
VOL., NO., 0000000

Sensor Communications

The Application of Lognormal Mixture Shadowing Model for Body-to-Body
Channels

Michael Cheffena, and Marshed Mohamed,
Norwegian University of Science and Technology (NTNU), N-2815 Gjøvik, Norway

Manuscript received ; revised ; accepted . Date of publication ; date of current version .

Abstract—In this work, a Lognormal mixture shadowing model based on a cluster concept is utilized in the modeling of
body-to-body channels for different running and cycling activities. The mixture model addresses the inaccuracies observed
using a unimodal distribution that may not accurately represent the measurement data set. Parameters of the mixture
model are estimated using the expectation-maximization (EM) algorithm. The accuracy of the proposed mixture model is
compared to other commonly utilized unimodal distributions showing significant improvement in representing the empirical
data set. The measured data, as well as the developed model, can be used for accurate planning and deployments of
wireless body-to-body networks for use in various sporting and other related activities.

Index Terms—Body-to-body (B2B) communications, wireless networks, Lognormal mixture shadowing, wireless body area networks
(WBAN), fading distributions, sport, running, cycling.

I. INTRODUCTION

In recent years, there has been a growing interest on body-centric
wireless communications because of their great potential applications
in various domains such as health, entertainment, sports, or any
other application that requires transmission of data from the human
body [1]. Among other communication scenarios, the transmission
could involve between a device mounted on one person to a device
situated on another person in a different physical location. This kind
of communication is known as body-to-body communications and is
subject to time-varying shadowing effects caused by the movements
of the human bodies at both ends of the communication link [2]. The
successful design of such networks requires a good understanding
of the propagation impairments affecting the wireless link.

The wave propagation characteristics of on-body and off-body
channels have been extensively studied in the past, see [3], [4] for
review. However, body-to-body propagation channels have not been
extensively studied. Measurement data at 2.45 GHz was utilized in [2]
to assess the impact of typical human body movements on the signal
characteristics of outdoor body-to-body channels using flexible patch
antennas. A modified log-distance path loss model that accounts for
body shadowing and signal fading was proposed. Channel model
characterization for indoor body-to-body scenarios based on 2.45
GHz measurements was reported in [5]. The shadowing and small-
scale fading effects for line-of-sight (LOS) and non-LOS conditions
were evaluated. Similar studies were also conducted in [6]–[8].

For body-to-body wireless networks, shadowing is the dominant
propagation impairment causing partial or total blockage of the
received signal due to environmental factors as well as due to
the random (or periodic) movements of the body components at
both ends of the communication link. Existing studies utilize a
unimodal distribution (usually a Lognormal or Gamma distribution)
to characterize the shadowing effects of body-to-body channels.
However, such distributions may not be based on the actual underlying
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physical propagation process of such channels [9]. The Lognormal
distribution is a widely accepted physical based model for modeling
shadowing effects in wireless links [10]. However, our histograms of
measurement data for different sports activity propagation scenarios of
body-to-body channels show mixture and skewed distribution curves
as also observed in other similar studies such as [5], [11]. This may
suggest the existence of distinct scattering clusters for these type
of channels that can be modeled utilizing mixture distributions. In
addition to environmental effects, the movements of the different body
components of the involved subjects at both ends of the communication
link might contribute to distinct scattering clusters. This kind of
clustering behavior cannot be accurately modeled using unimodal
distributions.

In this work, a Lognormal mixture shadowing was used in modeling
of body-to-body propagation channels under different sporting
activities. The work aims to underline the potential improvement
archived by the model, over the commonly used unimodal distribution
approach, in representing body-to-body channels. The rest of the
paper is organized as follows. Section II describes the measurement
campaign, presenting the practical sensor nodes used as well as the
investigated body-to-body propagation scenarios. Measurement data
analysis and the proposed Lognormal mixture shadowing model is
discussed in Section III. Conclusions are given in Section IV.

II. MEASUREMENT CAMPAIGN

The measurement campaign was conducted utilizing practical
sensor nodes for characterizing the body-to-body propagation channel
under various outdoor sporting activities. A transmitting and a
receiving node were attached (using a small strip of Velcro) to
the upper arm of two adult males of height 1.80 m and mass 80
kg (subject A), and 1.85 m height and 75 kg mass (subject B).
Two different scenarios for running (average speed of 3.33 m/s) and
cycling (average speed of 5 m/s) activities were considered. Scenario
1) subjects behind each other as shown in Fig. 1, and Scenario 2)
subjects beside each other as seen in Fig. 2. The experiments were
conducted in 500 meter outdoor stretch, which is a common running
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Fig. 1. Scenario 1: measurements for the body-to-body wireless net-
work under running and cycling activities where one subject is behind
the other [12].

Fig. 2. Scenario 2: measurements for the body-to-body wireless
network under running and cycling activities where subjects are beside
each other [12].

and cycling route in Gjøvik, Norway. In all activities, the subjects
tried to maintain a separation distance of 1 meter between them.

The test-bed is a programmable radio transceiver (CC2500) from
Texas Instrument. The device was set to transmit a packet every 4
ms with constant transmission power of 1 dBm at a carrier frequency
of 2.425 GHz. At the receiving end, the packet number together
with its received signal strength indicator (RSSI) was stored on the
MicroSD memory card. The nodes use horizontal polarized Wurth
Electronik 7488910245 chip antenna. At least 25 kilo-samples for
each scenario were collected, which is high enough for conducting
statistical analyses. Details of the measurement campaign can be
found in [12].

III. MEASUREMENT RESULTS AND ANALYSIS

A. Lognormal mixture shadowing

The received signal power at a given separation distance, d, from
the transmitter that is subject to shadowing is defined in decibel scale
as [10]

PRX(d) = PTX − 10n log (d) + Xσ (1)

where PTX is the transmitted power, n is the path loss exponent, which
shows the rate at which the received signal power decreases with

distance. Parameter Xσ ∼ N(0, σ2) , denotes the shadowing fading
term with Normal distribution random variable (i.e., Lognormal
distribution in linear scale) with zero mean and σ2 variance.
Defining, Xσ = ln(Yσ ), the Lognormal shadow fading implies
Yσ ∼ LN(0, σ2) [13].

The probability density function (PDF) of Lognormal mixture
distributions can be described as

Y ∼ fY (y) =
∞∑
k=1

wkLN(µk, σ
2
k ) (2)

where µk and σ2
k are the distribution parameters of the kth mixture

component (for k = 1, 2, ...), parameter wk is weighting proportion
of the kth component such that

∑∞
k=1 wk = 1, and the Lognormal

kernel PDF of the kth mixture is then given by

LN(µk, σ
2
k ) =

1

y
√

2πσ2
k

exp
[
− (ln y − µk )

2

2σ2
k

]
(3)

In a non-parametric estimation, the use of symmetric kernels is
preferred as they provide a convergent expansion according to the
Mercer’s theorem [14]. The expression in (3) is not symmetric,
however, since the logarithm of each observation can be described as
xi = ln(yi ) (for i = 1, 2, ..., N , where N is the total sample number),
a univariate Gaussian distribution with mean µk and variance σ2

k

can be utilized. Thus, all samples of xi can be modeled as a mixture
of Gaussian distributions as

X ∼ fX (x) =
∞∑
k=1

wkN(µk, σ
2
k ) (4)

where the corresponding kernel PDF is given by

N(µk, σ
2
k ) =

1√
2πσ2

k

exp
[
− (x − µk )

2

2σ2
k

]
(5)

For a given shadow fading condition, an estimate of the actual
PDF (with a measurable error) can be made utilizing a finite number
of K Gaussian kernels and the resulting Lognormal mixture can be
expressed as [13]

f̂Y (y) =
K∑
k=1

wk

1

y
√

2πσ2
k

exp
[
− (ln y − µk )

2

2σ2
k

]
(6)

In this work, the value of K was set to 4, as higher values did not
bring further improvement in the results.

B. Results and comparisons

Figs 3 to 6 show the measured PDFs along with the estimated
mixture of Lognormal distribution (6) with K = 4 (Lognormal-4).
The expectation-maximization (EM) algorithm [13] was utilized to
estimate the mixture model parameters and are given in Tables 1 and 2.
Also shown are comparisons with unimodal distributions (Lognormal,
Gamma, and Nakagami). We can observe that the measured PDFs
(in all scenarios) exhibit mixture and skewed distribution curves,
especially those of running activity as shown in Fig. 3 and Fig. 5.
Such characteristics have also been observed in other similar studies,
e.g., [5], [11]. With relatively stable transceivers achievable during
cycling activity, the distinction between clusters is less pronounced,
as seen in Fig. 4 and Fig. 6.
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Fig. 3. Measured histogram and estimated PDFs for Scenario 1
running.

Tables 1 and 2 also show the mean error, standard deviation (STD)
of error, and the root mean square error (RMSE) of the corresponding
distributions compared to measured PDFs. The weighted mean relative
difference (WMRD) expressed as a percentage was also included for
easier comparison

WMRD =
∑n

t=1 |Ft − At |∑n
t=1(Ft + At )

× 100 (7)

where At is the measured PDF, Ft is the estimated PDF, t is the
fitted point and n is the total number of fitted points. In all cases, we
can observe that the best estimation is achieved utilizing the mixture
model. Naturally, the mixture model will give better results due to
a large number of involved parameters. However, the improvements
achieved here, especially for the case of running activity is significantly
large, and hence suggest the existence of distinct scattering clusters
for body-to-body propagation channels where in addition to the
environment, the movements of the different body components of
each person at both ends of the communication link contribute to
distinct scattering clusters. Thus, utilizing a unimodal distribution
may not describe the underlying propagation process, or give a good
approximation of the channel in the body-to-body communication
under sporting or other related activities.

IV. CONCLUSION

Body-to-body wireless networks can support applications in various
domains such as health, entertainment, sports, or any other application
that requires the exchange of data among different persons. The
design and reliable operations of such networks require accurate
characterization of the propagation channel utilizing practical sensor
devices. Inaccurate channel models may lead to poor decision
making in the deployment of such networks resulting in unreliable
communications. Inaccurate models may also result in poor energy
efficiency of the wireless network.

In this study, the shadowing effects of body-to-body commu-
nications under various sporting activities are investigated using
extensive measurements at 2.425 GHz. Running and cycling activities
where the subjects are behind and beside each other are considered.
Our histograms of measurement data for the different propagation
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Fig. 4. Measured histogram and estimated PDFs for Scenario 1
cycling.
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Fig. 5. Measured histogram and estimated PDFs for Scenario 2
running.
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Fig. 6. Measured histogram and estimated PDFs for Scenario 2
cycling.
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TABLE 1. Scenario 1: distribution parameters and error metrics for PDF estimation

Activity Model Parameters Error mean Error STD RMSE WMRD

Running

Lognormal-4

µ1 = −0.0769 σ2
1 = 0.0537 w1 = 0.3531

0.0001 0.0063 0.0062 3.60%µ2 = −1.3645 σ2
2 = 0.1563 w2 = 0.2245

µ3 = 0.6879 σ2
3 = 0.0920 w3 = 0.2921

µ4 = −0.6476 σ2
4 = 0.0793 w4 = 0.1303

Lognormal µ = −0.4501 σ2 = 0.5030 - 0.0003 0.0143 0.0143 9.53%
Gamma α = 2.2387 β = 0.3619 - 0.0002 0.0141 0.0138 9.88%

Nakagami µ = 0.6749 ω = 1 - 0.0005 0.0218 0.0214 9.88%

Cycling

Lognormal-4

µ1 = −0.3353 σ2
1 = 0.0663 w1 = 0.3485

8.4 × 10−6 0.0017 0.0017 0.74%µ2 = −0.6487 σ2
2 = 0.2319 w2 = 0.1273

µ3 = 0.0372 σ2
3 = 0.0300 w3 = 0.3690

µ4 = 0.3266 σ2
4 = 0.0350 w4 = 0.1551

Lognormal µ = −0.1350 σ2 = 0.1607 - 0.0002 0.0205 0.0200 9.49%
Gamma α = 7.0029 β = 0.1342 - 3.9 × 10−5 0.0118 0.0115 4.88%

Nakagami µ = 2.0019 ω = 1 - 1.5 × 10−6 0.0062 0.0061 4.88%

TABLE 2. Scenario 2: distribution parameters and error metrics for PDF estimation

Activity Model Parameters Error mean Error STD RMSE WMRD

Running

Lognormal-4

µ1 = −1.5353 σ2
1 = 0.1391 w1 = 0.2063

4.6 × 10−5 0.0051 0.0050 3.21%µ2 = −0.9126 σ2
2 = 0.1086 w2 = 0.3216

µ3 = 0.4865 σ2
3 = 0.1337 w3 = 0.1964

µ4 = −0.1630 σ2
4 = 0.1129 w4 = 0.2757

Lognormal µ = −0.5596 σ2 = 0.6158 - 0.0003 0.0124 0.0122 8.60%
Gamma α = 1.8033 β = 0.4287 - 0.0006 0.0183 0.0179 13.65%

Nakagami µ = 0.5581 ω = 1 - 0.0011 0.0262 0.0257 13.65%

Cycling

Lognormal-4

µ1 = 0.4655 σ2
1 = 0.0452 w1 = 0.1297

1.1 × 10−5 0.0021 0.0021 1.06%µ2 = −0.8142 σ2
2 = 0.1180 w2 = 0.2189

µ3 = 0.0993 σ2
3 = 0.0356 w3 = 0.2914

µ4 = −0.3385 σ2
4 = 0.0552 w4 = 0.3600

Lognormal µ = −0.2108 σ2 = 0.2348 - 0.0003 0.0105 0.0102 5.37%
Gamma α = 4.6427 β = 0.1950 - 7.1 × 10−5 0.0058 0.0057 2.98%

Nakagami µ = 1.3281 ω = 1 - 0.0001 0.0123 0.0119 2.98%

scenarios show mixture and skewed distribution curves as also
observed in other reported similar studies. This suggests the existence
of distinct scattering clusters for body-to-body propagation channels
where in addition to the environment, the movements of the body
components of the persons involved at both ends of the communication
link contribute to distinct scattering clusters. A Lognormal mixture
shadowing model for body-to-body channels under different running
and cycling activities based on a cluster concept is proposed. The
mixture model addresses the inaccuracies observed using a unimodal
distribution that may not accurately represent the measurement
data set. Parameters of the mixture model are estimated using
the expectation-maximization (EM) algorithm. The accuracy of the
proposed model is compared to other commonly utilized unimodal
distributions showing significant improvement in representing the
empirical data set.

The measured data, as well as the developed Lognormal mixture
shadowing model, can be used for accurate planning and deployments
of wireless body-to-body networks for use in various sporting and
other related activities. Future works include conducting measurement
campaign and analysis for varying distances between subjects.
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