two objects very quickly. This method is used for collision
checking in the simulations done in this project. How the ordinary GJK
algorithm works and the Separating Axis algorithm can be fond in [KAA07]
or in [GB99].

A local path planner is needed to find out if there exists a collision free path
between to nodes (configurations). When building a roadmap the nodes are
often so close that a simple straight line path planner is sufficient to find a
feasible path. In difficult areas where obstacles lie close or narrow passages
has to be forced the demand of a more powerful, but also more expensive,
path planner arise. The powerful path planner could be a potential field
planner as described in Section 3.1. Below are some simple methods for
testing if a path is collision free described.

Two typical methods that checks for collision along a path are presented.
The Incremental or Interpolation method checks for collision by moving the
manipulator incrementally along the path. For each step the configuration
is checked for collision. Its important to determine the step size in a way
that the entire path is known. In the Binary or Sub Division method the
configuration at the middle of the path is checked for collision. If this is
collision free both half sides is recursively tested. This is done until a collision
occurs or the entire path is checked.

In practice it turns out that the Binary collision checking tend to perform
better, [CLH05] and [RG06]. The reason to this is that the position in the
middle is the one with greatest chance of intersect with the environment.
This means that a the method detect a collision faster.

In the simulations in this project the Binary collision detection method is
used as a local path planner. The local path planner is used to connect
the nodes in the roadmap. It is deterministic and symmetric because the
same path between two given nodes is found every time, independent of
which of the two is the start node. In the experiments done on the real
system at ABBs test rig, Robot Studio takes care of the collision checking
and the local path planning. Robot Studio is more suited to do this because
it has an accurate model of the robot and the processing equipment. The
implementation on the real system is presented in detail in Chapter 6

21

3.3.4 Defining neighbors and connecting strategy

The nodes need to get connected to create a roadmap, or graph. In this
part there are several aspects that should be taken into account to obtain a
reliable graph in shortest time as possible. One aspect is how to determine
suitable connection distance between to nodes. This distance should not be
too long, nor to short. If the distance is to long the probability finding a
collision free path will decrease and in addition the collision check for a long
distance is expensive. If the distance is to short, way to many nodes are
connected and thus many more samples is required.

Another important aspect is to determine how many connections should be
tried. Trying too many connections could negative affect the running time
while trying too few connections could result in a poor graph not connecting
the entire Cfree space.

The neighbor nodes are connected together in to a ”connected component”.
It is desirable that the roadmap only consist of one connected component,
but this is sometimes very hard to achieve or even impossible. A third aspect
that has to be taken into account is how many connected components should
a node endeavor to connect. In [RG06] some connection strategies are de-
scribed. They are called Component, Component-k, Visibility, Visibility-k.
In the Component strategy the nearest node in each component inside a
given area are attempt connected. This is done because it is desirable to
connect to several components. The Component-k strategy is very similar
except that it is attempted to connect to the k-nearest nodes in each com-
ponent. The k value is introduced because when there are a low number of
components, an extra effort to connect a node is desirable.

The Visibility strategy is based on visibility sampling technique. The con-
nections only connect to useful nodes. If a node fails to connect to any
components it is labeled with u, for useful. The same accounts for a node
that is connected to two or more components. If a node is connected to
one component it is not labeled at all. It is observed that the number of
useful nodes remains small, making it possible to try connect to all of them.
The Visibility-k strategy is similar to the Visibility strategy, except of the k
value which determines the number of nodes that should be considered for
the usefulness-test, if they lay close enough.

Because the sampling time had very low priority for the application in this
project, no explicit experiments were done to find an optimal connection
strategy. From the experiments in [RG06] it turns out that the nearest-k
node connection strategy performed well in most situations with k= ca 75.
The maximum connection distance varied a lot regarding the environment
and type of robot, but a long distance usually turned out to work better

22

than a short one. In fact it turned out that an infinity long distance did not
perform much worse than the optimal value for each environment. Because
of this the nearest-k with k=75 was chosen as connection strategy and the
maximum connection distance was set to infinity.

23

Chapter 4

Robot Representation And
Modeling

As mentioned earlier, when developing a path planner with collision avoid-
ance the type of robot and environment it operates in are of great impor-
tance. A lot of the path planners comes to short when the dimensions of the
configuration space and the complexity of the environment increase. Be-
fore a path planner could be developed, tested and simulated, models of
the robot and the environment had to me made. The following chapter
explains how the robot and the obstacles in the environment are modeled.
Because the models were only supposed to be used for simulations, only
geometric approximations were needed. What was more important was to
take all the degrees of freedom of the robot in to account. Another issue
that needed to be dealt with was how to determine the distance between
two robot configurations. This is explained in the last sub section.

4.1 Forward Kinematics

In the unmanned oil platform research project by ABB and Statoil a 6 DOF
robot is mounted up side down to a 3 DOF gantry crane. By this the entire
robot system has 9 DOF. The 6 DOF robot is an ABB IRB 2400/16 robot.
To keep track of the coordinate frame of each joint, forward kinematics and
the Denavit-Hartenberg convention was used. The Denavit-Hartenberg ta-
ble for the 9 DOF robot system is shown in Table 4.1. In the DH-table there
are 10 joints. The first joint is a static joint and more like a ”dummy joint”.
This joint was introduced because the base frame of the gantry crane is not
located at the same position as the initial world frame in Matlab.

24

Joint θ d a α

1 π
2 34.30 13.50 π

2
2 π

2 dx 0 π
2

3 π
2 dy 0 π

2
4 0 dz-14.30 0 π
5 θ?

1 6.75 1.00 −π
2

6 θ?
2 − π

2 0 7.05 0
7 θ?

3 0 1.35 −π
2

8 θ?
4 7.55 0 π

2
9 θ?

5 0 0 −π
2

10 θ?
6 8.5 0 0

Table 4.1: DH table for the gantry crane and the ABB IRB 2400/16 robot

In Table 4.1 indicates θ? and dx, dy and dz variables. By using the data in
Table 4.1 the transformation matrix T i

j between each joint can be calculated.
T i

j express the position and orientation of ojxjyjzj with respect to oixiyizi,
where o is the position of the origin and x, y, z gives the orientation of the
basis vectors in each coordinate frame.

T i
j =


cos θj − sin θj cos αj sin θj sinαj aj cos θj

sin θj cos θj cos αj − cos θj sinαj aj sin θj

0 sinαj cos αj dj

0 0 0 1


where the four quantities θj , aj , dj , αj are parameters associated with the
jth joint or row in the DH table. The upper left 3x3 sub matrix in T i

j is
referred to as the rotation matrix Ri

j and the three first elements in the fourth
column in T i

j is the position of the frame origin o. The transformation matrix
between two not adjacent frames is achieved by multiplying the adjacent
transformation matrices in between. E.g. the transformation matrix from
frame 0 to frame 4 is given by T 0

4 = T 0
1 T 1

2 T 2
3 T 3

4 . Pleas note that a frame
does not need to be located at the joint.

Figure 4.1 shows the coordinate frames and a sketch of the ABB IRB 2400/16
robot manipulator skeleton attached upside down to the gantry crane. The
z axis is labeled and colored black and the red axis are the respective x-axis.
In the bottom left corner is the initial world frame where all the other frames
are related to. Figure 4.2 visualize how the coordinate frames are attached
to the robot links for a given configuration. It is easy to see that the fourth
z axis is the IRB robots initial frame. The DH-table, the sketch and the
model of the robot have been made according to some data sheets provided
by ABB. The data sheets are attached in Appendix A

25

Figure 4.1: Skeleton of the ABB IRB 2400/16 mounted to the vertical bar
on the cantry crane.

Figure 4.2: A skecth of the entire robot system and its respectve coordinate
frames for a given configuration

26

4.2 Manipulator Jacobian

In order to map the forces acting on the links in workspace to joint torques in
configuration space, the transposed manipulator Jacobian matrix JT is used.
The manipulator Jacobian is a mapping between the differential change of
the joint variables and the differential change of the position and orientation
of the end effector. The transposed manipulator Jacobian does the mapping
in the other direction. The manipulator Jacobian from the base frame 0 to
frame i is given by

J0
i =

[
z0 × (oi − o0) · · · zi−1 × (oi − oi−1)

z0 · · · zi−1

]
where oi is the origin of the ith frame and zi is the orientation of the z
vector in the ith frame. Thus, zi is the first three elements of the third
column in the transformation matrix T 0

i and oi is the first three elements
of the fourth column in T 0

i . A manipulator Jacobian from the base frame
to the end of each link had to be calculated and then transposed to map
the force to torques. An algorithm taking care of this was implemented in
matlab. Since no workspace torques but only workspace forces acting on the
links is considered, the 3 last rows in the Jacobian was omitted.

4.3 Robot Modeling in Matlab

To be able to draw the robot ant the obstacles in Matlab, it was necessary to
keep track of the position and orientation of each robot link and every part
of the obstacles. This information was also used to do collision detection
and to calculate the closest distances between the robot and the obstacles.

The robot manipulator links and the gantry crane links were modeled as
several connected rectangular bounding boxes. These bounding boxes have
their origins in the middle of each link. The transformation matrices pro-
vided from the DH-table gives the position and the orientation of each co-
ordinate frame related to each joint and are not located in the middle of
each link. To keep track of the bounding boxes of the links an extra set of
transformation matrices, called ”box transformation matrices”, was calcu-
lated. The origin of each bounding box frame is located in the middle of the
links, as seen in Figure 4.3. To calculate the bounding box frames the ordi-
nary transformation matrices from the DH-table were used in relation with
a matrix describing the measures of the bounding boxes. The bounding box
frames were used by the GJK algorithm to calculate the closest distances

27

and to check for collision. They were also used to visualize the robot ma-
nipulator. Figure 4.3 shows the links bounding boxes and their coordinate
frames.

Figure 4.3: Bounding boxes and their coordinate frames

4.4 Modeling the Process Equipment

In the test rig at ABB in Oslo there is a contraption of different tanks con-
nected together with several pipes. This is an imitation of typical processing
equipment which can be found on oil platforms. The processing equipment
is the obstacles that the robot has to avoid colliding into. Since the complex-
ity of the obstacles is important when deciding on path planner approach,
the processing equipment had to be taken into account. Unfortunately a
detailed model of the processing equipment was not present in Matlab. Be-
cause of this an approximation of the processing equipment was made. The
model that was made was also a contraption of tanks and pipes, just like
the real model. This was done to add the same complexity to the model as
for the real model.

The processing equipment where modeled as cylindrical bounding boxes.
So called ”obstacle transformation matrices” were calculated to determine
the position and orientation of the obstacles frames. The ”obstacle trans-
formation matrices” were calculated by multiplying together the rotation
matrices for each axis and by putting the translation vector in the fourth

28

Figure 4.4: The processing equipment

column. The obstacles were independent objects and not connected by any
kinematics chain. The rotation around each axis and position for each ob-
stacle is given by a matrix Mn×6 for n obstacles. The first three columns
determines the Euler angle rotation around the x, y and z axis, respectively,
and the three last columns determines the x, y and z position, respectively,
for n origins provided by n obstacles. This matrix was used as input when
calculating the obstacle frames.

In this project the modeling of the robot manipulator is limited to one
bounding box per link. For implementation in a real world system one link
should consist of many small boxes or spheres. This would give a more
accurate modeling of the robot manipulator and increase the probability of
obtaining the desired goal.

4.5 Distance Metric

The distance metric is a measure on how far two different robot configura-
tions are from each other and should reflect the chance of collision between
them. The longer distance the greater chance of collision. It is thus used to
select which nodes one should attempt to connect using a local planner. Set-
ting the distance metric is a non-trivial task and several different methods

29

exist [NA98]. The distance method used here is the same used in [RG06].

The distance metric between two configurations ”q” and ”r” is found by
summarize the weighted partial distances between each of the DOFs 0 <
i < n that describes the configurations, ie.:

d(q, r) =

√√√√n−1∑
i=0

[wid(q., ri)]
2 (4.1)

How the calculation of the distance d(qi, ri) is done depends on the joint:

• For translation: d(qi, ri to |qi, ri|

• For rotation it is distingusihed between limited and periodic rotation.
If the rotation is limited to less than 2π it is calculated in the same way
as for translation. If the rotating joint can exceed 2π and is periodic the
distance is set to d(qi, ri) = min {|qi − ri| , qi − ri + 2π, ri − qi + 2π}

The weight wi in 4.1 describes how much influence each joint variable has to
the final distance metric. A change in ”theta one” has a bigger influence on
the distance metric than a change in ”theta six” because a greater part of
the robot is moved and thus greater chance of collision. There is no straight-
forward method on how to set the weights on an articulated robot attached
to a gantry crane. The weight for each joint was therefore set depending on
how much of the robot manipulator moves when a joint variable is changed.
As a measure the length from some of the joints to the end effector was used.
For the 4th, 5th and sixth rotational joints the length from joint 5 to the
end effector was used and for the 3rd rotational joint the length from joint
3 to the end effector. For the first and second rotational joints the length
from joint 2 was used. For the three linear joints the length of the entire
articulated robot was used. The weights are shown in the table below:

The weights in Table 4.2 were set according to linear values in meter and
angular values in radians. This means that they had to be changed depend-
ing on what kind of input values used. In the Matlab simulations the linear
input was made in decimeter, which meant that the linear weights had to
be multiplied by 0.1 because of the 1:10 ratio. When it comes to the experi-
ments on the real system the linear weights had to be multiplied with 0.001
because the input was given in millimeters. The angular weights had to be
multiplied with pi

180 because the input was given in degrees.

30

Joint: Weight
”Dummy joint” 0.0
Linear joint 1, x 2.16
Linear joint 2, y 2.16
Linear joint 3, z 2.16
Rotational joint 1, θ1 1.54
Rotational joint 2, θ2 1.54
Rotational joint 3, θ3 0.84
Rotational joint 4, θ4 0.085
Rotational joint 5, θ5 0.085
Rotational joint 6, θ6 0.085

Table 4.2: Weights for each joint in the robot system

31

Chapter 5

Optimal 3D path planner

5.1 Optimization criteria

Before starting to develop a path planner based on the PRM method, it is
important to determine what kind of application the path planner is intended
for. Different path planners can be optimized different, depending on what
features and optimization criteria are emphasized for the given application.

The running time of the learning phase, the time it takes to make an ade-
quate roadmap, is of great interest when the PRM is used in engineering.
An example could be an engineer who wants to find out if a part can be
removed from a car engine for maintenance without disassembly the entire
engine. Off course the engineer does not want to wait longer than necessary
to get the answer.

Reducing the number of nodes and the size of the roadmap is of great inter-
ested when the PRM is used in computer games and real-time applications.
A small roadmap requires less memory which is always a goal when mak-
ing computer games. Another important benefit is that a small roadmap
reduces the query time which is important to not make the game halt.

In the application for this project some of these measures might be of less
interest. The roadmap is not supposed to be made over and over again.
Once it is implemented it should, hopefully, stay the same for a long time.
This means that it does not matter if the learning phase takes 5 seconds or 5
hours. When it comes to memory this should not be a problem in practice as
long as the roadmap does not become extremely large. But, the size of the
roadmap might affect the query time, which is why it might be of interest.
If one is dealing with query time in milliseconds it does not matter if it takes
5 or 60 milliseconds to find a path. But as soon as the query time increase

32

and one is dealing with seconds, or even minutes, it suddenly becomes of
great importance for this application as well.

Priority number one for this projects application is to be able to move the
end effector from one position to every other possible position on the plat-
form. This is fulfilled by obtaining Coverage and MaximalConnection for
the graph G = (V, E) as defined in [RG06]:

Definition 5.1 (Coverage). G covers Cfree when each configuration c ∈
Cfree can be connected using a local planner to at least on node v ∈ V.

Definition 5.2 (Maximal Connection). G is maximally connected when for
all nodes v’,v” ∈ V, if there exists a path in Cfree between v’ and v”, then
there exists a path in G between v’ and v”.

The Coverage criterion ensures that it is possible to connect every possible
start and goal configuration in Cfree to at least one node in the roadmap.
The Maximal Connection criterion ensures that if there exists a path be-
tween a start and goal configuration in Cfree, there should also exist a path
in the roadmap G. Connectivity is a term used to explain how far or close
a roadmap is to have Maximal Connection.

There exist certain methods to exact measure Coverage and Connectivity.
Unfortunately they only deal with configuration spaces up to 3 dimensions
[RG06]. How coverage and connectivity are measured in this project is
described in 5.2. From now on the two criteria are referred together as the
Reachability criterion.

According to the reasons listed above, the optimization criteria for the ap-
plication in this project are given the following priority:

1. Reachability

2. Query time

3. Path length

5.2 Test set up

The sampling techniques used in the Probabilistic Roadmap method de-
pends on configurations made at random. Because of this it is very hard, or
even impossible, to derive analytical proofs showing which sampling method
is optimal. And as mentioned earlier, different sampling techniques might
be optimal for different robot and environments. To be able to decide on an

33

optimal sampling technique for ABBs application, empiric experiments for
different sampling techniques were done. When deciding on an optimal sam-
pling technique it is important to have an accurate model of the robot and
the environment. Unfortunately this was not present so the approximated
models described in Chapter 4 were used.

As mentioned in section 5.1 it is by now not known how to exact measure
the Coverage and Connectivity for a 9 dimensional configuration space.
Because of this, an alternative approach was used: 8 test configurations
were made and for each roadmap generated the possibility of finding feasible
paths between them was investigated. The 8 test configurations were made
by visual inspection of the processing equipment in the environment. Some
test configurations were meant to be easy to connect to the roadmap and
others, located close and between many obstacles, where meant to be very
hard to connect. When a roadmap was generated the 8 test configuration
were attempted connected to the roadmap. The Coverage was measured by
how many attempts succeeded. When the test configurations were connected
to the roadmap, feasible paths between them were attempt found. The
maximum of possible paths (successfully queries) were 7+6+5+4+3+2+1
= 28. The number of feasible paths found was a used as a measure of the
Connectivity. The 8 test configurations used are shown in Figure 5.1. For
simplicity only the 4 last links of the robot manipulator is diplayed.

Figure 5.1: The 8 different test configurations used. The light green is test
configuration nr 3 that turned out to be very difficult to cover.

All the experiments and simulations presented in this paper were executed

34

on a Intel(R) Pentium(R) D CPU 3.00 GHz 2.99 GHz with 2.00 GB of RAM.

5.3 Learning phase

As mentioned above there exists many different sampling techniques. In
this part some of them are studied in more detail, implemented and tested.
In the end they are all compared against each other. A method on how to
improve the Connectivity of a roadmap is also described, implemented and
test in the last subsection.

5.3.1 Gaussian Sampling

A sampling method mentioned in section 3.3.2 that aims to make samples
close to the obstacles is the Gaussian Sampling technique. The sampling
technique makes first a random sample. If it lies in Cforb a new sample is
made a certain distance σ from the first sample. If the new sample lies in
Cfree it is stored in the roadmap. The distance σ between the samples is
chosen according to a Gaussian distribution. The method is explained in
detail in [VB99]. The pseudocode for the Gaussian Sampling technique is
presented in Algorithm 4.

Algorithm 4 Gaussian Sampling Algorithm
1: repeat
2: q ← a random configuration in C
3: if q is NOT collision free then
4: q′ ← is a random configuration at length σ from q.
5: if q′ is collision free then
6: Add q′ as a node in the roadmap
7: end if
8: end if
9: until Desired number of nodes created

At line 4 in Algorithm 4, q′ is chosen to be a random configuration at a
given length from q. To determine a configuration at a given length from
an initial configuration, the random direction vector from [RG06] was used.
The random direction vector qrand is made such that the distance between
q and q + qrand is σ:

qrand = ± rndi ∗ σ√
rnd · w

(5.1)

35

where rnd is a vector of random values between 0 to 1 such that
∑n−1

i rndi =
1. rndi is a random value for each DOF i. w is the weight vector described
in section 4.5 and rnd · w = sumn−1

j=0 (rndj ∗ wj)2.

How to determine the distance σ, which describes how close to obstacels
nodes are wanted, is non-trivial for a 9 DOF system. Experiments with
different values of σ were done to determine the optimal distance. At first
an experiment with great spread of test values used was executed. This gave
some idea of what range the optimal value could be found in. In the first ex-
periment σ = [4 2 1 0, 5 0, 1] was used. This experiment showed that a very
small σ, σ=0.1, gave best coverage. Even if σ = 0.1 gave best coverage, it
resulted in many more connected components and therefore less successfully
queries than for greater values. Not very surprisingly the sampling time
increased with decreasing value of σ. These results corresponds to the fact
that a small value of σ will make samples closer to obstacles which makes
it more demanding to find a valid sample and to connect it to other nodes.
Results from the first test is shown in Figure 5.2 and Figure 5.3. Please note
that the maximum possible Coverage is 8 and maximum possible queries is
28.

Figure 5.2: Average Coverage using different values of σ

Because Coverage was of highest priority when finding an optimal value
of σ, new experiments were executed using values close to 0.1. The results
from these experiments is shown in Figure 5.4 and Figure 5.5. Figure 5.2
shows that step length 0,15 gives best average Coverage with 6 samples and

36

Figure 5.3: Average successfully queries using different values of σ

step length 0,1 gives second best average Coverage with 5,8 samples
But Figure 5.2 shows that step length 0,1 gives an average Coverage of
6,2 samples. The reason to these variations in the reults is due to the
randomness of the method used, especially provided by the random direction
vector 5.1. It would probably be more beneficial to run even more test for
each step length to get a more reliable result. But because of limited time
this has not been done. The maximal Coverage obtained when using step
length 0,15 was 6, while the maximum Coverage when using step length
0,1 was 7. Because of this 0,1 was chosen as the optimal step length σ. Its
worth mentioned that when step length was set to 0,01 the sampling time
increased by a factor of 10 compared to the others. Despite this it did not
improve the Coverage.

5.3.2 Bridge test

Another sampling technique mentioned in section 3.3.2 is the Bridge Sam-
pling technique. This sampling technique aims to make samples between
obstacles. At first the sampling technique makes a random sample. If it
lies in Cforb a new sample is made a certain distance σ from the first sam-
ple. The distance σ between the samples is chosen according to a Gaussian
distribution as in the Gaussian Sampling technique. If the new sample also
lies in Cforb a third sample is made. The third sample is made between the
two first samples. If this sample lies in Cfree it is added to the roadmap. A

37

Figure 5.4: Average Coverage using different values of σ

Figure 5.5: Average successfully queries using different values of σ

38

detailed explanation of this method can be found in [DH03]. Algorithm 5
shows the pseudocode of the Bridge sampling tecnique.

Algorithm 5 Bridge Sampling Algorithm
1: repeat
2: q ← a random configuration in C
3: if q is NOT collision free then
4: q′ ← is a random configuration at length σ from q.
5: if q′ is NOT collision free then
6: Set q′′ to be a configuration between q and q′

7: if q′′ is collision free then
8: Add q′′ as a node in the roadmap
9: end if

10: end if
11: end if
12: until Desired number of nodes created

The Bridge name describe the ”‘bridge”’ that is made by the two first sam-
ples between the two forbidden areas of the configuration space. The dis-
tance σ determines the length of the bridge and how narrow passages the
method endeavor to cover. Picture 5.6 shows how the bridge test succeed
and fails for different length of σ. The green samples show where the bridge
sampler succeed, and the red samples shows when it fails.

Figure 5.6: Four cases of the Bridge Sampling technique

Experiments with different values of σ were made for this method as well to

39

determine the optimal distance σ. Same test approach as for the Gaussian
method was used by doing some pre testing and then do a final test for a
given range of values. Like for the Gaussian method, it turned out that a
decreasing value of σ gave best coverage but fewer successfully queries, more
connected components and increasing sampling time. But under a certain
value, the Coverage seemed to decrease again. Figure 5.7 and Figure 5.8
diplays the results from the experiments using a σ = [3 2, 5 2 1, 5 1].

Figure 5.7: Average Coverage using different values of σ

The reason to the number of successfully queries decrease with decreasing
value of σ is probably when the samples are made close to obstacles they
get very hard to connect together. A remedy to this could be to make every
tenth sample by random, not using the Bridge method. This will ensure
that the roadmap will contain some nodes out in the open space which will
most likely make it easier to connect the nodes together. In the following
experiments this is done for both the Bridge and the Gaussian sampling
techniques.

5.3.3 Grid Based

A version of the grid based sampling technique was also implemented and
tested. The environment was partitioned into 48 cells in the x-y plane. The
goal was to make 10 collision free configurations for each square. This is off
course a lot easier when the robot is far away from the processing equipment

40

Figure 5.8: Average successfully queries using different values of σ

than when it is very close, where it can be impossible. Because of this the
sampler was only given a certain number of tries for each square. If the
sampler managed to make 10 valid nodes for each square, the total number
would be 480 configurations. Since it is very likely that it will not manage
to make 10 valid nodes for al the squares, the final number of nodes will
probably be less. The test result of the Grid Based Sampling technique and
comparison to the others is presented in 5.3.4

5.3.4 Comparison of test results

When the optimal step lengths for the Gaussian and Bridge sampling tech-
niques were found the three sampling methods mentioned above and the
ordinary Random Sampling method described in Section 3.3 were tested
and compared against each other. Each sampling method was ran 10 times
and Coverage and Connectivity were measured. The latter was measured
to check if Maximal Connection was obtained. In addition the number
of connected components and sampling time were measured. In each test
300 samples was made and the parameters mentioned above were measured
for every 100 samples made. An exception is for the Grid test where 480
samples were made and the parameters measured for every 300, 400 and
480 samples. In the Gaussian and Bridge sampling every tenth sample was
made by random to reduce the number of connected components and thus

41

hopefully increase the Connectivity. The result of the different sampling
techniques is shown in Tables 5.1, 5.2, 5.3, 5.4.

100 (300) 200 (400) 300 (480) Max Value
Random 3,8 4,4 4,5 5
Grid 4,5 4,9 4,9 6
Gaussian 4,5 5 5,5 7
Bridge 5,1 6,6 7 8

Table 5.1: Comparison of the average coverage obtained from the different
sampling techniques

100 (300) 200 (400) 300 (480) Max Value
Random 5,5 7,6 8 10
Grid 7,1 8,8 8,8 10
Gaussian 3,8 6,9 9,3 15
Bridge 4,7 12,2 15,2 21

Table 5.2: Comparison of the average number of succeeded queries obtained
from the different sampling techniques

100 (300) 200 (400) 300 (480)
Random 1,3 1,5 1,6
Grid 5,5 4,1 4,1
Gaussian 17,9 21,7 21
Bridge 20,5 16,8 16,8

Table 5.3: Comparison of the average number of connected components
obtained from the different sampling techniques

The Coverage obtained from the Random Sampling technique was poor.
When 100, 200 and 300 nodes were made the average Coverage was 3,8,
4,4 and 4,5. The last two numbers shows that adding even more nodes will
much likely not increase the Coverage significantly. The query results and
the numbers of connected components shows that the roadmap is more or
less connected into the same component. This is not very surprising since the
roadmaps generated do not contain any difficult nodes covering the narrow
passages.

From experiments done with Grid Based Sampling it turned out that it
managed to make 10 nodes in each square. By this, 480 nodes were made
in each test. But from the analysis done, it turned out that the Grid Based
Sampling technique performed worse than the Bridge and the Gaussian sam-
pling techniques. The average coverage from 10 tests was 4.9 where only one
test managed to cover 6 of the test nodes.

42

100 (300) 200 (400) 300 (480) SUM
Random 7,8 8,4 8,4 24,6 min
Grid 9,6 8,4 6,6 24,1 min
Gaussian 28,8 27,6 28,8 1h 25,2 min
Bridge 39 37,6 37,2 1h 51 min

Table 5.4: Comparison of the average sampling time for each sampling tech-
nique

It turns out that the Bridge test performed best when it came to Coverage
and Connectivity. The Bridge test was the only one that managed to cover
all the 8 test configurations, but it only happened 2 times out of 10. The
minimum cover was never under 6.

3 of the 8 test configurations were located in difficult areas between pipes
and tanks. This is what typically would appear as narrow passages in con-
figuration space. The other test configurations were made close to the pro-
cessing equipment but with good clearance from one side. All the sampling
technique managed to cover the 5 ”easy” test configurations, but it was
when covering the 3 difficult some of them failed. Not very surprisingly
the Gaussian performed well but the Bridge performed better because the
Bridge aims to cover narrow passages and not only close to obstacles as the
Gaussian. By this it is concluded that of the 4 sampling techniques tested,
the Bridge Sampling technique with a ”bridge” length of 1,5 in combination
with a Random sampling tehcnique gives best Coverage and Connectivity
of the Cfree space.

Tabel 5.2 shows that even if all the 8 test samples were covered it did not
imply that Maximal Connectivity was achieved. This is due to the fact
that the roadmap was not connected into one big connected component.
By investigating the size of the connected components it turned out that
the majority of the samples was connected together in on big connected
component, while some samples were single and not connected to any else.
A method to reduce the number of connected components is described and
investigated in Section 5.3.5. Table 5.3 shows that for some of the methods
the number of connected components is less for 300 samples than for 200
samples. This seems logical since a high number of nodes provide a denser
roadmap with better connectivity. The effect of a roadmap containing a
very high number of nodes is tested further below.

In general, one of the disadvantages with the Bridge Sampling technique is
that it is slower than the others. But this could maybe be compensated for
if fewer samples are needed to obtain satisfactorily coverage. This is not
investigated since sampling time has low priority in this project.

43

5.3.5 Connection Sampling

The results from the sampling technique testing shows that a greater chal-
lenge than cover the entire Cfree space is to connect the roadmap into one
big connected component. This means that after the sampling is done, it is
necessary to make an effort to connect the connected components together.
This is called ”Connection Sampling”.

The reason why the PRM fails to connect all the nodes into one big con-
nected component is that some of the nodes are placed in difficult areas such
as narrow passages. The challenge is therefore to detect nodes in these re-
gions and then manage to connect the components they belong to together.
In [CLH05] it is proposed to associate every configuration q with a heuris-
tic measure of the difficulty of the region around q expressed by a positive
weight w(q). Thus, the larger w(q) is the more difficult is the region it lies
in. The weights are normalized such that the sum of all configurations in
the roadmap is one. The weights can therefore be calculated only once in a
given period, and its not possible to calculate a weight for every new node
added.

According to [CLH05] there are several methods to define the heuristic
weight w(q) and a method that are found to work well in practice is function
5.2

w(q) =
1

deg(q)+1∑
q′∈V

1
deg(q′)+1

(5.2)

where deg(q) is the number of configurations to which q is connected.

During the testing of different samplings methods it turned out that nodes in
difficult regions belonged to connected components only containing one or a
few nodes. This gave an idea that the size of the connected components could
also be used as an adequate measure to detect difficult regions. Because
of this the nodes was first sorted according to the size of their respective
connected component. Then the nodes in each connected component were
sorted by its difficult weight (5.2). So first of all was the node with highest
difficult weight in the smallest connected component attempt connected to
another connected component. If it failed, the node with next greatest
difficult weight in the same connected component was tried. If all nodes in a
connected component were tried out without managing to connect to another
connected component the method moved to the next smallest connected
component. If there still are connected components only containing one or

44

a few nodes after the connection sampling is executed, one should consider
deleting them from the roadmap because they are not very useful. This has
not been done in the implemented method.

When a sample lying in a difficult region is found, its configuration q needs
to be expanded to attempt connect it to another connected component. To
do this the following method was used. The method is inspired from the
Expansive-Spaces Trees (EST) and the Rapidly-Exploring Random Trees
(RRT) descibed in [CLH05]. A new configuration q∗ in the neighborhood
of q is made by moving a random step with a given step length. If there
exists a collision free path between q and q∗, q∗ is temporary stored. If there
also exists a collision free path between q∗ and a configuration in another
component, the components are merged and q∗ is added to the roadmap. If
the latter case fails n number of times, then neighbor configurations q ∗ ∗
to the neighbors q∗ are found and attempt connected. When finally two
components are connected, the involved neighbors should be added to the
roadmap. The method continues to make and connect neighbors until max-
imum 10 neighbors are connected. If it fails to connect after adding 10
neighbors, all the 10 neighbors are discarded.

Figure 5.9: The configurations beloning to the connected components with
less than 5 nodes. Only the 4 last links of the robot manipualtor are dis-
played for simplicity.

The Connection Sampling terminates when it either manage to connect all
the nodes into one connected component, or when it has tried all the nodes
in the small connected components and the nodes with highest weight in

45

Figure 5.10: The configurations beloning to the connected components with
less than 5 nodes after the Connection Sampling method was executed

the big connected component. By choosing other termination criteria the
execution time could probably be reduced but still achieving the same result.
But studying this in detail has not been prioritized.

To test the ”Connection Sampling” method a new roadmap was made. In
Section 5.3.4 several roadmaps containing 300 nodes were made to find the
optimal sampling strategy. In those roadmaps a sample was added to a
connected component when it managed to connect to another node in that
connected component. It did not attempt to connect to other nodes in the
same connected roadmap because it does not improve the Reachability in
the roadmap. But, when finding the shortest path through the roadmap
it is beneficial that a node is connected to many other nodes in the same
connected component to avoid unnecessary detours. It is also easier to
distinguish which nodes are located in difficult areas and not because nodes
in difficult areas have few neighbours. For the following test a new roadmap
was therefore made where new nodes attempt to connect to max 75 other
nodes in the same connected component. To test the effect of a big roadmap
the new roadmap was made with 1000 nodes.

It took 22 hours and 6 minuets to generate the big roadmap. A sampling
analysis was done and it turned out that all the 8 test configurations were
covered, but only 21 of 28 queries succeeded. The 7 last queries failed
because it was not possible to connect test configuration 3 to the same con-

46

nected component as the other test configurations. The roadmap consisted
of 17 different connected components, where one big connected component
with 980 nodes contained the majority of the nodes.

In the Connection Sampling a difficult node is expanded by moving one step
in a random direction. This is the same as done in the Gaussian Sampling
technique. In section 5.3.1 it turned out that step size 0.1 gave best coverage
in narrow passages. It is therefore most likely that the same step size will
provide best improvements in the Connection Sampling method. To find
out if this was true and to test the performance of the Connection Sampling
method, several tests with different step lengths were executed. The step
lengths used were 0.5 and 0.1. The Connection Sampling method was ran 5
times for each step length.

Test 1 2 3 4 5
Number of
Connected Components 3 1 3 2 3
Sucessfull Queries 21 28 21 28 28
Average execution time 2h 44min 3h 45min 2h 54min 5h 1min 3h 11min

Table 5.5: Results of Connection Sampling using step length 1

Unfortunately the result from the test using step length 0.1 is not available
since an error occurred during testing. The test had run for several hours
when the incident happened and it was not possible at that time to run a new
test. But the test with step length 0.5 terminated successfully. It turned out
that in 1 of 5 cases it succeeded to connect all the connected components
into one big connected component. In 3 of the 5 cases all the 28 queries
were successful. This shows that the Connection Sampling improved the
Connectivity in the roadmap and that Maximal Connection most likely is
possible to achieve. The average execution time was 3 hours and 31 minutes
but it varied a lot and the shortest time was 2hours and 44 minutes and the
longetst time was 5 hours and one minute. The results are shown in Table
5.5. It is not known if using step length 0.1 would provide a higher success
rate, but there is no doubt that it would spend more time. But, since the
Connection Sampling is performed off-line the execution time is not a big
issue. (A video showing the path starting in test confgiuration 3 and ending
up in test configuration 5 is named hardPathSmooth.avi and can be found
in the attached files)

47

5.4 Query phase

In this section the work regarding the query phase and optimization of the
query time will be presented. The query phase consists of three steps: 1.
Connect a start and goal node to the roadmap 2. Find the shortest path
through the roadmap. 3. Smoothing the path and decreasing the path
length. The execution of part 1 has been studied in detail, but the main
contribution to optimization has been done in part 3. In part 2 is Djikstras
algorithm used to find the shortest path through the roadmap. This is a well
known and very fast algorithm and has not been emphasized to improve.

5.4.1 Connecting start and goal node

When a query is given the first step is to connect the start and goal nodes
to the roadmap. The start node would typically describe the current config-
uration of the robot while the goal node represents the desired final config-
uration. It is very important that the start and goal nodes are connected to
the same connected component. If they are connected to different connected
components no feasible path between them can be found. Because of this
the start and goal nodes are only attempt connected to the same connected
component, starting with the largest. If they fail the second largest con-
nected component is tried out, and so on. The distance metric function is
used to find the closest nodes in the roadmap for both the start and the goal
nodes. A modified version of the connection part in Algorithm 3 in Section
3.3 is presented in Algorithm 6

The procedure in Algorithm 6 was implemented and tested on the roadmap
with 1000 nodes mode in section 5.3.5. For simplicity the test configuration
1 was always used as start configuration and feasible paths to the other test
configurations were attempt found. For each query different parameters was
measured. The results are shown in Table 5.6.

The first row lists the number of the test configurations to where feasible
paths were found. As seen, a feasible path to test configuration 3 was not
found. In the second row is the number of attempts needed to find a node
that coould be connected to the goal node. Most of them needed only one,
except of the last test configuration that needed 2 tries. The connection time
used by the local planner to verify a feasible path between the connected
nodes is listed in row 3 and 4. Since the same configuration was used as
start node every time, this value is almost constant. The values from row 3
and 4 are then summarized in row 5.

48

Algorithm 6 Connect Start and Goal nodes
Input:
qinit: the initial configuration
qgoal: the goal configuration
k: the number of closest neighbors to examine for each configuration
G = (V,E): the roadmap computed by algorithm 2
Output:
G = (V,E): updated roadmap containing the start and goal
nodes
1: CC ← the connecetd components in G sorted by decreasing order
2: cc is the largest connected component in CC
3: for length(CC) do
4: Nqinit ← the k closest neigbors of qinit in cc according to dist
5: Nqgoal ← the k closest neigbors of qgoal in cc according to dist
6: set q′ to be the closest neighbor of qinit in Nqinit

7: repeat
8: if ∆(qinit, q

′) 6= NIL then
9: startConnected← true

10: else
11: set q′ to be the next closest neighbor of qinit in Nqinit

12: end if
13: until startConnected or the set Ninit is empty
14: set q′′ to be the closest neighbor of qgoal in Nqgoal

15: repeat
16: if ∆(qgoal, q

′′) 6= NIL then
17: goalConnected← true
18: else
19: set q′′ to be the next closest neighbor of qgoal in Nqgoal

20: end if
21: until goalConnected or the set Nqgoal is empty
22: if rtConnected and goalConnected then
23: V ← {qinit} ∪ {qgoal} ∪ V
24: E ← (qinit, q

′) ∪ E
25: E ← (qgoal, q

′′) ∪ E
26: return G
27: end if
28: set cc to be the next connected component in CC
29: startConnected← false , goalConnected← false
30: end for
31: if not startConnected or not goalConnected then
32: return Connection attempt failed
33: end if

49

Test config 2 4 5 6 7 8
Failed goal
connection attempts 0 0 0 0 0 1
Goal Connection 8,27 2,37 8,36 8,90 4,44 8,51 seconds
Start Connection 1,91 1,90 1,90 1,92 1,91 1,90 seconds
SUM 10,19 4,27 10,26 10,82 6,34 10,40 seconds
Calculating distances 0,11 0,11 0,11 0,11 0,11 0,11 seconds
Djikstras 0,60 0,68 1,06 0,45 0,42 0,82 seconds
Entire Query 10,90 5,07 11,43 11,38 6,87 11,34 seconds
Connecting 93,5 84,3 89,8 95,1 92,4 91,8 %
Djikstras 5,5 13,5 9,2 3,9 6,0 7,3 %

Table 5.6: Comparison of the average coverage obtained from the different
sampling techniques

At the start of every query the distance from the start and goal configura-
tions to all the nodes in a connected component are calculated and stored
in two arrays. These arrays are then sorted with increasing distance. The
execution time of this step,which depends on the number of nodes in the
connected component, is listed in row 6. Even if it was almost 1000 nodes in
the connected component used, the execution time was very low compared
to the other steps in the query phase.

When a start and goal configuration was connected to the roadmap Djik-
stras Algorithm was used to search through the neighbour graph to find
the shortest path. The time Djikstras algorithm needed to find the shortest
distance is listed in row 7.

As seen from row 8 in Table 5.6 the time spent by the local path planner to
connect when a valid node is found is the most time consuming part in the
query time.

A similar test was done to a roadmap containing 400 nodes. In this test 5
of 7 queries succeeded, which is a worse result than for the previous test.
It also turned out that in some queries the planner spent more time finding
a suitable node to connect the goal node to. When connecting the 8th test
configuration for example, it needed 27 tries before it finally succeeded. For
the 26 unsuccessful tries the local planner spent in average 0.12 seconds pr
attempt to detect a collision, and 3.12 second in total. Djikstra algorithm
spent 0.2465 finding the shortest path between test configuration 1 and 8.
This is about 30 % of the time, or 0.58 second less than the same query
in the large roadmap. The planner spent 2.88 and 6.56 second to verify a
feasible path when connecting the start and goal nodes. When adding up
all the steps the final query time is 12.86 seconds, which is 11.48 % more

50

Test config 2 5 6 7 8
Failed goal
connection attempts 5 0 1 0 26
Average collison
detection 0,06 0,11 0 0,12 seconds
Sum failing 0,25 0 0,11 0 3,12 seconds
Goal Connection 12,74 6,67 6,74 6,71 6,56 seconds
Start Connection 2,84 2,92 2,92 2,90 2,88 seconds
SUM connection 15,58 9,59 9,66 9,61 9,44 seconds
Calculating distances 0,05 0,05 0,05 0,05 0,05 seconds
Djikstras 0,04 0,29 0,05 0,19 0,25 seconds
Entire Query 15,92 9,93 9,87 9,85 12,86 seconds
Connecting 97,9 96,6 97,8 97,5 73,4 %
Djikstras 0,2 2,9 0,5 1,9 1,9 %

Table 5.7: Comparison of the average coverage obtained from the different
sampling techniques

than for the same query in the larger roadmap.

As seen from the results above the most time consuming part in the query
phase is verifying a feasible path, by the local planner, between a node in the
roadmap and to the start or goal node. How long it takes to verify a feasible
path depends on the resolution of the binary path planner. An increasing
step size results in a faster path planner with poorer resolution and thus less
accurate. The step size used in the simulations will not affect the result in
practice because then the local path planning will be taken care of by the
local planner in Robot Studio.

From the second test it turned out that trying out many nodes before finding
a feasible path, might be time consuming if the number of tries is high. The
number of unsuccessful tries was lower in the large roadmap than in the
smaller roadmap.

The time used calculating the distances and finding the shortest path de-
creased for a smaller roadmap. But, these steps are the least time consuming
steps and have therefore less impact on the query time than the two others
steps mention above.

According to the observations mentioned above a high number of nodes in
the roadmap does not necessarily affect the query time negatively. If the
connection method succeed in connecting the query configuration to the first
configuration tried, this will positively affect the query time. The probability
that the local planner succeed on first try seems to increase with the number
of nodes in the roadmap. Speeding up the local path planner and ensuring

51

that the most suitable node in the roadmap is attempt connected first will
improve the query time most.

In the results presented above the query time for the queries failing were
not presented. The query time for the query failing in the large roadmap
was 65 seconds, and ca 35 seconds for the two queries in the small roadmap.
In line 4 and 5 in Algorithm 6 k is used as an upper limit of connections
tried in one connected component. In the tests executed above k was set to
infinity, and this is why the query time varies for the failing queries. The
value k determines how fast an unfeasible query is detected. By using the
same value independent of number of roadmap size. As mentioned earlier
in other sections, k = 75 has tunred out to be a suitable value to limit the
number of tries. As seen from the results above, this value should be great
enough since the query needed most tries needed 27 tries before it succeeded.
New test was executed with k = 75. The new query times for the failing
queries was now 17.71 for the large roadmap, and 10.06 and 19.14 for the
small roadmap. This time could be reduced even further by reducing k. The
drawback by doing this is an increasing chance of missing valid queries.

5.4.2 Backup Procedure

As mentioned in 5.1 priority number one is to achieve as good Reachabiliy
as possible. Even if is made a great effort in the Learning Phase to obtain
this, situations might occur when a query fails. To cope with this problem a
new method called the ”Backup Procedure” is introduced. If a query fails it
is possible to run the Backup Procedure that aim to make the query succeed.
The Backup Procedure relies on the same approach used in the Connection
Sampling. If a query fails because it only was possible to connect the start
node to the largest connected component in the roadmap, the Backup Pro-
cedure endeavours to connect the goal configuration to the largest connected
component by building a tree from the goal node and towards any of the
nodes in the largest connected component. The tree is built in the same way
as the trees from the difficult nodes in the Connection Sampling method.

To test the performance of the Backup Procedure it was run 10 times on the
big roadmap containing 1000 nodes. It tried to connect test configuration
3 to the largest connected component. It succeeded every time but the
execution time varied a lot as seen in the graph in Figure 5.11. The average
time was 172,23 seconds while the minimum and maximum execution time
were 14,69 and 523,18 respectively.

As seen from the results the time it takes for the Backup Procedure to
succeed varies a lot. Because the method heavily relies on random config-
urations, it is hard to predict how much time it will require from time to

52

Figure 5.11: Execution time of the Backup Procedure

time. From section 5.4.1 it is known that it takes from 10 to 20 seconds to
verify that a query fails. How long it is acceptable to wait for the Backup
Procedure depends on the application. What are the alternatives and what
are the consequences of a query failing? Maybe a less random approach
could make the Backup Procedure easier to predict and more convenient to
use.

5.4.3 Path Smoothing

Djikstras algorithm returns the shortest path through the roadmap accord-
ing to the weights calculated by the distance metric. Due to the random-
ness in the methods used when generating the nodes the path might be
unnecessary long and crooked. After a path is found it is possible to do
some path smoothing which remove unnecessary movements and decrease
the path length. There exists different techniques doing this [RG06] and
[CLH05]. Some of the techniques mentioned in [RG06] and [CLH05] is im-
plemented, tested and analysed in this section.

The main purpose with doing path smoothing is to save time when actually
moving the robot from start to goal. Because the path smoothing is exe-
cuted on-line the execution time is of great importance. In the end one has
to consider if the path smoothing algorithm actually reduce the overall query

53

time. When performing unsmooth movements the robot is exposed to un-
necessary torques and forces. Another benefit of executing path smoothing
is therefore to decrease the wear and tear on the robot system.

The simplest path smoothing technique only decrease the number of way-
points from start to goal, while more advanced methods operates on the
entire path from start to goal. In the following a path is defined by n nodes
with vinit and vgoal as start and goal nodes, respectively. Below are some def-
initions presented that is used when describing the different path smoothing
techniques.

Definition 5.1 (Node path N). A node path N is a series of node v0,...,vn−1,
such that the local path LP[vi, vi+1] are collision-free.

Definition 5.2 (Adjacent configurations). The configurations π0,...,πn−1

are adjacent configurations if the distance d(πi, πi+1) is at most a predeter-
mined step.

Definition 5.3 (Discrete Path Π). A discrete path Π is a series of adjacent
configurations π0,...,πn−1.

Definition 5.4 (Discrete Local Path LP). A discrete local path LP[π′, π′′]
is a series of n interpolated adjacent configurations π0,...,πn−1 on the local
path between π’ and π”.

The first method implemented and tested was a simple path smoothing
technique which aim to remove redundant nodes. A node vi is redundant
if the local planner finds a collision free path between vi−1 and vi+1. The
path is checked by using a greedy approach. The greedy approach first tries
to connect the vinit and vgoal. If it fails it then tries to connect vinit+1 and
vgoal and so on. E.g if vi+5 manages to connect to vgoal, then vi+5 is set as a
temporary goal node and then the loop starts over again and tries to connect
vinit to the temporary goal node. This is continueed until the entire path is
searched through. Algorithm 7 shows the pseudo code of this method.

While the Node Pruning algorithm only deals with redundant nodes, the
next method take the entire discrete path Π into consideration. The next
method is called Shortcut and is described in Algorithm 8. The Shortcut
method takes to random configurations from the path, πa and πb and use
interlpolation to find out it there is a valid path between the two configura-
tions. If a valid path exists, then the old path between πa and πb is replaced
with the new path. Figure 5.13 shows how the initial path is smoothed.

In the Shortcut method all the DOFs are interpolated by the local planner
between πa and πb. In [RG06] a new technique called Partial Shortcut
is introduced. This path smoothing method only interpolates one of the

54

Algorithm 7 Node Pruning
1: vgoal ← vn

2: Nnew ← {vgoal}
3: i← 0
4: repeat
5: if LP[vi, vgoal] ∈ Cfree then
6: vgoal ← vi

7: Nnew ← Nnew ∪ {vgoal}
8: i← 0
9: else

10: i← i + 1
11: end if
12: until vgoal == v0

13: return Nnew

Figure 5.12: Black path is intial path, while blue path is path with redundant
nodes removed.

55

Algorithm 8 Shortcut
1: repeat
2: number of configurations n← |Π|
3: a, b← two random indices 0 ≤ a + 1 < b < n
4: Π′ ← π0, ..., πa−1

5: Π′′ ← πa, ..., πb

6: Π′′′ ← πb+1, ..., πn−1

7: if LP[πa, πb] ∈ Cfree then
8: Π← π′ ∪ LP [πa, πb] ∪Π′′′

9: end if
10: until x number of tries
11: return Π

Figure 5.13: The path being smoothed step by step.

56

degrees of freedom between configuration πa and πb. The rationale is that
sometimes only one or two DOFs do redundant movements, while the moves
in others DOFs are necessary to avoid collision. For example when moving
a small cube around a big cube, the linear movements are necessary not
to crash into the big cube, while the rotational moves are in most cases
redundant. The Partial shortcut method is described in Algorithm 9.

Algorithm 9 Partial Shortcut
1: repeat
2: f ← a random degree of freedom
3: number of configurations n← |Π|
4: a, b← two random indices 0 ≤ a + 1 < b < n
5: Π′ ← π0, ..., πa−1

6: Π′′ ← πa, ..., πb

7: Π′′′ ← πb+1, ..., πn−1

8: m← |Π′′|
9: for π′′i ∈ Π′′ do

10: πi [f]← Interpolate(π0 [f] , πm−1 [f] , i/(m-1))
11: end for
12: ValidatePath(Π′′)
13: if Π′′

i ∈ Cfree then
14: Π← π′ ∪Π′′ ∪Π′′′

15: end if
16: until x number of tries
17: return Π

The chance that a random DOF f is chosen is given according to its weight
w. When only interpolating one of the DOFs it could occur that the dis-
tance between two adjacent configurations is greater than the valid step
size. Because of this the path has to be validated, (see line 12), such that
the maximal step size never is exceeded.

In the Shortcut and Partial Shortcut method index a and b are found by
random. A new version of Shortcut, called Deterministic Shortcut, is hereby
introduced, that choose index a and b in a more deterministic way. The idea
is that the chance of smoothing the movements is greatest where the robot
manipulator changes direction i.e. around the waypoints. Because of this
index a is always smaller than the index of a given node, vi, and index b is
always greater. a and b are always chosen with the same distance d from the
given node, vi. Because it is desirable to try smoothing the path as much as
possible as early as possible, d is large in the beginning and then decreased
by 1 for each iteration. The algorithm terminates when it has reached a
minimum distance minDist or alternatively when a given time constraint is
exceeded. The pseudo code is presented in Algorithm 10.

57

Algorithm 10 Deterministic Shortcut
1: d← maxDist
2: repeat
3: i← d
4: number of configurations n← |Π|
5: repeat
6: if πi ∈ N then
7: a← i− d
8: b← i + d
9: i← b

10: Π′ ← π0, ..., πa−1

11: Π′′ ← πa, ..., πb

12: Π′′′ ← πb+1, ..., πn−1

13: if LP[πa, πb] ∈ Cfree then
14: Π← π′ ∪ LP [πa, πb] ∪Π′′′

15: N ← N ∪ πa ∪ πb

16: end if
17: else
18: i← i + 1
19: end if
20: until i = n− d
21: d← d− 1
22: until d = minDist
23: return Π

58

The maximum and minimum distances maxDist and minDist were deter-
mined by doing some experiments. Determine maxDist and minDist is
a trade-off between path improvements versus time costs. The greater the
maxDist is the greater is the improvement done by the local planner be-
tween two configurations. But the greater the maxDist is, the more time
is wasted on unsuccessful local path planning. It turned out that there was
very little to earn in a greater maxDist than 20. The smaller minDist
becomes the greater is the chance of finding a feasible local path, but the
smaller is the improvements of the path length. Testing showed that when
minDist was smaller than 3 the length improvements was very small com-
pared to time costs.

When doing a new search through the literature it turned out that the idea
of the Deterministic Shortcut method was not new. In [DH99] a method
called Adaptive Shortcut also pick a and b on each side of a waypoint, but
using a different approach. When this was discovered there was no time to
implement and test the Adaptive Shortcut method.

As mentioned above the main goal with path smoothing is do decrease the
path length. When calcuatling the legnth it is distingusihed between rota-
tional and translational DOfs. The path length funciton is the same as used
in [RG06]:

d(Π) = dr(Π) + dt(Π)

where

dr(Π) =
n−2∑
i=0

[dr(πi, πi+i)]
2 and dt(Π) =

n−2∑
i=0

[dt(πi, πi+i)]
2

Let q = πi and r = πi+1. Then, for all k rotational DOFs 0 ≤ j ≤ k and for
all (l − k) translational DOFs k ≤ j ≤ l:

dr(q, r) =

√√√√k−1∑
j=0

[wjd(qj , rj)]
2 and dt(q, r) =

√√√√ l−1∑
j=k

[wjd(qj , rj)]
2

where the partial distances d (qj , rj) are calculated in the same way as in
Section 4.5 and wj is the weights listed in Table 4.2.

59

The performance of the path smoothing methods mentioned above were
investigated by testing each method on 6 successfully queries in the roadmap
containing 1000 nodes. Since the Node Pruning method is deterministic, it
was only tested one time for each query. The paths returned from the Node
Pruning method were then used when the other path smoothing methods
were tested. The Shortcut and Partial Shortcut methods, which rely on
random variables, were first tested to find out how much they could decrease
the length of the paths. By studying the methods it turned out that they had
converged when random values for a and b where tried 500 times. Because
the methods are random each method was ran 30 times on each query to
find the average path length improvements. To find out the maximal path
length decreasing performance of the Deterministic Shortcut, the method
was executed with maxDist and minDist set to half the number of nodes
in the original path and 0, respectively.

Original length 16,05 17,58 32,36 13,41 13,64 21,93 length
Node Pruning 23,78 11,48 8,53 16,27 9,86 6,13 %
Shortcut 55,21 41,88 36,73 48,06 25,03 20,86 %
Partial Shortcut 52,39 38,29 33,74 45,50 26,44 17,59 %
Determined Shortcut 58,97 37,23 38,73 43,20 24,96 19,20 %
Node Pruning 7,48 4,59 9,91 4,44 5,70 7,03 seconds
Shortcut 64,94 69,97 76,08 43,36 156,96 81,43 seconds
Partial Shortcut 232,85 438,81 753,46 294,21 302,18 548,33 seconds
Determined Shortcut 5,58 23,37 67,64 4,08 23,17 37,22 seconds

Table 5.8: Comparison of the maximal path length decreasing

The empirical testing showed that different mehods performed diferent on
different paths. Even if they perofrmed different, the differences were not
very big, less than 5% for most of the paths. The Partial Shortcut method
came worst out of the testing. The results are listed in Table 5.8 where the
best results are in red. Because the execution times in the experiments above
were unacceptable large, the path length decreasing performance versus ex-
ecution time was therefore compared in the next experiment. The Deter-
ministic Shortcut method was therefore executed with its optimal minDist
and maxDist values presented above. In addition a maximum time limit
was used. If the method had not terminated in 20 seconds, it was forced to
terminate. The execution time the Deterministic Shortcut method used for
each query was then used as maximum time limits when the Shortcut and
Partial Shortcut methods were tested. This was done to make the perfor-
mance of the methods easier to compare. The Shortcut and Partial Shortcut
methods were executed 100 times for each query. The average path length
reduction in prosent was then measured. The results from the tests are
shown in Table 5.9.

60

Original length 16,05 17,58 32,36 13,41 13,64 21,93 length
Node Pruning 23,78 11,48 8,53 16,27 9,86 6,13 %
Shortcut 30,09 21,47 27,04 29,02 16,70 12,92 %
Partial Shortcut 25,42 13,02 13,77 17,20 15,53 6,31 %
Determined Shortcut 54,97 27,98 30,38 42,27 22,55 15,02 %
Node Pruning 7,48 4,59 9,91 4,44 5,70 7,03 seconds
Shortcut 1,72 8,64 22,51 2,90 7,44 15,07 seconds
Partial Shortcut 1,77 9,00 23,52 3,20 7,44 15,53 seconds
Determined Shortcut 1,33 8,11 22,18 2,64 6,95 14,64 seconds

Table 5.9: Comparison of performance when using time constraints

This experiment showed that when time is an issue the Deterministic Short-
cut path smoothing method outperformed the random path smoothing meth-
ods: Shortcut and Partial Shortcut. Figure 5.14 and 5.15 shows the robot
manipulator moving from test configurations 1 to test configuration 5. Fig-
ure 5.14 shows the initial path while Figure 5.15 shows the path when in it
first is smoothed with Node Pruning and then Deterministic Shortcut. It is
hard to see how the robot manipulator actually moves, but it is easy to se
that the path is shorter and smoother in Figure 5.15. For simplicity only the
robot arm is displayed and the gantry crane is omitted. Animation showing
the entire 9 DOF system moving along the path can be found in the avi files
attached.

Figure 5.14: Intial pat with many redunant movements

61

Figure 5.15: Path smoothed and length decreased by 42,27% by the Node
Pruning and Deterministic Shortcut methods

5.5 Robust path

It is very important that the path returned by the path planner is collision
free. Because the path planner relies on a static model of the robot and the
environment it is necessary to ensure that the path has a certain ”clarity”
to the obstacles. This will reduce the robots chance of colliding in case
an unnoticed change in the construction of the robot or the environment
occurs. By increasing the distances to the obstacles the path becomes more
”robust”. There exists different methods to make the path more robust.

One method is called the ”medial axis” which ensure that a robot configura-
tion is placed with equal distances between each link and the obstacles. The
Medial axis method is mentioned as a sampling method in Section 3.3.2.
This method requires the calculation of the closest distance between each
link and the obstacles. Since making a robust path is out of the scope of
this project, the method has not been implemented and tested.

Another simpler method that will ensure a certain clearance between the
robot and the obstacles is to scale the size of either the robot, the obstacles,
or both the robot and the obstacles. This method will ensure a safety zone
between the robot and the obstacles depending on the scaling.

62

5.6 Local planner

In the work presented in the sections above a simple but very fast local
planner is used to connect the nodes. The drawback of this local planner is
that it can only move each joint linearly using interpolation. This reduces
its chance finding a feasible path. A more powerful planner is able to move
each joint independent and in a non-linear fashion. The disadvantage of a
more powerful path planner is that it is computationally demanding and
therefore very slow. An example of a powerful local path planner is the
Potential Field Planner described in Section 3.1. This powerful path planner
is based on knowing the closest distances from the robot manipulator links
to the surrounding obstacles at any time. This feature is not supported by
Robot Studio and a PRM using the Potential Field planner is therefore not
likely to be implemented and tested on the real system. Despite this the
use of the Potential Field path planner is investigated. If use of this local
path planner improves Coverage and Maximal Connectivity an effort to
develop the distance calculation feature to Robot Studio might be of interest
to ABB.

In [KAA07] a 3 DOF potential field planner was implemented and tested.
It was shown that it could find a path among dense obstacles if the distance
between the start and goal configurations was small enough, and likely to
fail over longer distances. To make the 3 DOF potential field planner from
[KAA07] handle both the 6 DOF articulated robot manipulator and the 3
DOF linear gantry crane together it was extended from 3 to 9 DOF.

As mentioned above the potential field planner is very slow compared to
the binary path planner, but way more sophisticated and has higher chance
of finding a path between two configurations. When studying the 9 DOF
potential field planner operating among the processing equipment it turned
out, as expected, that it had big problems finding a path between two con-
figurations when the distances became to large.

The potential field planner was therefore implemented as a backup planner
to the simple binary planner and used only if the simple planner failed.
Because the potential field planner is very likely to fail over longer distances,
it is only used if the distance between to configurations is under a certain
limit. To calculate the distance the metric distance mentioned earlier was
used. By trial and error the distance limit was set to 3. Even more time could
be used finding an optimal distance limit, but this has not been prioritized.

It was also noticed that when the goal configuration was close to many
obstacles, the last part of the path, close to the goal configuration, was very
time consuming and very hard or even impossible to complete. The reason

63

to this is probably all the attractive and repulsive forces acting on the robot
manipulator making it shaking or collide when it is close to its goal and
many obstacles. To deal with this problem and to make the planner faster
the local path planner changes back again from Potential Field back to the
binary collision detection planner when the manipulator is close to the goal.
If the distance from current configuration to goal configuration is under a
certain limit the planner tries to succeed with the binary planner. If it
succeed it terminates, if not the limit is decreased and it continues using the
powerful planner to try getting closer. Because the Potential Field planner
is not symmetric a collision free path needed to be found for the robot
manipulator moving both ways.

The effect of using a combination of both a powerful and simple local path
planner was investigated by running several tests. The test set up was the
same as described in section 5.2 and used in section 5.3. A roadmap was
made 10 times by using the Bridge sampling technique and for each time
was Coverage, Connectivity and sampling time measured. The results were
compared with the results from the Bridge Sampling tests in Section 5.3.4
where only a simple planner was used. The results from the tests are shown
in Tabel 5.10.

Number of nodes 100 200 300 Max Value
Coverage Potential 5,7 6,4 6,8 8
Coverage Simple 5,1 6,6 7 8
Potential used when
connecting nodes 15,3 35,8 53,4
Simple used when
connecting node 68 149,9 232
Queries Potential 6,8 13,8 18 21
Queries Simple 4,7 12,2 15,2 21
Sample time Potential 6 h 47 min
Sample time Simple 1h 51 min

Table 5.10: Comparison of a PRM using both a Simple and Potential Field
as local planners and a PRM only using a simple local planner

As seen from row 4 and 5 the Potential field planner was used in average 53.4
times when connecting the nodes in the graph and the simple planner 232
times. Despite of this it turned out that using the Potential Field planner
as a backup local planner did not improve the Coverage compared to only
using a simple local planner. Row 6 and 7 shows that the Connecetivity was
slightly improved by using a more powerful local planner. But, the maximal
number of successful queries was still not more than 21, meaning that the
3rd test configuration was still not able to connect to the large connected
component. The measuring of number of connected components went wrong

64

in this test and is therefore not showed. But some pre testing showed that
the roadmap generated by using the Potential Field planner as backup plan-
ner did decrease the number of connected components. The reason why a
powerful local path planner did not improve the roadmap significantly is not
known for sure. One reason could be that all the parameters in the 9 DOF
Potential Field planner was not sufficient tuned. Spending more time on
tuning the Potential Field planner could maybe have improved the results.
But, a high dimensional configuration space C is the curse of the Potential
Field planner, and it is not sure that there are much room of improvements.

Because of these indifferent results and the fact that using the Potential Filed
planner requires calculations of the closest distances between obstacles and
robot links, it is not recommended to use in this application. In addition the
sampling time was more than three times greater when using the Potential
Field as local planner than when only using the simple local planner which
shows that the powerful local planner is way slower than the simple one.

5.7 Connect to point

As mention, the work presented above is focused on finding a path between
a start and goal configuration. In a typical situation in real life it is more
likely that the goal is not described by the entire goal configuration, but only
of the position and orientation of the end effector. In the local binary path
planner used above both the start and goal configuration are needed because
it interpolates between each joint position. If the goal is only determined by
the position and orientation of the end effector, the other joint parameters of
the goal configuration is not known. Another local path planner is therefore
needed when only goal position and orientation is specified.

In the Potential Field path planner the robot manipulator is attracted to its
goal configuration by attractive forces depending on the distance between
each joint position in the start and goal configuration. Which joints or
points on the robot manipulator to use as reference points to calculate the
attractive forces is optional. Using more points restricts the motion of the
robot. Using only the end effector as reference point will provide great
freedom to the robot manipulator movements and how the goal configuration
could be. But, guiding the entire robot manipulator using only one reference
point is not straight forward.

At first a version of the Potential Field path planner mention above which
only used position and not orientation as input was implemented. The
manipulator Jacobian was used to convert the attractive force acting on the
end effector to torques acting on each of the rotational joints on the 6 DOF

65

robot manipulator. The repulsive forces were calculated as usual as in the
ordinary Potential Field planner described in Section 3.1. By this there were
no attractive forces but only repulsive forces acting on the linear joints on
the 3 DOF gantry crane.

The query itself was executed the same way as in Algorithm 6. Except this
time the distance from the goal position and the end effector position of
the configurations was used as sorting criteria when the goal position was
attempt connected to the roadmap.

The planner described above was tested on a roadmap containing 400 nodes
generated by the Bridge Sampling technique. The 8 test queries described
in Section 5.2 was used. But this time only test configuration 1 was used
as start configuration, while the end effector positions from the 7 other test
configurations were used as goal positions. Reaching exactly the end position
is often very hard because of the nature of the Potential Field planner.
Because of this an error limit of length 2 was accepted. If the planner
failed to reach its goal position area by using more than 40 iterations, it was
aborted and a new configuration node in the roadmap was used as initial
configuration.

It turned out that the planner managed to succeed all the 7 queries. 5 of
the queries were solved at first try and the query time was 10.04, 5.72, 4.47,
5.17 and 3.15 seconds. One query was solved after 2 tries with a query time
of 13.3 seconds. One query time turned out to be very hard and needed 9
tries and 190.34 seconds to succeed. So, after all the test turned out quite
well. There could be several reasons to this. One is the generous error limit
used, and another could be that even if the goal configurations are inside a
difficult area and hard to reach, the goal position of the end effector might
be outside this, and quite easy to reach from another angle. The latter leads
to the last reason, the fact that end orientation is not taken into account.

To make the test harder the goal error limit was decreased to 1. When
connecting to the goal position only the 15 closest end effectors were tried.
This limit was set because the probability of success decrease with number
of tried. Now it became much harder for the planner to succeed. Only 4 of
7 queries succeeded. The connection time for those succeeding was still low:
14.39, 5.05, 6.43 and 2.97. The main reason to some failed is that some of
the goal positions are close to obstacles where the repulsive forces are very
large. This makes the robot shake back and forward as mentioned earlier in
Section 5.6.

To cope with this problem the repulsive force factor η was decreased when
the robots end effector was close to its goal. This resulted in 7 of 7 queries
succeeded. In addition to this, the query time for some of the hard queries

66

had had decreased significantly compared to the very first test. Now the
maximum query time was 91.61 seconds for the worst, compared to 190
seconds from earlier.

When the error limit was decreased even more, to 0.5, which corresponds
to 5 cm in the real world, the planner again struggled to connect to all the
goal points. The reduction of the η was not enough. A modification of the
method above was therefore done. When the end effector reach inside a
limit of 1, the η was set to zero. This means that no repulsive forces acted
on the robot. To decrease the chance that the robot moved past the goal
and bumped into any obstacles the step length α was reduced by 50%. By
doing these changes the planner performed better and the worst time was
actually reduced to 57.86 seconds.

For goal error limits under 0.5 the planner struggled to connect to many
goal points. Some modifications were done to try improve this, but with no
greater success.

As mentioned above, the local path planner has so far only dealt with goal
position and not taken goal orientation of the end effector into account.
Adding the orientation as a requirement will most likely add the demand
to the path planer. The orientation was taken into account by adding an
extra goal point , goal point 2, as reference point. The goal point used so
far was located at the desired goal point of the end effector. Goal point 2
was located where the start of the end effector would be to get the desired
orientation. By using these to points the orientation of the end effectors
Z axis was specified. An extra attractive force was therefore calculated
between this new point and the origin of the 9th coordination frame of the
robot manipulator.

The planner would succeed if both reference points on the robot manipulator
were close enough to their goal positions. To make sure that the end effector
was pointing in the right direction along the Z axes the distance from frame
10 to goal point 1 had to be less than the distance from frame 10 to goal
point 2.

Now the query became harder for the planner to solve. I turned out that
only 3 of 7 query succeeded. The query time did also increase for some of
the successful queries. The query with greatest time spent 113.90 seconds,
while the one with least time spent 13.82 seconds to solve the query.

A deeper study of a planner based on the ideas above could probably improve
the results even more. The object of the work presented in this subsection
was just to briefly investigate one approach that could solve a query with a
given goal position and orientation. An expansion of the planner’s range of
application could be when the entire path for the end effectors position and

67

Figure 5.16: The end efector reaching its desired goal position and orienta-
tion.

orientation is specified. Then it could guide the end effector from sub goal
to sub goal.

Another idea how to connect to a specified goal position and orientation that
not relies on the potential field method and knowing the shortest distances
between the robot and the obstacles is a method where inverse kinematics
is used. By using the inverse kinematics of the robot manipulator a goal
configuration could be made that has the desired end effector position and
orientation. If the goal configuration is collision free it is valid and could
be used. If not, a new configuration needs to be made. Because the robot
manipulator is redundant there exist several joint parameter combinations
that give the same end effector position and orientation. The challenge is
to find the one that is collision free. In [DH99] a path planner using this
approach has been implemented and tested with great success. Because of
limited time this last method has not been investigated any further.

The path planner in this paper finds the path from a given start configuration
to a given goal configuration. According to ABB it is also desirable to make
a path planner that generates a path from start to goal where the position
and orientation of the end effector is specified along the entire path. An
idea is to use the last method mentioned above and presented in ?? to

68

generate dense waypoints with the desired position and orientation of the
end effector along the path. Then a local planner could be used to move
the robot manipulator between the waypoints. Because this was outside the
scope of this project the idea has not been investigated further.

69

Chapter 6

Implementation at ABB

One of the main goals in this project was to implement the developed path
planner at ABB in Oslo and try it out on the real robot system. As a
consequence of this it was always emphasized to make the robot model and
the experiments as close to reality as possible. To avoid discrepancies it was
necessary to cooperate close with ABB during the project.

6.1 Differences between real system and model

The robot model in Matlab was made according to some robot data sheets
and drawings of the real robot system provided by ABB. When the model
in Matlab was tested against the model in Robot Studio, it turned out that
there were some discrepancies between the two models. The real robot has a
parallel bar between joint 2 and joint 3. Because of this parallel bar the robot
has a feature that keeps the angle of the third link relative to the horizontal
plane constant if a change in joint 2 is made. Because this feature was not
mentioned in the data sheets, the feature was not taken into account when
the robot was modelled in Matlab.

In the Matlab model the robot gets its joint angle input for joint 3 relative
to link 2. Because of the parallel stabilisation Robot Studio prefer to get
the joint angles input for joint 3 relative to a horizontal line. Because of this
the joint limits for joint 3 moves up and down depending on its orientation.
At first it was expected that the discrepancies mentioned above would cause
big problems when the two programs should start cooperate. Fortunately it
turned out that the discrepancies could easily be dealt with. According to
the robot data sheets the joint limits for joint 3 are always -60 to 65 degrees
relative to link 2. So, as long as the random joint angles for joint 3 generated

70

in Matlab stayed inside these limits the moving joint limits in Robot Studio
were not exceeded either. Before the joint value could be transferred to
Robot Studio it needed to be converted to the format RS used, i.e. relative
to the horizontal plane. This was done by adding the joint 2 angle to the
joint 3 angle. E.g. if joint 2 and 3 was 30 and 35 degrees, respectively, in
Matlab, they would be 30 and 65 degrees in Robot Studio.

6.2 Implementation and implementation issues

The path planner implemented in Matlab used only a simple model imitat-
ing the real test rig used by ABB in Oslo. Before the path planner could
be tested on the real system a detailed model of the real system was re-
quired. At ABB they had a detailed model of both the robot system and
the processing equipment in Robot Studio. Robot Studio is an offline robot
programming tool, which enables the user to develop and test robot pro-
grams in a 3D environment. The reason why a detailed model of the robot
system and the processing equipment is needed is to do collision detection.
This can be done in Robot Studio for both one single configuration and be-
tween to configurations, given the joint variables as input. Because of this
it was determined to let Robot Studio do the collision detection required by
the path planner.

Next challenge was to make Matlab and Robot Studio cooperate. The stan-
dard RS program comes with an Application Programming Interface (API),
which enables developers to extend the functionality of Robot Studio by
building custom software applications. All custom developed code must be
written as an AddIn, which is loaded into Robot Studio at start up. As
all path planning algorithms were developed in the Matlab, and the Robot
Studio API uses the Microsoft .NET framework, a suitable way of integrat-
ing both environments needed to be found. The Matlab Builder NE toolbox
was used to convert the Matlab functions into dynamic link libraries (dll’s),
which can then be called from within the .NET environment. This approach
was originally chosen because there would be no need to re-write the algo-
rithms and therefore providing a faster way to implement the path planning
algorithms.

In order to access the compiled dll’s, the class must be instantiated. This
was possible within a console application and a light version of the path
planning algorithm, where simulated collision detection events were used,
was tested successfully.

Problems arose within the AddIn application when used in Robot Studio.
Robot Studio uses a standard entry procedure to read all objects used to

71

program the custom AddIns. There appears to be a major conflict between
the objects generated from the Matlab Builder NE toolbox and this standard
entry procedure. The cause of this conflict is still unknown.

Because of this inherent problem with software integration, it was decided
to re-write all Matlab functions in the .NET environment. This is a much
more time consuming task, but the likelihood of success is much higher as
.NET developed AddIns have been successfully deployed previously.

The manner in which Robot Studio deals with collision events caused some
problems with the developed path planning algorithms. Whilst the Matlab
functions returned a TRUE or FALSE to a collision event, Robot Studio
returns a CollisionStarted or CollisionEnded event for each link or object
involved in the collision. The decision logic therefore had to be changed so
that for each configuration, all collision events were counted. This ensured
that the collision checker returned more accurate results.

Because of these unexpected technical challenges the implementation of the
path planner at ABB in Oslo got delayed and was therefore not finished
within deadline. As a consequence of this, the tests on the real system
could not be executed. The staff at ABB will continue to work on the
implementation so that the path planner can be tested in near future.

6.3 Communication between programs

Since collision detection is an important and time consuming part in the
path planning, the communication between the two programs had to be
very fast. Table 6.1 describes how the data is meant to be sent back and
forward between the two programs when making a roadmap. The flow in
step 1 depends on the sampling technique used. In the example in Table
6.1 a simple random sampling technique is used for simplicity. For other
sampling techniques, like the Bridge or the Gaussian, the flow in step 1
would be different. The flow in step 2 to step 5 would not change because
they are independent of the sampling technique used.

72

.NET framework Robot Studio
1. A random configuration
(RC) is made.

Send RCs joint variables
for collision check →

Check if RC is colliding
← Return GO/NOGO

if GO:
2. Store RC as a node
in the roadmap.
3. Try connect RC to the
closest node (CN) in the
roadmap.

Send RC and CNs joint
variables for collision check →

Do a collision check
between RC and CN
using interpolation.

← Return GO/NOGO
if GO
4. Store the distance between
RC and CN and add RC to
CNs connected component.
elseif NOGO
5. Return to 3 using the second
closest node. Repeat k times or
until GO is returned.
end
end
REPEAT until n number
of nodes are made

Table 6.1: Communication between .NET framework and Robot Studio

73

Chapter 7

Final Discussion and
conclusion

In this paper the development of an optimal 3D path planner for a 9 DOF
robot manipulator with collision avoidance is described. The path planner is
based on the well known Probabilistic Roadmap method. The path planner
is optimized for a 9 DOF ABB Robot manipulator moving within a limited
and static environment with processing equipment, consisting of many pipes
and tanks, as obstacles. The requirement that the robot manipulator should
be able to move between and close to the obstacles is emphasized. The path
planner is optimized as described below.

In the off-line Learning Phase the path planner was optimized due to Coverage
and Maximal Connectivity. To fulfil these two criteria an appropriate sam-
pling technique was required. Different sampling techniques were therefore
studied, implemented and tested. It turned out that the greatest challenge
was to cover the narrow areas in configurations space where the robot ma-
nipulator only can do small movements without crashing. Because of this
the Bridge Sampling technique in combination with the Random Sampling
technique provided best results and managed to cover all the test configu-
rations.

When it came to Maximal Connectivity this was harder to achieve. Re-
sults showed that even if all the configurations were covered, it was not
possible to connect all of them to the same connected component. It was es-
pecially the 3rd test configuration that was hard to connect. Because of this
a method that improved the Connectivity called Connection Sampling was
implemented and tested. The idea of this method is well known. The Con-
nection Sampling methoh provdied MaximalConenctivity 3 ot of 5 times.
The Connection Sampling method did decrease the number of connected

74

components in the roadmap every time which implies better Connectivity.
The Connection Sampling method developed is therefore very useful, but
not optimal.

The different steps in the Query Phase were studied in detail. An analysis
showed that the most time consuming part was executing the local path
planning when connecting the start and goal configurations. Sorting the
nodes by distance and finding the shortest path using Djikstras algorithm
had little impact on the query time. Many attempts to connect to different
nodes increased the Query Time. Testing showed that the number of tries
to connect decreased with an increasing number of nodes in the roadmap.
A large roadmap does therefore not necessarily increase the query time, but
rather decrease it compared to a smaller roadmap. Since Robot studio will
be used in practice to do the local path planning, attempts to improve this
part was not prioritized.

The optimization of the Query time was done in the path smoothing part.
Some existing and a new developed method were implemented and tested.
The new developed method, Deterministic Shortcut, is a modification of one
of the existing methods, the Shortcut method. While the Shortcut method
endeavour to make shortcuts with random lengths and at random places
along the path, the Deterministic Shortcut methods endeavours to make
”long” shortcuts first, and then smaller, around the waypoints along the
path. Empirical testing showed that the Deterministic Shortcut method
decreased the path length considerably more than the other techniques for
a given time constraint.

A so called ”Backup Procedure” was also implemented. The procedure is
executed when a query fails. Experiments showed that the Backup Proce-
dure manages to accomplish the queries, but the execution time varied a lot.
Because of this it needs improvements to be useful in practice.

Use of the Potential Field planner as a more powerful local planner was also
investigated. It turned out that use of a more powerful local path planner
did not improve Coverage or Connectivity. The reason to this could be the
limited performance of the Potential Field planner used due to insufficient
tuning. If more time was spent on tuning and improving the Potential Field
planner the result might have been improved.

In a real situation it is more likely that the goal is specified by a goal position
and orientation instead of the entire goal configuration. Thus a local planner
placing the end effector at a specified position in a specified orientation was
developed and tested. This local planner, called the End Effector Planner,
is a modified version of the Potential Field planner where the only attractive
force is applied on the end effector and attracts it to its final position and

75

orientation. The End Effector Planner worked satisfactorily when only the
goal position was specified, but struggled when the goal orientation also was
specified.

To be able to test it on the real robot system at ABB in Oslo the path plan-
ner was attempt incorporated into Robot Studio. But due to unexpected
issues it was not succeeded to finish the implementation within deadline.
The issues were not related to the path planner program itself but to some
unexpected behaviours from Robot Studio that needed to be dealt with.
According to the staff at ABB it is just a matter of time before the imple-
mentation is done and experiments on the real system can be executed.

According to the results presented in this paper it is concluded that the Prob-
abilistic Roadmap method is a suitable approach to obtain 3D path planner
with collision avoidance for the 9 DOF robot manipulator. The Coverage
can be optimized by using the Bridge Sampling technique in combination
with a Random Sampling technique. The Conectivity can be improved
by using Connetion Sampling, which could result in Maximal Connection.
The path length can be optimized using the Deterministic Shortcut method.

76

Appendix A

Matlab Program

In this Chapter a brief explenation to the implemented Matlab code is pre-
sented. Only the purpose of the main functions are described.

The main file needed to be executed is PRM Bridge. In this file are cer-
tain important parameter specified, such as the distance weight vector (and
the joint Limits). This file calls a function, makeBridgeSamples nearest k,
that generates samples and construct the roadmap. The makeBridgeSam-
ples nearest k return a matrix called Samples, and a list of structure called
Components.

The Samples matrix is a 11xN matrix that stores all the nodes in the
roadmap. One column represents one node. Column 1 represents Node
nr 1. Column 2 represents Node nr 2 and so on. The 10 first rows are the
joint parameters and the 11th row describes which connected component
the node belongs to.

The ”‘Components”’ is a list of structures. Each item in the list is a structure
describing one connected component. Each structure contains one list called
”Node” and one matrix called ”NB”. The ”Node” list contains all the node
numbers in the connected component and is realted to column number in
the Samples matrix. The ”NB” matrix is a neighbour matrix describing the
edges which connect the nodes together in the connected component. Zero
represents no connection between two nodes while a value greater than zero
represents a connection and the length between two nodes. The structures
related to the Samples matrix in Table A.1 are listed below. The component
structures show that node 1,2,3,6 and 7 are connected together in one com-
ponent, while node 4 and 5 are connected together in another one. Node 8
has not managed to connect to any other nodes, and has therefore created
its own component.

77

1 2 3 4 5 6 7 8
0 0 0 0 0 0 0 0
x x x x x x x x
y y y y y y y y
z z z z z z z z
θ1 θ1 θ1 θ1 θ1 θ1 θ1 θ1

θ2 θ2 θ2 θ2 θ2 θ2 θ2 θ2

θ3 θ3 θ3 θ3 θ3 θ3 θ3 θ3

θ4 θ4 θ4 θ4 θ4 θ4 θ4 θ4

θ5 θ5 θ5 θ5 θ5 θ5 θ5 θ5

θ6 θ6 θ6 θ6 θ6 θ6 θ6 θ6

1 1 1 2 2 1 1 3

Table A.1: Samples matrix containing 8 nodes

Structure 1: Node =
[
1 2 3 6 7

]
NB =



0 1.45 4.32 0 0 0 0
1.45 0 0 0 0 0 4.53
4.32 0 0 0 0 0.76 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0.76 0 0 0 0.2
0 4.53 0 0 0 0.2 0



Structure 2: Node =
[
4 5

]
NB =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1.64
0 0 0 1.64 0


Structure 3: Node =

[
8
]
NB =

[
0
]

When a new valid node is made, attempts to connect it to other nodes
are executed. The order the new node tries to connect to the other nodes
is determined by the distance between them. Obviously the closest nodes
are tried out first. Because the chance of finding a feasible path between
two nodes decrease as the distance between them increase, the distance
and the number of nodes can therefore be limited. When a valid path is
found the new node is connected to the node and its connected component
by calling the ”connectNodeABB K” function. If the new node fails to
find a valid path to other nodes, it makes a new component by calling the
”connectToEmptyComponentABB” function.

78

Appendix B

Robot data sheets

Figure B.1: Robot Data Sheet

79

Figure B.2: Robot Data Sheet

80

Figure B.3: Gantry Crane

81

Figure B.4: Gantry Crane

82

Figure B.5: Gantry Crane

83

Figure B.6: Gantry Crane

84

Bibliography

[GJK88] E.G. Gilbert, D.W. Johnson, and S.S. Keerthi. A fast procedure for
computing the distance between complex objects in three-dimensional
space. IEEE Trans. Robotics Automation, 4(2):193-203, April 1988.

[LC91] Lin M. C. and Canny J. F. (1991) A fast algorithm for incremen-
tal distance claculation. In Proceedings of International Conference on
Robotics and Automation, pages 1008-1014. IEEE

[MC93] Alistair Mclean, Stephen Cameron. Snaked-based path planning for
redundant manipulators. In int. Conf. Robotics and Automation, vol-
ume 2, pages 275-282, Atlanta, May 1993

[MC94] Alistair Mclean, Stephen Cameron. Effective Path Planning and
Collision Avoidance for Redundant Manipulators, Presented at Inter-
national Conference on Advanced Robotics and Computer Vision, Sin-
gapotre 1994

[GD98] Kamal Gupta, Angel P. Del Pobil Practical motion planning in
robotics Wiley, 1998

[NA98] Nancy M. Amato, O. Burchan Bayazit, et. al. Choosing Good Dis-
tance Metrics and Local Planners for Probabilistic Roadmap Methods.
In IEEE International Conference on Robotics and Automation, pages
630-637, 1998.

[VB99] V. Boor, M.H. Overmars, and A.F van der Stappen. The Gaussian
sampling strategy for probabilistic roadmap planners. In IEEE Interna-
tional Conference on Robotics and Automation, pages 1018-1023, 1999.

[DH99] D.Hsu, J.-C. Latombe, and S.Sorkin. Placing a robot manipulator
amid obstacels for optimized execution. In IEEE International Symopo-
sium on Assembly and Task, pages 280-285, 1999.

[GB99] Gino van den Bergen. A Fast and Robust GJK Implementation for
Collision Detection of Convex Objects July 6, 1999

85

[DH03] D. Hsu, t.Jiang, J. Reif and Z. Sun. The bridge test for sampling
narrow passaages with probabilistic roadmap planner. In IEEE Interna-
tional Conference on Robotics and Automation, pages 4420-4426, 2003.

[GB04] Gino van den Bergen. Collision Detection in Interactive 3D Envi-
ronments, Elsevier, San Francisco 2004

[CLH05] Howir Chuset, Kevin Lync, Set Hutchinson et al. Principles of
Robot Motion, Theory Algorithms, and Implementations, MIT Press,
2005

[SHV06] Mark W. Spong, Seth Hutchinson, M. Vidyasagar. Robot Modeling
and Control, Wiley, 2006

[RG06] Roland Jan Geraerts, Sampling-based Motion Planning: Analysis
and Path Quality, Ph.D. thesis. Utrecht University. 2006.

[KAA07] Kristoffer Aasland, 3D Path Planning For a Robot Manipualtor
With Collision Avoidance, Project work fall, 2007, NTNU

86

	Title Page
	Problem Description
	Introduction
	Motivation
	Optimal 3D Path Planning with collision avoidance
	Project Scope
	Paper layout

	Preliminaries
	The Robot Manipulator
	The Configuration Space
	The Workspace

	Literature study
	Potential Field Planner
	The Attractive field
	The Repulsive field
	Mapping Workspace Forces to Joint Torques
	Gradient Descent Planning

	Cell Decomposition
	Probabilistic RoadMaps (PRM)
	The Learning Phase
	Sampling tecniques
	Collision Detection and Path Planning
	Defining neighbors and connecting strategy

	Robot Representation And Modeling
	Forward Kinematics
	Manipulator Jacobian
	Robot Modeling in Matlab
	Modeling the Process Equipment
	Distance Metric

	Optimal 3D path planner
	Optimization criteria
	Test set up
	Learning phase
	Gaussian Sampling
	Bridge test
	Grid Based
	Comparison of test results
	Connection Sampling

	Query phase
	Connecting start and goal node
	Backup Procedure
	Path Smoothing

	Robust path
	Local planner
	Connect to point

	Implementation at ABB
	Differences between real system and model
	Implementation and implementation issues
	Communication between programs

	Final Discussion and conclusion
	Matlab Program
	Robot data sheets

