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Problem Description
Path following for marine vehicles (ships, AUVs, ROVs) is a challenging practical problem
especially in the underactuated case, i.e. when the vehicle has less actuators than degrees of
freedom. Several solutions to this problem have been recently obtained. The controllers proposed
in these solutions guarantee that the vehicle does follow the desired path (which can be, for
example, the straight line corresponding to a desired course). At the same time little has been
done regarding finding an optimal controller for path following or optimizing existing controllers
to obtain better performance. MPC is well suited for optimal control design, and has previously
been applied to some marine applications. The main goal of this project is to investigate the
possibility of employing model predictive control methods for the problem of path following.
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Abstract

This report presents two optimization problems, where three cost-functions are suggested for each.
The goal for the first optimization problem is to find a time variant look-ahead distance which im-
proves the performance of the vessel in terms of the cross-track error, relative to constant look-ahead
distances. The second optimization problem is an extension of the first, where a time variant surge
velocity reference is also calculated. This results in smaller cross-track errors, at the cost of increased
calculation time. It is assumed that the path and the desired surge velocity on the path is supplied
by some external source.

Existing κ-exponential control laws are used to track the references resulting from the calculated
optimal look-ahead distance and surge velocity reference. The predictions needed to solve the opti-
mization problem are made from a model where the control laws are inserted into the dynamics to
simplify the model.

The optimization problems are solved for two different approaches. The first approach uses an
LTV model for predictions and a QP-solver to solve the optimization problem. The second ap-
proach forms predictions of the states by numerical integration of the system dynamics and uses
an optimization problem solver for general non-linear functions to solve the optimization problem.
The latter approach generally results in longer calculation times but better accuracy, while the first
approach yields convexity of the optimization problem. A passive observer is used to estimate the
current such that it can be included in the predictions.

Four of the six suggested cost-functions leads to significantly improved performance of the ves-
sel in terms of the cross-track error. This is true both in the case of no disturbances and in the
presence of a constant irrotatinonal current. That is, the position of the vessel converges faster to
the path, the vessel stays closer to the path and has less over-shoot in the cross-track error, for the
optimal inputs than for constant inputs. The cost-functions includes weights for tuning where the
tuning process is easy for some of the cost-functions.

One of the cost-functions where only the optimal look-ahead distance is calculated, results in cal-
culation times shorter than the time between samples, after a few time steps. This is a promising
result since the application of MPC to fast-dynamic systems such as marine vessels is desired, but
often problematic due to too long calculation times for solving the optimization problem. It takes
more time to solve the optimization problem when the optimal surge velocity reference is found in
addition to the optimal look-ahead distance.
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1 Introduction

Model predictive procedures used to find optimal control inputs, or to generate optimal reference
trajectories, are known as model predictive control (MPC) and model predictive guidance (MPG),
respectively. The advantage in using such procedures is that the controller can predict the systems
response to the control inputs, or reference trajectories, enabling the controller to plan the series of
future control inputs (reference trajectories). This can be exploited in the path following problem
by finding a series of inputs, based on the predicted response of the cross-track error, which allows
fast reduction of large cross-track errors, and reducing reduction rate of the cross-track error as the
cross-track error becomes small. This will cause fast convergence of the cross-track error with little
or no over-shoot.

The general maneuvering problem, as stated by Ivar-Andre F. Ihle, Roger Skjetne and Thor I.
Fossen [1], divides the control problem into a geometric and a dynamic task, where the geometric
task is to reach the desired path and then stay on it, while the dynamic task is to satisfy a time,
speed or acceleration assignment along the path. The desired path for a marine vehicle can be ex-
pressed as way-points, where the position reference trajectory is the line connecting two successive
way-points. In this report a way point is a fixed point in space, given in Cartesian coordinates in
an inertial reference frame. As stated by Even Børhaug and Kristin Y. Pettersen [3] this choice of
reference trajectory leads to a desirable property. That is, the desired path is composed of linear
sub-paths which are independent of time. This again leads to decoupling between the geometric task
of controlling position and heading, and the dynamic speed control. Hence, the desired path can
be decided without considerations of the speed profile, and the speed profile can be chosen without
changing the desired path. This is in contrast to the case where the desired path is given as a
time-dependent trajectory where position, heading and speed control is coupled.

The LOS algorithm has successfully been used in guidance laws for many different control applica-
tions, ranging from missile guidance to path following for marine vehicles. LOS-based control laws
which globally κ-exponentially stabilizes an underactuated marine surface vessel to paths in two di-
mentions, and an underactuated autonomuos vehicle to paths in three dimensions, are presented by
E. Fredriksen and K.Y. Pettersen [2] and Even Børhaug and Kristin Y. Pettersen [3], respectively.
The LOS algorithm achieves stability of the geometric position to a reference trajectory given that a
condition on the look-ahead distance Δ is met (see K.Y. Pettersen and E. Lefeber [6] for the case of
diagonal inertia and damping matrices, and [2] for non-diagonal inertia and damping matrices), and
that the heading tracks its desired value. In this report, as done in [2] and [3], the property of the
way-point description of the desired path is exploited by choosing a controller that tracks the surge
velocity reference, and a controller that tracks the desired heading returned from the LOS-algorithm.
Though such controllers have already been obtained, there has been done little regarding optimizing
them.

There are some publications on the subject optimal path following for marine vehicles. In the
paper by Even Børhaug, Kristin Y. Pettersen and Alexey Pavlov [4] an optimal guidance scheme
for cross-track control of underactuated underwater vehicles is proposed. This scheme is a model
predictive guidance law for cross-track control (MPG). The proposed scheme calculates reference
trajectories to be tracked by the heading and pitch controllers, based on some optimization criteria.
The results presented in the paper [4] indicates that the proposed control-scheme yields faster con-
vergence then what is achievable if the reference trajectories for the heading and pitch controllers
are generated by the LOS-algorithm where the look-ahead distance is constant. An application of
MPC to AUVs is presented by Giancarlo Marafioti [14], where both a linear time invariant model
and a liner time variant model are used for prediction. Both constant and state dependent weights
are used in [14], where the state dependent weights shows improvement on the control performance.
The MPC application in [14] is used for a control goal of keeping a constant distance from the ocean
bottom, assuming constant surge velocity. An MPC scheme designed for an autonomous underwa-
ter vehicle is presented in W. Naeem [5], where a simple line of sight guidance scheme is utilized to
generate the reference headings, which is tracked by a model predictive controller.

The work presented in this report endeavors to optimize path following by finding an optimal time
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variant look-ahead distance, used to generate the heading reference for the κ-exponentially stabiliz-
ing LOS-based control laws for underactuated surface vessels presented in [2]. The goal is to find
cost-functions with constant weights such that the resulting optimal look-ahead distances leads to
as fast as possible convergence of the position of the vessel to the path, with as small as possible
over-shoot in the cross-track error. The gain in also optimizing the surge velocity reference will
be investigated. Cost-functions are mathematical expressions with minima for desirable behavior if
constructed properly. The cost-function value is found from predictions of the future behavior of
the vessel. The optimal time variant look-ahead distance and surge velocity reference will be found
by minimizing the cost-function once for each sample time.

1.1 Lay out

The next chapter presents some definitions used in this report to ease the discussion and the as-
sumptions made in this report. Chapter 3 presents the theroy of the LOS algorithm, rotation of the
reference frame and way-point description of paths. A scheme for switching to the next way-point
and for choosing proper rotation angles is also presented. The models needed for simulations and
predictions are derived in Chapter 4. The prediction models are simplified by insertion of existing
control laws. Chapter 5 presents the observer used to estimate the current and shows that the
accuracy of the predictions is good after an initial transient. The MPC theory needed is presented
in Chapter 6. The optimization algorithm, solvers and the constraints on the optimization problems
are also presented in this chapter. The optimization problems are defined in Chapter 7 by analyzing
the states for desirable behavior and undesirable behavior. The simulation results are presented in
Chapter 8. Two main scenarios are simulated, both in the presence of disturbance and under perfect
conditions. Each simulation is discussed. The effects of changing given weights are investigated and
some tuning rules are presented. The conclusions are summarized, and suggested further work is
presented in Chapter 9.
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2 Preliminaries

The following definitions are used in this thesis:

Small look-ahead distance : A look-ahead distance which causes fast reduction of the cross-track error,

but large over-shoot if it was used in a LOS-algorithm where the look-ahead

distance is constant.

Large look-ahead distance : A look-ahead distance which causes slow reduction of the cross-track error,

and small or no over-shoot if it was used in a LOS-algorithm where the look-

ahead distance is constant.

Over-shoot in the cross-track error: understood as the cross-track error crossing zero before converging.

Hp : The prediction horizon is the number of estimated future samples.

Hu : The input horizon is the number of calculated future inputs.

ud : The desired surge velocity returned by the optimization problem

in the case of time variant desired surge velocity, otherwise constant.

udp : The desired surge velocity which the vessel should track

when the vessel is on the path. When the desired surge velocity is constant,

we have that udp = ud.

ud : The difference between the desired surge velocity returned by the

optimization problem and the desired velocity on the path.

U1 : The initial guess of the optimal solution where the inputs

gi,Hu
= 0, i = 1, 2, 3, while inputs gj,k, j = 1, 2, 3, k = 1, 2...Hu − 1 are

taken to be the previously found optimal inputs shifted once in time.

U2 : The initial guess of the optimal solution where the input

g1,Hu
= 0.51 and inputs gi,Hu

, i = 2, 3 = 0, while inputs gj,k,

j = 1, 2, 3, k = 1, 2...Hu − 1 are taken to be the

previously found optimal inputs shifted once in time.

Note Initial guess U1 implies that the starting point violates the constraints due to u1,Hu
= 0, that

is ΔHu
= 0. However, this is handled by the optimizer and will be explained in a later section.

The following assumptions are made

− The force in surge may be both negative and positive. This will be used in some implementations to

reduce the surge velocity in order to reduce or avoid over-shoot in the cross-track error.

− The control-laws implemented are based on the vessel model, hence perfect knowledge of the

vessel model is assumed.

− Predictions are made based on the same model as the control-laws, inserting the control-laws

in the system equations. Hence, the predictions are made assuming no constraints on the control forces.

− The magnitudes of the calculated control inputs are constrained, however the rate is not constrained.

Hence it is assumed that the control inputs (τ ) are commanded forces supplied to some low-level controller

which tracks the commanded forces perfectly.

− It is assumed that the optimal look-ahead distance is the look-ahead distance which results in the smallest

possible cross-track error with the smallest possible over-shoot, disregarding the use of control inputs.

− Only constant disturbances modeled as a constant irrotational current affects the vessel.
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3 Line of sight and Way points

Some definitions are needed in order to understand the concept of line-of-sight guidance (LOS). The
terms that needs to be defined are the cross-track error, the line of sight, the look ahead distance,
way-points and the circle of acceptance. First the three lines in the LOS algorithm are defined

Definitions 1, 2 and 3:

1: The cross-track error 2: The line of sight 3: The look-ahead distance

The three lines 1, 2 and 3 together make a right triangle, see Figure 3.

1) The cross-track error is the shortest distance from the body-fixed

origin to the path. That is, the cathetus in the triangle made up by 1, 2 and 3,

which starts in the body-fixed origin ends in a point on the path.

2) The line of sight is a line from the body fixed origin to either

the next way point, or to a point on the path determined by the

look-ahead distance. That is, the hypotenuse in the triangle made up by 1, 2 and 3.

3) The look-ahead distance is the distance along the path which determines

which point on the path the line of sight points to. That is, the cathetus

in the triangle made up by 1, 2 and 3, which is part of the path.

The definitions of way-points and the circle of acceptance are based on those given by Thor I. Fossen
[11].

Definitions 4 and 5

4: Way-points, 5: The circle of acceptance

1) A way-point is a point in space which a vehicle is to pass through.

Each way-point is described in Cartesian coordinates (xk, yk) for k=1,...,n

A set of way points defines a path which a vehicle is to follow.

This path consists of the straight lines connecting two successive way-points.

2) The circle of acceptance is used in a switching mechanism for

selecting the next way-point. The circle of acceptance is a circle

with its center in a way-point and with radius R0. When the vehicle is

within the circle of acceptance, it is considered to be close enough to

the current way-point to start tracking the next. This can be expressed as

[xk − x(t)]2 + [yk − y(t)]2 ≤ R2
0
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3.1 LOS algorithm

The Line-Of-Sight-algorithm (LOS-algorithm) is a well known algorithm which generates a reference
trajectory for the heading in order to track a desired path given by way-points. There exists control
laws which guarantee stability to the path for heading references generated by the LOS algorithm.
An intuitive approach, used in many applications, is to define the line of sight as in Thor I. Fossen
[11] where the line of sight is taken to be a vector from the body-fixed origin to the next way-point
(xk, yk). This corresponds to defining the set-point for the course autopilot (the desired heading) as
[11]:

ψd(t) = atan2(yk − y(t), xk − x(t)) (3.1.1)

where (x,y) is the vessel position measurement usually measured with a satellite navigation system.
The four quadrant inverse tangent function atan2(y,x) is used to ensure that:

−π ≤ atan2(y, x) ≤ π (3.1.2)

The drawback with a LOS vector pointing to the next way-point is that a way-point located far away
from the vessel will result in large cross-track errors if there are transverse wind, current and wave
disturbances.

Another approach, also defined in [11], is to choose the line of sight vector as a vector from the
body-fixed origin to an intersecting point on the straight line connecting two successive way-points,
as opposed to the LOS vector defined in 3.1.1. Let us call this choice of LOS vector LOS vector 2
and the approach in 3.1.1 LOS vector 1. The gain in using LOS vector 2, is that the environmental
forces acting on the vehicle will to some extent be compensated for. To see how this works, picture
that the vehicle is to track a path between two points in space, say p0 and p1, and LOS vector 1 is
chosen. If the vehicle is influenced by an environmental force such that its motion is no longer purely
in the surge direction, the vehicle will no longer move towards p1 on the straight line connecting
p0 and p1 (the desired path). The heading will keep pointing towards p1, but when the vehicle is
far from p1 its position will drift away from the desired path. As the vehicle approaches p1 it will
approach the desired path again and reach the circle of acceptance. In short, the cross-track error
will be relatively large when the vehicle is far from the way-point it is tracking. If instead the LOS
vector 2 is used, the cross-track error will be smaller. This is because the point the vehicle is tracking
is closer to the vehicle than in the case where the LOS vector 1 is used. Thus the heading angle
will be sharper in the sense that the difference between the vehicles heading angle and the angle of
the path will be larger when the cross-track error is different from zero than when the LOS vector
1 is used. This leads to faster reduction of the cross-track error, and to reduction of the effects of
environmental disturbances. This is illustrated in Figure 1 and Figure 2 where an underactuated
surface vessel, influenced by a constant current, is simulated using LOS vector 1 and LOS vector 2
respectively. The same controllers, initial conditions, current, and circle of acceptance are used in
both simulations.

3.1.1 Rotation of the inertial frame.

The cross-track error e, the desired heading ψd, and the look-ahead distance Δ can be found in
Figure 3, where [x,y] denotes the Cartesian coordinates in the inertial reference frame, and [xb, yb]
denotes the Cartesian coordinates in the body fixed reference frame.

According to Alexey Pavlov et.al [8] the expression for the cross-track error e simplifies if the
coordinate system is rotated an angle θ about the z-axis to align the x-axis with the path. In Figure
4 the rotated coordinate system together with new definitions for e and ψd is shown. The desired
heading ψd and the cross-track error e are now defined as

e = y − Dy (3.1.3)

ψd = −arctan(
e

Δ
) (3.1.4)

ė = ẏ = u sin ψ + v cos ψ (3.1.5)

where:

Ḋy = 0, since Dy is constant. (3.1.6)
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Figure 1: LOS vector 1.
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Figure 2: LOS vector 2.

Figure 3: Delta and the cross track error. Figure 4: Rotated coordinate system.
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NOTE: In equation 3.1.5 the heading ψ is relative to the rotated reference frame in Figure 4.

3.1.2 Condition on the look-ahead distance Δ

The LOS algorithm ensures that the cross-track error e converges to zero if the heading of the vehicle
tracks the desired heading and heading rate returned by the LOS algorithm, if in addition some
condition on the look-ahead distance Δ is met. This condition, and the resulting rate of convergence,
depends on the chosen control laws. If the control laws presented in Fredriksen and Pettersen [2]
are used to control the surge velocity and the heading, the states 3.1.7 are κ-exponentially stable if
3.1.8 holds. A proof of 3.1.8 can be found in Fredriksen and Pettersen [2].

ζ =

⎡
⎢⎢⎢⎢⎣

y
v
z1

z2

u

⎤
⎥⎥⎥⎥⎦ (3.1.7)

Δ >
X + uc

Y
(3.1.8)

X = (Θuc + M) < 0 (3.1.9)

Y = (Ξuc + N) < 0 (3.1.10)

The states 3.1.7 will be defined later in the report. The significance of the κ-exponential stability of
3.1.7 is that it implies that the cross-track error, the surge velocity and the heading are κ-exponential
stable.

Note: As stated by Fredriksen and Pettersen [2], the assumption of X and Y negative puts re-
strictions (3.1.9 and 3.1.10) on the desired surge speed. How hard these constraints on uc are will
depend on the specific ship. For most ships Θ, Ξ ≤ 0, such that 3.1.9 - 3.1.10 give lower bounds on uc.

3.2 Way point switching, angle of the path and initial look-ahead distance

When the vessel is tracking the straight line path between two successive way-points, the reference
frame is rotated so that the y-coordinate is equal to the cross-track error. To achieve this, the angle
of the path (θ) in the inertial reference frame needs to be calculated, and the heading reference has
to be set correctly in the inertial frame. This can be done by

θk = arctan

(
ywp,k+1 − ywp,k

xwp,k+1 − xwp,k

)
(3.2.1)

y = (xI − xwp,k+1) cos θk + (yI − ywp,k+1) sin θk (3.2.2)

ψd = −arctan

(
y

Δ

)
(3.2.3)

where xI , yI are the Cartesian coordinates in the inertial reference frame, xwp, ywp are the way-points
in the inertial reference frame, and y is the cross-track error. This choice ensures that the angle
of the path is in the interval [−π...π], while ψd is in the interval [−3π

2
... 3π

2
]. A drawback to this

choice is that when two successive lines in the path have angles which are more than π apart, the
vessel may end up rotating the opposite direction of what would be the shortest way, or even a full
360 degrees. An example which illustrates this problem is shown in Figures 5 and 7. The desired
path starts in the origin, see the circle in Figure 5, with an angle of θk = −3π

4 , and ends in [-18 0]
marked by an x. The angle of the path line k+1, θk+1, is π. When the vessel starts tracking line
k+1, the heading of the vessel will be approximately −3π

4
while the heading reference will step to π

plus arctan(y/Δ), as can be seen in Figure 7. The consequence of this can be seen in Figure 5, the
vessel rotates more than 360 degrees clockwise which causes the vessel to move away from the path,
before the vessel starts tracking the path again. This behavior is not desirable, and can be avoided
by adding some rule which will ensure that the angle of the path line at time k+1 is not more than
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π different from the angle of the path line at time k. This can be done by exploiting that a heading
angle ψ equals 2π ± ψ. An implementation of such a rule could be

if |θk+1 − θk| > π

θk+1 = sign(θk)2π + θk+1

end

If the next path angle is more than π different from the current path angle, set the next path angle
equal to the equivalent angle closest to the previous angle. Figures 6 and 8 shows that the problem
is removed when this rule is imposed. However, we do not want to allow heading or path angles
much larger than 2π, thus another rule needs to be imposed to constrain these angles

if |ψk+1| > 2π

ψk+1 = ψk+1 − 2πsign(ψk+1)

θk+1 = θk+1 − 2πsign(ψk+1)

end

If these two rules are used, the heading will stay in [-2π...2π], and the θk+1 which is closest to θkwill
always be chosen.
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Figure 5: Vessel position where the reference
frame rotation angle is not chosen with care.
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Figure 6: Vessel position where the reference
frame rotation angle is chosen with care.

The heading reference in Figure 8 is better than that of Figure 7. However, the heading reference
still has a large step during the transition from way-point k to way-point k+1. This can not be
avoided when Δ is constant, however the step can be avoided when Δ is time varying. The idea is to
choose Δk+1 such that ψd,k = ψd,k+1 during the switch. At the next time steps k+2+i, Δk+2+i are
chosen by the optimizer, and may increase or decrease rapidly, however, since Δ(t) is constrained
so that it is continuous, the step in the heading reference will be avoided. The derivatives Δ̇ and Δ̈
must be chosen so that rd = 0 and ṙd = 0 during the switch, since the desired heading ψd should be
constant during the switch.

By comparing Figures 8 and 9, it can be seen that the heading reference does not have the step
during the transition between way-points when Δ and the derivatives of Δ are chosen such that the
desired heading does not change until after the transition.

This restricts |θk+1 − θk| < π/2 since there are no positive values of Δ which solves the problem
for |θk+1 − θk| >= π/2. One solution to the case where |θk + 1 − θk| >= π/2, is to set Δ = Δmin,
since this will be the value of Δ closest to the value which would remove the step in the desired
heading. One could argue that if the path has to make a sharp turn, this turn should be split
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into several straight lines which does not have angles which differs as much as π/2, as illustrated in
Figure 10, since large differences between the angles of two successive lines of the path will result
in large over-shoots in the cross-track error. The way-points in this report are chosen such that
|θk+1 − θk| < π/2. If it is desired to allow |θk+1 − θk| > π/2, the choice Δ = Δmin should be used,
when two path lines have angles which differs by more than π/2.

Note: The time variant look-ahead distance used to produce the figures 5-9, results from one of
the optimization problems derived in this report.

Note: The results in Figure 5 are not feasible. The actual position would deviate more from the
path. This is because the control inputs in the simulations leading to Figure 5 have very fast changes.
However, Figure 5 illustrates the problem.
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4 Modelling

The 6 degrees of freedom (6-DOF) model of a surface vessel can be reduced to a 3-DOF model since
the motions in heave , pitch and roll can be neglected. This is because heave, pitch and roll motions
are small under normal conditions, and because they are stable due to restoring forces. This also
means that they do not need to be controlled (though in some cases, as in large passenger vessels,
stabilizing fins are used to damp these motions). Since there are no restoring forces in the remaining
three degrees of freedom, the restoring forces term is neglected altogether.

4.1 Models used to simulate the vessel

A model for the underactuated surface vessel considered in this thesis can be found in Thor I. Fossen
2002 [11]. This 3-DOF horizontal model describes the dynamics for surge, sway and yaw velocities,
and the relation between these velocities and the geometric position and orientation.

Mν̇ + C(ν)ν + Dν = τ (4.1.1)

η̇ = R(ψ)ν (4.1.2)

M =

⎡
⎣m11 0 0

0 m22 m23

0 m32 m33

⎤
⎦ , D =

⎡
⎣d11 0 0

0 d22 d23

0 d32 d33

⎤
⎦

C(ν) =

⎡
⎣ 0 0 −m22v − m23r

0 0 m11u
m22v + m23r −m11u 0

⎤
⎦ , R(ψ) =

⎡
⎣cos(ψ) − sin(ψ) 0

sin(ψ) cos(ψ) 0
0 0 1

⎤
⎦

τ = [τu Nδδ Yδδ]
T (4.1.3)

When the vessel is subject to a constant irrotaional current, the vessel dynamics becomes [11]

η̇ = R(ψ)ν (4.1.4)

Mν̇ + C(ν)ν + Dνr = τ (4.1.5)

νr = ν − νcur (4.1.6)

where

νcur =

⎡
⎣ucur

vcur

r

⎤
⎦ (4.1.7)

ucur = Vcurcos(βcur − ψ) (4.1.8)

vcur = Vcursin(βcur − ψ) (4.1.9)

Vcur =
√

u2
cur + v2

cur (4.1.10)

In both models [x y]T is the position of the vessel in the inertial reference frame and ψ is the yaw
angle of the vessel (the orientation of the vessel relative to the inertial frame, commonly referred to
as the heading). The vector ν is the velocity vector where u is the surge velocity along the body-fixed
x-axis, v is the sway velocity along the body-fixed y-axis and r is the angular velocity about the
body-fixed z-axis (yaw rate/heading rate).

4.2 Models used for predictions

The MPC algorithm uses predictions of the states to determine the optimal inputs. These predictions
are made by integrating the states over the prediction horizon, inserting the inputs at each sample
time k. The models used for simulation may also be used for prediction. However, the models used
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for simulation are expressed in matrix form and the time spent integrating such models will be large
compared to the time spent integrating models expressed by one differential equation for each state.
This is because matrix multiplication has greater overhead than scalar multiplication. Thus, it is
desirable to express each state by one differential equation. The dynamic for each state in the case
of no disturbance becomes

u̇ =
1

m11

(
(m22v + m23r)r − d11u

)
+

1

m11
τu (4.2.1)

v̇ = X(u)r + Y (u)v + F (δ) (4.2.2)

ṙ = Ω(u)r + Φ(u)v +
δ

m22m33 − m2
23

(m22Nδ − m23Yδ) (4.2.3)

ẋ = u cos ψ − v sin ψ (4.2.4)

ẏ = u sin ψ + v cosψ (4.2.5)

ψ̇ = r (4.2.6)

where δ is the control input in yaw and F (δ) is a term which represents the influence of the rudder
on the sway dynamics. The terms X(u), Ω(u), Y (u), and Φ(u) are linear terms in the surge velocity
u. Their expressions are quite lengthy and not of interest in this report since the model will be
re-written to find the rudder independent dynamics in sway.

The dynamic for each state in the case of a constant irrotaional current

u̇ =
1

m11

(
(m22v + m23r)r − d11ur

)
+

1

m11
τu (4.2.7)

v̇ = X(u)r + Y1(u)v + Y2(u)vr + F (δ) (4.2.8)

ṙ = Ω(u)r + Φ1(u)v + Φ2(u)vr +
δ

m22m33 − m2
23

(m22Nδ − m23Yδ) (4.2.9)

ẋ = u cosψ − v sin ψ (4.2.10)

ẏ = u sin ψ + v cosψ (4.2.11)

ψ̇ = r (4.2.12)

where the terms X(u), Ω(u), Y1(u), Y2(u), Φ1(u), and Φ2(u) are linear terms in the surge velocity
u, where the linear terms Y (u) and Φ(u) have been split into the parts not effected by the current
(Y1(u), Φ1(u)) and the parts effected by the current (Y2(u), Φ2(u)).

4.2.1 Rudder independent sway dynamics

Unfortunately the un-actuated sway dynamics is influenced by the rudder through F (δ). This
complicates the model, and we wish to remove this effect from the sway dynamics. This can be done
by a coordinate transformation found in E. Fredriksen and K.Y Pettersen [2]. First the equilibrium
point of the surge velocity is shifted to the desired velocity ud

u = u − ud (4.2.13)

then according to E. Fredriksen and K.Y Pettersen [2]:1To decouple the transformed sway dynamics
from the rudder control, we use the following coordinate transformation, inspired by Do and Pan
(2003a), which removes the effect from δ in the v-dynamics:

x = x + ε cos ψ (4.2.14)

y = y + ε sin ψ (4.2.15)

v = v + εr (4.2.16)

Where:

ε = −

(
m33Yδ − m23Nδ

m22Nδ − m23Yδ

)
(4.2.17)
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This corresponds to moving the origin along the x-axis of the body-fixed coordinate system to that
point where the rudder gives only a rotational moment and no sway force. The transformed system
equations are

ẏ = sin (ψ)(u + ud) + cos (ψ)v, (4.2.18)

ψ̇ = r, (4.2.19)

v̇ = v̇ + εṙ

= (Υu + Θud + M)r + (Λu + Ξud + N)v, (4.2.20)

ṙ =
δ

Γ
(m22Nδ − m23Yδ) + Ωr + Fv, (4.2.21)

u̇ =
1

m11
(τu + (m22v + m23r)r − d11u) (4.2.22)

in the case of no disturbance, while in the case of a constant irrotaional current, the system equations
becomes

ẏ = sin (ψ)(u + ud) + cos (ψ)v, (4.2.23)

ψ̇ = r, (4.2.24)

v̇ = v̇ + εṙ

= (Υu + Θud + M)r + (Λu + Ξud)v + Nvr, (4.2.25)

ṙ =
δ

Γ
(m22Nδ − m23Yδ) + Ωr + F1vr + F2v, (4.2.26)

u̇ =
1

m11
(τu + (m22v + m23r)r − d11ur) (4.2.27)

where

vr = vr + εr (4.2.28)

Where the term F in equation 4.2.21 has been split into the two parts F1 and F2 in equation 4.2.26,
where F2 is the part of F not effected by the current while F1 is the part of F effected by the current.
We also have from [2]

Γ =m22m33 − m2
23 > 0, (4.2.29)

Θ =
1

Γ
(−2m23m22ε + m2

22ε
2 + m2

23 − m22m11ε
2 − m33m11 + 2m23m11ε), (4.2.30)

M =
1

Γ
(m23d33 − εm22d33 − m33d23 − m23d32ε

+ εm23d23 + m22d32ε
2 + m33d22ε − m23d22ε

2), (4.2.31)

Ξ =
1

Γ
(m22m11ε − m2

22ε − m23m11 + m22m23), (4.2.32)

N =
1

Γ
(m23d22ε − m22d32ε − m33d22 + m23d32), (4.2.33)

Ω =
1

Γ
(m23m11(u + ud) + m2

22(u + ud)ε − m23d22ε + m23d23

− m22m11(u + ud)ε − m22m23(u + ud) − m22d33 + m22d32ε), (4.2.34)

F =
1

Γ
(m23d22 − m2

22(u + ud) − m22d32 + m22m11(u + ud)). (4.2.35)

where F has been divided into F1 and F2

F1 =
1

Γ
(m23d22 − m22d32) (4.2.36)

F2 =
1

Γ
(m22m11(u + ud) − m2

22(u + ud) (4.2.37)

1The quote from E. Fredriksen and K.Y Pettersen [2] cites a paper by Do and Pan (Do and Pan (2003a)) in this
thesis the cited paper is listed under Do and Pan [12].
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4.2.2 Prediction models expressed with Δ, Δ̇, Δ̈, uc and u̇c as inputs

The MPC algorithms developed in this thesis does not calculate the control inputs, but the parame-
ters Δ, Δ̇, Δ̈, the reference ud and u̇d. Thus, control laws to stabilize the system are needed. These
control laws will be inserted into the equations for the system dynamics so that the models used
for prediction are expressed in terms of these inputs. The control laws presented in E. Fredriksen
and K.Y Pettersen [2] uses the LOS algorithm to set the heading reference, and they yield global
κ-exponential convergence of the system. However, these control laws are expressed for the case of
Δ and ud constant. Thus, the control laws needs to be changed to take into account that Δ and ud

are no longer constant. This may have consequences for the κ-exponential stability of the system.
That is, it it is not known whether the proofs for κ-exponential stability of the system still holds.
Thus the resulting control laws should be analyzed to prove stability. However, this will not be
addressed in this thesis.

The control laws presented in [2] are

define

ψd = −arctan(
y

Δ
) (4.2.38)

rd = ψ̇d = −
Δẏ

Δ2 + y2
(4.2.39)

z1 = ψ − ψd (4.2.40)

z2 = ż1 = r − rd (4.2.41)

ṙd =
2Δy(ẏ)2

(Δ2 + y2)2
−

Δÿ

Δ2 + y2 (4.2.42)

then

τu = −(m22v + m23r)r + d11u − m11kuu (4.2.43)

δ =
Γ

(m22Nδ − m23Yδ)

(
− Ωr − Fv + ṙd − k1z2 − k0z1

)
(4.2.44)

where

ÿ = r cosψ(u + ud) + sin ψu̇ − r sin ψv + cosψv̇ (4.2.45)

E. Fredriksen and K.Y Pettersen [2] has chosen ψd = −arctan( y
Δ) as opposed to the heading ref-

erence suggested in the section Line of sight and Way points: ψd = −arctan( y
Δ). The relation

between y and y is: y = y +ε sin ψ, which means that when y converges to zero, so does y. However,
when the cost function for the MPC problem is defined, it is the cross-track error y and not the
transformed coordinate y which should be minimized.

When the look-ahead distance and the surge reference are time variant, the expressions for rd,
ṙd and ÿ, equations 4.2.39, 4.2.42 and 4.2.45 respectively, are no longer correct. The expressions for
rd, ṙd and ÿ has to be developed where Δ and ud are not assumed constant.

ψd = −arctan(
y

Δ
) (4.2.46)

rd = ψ̇d =
Δ̇y − Δẏ

Δ2 + y2 (4.2.47)

ṙd =
(Δẏ − Δ̇y)(2ΔΔ̇ + 2yẏ)

(Δ2 + y2)2
+

Δ̈y − Δÿ

Δ2 + y2 (4.2.48)

ÿ = r cos ψ(u + ud) + sin ψ(u̇ + u̇d) − r sinψv + cos ψv̇ (4.2.49)

NOTE: The surge velocity reference is constant in some of the MPC algorithms suggested, in these
algorithms ÿ from equation 4.2.45 is used in the control law and in the prediction model.

The control law δ can now be changed to take the time varying property of Δ and ud into account
by inserting the new expressions for rd, ṙd and ÿ, equations 4.2.47, 4.2.48 and 4.2.49 respectively,
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into equation 4.2.44. The control law τu in equation 4.2.43 does not need to be changed.

The system equations 4.2.18-4.2.22 and 4.2.23-4.2.27 can be simplified by inserting the control laws
into the equations. This will also be necessary to express the cost function in the linear quadratic
problem formulation, where the cost function has to be linear quadratic in the inputs (Δ(t), Δ̇...).
The predictions used by the non-linear solver can be made by integration of the vessel model where
the control-laws are not inserted into the state dynamics. However, the calculation time of the
predictions is reduced when the dynamics for each state is written as scalar equations. Further
more, the prediction model has to be continuous with continuous derivatives since the optimization
problem solver uses numerical estimates of the gradient and the Hessian of the cost-function. The
derivatives of the cost function will not be continuous if the control-inputs in the prediction model
are constrained. Any constraints in the control-inputs have to be added as constraints on the free
variables in the optimization problem if they are to be respected. Thus, all predictions in this thesis
will be made by integration of the simplified model where the control-laws are inserted into the state
equations.

The effect of the current will be small in surge and yaw due to the corrective terms in the re-
spective control-laws 4.2.43 and 4.2.44. Thus, the prediction model neglects the effect of the current
in surge and yaw. However, the effect of the current in the sway velocity will be too large to neglect
since the sway velocity is not controlled. Thus, the effect of the current in sway will be included in
the prediction model. This can be achieved by estimating the current and predict the effect of the
current based on this estimate.

The resulting system equations used to form the predictions are then

ψd = −arctan(
y

Δ
) (4.2.50)

rd = ψ̇d =
Δ̇y − Δẏ

Δ2 + y2 (4.2.51)

ṙd =
(Δẏ − Δ̇y)(2ΔΔ̇ + 2yẏ)

(Δ2 + y2)2
+

Δ̈y − Δÿ

Δ2 + y2 (4.2.52)

ẏ = sin (ψ)(u + ud) + cos (ψ)v, (4.2.53)

ẏ = sin (ψ)(u + ud) + cos (ψ)v, (4.2.54)

ψ̇ = r, (4.2.55)

v̇ =

{
(Υu + Θud + M)r + (Λu + Ξud)v + Nvr ,
(Υu + Θud + M)r + (Λu + Ξud + N)v,

(4.2.56)

ṙ = ṙd − k1z2 − k0z1 (4.2.57)

u̇ = −kuu (4.2.58)

v̇ = v̇ − εr (4.2.59)

ÿ =

{
r cos ψ(u + ud) + sin ψ(u̇ + u̇d) − r sin ψv + cosψv̇
r cos ψ(u + ud) + sin ψu̇ − r sin ψv + cosψv̇

(4.2.60)

Notice that the effect of the current on the sway velocity is included in equation 4.2.56. The inputs
will be renamed to gi for simplicity, where

g1 = Δ

g2 = Δ̇

g3 = Δ̈

g4 = ud

g5 = u̇d

Note: The transformed states y and v should not be predicted by integrating their respective state
equations. Better accuracy is achieved if they are predicted by evaluating 4.2.15 and 4.2.16. However,
the dynamics for these states are used to form the LTV model.
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4.2.3 Discrete Linear time variant model

An LTV model is a model which is linear in the states and the inputs, but where the linear de-
pendencies vary with time. The models used for the underactuated surface vessel in this thesis are
non-linear. These models can be linearized about one operating point, however such linear models
would only be valid close to the operating point. Linear models which are valid for several operating
points can be obtained if the models are linearized about several operating points to form LTV mod-
els. These operating points should be chosen such that the states of the vessel at time k are close to
operating point k. This is achieved by predicting the states of the vessel by numerical integration of
the non-linear system, inserting the predicted inputs at each sample time, and linearizing about the
predicted states and inputs at each sample time. The choice of predicted inputs will be discussed in
the chapter MPC.

When the predictions of the states are made, the predicted input vector needs to be extended
so that its length is equal to the prediction horizon. Let us denote the input vector used for pre-
dictions at time k as Upred,k. The input vector can be extended by keeping the inputs g1 and g4

constant, and inputs gi = 0, i = 2, 3, 5, after the input horizon

Upred,k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

gi,k

gi,k+1

gi,k+2

...
gi,k+Hu−2

gi,k+Hu−1

g1,k+Hu−1

0
0

g4,k+Hu−1

0
...

g1,k+Hu−1

0
0

g4,k+Hu−1

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, dim(Upred,k) = 5Hp (4.2.61)

The predicted states, Xpred,k, are found from Upred,k by integration of the system equations, inserting
the inputs at each sample time.

x =

∫
f(x, g)dt (4.2.62)

Xpred,k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

xk

xk+1

...
xk+Hu−1

...
xk+Hp−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, dim(Xpred,k) = nHp (4.2.63)

Where n is the number of states. Accuracy will depend on the chosen numerical integration, and on
the choice of step length in the numerical integrator.
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A discrete LTV model for the system can now be obtained by using, e.g. forward Euler

xk+1 = Φkxk + Γkuk (4.2.64)

yk = Cxk (4.2.65)

Φk = I + Ts
∂f(x, g)

∂x

∣∣∣∣
x=xpred,k,g=gpred,k

(4.2.66)

Γk = Ts
∂f(x, g)

∂g

∣∣∣∣
x=xpred,k,g=gpred,k

(4.2.67)

where in our case

x =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y
y
ψ
v
v
r
ẏ
u

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.2.68)

g =

⎡
⎢⎢⎢⎢⎣

Δ

Δ̇

Δ̈
ud

u̇d

⎤
⎥⎥⎥⎥⎦ (4.2.69)

The states xpred,k and inputs gpred,k are the samples from the predictions Xpred,k and Upred,k re-
spectively. Notice that Φk+1 is found from xpred,k+1 in Xpred,k, not from Xpred,k+1.

The expressions for the partial derivatives ∂f(x,g)
∂x

and ∂f(x,g)
∂g

in the case where u = ud and the

states x = [y, y, ψ, v, v, r] are estimated, can be found in Appendix A.
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5 Observer for estimating the current

The vessel will be subjected to a constant irrotational current in some of the simulations. Hence, the
predictions of the future states will have increased accuracy if the current is estimated so that the
effect of the current can be taken into account. The current will be estimated by using the nonlinear
passive observer presented in Thor I. Fossen [11]

˙̂
ξ = Aw ξ̂ + K1(ω0)ỹ (5.0.1)

˙̂η = R(y3)ν̂ + k2ỹ (5.0.2)

˙̂
b = −T−1b̂ + K3ỹ (5.0.3)

M ˙̂ν = −Dν̂ + RT (y3)b̂ + τ + RT (y3)K4ỹ (5.0.4)

ŷ = η̂ + Cw ξ̂ (5.0.5)

where ỹ = y − ŷ, y contains the state measurements, ki, i = 1, 2, 3, 4 are observer gain matrices, b
is the bias term and states x̂ are estimated states. The term −T−1b̂ represents low-pass filtering of
the bias term. Since waves will not be included in this thesis, the observer is reduced to

˙̂η = R(y3)ν̂ + k2ỹ (5.0.6)

˙̂
b = −T−1b̂ + K3ỹ (5.0.7)

M ˙̂ν = −Dν̂ − C(ν̂)ν̂ + RT (y3)b̂ + τ + RT (y3)K4ỹ (5.0.8)

ŷ = η̂ (5.0.9)

notice that the Coriolis matrix also is included in equation 5.0.8 while it is not in eqution 5.0.4. This
is because the observer in [11] is based on a model which dose not include this matrix. The observer
gains

k2 = diag{K21, K22, K23}

k3 = diag{K31, K32, K33}

k4 = diag{K41, K42, K43}

have to satisfy [11]

1/Ti � K3i/K4i < K2i

where

1/Ti � 1

The bias term 5.0.7 represents the effect of the current. The estimates of the current parameters
V̂cur and β̂cur are calculated from the bias term in order to include the effect of the current in the
predictions. That is

Dν̂cur = RT (y3)b̂

ν̂cur = D−1RT (y3)b̂

=
[
ν̂cur,1 ν̂cur,2 ν̂cur,3

]

νcur =
[
Vcurcos(βcur − ψ) Vcursin(βcur − ψ) r

]
β̂cur = atan(

ν̂cur,2

ν̂cur,1
) + ψ

V̂cur =
ν̂cur,1

cos(β̂cur − ψ)
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The following observer parameters gives good estimates of the current

T =

⎡
⎣40 0 0

0 40 0
0 0 400

⎤
⎦

k2 =

⎡
⎣20 0 0

0 20 0
0 0 6

⎤
⎦

K3 =

⎡
⎣60000 0 0

0 60000 0
0 0 100

⎤
⎦

k4 =

⎡
⎣4000 0 0

0 4000 0
0 0 25

⎤
⎦

The estimates of the parameters of current1 is seen in Figure 11, the estimates are the blue lines
and the actual parameter values are the red lines. The estimates do vary quite much initially, how-
ever, since the estimates are sampled, they remain constant in the predictions. The estimates are
stable and very close to the actual values after time t ≈ 20 seconds. Notice the small oscillations at
time t ≈ 88.5 seconds and t ≈ 175, 5 seconds. These oscillations are caused by the switch between
way-points.

Note: The estimated current is relative to the inertial reference fram.
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Figure 11: Estimated current parameters, current1.
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6 MPC

An approach to solving a non-linear MPC problem (NMPC), presented in the paper by Giancarlo
Marafioti et al. [14], is to linearize the system about the predicted response of the system (i.e
about the response to good guesses of the inputs), and representing the discrete system as linearly
time-variant (LTV). This choice, as opposed to a linear time invariant system, reduces the errors in-
troduced by the linearization and has the effect of re-linearization about estimated operating-points.
The reason for linearizing the system is that by doing so, the optimization problem can be written
as a QP-problem2, a convex optimization problem is obtained if Q is positive semidefinite, and the
problem has one unique solution if the initial point is feasible. The cost function has to be quadratic
in the variables which the QP problem is solved with respect to. The problem in this thesis is solved
with respect to the inputs Δ, Δ̇, Δ̈, ud and u̇d. Thus, the cost-functions presented in this report
has to be re-written in terms of the inputs, using the LTV model.

A different approach is to form predictions by numerical integration of the nonlinear discrete model
and use these predictions to evaluate the cost function and the constraints. These evaluations of
the cost function are used to form numerical estimates of the Hessian and the gradient of the cost
function, which in turn are used to find the minimum. This approach has the gain of better accuracy
in the predictions than a LTV model, but at the cost of increased calculation time and no guarantee
of convexity, which leads to no guarantee of convergence to the global minimum. Another gain is
that the constraints can be non-linear, and that the cost-functions presented in this report do not
need to be rewritten since they are evaluated by inserting the predictions.

6.1 Convexity

An important property of a cost function is convexity. From Jorge Nocedal and Stephen J. Wright
[9] we have that if the minimization algorithm converge to a stationary point of the cost function f,
we know the following about the solution; if we know that f is convex, then we can be sure that the
algorithm has converged to a global minimizer. The definition of convexity can be formulated as by
Jorge Nocedal and Stephen J. Wright [9]

S∈ R
n is a convex set if the straight line segment connecting any two points in

S lies entirely inside S. Formally, for any two points x ∈ S and y ∈ S, we have

αx + (1 − α)y ∈ S for all α ∈ [0, 1].

f is a convex function if it’s domain is a convex set and if for any two points x and

y in this domain, the graph of f lies below the straight line connecting (x, f(x)) to

(y, f(y)) in the space R
n+1. That is, we have

f(αx + (1 − α)y) ≤ αf(x) + (1 − α)f(y), for all α ∈ [0, 1]

1A QP-problem is a Quadratic Programming problem, and has linear constrains and the objective function (cost-
function) is quadratic.
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6.2 Receding Horizon

The goal of a model predictive controller is to bring the state measurements from their current states
to their respective set-points along an ideal trajectory. This trajectory is defined as the reference
trajectory by J. M. Maciejowski [10] and is frequently assumed to approach the set-point exponen-
tially. The predictive controller finds the input trajectory which results in the best behavior of the
system by predicting the response of the system to the input trajectory over the prediction horizon.
The prediction horizon is the time length into the future which the predictions are made for. This
input trajectory is a prediction of the optimal future inputs. The inputs k+i found at time k are
likely to be different at time k+i, as stated by J. M. Maciejowski [10].

The predicted optimal inputs are calculated once for each sample time k. Only the first input
is applied to the system at time k, since new optimal inputs are predicted at times k+i. In short,
at time k the states are measured, the ideal trajectories of the states from the current states to the
set-points are found by predicting the response of the states to the input trajectory. The first input
in the predicted optimal input trajectory is applied to the system. At time k+1 new measurements
are taken and the procedure is repeated. As explained by J. M. Maciejowski [10]: ”Since the pre-
diction horizon remains of the same length as before, but slides along by one sample interval at each
step, this way of controlling a plant is often called a receding horizon strategy.”

6.3 Main algorithm, LTV model

The MPC algorithm suggested by Giancarlo Marafioti et al. [14] is slightly altered to fit the problem
in this report, and used to find the optimal inputs when the LTV model is used. The difference is
that the weights in this report are constant, and that the states in this report are not estimated. In
this algorithm, lets call it Algorithm 1, Upred,k is the initial guess of the optimal input vector U∗

k ,
while U∗

k−1 is the previously found optimal input vector. The optimal solution at the previous step
is shifted once and used as the initial guess of the optimal input vector. This will be explained with
greater detail in the section Choice of initial value Uk,0.

Algorithm 1:

For a general time step k

Choose Upred,k given U∗

k−1

Use Upred,k and xk to compute Xpred,k, within the prediction horizon Hp

Compute the Jacobians Φk and Γk (4.2.66 and 4.2.67) about the predicted Xpred,k and Upred,k

Find the optimal solution of the corresponding QP optimization problem

From the optimal solution U∗

k = {g∗1,1, g
∗

2,1, g
∗

3,1, g
∗

4,1, g
∗

5,1 . . . , g∗1,Hp
, g∗2,Hp

, g∗3,Hp
, g∗4,Hp

, g∗5,Hp
}

apply g∗1,1, g
∗

2,1, g
∗

3,1, g
∗

4,1, g
∗

5,1 to the system

If the desired surge velocity is kept constant, all inputs gi,j, i = 4, 5 are not used or calculated.

6.4 Choice of initial value Uk,0

It is desirable to have the initial value close to the optimum. If this is achieved, the number of
iterations needed to solve the QP-problem will be reduced. Giancarlo Marafioti et al. [14] suggests
that a good initial choice for the input vector is to choose the tail of the previous optimal input
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vector. That is, for k=2 set

Upred,k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g∗i,2
g∗i,3
...

g∗i,Hu−1

g∗i,Hu

g∗1,Hu

0
0

g∗4,Hu

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.4.1)

Where

U∗

k−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g∗i,1
g∗i,2
g∗i,3
...

g∗i,Hu−2

g∗i,Hu−1

g∗i,Hu

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.4.2)

and

i = 1, 2, . . . , 5

Notice that the inputs g1 and g4 are constant while inputs gi, i = 2, 3, 5 are zero at the end of the
input horizon.

6.5 Local QP-problem, LTV model

When the LTV model is used in the optimization problem, the cost-function needs to be re-written
so that it is quadratic in the inputs. This can be done by applying the superposition principle to
the inputs as suggested by M. J. Maciejowski [10]

gk+2 = gk−1 + Δgk + Δgk+1

and separating Xpred,k into the free response of the system Xfree and the response to the change in
inputs ΣΔU

xk+1 =Φkxk + Γkgk

=Φkxk + Γkgk−1 + ΓkΔgk

xk+2 =Φk+1xk+1 + Γk+1gk+1

=Φk+1Φkxk + Φk+1Γkgk−1 + Φk+1ΓkΔgk + Γk+1(gk−1 + Δgk + Δgk+1)

...⎡
⎢⎣

xk+1

xk+2

...

⎤
⎥⎦ =Xfree + ΣΔU

=

⎡
⎢⎣

Φk

Φk+1Φk

...

⎤
⎥⎦xk +

⎡
⎢⎣

Γk

Γk+1 + Φk+1Γk

...

⎤
⎥⎦ g(k − 1)

+

⎡
⎢⎣

Γk 0 . . .
Γk+1 + Φk+1Γk Γk+1 . . .

...
...

. . .

⎤
⎥⎦

⎡
⎢⎣

Δgk

Δgk+1

...

⎤
⎥⎦ (6.5.1)
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The cost function can now be written as

Vk = (ΣΔUk + Xfree,k)T Q(ΣΔUk + Xfree,k) + ΔUT
k RΔUk (6.5.2)

where

xfree =

∫
f(x(t), gk−1)dt (6.5.3)

Xfree,k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

xfree,k

xfree,k+1

...
xfree,k+Hu

...
xfree,k+Hp−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.5.4)

Σ =

⎡
⎢⎢⎢⎣

Γk 0 . . .
(Φk+1Γk + Γk+1) Γk+1 0 . . .

(Φk+2Φk+1Γk + Φk+2Γk+1 + Γk+2) (Φk+2Γk+1 + Γk+2) Γk+2 . . .
...

...
...

. . .

⎤
⎥⎥⎥⎦ (6.5.5)

The free response xfree is evaluated at the sample times k + i to form the vector Xfree,k. It is
important to notice that when calculating the elements of Xfree in equation 6.5.3, the inputs g1

and g4 are kept constant, while when calculating the elements of Xpred the inputs are not constant.
Thus, since g2, g3 and g5 are the derivatives of g1 and g4 respectively, the derivatives g2, g3 and g5

have to be zero when Xfree is calculated.

When the desired surge velocity is time variant the desired surge velocity on the path has to be
included. This can be done by

Ek = Tk − Xfree,k

Vk = (ΣΔUk − Ek)T Q(ΣΔUk − Ek) + ΔUT
k RΔUk

where

Tk =
[
0 . . . udp 0 . . . udp 0 . . .

]T

For implementation purposes it is practical to describe Σ in terms of S where S is

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Γk 0 . . . 0
Φk+1Γk Γk+1 . . . 0

Φk+2Φk+1Γk Φk+2Γk+1 . . . 0
...

...
. . . 0

(
∏Hu−1

i=1 Φk+i)Γk (
∏Hu−1

i=2 Φk+i)Γk+1 . . . Γk+Hu−1

...
... . . .

...

(
∏Hp−1

i=1 Φk+i)Γk (
∏Hp−1

i=2 Φk+i)Γk+1 . . . (
∏Hp−1

i=Hu
Φk+i)Γk+Hu−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.5.6)

Σ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S11 0 0 . . . 0
S21 + S22 S22 0 . . . 0

S31 + S32 + S33 S32 + S33 S33 . . . 0
...

...
...

. . . 0∑Hu

j=1 SHuj

∑Hu

j=2 SHuj

∑Hu

j=3 SHuj . . . SHuHu

...
...

...
...

...∑Hu

j=1 SHpj

∑Hu

j=2 SHpj

∑Hu

j=3 SHpj . . . SHpHu

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.5.7)

Notice that the prediction horizon is not infinite, thus the prediction horizon Hp can be found in
the matrices 6.5.6 and 6.5.7. Also notice that the input g1 = Δ is assumed to be constant in the
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interval [uk+Hu−1 . . . uk+Hp−1].

Given the matrices Σ and Xfree,k, the cost-function for the local QP problem can be written as

Vk = ΔUTHΔU + GΔU (6.5.8)

where

H = ΣT QΣ (6.5.9)

G = −2ΣT QEk (6.5.10)

where the constant term XT
free,kQXfree,k has been dropped since the cost-functions value is not of

interest, but rather its minimum. This can be done since the value of g1 at which the cost-function
has its minimum is not dependent on the constant term. Hence, the search for the minimum is not
dependent on the constant term.
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6.6 Constraints

All constraints have to be written in terms of the change in inputs ΔU . The most important
constraints for the problem in this thesis, are the constraints on g. That is, 6.6.1-6.6.7 has to hold
for all solution of g(t). The constraint 6.6.2 is posed to avoid that the look-ahead distance becomes
too large in the case where the vessel tries to avoid overshoot. This constraint is added because a
too large look-ahead distance will reduce the reaction time when the look-ahead distance needs to
be reduced again. The value of Δmax can be chosen as best suited for the particular optimization
problem.

g1 > Δmin (6.6.1)

g1 < Δmax (6.6.2)

g4 > ud,min (6.6.3)

g4 < ud,max (6.6.4)

g2(t) = Δ̇(t) (6.6.5)

g3(t) = Δ̈(t) (6.6.6)

g5(t) = u̇d(t) (6.6.7)

where Δ(t) is the look-ahead distance, Δmin is a value larger than the smallest value which guar-
antees κ−exponential stability when Δ is constant, ud,max and ud,min are the largest and smallest
surge velocity that we allow. These constraints will ensure that the solutions gk = g1,k, g2,k, . . . , g5,k

are chosen such that g1(t), g4(t) are free variables, while g2(t) and g3(t) are equal to the derivatives
of g1(t), and g5(t) is equal to the derivative of g4(t). Since the look-ahead distance is time variant,
it is not known whether respecting the bound on the look-ahead distance for the case where the
look-ahead distance is constant will guarantee stability when the look-ahead distance is time variant.
However, it is safer to respect this bound than to ignore it.

The equations B.0.6 and B.0.7 in Appendix B are used to approximate the derivatives Δ̇, Δ̈ and u̇d.
The constraints 6.6.1-6.6.7 for the discrete case becomes

g1,k > g1,min

g1,k < g1,max

g4,k > g4,min

g4,k < g4,max

g2,k =
Δg1,k+1

Ts

g3,k =
Δg2,k+1

Ts

g5,k =
Δg4,k+1

Ts

In terms of Δgi,k the constraints are

−Δg1,k < g1,k−1 − g1,min

−Δg1,k − Δg1,k+1 < g1,k−1 − g1,min

−Δg1,k − Δg1,k+1 − Δg1,k+2 < g1,k−1 − g1,min

...
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Δg1,k < g1,max − g1,k−1

Δg1,k + Δg1,k+1 < g1,max − g1,k−1

Δg1,k + Δg1,k+1 + Δg1,k+2 < g1,max − g1,k−1

...

−Δg4,k < g4,k−1 − g4,min

−Δg4,k − Δg4,k+1 < g4,k−1 − g4,min

−Δg4,k − Δg4,k+1 − Δg4,k+2 < g4,k−1 − g4,min

...

Δg4,k < g4,max − g4,k−1

Δg4,k + Δg4,k+1 < g4,max − g4,k−1

Δg4,k + Δg4,k+1 + Δg4,k+2 < g4,max − g4,k−1

...

Δg1,k = Tsg2,k−1

Δg2,k −
Δg1,k+1

Ts
= −g2,k−1

Δg2,k + Δg2,k+1 −
Δg1,k+2

Ts
= −g2,k−1

Δg2,k + Δg2,k+1 + Δg2,k+2 −
Δg1,k+3

Ts
= −g2,k−1

...

Δg2,k = Tsg3,k−1

Δg3,k −
Δg2,k+1

Ts
= −g3,k−1

Δg3, k + Δg3,k+1 −
Δg2,k+2

Ts
= −g3,k−1

Δg3,k + Δg3,k+1 + Δg3,k+2 −
Δg2,k+3

Ts
= −u3,k−1

...

Δg4,k = Tsg5,k−1

Δg5,k −
Δg4,k+1

Ts
= −g5,k−1

Δg5,k + Δg5,k+1 −
Δg4,k+2

Ts
= −g5,k−1

Δg5,k + Δg5,k+1 + Δg5,k+2 −
Δg4,k+3

Ts
= −g5,k−1

...

where gi,k−1, i = 1, 2, 3 were the inputs applied to the system at the previous time step and are thus
known, while gi,k, i = 1, 2, 3 are the inputs to be applied when the algorithm terminates. Recall that
Δgi,k = gi,k − gi,k−1.

When the constraints are collected in matrix form they can be written on the standard form used
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e.g by the embedded Matlab function quadprog

FcΔU ≤ f1 (6.6.8)

AeqΔU = beq (6.6.9)

dim(ΔU) = 3Hu × 1

where

Fc =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Î1 01×5 01×5 . . . 01×5

Î1 Î1 01×5 . . . 01×5

Î1 Î1 Î1 . . . 01×5

...
...

...
. . .

...

Î1 Î1 Î1 . . . Î1

−Î1 01×5 01×5 . . . 01×5

−Î1 −Î1 01×5 . . . 01×5

−Î1 −Î1 −Î1 . . . 01×5

...
...

...
. . .

...

−Î1 −Î1 −Î1 . . . −Î1

Î2 01×5 01×5 . . . 01×5

Î2 Î2 01×5 . . . 01×5

Î2 Î2 Î2 . . . 01×5

...
...

...
. . .

...

Î2 Î2 Î2 . . . Î2

−Î2 01×5 01×5 . . . 01×5

−Î2 −Î2 01×5 . . . 01×5

−Î2 −Î2 −Î2 . . . 01×5

...
...

...
. . .

...

−Î2 −Î2 −Î2 . . . −Î2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, f1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g1,k−1 − g1,min

g1,k−1 − g1,min

...
g1,k−1 − g1,min

g1,max − g1,k−1

g1,max − g1,k−1

...
g1,max − g1,k−1

g4,k−1 − g4,min

g4,k−1 − g4,min

...
g4,k−1 − g4,min

g4,max − g4,k−1

g4,max − g4,k−1

...
g4,max − g4,k−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.6.10)

dim(Fc) = Hu × 5Hu, dim(f1) = Hu × 1

Aeq =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Î1 01×5 01×5 01×5 . . . 01×5

Î3 01×5 01×5 01×5 . . . 01×5

−Î2 01×5 01×5 01×5 . . . 01×5

Î3 T̂1 01×5 01×5 . . . 01×5

Î4 T̂2 01×5 01×5 . . . 01×5

Î5 T̂3 01×5 01×5 . . . 01×5

Î3 Î3 T̂1 01×5 . . . 01×5

Î4 Î4 T̂2 01×5 . . . 01×5

Î5 Î5 T̂3 01×5 . . . 01×5

Î3 Î3 Î3 T̂1 . . . 01×5

Î4 Î4 Î4 T̂2 . . . 01×5

Î5 Î5 Î5 T̂3 . . . 01×5

...
...

...
. . .

...

Î3 Î3 Î3 Î3 . . . T̂1

Î4 Î4 Î4 Î4 . . . T̂2

Î5 Î5 Î5 Î5 . . . T̂3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, beq =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Tsg2,k−1

Tsg3,k−1

Tsg5,k−1

−g2,k−1

−g3,k−1

−g5,k−1

−g2,k−1

−g3,k−1

−g5,k−1

...
−g2,k−1

−g3,k−1

−g5,k−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.6.11)

dim(Aeq) = 3Hu × 5Hu, dim(beq) = 2Hu × 1
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Î1 =
[
−1 0 0 0 0

]
(6.6.12)

Î2 =
[
0 0 0 −1 0

]
(6.6.13)

Î3 =
[
0 1 0 0 0

]
(6.6.14)

Î4 =
[
0 0 1 0 0

]
(6.6.15)

Î5 =
[
0 0 0 1 0

]
(6.6.16)

T̂1 =
[
−1
Ts

0 0 0 0
]

(6.6.17)

T̂2 =
[
0 −1

Ts
0 0 0

]
(6.6.18)

T̂3 =
[
0 0 0 −1

Ts
0
]

(6.6.19)

01×5 =
[
0 0 0 0 0

]
(6.6.20)

If it is desired to add constraints on some of the states, this can be done by including

GcΣΔU ≤ l1 (6.6.21)

and expressing the constraints on the states by appropriate choices of Gc and l1. Such constraints
are not included in this report.

6.7 Nonlinear solver

The nonlinear Matlab function fmincon, which according to the Matlab helpdesk3finds the minimum
of a constrained nonlinear multi-variable function, will be used to solve the nonlinear optimization
problem.

∑
(CzX)T QCzX + UT QuU (6.7.1)

subject to

g1 > Δmin (6.7.2)

g1 < Δmax (6.7.3)

g4 > ud,min (6.7.4)

g4 < ud,max (6.7.5)

g2(t) = Δ̇(t) (6.7.6)

g3(t) = Δ̈(t) (6.7.7)

g5(t) = u̇d(t) (6.7.8)

where Cz is chosen such that CzX is a vector containing only the predicted states which are to be
weighed in the cost function. The matrix Q contains the weights on the states and the matrix Qu

contains the weights on the inputs. The equality constraints are implemented by using the estimates
in Appendix B. The calculation time of the optimization problem can to some extent be reduced
by writing the cost function as a scalar equation when the cost-function is implemented. This is
because matrix multiplication has more over-head than scalar multiplication.

The tool fmincon finds the minimum of cost-functions for nonlinear systems. It can handle both
linear and nonlinear constraints. The advantage of using such a function instead of QP-solvers such
as quadprog is that the system does not have to be linearized, which results in better accuracy of
the solution. The drawback is that convexity can no longer be guaranteed, and that the calculation
time may increase. However, if the initial guess of the solution is close enough to the solution, the
tool will find the global minimum. Further, if the solutions at time k are close to the solutions at
time k+1, the calculation time will not be significantly larger than for a QP-solver.

The initial guess in this report has been chosen to be the previously found solutions, shifted once in

3Type ”helpdesk” in the Matlab command window and search for fmincon, for more details on this function.

31



time. This will result in short calculation time if the previously found solutions were good predic-
tions of the current solutions. One way to make an guess of the initial solution which is close enough
to the global minimum, is to impose some rule based on the knowledge of the system. Such a rule
will be imposed in the chapter Results as it turns out that the non-linear optimization problem is
not convex in some cases, if not in all cases.

The Matlab tool fmincon evaluates the cost-function and the constraints to form the gradients and
the Hessian. These are used to form a search direction and to determine whether the solution has
been found, and to ensure that the solution is in the feasible region or if there is a feasible solution
at all.

32



7 Problem Definition

This report aims to define an optimization problem which, when used in a MPC context, results in
a look-ahead distance Δ(t) which causes the cross-track error to converge as fast as possible, with
as little over-shoot as possible. Thus, a cost-function which has its minimum close to this desired
behavior needs to be formulated.

7.1 Desired behavior

Since it is desired that the cross-track error converges fast, the look-ahead distance should be small
when the cross-track error is large. However, since the cross-track error should have small over-shoot,
the look-ahead distance has to be large. Thus, if the cross-track error is large at time t0, the initial
look-ahead distance should be small, while as the cross-track error reduces, the look-ahead distance
should increase to avoid over-shoot in the cross-track error.

By having the look-ahead distance starting small and increasing as the cross-track error reduces,
both the fast reduction property of a small constant look-ahead distance and the small over-shoot
property of the large constant look-ahead distance can be obtained. However, if the look-ahead
distance stays large when the cross-track error is small, a prediction error due to disturbances or
modeling errors (e.g Δ(t) starts to increase too soon or too late), will slow down the final approach
towards the path. A too large value of the look-ahead distance when the vessel is subject to a current
will cause problems even if the predictions are perfect. This is because a large look-ahead distance
causes only small changes in the desired heading for a small increasing cross-track error.

Figure 12 illustrates the case where Δ(t) starts to increase to soon and keeps increasing. The
cross-track error reduces fast, over-shoots, and the convergence rate of the cross-track error becomes
very small. The same problem would arise if Δ(t) converged to a constant large value, or if the
look-ahead distance was large and a current was effecting the vessel. Figure 13 illustrates the case
where Δ(t) starts to increase to soon, but decreases as the cross-track error over-shoots. The cross-
track error converges fast, though there is a slight over-shoot. Figure 14 illustrates the ideal case
where the cross-track error converges fast with no over-shoot. The results shown in Figures 12-14
motivates for formulating a optimization problem which results in a look-ahead distance similar to
that of Figure 14.
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Figure 12: From simulation where Δ(t) starts increasing to soon and keeps increasing.
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Figure 13: From simulation where Δ(t) increase to avoid over-shoot and decreases to ensure conver-
gence.
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Figure 14: From simulation where Δ(t) starts to increase at time tc to avoid over-shoot and decreases
again to converge.
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The vessel is simulated for one large and one small constant look-ahead distance, and for the time
varying look-ahead distance from Figure 14, in order to get an idea of how to form a cost-function
which has its minimum close to the desired behavior.

The states which can be used to form the cost-function are measured and investigated for the three
cases. The goal is to find states with some properties which can be exploited when the cost-function
is to be formulated. That is, if one or more states deviates less from zero for the case of desired
behavior (Δ = Δ(t)), than for the cases of constant Δ, these states would be candidates for being
included in the cost-function. Also, if a combination of states would result in a smaller cost for the
case of desired behavior than for the other two cases, this can be exploited.

Note: All candidate states should converge to zero since the reference frame is rotated such that the
x axis is aligned with the path, the y coordinate equals the cross-track error and the rotated heading
angle is zero when it equals the angle of the path.

Note: Since the main goal is to minimize the cross-track error, the cross-track error should ap-
pear in the cost function.

Since the cost of performing the optimization, in terms of calculation time, increases with the
prediction horizon and the input horizon, it is not desirable to have too long horizons. Thus the
candidate states should have one of the following properties to be included in the cost-function

Property 1:

the sum over the prediction horizon of the squared state measurements should be less for a

state measured from the simulated desired behavior, than for the same state measured from

either one of the two simulations where the look-ahead distance is constant.

Property 2:

the sum over the prediction horizon of the squared state measurements should be less for

two or more states measured from the simulated desired behavior, than for the same states

measured from either one of the two simulations where the look-ahead distance is constant.

Expressed mathematically Property 1 and 2 becomes

Property 1:

k+Hp∑
i=k

kxx2
d(i) <

k+Hp∑
i=k

kxx2
c1(i),

k+Hp∑
i=k

kxx2
d(i) <

k+Hp∑
i=k

kxx2
c2(i) (7.1.1)

Property 2:

k+Hp∑
i=k

kyy
2
d(i) + kxx2

d(i) <

k+Hp∑
i=k

kyy2
c1(i) + kxx2

c1(i),

k+Hp∑
i=k

kyy
2
d(i) + kxx2

d(i) <

k+Hp∑
i=k

kyy2
c1(i) + kxx2

c1(i) (7.1.2)

where i indicates sample i, kj is the weight on state j, xd and yd are some state measurements
measured from the case of desired behavior, while xc1,c2 and yc1,c2 are the same state measurements
measured from the case of constant, large (c1) or small (c2), look-ahead distance.

Note: In 7.1.2, Property 2 has been expressed for two states. If more than two states satisfies
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Property 2, or if property 2 is satisfied only for a combination of more than two states, the sum
should include the square of all state measurements that satisfies Property 2.

This analysis is performed to get an idea of which states can be used in formulating the cost-
function. However, even though the simulations may indicate that either Property 1 or 2 is satisfied
for some states, this does not necessarily mean that a cost-function based on these states will always
lead to desired behavior. This is because this analysis only considers simulations with two constant
values for the look-ahead distance and one simulation for a time varying look-ahead distance, where
only one set of initial conditions are used. There may be other time varying look-ahead distances
which does not result in desired behavior, but satisfies Property 1 or 2 and results in a lower value
of the cost-function. Further, states satisfying Property 1 or 2 under the initial conditions used in
this analysis, may not satisfy Property 1 or 2 for other initial conditions. Finally, this analysis is
performed assuming no environmental disturbances.

Each resulting cost function will have to be implemented and simulated. These simulations will
have to be analyzed and compared to find which cost-function is best suited to describe the desired
behavior.
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Figure 15: Cross-track error for the three cases and Δ(t).
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Figure 16: Heading for the three cases.
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Figure 17: Sway velocity for the three cases.
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Figure 18: Heading rate for the three cases.
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ẏ for desired behavior
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7.2 Constant surge velocity

The optimization problems in this report will be divided into two main groups. The first group
minimizes the cost-function with respect to the look-ahead distance where the surge velocity tracks
a constant reference, while the second group minimizes the cost-functions with respect to the look-
ahead distance and the desired surge velocity. The desired surge velocity is constant in the suggested
cost-functions 1-3 .

7.2.1 Cost-function 1

It has already been stated that the cross-track error needs to be included in the cost-function. Figures
15-16 indicates that the cross-track error and the heading may satisfies Property 2 for appropriate
values of ky and kψ. The cross-track error is smaller for the desired behavior than for both of the two
constant look-ahead distances up to time k ≈ 35 and from time k ≈ 75, while the heading deviates
less from the angle of the path for the desired behavior after time k ≈ 20. Also notice that the
heading rate in Figure 18 is smaller from time k ≈ 35 for the desired behavior than for the constant
look-ahead distances. This indicates that the heading rate combined with the cross-track error and
the heading, may also satisfy Property 2 for appropriate values of ky, kψ and kr. This motivates for
the following cost function

k+Hp∑
i=k

kyy
2
i + kψψ2

i + krr
2
i (7.2.1)

A too large weight kψ or kr would cause minimization of the heading angle or the heading rate
respectively, rather than the cross-track error. The product kyy2 should be larger than kψψ2 up
to some time before k ≈ 20 since the contribution of the heading to the cost-function for desirable
behavior is less than for non-desirable behavior only after k ≈ 20. This is no guarantee of achieving
desired behavior, but the heading should not contribute significantly to the cost function before the
cross-track error is small since the contribution from kψψ2 to the cost function is less for desirable
behavior, than for undesirable behavior, only when the cross-track error is small.

The desirable behavior requires an increase in the look-ahead distance when the cross-track er-
ror is small and the cross-track error rate is large to avoid or reduce over-shoot. The effect of the
increased look-ahead distance is that the cross-track error rate is reduced by rotating the vessel so
that the difference between the angle of the path and the heading angle reduces. That is, the vessel
rotates so that the velocity towards the path is mainly in the sway direction. Since the heading angle
approaches the angle of the path when the cross-track error reduces and the look-ahead distance
increases, it should be possible to find weights which causes the look-ahead distance to increase so
that the cross-track error has only a small over-shoot. However, when the cross-track error and the
cross-track error rate is small, it is desired to have the look-ahead distance reduce. Hence, the weight
kψ must be large enough to cause an increase in the look-ahead distance when the cross-track error
otherwise would over-shoot, but at the same time small enough so that the look-ahead distance will
decrease when the cross-track error is small and reducing slowly. Thus, there might be a trade off
between fast convergence and small-over shoot in the cross-track error.

The heading rate is smaller for the desired behavior than for un-desirable behavior only after k ≈ 35.
Hence, the weight kr should be chosen such that krr

2 is small relative to kyy2 and kψψ2 until the
cross-track error and the heading is small. The effect of adding krr

2 to the cost-function is that
fast changes in the heading will be more costly than slow changes. This can be exploited to reduce
any oscillations in the heading. However, the desired behavior requires fast reduction of the heading
to avoid or reduce over-shoot in the cross-track error. Thus, there might be a trade off between
oscillations in the heading and the magnitude of the over-shoot in the cross-track error.

The heading reference is non-zero as long as the cross-track error is non-zero since the heading
reference is set by the LOS-algorithm. The only exception is if the look-ahead distance diverges to
infinity, which results in the heading reference approaching zero, regardless of the value of the cross-
track error. Since the cost-function 7.2.1 includes the heading, it may occur that the heading will
dominate the cost and cause the look-ahead distance to increase or stay large when the cross-track
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error is small. It is desired that the look-ahead distance increases in the case where the cross-track
error rate is large, but not when the cross-track error rate is small. This makes it hard to predict
whether it is possible to find weights for cost-function 7.2.1 which achieves both fast convergence
and small over-shoot in the cross-track error. Thus, another cost-function should be formulated, in
case such weights can not be found.

7.2.2 Cost function 2

The cross track error is smaller for the case of desired behavior than for both un-desirable behaviors,
except for the interval k ≈ 35 → k ≈ 75. Thus, a state which is smaller in this interval for the
case of desired behavior than for the un-desirable behaviors, needs to be found. Figure 19 indicates
that the rate of the cross-track error has this property. The cross-track error rate (ẏ) in the case of
desired behavior becomes smaller than that of the un-desirable behavior at time k ≈ 35. At time
k ≈ 75, ẏ becomes larger than that of the small constant look-ahead distance, but at time k ≈ 95
ẏ for the desired behavior is again the smallest. The interval k ≈ 75 → k ≈ 95 is short, and the
magnitude of ẏ in this interval is small. If the prediction horizon is large enough, the sum of the
squared samples of ẏ for the desired behavior, will be smaller than the corresponding sum for either
of the two un-desirable behaviors, for k ≥ kc where kc is some time before k = 35. The critical time
kc depends on the length of the horizon. This corresponds to every area between the curve of ẏ and
zero, starting at time k with length Hp, being smaller in the case of desired behavior than in the
case of un-desirable behavior, for k ≥ kc where kc is dependent on Hp and Hp is large enough.

Based on this discussion, the following cost function is suggested

k+Hp∑
i=k

kyy2
i + kẏẏ

2
i (7.2.2)

The cost function suggested in 7.2.2 may seem counterintuitive. It has been stated that it is desired
that the cross-track error should be reduced fast, so putting a weight on the cross-track error rate
seems to work against this desire. However, it should be noted that the magnitude of the cross-track
error rate is small relative to the magnitude of the cross-track error. Thus it may be possible to
achieve a cost-function where a large cross-track error dominates the cost-function while a small
cross track error results in the cross-track error rate dominating, by setting proper weights. That
is, if the cross-track error is large, it will be reduced fast and as the cross-track error becomes small,
the cross-track error rate will be reduced, which should reduce the magnitude of the over-shoot.

7.2.3 Cost function 3

The curve of the cross-track error in Figure 14 has the shape of an exponentially converging func-
tion, i.e. x(t) = x0e

−kt. Exponential convergence is a desirable property and is guaranteed when
the control laws presented in E. Fredriksen and K.Y Pettersen [2] are used in the case of a constant
look-ahead distance. However, it is not known if exponential convergence will follow for all time
variant look-ahead distances. If the cost-function is defined so that it has its minimum when the
cross-track error converges exponentially, the solution to the optimization problem should result in
exponential convergence of the cross-track error. In particular, if the cost-function is defined so that
it has its minimum where the cross-track error tracks an exponentially converging function, it should
be possible to achieve fast convergence with small over-shoot. Such a cost-function can be achieved
by weighing the deviation from a simple exponential curve.

Since a state defined by

ẋ = −kx

k > 0
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has the solution

x(t) = x0e
−kt

the deviation from exponential convergence can be expressed as

d = ẋ + kx

If the cost function is defined as the sum of the squared deviations d, it will have its minimum in
d = 0, or as close to d = 0 as the vessel dynamics allows. Thus, the cost function becomes

k+Hp∑
i=k

(ẏi + kyyi)
2 (7.2.3)

The cost function 7.2.3 will have its minimum for input values which results in behavior close to
the desired behavior defined by ky. Thus, the solution to the optimization problem should result
in exponential convergence of the cross-track error. Increased value of ky should result in increased
convergence rate of the cross-track error. However, since all the states of the vessel are defined
by their respective dynamics and constraints, all exponential curves defined by ky can not possibly
be followed. Thus, there is an upper limit for ky, past this limit, the solution to the optimization
problem can not be expected to result in desirable behavior. Further, it might be that there exists
no exponential curve defined by ky that can be followed exactly. However, if ky is chosen so that
the curve defined by ky can be followed with small deviations, the cost function 7.2.3 should result
in desired behavior.

When the LTV model is used for predictions, the cost function has to be in the form xT Qx, where
Q usually is diagonal. To implement the cost-function in equation 7.2.3, the weight matrix has to
be

Q = K

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

k2
y 0 0 0 0 0 2ky

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7.2.4)

where K is a constant scalar grater than zero. The weight Q has to be on the form 7.2.4 because

(ẋ + kyx)2 = ẋ2 + 2kxx + k2
xx2 =

[
x ẋ

] [
k2

x 2kx

0 1

] [
x
ẋ

]
(7.2.5)

7.3 Time varying surge velocity

The cost-functions suggested so far all considers the look-ahead distance and its first and second
derivatives as inputs, while the surge velocity is assumed to be constant. That is, perfect control of
the surge velocity is assumed and the surge velocity reference is assumed constant. This assumption
can be relaxed if the surge velocity reference is allowed to be time varying, which will allow the MPC
algorithm to consider the surge velocity reference as an input. This extension of the optimization
problem is done to allow the vessel to increase its velocity when it is far from the path, and decrease
the velocity when it is close to the path.

Since this report considers optimal path following, and not the problem of generating the path
and the velocity reference trajectory, it will be assumed that the desired surge velocity on the path
is set by some external source and that it is constant. However, the MPC algorithm will be allowed
to change the desired surge velocity when this will reduce the value of the cost-function.
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7.3.1 Cost function 4-6

Relaxing the assumption of constant surge velocity reference increases the degrees of freedom for the
optimization problem. This may increase the calculation time, but it might also reduce the deviation
from the desired behavior. The cost-functions 7.2.1-7.2.3 will have to include a term which ensures
that the surge velocity tracks the desired surge velocity on the path, set by the external source,
when the vessel is on the path. This can be done by adding the following term to cost-functions
7.2.1-7.2.3

k+Hp∑
i=k

kud
u2

d,i + ku̇d
u̇2

d,i (7.3.1)

where the last term is included to reduce rapid changes in the desired surge velocity ud, and
ud,i = ui − udp. Where udp is the desired surge velocity on the path set by the external source
and ui is the surge velocity of the vessel at time i. The idea is that the MPC algorithm can change
the surge velocity reference to reduce the deviation from the desired behavior, but at the cost of
increasing the cost-function value. This will ensure that the surge velocity will not deviate too much
from the desired surge velocity on the path.

The resulting three cost functions are then

k+Hp∑
i=k

kyy2
i + kψψ2

i + krr
2
i + kud

u2
d,i + ku̇d

u̇2
d,i (7.3.2)

k+Hp∑
i=k

kyy2
i + kẏ ẏ2

i + kud
u2

d,i + ku̇d
u̇2

d,i (7.3.3)

k+Hp∑
i=k

(ẏi + kyyi)
2 + kud

u2
d,i + ku̇d

u̇2
d,i (7.3.4)

When the LTV model is used the cost-function V(x) is on the form

V (x) =

Hp∑
i=0

x(k + i|k)T Qx(k + i|k) +

Hu∑
i=0

ΔUTRΔU +

Hu∑
i=0

UT SU (7.3.5)

xc =

⎡
⎣y

ψ
r

⎤
⎦ (7.3.6)

where Q and R are scaling matrices with appropriate dimensions, xc are the states that are to be
controlled, and U contains the inputs.
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8 Simulation Results

The six cost-functions suggested in the chapter Problem Definition will be implemented and used in
simulations where both solvers are used, with the exception of cost-function 4 which is not presented
due to poor performance. The goals are to find which cost-function yields the best performance,
investigate whether calculation time can be saved by using the LTV model instead of the nonlinear
model, and to reveal possible problems with the different cost-functions.

All simulations are performed on the same vessel model, that is the model of Cybership2, with
the same initial conditions when the same paths are tracked, in the case of no disturbance and in
the case of a constant irrotational current. The simulations will also be performed on different de-
sired paths. The weights will be tuned so that the vessel follows a straight line path, where the cross
track error converges faster with less over-shoot than for a constant look-ahead distance. When these
weights are found, the path will be extended to consist of several straight lines. The path consisting
of several straight lines will be constructed so that it is likely that any constant look-ahead distance
will result in either large over-shoot or slow convergence. A problem formulation is considered to be
good if the time varying look-ahead distance, and the time varying surge velocity reference in the
cases where it is not constant, results in better performance than for constant look-ahead distance
and surge velocity reference.

There are many tuning parameters who plays a significant role in achieving good results. The most
important relations will be explained for each problem in the section Tuning rules. The current
which effects the vessel in some simulations is modeled by 4.1.7 using the following parameters

current1

Vc = 0.01m/s

βc = π/3

current2

Vc = 0.01m/s

βc = −π/3

The system matrices for the vessel model, the constrains on the control force and moment and the
hydrodynamic parameters used for simulations are

M =

⎡
⎣25.8 0 0

0 33.8 1.0115
0 1.0115 2.76

⎤
⎦

D =

⎡
⎣0.9257 0 0

0 2.8909 −0.2601
0 −0.2602 0.5

⎤
⎦

Tauu,max = 2N

Tauu,min = −2N

Tauδ,max = 1.5Nm

Tauδ,min = −1.5Nm

Nδ = 1

yδ = −0.2

It has been stated that since it is the cross-track error it is desired to optimize, it needs to be included
in the cost-function. It has also been claimed that a cost function that minimizes the squared cross-
track error alone, will not necessarily yield desired behavior. This is confirmed in Figure 20, where
the LTV model and the cost-function

∑
kyy2

k + ΔUT RΔU has been used. The weights were set to

ky = 3 ∗ 104 (8.0.1)

R =

⎡
⎣0.01 0 0

0 0.01 0
0 0 3.45

⎤
⎦ (8.0.2)
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Figure 20: Simulation result for minimizing the squared cross-track error, Hp = 80.

where the weighting matrix R is a small weight. The initial states used when the results in section
Optimal path-following for a straight line path and the result in Figure 20 were obtained are

X =
[
y y ψ v v r u ẏ

]
Xinit =

[
3.0000 2.9613 −1.0000 0.0500 0.0477 −0.0500 0.2 0

]

while for the path consisting of several straight lines

Xinit =
[
3.0509 3.0126 0 0.0500 0.0477 −0.0500 0.2 0

]
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8.1 Optimal path-following for a straight line path

Cost functions 1-3 are defined assuming u = 0.2, thus the model where the surge velocity is constant
is used. Six states are predicted for cost-function 1 and seven for cost-function 2 and 3, while eight
states are predicted for the remaining cost-functions. There are weights on the change in input to
avoid fast changes, and to avoid that the look-ahead distance grows too large, in all simulations
where the LTV model is used.

A problem which may occur for the LTV formulation when the Matlab function quadprog is used
to solve the optimization problem, is that the constraints are violated by more than ε where ε is
the maximum allowed constraint violation used by quadprog. The maximum allowed constraint vi-
olation is typically ε ≤ 10−15. The violations occurs when either the look-ahead distance or the
desired surge velocity is close to their maximum or minimum values. It has been suggested by the
Mathworks support (see web page [15]) that such constraint violations may be caused by rounding
errors. The Mathworks support also suggests a procedure for increasing ε as a workaround. However,
it has not been possible to excess the necessary files to do this. Instead the inequality constraints
on Uk+i, i = 1, 2, ...Hu has been tighten. That is, the constraints 6.6.1-6.6.4 are changed to

g1,k > g1,min

g1,k+i > g1,min + κ1,i (8.1.1)

g1,k < g1,max

g1,k+i < g1,max − κ2,i (8.1.2)

g4,k > g4,min

g4,k+i > g4min + κ3,i (8.1.3)

g4,k < g4,max

g4,k+i < g4,max − κ4,i (8.1.4)

where

ε � κ1,1 < κ1,2... < κ1,Hu
� g1,min

ε � κ2,1 < κ2,2... < κ2,Hu
� g1,max

ε � κ3,1 < κ3,2... < κ3,Hu
� g4,min

ε � κ4,1 < κ4,2... < κ4,Hu
� g4,max

i = 1, 2, ...Hu

where g1,min = Δmin = 0.5 meters, g4,min = ud,min = 0.08 m/s and g4,max = ud,max = 0.3 m/s.
The maximum allowed value of the look-ahead distance g1,max = Δmax is set to several different
values which will be accounted for.

The constraint violations are avoided when the constraints 8.1.1-8.1.4 are used instead of the con-
straints 6.6.1-6.6.4. This is because the initial inputs gi,k+i (i = 0, 1, 2...Hu−1) is set equal to inputs
gi,k+1+i from the previous iteration, where the previously found inputs gi,k+1+i satisfies tighter con-
straints than the inputs gi,k+i has to satisfy.

NOTE The lower and upper bounds on the change in inputs must be chosen with care, these
can cause problems with constraint violations if they are too tight. These bounds should not be nec-
essary, but can be added to avoid too large inputs or too large changes in the inputs. However, a
better way to deal with such problems is to increase the input weights.
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8.1.1 Cost function 1

In the simulations of cost-function 1, where the vessel is to track a straight-line path, the following
parameters and weights are used

Hp = 80

Hp = 180

Hu = 25

Ts = 0.3

Q1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

3 ∗ 104 0 0 0 0 0
0 0 0 0 0 0
0 0 104 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

Q2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

3 ∗ 104 0 0 0 0 0
0 0 0 0 0 0
0 0 4 ∗ 104 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

Q3 =

⎡
⎢⎢⎢⎢⎢⎢⎣

3 ∗ 104 0 0 0 0 0
0 0 0 0 0 0
0 0 104 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

R1 =

⎡
⎣10 0 0

0 100 0
0 0 1000

⎤
⎦

where Hp is the prediction horizon, Hu is the input horizon, Ts is the time between samples. In
most simulations, the simulation time is 70 seconds. The sample time Ts has been chosen to be
small enough to give good estimates of the system approximated by

xk+1 = Φkxk + Γkgk

The weighting matrix R is the same in all simulations where cost-function 1 is used, these values for
R are the values found to give the best results for cost-function 1. That is, there was not much to
gain by changing R for the different weights Q.

The cross-track error in Figure 21 reduces fast, but over-shoots. The look-ahead distance grows
large before the over-shoot, which is desirable, but it does not reduce fast enough after the over-
shoot. This is a problem, since, as seen in Figure 21, it causes the cross-track error to converge
very slow to zero. This is because the numerical value of the cross-track error is small, and reducing
the look-ahead distance comes at the cost of increased heading error, and increased cost from the
change in inputs.

It is desired that the look-ahead distance should be small when the cross-track error is large and
grow when the cross-track error reduces, so that the cross-track error reduces fast, only has a small
over-shoot and the heading does not have oscillations. This is not true in Figure 21 since the cross-
track error over-shoots, and since the look-ahead distance starts to increase at time t ≈ 5 seconds,
decreases at time t ≈ 8 seconds and increases again at time t ≈ 14 seconds. The result is that the
heading rotates towards the angle of the path, then away from the angle of the path, and towards
the angle of the path again. The source of this undesirable behavior is that the prediction horizon
moves along the time-axis, hence the optimal inputs at time k + i found at time k, may not be the
same as the optimal inputs found at time k + 1. Thus, the increase in the look-ahead distance at
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time t ≈ 5 seconds results from the optimizer not being aware of the future beyond Ts ∗ Hp. This
is confirmed in Figure 22 where the prediction horizon is increased to Hp = 180. The look-ahead
distance in Figure 22 does not have the increase at time t ≈ 5 seconds as it has in Figure 21, and
the cross-track error in Figure 22 converges fast and does not have over-shoot.

However, the increased prediction horizon results in much longer calculation time of the inputs.
This is because the predictions has to be made further into the future, and because the LTV model
becomes larger and takes longer to calculate, which again causes the calculation time of the Hessian
H to increase. All this leads to increased calculation time, which is a major draw-back since each
calculated input needs to be calculated within one sampling interval. This real time requirement
is not even satisfied for Hp = 80, as in Figure 21, unless the MPC algorithm runs on a powerful
computer. The simulations performed on the authors computer (see Appendix B for details) with
Hp = 80 and Ts = 0.3 seconds, where the simulation time is 1 minute and 10 seconds, takes approx-
imately 3 minutes to perform.

The weight on the heading can be increased to make the look-ahead distance start increasing earlier,
and to reduce the over-shoot. This has been done in Figure 23. The look-ahead distance in Figure
23 converges to zero without over-shoot. However, the look-ahead distance still has a top at time
t ≈ 7 seconds, and the look-ahead distance does not reduce when the cross-track error is small.
The latter might be a problem even if the cross-track error converges perfectly to zero since envi-
ronmental disturbances such as wind, waves and ocean currents can move the vessel from the path.
When the look-ahead distance is large (≥ 6 ship lengths or ≈ 7.5 meter), such disturbances will not
be effectively suppressed since the heading will stay close to the angle of the path, even when the
cross-track error is non-zero. This is seen in Figure 24 where the vessel is subjected to current1 and
the convergence of the cross-track error is slow. This is because the look-ahead distance reduces to
slow from time t ≈ 25 seconds. The heading has oscillations from time t ≈ 70 which are undesirable.
Again, these are caused by the short prediction horizon.

Increasing the prediction horizon and using the weights Q1 and R1 when the vessel is subjected
to current1 results in fast convergence of the cross-track error, and less oscillations in the heading
than in Figure 24, as seen in Figure 25. However, the heading do have some oscillations after time
t ≈ 25. These oscillations can also be seen in the look-ahead distance in Figure 25. It may be
that these can be removed by increasing the prediction horizon further, but this will increase the
calculation time even more.

Notice that the simulation time in Figures 24, 26, 28 and 29 is 110 seconds, instead of 70 sec-
onds as in most of the figures in this section.

The cross track error converges to approximately zero for Hp = 80, in the presence of current,
when the heading rate is weighed in addition to the heading and the cross-track error, see Figure 26.
However, the look-ahead distance still has a top at time t ≈ 7 seconds, the look-ahead distance stays
large too long which causes an increase in the cross-track error at time t ≈ 60 seconds, and the head-
ing has some oscillations after time t ≈ 80 seconds. The oscillations and the top are again caused by
too short prediction horizon. The look-ahead distance does not have the top at time t ≈ 7 seconds,
and the oscillations are reduced when the prediction horizon is increased, as seen in Figure 27. That
is, the oscillations in the heading are not completely removed by adding a weight on the heading rate.

The current in Figure 27 is in a direction which damps the over-shoot in the cross-track error.
If the current is set to the opposite direction, that is if current2 is used, the over-shoot in the
cross-track error will increase if the look-ahead distance does not become small immediately after
the over-shoot. Since including the heading in the cost-function results in increased look-ahead
distance when the cross-track error is about to over-shoot, the look-ahead distance is large when
the cross-track error over-shoots in Figures 28 and 29. This results in a large over-shoot, that is
the cross-track errors from simulations with both a large and a small constant look-ahead distances
have smaller over-shoots than the cross-track error for weights Q1 and Q3 in Figures 28 and 29.
However, the cross-track errors does converge to approximately zero as opposed to the two cases of
constant look-ahead distances. The large over-shoot in the cross-track errors in Figures 28 and 29
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results from the weight on the heading and the heading rate. If this over-shoot is to be avoided, the
heading would have to increase fast at time t ≈ 6 seconds, as in Figure 28, but it would also have
to increase faster at time t ≈ 40 seconds. In effect, the look-ahead distance will have to reduce fast
at time t ≈ 40 seconds, which results in increased heading rate, increased deviation from zero in the
heading, and increased cost from the changes in inputs. Thus, good performance in both the case of
current1 and current2 is not achievable for either of the weights found in this section. This means
that the cost-functions cost-function 1, does not perform well for the same weight under different
conditions. Which is a major draw-back of cost-function 1 since it is desirable to have an MPC
controller which works well under all conditions, or at the very least most conditions, for a given set
of control parameters. Thus, cost-function 1 will not be investigated further. Since cost-function 4
is much the same as cost-function 1, where the only difference is that the desired surge velocity is
time variant, cost-function 4 will not be investigated in this report.

Note: simulations where the cross-track error and the heading rate were weighed, but not the head-
ing, have not given any good results. This is because minimizing the cross-track error alone causes
a large over-shoot which needs to be compensated for by increasing the look-ahead distance when the
cross-track error becomes small. This is achieved when the heading is included in the cost-function,
because as the cross-track error reduces, the deviation from zero in the heading becomes significant
to the cost-function, which results in the heading being reduced by increasing the look-ahead distance.
This is seen by noting that the heading reference approaches zero when the look-ahead distance is
increased. However, if the heading rate and the cross-track error is minimized without the heading,
the increase in the look-ahead distance to avoid over-shoot is not achieved, because increasing the
look-ahead distance is the same as changing the heading, which results in increased cost from the
headin rate.

Note: The fast changes in the look-ahead distance sometimes causes the desired heading to change
faster than the heading can track, i.e. at time t ≈ 15 seconds in Figure 21. This is a result of
saturation in the actuators (τ) which the optimization algorithm is unaware of. The limitations of
the actuators should be added to the constraints, especially since the MPC formulation is well suited
for such constraint handling. However, this requires expressing τ in terms of the change in inputs
and has not been done as part of this thesis.
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Figure 21: Simulation result for Q1 and R1, no current, Hp = 80.
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Figure 22: Simulation result for Q1 and R1, no current, Hp = 180.
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Figure 23: Simulation result for Q2 and R1, no current, Hp = 80.
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Figure 24: Simulation result for Q2 and R1, with current1, Hp = 80.
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Figure 25: Simulation result for Q1 and R1, with current1, Hp = 180.
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Figure 26: Simulation result for Q3 and R1, with current1, Hp = 80.
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Figure 27: Simulation result for Q3 and R1, with current1, Hp = 180.
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Figure 28: Simulation result for Q3 and R1, with current2, Hp = 180.
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Figure 29: Simulation result for Q1 and R1, with current2, Hp = 180.

53



8.2 Cost function 2

In order to implement cost function 2, the predictions needs to be extended to included ẏ. The
following parameters and weights are used for the simulations of cost-function 2

Hp = 80

Hu = 25

Ts,LTV = 0.3

Ts,nonl = 0.5

Q4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 ∗ 104 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 5 ∗ 104

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Q5 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 ∗ 104 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 16 ∗ 105

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Q6 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 ∗ 104 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 2 ∗ 106

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

R2 =

⎡
⎣0.01 0 0

0 0.01 0
0 0 3.45 ∗ 102

⎤
⎦

R3 =

⎡
⎣0.01 0 0

0 0.01 0
0 0 200

⎤
⎦

R4 =

⎡
⎣0.01 0 0

0 0.01 0
0 0 300

⎤
⎦

R5 =

⎡
⎣0.01 0 0

0 0.01 0
0 0 750

⎤
⎦

kg3,1 = 0.001

ky,1 = 3

kẏ,1 = 160

kẏ,2 = 200

where Ts,LTV is the step length between samples when the LTV model is used, while Ts,nonl is the
length between samples when the nonlinear solver is used.

The results from minimizing the cost-function
∑

kyy
2
k + ΔUTRΔU can be found in Figure 20,

notice that the cross-track error reduces fast and has a large over-shoot. This over-shoot can be
reduced by adding the squared cross-track error rate to the cost-function, including a weight on
both states. However, the weight on the cross-track error rate has to be large enough relative to the
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weight on the cross-track error to achieve a reduction of the over-shoot. This can be seen in Figure
30 where the cross-track error has the same over-shoot as in Figure 20. The effect of adding the
cross-track error rate to the cost-function is not seen until time t ≈ 30. This is because the magni-
tude of the cross-track error is large relative to the magnitude of the cross-track error rate, and the
weight on the cross-track error rate is too small to have an effect on the look-ahead distance until
time t ≈ 30. The look-ahead distance in Figure 30 starts to increase sooner after the over-shoot,
and stays large for a longer time, than in Figure 20, which results in smaller cross-track error rate
as the cross-track error converges.

When the weight on the cross-track error rate is large enough, the over-shoot is reduced. This
is seen in Figure 31. However, the increased weight on the cross-track error rate also results in
oscillations in the look-ahead distance, which leads to oscillations in the desired heading and the
heading. The oscillations in the look-ahead distance implies large changes in the acceleration of the
look-ahead distance. When the weight on the change in the acceleration of the look-ahead distance
is increased, the oscillations are reduced but not removed, as seen in Figure 32. There is not much
to gain by increasing the weight on the change in the acceleration of the look-ahead distance further,
since at some point before the oscillations are removed, the over-shoot starts to increase, see Figure
33. This increase in over shoot can be reduced by increasing the weight on the cross-track error rate,
but this does not remove the oscillations. The results in Figure 34 are the best results achieved for
the LTV approach with cost-function 2. The look-ahead distance in Figure 34 has some oscillations
up to time t ≈ 7 seconds.

The oscillations in the look-ahead distance results from including the cross-track error rate in the
cost-function, why is this? As explained in the section MPC, the tail of the optimal solutions Uk

found at time k is not necessarily equal to the optimal solutions Uk+1 found at time k+1 unless the
prediction and input horizons are infinite, the prediction model is perfect, and all measurements
including disturbances are prefect4 . However, the inputs gi,k+1 predicted at time k + 1 should be
close to inputs gi,k+1 found at time k, for large enough finite prediction and input horizons. Thus,
the oscillations in the look-ahead distance should reduce when the prediction and input horizons
increases, unless the prediction model is too inaccurate. As can be seen in Figure 35, the oscillations
up to time t ≈ 10 seconds increase relative to Figure 34, even though the prediction and input
horizons are larger in Figure 35. Thus, the oscillations in the look-ahead distance indicates that the
predicted optimal solutions gi,k+j, j = 1, 2...Hu are inaccurate, which indicates that the predictions
made by the LTV model are inaccurate. The LTV model is an approximation of the system and
will always suffer from errors introduced by assuming linear behavior between samples, however
the predictions made by the LTV model appeared to be accurate enough during the simulations of
cost-function 1.

When the matrices Γk+j are investigated, it becomes clear that these matrices are the root of
the inaccuracy of the LTV model. The effect on the cross-track error rate of the inputs are esti-
mated by ∂ÿ

∂gi
gi, i = 1, 2, 3. That is, a negative value of ∂ÿ

∂g1
implies that the cross-track error rate

reduces if the look-ahead distance increases.

In a situation A where the cross-track error is positive, and the cross-track error rate is nega-
tive, the magnitude of the cross-track error rate should decrease, that is the cross-track error rate
should increase, when the look-ahead distance increases. Thus, ∂ÿ

∂g1
should be positive in situation

A. Situation A corresponds to the situation in the simulations from time t = 0 up to the time where
the cross-track error over-shoots. When the matrices Γk+j are investigated for situation A, it turns

out that ∂ÿ
∂g1

actually is negative, which is wrong since increasing the look-ahead distance does not
increases the magnitude of the cross-track error rate in situation A. The reason for this error can
be seen by studying the system equations which are descretized according to the discrete model by

4The simulations which have resulted in Figures 30-35 are all performed without any disturbances under the
assumptions of perfect state measurements.
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Thor I. Fossen [11]

τk+1 = f(νk, ηk, gi,k) (8.2.1)

νk+1 = νk + Ts[M
−1(−C(νk)νk − Dνk + τk+1)] (8.2.2)

ηk+1 = ηk + TsR(ψk)νk+1 (8.2.3)

yk+1 = yk + Ts(uk+1 sin ψk + vk+1 cosψk) (8.2.4)

⇓

ẏk = uk+1 sin ψk + vk+1 cos ψk (8.2.5)

where Ts is the step length between samples. The velocities νk+1 depends on the inputs gi,k through
τk+1, while ηk+1 depends on the inputs gi,k through νk+1. Since the LTV model assumes linear
behavior between samples, and the sates ηk+1 depends on νk+1 and ηk, the effect of the inputs gi,k

on the heading does not appear until time k+1. Thus, the effect of gi,k on the cross-track error
rate at time k, is only through vk+1, even though the heading ψk+1 is effected by gi,k. Hence, the

negative value of ∂ÿ
∂g1

in situation A. However, at the next time step k+1, the effect of inputs gi,k on
the system is described by Φk+1Γk, which results in the cross-track error rate ẏk+1 also depending

on gi,k through ψk+1. For situation A, this results in ∂ÿk

∂g1,k
< 0 and

∂ÿk+1

∂g1,k
> 0. While at the next

time step k+1,
∂ÿk+1

∂g1,k+1
< 0, which means that the effect of the look-ahead distance on the cross-track

error rate ẏk+1 at time k appears to be opposite of the effect of the look-ahead distance at time
k+1 on ẏk+1. Further more, the effect of the look-ahead distance g1,k on the cross-track error rate
ẏk appears to be the opposite of the effect of the look-ahead distance g1,k on the cross-track error
rate ẏk+1. Hence, the optimal solution for input g1,k at time k is not likely to be equal to the
optimal solutions g1,k+1 found at time k+1. This motivates for solving the optimization problems
which have cost-functions that are dependent on the cross-track error rate with the nonlinear solver
described in section Nonlinear solver. This solver uses predictions based on numerical integration of
the system where the step length in the numerical integration of the descritized model in equations
8.2.2 and 8.2.3 is considerably smaller than the step length between samples. Thus, ẏk+1 depends
on gi,k through the heading as well as the sway velocity.

The draw-back to the nonlinear approach is increased calculation time relative to the LTV ap-
proach when the time between samples, prediction horizon and input horizon is identical. However,
the time between samples can be increased when the nonlinear solver is used because the accuracy of
the predictions is independent of the time between samples. This is because the predictions are made
by numerical integration of the nonlinear system equations with the sampled states as initial val-
ues. Increased time between samples only means increased time between new inputs, assuming the
predictions are made for the same length time interval. When the calculation time of the nonlinear
approach is to be compared with the calculation time of the LTV approach, the optimization should
be performed over the same length time intervals. That is Hp,LTV Ts,LTV = Hp,nonlinTs,nonlin and
Hu,LTV Ts,LTV = Hu,nonlinTs,nonlin should hold. Thus, the prediction and input horizons, Hp,nonlin

and Hu,nonlin, can be reduced, which results in reduced calculation time. However, the LTV ap-
proach is generally faster.

The simulation results for the nonlinear solver, with weights corresponding to the weights in Figure
31, can be found in Figure 36. The oscillations in the desired heading are removed, even when
the weight on the acceleration is small. The cross-track error reduces fast, but has a over-shoot,
and converges to approximately zero. The look-ahead distance reduces fast to compensate for the
over-shoot and stays small. This is a very desirable property. The increased heading at time t ≈ 35
seconds results from the small-look ahead distance, and is necessary to reduce the cross-track error
quickly after the over-shoot. Notice that the look-ahead distance increases at time t ≈ 50 seconds,
this reduces the cross-track error rate and a second over-shoot is avoided.

The over shoot is reduced when the weight on the cross-track error rate is increased, this is seen in
Figure 37 where the cross-track error converges to approximately zero with only a slight over-shoot.
However, this is at the cost of slower convergence. Hence, there is a trade off between fast conver-
gence and small over-shoot.
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The weights leading to Figure 36 are used when the vessel is subjected to current1 and current2.
The cross-track error in Figure 38, where current1 is used, converges fast to approximately zero,
with only a small over-shoot. This is because the look-ahead distance increases fast to reduce the
over-shoot, and because current1 acts to damp the over-shoot. The small over-shoot is compensated
for fast, since the look-ahead distance is small after the over-shoot. The cross-track error in Figure
39, where current2 is used, converges fast to approximately zero, but has larger over-shoot than
in Figure 38. The larger over-shoot is caused by current2 which acts to increase the over-shoot.
However, the cross-track error in both Figures 38 and 39 converges faster, to a smaller value and
with smaller over-shoot than for both constant look-ahead distances.

The simulations performed with LTV-model based optimization, has reveal a weakness in the LTV-
model. That is, the LTV approximation of the cross-track error rate dynamic is not accurate
enough. This has lead to the use of a non-linear optimization solver, which in general spends more
time calculating the optimal inputs than the LTV-model based optimization solver. The simulations
performed with this cost-function last for approximately 300 seconds for the nonlinear solver, and
approximately 190 seconds for the LTV approach, while the time simulated is 70 seconds. Thus,
work should be put into finding a better LTV-model of the system, since this would reduce the cal-
culation time of the inputs. The simulations performed with the non-linear solver, with and without
current, has shown that cost-function 2 performs well for proper weights, and the chosen initial values
of the states. Fast convergence of the cross-track error with little or no over-shoot has been achieved.

Note Though the look-ahead distance may appear to be very close to zero in some figures, it is
never smaller than 0.5 meters, which is the lower boundary used by the optimization solvers.
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Figure 30: Simulation result for Q4 and R2, Hp = 80.
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Figure 31: Simulation result for Q5 and R2, Hp = 80.
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Figure 32: Simulation result for Q5 and R3, Hp = 80.
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Figure 33: Simulation result for Q5 and R4, Hp = 80.
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Figure 34: Simulation result for Q6 and R5, no current Hp = 80.
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Figure 35: Simulation result for Q6 and R5, no current Hp = 180 and Hu = 50.
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Figure 36: Simulation result nonlinear optimizer, no current, ky,1, kẏ,1, kg3,1, Hp = 48 and Hu = 15.
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Figure 37: Simulation result nonlinear optimizer, no current, ky,1, kẏ,2, kg3,1, Hp = 48 and Hu = 15.
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Figure 38: Simulation result nonlinear optimizer, current1, ky,1, kẏ,1, kg3,1, Hp = 48 and Hu = 15.
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Figure 39: Simulation result nonlinear optimizer, current2, ky,1, kẏ,1, kg3,1, Hp = 48 and Hu = 15.
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8.2.1 Cost function 3

Due to the problems with the LTV model found in the previous section, this cost-function will be
minimized using the nonlinear solver. The cost-function is on the form

V (x, g) =
∑

ke(kyyk + ẏk)2 + kgg3,k

where the weight ke weighs the deviation from exponential convergence. The following parameters
and weights have been used in the simulations in this section

Hp = 48

Hu = 15

Ts = 0.5

ky,2 = 0.04

ky,3 = 0.08

kg,3 = 0.0001

ke = 4

The weight ky corresponds to 1/Tc where Tc is the time constant of the desired cross-track error
y0e

−t/Tc . Thus it is expected that increasing ky results in faster reduction of the cross-track error.
Figure 40 shows the results of a simulation for ky small. The cross-track error in Figure 40 does
converge faster than for the two constant look-ahead distances, however faster convergence was ob-
tained for cost-function 2, which means that ky is to small and should be increased.

The convergence rate of the cross-track error is increased when ky is increased. This is seen in
Figure 41, where the cross-track error converges faster than in Figure 40, however the over-shoot
in the cross-track error in Figure 41 is larger than in Figure 40. The look-ahead distance has a
slight increase at time t ≈ 42, which reduces the cross-track error rate so that the cross-track error
converges to approximately zero at time t ≈ 52 seconds, without any significant over-shoot. The
look-ahead distances in Figure 41 is small when the cross-track error is large, increases rapidly to
avoid over-shooting, and reduces rapidly and stays small when the cross-track error is small. This
behavior is as previously discussed desirable since it results in fast reduction of the cross-track error,
small over-shoot, and suppression of environmental forces such as currents.

Since a large value of ky results in faster convergence at the cost of increased over-shoot, there
is a trade off between fast convergence and small over-shoot. In the case of a constant current, the
effect of the current is suppressed fast when the weight ky,3 is used. This can be seen in Figures
42 and 43, where Figure 42 is the result of simulation with current1, while Figure 43 is the result
of simulation with current2. As for cost-function 2, current2 causes a larger over-shoot than current1.

This cost-function formulation results in good performance in the presence of both current1 and
current2, that is the cross-track error reduces fast, has little or no over-shoot and converges to ap-
proximately zero significantly faster than for any of the two constant look-ahead distances. The
performance in terms of over-shoot and convergence rate is much the same as for cost-function 2.
However, cost-function 3 seems to have the property that the predicted solutions at time k is very
close to the solutions at time k+1 because after a few iterations, the calculation time reduces so
that the total simulation time is close to the time simulated. When 70 seconds are simulated the
simulation last for approximately 65-77 seconds. That is, the simulations where cost-function 3 is
minimized by the nonlinear solver runs faster than for the LTV approach where cost-function 1 is
minimized which runs in approximately three times the time simulated. This is not the case when
cost-function 2 is minimized by the nonlinear solver. However, the calculations in the initial itera-
tions lasts for more than one sample interval so not all time limits are met, still this is a promising
result.

63



0 10 20 30 40 50 60 70
−1

0

1

2

3
Cross track error

t [s]

y(
t)

 [m
]

 

 
Δ(t) from MPC
Constant Δ=6
Constant Δ=3

0 10 20 30 40 50 60 70
0

2

4

6

8

10
Δ(t) from MPC

t [s]

Δ
(t

) 
[m

]

0 10 20 30 40 50 60 70
−1.5

−1

−0.5

0

0.5
Heading vs Desired Heading

t [s]

Ψ
(t

) 
[r

ad
]

 

 

ψ(t)

ψ
d
(t)

Figure 40: Simulation result for ky,2 and kg,3, no current.

0 10 20 30 40 50 60 70
−1

0

1

2

3
Cross track error

t [s]

y(
t)

 [m
]

 

 
Δ(t) from MPC
Constant Δ=6
Constant Δ=3

0 10 20 30 40 50 60 70
0

5

10

15

20

25
Δ(t) from MPC

t [s]

Δ
(t

) 
[m

]

0 10 20 30 40 50 60 70
−1.5

−1

−0.5

0

0.5
Heading vs Desired Heading

t [s]

Ψ
(t

) 
[r

ad
]

 

 

ψ(t)

ψ
d
(t)

Figure 41: Simulation result for ky,3 and kg,3, no current.
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Figure 42: Simulation result for ky,3 and kg,3, current1.
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Figure 43: Simulation result for ky,3 and kg,3, current2.
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8.2.2 Cost function 6

The weights which gave good results for cost-function 3 will be used as an initial guess of the weights
for this cost-function since this cost-function is the same as cost-function3 where weights on the de-
sired surge-velocities deviation from the desired surge-velocity on the path (ud) and the desired
surge velocity rate (u̇d) are added. The added weights should be chosen such that the desired surge-
velocity is allowed to deviate from the desired surge-velocity on the path only when this increases
the convergence rate of the cross-track error. That is, the desired surge-velocity should converge to
the desired surge-velocity on the path when the cross-track error converge to zero.

The parameters and weights used in the simulations with this cost-function are

Hp = 48 (8.2.6)

Hu = 15 (8.2.7)

Ts = 0.5 (8.2.8)

ke,1 = 4 (8.2.9)

kud,1 = 20 (8.2.10)

kud,2 = 10 (8.2.11)

ku̇d,1 = 3 (8.2.12)

ku̇d,2 = 4 (8.2.13)

kg3,1 = 0.0001 (8.2.14)

ky,5 = 0.12 (8.2.15)

Figure 45 shows the results from a simulation with the initial choice of weights. Notice that the
look-ahead distance does not reduce after the cross-track error over-shoots. When the cost-function
is investigated by reducing the look-ahead distance and inserting the initial values corresponding to
the state of the system at time t = 70 seconds, it becomes clear that the cost-function does reduce
when the look-ahead distance decreases. Thus, the look-ahead distance should be decreasing. Close
inspection of the look-ahead distance shows that it does reduce slowly, but not to the values of the
look-ahead distance which minimizes the cost-function. When the cost of (kyyk + ẏk)2 is plotted
with respect to increasing values of the look-ahead distance, the root of the problem becomes clear.
As can be seen in Figure 44, the term e2 = (kyyk + ẏk)2 is not convex for values of the look-ahead
distance greater than Δ ≈ 4 meter, when the system is in the state at time t = 70 seconds. It
should be noted at this point that Figure 44 has been produced under the assumption of u, v, y
and y constant and equal to their respective values at time t = 70 and by evaluating the following
equations for increasing Δ

yk = yk + ε sin ψk−1 (8.2.16)

ψd,k = −atan(
yk

Δ
) (8.2.17)

ψk = ψd,k (8.2.18)

ẏk = uk sin ψk + vk cosψk (8.2.19)

e2
k = (kyyk + ẏk)2 (8.2.20)

The cost e2 appares to have only one minimum, however this does not imply that the cost-function
does not have two or more minima. Even if the cost-function has only one minimum and is not
convex, the optimization-problem solver may terminate with a non-optimal solution. This is because
the gain in reducing the look-ahead distance appears to be smaller than it is, due to the small
magnitude of the directional derivative in the search direction, which is one of the criteria that
terminates fmincon. The directional derivative is [9]

D(f(x); p) = ∇f(x)T p

where we have that

f(x + p) = f(x) + ∇f(x + αp)T p
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Figure 44: The term e2 = (kyyk + ẏk)2 as a result of increasing Δ

for some α ∈ (0, 1). That is ∇f(x)T p is the instantaneous rate of change of f(x) moving through
x in the direction p. When ∇f(x)T p is small, f(x+p) is close to the minimum if f(x) is convex.
The optimization terminates before the optimal solution is reach because the directional derivative
satisfies the termination criterion. As the printout from fmincon also states: magnitude of direc-
tional derivative in search direction less than 2*options.TolFun5. Note that this is the most common
criteria which causes fmincon to terminate in the simulations performed in this thesis, which is no
problem as long as the look-ahead distance is in the convex region.

The find of only partial convexity of cost-function 6 implies that cost-function 3 is also only
partially convex. Which brings up the question, why did not this problem surface for cost-function
3? The answer is also the solution to the problem in Figure 45. There is a difference between the
implementations used for simulations with cost-function 3 and cost-function 6. Which is that the
initial guess of the optimal look-ahead distance is chosen differently. This is just a coincident, how-
ever fortunate. The initial guess used for cost-function 3, U1, puts the last inputs to zero, including
the look-ahead distance Δk+Hu

. This breaks the constraint on the look-ahead distance, which the
solver fmincon handles by finding a feasible value for Δk+Hu

, which also is within the convex-region.
This is because Δ = 0 breaks the lower bound Δmin = 0.5 and fmincon choose a feasible value of Δ
close to the lower bound. However, since the documentation of fmincon does not guarantee that this
will always be true, it would be better to set the last Δ in the initial guess of the optimal look-ahead
distance to Δmin.

The significance of having the last initial guess Δk+Hu
small, is that this ensures that the cost-

function will increase if Δk+Hu
is increased, further, if Δk+Hu−1 is large, the acceleration Δ̈k+Hu−2

and the rate Δ̇k+Hu−1 will have to be large to satisfy the equality constraints. The acceleration Δ̈
is weighed, hence, the cost-function will reduce if the acceleration is reduced. Reducing the accel-
eration by reducing Δk+Hu−1 will be cheaper than reducing the acceleration by increasing Δk+Hu

,
hence look-ahead distance Δk+Hu−1 will be reduced. Since look-ahead distances prior to Δk+Hu−1

also are constrained to ensure that the look-ahead distance is continuous, the effect may spread. At
the next time step, the optimal look-ahead distances will be shifted once in time and used as the
initial guess. This has the effect of moving the small look-ahead distances at the end of the solution

5For more information on this termination criterion, see the Matlab support website [16].
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vetor forward in time, and another small look-ahead distance will be inserted at the last place in
the vector. Thus any solution outside of the convex region, will approach the convex region.

Figure 46 shows the results for a simulation where the initial guess of the look-ahead distance
is taken to be the previous solution shifted once in time and where Δk+Hu

= Δmin, the weights are
as in Figure 45. The cross-track error in Figure 46 converges fast to approximately zero, and has a
small over-shoot. The surge-velocity increases when the cross-track error is large, and decreases as
the cross-track error reduces, which, in combination with the increase in the look-ahead distance,
results in only a small over-shoot. The look-ahead distance begins to decrease before the over-shoot,
and is small when the cross-track error over-shoots. The heading increases at time t ≈ 37 seconds,
as a result of the small look-ahead distance, and causes the cross-track error to converge fast to
approximately zero. The increase in the look-ahead distance at time t ≈ 50 seconds acts to reduce
the cross-track error rate so that the cross-track error does not over-shoot a second time. The surge-
velocity has a small peak at time t ≈ 10 seconds, which is shortly after the look-ahead distance
begins to increase. This peak might be caused by a too low weight on the desired surge velocity
rate, or by the lack of estimation and thus the lack of opportunity to weigh the desired surge velocity
acceleration.

Notice that the surge velocity in Figure 46 does not deviate much from the desired velocity on
the path. If the weight kud

is reduced, the surge velocity can vary more in order to achieve faster
convergence. The results in Figure 47 were obtained by reducing the weight kud

and increasing the
weight ku̇d

. The surge velocity in Figure 47 does not have the peak found in the surge velocity
in Figure 46, however it still converges fast to the desired velocity on the path. This is desired,
though it would be better if the surge velocity reduced more to avoid the over-shoot. However, the
over-shoot is so small that the cost of reducing the desired surge velocity is too large, so it is not
much to gain if the weight on kud

is reduces further. The cross-track error in Figure 47 converges
slightly faster and the over-shoot is slightly smaller than in Figure 46.

The results from subjecting the vessel to current1 and current2 can be found in Figures 48 and
49 respectively. The cross-track error in Figure 48 converges fast and has virtually no over-shoot.
The look-ahead distance is small when the cross-track error is large, increases as the cross-track
error reduces, and reduces as the cross-track error becomes small. There are some slight oscillations
in the look-ahead distance rate at time t ≈ 33 to t ≈ 40 seconds. These oscillations can be seen as
the flat spot in the look-ahead distance at time t ≈ 33 seconds which is followed by fast reduction of
the look-ahead distance at time t ≈ 35 seconds. However, the oscillations in the look-ahead distance
rate does not cause oscillations in the heading since the reducing cross-track error causes −atan( y

Δ ),
where y = y + ε sin ψ, to increase , that is the magnitude decreases when the heading is negative,
until the cross-track error is approximately zero. The cross-track error in Figure 49 converges fast,
but has larger over-shoot than in Figure 48. However, this is expected since the current in Figure 48
acts du damp the over-shoot while the current in Figure 49 acts to increase the over-shoot. Again
the look-ahead distance and the surge velocity behaves as desired.

The look-ahead distance resulting from cost-function 6 gives fast convergence of the cross-track
error to a value close to zero and only small over-shoot, for both current1 and current2. This is
in contrast to the cross-track errors from the two constant look-ahead distances. The heading does
not have oscillations, and the surge velocity converges to the desired velocity on the path. However,
it should be noted that the inclusion of the surge velocity to the problem comes at the cost of
increased calculation time relative to the calculation time when cost-function 3 was used, however,
the calculation time when cost-function 6 is used is much less than when cost-function 5 is used.
However, there is still much to gain by optimization of the code, reducing the time between samples
and by reducing the input and prediction horizons. Further work should be put into identifying the
convex-region of cost-function 3 and 6, so that a measure to stay in the convex-region other than
the one suggested in this section can be identified, or so that the measure taken in this section can
be proven to hold. This is because the measure taken in this section, and section cost-function 2, 3
and 5 is based on intuitive arguments and not on any mathematical proof.
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Figure 45: Simulation result for ky,5, kud,1, ku̇d,1, kg3,1 no current, initial guess U1.
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Figure 46: Simulation result for ky,5, kud,1, ku̇d,1, kg3,1 no current, initial guess U2.
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Figure 47: Simulation result for ky,5, kud,2, ku̇d,2, kg3,1 no current, initial guess U2.
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Figure 48: Simulation result for ky,5, kud,2, ku̇d,2, kg3,1 current1, initial guess U2.
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Figure 49: Simulation result for ky,5, kud,2, ku̇d,2, kg3,1 current2, initial guess U2.
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8.2.3 Cost function 5

The weights ky and kẏ which gave the best performance when cost-function 2 was minimized is a
natural initial guess since cost-function 5 is much the same as cost-function 2. The weights kud

and
ku̇d

which gave good results for cost-function 6 will be used as a initial guess of these weights.

The parameters and weights used for the simulations of this cost-function are

Hp = 48

Hu = 15

Ts = 0.5

ky,5 = 3

kẏ,3 = 160

kud,1 = 20

kud,2 = 10

ku̇d,1 = 3

ku̇d,2 = 15

kg3,4 = 0.0001

kg3,5 = 0.008

g1,max1
= 100

g1,max2
= 50

The results in Figure 50 indicates that this problem formulation is also non-convex, that is at least
not convex for all values of the look-ahead distance. This is seen from the quite large non-zero value
of the cross-track error after the over-shoot, and from the look-ahead distance staying large. When
the cost-function is evaluated for the state of the system at time t = 70 seconds, the cost-function
has a slight increase for a small reduction of the look-ahead distance, while it decreases for a large
reduction of the look-ahead distance. Thus it is not convex for large values of the look-ahead distance
in the current state. The non-convexity of cost-function 5 is likely the result of increased cost from
ẏ2 and reduced cost from y2 for decreasing values of the look-ahead distance. The cost-function was
inspected by executing the following commands in Matlab after the simulation had ended

cost = objectiveF 3(Uopt)

= 6.7627

Uoptt(1 : 3 : 3Hu) = Uopt(1 : 3 : 3Hu) − 0.1

cost = objectiveF 3(Uoptt)

= 6.7663

Uoptt(1 : 3 : 3Hu) = Uopt(1 : 3 : 3Hu) − 1

cost = objectiveF 3(Uoptt)

= 6.7645

Uoptt(1 : 3 : 3Hu) = Uopt(1 : 3 : 3Hu) − 10

cost = objectiveF 3(Uoptt)

= 6.7444

Uoptt(1 : 3 : 3Hu) = Uopt(1 : 3 : 3Hu) − 50

cost = objectiveF 3(Uoptt)

= 6.5696

The commands listed above evaluates the cost-function for the optimal inputs returned by fmincon,
and for decreasing values of the look-ahead distance. Optimal inputs Uopt(1 : 1 : 3Hu) are the
optimal look-ahead distances. All optimal inputs are subtracted by the same constant. The cost-
function objectiveF3 access the current state through a global variable, predicts the future states
based on Uopt/Uoptt, evaluates the cost-function and returns the value.
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Constraining the look-ahead distance to a smaller value did not move cost-function 6 from the
non-convex region. As seen in Figure 51, cost-function 5 seems to avoid the non-convex region when
the look-ahead distance is constrained to a smaller value, under the same conditions as in Figure 50.
However, since the convex region has not been identified, it would be safer to chose the initial guess
of the optimal look-ahead distance as in cost-function 6 in addition to constraining the look-ahead
distance. Notice that the heading in Figure 51 is not able to track its reference from time t ≈ 30
seconds to t ≈ 33 seconds. This is partly the result of the fast increase in the heading at time t ≈ 28
seconds combined with the reduction of the surge velocity at time t ≈ 29 seconds. This leads to a
large heading rate which can not be reduced immediately due to the reduced surge velocity. Further
more, the heading controller includes acceleration feed-forward and the oscillations in the heading
reference causes this feed-forward term to be large. Inspection of the control input in yaw shows
that it oscillates from the maximum positive value to the minimum negative value. The heading
dynamics acts as a first order low-past filter to fast changes in the heading rate, while the heading
rate dynamics acts as a first order low-pass filter to the control input. These things in combination
results in the heading not being able to track its reference from time t ≈ 30 seconds to t ≈ 33 seconds.

Note: The oscillations in the control input in yaw from one saturation limit to the other are not
feasible. This shows that the dynamics of the control inputs should also be modeled. For an im-
plementation on a real vessel of the MPC controllers suggested in this thesis, the control input rate
should also be weighed to reduce ware and tear.

The result of using the initial guess of the optimal look-ahead distance as in section cost-function 6,
U2, and constraining the look-ahead distance can be found in Figure 52. The weights are the same as
in Figure 51, but the results are different. This shows that setting a smaller upper bound on the look-
ahead distance alone, does not guarantee that the look-ahead distance stays in the convex-region,
and that the region is different for different states of the system. Further more, it shows that the
look-ahead distance in the two figures have converged to different optima. The look-ahead distance
in Figure 52 has some rapid oscillations at time t ≈ 30 seconds, while there are rapid oscillations
in the surge velocity from time t ≈ 15 to t ≈ 35 seconds. These oscillations are undesirable and
can be suppresed by increasing the weight on the look-ahead distance acceleration and the desired
surge-velocity rate.

Figure 53 is the result of increased weights ku̇d
and kg3

. The oscillations in the look-ahead dis-
tance and the desired-surge velocity are removed. The cross-track error in Figure 53 reduces fast
when it is large, which results from the small look-ahead distance and the large surge-velocity. The
look-ahead distance increases and the surge-velocity reduces as the cross-track error reduces. This
results in only a small over-shoot. This over-shoot is compensated for by reduced surge velocity
prior to the over-shoot and increased surge velocity after the over-shoot, and by the fast reducing
look-ahead distance.

Figure 54 results from using the same weights as in Figure 53, and by subjecting the vessel to
current1. The cross-track error reduces fast, has a small over-shoot and converges fast to approx-
imately zero. As the cross-error approach zero, t ≈ 37 seconds, the look-ahead distance increases
which reduces the cross-track error rate. This helps avoiding a second over-shoot since the current
acts to move the vessel in positive cross-track error direction.

Figure 55 is the result from simulations where the vessel is subjected to current2. Notice that
the surge velocity in Figure 55 reduces before the over-shoot and increases after the over-shoot,
this, in combination with the small look-ahead distance, results in only a small over-shoot and fast
convergence. The cross-track error in both Figures 54 and 55 converges faster and to a smaller
cross-track error, than for both constant look-ahead distances.

This cost-function results in fast convergence of the cross-track error and only small over-shoots.
However, the simulation time is up to 1148 seconds when 70 seconds are simulated, that is approxi-
mately sixteen times the time simulated. Which is a major draw-back of this cost-function.
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NOTE The solver is not always able to find the minimum within the maximum number of iter-
ations for this cost-function. Which renders the solution non-optimal and results in vast calculation
times. The calculation time in this section is generally much grater than for any of the simulations
in the previous sections.
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Figure 50: Simulation result for ky,5, kẏ,3, kud,1, ku̇d,1, kg3,4 and g1,max1
, initial guess U1.

74



0 10 20 30 40 50 60 70
−1

0

1

2

3
Cross track error

t [s]

y(
t)

 [m
]

 

 
Δ(t) from MPC
Constant Δ=6
Constant Δ=3

0 10 20 30 40 50 60 70
0

20

40

60
Δ(t) from MPC

t [s]

Δ
(t

) 
[m

]

0 10 20 30 40 50 60 70
−1.5

−1

−0.5

0

0.5
Heading vs Desired Heading

t [s]

Ψ
(t

) 
[r

ad
]

 

 

ψ(t)

ψ
d
(t)

0 10 20 30 40 50 60 70

0.2

0.25

0.3

0.35
Surge Velocity vs Desired Surge Velocity

t [s]

u(
t)

 [m
/s

]

 

 
u(t)
u

d
(t)

Figure 51: Simulation result for ky,5, kẏ,3, kud,1, ku̇d,1, kg3,4 and g1,max2
, initial guess U1.
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Figure 52: Simulation result for ky,5, kẏ,3, kud,1, ku̇d,1, kg3,4 and g1,max2
, initial guess U2.
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Figure 53: Simulation result for ky,5, kẏ,3, kud,1, ku̇d,2, kg3,5 and g1,max2
, initial guess U2.
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Figure 54: Simulation result for ky,5, kẏ,3, kud,1, ku̇d,2, kg3,5 and g1,max2
, current1, initial guess U2
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Figure 55: Simulation result for ky,5, kẏ,3, kud,1, ku̇d,2, kg3,5 and g1,max2
, current2, initial guess U2
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8.3 Optimal path-following of several straight lines.

The main goal of this thesis was to formulate an MPC problem for path-following, incorporating
existing controllers based on the LOS algorithm. This has been achieved for the two cost-functions
cost-function 2 and cost-function 3, and for the extended cost-functions cost-function 5 and cost-
function 6. The main difference in performance for these cost-functions, when they are used to track
one straight line, is calculation time. If one of the MPC problems derived in this thesis is to be
implemented on a marine vehicle, it has to perform better than the existing LOS algorithm where
the look-ahead distance is constant, when the vehicle tracks a path made up by several straight
lines. Thus, the cost-functions 2, 3, 5 and 6 will be used in simulations where the underactuated
vessel tracks the path in Figure 56. The vessel is subjected to current1 in this section. The results
from subjecting the vessel to current2 can be found in Appendix D.

The simulations are performed using the following parameters

St = 660

Hu = 15

Hp,1 = 48

Hp,2 = 45

Ts = 0.5

where St is the time simulated. In this section the positions of the vessel resulting from the look-
ahead distance returned by the optimizer can be found as the solid blue lines, while the positions
of the vessel resulting from the two constant look-ahead distances can be found as the dashed lines
and the dotted lines.

The way-points used to construct the path are

wp =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
12 18
27 27
27 48
21 54
12 54
0 48
−3 39
−3 30
3 21
12 21
21 27

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Note The steps in the heading and the cross-track error in the figures in this section occurs when a
way-point is reach and a new line is tracked. This step does not occur in the physical heading. The
heading seen in the figures is the heading in the rotated reference frame, thus the heading angle in the
figures is relative to the angle of the path. The cross-track error in the figures is not the y-coordinate
of the inertial reference frame but the y-coordinate of the rotated reference frame. Hence, no states
contains step changes. However, the heading generally does increase rapidly after a new way-point is
accepted, though the increase appears steeper than it is due to the long simulations time in the figures.

NoteThe initial choice U2 is used for simulations of cost-function 2 and cost-function 3 in this
section, since this choice is safer than the choice U1 made in previous simulations with these cost-
functions. The upper limit for the look-ahead distance is set to 100 meters instead of 50 meters.

8.3.1 Cost-function 2

This cost-function resulted in better path-following than for the two constant look-ahead distances
in the case of a single straight line path, both in the presence of a constant irrotational current,
and without disturbances. The simulation time was approximately 300 seconds when 70 seconds
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Figure 56: Path used to investigate the performance of the different cost-functions.

was simulated. The time simulated when the vessel tracks the path in figure 56 is 660 seconds,
while the resulting simulation time when this cost-function is used is approximately 2000 seconds.
Thus, the time-limits for finding input k are not met. However, since the simulation time can be
reduced as discussed in section Further work, it may be possible to reduce the calculation time so
that time-limits are met.

A good measure for how close the vessel tracks the path is the sum of the squared cross-track
errors. The resulting squared sums for the simulation where current1 was used are listed below

St
Ts∑

k=1

y2
1,k = 362.7535 (8.3.1)

St
Ts∑

k=1

y2
2,k = 304.7897 (8.3.2)

St
Ts∑

k=1

y2
3,k = 254.9836 (8.3.3)

where y1,k results from the constant look-ahead distance Δ = 6 meters, y2,k results from the con-
stant look-ahead distance Δ = 3 meters, and y3,k results from the look-ahead distance returned
from the optimizer. The sum 8.3.3 shows that the vessel is closer to the path for the look-ahead
distance returned by the optimizer than for the two constant look-ahead distances. This is also
seen in Figures 57-59. The results have been divided into the two Figures 58 and 59 so that the
results can be seen better. Notice that the vessel avoids or reduces the over-shoot by cutting the
corners between two successive lines of the path in Figure 57. This is due to the fast increase of
the look-ahead distance after a way-point is accepted, as seen in Figures 58 and 59. The cross-track
error in Figures 58 and 59 converges faster to a smaller value for the look-ahead distance returned
by the optimizer than for the two constant look-ahead distances.
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The sums of the squared cross-track errors for current2 are

St
Ts∑

k=1

y2
4,k = 365.7408 (8.3.4)

St
Ts∑

k=1

y2
5,k = 302.7394 (8.3.5)

St
Ts∑

k=1

y2
6,k = 248.6044 (8.3.6)

where y4,k results from the constant look-ahead distance Δ = 6 meters, y5,k results from the constant
look-ahead distance Δ = 3 meters, and y6,k results from the look-ahead distance returned from the
optimizer. The sum 8.3.6 shows that the vessel is closer to the path for the look-ahead distance
returned by the optimizer than for the two constant look-ahead distances, and is slightly smaller
than the sum 8.3.3.

This cost-function results in better path-following of the path in Figure 56, for a pre-tuned set
of constant weights, than achieved by using constant look-ahead distances.
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Figure 57: Position of the vessel for cost-function 2 when the vessel is subjected to current1.
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Figure 58: States from time t = 0 to t = 316 seconds, cost-function 2, the vessel is subjected to
current1.
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Figure 59: States from time t = 316.5 to t = 660 seconds, cost-function 2, the vessel is subjected to
current1.
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8.3.2 Cost-function 3

This cost-function resulted in the shortest calculation time when it was used to track a single straight
line. When this cost-function is used to track a path consisting of several straight lines, the simu-
lation runs faster than the actual time simulated. That is, the vessel is simulated for 660 seconds
while the simulation lasts 463.26 seconds when the vessel is subjected to current1. The time from the
simulation starts to the simulation terminates is measured by calling the Mathlab functions tic and
toc. This cost-function also resulted in better path-following than for the two constant look-ahead
distances in the case of a single straight line path, both in the presence of a constant irrotational
current, and without disturbances.

The sum of the squared cross-track errors for this cost-function where current1 was used is

St
Ts∑

k=1

y2
7,k = 258.7872 (8.3.7)

where y7,k results from the look-ahead distance returned from the optimizer. As seen from the sums
8.3.1-8.3.2 and 8.3.7, the look-ahead distance returned from the optimization problem results in
smaller deviation from the path than for the two constant look-ahead distances. This is also seen
in Figures 60-62 where the cross-track error converges faster and stays closer to the path for every
sub-path of the path in Figure 56. Notice that the over-shoots in the cross-track error causes fast
reduction of the look-ahead distance, which causes the heading to have one top for each sub-path.
This is necessary to achieve fast convergence to the path. Also notice the step in the look-ahead
distance when a way-point is excepted, i.e. at time t ≈ 610 seconds in Figure 62. These steps are
caused by a function which is implemented to ensure that the heading reference does not have a step
change in the transition between way-points, as discussed in section Way-points. Also notice that
the look-ahead distance resulting from cost-function 2 increases to a larger value after way-points are
accepted than the look-ahead distance resulting from cost-function 3, i.e at time t ≈ 325 seconds in
Figures 59 and 62, while the cross-track error seems to be quite similar in terms of over-shoots. It is
likely that this is because the look-ahead distance increases and decreases faster for cost-function 3
than for cost-function 2, and because the reduction of ẏ is smaller for larger values of the look-ahead
distance when the look-ahead distance is large than when it is small.

Since this cost-function performs good and the simulation runs faster than the simulated time
for current1, it would be interesting to see whether this also is true for current2. The resulting
simulation time when the vessel is subjected to current2 is 537.68 seconds. Which is greater than
for current1 but well within the simulated time which is 660 seconds.

The sum of the squared cross-track errors for the simulation where current2 was used is

St
Ts∑

k=1

y2
8,k = 259.7788 (8.3.8)

where y8,k results from the look-ahead distance returned from the optimizer. The sum resulting from
the look-ahead distance returned by the optimizer, sum 8.3.9, is smaller than the sums resulting
from the two constant look-ahead distances, sums 8.3.4 and 8.3.5, only slightly larger than the sum
8.3.7, and larger than the sum 8.3.6.

This cost-function results in better path-following of the path in Figure 56, for a pre-tuned set
of constant weights, than achieved by using constant look-ahead distances. The sum of the squared
cross-track errors is slightly larger for this cost-function than for cost-function 2, however the simu-
lation time for this cost-function is within the time simulated. Which is a very desirable property.
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Figure 60: Position of the vessel for cost-function 3 when the vessel is subjected to current1.
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Figure 61: States from time t = 0 to t = 316 seconds, cost-function 3, the vessel is subjected to
current1.
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Figure 62: States from time t = 316.5 to t = 660 seconds, cost-function 3, the vessel is subjected to
current1.
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8.3.3 Cost-function 5

This cost function has the advantage relative to cost-function 2 that the surge velocity can be varied.
However, the calculation time is the longest of the suggested cost-functions. The simulation time
is greater than 10000 seconds, when the time simulated is 660 seconds. That is, it takes almost 3
hours to simulate 11 minutes. This is a major drawback to cost-function 5. The vessel does track
the path with small cross-track errors for this cost-function. Which can be seen in Figures 75-77,
and from the sum of the squared cross-track errors resulting from the optimizer for current1

St
Ts∑

k=1

y2
9,k = 233.6862 (8.3.9)

Notice that the over-shoots in the cross-track error in Figures 76 and 77 are very small. This is also
seen by comparing the path of the vessel at approximately coordinates [30 26] in Figure 75 with
i.e. Figure 60. The smaller over-shoots in the cross-track error for this cost-function, relative to
cost-function 2 is a result of the reduced surge velocity prior to the over-shoots. The surge velocity
in Figures 76 does converge to the velocity desired on the path, however the surge velocity has
some fast changes, i.e at time t ≈ 515 in Figure 77. These fast changes may not be feasible, since
the rate of change in the control input is constrained on a real vessel while it is not in the simulation.

The sum of the squared cross-track errors when current2 is used (y2
10,k) is almost the same as

for current 1

St
Ts∑

k=1

y2
10,k = 233.9605 (8.3.10)
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Figure 63: Position of the vessel for cost-function 5 when the vessel is subjected to current1.
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Figure 64: States from time t = 0 to t = 316 seconds, cost-function 5, the vessel is subjected to
current1.
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Figure 65: States from time t = 316.5 to t = 660 seconds, cost-function 5, the vessel is subjected to
current1.
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8.3.4 Cost-function 6

This cost-function has the advantage, relative to cost-function 3, of letting the desired surge velocity
vary. However this comes at the cost of grater calculation time. The calculation time when this
cost-function is used is approximately 3500 seconds, which is approximately 33% of the calculation
time when cost-function 5 is used, approximately nine times the calculation time when cost-function
3 is used, and a little less than 2 times the calculation time when cost-function 2 is used. This is
also the case when these cost-functions are used when the vessel tracks the straight line path. When
the vessel is subjected to current1, the sum of the squared cross-track errors is

∑
y2
10,k = 247.6981 (8.3.11)

As seen from 8.3.11 the sum of the squared cross-track errors is smaller for this cost-function than
for cost-function 3, when the vessel is subjected to current1, but larger than for cost-function 5.
The position of the vessel can be found in Figure 66. Notice that the over-shoot at position [31 26]
is smaller in Figure 66 than in Figure 60. This is again a result of the ability to reduce the surge
velocity to reduce or avoid over-shoot. The surge velocity in Figures 67 and 68 stays closer to the
desired surge velocity on the path than the surge velocity resulting from cost-function 5, which may
be the reason why the vessel stays closer to the path for cost-function 5 than for cost-function 6. It
is possible that the performance of cost-function 6 may be improved for choices of the weights kud

and ku̇d
which allows the surge velocity to vary more. However, since cost-function 2 resulted in

smaller cross-track errors than cost-function 3, it is likely that cost-function 5 will perform better
in terms of the cross-track error than cost-function 6 even for better choices of the weights kud

and
ku̇d

. The cross-track error converges fast with little or no over-shoot. The over-shoots are smaller
than for cost-function 3 but similar to those for cost-function 5. The sum of the squared cross-track
errors when current2 is used is

∑
y2
11,k = 256.5299 (8.3.12)

Again the sum 8.3.12 shows that the vessel is closer to the path when the look-ahead distance re-
turned from MPC is used instead of the constant look-ahead distances. Notice that the sum of the
squared cross-track errors for current2 for cost-function 6 is closer to the corresponding sum for
cost-function 3 than when current1 is used. This indicates that the gain in extending cost-function 3
to include time variant desired surge velocity might not be that great, considering the vast increase
in calculation time. However, as discussed, it is possible that the results for cost-function 6 may be
improved.
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Figure 66: Position of the vessel for cost-function 6 when the vessel is subjected to current1.
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Figure 67: States from time t = 0 to t = 316 seconds, cost-function 6, the vessel is subjected to
current1.
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Figure 68: States from time t = 316.5 to t = 660 seconds, cost-function 6, the vessel is subjected to
current1.
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8.3.5 Tuning rules

In general one should expect that increasing the weight on one state-deviation should result in faster
convergence of this state. However, it is important to keep in mind that some of the cost-functions
are formulated as the sum of squared state deviations. This does not mean that the lower the
contribution of one state deviation to the cost-function is, the nicer this state converges. This is
because the lowest cost may be where a state reduces as fast as the dynamic of the state allows,
but over-shoots significantly. This is the case for the cross-track error, which is the state we want
to converge fast and exponentially to zero. Figure 20 shows the results from minimizing

∑
kyy2

k. It
is therefore necessary to find weights which causes the cost-function to have its minimum close to
desired behavior of the cross-track error.

The simulations leading to the weights presented in this report are not all included since presenting
every simulation performed to find proper weights would take too much space. However, some tips
to find proper weights will be presented in the following.

If the look-ahead distance becomes too large when it increases to avoid over-shoot in the cross-
track error, the result is that the look-ahead distance does not become small soon enough after the
over-shoot. If this problem is experienced, reduce the upper limit of the look-ahead distance and/or
increase the weights on the changes in the look-ahead distance and its derivatives. The latter may
not always result in good performance since it will also increase the cost of reducing the look-ahead
distance.

It is generally a good idea to start with small weights on the change in inputs, or on the derivatives
of the inputs if the nonlinear solver is used, relative to the weights on the states. This is because
the weights on the inputs should be used to reduce oscillations in the inputs, except for the weight
kud

which is used to ensure that the surge velocity converges to the desired surge velocity on the
path. In cost-function formulation cost-function 1 the following rules for tuning can be used

- Over-shoot can be reduced by increasing the weight on the heading relative to the weight

on the cross-track error.

- Increased convergence rate of the cross-track error can be achieved by reducing the weight

on the heading relative to the weight on the cross-track error, possibly at the cost of over-shoot.

- Unwanted oscillations in the look-ahead distance and the heading can be reduced by increasing

the prediction horizon, or by adding a weight on the heading rate. The best effect is from

a combination of both increasing the prediction horizon and including a weight on the heading rate.

Note Good performance in the general case for the same set of constant weights has not been achieved
for cost-function 1, i.e. good performance in the presence of one specific current does not imply good
performance in the presence of a current heading in the opposite direction.

Note The LTV model approach was only successful for cost-function 1.

In cost-function formulation cost-function 2 the following rules for tuning can be used

- Over-shoot in the cross-track error can be reduced by increasing the weight on the

cross-track error rate relative to the weight on the cross-track error.

- Increased convergence rate of the cross-track error can be achieved by reducing the weight

on the cross-track error rate relative to the weight on the cross-track error,

possibly at the cost of increased over-shoot.

- Unwanted oscillations in the look-ahead distance can be reduced by increasing

the weight on the look-ahead distance acceleration.
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In cost-function formulation cost-function 3 the following rules for tuning can be used

- Over-shoot in the cross-track error can be reduced by reducing the parameter

ky

- Increased convergence rate of the cross-track error can be achieved by increasing ky.

- Unwanted oscillations in the look-ahead distance can be reduced by increasing

the weight on the look-ahead distance acceleration.

Tuning the weights for cost-function 3 is easier than for the other cost-functions since the tuning of
the two parameters can be done quite independent.

If cost-function 5 or cost-function 6 is to be tuned after weights for cost-function 2 or cost-function
3 have been obtained, these weights should be used as a starting points. The tuning is performed
using the same rules as for cost-function 2 or cost-function 3. The weight kud

is increased if the
surge velocity is not close enough to the desired velocity on the path, while it is reduced if the surge
velocity does not deviate from the path when this is desirable. Oscillations in ud are reduced by
increasing ku̇d

, while reducing ku̇d
allows faster changes in the surge velocity. If the weight kud

is
small and the surge velocity still stays at the desired velocity on the path, try reducing kẏd

.
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9 Conclusion

Six cost-functions have been suggested to find the optimal look-ahead distance, and in some cases
the optimal surge velocity reference. The general performance in terms of path following, relative
to the existing constant look-ahead distance approach, is improved for all suggested cost-functions
except for cost-function 1 and cost-function4. That is, all of the suggested cost-functions 2, 3, 5
and 6 results in path following with faster convergence of the cross-track error, smaller over-shots in
the cross-track error and with smaller cross-track errors, than for the constant look-ahead distances.
This is true in the case of no disturbances and in the presence of a constant irrotational current.
Both when the vessel tracks a straight line path and when the vessel tracks a path consisting of
several straight lines for constant pre-tuned weights. This is a very desirable property. That is,
weights tuned to achieve good performance when the vessel tracks a single straight line, also results
in good performance when the vessel tracks a path consisting of several straight lines. This is a
necessary property if a controller based on one of the suggested cost-functions is to be implemented
on a real vessel since the controller has to be able to track any path after being tuned.

A good measure of the performance, in terms of the cross-track error, of the cost-functions and
the constant look-ahead distances, is the sum of the squared cross-track errors. The sums resulting
from cost-functions 2, 3, 5 and 6 are all smaller than the sums resulting from the constant look-ahead
distances. When the vessel tracks a path consisting of several straight lines, the smallest sum for
the constant look-ahead distances is approximately 303, while the largest sums for cost-functions 2,
3, 5 and 6 are approximately 255, 260, 234 and 256 respectively. That is, cost-function 5 results in
the smallest cross-track errors. However, only cost-function 3 results in calculation times close to
the time limits for producing the next inputs, while cost-function 5 results in the largest calculation
times, approximately 15 times the time limits. The tuning process of cost-function 3 is quite easy.

The main trade-offs that has to be made are between calculation time and convergence rate of
the cross-track error, and between fast reduction of the cross-track error and over-shoot.

The LTV model developed in this thesis is accurate enough for cost-function 1. However, this
is not the case when the cross-track error rate is included in the LTV model. Hence cost-function
1 is the only cost-function where using the LTV model gives good results. That is, weights which
yield good performance in certain cases can be found, however the same set of weights does not yield
good performance in the general case. The inaccuracy of the LTV model motivates for solving the
optimization problems with a non-linear optimization problem solver. The gain in this approach is
increased accuracy, however this is at the cost of increased calculation times, and no guarantee of
convexity.

The cost-functions 2, 3, 5 and 6 are not convex for all values of the look-ahead distance, which
may cause problems. However, a measure to stay in the convex region is presented, that is, a certain
choice of starting points for the optimizer resolves this problem. None of the problems caused by
the non-convexity of the cost-functions are experienced when this measure is taken.

9.1 Further work

An improved LTV model for the cross-track error rate ẏ is needed since the LTV model used for
this state in this thesis is too inaccurate. Using an LTV model for predictions is desired because the
optimization problem is convex when the system is modeled linear time variant, and because the
calculation time is in general shorter. The calculation time when cost-function 5 and cost-function
6 is minimized has to be reduced to make the use of these cost-functions feasible. It is desirable to
use these cost-functions because they have the desirable property of being able to vary the desired
surge velocity.

The assumptions of perfect knowledge of the vessel model and of unconstrained control input rates
has to be relaxed since these assumptions will not hold. Thus, the performance in the case of an
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imperfect prediction model should be investigated by inserting reasonable inaccuracies in the pre-
diction model and including the actuator dynamics in the vessel dynamics used for simulations. The
performance in the case of an imperfect vessel model can also be investigated by implementing the
suggested MPC approach on a real vessel such as Cybership 2.

The physical constraints on actuators and states should be included in the optimization problem
since MPC is well suited for such constraint handling.

As little use of the actuators as possible is generally desirable. This is because excessive use of the
actuators causes unnecessary wear and tear, and increased fuel consumption. Thus, the possibility
of including the control inputs and the control input rate in the cost-functions should be investigated.

Work should be put into proving stability for the time variant look-ahead distance and desired
surge velocity. Any constraints for stability to hold should be identified.

The convex region of the cost-functions should be identified so that a measure to guarantee conver-
gence to the global optimum can be identified.
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A Appendix: Analytical Φk and Γk

In the case of ud constant and u assumed equal to ud the matrices 4.2.66 and 4.2.67 for our system
are

Φk = I + Ts

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂f1(x,u)
∂y

∂f1(x,u)
∂y

∂f1(x,u)
∂ψ

∂f1(x,u)
∂v

∂f1(x,u)
∂v

∂f1(x,u)
∂r

∂f2(x,u)
∂y

∂f2(x,u)
∂y

∂f2(x,u)
∂ψ

∂f2(x,u)
∂v

∂f2(x,u)
∂v

∂f2(x,u)
∂r

∂f3(x,u)
∂y

∂f3(x,u)
∂y

∂f3(x,u)
∂ψ

∂f3(x,u)
∂v

∂f3(x,u)
∂v

∂f3(x,u)
∂r

∂f4(x,u)
∂y

∂f4(x,u)
∂y

∂f4(x,u)
∂ψ

∂f4(x,u)
∂v

∂f4(x,u)
∂v

∂f4(x,u)
∂r

∂f5(x,u)
∂y

∂f5(x,u)
∂y

∂f5(x,u)
∂ψ

∂f5(x,u)
∂v

∂f5(x,u)
∂v

∂f5(x,u)
∂r

∂f6(x,u)
∂y

∂f6(x,u)
∂y

∂f6(x,u)
∂ψ

∂f6(x,u)
∂v

∂f6(x,u)
∂v

∂f6(x,u)
∂r

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A.0.1)

Γk = Ts

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂f1(x,g)
∂g1

∂f1(x,g)
∂g2

∂f1(x,g)
∂g3

∂f2(x,g)
∂g1

∂f2(x,g)
∂g2

∂f2(x,g)
∂g3

∂f3(x,g)
∂g1

∂f3(x,g)
∂g2

∂f3(x,g)
∂g3

∂f4(x,g)
∂g1

∂f4(x,g)
∂g2

∂f4(x,g)
∂g3

∂f5(x,g)
∂g1

∂f5(x,g)
∂g2

∂f5(x,g)
∂g3

∂f6(x,g)
∂g1

∂f6(x,g)
∂g2

∂f6(x,g)
∂g3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(A.0.2)
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where

∂f1(x, u)

∂y
=

∂f1(x, u)

∂y
=

∂f1(x, u)

∂v
=

∂f1(x, u)

∂r
=

∂f2(x, u)

∂y
=

∂f2(x, u)

∂y

=
∂f2(x, u)

∂v
=

∂f2(x, u)

∂r
=

∂f3(x, u)

∂y
=

∂f3(x, u)

∂y
=

∂f3(x, u)

∂ψ

=
∂f3(x, u)

∂v
=

∂f3(x, u)

∂v
=

∂f4(x, u)

∂y
=

∂f4(x, u)

∂v
=

∂f5(x, u)

∂y

=
∂f5(x, u)

∂y
=

∂f5(x, u)

∂ψ
=

∂f5(x, u)

∂v
=

∂f6(x, u)

∂y
=

∂f6(x, u)

∂v

=
∂f1(x, u)

∂u1
=

∂f1(x, u)

∂u2
=

∂f1(x, u)

∂u3
=

∂f2(x, u)

∂u1
=

∂f2(x, u)

∂u2
=

∂f2(x, u)

∂u3

=
∂f3(x, u)

∂u1
=

∂f3(x, u)

∂u2
=

∂f3(x, u)

∂u3
=

∂f5(x, u)

∂u1
=

∂f5(x, u)

∂u2
=

∂f5(x, u)

∂u3

= 0 (A.0.3)

∂f1(x, u)

∂ψ
= uc cos(ψn) − vn sin(ψn) (A.0.4)

∂f1(x, u)

∂v
= cos(ψn) (A.0.5)

∂f2(x, u)

∂ψ
= uc cos(ψn) − vn sin(ψn) (A.0.6)

∂f2(x, u)

∂v
= cos(ψn) (A.0.7)

∂f3(x, u)

∂r
= 1 (A.0.8)
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∂f4(x, u)

∂y
= −ε

{2

[
u1,n

(
(uc sin(ψn) + vn cos(ψn))2 − u2

2,n

)
− 2ynu2,n(uc sin(ψn) + vn cos(ψn))

]

(u2
1,n + y2

n)2

−

8yn

[
u2,n(uc sin(ψn) + vn cos(ψn))(u2

1,n − y2
n) + u1,nyn

(
(uc sin(ψn) + vn cos(ψn))2 − u2

2,n

)]

(u2
1,n + y2

n)3

+

u3,n(u2
1,n + y2

n) + 2yn

[

u1,n

(
rn cos(ψn)(uc + ucΘ + M) + vn[(ucΞ + N) cos(ψn) − rn sin(ψn)]

)
− ynu3,n

]

(u2
1,n + y2

n)2

+

k1

[
u2,n(u2

1,n + y2
n) + 2yn

(
u1,n(uc sin(ψn) + vn cos(ψn)) − ynu2,n

)]

(u2
1,n + y2

n)2

− k0
u1,n

u2
1,n + y2

n

}
(A.0.9)

∂f4(x, u)

∂ψ
= −ε

{2

[
u2,n(uc cos(ψn) − vn sin(ψn))(u2

1,n − y2
n)

+2u1,nyn(uc sin(ψn) + vn cos(ψn))(uc cos(ψn) − vn sin(ψn))

]

(u2
1,n + y2

n)2

+

u1,n

[
rn sin(ψn)(uc + ucΘ + M) + vn

(
(ucΞ + N) sin(ψn) + rn cos(ψn)

)]

u2
1,n + y2

n

− k1
u1,n(uc cos(ψn) − vn sin(ψn))

u2
1,n + y2

n

− k0

}
(A.0.10)

∂f4(x, u)

∂v
= (ucΞ + N)

− ε

{2

[
cos(ψn)u2,n(u2

1,n − y2
n) + 2u1,nyn cos(ψn)(uc sin(ψn) + vn cos(ψn))

]

(u2
1,n + y2

n)2

−
u1,n[(ucΞ + N) cos(ψn) − rn sin(ψn)]

u2
1,n + y2

n

− k1
u1,n cos(ψn)

u2
1,n + y2

n

}
(A.0.11)
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∂f4(x, u)

∂r
= (ucΘ + M) − ε

{
−

u1,n

[
cos(ψn)(uc + ucΘ + M) − vn sin(ψn)

]

u2
1,n + y2

n

− k1

}
(A.0.12)

∂f5(x, u)

∂v
= (ucΞ + N) (A.0.13)

∂f5(x, u)

∂r
= (ucΘ + M) (A.0.14)
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∂f6(x, u)

∂y
=

2

[
u1,n

(
(uc sin(ψn) + vn cos(ψn))2 − u2

2,n

)
− 2ynu2,n(uc sin(ψn) + vn cos(ψn))

]

(u2
1,n + y2

n)2

−

8yn

[
u2,n(uc sin(ψn) + vn cos(ψn))(u2

1,n − y2
n) + u1,nyn

(
(uc sin(ψn) + vn cos(ψn))2 − u2

2,n

)]

(u2
1,n + y2

n)3

+

u3,n(u2
1,n + y2

n) + 2yn

[

u1,n

(
rn cos(ψn)(uc + ucΘ + M) + vn[(ucΞ + N) cos(ψn) − rn sin(ψn)]

)
− ynu3,n

]

(u2
1,n + y2

n)2

+

k1

[
u2,n(u2

1,n + y2
n) + 2yn

(
u1,n(uc sin(ψn) + vn cos(ψn)) − ynu2,n

)]

(u2
1,n + y2

n)2

− k0
u1,n

u2
1,n + y2

n

(A.0.15)

∂f6(x, u)

∂ψ
=

2

[
u2,n(uc cos(ψn) − vn sin(ψn))(u2

1,n − y2
n)

+2u1,nyn(uc sin(ψn) + vn cos(ψn))(uc cos(ψn) − vn sin(ψn))

]

(u2
1,n + y2

n)2

+

u1,n

[
rn sin(ψn)(uc + ucΘ + M) + vn

(
(ucΞ + N) sin(ψn) + rn cos(ψn)

)]

u2
1,n + y2

n

− k1
u1,n(uc cos(ψn) − vn sin(ψn))

u2
1,n + y2

n

− k0 (A.0.16)

∂f6(x, u)

∂v
=

2

[
cos(ψn)u2,n(u2

1,n − y2
n) + 2u1,nyn cos(ψn)(uc sin(ψn) + vn cos(ψn))

]

(u2
1,n + y2

n)2

−
u1,n[(ucΞ + N) cos(ψn) − rn sin(ψn)]

u2
1,n + y2

n

− k1
u1,n cos(ψn)

u2
1,n + y2

n

(A.0.17)
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∂f6(x, u)

∂r
= −

u1,n

[
cos(ψn)(uc + ucΘ + M) − vn sin(ψn)

]

u2
1,n + y2

n

− k1 (A.0.18)

∂f4(x, u)

∂u1
= −ε

{2

[
2u1,nu2,n(uc sin(ψn) + vn cos(ψn)) + yn

(
(uc sin(ψn) + vn cos(ψn))2 − u2

2,n

)]

(u,n12 + y2)2

−

8u1,n

[
u2,n(uc sin(ψn) + vn cos(ψn))(u2

1,n − y2
n) + u1,nyn

(
(uc sin(ψn) + vn cos(ψn))2 − u2

2,n

)]

(u2
1,n + y2

n)3

−

(
rn cos(ψn)(uc + ucΘ + M) + vn[(ucΞ + N) cos(ψn) − rn sin(ψn)]

)

u2
1 + y2

n

+

2u1,n

[
u1,n

(
rn cos(ψn)(uc + ucΘ + M) + vn[(ucΞ + N) cos(ψn) − rn sin(ψn)]

)
− u3,nyn

]

(u2
1,n + y2

n)2

− k1

[
(uc sin(ψn) + vn cos(ψn))

u2
1,n + y2

n

−
2u1,n[u1,n(uc sin(ψn) + vn cos(ψn)) − ynu2,n]

(u2
1,n + y2

n)2

]

k0
yn

u2
1,n + y2

n

}
(A.0.19)

∂f4(x, u)

∂u2
= −ε

{
2[(uc sin(ψn) + vn cos(ψn))(u2

1,n − y2
n) − 2u1,nu2,nyn]

(u2
1,n + y2

n)2
+ k1

yn

u2
1,n + y2

n

}
(A.0.20)

∂f4(x, u)

∂u3
= −ε

{
yn

u2
1,n + y2

n

}
(A.0.21)
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∂f6(x, u)

∂u1
=

2

[
2u1,nu2,n(uc sin(ψn) + vn cos(ψn)) + yn

(
(uc sin(ψn) + vn cos(ψn))2 − u2

2,n

)]

(u,n12 + y2)2

−

8u1,n

[
u2,n(uc sin(ψn) + vn cos(ψn))(u2

1,n − y2
n) + u1,nyn

(
(uc sin(ψn) + vn cos(ψn))2 − u2

2,n

)]

(u2
1,n + y2

n)3

−

(
rn cos(ψn)(uc + ucΘ + M) + vn[(ucΞ + N) cos(ψn) − rn sin(ψn)]

)

u2
1 + y2

n

+

2u1,n

[
u1,n

(
rn cos(ψn)(uc + ucΘ + M) + vn[(ucΞ + N) cos(ψn) − rn sin(ψn)]

)
− u3,nyn

]

(u2
1,n + y2

n)2

− k1

[
(uc sin(ψn) + vn cos(ψn))

u2
1,n + y2

n

−
2u1,n[u1,n(uc sin(ψn) + vn cos(ψn)) − ynu2,n]

(u2
1,n + y2

n)2

]

k0
yn

u2
1,n + y2

n

(A.0.22)

∂f6(x, u)

∂u2
=

2[(uc sin(ψn) + vn cos(ψn))(u2
1,n − y2

n) − 2u1,nu2,nyn]

(u2
1,n + y2

n)2
+ k1

yn

u2
1,n + y2

n

(A.0.23)

∂f6(x, u)

∂u3
=

yn

u2
1,n + y2

n

(A.0.24)
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B Linear approximation of the derivative

The derivate of f(t) is defined as

ḟ(t) = lim
h→0

f(t + h) − f(t)

h

f̈(t) = lim
h→0

ḟ(t + h) − ḟ(t)

h

Form Taylors theorem we have that

f(t + h) = f(t) +
h

1!
ḟ(t) +

h2

2!
f̈(t) + ... +

hn

n!
f(n)(t) +

hn+1

(n + 1)!
fn+1(t + ϑh) (B.0.1)

where the last term denotes the residue, and

0 < ϑ < 1

The last term ϑ approaches zero when lim
n→∞

and equation B.0.1 converges. For n=1 we have that

f(t + h) = f(t) +
h

1!
ḟ(t) +

h2

2!
f̈(t + ϑh) (B.0.2)

If the expression B.0.2 for f(t+h) is solved for ḟ(t), and h approaches zero, we obtain the definition
of the derivative ḟ(t).

ḟ(t) =
f(t + h) − f(t)

h
−

h

2!
f̈(t + ϑh)

=
f(t + h) − f(t)

h
+ o(h) (B.0.3)

where o(h) is the residue. If h is sufficiently small, that is o(h)≈0, the derivative can be estimated
by

ḟ(t) =
f(t + h) − f(t)

h
(B.0.4)

similarly the second derivative can be estimated by

f̈(t) =
ḟ(t + h) − ḟ(t)

h
(B.0.5)

the first and second derivative of Δ can now be found from

Δ̇i =
Δ(ti+1) − Δ(ti)

ti+1 − ti
(B.0.6)

Δ̈i =
Δ̇(ti+1) − Δ̇i

ti+1 − ti
(B.0.7)

Note: If these approximation is to be good enough, the difference between ti and ti−1 needs to be
small enough. For the implementation it will be needed to determine the initial value of Δ̇ in order
to calculate the first Δ̈.
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C Computer details

System:

Microsoft Windows XP Professional v2002 Service Pack 2

Simulation environment:

Hardware:

- Intel(R) Pentium(R)D CPU 3GHZ DualCore

- 2 GB RAM

Software:

- Matlab 7.4.0 (R2007a)
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D Optimal path-following of several straight lines, current2

Each section contains three figures which are the results for simulations with current2. All other
parameters are unchanged relative to the chapter Optimal path-following of several straight lines.

D.1 cost-function2
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Figure 69: Position of the vessel for cost-function2 when the vessel is subjected to current2.
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Figure 70: States from time t = 0 to t = 316 seconds, cost-function2, the vessel is subjected to
current2.
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Figure 71: States from time t = 316.5 to t = 660 seconds, cost-function2, the vessel is subjected to
current2.
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D.2 cost-function3
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Figure 72: Position of the vessel for cost-function3 when the vessel is subjected to current2.
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Figure 73: States from time t = 0 to t = 316 seconds, cost-function3, the vessel is subjected to
current2.
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Figure 74: States from time t = 316.5 to t = 660 seconds, cost-function3, the vessel is subjected to
current2.
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D.3 cost-function5
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Figure 75: Position of the vessel for cost-function5 when the vessel is subjected to current2.
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Figure 76: States from time t = 0 to t = 316 seconds, cost-function5, the vessel is subjected to
current2.

350 400 450 500 550 600 650
−2

0

2

4
Cross track error

t [s]

y(
t)

 [m
]

 

 Δ(t) from MPC

Constant Δ=6

Constant Δ=3

350 400 450 500 550 600 650
0

20

40

60
Δ(t) from MPC

t [s]

Δ
(t

) 
[m

]

350 400 450 500 550 600 650
−1

−0.5

0

0.5
Heading vs Desired Heading

t [s]

Ψ
(t

) 
[r

ad
]

 

 

ψ(t)

ψ
d
(t)

350 400 450 500 550 600 650
0.15

0.2

0.25

0.3
Surge Velocity vs Desired Surge Velocity

t [s]

u(
t)

 [m
/s

]

 

 
u(t)
u

d
(t)

Figure 77: States from time t = 316.5 to t = 660 seconds, cost-function5, the vessel is subjected to
current2.
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D.4 cost-function6
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Figure 78: Position of the vessel for cost-function6 when the vessel is subjected to current2.
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Figure 79: States from time t = 0 to t = 316 seconds, cost-function6, the vessel is subjected to
current2.
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Figure 80: States from time t = 316.5 to t = 660 seconds, cost-function6, the vessel is subjected to
current2.
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E How to produce the results

To produce the figures in the Chapter Line of sight and Way points, sectioin Way point swith-
ing, angle og the path and initial look-ahead distance, run file mainCost23Pathtest.m. Set vari-
ables better = 0 and goodChoice = 0 to produce Figures 5 and 7. Set variables better = 1 and
goodChoice = 0 to produce Figures 6 and 8. Set variables better = 1 and goodChoice = 1 to
produce Figure 9. The Figure 10 is produced each time the file runs.

To produce the results in Chapter Optimal path-following for a straight line path Section cost-
function1 run file mainqp.m and set: current = 1 if current should be included else current = 0,
betac = π

3 for current1 betac = −π
3 for current2, cost = 0 for Q1, cost = 1 for Q2, cost = 2 for Q3,

simulation time in seconds is the variable stopp. The prediction horizon is Hp.

To produce the results in Chapter Optimal path-following for a straight line path Section cost-
function2 run file mainCost23.m and set: current = 1 if current should be included else current = 0,
betac = π

3
for current1 betac = −π

3
for current2, cost = 0 for kẏ = 160, cost = 1 for kẏ = 200,

simulation time in seconds is the variable stopp. For the results from using the LTV-model, run file
mainqpdy.m set: cost = 0 for Q4 and R2, cost = 1 for Q5 and R2, cost = 2 for Q5 and R3, cost = 3
for Q5 and R4, cost = 4 for Q6 and R5. The prediction horizon is Hp. Current and simulation time
is set as in mainCost23.m. The returned variable G contains the matrices Φk+i, an the returned
variable J contains the matrices Γk+i.

To produce the results in Chapter Optimal path-following for a straight line path Section cost-
function3 run file mainCost23.m and set: current = 1 if current should be included else current = 0,
betac = π

3 for current1 betac = −π
3 for current2, cost = 2 for ky = 0.08, cost = 3 for ky = 0.12,

simulation time in seconds is the variable stopp.

To produce the results in Chapter Optimal path-following for a straight line path Section cost-
function5, run file mainUlinUs.m and set: path = 0, cost = 0 for kud,1, ku̇d,1, cost = 1 for kud,1, ku̇d,2,
for current current = 1, betac = π

3 for current1 betac = −π
3 for current2, simulation time in seconds

is the variable stopp.

To produce the results in Chapter Optimal path-following for a straight line path Section cost-
function6, run file mainUlinUs.m and set: path = 0, cost = 2 for kud,1, ku̇d,1, cost = 3 for kud,2, ku̇d,3,
for current current = 1, betac = π

3 for current1 betac = −π
3 for current2, simulation time in seconds

is the variable stopp.

To produce the results in Chapter Optimal path-following of several straight lines. Section cost-
function2, run file mainCost23Path.m and set: current = 1, betac = π

3 for current1 betac = −π
3 for

current2, cost = 0 for kẏ = 160, simulation time in seconds is the variable stopp.

To produce the results in Chapter Optimal path-following of several straight lines. Section cost-
function3, run file mainCost23Path.m and set: current = 1, betac = π

3
for current1 betac = −π

3
for

current2, cost = 3 for ky = 0.12, simulation time in seconds is the variable stopp.

To produce the results in Chapter Optimal path-following of several straight lines. Section cost-
function5, run file mainUlinUs.m and set: path = 1, current = 1, betac = π

3
for current1 betac = −π

3
for current2, cost = 1, simulation time in seconds is the variable stopp.

To produce the results in Chapter Optimal path-following of several straight lines. Section cost-
function6, run file mainUlinUs.m and set: path = 1, current = 1, betac = π

3 for current1 betac = −π
3

for current2, cost = 3, simulation time in seconds is the variable stopp.

To produce the figures which divides the figure of the several-straight-line path in two figures, run
file plottResPath2.m for cost-function2 and cost-function3, and file plottResPath.m for cost-function5
and cost-function6.
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NoteThe printout made by the optimizer fmincon contains information on which inputs are at
which constraint, this is not the same as the constraint being violated.
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F Possible improvements to reduce calculation time

The calculation time can be reduced by reducing Hp, Hu, Ts. Thus, the optimal values of these
variables should be found. That is the smallest values which still yields god performance.

The implementation has been done in Matlab m-files. This is not the most efficient language in
terms of calculation time, thus the calcultion time can be reduced by coding in a more efficient
language.

The calcultion time can also be reduced if a faster solver can be used. Thus the possibility of a
faster solver should be investigated. It might be possible to write a solver which takes advantage of
the knowledge of the system.

An improved LTV model should be derived since (in general) a LTV based minimization prob-
lem solved by quadprog has shorter calculation times than a nonlinear model based optimization
problem solved by fmincon. This will also remove the problems with non-convexity.
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