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ABSTRACT

The challenge of pore pressure prediction in an overpres-
sured area near a well is studied. Predrill understanding of
pore pressure is available from a 3D geologic model for
pressure buildup and release using a basin modeling ap-
proach. The pore pressure distribution is updated when well
logs are gathered while drilling. Sequential Bayesian meth-
ods are used to conduct real-time pore pressure prediction,
meaning that every time new well logs are available, the pore
pressure distribution is automatically updated ahead of the
bit and in every spatial direction (north, east, and depth),
with associated uncertainty quantification. Spatial modeling
of pore pressure variables means that the data at one well
depth location will also be informative of the pore pressure
variables at other depths and lateral locations. Aworkflow is
exemplified using real data. The prior model is based on a
Gaussian process fitted from geologic modeling of this field,
whereas the likelihood model of well-log data is assessed
from data in an exploration well in the same area. Results
are presented by replaying a drilling situation in this context.

INTRODUCTION

Prediction of abnormal pore pressure is an important part of sub-
surface modeling. It is controlled by pressure generating and dissi-
pating geologic processes that have taken place over millions of
years. It is also determined by the fault pattern and how a sedimentary
basin with pressure compartments has been formed over years. This
process is essential for understanding current-day pore pressure dis-
tributions, which are important in exploration and development drill-
ing operations. Accurate pore pressure prediction helps avoid drilling
risks because it allows improved tuning of the mud weights and one

can reduce drilling costs by wisely choosing the casing point before
entering the reservoir or some high-pressure formation, see, e.g.,
Rommetveit et al. (2010) or Gholami et al. (2015).
The focus of this paper is pore pressure prediction from predrill

assessments and well-log measurements. We present a new approach
for real-time prediction of pore pressure, using the predrill assessment
as a prior distribution, and updating the distribution when new mea-
surements become available while drilling. First, a basin modeling
approach, building on interpreted seismic horizons, and 3D pressure
modeling is used for predrill evaluation. Then, the pore pressure dis-
tribution ahead of the bit and at other lateral and depth locations is
updated by integrating well-log information while drilling. This mod-
eling approach is connected to a system or workflow for automized
updating of pore pressure, which is important for improved decision
making. Note that seismic velocities could also be used for predrill
assessment of pore pressure (Dutta, 2002; Sayers et al., 2002; Chopra
and Huffman, 2006; Ugwu, 2015). In some depositional systems,
such data would give a more refined predrill model, of course at
the cost of extracting more information from the data.
There exist several rock-physics models that relate pore pressure to

petrophysical or geophysical variables. Eaton’s method (Eaton, 1975)
is extensively used for pore pressure estimation from resistivity or
sonic traveltime data. Bowers (1995) also proposes a method for pore
pressure estimation based on velocity data. Zhang (2011) includes a
depth-dependent normal compaction trend line in Eaton’s methods,
developing a new method for pore pressure prediction from porosity.
In the current paper, we build on Zhang’s equation, and we use data to
learn free model parameters within that functional relationship.
Because the predictions of pore pressure are commonly applied

to make decisions about the well mud weight and casing points, it is
critical to get some realistic level of the uncertainty in the prediction
(López et al., 2004; Wessling et al., 2013). We advocate Bayesian
modeling, which naturally allows for consistent uncertainty quan-
tification as part of the workflow. Bayesian statistics have been ap-
plied to pore pressure prediction previously: Malinverno et al. (2004)
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use a Bayesian method to update pore pressure predictions based on
logs and check shot information, with relations provided by Eaton’s
equations. Bektas et al. (2015) apply a sequential modeling approach
to pore pressure prediction. Oughton et al. (2017) use a Bayesian
network model to connect the pore pressure variables at different
depths, and to different kinds of data. These approaches are similar
to what we are doing here, but without the same focus on the spatial
modeling aspect and on learning the prior and likelihood models
from data. In the current paper, we also conduct a sensitivity analysis
to different input parameters in this model and we evaluate the effect
of different data on the pore pressure distribution.
The paper is organized as follows. We start with a background

description of the main parts required to conduct real-time pore
pressure prediction. Then, we outline the prior model, the likelihood
fitting, and the sequential updating method for real-time prediction.
Results and discussion are based on a real-data case.

PROBLEM DESCRIPTION

The pore pressure is denoted as p ¼ ðp1; : : : ; pnÞ, where pi ¼
pðsiÞ is the pore pressure at spatial location si ¼ ðsi1; si2; si3Þ, rep-
resented by the north, east, and depth coordinates, and n is the num-
ber of locations. The predrill information about the pore pressure
consists of geologic understanding of the sediments based on the
interpreted reflection seismic horizons and interpreted faults. The
simulated pore pressure in the predrill case is a result of modeling
pressure generation and dissipation in 3D over millions of years.
The well-log data are denoted as yj, where the index j refers to data

collectedoverthewellpathorderj ¼ 1; : : : ; N andN is thetotalnumber
of data points considered. We can further clarify this by using notation
yjðsw;jÞ, indicating that thewell is at spatial location sw;j at step j. In our
case, we consider resistivity logs (r), neutron porosity (ϕ) and acoustic
logs of traveltime (Δt), so that data are yj ¼ ðrj;ϕj;ΔtjÞ. Figure 1
illustrates the situation in which the pore pressure variables are repre-
sented on a regular 3Dgrid, and thewell trajectory is oriented vertically.
When the drilling operation starts, the goal is to assimilate data in

real time. This means that the data y1; : : : ; yN are assimilated in a
sequential manner, and one obtains step-wise updating of the dis-
tribution for the pore pressure variables p at all grid locations.
Our suggested workflow for pore pressure prediction is as follows:

1) Train a prior distribution from pore pressure variables obtained
from geologic modeling.

2) Specify the likelihood model for well-log data based on the
available logs in the vicinity of the current location.

3) Use a sequential updating method for real-time pore pressure
prediction.

We will go through these steps in the next three sections.

PRIOR MODEL — PREDRILL ASSESSMENT FROM
GEOLOGIC MODELING

We construct a multivariate prior distribution for pore pressure
variables in the subsurface domain by using extensive predrill as-
sessment based on geologic modeling. In our case, the predrill in-
formation is given by Pressim (Borge, 2000; Lothe, 2004), which is
software developed by SINTEF Petroleum Research. Pressim is a
tool for modeling pressure generation and dissipation within sedi-
mentary basins over geologic time. The modeled pressure genera-
tion is controlled by the degree of mechanical and chemical
compaction, whereas the pressure dissipation and lateral pressure
transfer is controlled by flow barriers such as faults and low per-
meable sedimentary units such as shales or salt. The pressure gen-
eration due to compaction and diagenesis, and dissipation due to
hydraulic failure and leakage (Lothe et al., 2004), is calculated from
burial and possible uplift in the study area (Lothe and Grøver,
2009). Overall, the modeled present-day pressure distribution
within the basin is a result of its burial history.
A sedimentary basin is a dynamic system over geologic time. It

may experience periods with rapid burial leading to a high degree of
compaction, but also periods with sediment erosion and uplift lead-
ing to high degree of pressure dissipation due to fracturing and leak-
age. The sediment rock physical properties such as permeability,
and the sealing properties of the fault zones may accordingly
change with time. The change in porosity is in Pressim given by
compaction curves (Sclater and Christie, 1980) and kinetic equa-
tions reflecting the degree of chemical compaction, such as quartz
growth in sandstone reservoir controlled by the temperature (Wal-
derhaug, 1996). The tool quantifies pressure dissipation using a
model for lateral cross-fault fluid flow, and Darcy’s flow equation
in the vertical direction. The sediment permeability is given by Ko-
zeny-Carman equations (Mavko et al., 2009), linked to its lithology
and associated calculated porosity. The modified Griffith-Coulomb
failure (Jaeger and Cook, 1963) and the frictional-sliding criterion
(Twiss and Moores, 1992) are included to simulate hydraulic leak-
age from overpressured compartments. We get the sand clay frac-
tion from existing well logs, to set up the geomodel. The quality of
the modeled pressure distribution is given by the misfit with ob-
served pressure values at existing well locations.
A general pitfall with this basin modeling approach is the large

number of input parameters, their inherent uncertainty, as well as
the uncertainty of the process model itself. Several inputs may give
similar fit to observations. To capture these issues of the complex
problem, a Monte Carlo approach is used, in which the input param-
eters to the geologic model are varied (Lothe and Grøver, 2009). In
our setting, we only consider a few Monte Carlo realizations and we
only study the pore pressure at the present time.
Figure 2 shows the spatial structure of the field under consider-

ation. Based on the interpreted reflection seismic and interpreted
faults, the study area is divided into 18 depth layers of various thick-
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Figure 1. Illustration of slices of a 3D grid covering a subsurface
domain. At each site in the grid, we aim to predict the pore pressure.
The black points represent the well path where resistivity, neutron
porosity, and traveltime log data are gathered.
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ness (Figure 2a) and 41 vertical compartments (Figure 2b). The
overburden shales are rather flat in the study area, whereas the res-
ervoir forms a dome structure. The faults have minor throw; see the
model description in Lothe et al. (2018). Figure 2b shows color-
coded compartments and many other minor faults. Predrill pressure
simulations are carried out for the last 34 millions years, using for-
ward modeling with the pressure calculated every 10,000 years.
Figure 3 shows simulated pore pressure as a function of depth for

all the compartment locations in the study area, together with the
hydrostatic pressure and the overburden stress, which are also given
from the predrill model. We notice a trend of increasing pore pres-
sure as a function of depth. The predrill model predicts that pore
pressure is close to the hydrostatic pressure (normal pressure,
the red line in Figure 3) for the first 1000 m, then we have over-
pressure (abnormal pressure). The overpressures from 1000 to
3000 m in the shaly overburden are mainly generated by the il-
lite-smectite diagenesis (Lothe et al., 2018). At depths between

3000 and 4000 m, the model predicts a drop in pore pressure that
remains well above the hydrostatic pressure. Less than 4000 m there
seems to be increased pore pressure, which is closer to the overbur-
den stress (the blue line in Figure 3). The ability of the predrill
model to predict pressures correctly has been tested in several differ-
ent study areas, such as the Halten terrace area (Lothe, 2004) and
northern North Sea (Borge, 2000), with positive results.
One reason for conducting real-time pore pressure updating is to

make improved decisions related to drilling mud weight in regions
where there is overpressure. For the case that we are considering,
the mud weight specification is associated with pore pressure rel-
ative to the hydrostatic and overburden pressure. It is for this reason
natural to build a statistical model in which we avoid values of pore
pressure lower than hydrostatic pressure or greater than the over-
burden stress. Hence, we introduce the following constraints:

phi < pi < pobi i ¼ 1; : : : ; n; (1)

where phi represents the fixed hydrostatic pressure and pobi is the
fixed overburden stress, at (depth of) location si. Statistical model-
ing with constraints can be difficult, and one standard way to go
around this is to use another variable xi ∈ ð−∞;∞Þ defined by
a logistic transform (Dobson and Barnett, 2008) as follows:

xi ¼ log

�
pi − phi

pobi − pi

�
i ¼ 1; : : : ; n: (2)

We will base the prior model on this transformed pore pressure var-
iable. The pore pressure pi at location si can be directly computed
from xi by the inverse of equation 2:

pi ¼
exipobi þ phi

1þ exi
i ¼ 1; : : : ; n: (3)
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Figure 2. Geometry of the available predrill information. Based on
the interpreted seismic horizons used in the Pressim geomodel, the
study area is divided in 18 horizontal layers of various thickness and
41 vertical compartments. (a) Vertical view of the field. (b) Map
view, the faults only partially seal the compartments. Circles indi-
cate geometric centers of compartments and constitute the sites
where prior information were available. The colorbar helps to iden-
tify the compartments.
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Figure 3. Predrill pore pressure (colored) plotted as a function of
depth together with the hydrostatic pressure (red) and the overbur-
den stress (blue) that are also given from the predrill model. The
different colors indicate the different layers in which the informa-
tion about pore pressure is obtained. The model predicts normal
pressure for the first 1000 m and then the overpressure starts, and
even though there is a drop in the predicted pore pressure between
3000 and 4000 m, the pore pressure remains well above the hydro-
static pressure.
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We now build a prior model for the transformed pore pressure at
all locations, i.e., x ¼ ðx1; : : : ; xnÞ. We construct a multivariate
Gaussian distribution in which regression models represent the prior
mean as a function of layers and depth, and where variograms are
used to study the spatial variability and correlation between the sites
of the grid. For each layer k of the overpressured area, focusing then
on the deeper layers (k ≥ 6):

xik;k ¼ β0;k þ β1;ksik3;k þ ϵik;k k ¼ 6; : : : ; 18; (4)

where ðsik3;k; xik;kÞ represent the depth and logistic pore pressure de-
fined in equation 2, observed in layer k, and at coordinate
ik ∈ Ik ¼ f1; : : : ; nkjnk number of sites in layer kg. We assume
that Eðϵik;kÞ ¼ 0 and that the variance is constant, Varðϵik;kÞ ¼ σ2k
for each ik ∈ Ik. The estimates of the regression intercept β0;k and
slope β1;k are derived using the method of least squares. We then
specify the regression coefficients β̂1;k ¼

P
ik∈Ikðxik;k − x̄kÞðsik3;k −

s̄3;kÞ∕
P

ik∈Ik ðsik3;k − s̄3;kÞ2 and β̂0;k ¼ x̄k − β̂1;ks̄3;k, with x̄k and s̄3;k
sample means within the layer k.
Figure 4 shows the residuals of the regression analysis for layer 8

(there is similar behavior in other layers). Such residual plots are used
to check if the model assumptions are fulfilled. In the histogram of the
residuals, the frequency of the residual values is plotted. We notice the
typical bell shape of the Gaussian distribution, equally distributed at
approximately zero, confirming the modeling approach. The other
plots are used to check the assumptions of constant variance of the
residuals (Figure 4c) and remaining model correlation (Figure 4d).
The spatial covariance is studied further using variograms (Goo-

vaerts, 1997) of the residuals, within the layers and between the
layers. Figure 5a and 5b shows the empirical semivariograms
together with fitted models.

The fitted variograms are based on the exponential model, in
which the lateral and vertical functions are

γkðhÞ ¼ σ2k

�
1 − exp

�
−

h
rk

��
k ¼ 6; : : : ; 18; (5)

γcðhÞ ¼ σ2c

�
1 − exp

�
−

h
rc

��
c ¼ 1; : : : ; 41; (6)

where h is the distance between points, r is the range parameter of the
variogram, which is indicative of correlation distance, σ2k is the ad-
justed variance in layer k, and σ2c is the adjusted variance along the
compartment c. These σ values correspond to the sill representing the
asymptotic level of the variogram for large distance h. Figure 5 shows
how the sill value changes if we consider the semivariogram for layer
or the one for column; this means that we have a larger variability
within the column compared with the layers. Note that the sill value
for the semivariogram in layer 8 (Figure 5a) corresponds to the vari-
ance of the residual of that layer (Figure 4).
Overall, we build the covariance matrix for the logistic pore

pressure variable for any two sites by

Σðsi;k; sj;lÞ ¼ σ2 exp

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsi1;k − sj1;lÞ2 þ ðsi2;k − sj2;lÞ2

q
r1

−
jsi3;k − sj3;lj

r2

�
; (7)

where σ2 ¼ 1∕13
P

18
k¼6 σ

2
k is the average of the

standard deviations (SDs) for the layers and r1
and r2 are the average range for the variograms
per layers and per compartments.
In summary, we then have a prior distribution

πðxÞ ¼ Nðx; μ;ΣÞ; (8)

where NðÞ denotes the multivariate Gaussian
density function. The mean μ ¼ ðμx1 ; : : : ; μxnÞ
depends on the fitted regression parameters de-
rived by least squares for equation 4, and the
covariance matrix Σ is defined in equation 7.
Recall that the pore pressure pi is defined from

equation 3. Even though we always work with
the transformed variable xi, we plot and interpret
results for the pore pressure pi. The distribution
of pore pressure can be approximated using, for
instance, a first-order Taylor expansion of equa-
tion 3 centered in μxi . We then get

piðxiÞ ≈ piðμxiÞ þ p 0
i ðμxiÞðxi − μxiÞ

i ¼ 1; : : : ; n;
(9)

and so

EðpiÞ ≈ piðμxiÞ i ¼ 1; : : : ; n; (10)
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Figure 4. Residuals of the regression analysis for layer 8. (a) The histogram shows the
typical symmetric bell shape of the Gaussian distribution, and (b) the normal probability
plot further confirms this idea. (c) Residuals versus fitted values check the assumption of
constant variance of the residuals, and because they are evenly spread at approximately
zero, we can say this is fulfilled. (d) The pattern in the order plot indicates the possible
residual correlation in the model.
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VarðpiÞ ≈ ðp 0
i ðμxiÞÞ2VarðxiÞ i ¼ 1; : : : ; n: (11)

A similar approach can be used for the multivariate properties of the
pore pressure.
In Figure 6, we show the resulting mean and 90% prior prediction

interval for the pore pressure, as well as the correlation matrix. This
is representative of the 3D grid shown in Figure 1.
The correlation is here organized according to the layers, and we

notice great dependence within layers and between sites that are
close. When the distance between locations increases, the correla-
tion gets very low.

LIKELIHOOD MODEL — SPECIFICATION FROM
WELL-LOG DATA AND PHYSICAL MODELS

The likelihood model should describe the probability distribution
of well-log responses as a function of pore pressure. There are sev-
eral rock-physics relations linking pore pressure to petrophysical
and geophysical variables (Mavko et al., 2009). However, they
are often complicated by multivariable interactions in the relations,
and they tend to work in specific environments, for instance, de-
pending on the compaction as in the Gulf of Mexico (Sayers et al.,
2005). It is known that porosity depends on pore pressure, but it also
depends on the lithologic composition and other attributes. There-
fore, it is difficult to extract pore pressure from porosity unless we
know the other variables going into the equation, or know that the
study is representative of an area where rapid subsidence and com-
paction is the main driving mechanism. The same is true for other
petrophysical variables. Thus, the specification of a likelihood
model would be case specific. We build our likelihood model using

the existing relation by Zhang (2011), and we train free model
parameters from well-log data. Other models could be equally
applicable, but a similar workflow would hold. In the following,
we outline the assumptions going into our procedure.
The likelihoodmodel is specified frommeasurements acquired in a

well in the same field (the data are provided byConocoPhillips and the
Norwegian Petroleum Directorate). The data consist of logs within a
depth domain of the formation. We focus our attention on resistivity,
neutron porosity, and sonic logs, as well as gamma ray data.
Figure 7 shows the data as a function of measured depth (MD).

We choose to focus on this specific depth interval (3105–3420 m)
because it corresponds to an area where all the data are available.
We notice that we have much larger resistivity values near 3200 m.
This is an oil-saturated zone. Likewise, we have a much larger
gamma ray at approximately 3240 m, representing the interval in
which we pass from the upper formation to the lower formation.
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Figure 5. Empirical and fitted exponential semivariograms as
function of the lag distance. (a) Layer 8, (b) compartment 41.
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Figure 6. The prior model for pore pressure is a multivariate Gaus-
sian distribution with mean μ and covariance Σ. The dimension is
given by the number of sites in the spatial grid. (a) Pore pressure
prior mean (black) with a 90% prediction interval (green) together
with the hydrostatic pressure and the overburden stress. (b) Prior
correlation matrix for pore pressure. It is organized according to
the layers, meaning that each site of the grid is sequentially assigned
to an index. For close sites the difference of the respective site in-
dexes will be low. The correlation matrix helps to highlight the large
correlation within layers and between sites that are close.
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We decided to remove these parts (the dashed depth zone in Fig-
ure 7) from the data set because they would distract the focus on
modeling the pore pressure. This is commonly done in inverse prob-
lems because there are many possibilities for getting the same re-
sponse, and some parameters must be fixed in the modeling,
whereas others are treated as random and assigned distributions
(Malinverno and Parker, 2006). In the current setting, there are also
other inputs, such as temperature and salinity, which influence the
response, but they are quite well-known for the North Sea (Bhakta
et al., 2016), and not considered in this study.
The likelihood model tying pore pressure to log measurements is

here represented by a Gaussian distribution with nonlinear expected
values based on rock-physics relations described by Zhang (2011).
Given a pore pressure input, the model for resistivity, porosity, and
transit time measurements is defined by

yj ¼

0
B@

rj
ϕj

Δtj

1
CA¼

0
BBBBBB@

�
pobj

−pj

pobj
−phj

�
1∕nr

r0ebzj

ϕ0 exp

�
−

pobj
−pj

pobj
−phj

cϕzj

�

ðΔtml −ΔtmÞ exp
�

pj−pobj

pobj
−phj

ctzj

�
þΔtm

1
CCCCCCA

þ

0
B@

ϵrj
ϵϕj

ϵΔtj

1
CA (12)

⇒ yj ¼ gjðpjÞ þ ϵj; ϵj ∼ Nð0;RÞ; j ¼ 1; : : : ; N:

(13)

The 3 × 1 function gðpÞ ¼ ðEðrjpÞ;EðϕjpÞ;EðΔtjpÞÞ represents
the expected values of resistivity, porosity, and transit time, given
the pore pressure input, i.e., EðyjpÞ. The function R is the 3 × 3

measurement noise covariance matrix.
Many parameters in the expectation part of equation 12 must be

specified. First, values for pob and ph are derived from the Pressim
realizations. Moreover, zj is the depth at measurement location j.
For the resistivity function, nr is the Eaton exponent, r0 is the nor-
mal compaction shale resistivity at the mudline, and b is the slope of
logarithmic resistivity normal compaction trendline. For the poros-
ity equation, ϕ0 is the porosity at the mudline and cϕ a constant that
can be derived from the normal compaction porosity trendline.
Finally, in the sonic transit time function, Δtml is the compressional
transit time in the shale matrix, whereas Δtm is the mudline transit
time and ct is a constant (Zhang, 2011). These values are chosen
based on the parametric form in equation 12 with parameters tuned
to fit the well-log data (Table 1).
Figure 8 shows the well logs in gray, the expectation part of the

functions in equation 12 in black (where the pore pressure comes
from the Pressim realizations). When constructing the expectation
part in these plots, we varied pore pressure between the normal pres-
sure and the overburden stress at a depth of 3350 m and evaluated
equation 12 for resistivity, porosity, and transit time.
The noise terms ϵj in equation 13 are assumed to be independent

at different steps j, and this means that the measurements are con-
sidered to be only location-wise dependent. Hence, the likelihood
model involves conditional independence such that

πðyjxÞ ¼
YN
j

πðyjjxÞ ¼
YN
j

πðyjjxjÞ; (14)
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Figure 7. Well-log measurements of resistivity, neutron porosity, sonic transit time, and gamma ray as functions of the MD. In the likelihood
fitting, the dashed black parts are ignored because they would distract the focus on modeling the pore pressure. The depth interval considered
here goes from 3105 to 3420 m, and it corresponds to an area where all the data are available.
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where, in short, xj ¼ xðsw;jÞ is the logistic pore pressure at well-log
location j. From equation 13, we have

πðyjjxjÞ ¼ Nðyj; gjðpjÞ;RÞ; pj ¼ pðxjÞ: (15)

We assume that the error covariance matrix R is constant over the
time steps. We next specify this covariance matrix from residual
variability in the data and the rock-physics models.
Using a first-order Taylor expansion centered in μj, we get

gjðpjÞ ≈ gjðμjÞ þ
∂gj
∂pj

jμjðpj − μjÞ j ¼ 1; : : : ; N; (16)

Hence,

EðyjÞ ¼ gjðμjÞ j ¼ 1; : : : ; N; (17)

VarðyjÞ ¼ Rþ ∂gj
∂pj

����
μj

VarðpjÞ
∂gj
∂pj

����
t

μj

j ¼ 1; : : : ; N: (18)

From equation 18, we then obtain an estimate for the covariance R

R̂ ¼
P

N
j¼1ðyj − gjðμjÞÞðyj − gjðμiÞÞt

N

−
∂gj
∂pj

����
μj

VarðpjÞ
∂gj
∂pj

����
t

μj

: (19)

Here, the variance VarðpjÞ is constant because all the well-log sites
belong to the same layer.
Applying the previous calculation to the data, we get

R̂ ¼

0
B@

6.8137 0.1503 8.5835 × 10−5

0.1503 0.0083 4.4036 × 10−6

8.5835 × 10−5 4.4036 × 10−6 2.5930 × 10−9

1
CA:

(20)

We see that there is some correlation in the data, in particular be-
tween resistivity and porosity. Not only do the variances indicate
measurement errors, but they are also a result of how well the equa-
tions in our model fit the data. The resistivity error is very large,
compared with that of porosity and sonic transit time. This is also
clear from Figure 9, in which the center lines show the likelihood
functions in equation 12 plotted as a function of pore pressure
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Figure 8. Crossplots of the well-log data (dots) and the expected
value in the likelihood (black is the functional link, and the cross
is this function evaluated at pressure outputs around the same depth
with Pressim output).

Table 1. Parameter values for equation 12.

Parameter values

Resistivity Porosity Transit time

nr ¼ 1.2 ϕ0 ¼ 0.574 Δtml ¼ 0.65 × 10−3 s∕m
r0 ¼ 0.43 ohm-m cϕ ¼ 0.39 × 10−3 m−1 Δtm ¼ 0.20 × 10−3 s∕m
b ¼ 0.12 × 10−4 — ct ¼ 0.9 × 10−3 m−1
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varying between the hydrostatic pressure and the overburden stress
at a given depth of 3350 m.
It appears as if the porosity and transit time are relatively accu-

rate, based on our model errors, and these data should likely provide
useful information about the pore pressure variables in our situation.

SEQUENTIAL UPDATING

The Bayesian formalism, with a prior model for pore pressure
variables and likelihood models for the data, is suitable for consis-
tent assimilation of multiple data sources. In our case, the goal is to
perform real-time updating of the pore pressure, at any location,
when data are acquired in the well. This means that we include

well-log data in a step-wise manner while drilling, and the posterior
after one update becomes the prior for the next step, and so on.
Using the transformed pore pressure variable as given in equa-

tion 2, we have the posterior distribution

πðxjy1; : : : ; yjÞ ¼
πðxÞπðy1jxÞ : : : πðyjjxÞ

πðy1; : : : ; yjÞ
∝ πðxÞπðy1jxÞ : : : πðyjjxÞ ∝ πðxjy1; : : : ; yj−1ÞπðyjjxÞ:

(21)

Here, we use the assumption that consecutive measurements along
the borehole, for j ¼ 1; : : : ; N, are conditionally independent,
given the pore pressure variables; see equation 15. Meaning that
the measurements, at a given location, depend only on the pore pres-
sure at that location, and not on the variables at other locations. The
distribution in equation 21 is assessed by a linearized approach, not
dissimilar to the extended Kalman filter (Särkkä, 2013). This
approach entails a linearization of the nonlinear expectation in
the likelihood, with derivatives Gj ¼ dgj∕dx. The matrix Gj is
an m × n matrix, where only the column corresponding to location
sw;j is nonzero, whereas all other n − 1 columns are zero. This struc-
ture is a result of the location-wise dependence.
For the situation with a Gaussian prior and a linearized Gaussian

likelihood model, the sequential updating of data leads to a Gaus-
sian distribution πðxjy1; : : : ; yjÞ in equation 21. The updated mean
mj ¼ Eðxjy1; : : : ; yjÞ and variance Vj ¼ Varðxjy1; : : : ; yjÞ are
computed recursively over the data gathering steps:

• Initialization:

m0 ¼ μ; (22)

V0 ¼ Σ: (23)

• Recursive updating for j ¼ 1; : : : ; N:

Sj ¼ GjVj−1Gt
j þ R;

Kj ¼ Vj−1Gt
jS

−1
j ;

mj ¼ mj−1 þKjðyj − gjðmj−1ÞÞ;
Vj ¼ Vj−1 −KjGjVj−1: (24)

At the last step of the algorithm, we have the posterior Gaussian
distribution πðxjy1; : : : ; yNÞ, given all the data. Recall that several
model assumptions have been done. First, we assume reliable pre-
drill information for pore pressure that takes into account all the
major mechanisms for pore pressure buildup and release. Moreover,
the likelihood model is assumed to represent the well observations
realistically.

RESULTS

We now present the results of the sequential updating method.
The idea is to study a new case, in which we replay a well centered
in a 3D subsurface grid (Figure 1) and study the effect of assimi-
lating data. The regular grid is of size 10 × 10 in the northeast
direction (ðx; yÞ plane), where each compartment is 50 × 50 m2.
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Figure 9. Likelihood equation 12 as a function of pore pressure at a
fixed depth (3350 m) with vertical error bars (representing a 90%
prediction interval). Here, the pore pressure varies between the hy-
drostatic pressure and the overburden stress at 3350 m. The figure
helps in understanding the results obtained fitting the covariance
matrix R, showing the largest model error values for resistivity.
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In depth (the z-direction), we keep a structure similar to the one of
the prior realization, with division in layers. Data are gathered along
a vertical well, and the data assimilation starts at 1674 m and ter-
minates at 3056 m.
Data y are simulated using first a realization from the prior and

then a realization from the likelihood in equation 12. The sequential
updating method, based on this data, is applied to x using equa-
tion 24. Results are visualized for pore pressure p.
Figure 10 shows the results of the sequential updating procedure

at an intermediate step, whereas Figures 11 and 12 compare the
prior pore pressure distribution with the posterior distribution ob-
tained at the final step. In Figure 10, we look at a step in which data
are collected up to the depth of 2913 m. Figure 10a displays the pore
pressure prediction for the sites along the well path with a 90% pre-
diction interval. Hence, the true pore pressure would be covered by
prediction interval approximately 90 out of 100 times. Figure 10b
visualizes the updated SD and mean for a horizontal plane at depth
3056 m, which is 143 m ahead of the bit. The conditional mean and
SD of pore pressure (in MPa units) are plotted for each grid site of
the plane. We note how the smallest SDs are at the sites closer to the
well location, due to the spatial dependence in the prior model.
Figure 11 shows a comparison between the prior and posterior

SD in pore pressure in the 3D grid. The colorbars on the side of the
plot are in MPa units. Again, the spatial dependence means that the
reduction in the SD is larger in the area around the well (the white
points), whereas it remains similar to the prior far from the well.
Figure 12 shows a comparison between the prior (the black) and

posterior (the magenta) pore pressure, along the well path. In this
particular case, the well-log data indicate lower pore pressure than
in the prior model, and the pore pressure predictive means are
reduced. The reduction in the SD gives a narrower posterior predic-
tion interval indicating that well-log data influence the pore pressure
prediction.

DISCUSSION

A sensitivity analysis is carried out to study the impact of the
prior and likelihood models on the results. We start by analyzing
the effects of a variation of the fitted predrill assessment; we con-
sider two variations of the prior covariance matrix. In the first sit-
uation (Case I), the covariance matrix keeps the same structure as in
equation 7, but with σ2new ¼ 2 � σ2. This means that there will be
greater prior uncertainty. For Case II, we include global variability
in the prior. This is achieved by adding zΣβglz

T to the prior covari-
ance Σ. Here, z is a vector of all depth indices and Σβgl represents
the uncertainty (covariance matrix) for depth trends in pore pres-
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Figure 11. Comparison between (a) the prior and (b) the final pore
pressure SD in a 3D grid of the area around the well (white points).
There is a considerable reduction in the SD for the sites close to the
well, whereas it remains similar to the prior for the sites that are
farther.
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sure, represented by a global regression line with intercept and
slope. In this way, we include variabilities in the pore pressure depth
trend. A third case (Case III) is considering the fact that faults are
controlling the lateral fluid flow over geologic time, defining
pressure compartments; i.e., fault patterns have a major control
on the pressure distribution in a basin. Thus, the prior mean will
depend not only on the depth but also on the pressure compartment.
The replayed well situation is near the border of the two compart-
ments in the top part of Figure 2b. In doing so, the pore pressure
mean in the northern sites is obtained from one compartment,
whereas southern sites have another compartment mean. The
covariance matrix is obtained in the same way as for the base case.
To summarize, we have the following cases:

• Case I:

Σnewðsi;k;sj;lÞ¼σ2newexp

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsi1;k−sj1;lÞ2þðsi2;k−sj2;lÞ2

p
r1

−jsi3;k−sj3;l j
r2

�
,

with σ2new ¼ 2 � σ2.
• Case II: Σnew ¼ Σþ zΣβglz

T .
• Case III: Faults control the lateral fluid flow.

The results are presented in Table 2, in which we report the SD at
the planned well path site and the average SD in a horizontal plane
at 143 and 0 m distance ahead of the bit.
With the larger prior uncertainty there is also a larger posterior

SD, especially if we are far from the data acquisition point. When
we get closer to the data acquisition point, the SD at the well site
gets close to that of the base case. This can be seen as evidence of
the ability of the method in reducing the uncertainty. If we look at
the results of Case II in Table 2, we observe values very close to the
base case. When we are 143 m from the plane, the SD is already
relatively low because of the global effect term, in which updating
ties up the model a bit faster.
To analyze Case III further, we plot the updated mean and SD in a

horizontal plane, at the end of the well, in Figure 13. We see that the
difference in pore pressure between the two compartments is very
small in our case.
Because of the limited sealing capacity there is little effect here,

but we suspect this could be more significant for other cases in
which the lateral variation is larger.
We next study sensitivity to the likelihood model. First, we study

the impact of the measurement error variance. The cases are

• Case IV: Rnew ¼ 4 � R.
• Case V: Rnew ¼ 1

4
� R.

Table 3 shows that less accurate measurements (Case IV) give a
higher SD, relative to the base case. If we, vice versa, manage to get
more accurate measurements, the SD is reduced, and this is particu-
larly low in the area around the well where the data are collected.
To study which data types are more informative in our work, we

analyze four different situations with subsets of data:
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Figure 12. Prior and conditional pore pressure mean along the well
path together with the respective prediction interval. There is a re-
duction in the uncertainty when the data assimilation procedure is
complete; here, we can also spot a change in the pore pressure
mean.

Table 2. Sensitivity to the prior model.

SD values

143 m 0 m

Base case Average SD 1.16 0.97

SD at well site 1.47 0.93

Case I Average SD 2.31 1.44

SD at well site 2.28 1.37

Case II Average SD 1.50 0.98

SD at well site 1.48 0.95

Case III Average SD 4.40 1.74

SD at well site 4.39 1.65
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Figure 13. (a) The SD and (b) mean of pore pressure, the crosses
indicate the well location. The pore pressure is showed in each site
of an horizontal plane located at the same depth as the deepest point
in the well. We capture the difference on pore pressure between the
two compartments although the difference is small. This is due to
the limited sealing capacity.

Table 3. Sensitivity to measurements error.

SD values

143 m 0 m

Case IV Average SD 1.52 1.24

SD at well site 1.51 1.22

Case V Average SD 1.31 0.69

SD at well site 1.27 0.65
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• Case VI: only resistivity
• Case VII: only porosity (neutron porosity)
• Case VIII: only sonic transit time
• Case IX: porosity and sonic transit time

Table 4 shows the SD ratio values for different data types.
Studying the case with just resistivity (Case VI), the uncertainty

in pore pressure is not reduced at all. In our case, the noise level is
too large. Then, for cases with two data, we decide to exclude re-
sistivity and only focus on porosity and sonic transit time. It is clear
from Table 4 that having more data is better for accurate prediction
of pore pressure because the SD decreases when more data are
available. The transit time alone does not seem to be very inform-
ative (Case VIII), but when it is combined with porosity, the reduc-
tion of uncertainty is significant. Overall, as expected, porosity is
the most informative data source for pore pressure, among the pos-
sible data studied here.

CONCLUSION

In this study, we build a prior model for pore pressure starting
from predrill information of the field, and we use statistical tech-
niques such as linear regression and variograms to incorporate
trends and spatial dependencies in the model. Then, in the likeli-
hood model, we fit links between the measurements and pore pres-
sure. Finally, we sequentially update the pore pressure distribution
with available measurements.
For the prior model, a predrill model for the pore pressure is used,

resulting from pressure simulations over the geologic time scale
(millions of years). The strength with this approach is that the effect
of mechanical compaction and chemical compaction (illite-smectite
transition in the shales) is simulated, in addition to the effect of lat-
eral pressure transfer, mainly controlled by the fault properties and
throw. Because sedimentary layers in the study are flat lying and the
faults have minor throw, it results in little lateral variation in the
simulated pressures. Larger lateral pressure differences are simu-
lated and observed in other study areas such as the Halten Terrace,
Norwegian Sea. We know that many of the input parameters hold
large uncertainties; therefore, a Monte Carlo approach is preferred.
In this study, only one simulation is used for the prior model.
The main contribution of this paper is pore pressure prediction

highlighting the following points:

• Bayesian modeling: The approach provides consistent inte-
gration of predrill a priori knowledge about the pore pressure
and the well-log measurements.

• Real time: The prediction of pore pressure is updated when
the new well-log data are available.

• Spatial prediction: The prediction is not only done near the
borehole location, but also ahead of the bit and at other lat-
eral and depth locations.

• Uncertainty: The spatial predictions of pore pressure are rep-
resented by a mean value best prediction and a variance/
covariance description.

The workflow we used for our particular case has a Gaussian
prior model from predrill assessment. The linearized likelihood
model for well logs allows efficient sequential Bayesian updating.
Although this is a fit-for-purpose routine, the workflow is quite flex-
ible and can be adapted in various situations. For instance, it can be
applied to predrill assessment in which there are large uncertainties
in depth trends, or for including other variables than pore pressure,
such as more detailed information about facies classes. In addition,
the measurements can include other kinds of data than what was
considered here. One possibility is to evaluate the information con-
tent in formation tests, or look-ahead tools providing data for deeper
locations. This can also be done in the context of improved decision
making related to mud weight.
If Gaussian distributions are not realistic, another recursive up-

dating method using stochastic simulations could be envisioned.
The current workflow would then be extended to use realizations
of pore pressure as the input and update these in real time when
log data are available. We regard this as future work.
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