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Abstract

This thesis presents segmentation of the right ventricle of the heart in real-
time tracking of 3D ultrasound recordings. A simple deformable model for
the right ventricle is developed based on statistical data from manual seg-
mentations, and the model has been tested out in a set of 3D ultrasound
recordings and compared to manually segmented right ventricular volumes.
The manual segmentation method with volume approximation is also de-
veloped. The segmentation tests on the recordings are performed with an
already present Kalman filter based real-time contour tracking framework.

The ability of the models to fit to the shape of the right ventricle has
been evaluated, and the resulting volume curves have been inspected. De-
formable models of the right ventricle are constructed by placing nodes in an
initial three-dimensional mesh, and subdivision schemes are applied to make
smooth surfaces. There have also been experimented with models of different
resolutions and initial positions.

A background study of right ventricular anatomy, subdivision, model-
based segmentation and Kalman filter theory is included, and clinical appli-
cations of volume measurements in real-time are suggested.

The results of the segmentation are promising, and indicate that models
adjust to the right ventricle during the heart beat.
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Chapter 1

Introduction

Cardiovascular diseases have become increasingly common and is today the
number one cause of death in Norway [30]. In the recent years many studies
have shown that the right ventricular function can be of a prognostic value
for such diseases as right ventricular myocardial infarction, congenital heart
disease and coronary artery disease [12].

Volume measurements of the right ventricle in two-dimensional echocar-
diography is limited due to the complex and the heavily varying shapes of the
right ventricle. This is in great contrast to the much more easily modeled left
ventricle. The right ventricle has an asymmetrical and crescentic shape and
can often appear difficult to view in standardized two-dimensional echocar-
diographical views [17]. This has led to a stagnation in the development of
the right ventricular volume measurements methods.

The development of three-dimensional echocardiography have created a
new effort and interest in the attempt to measure the volume of the right
ventricle. The 3D approach makes the volume measurements possible with-
out any geometric assumptions, and the volume measurements has been an
extremely active area of recent investigation [28]. In the United States, The
National Heart, Lung and Blood Institute identified the right ventricular
physiology as a priority in cardiovascular research [13].

The main goal for this thesis is to segment the right ventricle during
the heart cycle in three-dimensional ultrasound recordings. This is based
on the framework for real-time segmentation of the left ventricle developed
by Fredrik Orderud [32]. The focus is pointed toward the development of
initial models of the right ventricle which is being used with the approach of
model-based segmentation. The model-based method have some advantages
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over more traditional low-level methods, because of the inherited knowledge
of the geometrical shape that should be segmented and the segmentation can
not be carried out only with the use of image features [44]. This is one step
on the long way of automated computer vision in medical imaging.

This thesis investigates the effects of different initial deformable models
of the right ventricle and includes a procedure for making several geometrical
models of the right ventricle based on three-dimensional ultrasound record-
ings.

The report is divided into four parts: Background theory, Methods and
Tools, Results, and Discussion and Conclusion. The background theory
presents some theory about the heart with special emphasis on the right ven-
tricular geometry and physiology, ultrasound theory with emphasis on three-
dimensional echocardiography imaging. Further it contains chapters about
model-based segmentation theory, subdivision surfaces, and state-space mod-
eling together with Kalman filter theory. The method part presents a method
for manual segmentation of the right ventricle and a method for volume
approximation from manual segmented two-dimensional contours. Three-
dimensional geometrical models are presented and prepared for automatic
segmentation. A chapter about the Real-Time Contour Tracking Library
(RCTL) which is used as a tool for segmentation is also included. The result
part includes validation of the automated three-dimensional segmentation
against two-dimensional manual segmentation, the effect of the number of
edge detectors, and the effect of attractors in the segmentation. Finally the
discussion, conclusion and suggestions for further work in the area of model-
based real-time right ventricle segmentation is included.
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Part I

Background theory
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Chapter 2

Heart physiology

2.1 Heart function

The heart is one of the most essential organs in the human body, and it is
the key organ for life. The four main functions of the heart as listed in [38]
is

• Generating blood pressure. The blood pressure in the body is
generated when the heart contracts, and provides the flow of the blood
through the body.

• Routing blood. The heart directs the blood such that blood that is
rich in oxygen goes through the body, and that blood with low oxygen
content is routed to the lungs for oxygen filling.

• Ensuring one-way blood flow. The heart valves ensures that the
blood only goes one way through the body

• Regulating blood supply. The heart rate changes due to the metabolic
need in the body, during rest or exercise and other changes in the body.

2.2 Heart anatomy

The heart, shown in Figure 2.1 and 2.2, is an oval shaped organ. The main
features are the apex at the tip of the heart and the base on the opposite
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Figure 2.1: The human heart. The blue color indicates blood that has a
low oxygene content, while the red color shows blood that has a high oxygen
content. The right ventricle (RV) is shown on the lower left side of the figure.
Figure from [2].

Figure 2.2: Photography of a human heart. This photography is of a speci-
men stored at the anatomical collection at St. Olavs Hospital in Trondheim.
(Photo: Fredrik Orderud.)

side. The heart lies in the pericardial cavity which is sited behind the ribs
and slightly to the left of the midline of the body, see Figure 2.4. The
pericardium, which is a double-layered sac, encloses the heart. The two layers
in the pericardium are the fibrous pericardium and the serous pericardium.

The fibrous pericardium is the outer layer and the serous pericardium
is the innermost layer. The serous pericardium can again be divided into
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the parietal pericardium and the epicardium which lies in toward the heart.
Between the parietal pericardium and the epicardium there is a pericardial
cavity filled with pericardial fluid.

2.3 The heart chambers

The heart consists of four chambers; the right and left atria and the right and
left ventricles, as shown in 2.1. The atria and the ventricles are separated
from each other by the coronary sulcus.

The superior vena cava and the anterior vena cava delivers blood from
the body to the right atrium from the top of the body and the bottom of
the body respectively. The pulmonary veins delivers blood from the lungs to
the left atrium, while the pulmonary arteries transports blood from the right
ventricle to the lungs. The aorta extends from the left ventricle and delivers
blood to the body.

The ventricles are the two chambers with the main responsibility for
pumping the blood. The left ventricle is the stronger of the two ventri-
cles and pumps the blood out in to the aorta where the blood continues
further out in the body. The right ventricle pumps blood with low oxygen
content into the lungs. The two ventricles are separated from each other by
the interventricular septum.

Between each ventricle and its respective atrium the atrioventricular
valves are located. The right ventricle and atrium is separated with the
tricuspid valve (see Figure 2.1). This valve has three tips from which it has
its name. The left ventricle and atrium is separated with the mitral valve.
The valves allow blood to flow from the atria to the ventricles, but prevent
flow the other way. This is achieved by the fact that the valves has a shape
that makes it close when the pressure is higher in the ventricle than in the
atrium, and open when the case is the opposite.

Between the aorta and the left ventricle the aortic semilunar valve is
placed, and between the right ventricle and the pulmonary artery the pul-
monary semilunar valve is placed. The functions of these valves are analogous
to the function of the atrioventricular valves; they control that the flow in
the veins goes in only one direction.

The cardiac cycle, i.e. the blood flow through the heart and the body
is shown in Figure 2.3. The blood from the body enters the right atrium,
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which causes it to expand. Then the right atrium contracts, which make the
triscupid valve to open, and the blood flows in to the right ventricle. The
right ventricle then contracts and the blood flow in to the lungs through the
pulmonary vein. An analogous procedure happens when the blood flows from
the lungs to the left atrium and then further out in the left ventricle. It is
important to note that the contractions of the two atria happen at the same
time, and the contractions of the ventricles happen at the same time. The
contraction of the atria is called atrial systole, and the relaxation are called
atrial diastole. The contraction of the ventricles is referred to as ventricular
systole, and similar the relaxation are called ventricular diastole. When we
simply refer to the systole or diastole we refer to ventricular contraction or
relaxation [38].

Figure 2.3: Illustration of the blood flow in the cardiac cycle. The blood is
in the upper and the lower row at the same time.

The amount of blood pumped out by each of the ventricles, is called the
cardiac output (CO) which is measured in milliliters per minute (ml/min).
The amount of blood pumped for each ventricle during each diastole is called
stroke volume (SV), and is measured in milliliters per beat (ml/beat). The
number of times the heart beats in one minute is called the heart rate (HR).
The relation between the three parameters is:

CO = SV ×HR (2.1)

The stroke volume can be described as the difference between the volume
in the ventricle in the end of the diastole and the volume in the end of the
systole. A parameter which describes how much of the blood that is pumped
out is called the ejection fraction and is defined as:

Ejection fraction =
Stroke volume

End diastole volume
(2.2)
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2.4 Right ventricle

The right ventricle is situated anterior on the heart and, in the normal sit-
uation, it lies right behind the sternum. The right ventricle is separated
from the left ventricle by the interventricular septum. Figure 2.4 shows the
position of the right ventricle in connection with the sternum and the ribs.

Figure 2.4: The position of the heart and the right ventricle in the body.
The right ventricle lies right behind the sternum. This can make echogardio-
graphic examinations difficult. Figure from [2].

2.4.1 Anatomy

The right ventricle are located at the ventral side of the heart. The overall
shape of the right ventricle is triangular when it is viewed from the side,
and crescent in the cross-sectional view, it is also asymmetric and heavy
trabeculated. This gives a much more complex shape than the left ventricle
which can be approximated as an ellipsoid. Some segmented right ventricles
from CT images are illustrated in figure 2.5.

It is possible to describe the right ventricle by the notion of three parts
[12], and this is illustrated in figure 2.6. Part 1 in figure 2.6 is the outflow
part, also called the infundibulum or the conus arteriosus, and is a tubular
muscular formation with the pulmonary valve on the top. The infudibulum
is limited anferiorly by the free ventricular wall, posteriorly by the ventricu-
loinfundibular fold and by the outlet portion of the interventricular septum.

The part situated superior in the ventricle is the inflow part which con-
tains the tricuspid valve, chordae tendineae, and papillary muscles, this part
is shown as part 2 in figure 2.6. The chordae tendineae are thin but strong
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Figure 2.5: Segmented right ventricles from CT images. Notice the complex
shape and the large variations between the ventricles. (The volumes are
manually segmented ventricles taken from GE’s cardiac atlas).

Figure 2.6: The right ventricle divided into three parts: 1) the outflow, 2)
the inlet, 3) the trabeculated zone. The outflow part, or infundibulum, is
a tubular muscular formation with the pulmonary valve on top. The inlet
includes the tricuspid valves and extends until the implantation line of the
papillary muscles. The trabuleculated zone extends from the apex to the
insertion of the papillary muscles. Figure from [47].

connective tissue strings which attach the papillary muscles to the tricuspidal
valve, see Figure 2.7.

10



Figure 2.7: This figure illustrates the papillary muscles in the right ventricle.
The papillary muscles are attached to the tricuspid valve and are responsible
for valve movement. It illustrates also that the tricuspid valve is attached
closer to the cardiac apex than the left ventricle. (RV = Right ventricle, RA
= Right atrium, LV = Left ventricle, LA = Left atrium). Figure from [16].

The part nearest the apex is the trabeculated apical myocardium, which
has very coarse trabeculations. Such as the large papillary muscles which is
illustrated in Figure 2.7.

There are also other means of dividing the right ventricle into subparts
[12], such as by means of the walls (free wall, septal wall and inferior). The
free wall is the anterior wall of the ventricle, while the septal wall is the
lateral wall and corresponds to the interventricular septum. The walls of the
right ventricle are thinner than the walls of the left ventricle.

Between the tricuspid and the pulmanory semilunar valve, there are a
ventriculoinfundibular fold which separates the two valves, see Figure 2.9.
This is a characteristical feature of the right ventricle as the left ventricle has
continuity between the mitral and the aortic semilunar valve.

Another characteristic feature of the right ventricle is the moderator band
or septomarginal trabecula. The moderator band is one distinctive muscular
band in the ventricle and is attached to the anterior papillary muscle. It lies
on the right side of the interventricular septum and has two limbs embracing
the body of the supraventricular crest, see Figure 2.8.

The internal features of the right ventricle is illustrated in figure 2.9.
Notice the external pyramidal shape, and the large papillary muscles in the
apex.
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Figure 2.8: The moderator band (MB), or the septomarginal trabecula, is a
distinctive muscular band in the ventricle. The moderator band is often a
prominent feature in echocardiographic images. Figure from [16].

Figure 2.9: Internal features of the right ventricle. The prominent papillary
muscles is seen in the apex part. The overall external shape appears as
a rounded pyramidal shape, which are flat in the inferior part and more
rounded in the superior part. Figure from [47].

2.4.2 Physiology

The right ventricle’s primary function is to pump blood into the pulmonary
trunk. When the right ventricle contracts, the pressure increases to approx-
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imately one-fifth of the pressure in the left ventricle [38], the two chambers
does however pump the same average stroke volume due to the fact that
they are connected in series. However the anatomical coupling of the right
ventricle to the interventricular septum is complicating the understanding of
the right ventricular function [37].

The contraction of the right ventricle is performed by three separate mech-
anisms [12]:

1. Inward movement of the free wall.

2. Contraction of the longitudinal fibers. The long axis shortens and pulls
the tricuspid annulus against the apex.

3. Free wall traction at the attachment points secondary to left ventricular
contraction.

The separate anatomic components contract asynchronously [28] and starts
with the contraction of the inflow and the trabeculated myocardium part
(Figure 2.6) and ends with the contraction of the infundibulum (outflow
section). The infundibulum contraction lasts longer than the inflow region
contraction [12]. There are no significant twisting and rotational movements
in the right ventricle contraction, this is in contrast to the left ventricular
contraction. In the pattern of the right ventricle contraction the predominant
shortening is apex to base [49]. This often appears in echocardiography
images as the apex has a very small movement.

2.4.3 Volume

Lorenz et. al [24] obtained the following quantities for right ventricular vol-
ume with cine MRI:

• RV end diastolic volume: 138 ± 40 ml (males: 157 ± 35 ml, females:
106± 24 ml)

• RV end systolic volume: 54±21 ml (males: 63±20 ml, females: 40±14
ml)

• RV ejection fraction: 61± 7% (males: 60± 7% ml, females: 63± 8%)

• RV stroke volume: 84± 24 ml (males: 95± 22 ml, females: 66± 16 ml)
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The parameters are expressed with mean value ± one standard deviation.
The stroke volume would be approximately the same as for the left ventricle
due to the closed loop system of the heart and veins. However, the ejection
fraction does not necessarily have to be the same as for the left ventricle,
because the chambers end diastolic volume does not need to be the same.

2D echo volume measurements methods

There is no simple geometrical shape such as pyramidical, ellipsoidal, or cylin-
drical which can represent the right ventricle shape in a satisfying matter.
The accuracy of volume estimation with two-dimensional echocardiography
and geometrical assumption has been limited, both for methods based on
Simpson’s rule and area and length calculation [28]. The anatomical and
physiological limitation of the right ventricle makes the volume measurement
of the right ventricle challenging.

Several suggestions for calculating volume from two-dimensional echocar-
diography has been proposed:

Munoz et. al. developed a method for reconstructing the three-dimensional
shape of the right ventricle from three orthogonal standard echocardiographic
planes [28]. In [39] they state that RV volumes can be estimated from the
projection of the chamber in two perpendicular planes

Other forms for estimating volume is by means of angiography, in where
an area-length algorithm has been proposed [39]. In [7] they propose methods
that make geometrical assumptions such as elliptical cross-section, pyramidal
shape and prism shape assumptions.

Some attempts to make mathematical models which describes the geo-
metric shape of the right ventricle. Because of large variations in the ventricle
these does not yield exact results when just based on two-dimensional pa-
rameters. They could however be used as an basis for a deformable model
used in model-based segmentation. These are the crescentic cross-sectional
model proposed by Czegledy [7], and the bent-ellipsoid model proposed by
Cao [5].

The crescentic cross-sectional model proposed by [7] is based on two circles
with different radii. One circle specifies with radius R specifies the septum,
and one other circle of radius r specifies the right ventricle free wall. Figure
2.10 illustrates this model, shown from the same view as figure 7.9. The free
wall defining circle are changing in radius as a function of the length, making
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the curved shape of the free wall. The model can be constructed by specifying
the length of the ventricle, the radius in the base and the radius of the two
circles, all of these are parameters which can be obtained by two-dimensional
echocardiography. The volume can then be calculated by a given formula [7].

Figure 2.10: The crescentic cross-sectional model, translated along the long-
axis to obtain the same view as in figure 7.9. The model consists of two
circles, one which defines the septum and one which defines the free wall.

The bent ellipsoid model [5], uses a modified version of the ellipsoid for-
mula:

(x− kz2 − ly2)2

a2
+
y2

b2
+
z2

c2
= 1, for y ≥ 0 (2.3)

This model is specified by the variables a the equatorial radius along the
x-axis, b the polar radius along the y-axis, c the equatorial radius along the
z-axis, k which specifies how far the apex should be from the y-axis, and l
which specifies how far the corners of the base should be from the y-axis.
The bent ellipsoidal model is shown in figure 2.11.

3D echocardiography

With the development of three-dimensional echocardiography the use of this
technology to assess the right ventricular volume and function has been sug-
gested and are under investigation because there is no need for geometric
assumptions [49]. The complex crescent shape in the short axis view of
the right ventricle has made estimation of right ventricular volumes based on
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Figure 2.11: The bent ellipsoidal model, translated along the long-axis to
obtain the same view as in figure 7.9. The model can be constructed with
parameters obtained by two-dimensional echocardiography.

two-dimensional imaging and geometric modeling especially challenging. The
ability of the three-dimensional echocardiogrophy to assess the volume di-
rectly without any geometrical assumptions have improved the accuracy and
reproducibility than with previously proposed two-dimensional techniques
[19].

2.4.4 Potential Clinical Applications of Real-Time Vol-
ume Measurements

In the past the importance of the right ventricular function has been under-
estimated in the evaluation of cardiovascular disease, but in the recent years
many studies have shown a prognostic value [13].

In [28] several clinical applications of three-dimensional measurements of
the right ventricle by echocardiography. These applications include monitor-
ing of right ventricular function in children with lesions associated with right
ventricular volume overload and/or pulmonary hypertension. Importance in
the quantification of the effects of pulmonary hypertension and specific ther-
apies on right ventricular function is also included as potential applications.

Further it is proposed that a monitoring of the right ventricular shape,
function and volume can be used to assess some clinical conditions, such as
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ventricular ischemia, single ventricle, hypoplastic right ventricle, and post-
operative tetralogy of Fallot [28].

These claims are backed up by [49] where it is proposed that knowl-
edge of RV function has potential use in several clinical conditions such as
pulmonary hypertension, congenital heart disease, and right ventricular dys-
plasia/cardiomyopathy. In addition [39] has proposed that it could be used
for finding disorders such as ischemic heart disease, congenital heart disease,
and pulmonary hypertension. In [37] the following diseases and disorders
are listed: chronic obstructive pulmonary disease, congenital defects, and
congestive heart failure.
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Chapter 3

Medical imaging

3.1 Ultrasound

Ultrasound imaging is based on sending an acoustic pulse with a high fre-
quency and then listening for echoes from structures where the acoustic
impedance is different from the carrier medium. Ultrasound frequencies
ranges from 20 kHz and up, these are frequencies that are beyond the au-
dible area of the human ear. Ultrasound used for medical diagnostics has
typically frequencies from 2 MHz to 10 MHz [1].

The ultrasound waves can be described by its frequency, wavelength, pe-
riod, amplitude, power, pulse length and intensity. The period and amplitude
is shown in Figure 3.1. The frequency is given as the reciprocal of the period.
The wavelength is given by:

λ =
c

f
(3.1)

where c is the speed of sound and f is the frequency. The power is the energy
transfer in the beam and is proportional with the amplitude squared, A2. The
intensity is the average power per unit area that is incident perpendicular to
the direction of propagation (P = Pav

A
) [45].

The speed of sound is a property of the medium, and is given by the
relationship:

c =
1
√
ρκ

(3.2)

where ρ is the mass density in the medium and κ is the volume compressibil-
ity. In diagnostic ultrasound the medium is human tissue, and the average
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Figure 3.1: Soundwave parameters. An ultrasound wave is a sound wave
with frequencies over 20kHz. The frequency is given as the reciprocal of the
period.

speed of sound in tissue is 1540 m/s. Another property of the medium is the
acoustic impedance which is given by:

Z = ρc (3.3)

where ρ is the mass density of the medium and c is the speed of sound.
The fact that different sorts of tissue have different acoustic impedance is
the fundamental property of diagnostic ultrasound. As mentioned earlier,
when the ultrasound wave hit structures with different acoustic impedance
a part of the wave will be reflected and this can be exploited to identify
structures in the tissue. The range from the ultrasound transducer to the
echo-giving structure can be calculated from the time it takes from the pulse
was transmitted and until it is received. This can be stated by the following
expression [1]:

r =
cτ

2
(3.4)

where τ is the time from the transmission to the receiving and the factor 1
2

originating from the fact that the wave has to travel the distance two times.

3.1.1 Echocardiography

Echocardiography is the application of diagnostic ultrasound on the heart.
There are several advantages with using ultrasound for inspection of the heart
versus other imaging modalities, such as MRI or CT. The ultrasound does
not harm the patient neither does it cause any discomfort for the patient.
The equipment can be portable and can be used under changing conditions.
Echocardiography does also allow real-time imaging which makes it possible
for the clinician to inspect the heart beats. The real-time recordings are also
a crucial part of the results of this thesis.
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Bones have very high acoustic impedance and will reflect a substantial
part of the ultrasound waves and thus hide the tissue structures behind it.
One of the main challenges when performing echocardiography is to be able
to avoid the ribs to direct the waves directly on the heart.

The frequencies used in echocardiography are typically 2− 2.5 MHz for
adults and 5−7.5 MHz for pediatric inspection [31]. Higher frequencies give
higher resolution, but the penetration depth decreases.

3.1.2 Transducers

The ultrasound waves are generated by an ultrasound transducer. A trans-
ducer is a device that converts one type of energy to another. In the diag-
nostical ultrasound case it is electrical energy to mechanical energy and vice
versa, which means that the transducer can be used both to transmit and to
receive an ultrasound signal. This is done with piezoelectric elements which
have the ability that they expand and contract according to the voltage ap-
plied to them. If an oscillating voltage is applied, the elements will vibrate
and produce waves in the medium they are applied to. Reversely, an incom-
ing mechanical wave causes the elements to vibrate which again creates an
electrical pulse.

The elements in the transducer can be arranged in an array. The elements
in the array can vibrate independently, and according to Huygens principle
[25] the sum of each wave created from each element will make up a full
wave. Many different types of ultrasound transducers is on the market. The
most common transducers in medical imaging are the linear array, curvilinear
array and phased arrays [43].

The linear array are build up of many elements (300-400) placed con-
tiguous on a line, but with only a few functioning at a time. These active
elements make up the active aperture. Once one element has received the
echo it is switched off and the next element in the array is switched on. The
linear array is often used where large areas of skin is available such as imaging
of the carotid artery. The curvilinear array is a sort of linear array where the
arrays are curved slightly. With this arrangement it is possible to obtain a
wide field, and therefore this sort of probe is used in fetal imaging.

For cardiac imaging the phased array is used. The ultrasound beams have
to be steered between the ribs to access the area of interest, the opening
between the ribs is approximately 20 mm. The phased array has a small
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aperture which means that the beams can be transmitted through a narrow
area. For cardiac imaging it is important that the beams is steered in large
angles to cover a sufficiently big area. The phased array transducer has few,
but small elements.

3.1.3 3D imaging

A 3D ultrasound transducer consists of a two dimensional array of piezoelec-
tric elements, such a transducer is illustrated in Figure 3.2. Each of these
elements transmits and receives each own pulse, and this can be exploited to
steer the ultrasound beam in the wanted direction [1].

Figure 3.2: An ultrasound transducer used for three-dimensional imaging.
The azimuth and elevation direction are indicated. The direction along the
beam is called the radial or the range direction. Figure adapted from [46].

3D ultrasound recordings are recorded in a coordinate system which is
referred to as beamspace. Beamspace is very similar to regular spherical
coordinates, where the middle of the probe is defined as the origin. Figure
3.3 illustrates this coordinate system. The angle az between the origin and
each beam direction is defined as the azimuth angle and it describes the
azimuth direction. The angle el is called the elevation angle and the distance
r is referred to as the range.

When we refer to the pulses in each azimuth direction we call them beams.
In the elevation direction we refer to them as planes. The time from the pulse
is transmitted until each echo is received is measured and inserted in equation
3.4, and the distance obtained is called the range. Thus each plane can be
arranged as a table of beams and ranges.

The ultrasound recordings used in this thesis are stored in a four-dimensional
table. In this table the first dimension describes each beam, the second each
range, the third each elevation plane and the fourth describes each point in
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Figure 3.3: Illustration of the two coordinate systems; beamspace and probe-
space. These coordinate systems are used in ultrasound recordings. (Figure:
Fredrik Orderud).

time the image is made. This fourth dimension is called the frame. The data
does also contain information about the azimuth angle for each beam, the
elevation angle between each plane, the number of frames per second, and
the minimum and maximum range.

The temporal resolution is a great challenge in three-dimensional ultra-
sound, due to the relatively slow sound velocity c in human tissue. This
imposes a problem in echocardiography where it is a need for a good tempo-
ral resolution to image the heart cycle. Therefore some techniques has been
developed to attempt to deal with these difficulties.

Multiple line acquisition

Multiple line acquisition is a three-dimensional acquisition method for in-
creasing the temporal solution. With the multiple line acquisition technique
one receives multiple beams for every transmitted beam. The transmitted
beam are broad to cover a specific sector in the human body. Then the
transducer receives echoes from different directions, which increases the pos-
sible number of beams per time. Thus the frame rate is increased while the
resolution is preserved.
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Full volume acquisition

In full volume acquisition one subvolume is acquired for each new frame, this
is an attempt to obtain large volumes without reducing the resolution. This
volumes are then stitched together to form a full volume over a heart cycles.
This method repeats and replaces the oldest subvolumes for each heartbeat.
It is possible to make a full volume because the heartbeats are essentially
equal. The subvolume acquisition is often performed by trigging it to an
electrocardiogram (ECG).

3.1.4 Scanconversion

If we just plot the obtained table with signals for one plane and one frame
as it is stored we get an image like the one seen to the left in Figure 3.4.
This gives a wrong impression of the geometry of the received signal. This
is because the ultrasound data is recorded in a spherical coordinate system,
while it is desired to display the data in a cartesian coordinate system, refer to
Figure 3.3. The desired image is shown to the right of Figure 3.4. The process
of converting the signal in beamspace into the coordinate system probespace
is called scanconversion and it is illustrated in Figure 3.5. Probespace is
a cartesian coordinate system with the origin placed in the middle of the
ultrasound transducer. Its definition is slightly different from an ordinary
coordinate system, because it is desired to have positive y-axis in the forward
direction from the transducer.

Figure 3.4: Illustration of the result of scanconversion. To the left an image
taken directly from the acquired signals in beamspace. To the right the
scanconverted image, illustrating the correct geometry
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Figure 3.5: The concept of scanconversion. The beams recorded can not be
displayed as shown to the left, but has to be placed in the geometry shown
to the right to illustrate the correct geometry. Figure from [1].

The conversion from beamspace to probespace can be performed by con-
verting the data acquired in spherical coordinates to a cartesian frame from
the following equations:

x = r cos el sin az (3.5)

y = r sin el (3.6)

z = r cos el cos az (3.7)

where (x, y, z) is a coordinate in probespace, and (r, az, el) is a coordinate
in beamspace.

Because the data acquired in beamspace is from a discrete rectangular
grid, and the conversion from beamspace to probespace often does not yield
integer coordinates, direct conversion from beamspace to probespace would
yield a image which is not satisfactory. This can particularly be observed
in the outer points where the image contains ”gaps”. Figure 3.6 shows these
effects.

The solution to these problems is interpolation. In Figure 3.4 linear in-
terpolation has been used. The concept of linear interpolation is that at each
probespace coordinate the intensity will be a weighted sum of the 8 near-
est samples in the beamspace sample grid. The weights are based upon the
distance from the point in probespace to the integer point in the beamspace
sample grid.
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Figure 3.6: Scanconversion without interpolation. Notice the black areas in
the lower part of the image. Compare with the image to the right in Figure
3.4.

3.1.5 Image quality

Ultrasound are inferior to other imaging modalities when it comes to image
quality. Because of the fact that the ultrasound wave have to go through
human tissue and this creates a serious amount of distortion in the ultrasound
image. The human tissue consists of different types of tissue that has different
speed of sound and this have an can effect on the focus of the beam. This
effect is called aberration. The different types of tissue can also lead to
multiple reflections, so called reverbations. Bones and muscles have a large
acoustic impedance and can introduce shadows in the ultrasound image. This
is especially a problem in echocardiography where shadowing from the lungs
are a severe problem.

Speckle

When the beam hits objects that have a size that is much less than the
wavelength of the beam, a phenomenon called speckle occurs. This means
that the beam is reflected in many directions and interfering with beams
reflected from other objects [1]. Speckle makes the characteristic granular
look of the ultrasound image. An illustration of speckle is shown in Figure
3.7.

The speckle effect is deterministic, i.e. if the environment for two exper-
iments is the same, the same speckle pattern will occur. One problem with
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Figure 3.7: The speckle effect. When the ultrasound beam hits structures
that are smaller than the wavelength of the beam, the beam is reflected in
all directions, and the beams interferes with each other. Figure taken from
[1].

the speckle effect is that the artifacts can appear as real structures for the
viewer of the images.

Resolution

The resolution of the ultrasound image is decided by the point spread function
and is a measure for how small details that can be imaged. The point spread
function is the system’s ability to separate small adjacent objects. There are
two different kinds of resolution, lateral and radial. The lateral resolution is
the resolution across the ultrasound beam, in the azimuth direction of Figure
3.2. This resolution is given by [50]:

uR = f#λ =
R

a

c

f0

(3.8)

where f# is called the f-number, R is focal depth, a is the aperture, λ is the
wavelength, c is the speed of sound, and f0 is the center frequency for the
transmitted ultrasound pulse. From this equation it is appearent that a high
frequency gives a good resolution in the lateral and elevation direction. The
radial resolution is given by:

uz =
cτ

2
=

c

2B
(3.9)
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where τ is the pulse length, c is the speed of sound, and B is the bandwidth.
This resolution equation corresponds to equation 3.4. We can see that a high
bandwidth gives a good radial resolution.

3.2 MRI

Magnetic resonance imaging (MRI) is often viewed upon as the ”gold stan-
dard” when it comes to imaging structures of the body into great detail. The
magnetic resonance images does not contain any speckle artifacts and the
images has a clear appearance compared to ultrasound images. MRI is how-
ever a very expensive form of medical imaging and is not portable because it
requires a large apparatus.

When magnetic resonance imaging are applied, the patient is placed in
a strong static magnetic field created by a large magnet, which often has a
high strength as 1.5 Teslas. A rotating field at radio frequency is applied in
a perpendicular plane to the static field. This field has a frequency which
is equal to a property of the material. This frequency is called the Larmor
frequency. The rotating field excites the atoms in the body, because of spin
in the nucleus. When the atom has been excited the rotating field is shut off
and the original magnetic moment of the nucleus goes back to equilibrium
while it emits a signal. Two relaxation constants are detected and these
are used for image formation and for discriminating between different tissue
types. The resolution of the MRI is typically 1 mm [43].

3.3 Right ventricle in echocardiography

Fully identifying the right ventricle in echocardiography is challenging. This
is the case for both two-dimensional and three-dimensional imaging. Even
evaluation of the right ventricular function is challenging because of the com-
plex geometry and the ventricle’s thin walls. These are limitations that have
affected the assessment of the right ventricular function in routine clinical
controls [49].

The greatest challenges of the right ventricle in echocardiography is the
thin walls, the complex shape and the heavy trabeculation. The thin walls
makes wall-motion imaging difficult, the effects of the thin walls can also be
seen in the image in Figure 7.6 where the free wall of the right ventricle has
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completely fallen out. The complex shape does not allow any geometric as-
sumption for volume calculation or ejection fraction, which is possible in the
left ventricle. The heavy trabeculation gives problems for outlining the endo-
cardial borders accurately. These facts has resulted in that right ventricular
function is not routinely inspected by echocardiography.

Segmentation methods for the right ventricle faces great challenges, the
complex shape mentioned in the previous paragraph impose huge challenges.
Segmentation methods should also include strategies for avoiding the papil-
lary muscles, the moderator band and the trabeculations. From apical views
reliable methods for finding the free wall is very difficult [29].
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Chapter 4

Model-based segmentation

4.1 The concept of model-based segmenta-

tion

The scientific field of image processing and machine vision has experienced
a very slow progress since it appearance in the mid-1960s. The impact of
digital image processing upon its potential fields of application still remains
below the expectations compared to other fields of computer science, e.g.
programming languages [35] [51]. This can come from the fact that machine
vision is a very ambitious science compared to the other fields, which goals
are more down to earth. As stated in [51] the discipline consists of two types
of skills; systematic knowledge of well-established techniques with very pre-
dictable performances, and heuristical talent, experience, and a good sense
for the kind of procedure and for the sequence of procedures that are well-
promising for coping with a given problem. The first type of skills can be
acquired by reading textbooks and attending university courses, while the
latter type is difficult to learn and is best acquired by experience by working
together with experienced personnel. In other words; the disciplines short-
comings comes from the extremely powerful nature of human vision. So to
most people which are capable of solving vision tasks much quicker and better
than a computer, progress in the field of machine visions seems slow.

Image segmentation stands as one of the many remaining challenges in
automatic computer vision. When it comes to automation of computer-based
image segmentation the task has been very passing although the human visual
system is generally capable of precise segmentation. One of the problems

31



with automated image segmentation is that there have been a view that
the image is self contained, i.e. all the necessary information needed for
segmentation are inherent in the image. In fact Székely [44] states that
this assumption is fundamentally wrong. Algorithms based on this fact,
so-called low-level methods [26], are many. Examples of low-level methods
are linear filtering, Fourier transform, thresholding, watershed methods and
region growing algorithms [11].

Image segmentation problems in the real world, such as in medical imag-
ing, does very often require much a priori information to be able to perform
a satisfying segmentation. This kind of information contains a complexity
that can be difficult to include in algorithms. Segmentation algorithms that
uses some kind of model of the feature to extract for improvement of the
segmentation are often called model-based segmentation. The models can be
both deterministic and statistical. The use of this methods can be viewed
as a step away from pure segmentation algorithms to pattern recognition
problems.

Frangi et. al. states a few advantages of model-based methods of the
right ventricle (and the left) over low-level methods [10].

1. The model itself can constrain the segmentation process that is illposed
in nature owing to noise and image artifacts

2. Segmentation, image analysis and shape modeling are simultaneously
addressed in a common framework.

3. Models can be coarse or detailed depending on the desired degree of
abstraction

4. In some approaches, most of the chamber’s shape can be explained
with a few comprehensible parameters which can subsequently be used
as cardiac indexes.

4.2 Deformable models

In medical imaging we are often exposed to large datasets, with complicated
and often noisy structures. To make use of image recognition in medical
images, segmentation has to be used efficient and accurate in order to end up
with probable models. Human organs often has large variations, and the fact
that one segmentation looks perfect is no guarantee that it is anatomically
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correct. Because of the presence of noise and image acquisition artifacts
in many routinely acquired ultrasound images image information can be ill
defined, unreliable, or missing. This is a problem for low-level methods which
in this case would yield results that are not likely or useful.

Manually outlining of a contour can be considered as a ”‘gold standard”’
for segmentation of features in medical images. This approach is however
very time-consuming and labor-intensive. A contour as drawn by an expert
human observer may not always correspond to the location of the strongest
local image evidence [27], this motivates the approach of model-based seg-
mentation in the segmentation problem of the right ventricle.

With a deformable model we specify a shape resembling the shape we want
the segmented feature to detect. By use of geometry constraints, physics and
approximation-theory, this model can be adjusted to our image. McInerney
[26] states several advantages for the use of deformable models:

1. They have the ability to segment, match and track images directly from
image features (a bottom-up approach), and from a priori knowledge
about location, size and form.

2. Deformable models are able to handle rather large variations that usu-
ally are present in human organs

3. The models can also handle greater complexity of the shape, than the
low-level methods.

Thus deformable models are a good choice for ultrasound images, that some-
times can be very affected by noise. This noise is compensated for by the
inherent continuity and smoothness of the models. This leads to greater ro-
bustness, accuracy and reproducibility in the image segmentation and can
compensate for gaps, and other irregularities.

For the right ventricle this will be of special importance in the heavily
trabeculated part of the ventricle (see chapter 2.4), which are a very noisy
part of the ventricle in ultrasound images. The deformable model approach
is also very useful for approximating the free wall of the ventricle which
frequently can be missing from the ultrasound picture.

4.3 Active contour models

This sections presents a collection of different ways to make deformable mod-
els that can be used in model-based segmentation.
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Snake models

In 1988 Kass et. al. presented a model called snake model [18], this model
has been used extensively in the field of model-based segmentation.

This model is based on a parametric contour, which is a contour that is
represented by parameters. An example is the circle which can be parametrized
as:

x(s) = xc + rcos(2πs) (4.1)

y(s) = yc + rsin(2πs) (4.2)

for s ∈
[
0, 1
]
, where xc and yc is the center and r is the radius, the parameter

is in this equation s. The discretization of the parametric contour, can be
performed by specifying a finite number of points on the contour specified
by
[
x(s), y(s)

]
. Parametrization can also be performed by splines, which are

explained further in chapter 5.1.

The basis of the segmentation by snake models is by using forces. The
snake models has three kinds of forces; internal forces, image forces and
external forces. The internal forces controls the stretching and bending of
the snake. The images forces attract the snake to prominent features in the
image, this can be done by using the intensity or gradients. The external
forces are used for further control and constraints of the deformations of the
snake.

In the traditional snake models energy computations were used instead of
forces. The energy would be expressed as a sum of the internal energy and
the image energy:

E(v) = Einternal(v) + Eimage(v) (4.3)

The goal is to minimize the snake energy, as this will stabilize the snake.

The internal energy is given by:

Einternal =
1

2
(α(s)

∣∣∂v
∂s

∣∣2 + β(s)
∣∣∂2v
∂s2

∣∣2) (4.4)

where α is a constant that controls the elasticity in the snake, the constant
β controls the rigidity in the snake and v(s) is a point on the discrete snake.

The image energy can be given by many means, for example the intensity,
the negative intensity, the negative gradient of the intensity and a blurred
version of the intensity. A blurred version of the gradient of the intensity is
usual, this gives the following expression for the image energy:

Eimage = −
∣∣Gσ ∗ ∇2I

∣∣2 (4.5)
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where Gσ is a Gaussian of standard deviation in σ.

The total energy of the snake can then be expressed as:

E(v) =

∫ 1

0

1

2
(α(s)

∣∣∂v
∂s

∣∣2 + β(s)
∣∣∂2v
∂s2

∣∣2) + Eimage(v)ds (4.6)

The local minima of this function represents stable snake positions. The
global minimum is not interesting as it just represent a point. By calculus of
variations it can be found that the minima of the energy is given by:

−α(s)
∂2v

∂s2
+ β(s)

∂4v

∂s4
+∇Eimage(v) = 0 (4.7)

A solution for the minima is out of the scope of this text but can be found
in [18].

Fully discrete snake models

Another version of an deformable model is the fully discrete snake, this is a
model which not yields as exact results as the traditional snake, does not have
the mathematical foundation, and are harder to implement. The advantage
is however that it is easier understood and derived. Further description of
the functionality of the fully discrete snake can be found in [22].

An illustration of the fully discrete snake model is shown in Figure 4.1.
The goal of the internal forces of this snake model is to minimize the local
curvature while still maintaining the snake length.

Statistical models

The shapes of the human internal organs vary a great deal in size and shape.
This can make the task of segmenting the various structures challenging. If
we have models of a variety of structures the desired organ can take, the task
can be manageable. A desired way of doing this is to have a statistically
based technique for modeling the different shapes.

A way of obtaining statistical data is to manually segment the desired
feature in a number of images, and then representing them in a consistent
way. This will be considered a training set, from which other models will
be developed. It is important that the points in the different models of the
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Figure 4.1: Illustration of the fully discrete snake. The model consists of a
set of vertices Vi which are connected by edges di. Deformation is caused by
the acceleration forces ai acting on the vertices. Figure from [22]

training data set is consistently described, i.e. they have to be at approx-
imately the same position in the model relative to the other points in the
model.

A way of expressing these variations is with the use of principal component
analysis (PCA) [8]. The concept is to reduce a data set with a high dimension
to one of a lower dimension. The PCA is a least squares projection of the
higher dimension dataset down on the eigenvectors of the sets covariance
matrix [6]. The points in the model can be described as plane points as
described in chapter 8.2.2, or by Fourier descriptors [6], [40].

The higher dimensional model is a statistical model obtained by examin-
ing N three-dimensional images. From a model with n nodes, the shapes are
represented with an 3n-dimensional vector. By this representation a mean
model is also possible to make, this is described in chapter 8.2.2.

It is also possible to make a 3n× 3n covariance matrix by:

S =
1

N

N∑
i=1

(xi − x)(xi − x)T (4.8)

where x̄ is the mean shape from equation 8.5. The eigenvalues and eigenvec-
tors of the covariance matrix, expresses the modes of variations. There will
be 3n eigenvalues and eigenvectors, and the eigenvectors are orthogonal on
each other. The eigenvalues λ and eigenvectors pk of the covariance matrix
is found by:
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Spk = λkpk, k = 1...3n (4.9)

We sort the eigenvalues such that

λk ≥ λk+1 (4.10)

Then we pick out the l eigenvalues that describes a sufficient part of the
variations of the data set. The total variance of the data set can be expressed
by:

λT =
3n∑
k=1

λk (4.11)

In most cases it turns out that a large amount of the variation can be
expressed with a few number of eigenvalues. The eigenvalue λk affects coor-
dinate pl by moving it parallel with (pl − pl) of the first l eigenvectors.

The shape statistics can be expressed by:

x = x + Pb (4.12)

where P =
[
p1p2...pl

]
is a matrix consisting of the l first eigenvectors sorted

with respect to the eigenvalues λk. The vector b =
[
b1b2...bl

]
contains weights

that is applied on each eigenvector.

Shape-space models

The theory in this section is taken from [3]. The shape-space models a curve
with the notion of a shape-vector X ∈ S, where S is a shape-space. The
shape-space is a linear parametrization of the set of allowed deformation of
a curve, the linear requirement is stated for simplicity. This linear require-
ment is a limitation for complex object, such as three-dimensional objects
with articulated parts. Models in the human body is often of such a kind
and therefore there have been made non-linear extensions to the shape-space
models [32]. This is implemented in the Real-Time Contour Tracking Library
(chapter 9). It is possible to deal with articulated parts in the linear case
too, but this has the cost that some geometrical constraints are relaxed.
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The precise definition of shape-space is that a shape-space S = L(W,Q0)
is a linear mapping of a ”shape-space vector” X ∈ RN

X to a spline-vector
Q ∈ RN

Q :
Q = WX + Q0. (4.13)

where W is a NQ ×NX ”shape-matrix”. The vector Q is a vector of control
points for a spline (see chapter 5.1). The vector Q0 is a template curve which
one measures the shape variations against.

For an planar affine two-dimensional shape-space it is possible to represent
a parametric spline curve r(s) =

[
x(s), y(s)

]
as:

r(s) = u +Mr0(s) (4.14)

where u = (u1, u2)T is a two-dimensional translation vector, and M is a
matrix which together with u represents 6 degrees of freedom in the space.
M can be represented by a scaling matrix multiplied with a rotational matrix:

R · S =

[
cos θ − sin θ
sin θ cos θ

] [
sx 0
0 sy

]
=

[
sx cos θ −sy sin θ
sx sin θ sy cos θ

]
(4.15)

For a shape-space representation as in equation 4.13. The shape-matrix
W can be representated as:

W =

[
1 0 Qx

0 0 0 Qy
0

0 1 0 Qy
0 Qx

0 0

]
(4.16)

Where Qx
0 and Qy

0 are the x- and y-coordinates of the control points of the
splines. The shape-space vector X is:

X =
[
u1 u2 M11 − 1 M22 − 1 M21 M12

]T
(4.17)

where u1 and u2 represents translation in the horizontal and vertical direction

respectively. For example does X =
[
0 0 1 1 0 0

]T
represent a doubling

of the template size and X =
[
0 0 cos θ − 1 cos θ − 1 − sin θ sin θ

]T
represent a rotation of the template through the angle cos θ The framework
presented in chapter 9 accounts for non-linear deformations as well.
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Chapter 5

Smooth parametric surfaces

Human organs can rarely be described by straight lines, but rather by smooth
surfaces. The right ventricle is no exception to this. The process of making
models of smooth surfaces can be a very time-consuming task, requiring much
of the modeler. A method for making smooth surfaces out of connected
straight curves is desired. Important properties for such a method are listed
in [52]:

• Efficiency. The method should be efficient; the refined points should
be obtained by a small amount of calculations. Splines are more efficient
than subdivision.

• Local definition. The rules used to determine where new points go
should not depend on ”far away” places

• Affine invariance. An affine transformation (i.e. scaling, transla-
tion or rotation) on the original set of points should yield the same
transformation in the resulting shape.

• Simplicity. The rules should be determined off line and the number
of rules should be small

• Continuity. There should be available mathematical proofs of con-
vergence and continuity.

• Arbitrary topology. The methods should be able to represent any
kind of geometrical shape. This is an important feature in the modeling
of the heart chambers for contour tracking.

All of these points is also valid for spline surfaces, in fact spline surfaces
can sometimes yield better performance of the properties
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5.1 Splines

A spline is a piecewise polynomial function, which consists of concatened
polynomial segments, each of polynomial order d [3]. The polynomial seg-
ments are joined together at breakpoints. Normal orders of splines are
quadratic (d = 3) and cubic (d = 4). Where the order of a polynomial
is the number of its coefficients. If the polynomial order is fixed and low,
the spline has computational stability and simplicity. This is true even for
complex geometric shapes.

B-splines

One common type of splines is the B-splines, other types is Bézier-splines,
Hermite splines, cardinal splines and several others [14]. To make up a para-
metric curve of B-splines we use the vector

r(s) =
[
x(s) y(s)

]
(5.1)

This curve is constructed by the use of basis functionsBn(s), n = 0, ..., NB−1.
r(s) is then constructed as a weighted sum of the basis-functions. Each of
the basis functions are defined over a span of the s-axis. The basis-functions
are constructed by recursion, defined for a regular spline by:

Bn,1(s) =

{
1 if n ≤ s < n+ 1

0 otherwise
(5.2)

Bn,d(s) =
(s− n)Bn,d−1(s) + (n+ d− s)Bn+1,d−1(s)

d− 1
(5.3)

For each basis function a control point is defined as qn =
[
qxn qyn

]T
, and the

curve is expressed as a weighted sum of the control points:

r(s) =

NB−1∑
n=0

Bn(s)qn for 0 ≤ s ≤ L (5.4)

where L is the number of spans and NB is the number of basis-functions. An
illustration of a regular, periodic, quadratic spline is illustrated in Figure 5.1.
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Figure 5.1: A spline curve with its control points, illustrating that the curve
is a smooth approximation of its control polygon (dotted line). The spline
has L = 8 spans and NB = 8 basis functions. The spline is approximating
because the curve does not have to go through the control points.

Spline surfaces

Spline surfaces are splines described with two sets of orthogonal spline curves
[14]. Thus to define a spline surface it is necessary to specify the two sets by
a mesh of control points over some spatial region. The spline surfaces can be
expressed by (NBu) × (NBv) control points qnu,nv arranged in a mesh. The
spline surface can then be calculated by:

R(u, v) =

NBu−1∑
nu=0

NBv−1∑
nv=0

qnu,nvBnu(u)Bnv(v) (5.5)

The parameters u and v can vary depending on what type of splines are
used, but a common choice is that they can vary between 0 and 1. The
spline surfaces exhibits the many of the same properties as the component
spline curves, but they do also contain topological limitations.

5.2 Subdivision

One method for smoothing surfaces is by subdivision, which is a generali-
sation of spline surfaces to arbitrary topology. The idea behind subdivision
is to calculate more and more points in between the initial points, and this
will eventually converge to a smooth surface or curve. There are proposed
several methods for deciding where the new points should be positioned.
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Peter Schröder and Denis Zorin describes subdivision as [52]:

Subdivision defines a smooth curve or surface as the limit of a sequence
of successive refinements

Thus, the idea is to describe the smooth surfaces or curves as connected
straight line segments which are iteratively refined.

Figure 5.2 shows an example of subdivision in 2D where three lines rep-
resented by four vertices are refined into a smooth segment. We can see that
the refinement improves the smoothness of the curve rather quick and that
after only a few refinements a rather smooth segment is obtained. Figure
5.3 shows subdivision in 3D where an initial mesh defines a contour and
subdivision on the surfaces makes a smooth picture.

Figure 5.2: Subdivision in 2D. Initial control points are shown to the left,
and the successive result of subdivision are shown from left to right. Figure
adapted from [52].

Figure 5.3: Subdivision in 3D. Initial control points are shown to the left,
and the successive result of subdivision are shown from left to right. Figure
adapted from [52].

The basic building block of a subdivision procedure is the univariate
subdivision step [36]. The lines are initially represented by points called
control points, and these points joined together defines a control polygon.

The control points are expressed as a set:

P n = {P n
i }i ∈ Rs (5.6)
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To generate a refined set of control points constituting a refined control poly-
gon we use the subdivision step S with the use of a subdivision mask with
finitely many non-zero entries.

P n+1
i = SP n = {P n+1

i } (5.7)

P n+1
i =

∑
k

ai−2kP
n
k (5.8)

where the superscript denotes the level of refinement and the subscript de-
notes the number of the control point. Equation 5.8 is called the subdivision
rule. The subdivision rule splits into two formulas, one for even entries and
one for odd entries.

P n+1
2i =

∑
k∈Z

a2i−2kP
n
k =

∑
k∈Z

a2kP
n
i−k (5.9)

P n+1
2i+1 =

∑
k∈Z

a2i+1−2kP
n
k =

∑
k∈Z

a2k+1P
n
i−k (5.10)

where the set Z is the set of all integer numbers.

As an example; for cubic splines the coefficients are

a0 =
1

8
, a1 =

1

2
, a2 =

6

8
, a3 =

1

2
and a4 =

1

8
(5.11)

giving the rules:

P n+1
2i =

1

8
P n
i +

6

8
P n
i−1 +

1

8
P n
i−2 (5.12)

P n+1
2i+1 =

1

2
P n
i +

1

2
P n
i−1 (5.13)

There are two methods of subdivision: interpolating and approximating.
Interpolating methods keeps the control points, while approximating methods
allows the control points to be positioned on the outside of the resulting curve
or surface. The subdivision rule shown in Figure 5.4 is approximating, where
even points at refinement level n+ 1 are local averages of points at level n.

In subdivision surfaces control points are defined as in the case of the
curves. In addition the control points are arranged in a mesh, where it is
specified which of the other control points in the set who is connected to the
other control points, see Figure 5.2 and Figure 5.3. The refinement process
on these meshes results in finer meshes. This process is called vertex insertion
because each edge are replaced by two edges by the insertion of a new vertex.
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Figure 5.4: Illustration of one refinement of the cubic spline subdivision rule.
The original control points are shown to the left, and the refined curve is
shown to the right. The subdivision rule is approximating, in which the
curve does not have to go through the control points.

5.3 Subdivision schemes

There are several different methods for subdivision of surfaces. They build
upon different techniques to obtain the desired result. We can classify the
different by several criteria as listed in [52]:

1. The type of refinement rule

2. The type of generated mesh

3. Approximating or interpolating

4. Degree of smoothness of the limit surfaces

A subdivision scheme S is made up of iterations of subdivision steps which
produces sequences of control point sets and makes sequences of piecewise
linear control polygons. A subdivision scheme S produces a sequence of
control point sets in the following manner:

(SnP 0)i = P n
i = (SnSn−1...S2S1P 0)i (5.14)

where P 0 is the initial sets of control points. All the different subdivision
schemes is based upon one basic rule, the regular subdivision scheme, i.e. the
rule that is performed on the regular topology. For the schemes to be able
to describe arbitrary topologies, additional rules are required. These rules
describe how subdivision should be performed on edges, creases and other
irregular topologies. One advantage of subdivision is that it only uses local
control points information for all the computations.
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Once the subdivision is performed we need to specify how the original
vertex should be connected to the new vertex. There are two ways of doing
this; face split and vertex split. Face split, shown in Figure 5.5, divide each
face into four new faces; this is the case for both quadrilateral meshes and
triangular meshes. Each of the new faces is defined by one old and three
new vertices for the quadrilateral case and one old and two new vertices
for the triangular case. These vertices are placed on the edges, and for the
quadrilateral case one vertex is placed in the old face.

Figure 5.5: Illustration of the face split approach to subdivision. Each face is
divided into four new faces. The top picture show face split from quadrilateral
faces, and the bottom shows face split for triangular faces. Figure adapted
from [52].

When the vertex split rule is used, each node is split into new nodes, one
for each adjacent face. The old vertex is deleted and the new vertexes make
up a new face. Figure 5.6 visualize the idea of this subdivision rule. When
a quadrilateral mesh is used, the new vertices will get valence four, i.e. four
adjacent nodes. With triangular meshes there will be made hexagons. Vertex
split in triangular meshes is therefore not frequently used.

As stated above, subdivision schemes could be interpolating or approxi-
mating. From Figure 5.6 we can see that the vertex split rule is approximat-
ing. None of the original vertices are kept in the refining process. The face
split rule can however be defined as interpolating, if the original set of vertices
are defined as control points, we can define the same set of vertices as control
points for the refined surface. Interpolating schemes have an advantage in
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Figure 5.6: Illustration of the vertex split approach to subdivision. Each
vertex is split into four new vertices. Figure adapted from [52].

that the user can specify an initial mesh with control points that will be kept
during the whole refinement process, and hence will have more control over
the shape of the surface. However, interpolating rules does not converge as
fast as approximating rules and the surfaces will not be as accurate.

This and the previous section treated the subject of subdivision and pre-
sented a way of classifying the different subdivision schemes. Several schemes
are proposed and they all possess different properties and abilities. Examples
of the different schemes are: the Loop scheme, the modified butterfly scheme,
the Catmull-Clark scheme, the Kobbelt scheme, the Doo-Sabin scheme, and
the Midedge scheme. This theory summary will treat two of them; Catmull-
Clark and Doo-Sabin.

5.3.1 Catmull-Clark

Regular case of order 4

The Catmull-Clark scheme [52] is an expansion of bi-cubic B-spline surfaces,
see equations 5.12 and 5.13. It is an approximating, face-split scheme with
quadrilateral faces. For a rectangular mesh, the control points are arranged
and named in the following manner. vi is a vertex of the grid produced after
the i-th subdivision step, eik for k = 1, ..., 4 is the vertex’ four neighbors in
the grid, these points are called edge points, the four points that constitutes
the missing vertices to form the full grid is called face points and are denoted
as f il for l = 1, ..., 4. An illustration of this are shown in Figure 5.7. The
new vertex points are generated by applying the masks shown in Figure 5.8.
This gives the equation for the new vertex point:

vi+1 =
1

64
(vi + 6ei1 + 6ei2 + 6ei3 + 6ei4 + f i1 + f i2 + f i3 + f i4) (5.15)

The new edge points are calculated by applying the masks shown in Figure
5.9. The left masks is applied on the edge points on the vertical edges and
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Figure 5.7: Definition of grid points.

Figure 5.8: Bicubic mask for vertex points in the Catmull-Clark scheme for
topology of order 4.

the right masks on the edge points on the horisontal edges. This gives the

Figure 5.9: Bicubic mask for edge points in the Catmull-Clark scheme for
topology of order 4.

equation for the new edge points:

ei+1
1 =

1

16
(6vi + 6ei1 + ei2 + ei4 + f i1 + f i4) (5.16)

ei+1
2 =

1

16
(6vi + 6ei2 + ei1 + ei3 + f i1 + f i2) (5.17)
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ei+1
3 =

1

16
(6vi + 6ei3 + ei2 + ei4 + f i2 + f i3) (5.18)

ei+1
4 =

1

16
(6vi + 6ei4 + ei1 + ei3 + f i3 + f i4) (5.19)

Finally the new face points are computed by the mask in Figure 5.10. This

Figure 5.10: Bicubic mask for face points in the Catmull-Clark scheme for
topology of order 4.

gives the equation for the new face points:

f i+1
1 =

1

16
(4vi + 4ei1 + 4ei2 + 4f i1) (5.20)

f i+1
1 =

1

16
(4vi + 4ei2 + 4ei3 + 4f i2) (5.21)

f i+1
1 =

1

16
(4vi + 4ei3 + 4ei4 + 4f i3) (5.22)

f i+1
1 =

1

16
(4vi + 4ei4 + 4ei1 + 4f i4) (5.23)

All the above equations is applied on every control point, and will generate
a new refined surface. It is clear that this scheme only needs local control
point information. By using vectors it is possible to express this in a concise
form:

V i+1 = S4V
i (5.24)

with the local subdivision matrix given by

S4 =
1

16



9 3
2

3
2

3
2

3
2

1
4

1
4

1
4

1
4

6 1 6 1 0 1 1 0 0
6 0 1 6 1 0 1 1 0
6 1 0 1 6 0 0 1 1
4 4 4 0 0 4 0 0 0
4 0 4 4 0 0 4 0 0
4 0 0 4 4 0 0 4 0
4 4 0 0 4 0 0 0 4


(5.25)
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and the points are collected in a vector

V i =
[
vi ei1 ei2 ei3 ei4 f i1 f i2 f i3 f i4

]T
(5.26)

When the local grid is generated for all the vertices vi each new face point is
connected to all those new edge points which correspond to edges bounding
this face. This creates the new global control grid.

General case of order N

The vertex mask (Figure 5.8), can be generalized by noting that the new
vertex point is a convex combination of the old vertex point, the average of
all new face points, and the average of all end points of the edges meeting in
the old vertex. This gives the generalization:

vi+1 =
1

N
((N − 2)vi +

1

N

∑
j

eij +
1

N

∑
j

f i+1
j ) (5.27)

where N is the order, i.e. the number of vertices attached to the vertex. The
points f i+1

j is calculated by the same rule as for the regular case. This is
because the rule just calculates the centroid of the face, i.e. the average of all
its corners. The mask for the edge points can be generalized by noting that
it computes the average of the two centroids of the two incident four-sided
faces, and the endpoints of the edge. This gives:

ei+1
j =

1

4
(vi + eij + f i+1

j−1 + f i+1
j ) (5.28)

where the f i+1
j are given as explained for equation 5.27. When all the vertex,

edge and face points are calculated the edges of the new grid are placed by
connecting each new face point with the new edge points of the edges defining
the old face and connecting each new vertex point to the new edge points for
all old edges sharing the old vertex point.

The Catmull-Clark scheme produces a C2-continuous surface, except in
extraordinary vertices where the surface is C1-continuous.

5.3.2 Doo-Sabin

The Doo-Sabin scheme is an expansion of bi-quadric B-splines to arbitrary
topology. It is a quadrilateral, vertex splitting scheme, the rule will result in
a C1-continuous surface.
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Regular case of order 4

The mask used for the Doo-Sabin subdivision scheme for quadrilateral faces is
shown in figure 5.11. If vik for k = 1, ...4 defines the vertices for a quadrilateral
face after the i-th subdivision; the Doo-Sabin yields the following rule for
calculating the next refinement level, written on matrix form:

vi+1
1

vi+1
2

vi+1
3

vi+1
4

 =
1

16


9 3 1 3
3 9 3 1
1 3 9 3
3 1 3 9



vi1
vi2
vi3
vi4

 (5.29)

The generated face is connected to the other new generated faces across the
old edges and the old vertices. This generates additional faces in the new
mesh.

Figure 5.11: The vertex mask for Doo-Sabin subdivision for quadrilateral
faces.

General case of order N

The generalization for faces consisting of N vertices are in the Doo-Sabin
scheme given by:

vi+1
1

vi+1
2
...

vi+1
N

 =


N+5
4N

3+cos 2π
N

4N
· · · 3+cos

2π(N−1)
N

4N
3+cos 2π

N

4N
N+5
4N

· · · 3+cos
2π(N−2)

N

4N
...

...
. . .

...
3+cos

2π(N−1)
N

4N

3+cos
2π(N−2)

N

4N
· · · N+5

4N



vi1
vi2
...
viN

 (5.30)

To construct new control grids from the refined faces, first each N-vertex
face is connected together. Then with reference to Figure 5.12 we can observe
that each new vertex corresponds to an old vertex and its intersecting old
edges. From each new vertex there are two other vertices that comes from
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the same old vertex and that is associated with each one of the two old
edges. These two new vertices are connected across the old edges. Doo-
Sabin subdivision on a sphere is illustrated in Figure 5.13.

Figure 5.12: Illustration of the construction of new control points in the Doo
Sabin subdivision scheme. Figure is taken from [36].

Figure 5.13: Doo-Sabin subdivision on a sphere. Each node in the initial
mesh, shown to the left, is divided in to four new nodes and making new
surfaces. The final sphere is shown to the right.

Direct evaluation for arbitrary topology

Stam [41] has introduced a non-iterative method for efficient evaluation of the
Catmull-Clark subdivision surfaces, this method has been modified in [34] to
work for Doo-Sabin surfaces. This method uses Doo-Sabin subdivision as a
matrix division.

The control points are expressed in a matrix Q0 of the size NQ × 3,
this matrix can be multiplied with a NQ + 7 × NQ subdivision matrix S,
as explained in the previous chapter. Both for extraordinary vertices and
regular vertices can this multiplication be used as it creates at most one
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irregular face regardless of the topology of the mesh, the other three faces
would always be regular.

It is possible to pick out a subset of the control vertices for each subpatch
k ∈ {0, · · · , 3} by:

Qn+1,k = PkSQn (5.31)

where Pk is a NQ ×NQ + 7 ”picking matrix” for selecting NQ control points
and storing them in Qn+1,k.

Subdivision can then be performed until a desired point is on the outside
of an extraordinary patch, and this can be expressed by:

Qn,k = PkSSn−1
0 Q0 (5.32)

There are n number of subdivision steps which are required to be able to
get the desired point out of the extraordinary patch. This number n is
determined by:

n = b− log2(max{u, v})c (5.33)

where u and v is the parametric position of the point within a patch. The
rules for witch new sub-patch k to pick after each subdivision is given by:

k =


1 if u > 1

2n+1 and v < 1
2n+1

2 if u > 1
2n+1 and v > 1

2n+1

3 if u < 1
2n+1 and v < 1

2n+1

(5.34)

It is now possible to calculate the basis functions to the original control
points by:

b(u, v)|Ωnk = (PkSSn−1
0 )T b̃(tk,n(u, v)) (5.35)

where b̃ are regular bi-quadric B-spline basis functions, S is the subdivision
matrix, Pk is the ”picking matrix” and Ωn

k is a subdivision mapping function
which determines the number of subdivision steps required. The transforma-
tion tk,n maps the interval (u, v) to the interval within a desired subpatch
according to a rule presented in [34].

The evaluation of the surface position is then given by:

p(u, v) = QT
0 b(u, v) (5.36)
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Chapter 6

State-space modeling and
estimation

6.1 State-space model

A discrete state-space model can be expressed in the following way [9]:

xk+1 = f(xk,uk,wk) (6.1)

zk = h(xk,vk) (6.2)

The model is a discretisation of a set of first-order differential equations.
These equations describes the dynamics of a state vector x = (x1, ..., xn)T .
And incorporates the effect of a input u = (u1, ..., up). The z is the measure-
ment vector. The vectors wk and vk are process noise and measurements
noise respectively.

The functions f and h can be non-linear. It is however quite usual to
linearize the function thus obtaining the important system class, the linear
time-invariant system.

xk+1 = Axk + Buk + wk (6.3)

zk = Cxk + Duk + vk (6.4)

A block diagram of the system is illustrated in figure 6.1.

For the purpose of image segmentation it is possible to represent a de-
formable model using a state vector. This is proposed in [3] and incorporated
in the Real-Time Contour Tracking Library described in chapter 9. This ap-
proach uses a concatenation of local deformations and global transform as a
state vector, this is explained further in chapter 9.
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Figure 6.1: Block diagram of the linear time-invariant system. The z−1 is a
unit time delay represented by the z-transform.

6.2 Kalman filter

In the previous chapter it was assumed that all the state variables where
available for state feedback. This is an assumption that may not hold in
practice. This can stem from many reasons such as the states are not directly
accessible, or measurements devices are difficult to obtain. These states are
still needed for system control, therefore a need for state estimation occurs.

Measurement and process noise often corrupts the data which are avail-
able from the system. This is a problem that a state estimator needs to
account for. System measurements and the mathematical model are the
available data from the system, and these data can be used for estimating
the missing states.

There are several methods for state estimation, such as minimum vari-
ance and least-squared error methods [21]. One estimation method is the
celebrated Kalman filter, which can be viewed upon as a covariance matrix
to capture state uncertainty. The Kalman filter is a recursive algorithm based
on minimizing the mean of the squared estimation error.

In the case of image segmentation it is used to couple edge measurements
with a kinematic model, allowing for robust real-time segmentation (chapter
9).

The following theory is adapted from [4].

A random process is assumed to have the general model:

xk+1 = φkxk + wk (6.5)

zk = Hkxk + vk (6.6)
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where xk = x(tk), φk relates the previous sample to the next sample, wk are
white noise, and vk is measurement error assumed to be white noise with
known covariance:

E[wkw
T
i ] =

{
Qk, if i = k

0, if i 6= k
(6.7)

E[vkv
T
i ] =

{
Rk, if i = k

0, if i 6= k
(6.8)

E[wkv
T
i ] = 0, for allk, i (6.9)

where Q and R are the covariance matrices for w and v respectively. Equa-
tion 6.9 shows that the noise sequences are uncorrelated. If we have a a priori
estimate x̂−k , i.e. an estimate based on our knowledge of the process prior to
tk, and that the covariance matrix of x̂−k is known. Then we can define the
estimation error:

e−k = xk − x̂−k (6.10)

with the covariance matrix:

P−k = E[e−k e−Tk ] = E[(xk − x̂−k )(xk − x̂−k )T ] (6.11)

If the measurements are used it is possible to set up an expression for the a
posteriori (updated) estimate.

x̂k = x̂−k + Kk(zk −Hkx̂
−
k ) = x̂−k + Kk(Hkxk + vk − x̂−k ) (6.12)

The Kk is a blending factor, and the goal for the Kalman-filter is to find
the Kk which minimizes the mean-square of the estimation error in equation
6.10.

Analog to the covariance matrix of the a priori estimate 6.11 it is possible
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to express the covariance matrix of the updated error.

Pk = E[eke
T
k ] (6.13)

= E[(xk − x̂k)(xk − x̂k)
T ] (6.14)

= E[(xk − x̂−k −Kk(Hkxk + vk − x̂−k ))(xk − x̂−k −Kk(Hkxk + vk − x̂−k )T ]
(6.15)

= E[((I−KkHk)(xk − x̂−k )−Kkvk)((I−KkHk)(xk − x̂−k )−Kkvk)
T ]

(6.16)

= (I−KkHk)E[(xk − x̂−k )(xk − x̂−k )T ](I−KkHk)
T (6.17)

− (I−KkHk)E[(xk − x̂−k )vTk ]KT
k −KkE[vk(xk − x̂−k )T ](I−KkHk)

T

(6.18)

+ KkE[vkv
T
k ]KT

k (6.19)

= (I−KkHk)P
−
k (I−KkHk)

T + KkRkKT
k (6.20)

The last equality comes from the fact that the a priori estimation error is
uncorrelated to the measurement noise. To obtain the Kk that minimizes the
mean-square estimation error, we differentiate Pk with respect to Kk and set
the derivate to zero, we obtain:

Kk = P−k HT
k (HkP

−
k HT

k + Rk)
−1 (6.21)

By inserting the Kalman gain in equation 6.21 into equation 6.12, the fol-
lowing expression for the updated covariance is obtained:

Pk = (I−KkHk)P
−
k (6.22)

The next a priori estimate can now be obtained via the Kalman filter
gain:

x̂−k+1 = φkx̂
−
k (6.23)

the a priori estimation error then becomes:

e−k+1 = xk+1 − x̂−k+1 (6.24)

= (φkxk + wk)− φkx̂k (6.25)

= φkek + wk (6.26)
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and the covariance matrix:

P−k+1 = E[e−k+1e
−T
k+1] (6.27)

= E[(φkek + wk)(φkek + wk)
T ] (6.28)

= φkE[eke
T
k ]φTk + φkE[ekv

T
k ] + E[vke

T
k ]φk + E[vkv

T
k ] (6.29)

= φkPkφ
T
k + Qk (6.30)

The equations 6.12, 6.21, 6.22, 6.23, and 6.30 gives the Kalman Filter.
The sequence of the Kalman Filter is illustrated in Figure 6.2.

Figure 6.2: The Kalman Filter Loop. An initial estimate with error covari-
ance is entered into the algorithm at the beginning, and measurements are
inserted for each iteration. The output of the algorithm are the estimated
states of the system, based on minimization of the mean of the squared esti-
mation error. Figure from [4].

6.2.1 Extended Kalman Filter

The Kalman filter described in the previous chapter assumes a linear model.
In many cases a linear model is not apparent, and we are facing a non-linear
model. The extended Kalman filter accounts for this non-linearity [15]. The
state model can be expressed as:

xk+1 = f(xk, uk) + wk (6.31)
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zk = h(xk) + vk (6.32)

Linearization by application of a first-order Taylor expansion, gives a lin-
earized measurement function around the a-priori state estimates:

zk = hk(x̂
−
k ) + vk + Hk(xk − x̂−k ) (6.33)

Hk =
∂hk
∂xTk

(x̂−k ) (6.34)

A priori estimation of the measurements can be obtained by the expected
value of the measurement based on all the previous measurements Zk−1

ẑ−k = E[zk|Zk−1] = hk(x̂
−
k ) (6.35)

The covariance matrix of the error between the measurement and the a priori
estimated measurements can be expressed as:

P̂k|k−1 = E[(zk − ẑ−k )(zk − ẑ−k )T ] (6.36)

= E[(Hk(xk − x̂−k ) + vk)(Hk(xk − x̂−k ) + vk)
T ] (6.37)

= HkP̂
−
k HT

k + Rk (6.38)

Now it is possible to set up an expression for the a posteriori state estimation,
based upon the a priori estimates, the measurements, the Kalman gain and
the mathematical model.

x̂k = x̂−k + Kk[zk −Hk(x̂
−
k )] (6.39)

P̂k = (I−KkHk)P̂
−
k (6.40)

Kk = P̂−k HT
k (HkP̂

−
k HT

k + Rk)
−1 = P̂HT

kR−1
k (6.41)

The state space model can now be expressed as:

xk+1 = fk(x̂k,uk) + Ak(xk − x̂k) + wk (6.42)

Ak =
∂fk
∂xTk

(x̂k,uk) (6.43)

With the a priori estimated states given by:

x̂−k+1 = f(x̂k,uk) (6.44)

Finally the state estimation error and its covariance matrix:

ê−k+1 = xk+1 − x̂−k+1 = Ak(xk − x̂−k ) + wk (6.45)

E[ê−k+1ê
−T
k+1] = AkP̂

−
k AT

k + Qk (6.46)
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Part II

Methods and Tools
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Chapter 7

Manual segmentation

7.1 Extracting slices from the volume

In order to understand and visualize the geometry of the right ventricle, there
is a need to extract two-dimensional planes from the three-dimensional data
in order to show them on two-dimensional computer screens. The data ac-
quired from three-dimensional ultrasound would be a pyramidal-like volume
(see chapter 3.1.3). It is necessary to extract one arbitrary two-dimensional
plane from the volume, this is illustrated in Figure 7.1. The approach taken
is called any plane display [1], and allows two-dimensional displays of freely
selected planes through the data set.

A two-dimensional plane is fully defined by its four corner points [42].
These corner points are placed in a counter-clockwise manner as shown in
Figure 7.3. Figure 7.2 shows the section shown in Figure 7.1 taken from the
recording in Figure 3.4. Arbitrary two-dimensional cross sections can now be
displayed on the screen, even cross-sections that can not be obtained from
ordinary two-dimensional scans. This allows fast examination of the object
under examination,

The approach taken is called bi-linear interpolation, and the algorithm
which is used for achieving any plane display is illustrated in the following
pseudocode, this is called bi-linear interpolation:

1. Choose a resolution RES, i.e. the number of points in each direction
in the image that is desired displayed.
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Figure 7.1: Illustration of a two-dimensional section in a acquired volume
from a three-dimensional ultrasound recording. The desired plane can be
fully described by its four corners.

Figure 7.2: The two-dimensional section shown in Figure 7.1 from the record-
ing in Figure 3.4.

Figure 7.3: Positions of the corner vertices in a two-dimensional section from
a three-dimensional volume. Notice that the vertices are placed counter-
clockwise.

2. Compute the cartesian coordinates for all the points in the plane spec-
ified by the four corner vertices shown in Figure 7.3. It is important
that the vertices are positioned counter clockwise.
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(a) For each i from 1 to RES

(b) pos12 = (i−1)v2+(RES−i)v1
RES−1

and pos43 = (i−1)v3+(RES−i)v4
RES−1

(c) For each j from 1 to RES

(d) locations(i, j) = (j−1)pos43+(RES−j)pos12
(RES−1)

(e) Next j

(f) Next i

3. Scanconvert the points specified in locations as explained in chapter
3.1.4.

Step 2b calculates the positions by each row according to the desired
resolution, and step 2d does the same thing for each column and stores it in
a 2× 2 matrix.

All the ultrasound images displayed in this thesis are generated with this
method.

7.2 Outlining Right Ventricular Contours Man-

ually

For manual segmentation of the right ventricle from the ultrasound record-
ings, a number of short axis slices is used. The short axis plane is shown in
figure 7.4. The same cross section from a human heart is shown in figure 7.5,
and a short axis ultrasound image of the heart is shown in figure 7.6.

In order to figure out which ranges that covers the right ventricle, a long-
axis view of the heart is obtained from the three-dimensional data. From
this view it is possible to mark the position of the apex and the base along
the y-axis in the right ventricle.

The range number is calculated from the formula:

range =
xirinc + rmin

rinc
resr

(7.1)

where xi is the location of the point in the image which has the size RES ×
RES and

rinc =
rmax − rmin

RES
(7.2)
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Figure 7.4: Illustration of the two-dimensional short-axis plane. In this cross-
sectional view the right ventricle have a crescent shape, which is a character-
istic feature of the right ventricle. Figure taken from [20].

Figure 7.5: Transverse cross section of a human heart, this section corre-
sponds to the plane in 7.4 for echocardiography imaging. Figure from [48].

where rmax and rmin are the maximum and minimum distances which are
stored in the recording.

resr =
Total Ranges

RES
(7.3)

where RES is the resolution in the image from the algorithm in chapter 7.1.

The short-axis slices are calculated by keeping the range constant when
specifying the vertices in the algorithm described in in chapter 7.1. This is
possible when the data is obtained from a probe in the apical position. The
vertices used for obtaining the slice in figure 7.8 is: v1 = (azmin, r, elmin),
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Figure 7.6: Short axis plane from echocardiography. The chambers are indi-
cated. Notice the weak representation of the right ventricle free wall, which
is a problem in echocardiography and introduce challenges in automatic seg-
mentation of the right ventricle. The picture is rotated to the same orienta-
tion as figure 7.5.

v2 = (azmin, r, elmax), v3 = (azmax, r, elmax), v4 = (azmax, r, elmin)

When the maximum and minimum ranges are determined, short-axis
slices of the right ventricle are extracted with a distance of 10 ranges be-
tween each contour. This is a spacing of approximately 3 − 4 mm, and is
sufficiently small to be able to visualize the shape of the right ventricle which
has a length of about 7− 10 cm.

From the short-axis slices the contour around the ventricle is outlined
by manually positioning 20 points at important features around the right
ventricle and thereby outlining the short axis contour. This is illustrated
in figure 7.8, notice the problems with finding clear contours in the right
ventricular free wall. In figure 7.8 the 20 points are connected with straight
lines, forming a closed polygon. The contours are obtained both from the
end-systole and the end-diastole frame. Since the points are placed manually,
there is no guarantee that they are equally spaced around the contour. This
is however not required because it is not the points itself that are used further
but rather the contours made by the straight lines between the points. The
outlined contours from all the short-axis slices in the end-diastole and end-
systole of one right ventricle is illustrated in figure 7.9.

End-diastole is defined as the frame where the right ventricle has the
maximum volume, the end-systole is defined as the frame where the right
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Figure 7.7: Long-axis view to obtain the range of the apex and the base
of the right ventricle. The plane in the middle of the recording is used
(azimuth = 0). The number in the middle of the figure is the distance
between the two points expressed in meters.

ventricle has the minimum volume.

Figure 7.8: The right ventricle manually outlined in a short-axis slice. 20
points are manually placed at important features. Notice the problems of
finding good points in the free wall.
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(a) End-diastole (b) End-systole

Figure 7.9: Manually segmented contours of the right ventricle in end-diastole
and end-systole. Notice the way the septum bulges in to the ventricle, and
that the main changes during the beat is the long-axis shortening.

7.3 Approximating the volume from slices

The contours obtained in the previous chapter are used for volume approxi-
mations of the manually segmented right ventricle. The approach taken is to
calculate the area of each contour and then multiply it with the distance to
the next contour. This is an approximation in which it divides the ventricle
into discrete disks. The distance between each contour is however relatively
short so the approximation does not introduce severe errors.

Green’s plane theorem can be used as a basis to calculate the area of a
polygon [14], shown in Figure 7.8 and a general version in Figure 7.10.

Figure 7.10: A polygon with n vertices in the xy-plane. The vertices are also
referred to as control points. Figure from [14].

Green’s plane theorem:∫ ∫
area

(
∂f2

∂x
− ∂f1

∂y
)dxdy =

∮
C

f1dx+ f2dy (7.4)
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where f1 and f2 are two continuous functions defined in the planar area
bounded by the curve C. The area of a planar region can be expressed by
setting f1 = 0 and f2 = x. ∫ ∫

area

dxdy =

∮
C

xdy (7.5)

It is possible to express the polygon as a parametric equation, using the
control points.

x = xk + (xk+1 − xk)u (7.6)

y = yk + (yk+1 − yk)u (7.7)

for 0 ≤ u < 1, k = 1, 2, ..., n where xn+1 = x1 and yn+1 = y1. (xk+1 − xk)
expresses the difference between to adjacent control points, and u is the
parameter. If the equation for the y-coordinate are differentiated with respect
to u it becomes:

dy

du
= (yk+1 − yk) (7.8)

and thus

dy = (yk+1 − yk)du (7.9)

Inserting this and equation 7.7 into equation 7.5 an expression for the area
can be obtained.

A =

∮
C

xdy (7.10)

=
n∑
k=1

∫
[xk + (xk+1 − xk)u](yk+1 − yk)du (7.11)

=
n∑
k=1

(yk+1 − yk)[xk +
(xk+1 − xk)

2
] (7.12)

=
1

2

n∑
k=1

(xkyk+1 − xkyk + xk+1yk+1 − xk+1yk) (7.13)

This is a telescoping series in which every second and third term cancels
with each successive k. This gives the following expression for the area of the
polygon in Figure 7.10.

A =
1

2

n∑
k=1

(xkyk+1 − xk+1yk) (7.14)
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(a) End-diastole (b) End-systole

Figure 7.11: Right ventricle represented by disks for volume approximation.

This area is calculated for each slice and then multiplied with the distance
between each slice. The distance between each slice is found by:

h =
(rmax − rmin)
(RMAX−RMIN )

10

(7.15)

where rmax and rmin are the ranges in meter and RMAX and RMIN are the
distances in range numbers. The factor 10 comes from that each disk is ten
ranges thick. The expression for the volume is then given by:

V =
∑
i

Aih, where i is the set of all disks (7.16)

The volume of these disks are summed together to form the whole volume.
Figure 7.11 illustrates the approximated right ventricular volume. The equa-
tion 7.16 is a left Riemann sum and would converge to an integral if the
distances h are infinitely small [23]. The MATLAB code used for this vol-
ume calculation is attached in the appendix.
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Chapter 8

Three-dimensional geometrical
model of the right ventricle

8.1 Geometrical models

In contrast to the left ventricle does not the right ventricle possess a simple
geometrical shape, and thus modeling is more challenging. The right ventricle
have many variations in shape and it has irregular trabeculations, a separate
infundibulum and variations in shape from different loading conditions [39].
The right ventricular anatomy is described in chapter 2.4.1. The changes
during the systole can also be troublesome to incorporate in to a model.

The models are made by an initial mesh for which subdivision has been
performed. The subdivision scheme used is the direct Doo-Sabin scheme for
arbitrary topology (chapter 5.3.2).

8.2 Manually shaped model

The right ventricle is manually segmented from short-axis slices as described
in chapter 7.2 and shown in Figure 7.9. These contours is consequently
obtained from constant ranges.

To make a model of the right ventricle the manually segmented slices are
used. The shape of the right ventricle are made up of a mesh, which consists
of nodes connected to each other and this is forming faces. The model are
based upon a basic shape, which is a modification of the truncated ellipsoid
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model used for left ventricle segmentation as described in [34]. This shape is
illustrated in Figure 8.2. The modification is that the left side has a bulge
in to account for the ventricular septum, giving the crescent shape in the
short-axis view. The thick black borders in Figure 8.2 shows the surface
patches. In contrast to the model described in [34] this model has 27 surface
patches, from corresponding 27 nodes. These nodes are placed in successive
rings around the model. The nodes are placed tighter towards the base to
account for the geometrical change in shape during systole [39], and the
sparse resolution in the apex is to account for the heavy trabeculation and
noise present in images in the right ventricle. An illustration of the need of
having lower resolution in the apex part is illustrated in Figure 8.1. This can

Figure 8.1: Right ventricle tracking using a model with higher resolution in
the apex part. Notice that the model attaches to the moderator band making
the tracking erroneous.

be viewed as an attempt to try to incorporate the division of the ventricle
into three parts as illustrated in Figure 2.6.

The nodes are placed according to the manually segmented contours.
Each of the nodes are moved such that they fit to the contour. Where the
nodes are placed such that the rightmost node is on the rightmost place in
the contour, the next node is the node in ”the corner” on the upper side of
the ventricle, following by a node at the upper corner of the crescent shape,
one node in the deepest bulge from the ventricular septum, the next is at the
lower corner of the crescent shape, and the last one is down to the right in
the ventricle.

By following these rules it is possible to calculate a mean shape based
on these nodes. And the relative placement between the nodes is important
to prevent a malformed model, which an arbitrary node positioning is more
likely to do. Figure 8.3 shows a ventricle that is shaped in the way described.
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Figure 8.2: The modified truncated ellipsoid model used as a basis for man-
ually shaping a right ventricular model. The long distance from the apex
nodes to the next ring of nodes is to cope with the heavy trabeculated area
in the apex. There are three nodes in the apex to round of the tip, which
have the tendency to become too sharp if only a single apex node is used.

Figure 8.3: A manually shaped model of the right ventricle plotted together
with the manually outlined contours of the right ventricle. The subdivision
scheme used is the Doo-Sabin scheme incorporated in the RCTL application.
The smooth model is much smaller than the contours, this is due to the
approximating nature of this scheme. However it is possible to scale the
model to get the same size at the contours.

8.2.1 Normalizing the models

Before calculating a mean model of the of the manually fitted right ventricular
models, by using equation 8.5 for calculating the mean model. The model
has to be adjusted to avoid that the position in space has an effect on the
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mean model. The issue of the mean shape is the nodes relative position to
each other and not relative to the coordinate system. The method used for
avoiding this is to translate the model so that its middle point lies in the
origin. The middle point (x0, y0, z0) is defined as:

x0 =
xmax + xmin

2
, y0 =

ymax + ymin
2

, z0 =
zmax + zmin

2
, (8.1)

where xmax, ymax, and zmax are the maximal values of the coordinates and
xmin, ymin, and zmin are the minimal values.

To move the model so that the middle point (x0, y0, z0) gets in the origin,
a translation matrix is applied [14]. The translation matrix is given by:

T =


1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1

 (8.2)

where tx = −x0, ty = −y0, tz = −z0. By expressing the coordinates for one
node as a vector x =

[
x y z 1

]
, the new position can be written:

x’ = Tx (8.3)

where x’ =
[
x′ y′ z′ 1

]
is the coordinates for the node when the middle

point lies in the origin.

8.2.2 Mean shape

The mean shape of the models from a training set of manually fitted models,
can be a good suggestion for a model used for model-based segmentation of
the right ventricle.

For a model with n nodes, the shapes are represented with an 3n-dimensional
vector:

xi =
[
xi0 yi0 zi0 ... xin yin zin

]T
(8.4)

where the j’th node in the i’th shape has coordinate (xij, yij, zij).

The mean model is determined by averaging the xi vectors:

x̄ =
1

N

N∑
i=1

xi (8.5)

73



74



Chapter 9

Real-Time Contour Tracking
Library

The Real-Time Contour Tracking Library (RCTL) is a framework initially
made for real-time tracking of the left ventricle in three-dimensional ultra-
sound. The tracking is performed as a sequential state estimation with an
extended Kalman filter, see chapter 6.2.1 and [32]. The tracking represents a
connection between subdivision surfaces and the Kalman filter. This frame-
work is inspired by a suggestion in [3] and is described in several papers by
Orderud [32] [33] [34].

In this thesis the RCTL is used for performing the real-time three-dimensional
segmentation of the right ventricle based on the model described in this the-
sis. The segmentation is performed both exclusively on the right ventricle
and together with the segmentation of the left ventricle. In the latter case
the two models are connected to each other by a global pose transform.

9.1 State estimation with deformable model

The model has two notions for denoting the deformation and placement, the
local deformations and the global transform. The local deformations Tl(x)l
describes the deformations by moving the control vertices, while the global
transform Tg(xg,pl) represents the position, scale and orientation of the
model. These two are connected together to a composite object deformation
T(x) = Tg(Tl(xl),xg). A state vector is made up of the global transform
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and the local deformation x = [xTg ,x
T
l ]T , this state vector is used in the

framework for tracking.

The state estimation is based upon a kinematic model which predicts
an a priori state x̂−k+1, with covariance matrix P̂k+1 This model calculates a
difference between the predicted state and a mean state x0, from the previous
estimated states:

x̂−k+1 − x0 = A1(x̂k − x0) + A2(x̂k−1 − x0) + B0wk (9.1)

where B0 is the covariance of the process noise, and together with A1, A2 this
can be used for tuning the kinematic properties by adjusting the coefficients
of the matrices.

The deformable model is represented in the framework by its control
vertices qi for i ∈ {1 · · ·Nq}, which are connected together in faces, for rep-
resenting the topology. The faces are placed in a face list C(c), c ∈ {1 · · ·Nc}.
Each control vertex has an associated displacement vector di which defines
the direction for which the control vertices are allowed to move. The de-
formable models are constructed by the use of the Doo-Sabin extension to
arbitrary topology (see chapter 5.3.2).

The framework requires the surface points pi, the normal vectors ni and
the Jacobi-matrices Ji to be able to predict the a priori state estimate x̂−l .
It is possible to calculate the mentioned properties by first calculating the
control points:

qi = q̄i + xidi (9.2)

where q̄i is the mean position of the control vertices, xi is each vertices state
and di is the displacement vector. The surface points can then be calculated
as:

pl =
∑

i∈C(cl))

biqi (9.3)

where the bi is the basis function for each control vertex within the surface
patch of each surface point, see chapter 5.3.2. The normal vectors can then be
expressed by a cross product between partial derivatives of the basis function
in each direction u and v within the surface patch:

nl =
∑

i∈C(cl))

(bu)iqix
∑

i∈C(cl))

(bv)iqi (9.4)

Finally the Jacobian matrices can be described by:

Jl = [bi1di1,bi2di2, · · · ]i∈C(cl) (9.5)
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in which the Jacobian matrices are padded by zeros for columns correspond-
ing to control vertices outside the region of support for the surface patch of
each surface point.

The real-time property of this framework is supported by the fact that
the possibility to precalculate the basis functions. This allows fast tracking
of the contour.

9.2 Edge measurements

The edge measurements are performed by a search in the normal direction
for each surface point. These measurements are compared against the pre-
dicted model from the kinematic model. This leads to a normal displacement
expressed as a normal projection of the distance between the observed point
and the predicted point, through the normal vector.

v = nT (pobs − p) (9.6)

where nT is each points normal vector, pobs is the edge measurement observed
and p is the predicted edge point.

Figure 9.1: Edge measurements in the Real-Time Contour Tracking Library.
The edge is detected along the normal of each surface point, and then the
observed point is compared to the predicted surface point. Figure from [32].

Ultrasound images are often noisy and blurry and this complicates the
edge detection. The edge detection implemented in RCTL is one called the
step model. This model assumes edges to form a transition in image intensity,
for one plateau to another, and calculates the edge position that minimizes
the sum of the squared errors between the model and the data [32]. There is
also an uncertainty measure connected to each normal displacement, called
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the measurement error r, which can be coupled to edge strength or other
uncertainty measure in the edge detection.

To be able to use the normal displacement in the Kalman filter based
tracking framework a linearization of the nonlinear deformation model is
used. This can then be provided to the extended Kalman filter (see chapter
6.2.1). The linearization is made from a normal projection of the Jacobian
matrix:

hT = nTJ (9.7)

One challenge is the fact that we often have much more measurements
than states, this can not be put into the ordinary Kalman filter, and the no-
tion of the information filter are used [3]. The measurements are assumed to
be independent and the linearized measurements with noise can be expressed
as:

HTR−1v =
∑

hir
−1
i vi (9.8)

HTR−1H =
∑

hir
−1
i hTi (9.9)

The measurement updates are used with the Kalman gain:

Kk = P̂kHTR−1 (9.10)

And the new state estimation can be expressed by:

x̂k = x̂−k + P̂kH
TR−1vk (9.11)

with the covariance matrix:

P̂−1
k = (P̂−k )−1 + HTR−1H (9.12)

The Real-Time Contour Tracking Library framework can be summarized
as in Figure 9.2.

A screenshot from the RCTL application is shown in Figure 9.3.

9.3 Attractors

A new feature in RCTL is the concept of attractors. The attractors are a
kind of virtual edge points which overrules the normal edge detection for the
nearest edge point. This concept can be useful for correcting parts of the
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Figure 9.2: The contour tracking loop implemented in the Real-time Contour
Tracking Library. The Kalman filter is used for prediction of the states of
the model, which then is updated and compared against the measurements.
Figure from [34].

Figure 9.3: Screenshot from the Real-Time Contour Tracking Library. The
measured volume curve are shown in the second column of the first row. In
the third column of the first row a three-dimensional visualization is shown
with four planes and a model of the segmented left ventricle. These four
planes are shown in the other figures of the screenshot.

deformable model in areas of unclear or missing edges, which is difficult to
detect with normal edge detection. An example of this is the apex of the
right ventricle, which is not moving substantially through the heart beat.
The attractors is however not so useful for positions which have a lot of
movement through the beat such as the free outer wall of the right ventricle,
this is because they are at the present time only implemented at fixed spatial
positions.
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Part III

Results
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Chapter 10

Tracking of the right ventricle

10.1 Training Set

Figure 10.1 shows the training set made up of N = 12 manually shaped
ventricles from N different recordings. The segmentation has been performed
in the end diastole frame, i.e. when the ventricle is as it largest (see chapter
7.2). Figure 10.1 illustrates how the right ventricle can change from different
individuals.

Figure 10.1: Set of manually shaped right ventricles. The procedure used is
described in chapter 8.2.
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10.2 Mean Shape Of The Manually Segmented

Ventricles

In Figure 10.2 the mean shape of the right ventricle is illustrated. This model
is obtained by applying equation 8.5 on the training set in Figure 10.1. The
nodes are placed according to the rules described in chapter 8.2, this avoids
malforming of the shape of the model. No malforming is apparent in Figure
10.2. This model is used further in the tracking of the right ventricle. The
positions of the nodes are given in appendix B.

Figure 10.2: Mean shape calculated from the training set in Figure 10.1.
The shape resembles an ellipsoid with a crescent shaped side and a slightly
bending of the apex towards the left ventricle. The model is also somewhat
flatter at the bottom side of the illustration than at the top.

10.3 Tracking of the right ventricle

The purpose of this section is to test how the various initial models affect
the segmentation. Only 8 of the recordings in the training set contained a
whole satisfactory cycle of the heart. Therefore only these eight have been
used in the tracking of the right ventricle. There are used four types of initial
models:

1. Model that is manually fitted for each recording according to chapter
8.2. All the models have edge resolution of 675 edge profiles.
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2. The mean shape model in Figure 10.2 with edge resolution of 675 edge
profiles.

3. The mean shape model with the smallest edge resolution possible,
where one edge corresponds to one node (27 edges).

4. The mean shape model with a high edge resolution (2700 edges).

All of the segmentations has been performed by using the RCTL tool
(chapter 9). The models has been placed according to the following configu-
ration in the .xml-file for RCTL.

<transform type="full" state="0.01 0.045 0 0.06 0 0 0"

damping="0.8 0.5 0.8" regularization="0.05 0.15 0.10"

noise="0.10 0.20 3.13">

<!-- RV model -->

<model type="cell" parameters="RV-Model.h5" state="" stiffness="0"

resolution="5" damping="0.8"

regularization="0.2" noise="2">

<edge type="step" samples="30" spacing="0.0010" noise="0.0400"

threshold="15" neigh_threshold="0.01"/>

</model>

10.3.1 Manual shaped models

The result from the segmentation with the manually shaped models, shown in
Figure 10.1, to each respective recording is shown in the following tables and
figures. In table 10.1 the clinical parameters from automatic segmentation of
the right ventricle with manually shaped right ventricles are presented and
compared with the results from the manual segmentation.

The manual segmented volume by the disk method explained in chapter
7.3 is plotted against the automatic segmented volume from manually shaped
models to its respective recordings. The following four tables shows the plots
for end diastolic volume, end systolic volume, stroke volume, and ejection
fraction, together with a line produced by linear regression to the points.
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Table 10.1: Result of the segmentation of the right ventricle using the RCTL
application with manually fitted models, expressed by the clinical parameters,
End Diastolic Volume (EDV) [ml], End Systolic Volume (ESV) [ml], Stroke
Volume (SV) [ml], and Ejection Fraction (EF) [%]

Manual segmentation Automatic segmentation
Recording EDV ESV SV EF EDV ESV SV EF
7A9BIB00 132.8 74.0 58.8 44.3 124.3 66.7 57.6 46.3
7A9F7JG2 101.9 63.4 38.5 37.8 105.5 62.1 43.4 41.1
7A9F7P84 91.3 62.3 29.0 31.8 85.8 50.3 35.5 41.4
7A9F7900 118.1 80.9 37.2 31.5 116.8 69.2 47.6 40.8
7A9FFM06 104.8 76.3 28.5 27.2 98.8 59.9 27.3 27.6
7A9FFR88 87.1 54.4 32.7 37.5 87.2 55.2 32.0 36.1
7A9FPBOA 103.1 65.2 37.9 36.8 102.7 53.7 49.0 47.7
7A9FPLGC 129.4 66.8 62.6 48.4 129.8 68.9 60.9 46.9

Figure 10.3: End diastolic volume with manually shaped models with each
respective recording. Linear regression yields: y = 0.9405x + 4.2546. Corre-
lation coefficient: r2 = 0.9414
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Figure 10.4: End systolic volume with manually shaped models with each
respective recording. Linear regression yields: y = 0.7199x + 13.3073. Cor-
relation coefficient: r2 = 0.5805
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Figure 10.5: Stroke volume with manually shaped models with each respec-
tive recording. Linear regression yields: y = 0.8379x + 10.1031. Correlation
coefficient: r2 = 0.8265

Figure 10.6: Ejection fraction with manually shaped models with each re-
spective recording. Linear regression yields: 0.6908x + 15.5795. Correlation
coefficient: r2 = 0.5258
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Table 10.2: Result of the segmentation of the right ventricle using the RCTL
application with the mean shape model shown in Figure 10.2, expressed by
the clinical parameters, End Diastolic Volume (EDV) [ml], End Systolic Vol-
ume (ESV) [ml], Stroke Volume (SV) [ml], and Ejection Fraction (EF) [%]

Manual segmentation Automatic segmentation
Recording EDV ESV SV EF EDV ESV SV EF
7A9BIB00 132.8 74.0 58.8 44.3 122.1 68.9 53.2 43.5
7A9F7JG2 101.9 63.4 38.5 37.8 99.7 48.7 50.9 51.1
7A9F7P84 91.3 62.3 29.0 31.8 91.2 51.7 35.4 40.8
7A9F7900 118.1 80.9 37.2 31.5 115.2 62.5 52.6 45.7
7A9FFM06 104.8 76.3 28.5 27.2 101.7 60.6 41.1 40.4
7A9FFR88 87.1 54.4 32.7 37.5 85.5 41.1 44.4 52.0
7A9FPBOA 103.1 65.2 37.9 36.8 101.7 52.6 49.0 48.2
7A9FPLGC 129.4 66.8 62.6 48.4 124.8 56.8 67.9 54.4

10.3.2 Mean shape model

The mean shape model, shown in Figure 10.2, has been used for automatic
segmentation on the same recordings as in the previous chapter. Figure 10.7
shows one example of the segmentation, showing the edge detections.

Figure 10.7: Screenshot of tracking of the right ventricle with the mean model
with a medium high resolution (675 edges)

The results for the clinical parameters for the automatic segmentation of
the right ventricle is expressed in the following table and figures.
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Figure 10.8: End diastolic volume with the mean model. Linear regression
yields: y = 0.8404x+ 14.0049. Correlation coefficient: r2 = 0.9825.

Figure 10.9: End systolic volume with the mean model. Linear regression
yields: y = 0.9020x− 5.8971. Correlation coefficient: r2 = 0.7932.
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Figure 10.10: Stroke volume with the mean model. Linear regression yields:
y = 0.6085x+ 25.1392. Correlation coefficient: r2 = 0.7759.

Figure 10.11: Ejection fraction with the mean model. Linear regression
yields: y = 0.4655x+ 30.1833. Correlation coefficient: r2 = 0.4335.
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10.3.3 Edge profile experiment

In Figure 10.12 a screenshot of the RCTL application for segmentation of
the right ventricle with a model with a few number of edge profiles. Notice
the jagged profile of the volume curve, this indicates the random nature
of the segmentation when one have to few edge detections. The volume
measurements are very unstable.

Figure 10.12: Screenshot of tracking of the right ventricle with a model with
a few number of surface points (27 edges). Notice the jagged shape of the
volume curve.

In Figure 10.13 a screenshot of the RCTL application for segmentation
of the right ventricle with a model with many edge profiles. Notice the
smooth profile of the volume curve, this indicates the more stable nature of
the volume measurements, because of the high number of edge detections.
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Figure 10.13: Screenshot of tracking of the right ventricle with a model with
a high number of surface points (1227 edges). Notice the very smooth shape
of volume curve.
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10.3.4 Initial Position Experiment

The effect of the initial position in the global transform has been investigated.
Figure 10.14 shows a fairly good segmentation with the initial position x =
0.01, y = 0.045, z = 0. The initial position is an important factor when using
the automatic segmentation. Figure 10.15 and 10.16 shows what happens
when the initial position gets to far out to the left and the right. The two
positions in the two figures are the smallest deviation from the position in
Figure 10.14 for which the model tracks erroneous features, such as the left
ventricle (Figure 10.15) and outside of the heart (Figure 10.16).

Figure 10.14: A fairly good segmentation with the initial position in the
global transform x = 0.01, y = 0.045, z = 0
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Figure 10.15: A segmentation with the initial position in the global transform
x = −0.03, y = 0.045, z = 0. The contour is to far to the right and tracks
the left ventricle.

Figure 10.16: A segmentation with the initial position in the global transform
x = 0.03, y = 0.045, z = 0. The contour is to far to the left and the apex
part of the model tracks features on the outside of the heart.
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10.3.5 Tracking of the right ventricle together with the
left ventricle

The overall purpose over time with the framework of the Real-Time Contour
Tracking Library is to be able to track two or more heart chambers simulta-
neously. This thesis is a small part on the road to this vision. Figure 10.17
shows a screenshot from the simultaneous segmentation of the two ventricles
in the heart. For the left ventricle a truncated ellipsoid model is used [34],
for the right ventricle the mean shape model in Figure 10.2 is used.

Figure 10.17: Segmentation of the left and right ventricle simultaneously.
The left ventricle is partly outside of the image, but maintains its shape due
to the initial model constraints. The volume curves are approximately the
same for the two ventricles.
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10.4 Experiment with attractors

To try out the new feature of the attractors in the Real-Time Contour Track-
ing Library, a segmentation with two attractors in the trabeculated apex part
of the right ventricle. The same segmentation as shown in Figure 10.14 is
used for the attractor trial. Figure 10.18 shows a better attraction to the apex
of the right ventricle, the attractors are placed manually by right clicking in
the window in the RCTL application.

Figure 10.18: Screenshot of a segmentation with two attractors (chapter 9.3)
in the trabeculated apex part of the right ventricle. The attractors are placed
manually and is shown as two white squares in the bottom left image.
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Part IV

Discussion and conclusion
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Chapter 11

Discussion

The results suggest that there are substantial individual differences in the
shape and size of the right ventricle. This, together with noisy images,
makes the tracking of the right ventricle challenging. However, the use of
a deformable model used to track the right ventricle is promising as the
tracking results in this report proposes.

The mean shape turned out to be a good initial model that made fairly
well segmentation in all the recordings in which it was tested. The shape
of the mean shape is similar to that of the bent ellipsoid model, described
in chapter 2.4.3, and with some work this model could possibly be used as
an initial model for the right ventricular tracking. The mean shaped model
obtained in this report has no mathematical foundation and is possible a
little to heuristic, especially from the rather limited training set used.

The small number of recordings used in the development of the shapes
comes from problems with getting good recordings of the right ventricle,
which is not a prioritized chamber in clinical examinations. Many physicians
also claims that it is hard to get good echocardiography recordings of the right
ventricle. This small number imposes a problem for the statistical analysis
of the feasibility of the segmentation. However, an attempt was made to try
to express some statistical results of the right ventricular tracking.

The manual segmentation performed in this thesis is performed by the
author, who has no clinical training so they are based upon my limited
anatomical knowledge of the right ventricle, prominent features in the im-
age and common sense. This yields, of course, not clinical useful results but
are rather an indication of the volume of the right ventricle. The manual
segmentation does however avoid noise features as the moderator band and
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the large papillary muscle in the apex, and does also capture the free wall
to some extent where it is missing. So the relation between the automatic
segmentation and the manual does show promising tendencies in the auto-
matic real-time tracking. The comparison of the manual segmentation to the
automatic segmentation can be viewed as an attempt to try to evaluate the
automatic computer vision of the tracking against the human vision. In the
future, the volume measurements should be validated against MRI images,
which are considered to be the gold standard for volume measurements of
the heart chambers.

The manually fitted models had a good fit to the manual segmentation,
with a very good correlation coefficient (r2 = 0.9414), for the end diastolic
volume. The model was shaped from the contours of the manually segmented
ventricle in the diastole, so this result is not so surprising, but still promising.
The same, maybe even better (r2 = 0.9825), good relation between the man-
ual and the automatic segmentation using the mean shape model is shown.
This can suggest that the mean model is absolutely feasible for the tracking
of the ventricle in the diastole.

The results for the end systolic volume for both the mean shape model
and the manually fitted model are however not so optimistic. This can be
a sign of that the model did not incorporate the changes during heart cycle
good enough, and some more effort could be made with this matter if the time
has allowed it. Again, the small number of data can also be an important
factor for the poor correlation, as one poor recording would yield a great
negative effect on the correlation.

The results for the stroke volume and the ejection fraction shows that the
errors in the end diastolic volume and in the end systolic volume between
the manual and the automatic segmentation does not cancel each other, but
rather have a negative effect on the stroke volume and the ejection fraction
correlation.

The edge profile testing shows that it is necessary to have a certain number
of edge profiles to get stable results. The results with the lowest number of
edge profile gave very unstable volume measurements, while the high number
of each profiles gave a very smooth, and pleasing segmentation. The number
of edge profiles in the mean model seemed however to be sufficient to yield
a good enough segmentation. A high number of edge profiles demands high
computational power.

Initial positioning of the model was also investigated. In the segmenta-
tions in this project the initial positions are placed manually. Figure 10.15
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and 10.16 shows examples of the effect of wrongfully placing the initial mod-
els. The contours tracked are not the right ventricle, but instead other fea-
tures in the heart, there were a quite large area in which it was possible to
position the model were the tracking was satisfactory (approximately 4−5cm)
this makes the tracking somewhat robust against erroneous initial positions.
The results does however suggest that there should be a mechanism to find
the right initial position. This is partly accomplished in the RCTL appli-
cation when tracking two models similarly; the models are placed relative
to each other which imposes a restriction of which features that is tracked.
However, initial positioning for the whole system of contours is still needed.
In the future an automatic initial position tracking mechanism could be a
feature of the RCTL application.

Attractors which are a new and yet undocumented feature of the RCTL
turned out to be a nice feature for adjusting the segmentation in difficult
areas which contains little movement, such as the heavy trabeculated apex
area.

The greatest challenges for segmentation did, as expected, turn out to be
the trabeculations in the apex area and the poor imaging of the free outer wall
of the ventricle. One additional concern were also the moderator band, which
appeared as a very prominent feature in the images. The problems with the
apex segmentation were avoided by having a very low resolution in this part
of the ventricle. This was possible due to the way the ventricle contracted
during the heart beat. The most prominent change from the end diastole
to the end systole were the shortening along the long axis, while the apex
remained to a great extent unchanged. This allowed the low resolution in the
apex part. A relatively high resolution was applied toward the base, i.e. the
outflow and inflow parts in Figure 2.6. The physiology of the contraction can
be somewhat understood by inspecting Figure 2.1, where it is clear that the
blood does not have to move all the way into the apex to get from the inflow
tract to the outflow tract. The differences in resolution from the apex to the
base of the ventricle has the disadvantage that it can attend a ”pear-shape”
as can be seen in Figure 10.14.

Subdivision seems to be an easy and effective way of making geometrical
models, automating the time-consuming problem of representing a smooth
model. Some problem with perhaps too low volumes could possibly be im-
proved by using another subdivision scheme which is interpolating instead
of approximating. This can also be avoided with choosing another method
for construction of the models, which does not place the control points on
the contours, but rather fit the smooth surface to the contour. However the
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problem is not as substantial, as the model acts inflating when it is placed
within the heart chamber. Before the segmentation the models where en-
larged to be able to lock on to the endocardial border instead of to features
within the chamber. The segmentation did from the smooth models have a
tendency to round out sharply protruding edges, such as the narrow apex
and the outflow tracts.

A challenge in developing the tracking of the right ventricle is to get good
enough recordings. It can be stated that the recordings used in this project
work was not good enough to yield very accurate results. Nevertheless, the
purpose of the project was to investigate if it were possible to make an initial
model, which could lead to good segmentations of the right ventricle. For
the purpose of an initial model, the recordings were good enough.
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Chapter 12

Conclusion

Segmentation of the right ventricle using model-based segmentation in real-
time has been performed, and a simple model of the right ventricle has been
developed. The segmentation was accomplished using the Real-Time Contour
Tracking Library with a deformable subdivision model for the right ventricle.

The results of the tracking of the right ventricle are promising. The mod-
els adjust to the right ventricle and could to some extent account for missing
right ventricular free wall and crescent cross-sectional shape. Quantitative
validation of the volume calculations and the segmentations shows promising
results. However, challenges still remains, especially in the systolic segmen-
tation of the ventricle.

The right ventricle segmentation was connected with simultaneous left
ventricle segmentation. And the volume curves were changing according to
the theory of the change in volume in the two heart chambers during the
heart cycle.

Segmentation of the right ventricle based on a model-based approach
seems to yield feasible results and encourages further work about the subject.
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Chapter 13

Further work

Further development of the right ventricular model could be performed. This
includes a larger statistical foundation for the construction of the mean shape
model, a more sophisticated way of incorporating the physiology during the
systole which could avoid the ”‘pear shaped”’ form that sometimes occurred
during the segmentation.

Improvement on the edge detection in the RCTL application could be an
important and interesting improvement of the whole subject of segmentation
of the right ventricle.

The segmentation of the right ventricle in RCTL is one step on the road
to accomplishing the vision that in the future the application could be used
for tracking all four heart chambers simultaneously. The promising results of
the simultaneous left ventricle and right ventricle tracking encourage further
research toward this goal.
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Appendix A

MATLAB-script for area
calculation of polygon and
volume approximation of
manually segmented contour

clear all

hold on

% The number of vertices in each polygon

L = 20;

% The frame and the maximum and minimum ranges manually segmented and

% stored in a .mat file called filename.

filename = ’7A9BIB00’;

frame = 12;

MAX_RANGE = 240;

MIN_RANGE = 60;

% Gets the polygon control points saved for the ventricle in a matrix with

% the control points for each disk saved after each other.

A = GetPolygons(filename,MIN_RANGE,MAX_RANGE,frame);

% Calculates the distance between the disks

h = (A(end,2)-A(1,2))/((MAX_RANGE-MIN_RANGE)/10)
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i = 1; j = 1;

area = zeros(20,1);

volume = zeros(20,1);

% Traversing through the short-axis slices of the whole manually

% segmented ventricle

for z = A(1,2):h:A(end,2)

for sigma = 1:L

% Gets the control for each short axis slice

Qx = A(i:i+19,1);

Qy = A(i:i+19,3);

% Plots the slice

plot3(Qx,ones(1,20)*z,Qy)

% Illustrates the disks by making patches

points1 = [Qx (ones(1,20)*z)’ Qy];

points2 = [Qx (ones(1,20)*z+h)’ Qy];

points = [points1;points2];

faces = [ 1 2 22 21; 2 3 23 22; 3 4 24 23; 4 5 25 24;

5 6 26 25; 6 7 27 26; 7 8 28 27; 8 9 29 28;

9 10 30 29; 10 11 31 30; 11 12 32 31; 12 13 33 32;

13 14 34 33; 14 15 35 34; 15 16 36 35; 16 17 37 36;

17 18 38 37; 18 19 39 38; 19 20 40 39; 20 1 21 40];

patch(’Faces’,faces,’Vertices’,points,’FaceColor’,’red’)

view([-40 50]);

axis([-0.04 0.04 0.02 0.1 -0.05 0.05])

end

% Store the area for the current disk

area(j,1) = PolygonArea(Qx,Qy);

% Store the volume for the current disk

volume(j,1) = area(j,1)*h;

% Control point number

i = i+20;

% Disk number

j = j+1;
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end

% Summarize the volume and expresses it in ml.

total_volume = sum(volume);

Volume = total_volume*1e6

function area = PolygonArea(Qx,Qy)

% Calculates the area of a polygon with n vertices

% Made by Asbjørn Engås, May 2008

%

% area = PolygonArea(Qx,Qy)

%

% Takes in the vertices of a polygon and returns the area

%

% Qx and Qy are the x- and y-coordinates of the polygon

%

% Returning variable:

% Area = The area of the polygon

% Number of vertices in the polygon

n = size(Qx,1);

% Periodicity of a polygon

Qx = [Qx; Qx(1)];

Qy = [Qy; Qy(1)];

% The polygon formula

area = 0;

for k = 1:n

area = area + (Qx(k)*Qy(k+1)-Qx(k+1)*Qy(k));

end

area = 0.5*abs(area);

function [points] = GetPolygons(filename,MIN_RANGE,MAX_RANGE,frame)

% Gets the vertices of all the contours of a manually segmented ventricles

% Made by Asbjørn Engås, May 2008

%

% filename is the filename of the recording which are manually segmented

% MIN_RANGE are the minimum range

% MAX_RANGE are the maximum range
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% frame is the frame segmented

%

% Returns all the control points in three coordinates.

% Finds the file and gets the info from the corresponding h5-file.

filepath = ’C:\Ultralydopptak\2007 Brage RV\’;

file = strcat(filepath,filename,’.h5’);

[fGeom fData] = GetFrames_h5(file);

file2 = strcat(’EndSystole\’,filename,’ContourRange’);

% Calculates the attributes of the recording in probespace.

RES = 128;

range_min = fGeom.depthstart;

range_max = fGeom.depthend;

az_min = (range_max-range_min)*sin(min(fGeom.az_angles));

az_max = (range_max-range_min)*sin(max(fGeom.az_angles));

el_min = (range_max-range_min)*sin(min(fGeom.el_angles));

el_max = (range_max-range_min)*sin(max(fGeom.el_angles));

az_inc = (az_max-az_min)/RES;

el_inc = (el_max-el_min)/RES;

% Traverse through the file and store all the stored points in the

% returning variable

points = [];

for b = MIN_RANGE:10:MAX_RANGE

filename = strcat(file2,num2str(b),’Frame’,num2str(frame));

load(filename);

points = [points;(punkt(:,1)*az_inc+az_min)

(punkt(:,2)) (punkt(:,3)*el_inc+el_min)];

end
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Appendix B

Node positions and face list for
the mean right ventricle model

The columns are the x, y, and z coordinates for the i’th node in the i’th row,
respectively.

nodes =

-0.0044 -0.0378 0.0227

-0.0229 -0.0378 0.0232

-0.0199 -0.0378 0.0010

0.0178 0.0067 -0.0019

0.0125 0.0067 0.0266

-0.0218 0.0067 0.0340

-0.0140 0.0067 0.0059

-0.0210 0.0067 -0.0228

0.0026 0.0067 -0.0211

0.0227 0.0167 -0.0039

0.0177 0.0167 0.0247

-0.0211 0.0167 0.0315

-0.0146 0.0167 0.0058

-0.0205 0.0167 -0.0276

0.0051 0.0167 -0.0269

0.0254 0.0271 -0.0081

0.0206 0.0271 0.0247

-0.0190 0.0271 0.0298

-0.0147 0.0271 0.0064
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-0.0203 0.0271 -0.0306

0.0085 0.0271 -0.0310

0.0247 0.0378 -0.0073

0.0198 0.0378 0.0213

-0.0161 0.0378 0.0244

-0.0141 0.0378 0.0038

-0.0190 0.0378 -0.0300

0.0079 0.0378 -0.0298

The face list specifies how the nodes are topologically connected together.

faces = {[ 1 2 3]

[ 1 4 5]

[ 1 5 6 2]

[ 2 6 7]

[ 2 7 8 3]

[ 3 8 9]

[ 3 9 4 1]

[ 4 10 11 5]

[ 5 11 12 6]

[ 6 12 13 7]

[ 7 13 14 8]

[ 8 14 15 9]

[ 9 15 10 4]

[10 16 17 11]

[11 17 18 12]

[12 18 19 13]

[13 19 20 14]

[14 20 21 15]

[15 21 16 10]

[16 22 23 17]

[17 23 24 18]

[18 24 25 19]

[19 25 26 20]

[20 26 27 21]

[21 27 22 16]

[22 27 26 25 24 23]};
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