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Problem Description
Oppgaven har bakgrunn i et behov for overvåking av oljerør og gassrør. StatoilHydro opererer flere
slike, bl.a. mellom Kollsnes og Mongstad. En modell for slik overvåking er myndighetspålagt. Her
er det viktig med en god modell, bl.a. slik at Mongstad vet i forkant hva som kommer, og for å
avdekke lekkasjer. Oppgaven bygger på tidligere prosjektoppgave hvor deteksjon av lekkasje i
tofase lagdelt strømning ble studert. Følgende punkter skal belyses:

 

1.        Gjør rede for tidligere arbeid, og motiver for oppgaven. Her kan du i stor grad støtte deg på
tidligere arbeid.
2.        I tidligere arbeid er matematisk modell brukt for å finne gunstige grensebetingelser for
tilstandsestimatordelen av lekkasjedeteksjonssystemet eksplisitt i form av en
koordinattransformasjon. Mens dette er mulig for enfase strømning, er det ikke hensiktsmessig
for de kompliserte sammenhengene som oppstår mellom faser i flerfase strømning. Det skal
derfor undersøkes hvorvidt målinger kan benyttes til å finne grensebetingelser for
tilstandsestimatoren numerisk.
3.        Utfør simuleringer hvor OLGA benyttes både som prosess og tilstandsestimator,  og
undersøk konvergensegenskaper.
4.        Utfør simuleringer hvor OLGA benyttes både som prosess og tilstandsestimator, og
undersøk evnen til å utføre lekkasjedeteksjon.
5.        Foreslå videre arbeid basert på dine erfaringer.

Assignment given: 15. January 2008
Supervisor: Ole Morten Aamo, ITK





Abstract

A two-fluid model is used to derive a set of boundary conditions. The conditions
are produced numerically, and try to imitate the behavior of output injection by
using a linearized version of the model. In order to ensure that the model is hyper-
bolic, virtual mass terms are included in the momentum equations. An observer is
presented, using OLGA, a fluid simulator, as its model. The boundary conditions
derived are employed in the observer, and its convergence properties are shown to
improve. A set of adaption laws for estimating parameters in a two-phase leak model
is derived. Estimation of the leakage mass fraction is sacrificed in order to increase
performance and stability. A model, also based on OLGA, is used to simulate a
leak, and the observer prove to give good estimates of leak parameters as long as
estimates of leakage mass fraction is available. Mass flow fraction seem to be a suf-
ficient estimate. A wide range of scenarios are simulated, inspecting the weaknesses
of the observer.
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Nomenclature

f̄G Mean gas leakage estmiate devia-
tion [kg/s]

f̄L Mean oil leakage estmiate devia-
tion [kg/s]

w̄ State vector based on conserved
variables

x̄l Mean leak position estmiate devi-
ation [m]

w̌ Outgoing dynamics mapped into
states

δ Virtual mass parameter

ε Volumetric gas fraction

εG Gas volumetric fraction

εL Oil volumetric fraction

εl Gas mass fraction of leakage

γ Pipeline inclination [◦]

Γw Wall friction force

ΓGi Interphase friction working on gas
phase

ΓGw Wall friction working on gas phase

ΓLi Interphase friction working on oil
phase

ΓLw Wall friction working on oil phase

ε̂ Estimated leakage gas fraction

q̂ State vector of observer on char-
acteristic form

ŵ State vector of observer

ŵc Observer variables set by bound-
ary conditions

ŵm Observer variables not set by bound-
ary conditions

κuG Leakage magnitude adaption co-
efficient

κuL Leakage magnitude adaption co-
efficient

κxG Position adaption coefficient

κxL Position adaption coefficient

Λ System matrix on characteristic form

Λ∗ Observer system matrix on char-
acteristic form

λk System eigenvalue

µg Partial derivative of pressure with
respect to mG

µl Partial derivative of pressure with
respect to mL

ρ Average density in a cross section
[kg/m3]

ρG Gas density [kg/m3]

ρL Oil density [kg/m3]

ρrefl Reference density in oil density model
[kg/m3]

q̃ Deviation state vector of observer
on characteristic form

w̃ Observer deviation state vector
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w̃c Deviation wc − ŵc

w̃m Deviation in measured valueswm−
ŵm

A Area of a pipeline cross-section [m2]

A(w) System matrix

cG Sonic velocity in gas [m/s]

cL Sonic velocity in oil [m/s]

cvm Virtual mass coefficient

D0 Tuning coefficient matrix for out-
put injection at inlet

D1 Tuning coefficient matrix for out-
put injection at outlet

fG(x) Gas leakage at point x [kg/s]

fl Leakage magnitude [kg/s]

fL(x) Oil leakage at point x [kg/s]

kL Constant coefficient in the oil den-
sity model [Pa]

M Length of window of convergence
[m]

mG Gass mass in a cross section, εGρG

mL Gass mass in a cross section, εLρL

Mvm Virtual mass term

p Pressure [Pa]

PG Pressure in gas phase [Pa]

PL Pressure in oil phase [Pa]

pref Reference pressure in oil density
model [Pa]

q Model characteristic state vector

q+ Part of state vector in characteris-
tic form corresponding to positive
eigenvalues

q− Part of state vector in character-
istic form corresponding to nega-
tive eigenvalues

R System eigenvector matrix

tc Measure of convergence time [s]

tend End of simulation [s]

uG Gas phase velocity [m/s]

uL Oil phase velocity [m/s]

w Model state vector

wc Model state vector with variables
chosen as boundary condition in
the observer

wG Gas mass flux [kg/m2s]

wL Oil mass flux [kg/m2s]

wm Model state vector with variables
which are not set by boundary con-
dition in the observer



Chapter 1

Introduction

Two-phase flow pipelines are used extensively in the petroleum industry. With
growing public concern for the environment, the demand for pipeline monitoring is
increasing. Being able to detect, quantify and position a leak clearly has its envi-
ronmental motivation factors, but also has economical aspects. Most leak detection
systems able to estimate leak position only work for single-phase flow.

Several leak detection systems are available, using dynamic modeling to quantify
and locate leakage in single-phase flow. This report is based on the Luenberger-type
observer presented in (Aamo, Salvesen & Foss 2005), which is throughly tested in
(Hauge 2007). The objective of this thesis is to derive a similar observer for two-
phase flow, using measurements from the pipeline inlet and outlet to estimate leak
position.

An observer works by simulating a process using a model, while the real process
is monitored. What distinguishes a Luenberger observer is the way it monitor the
process and reacts to it. Measurements from the process are compared to values
from the observer. The deviation is used to modify observer states in order to
make the observer states converge to those of the real process. The observer used
in this thesis has a similar set-up, where the real process is a pipeline with two-
phase oil and gas flow, and the states are fluid conditions throughout the pipeline.
However, directly modifying the states inside the pipeline will in most cases violate
conservation laws. This may unfortunately lead to unphysical responses and strange
behavior. Measurements are taken at inlet and outlet, but instead of using them
to modify states inside the pipeline, they are used to control the states at the ends
only, the boundary conditions. This ensures conservation of mass and momentum
inside the pipeline, which makes it far easier to obtain convergence. In addition, it
allows the use of OLGA as its model, which is a state of the art computational fluid
dynamics simulator.

For this set-up to work, a set of boundary conditions must be derived. These condi-
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6 CHAPTER 1. INTRODUCTION

tions must make all states converge even if only the boundary states are controlled.
In this case, the observer variables are defined throughout the entire pipeline, and
consequently there are endlessly many states in the model. In the observer, however,
the pipeline is partitioned into sections with averaged values. These averaged values
have to converge to the average in the corresponding section of the real pipeline.

The most obvious choice of boundary conditions is simply setting the observer
boundaries equal to that of the process. Assuming that a transport pipeline is
strictly dissipative, these simple conditions would eventually make the observer con-
verge. On the other hand, in single-phase flow, faster convergence has been obtained
using the characteristics of the system employing output injection instead. This
means separating ingoing and outgoing dynamics, and then let the ingoing dynamic
at each end be controlled by the outgoing (Aamo et al. 2005). As convergence is im-
portant to be able to estimate leak parameters, output injection is desired also in the
two-phase observer. This is straight forward partial differential equation theory, but
employing the method on a two-phase model has proved difficult (Hodne 2007). The
interaction between the two phases make the model complex, and simple analytic
expressions for eigenvectors were not found. Analytic expressions for the character-
istics might not exist. Since it has failed to derive output injection analytically, an
objective in this thesis is to develop something equivalent, only numerically.

In addition to controlling boundary conditions, the error ê will also be used to
estimate leak parameters. In order for this to work, the model in the observer has
to converge faster than the adaption. If not, deviation in behavior between the
model and the real process might corrupt the adaption and lead to false estimates.
The adaption laws also have to be derived, which is another objective.

The resulting set-up is presented in Figure 1.1. As seen, Matlab will be used as
interface between the process and the observer. Process measurements will be gen-
erated by another OLGA model. First boundary conditions and adaption laws have
to be found, before the observer is implemented and tested.

1.1 Previous work

Many types of leak detection systems exist, both hardware- and software-based.
Lately, software-based methods have been the most popular, including mass bal-
ance methods, flow or pressure change methods or dynamic modeling methods
(Zhang 1996). The majority of solutions fall into the pressure change type, where
measurements of pressure are examined, looking for specific wave or gradient sig-
natures. Two such systems are presented in (Feng, Zhang & Liu 2004) and in (Hu,
Ye, Wang & Lu 2004), which both look for negative pressure waves.

In (Nilssen 2005), a work founded on previous work by (Aamo et al. 2005), a leak
detection system for single-phase flow is designed. The system, which uses a type
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Pipeline

OutletInlet

Observer

Measurements

Matlab

Observer measurements

OLGA model pipeline

Boundary conditions Estimated
leak

parameters

Figure 1.1: Observer setup using OLGA as model and estimating leak parameters.

of dynamic modeling, is based on two coupled one dimensional first order nonlinear
hyperbolic partial differential equations. An observer, as the one described above, is
derived with time-varying boundaries guaranteeing fast convergence. These bound-
ary conditions employ output injection, which is obtained by finding the model and
observer characteristics. The ingoing dynamics of the observer are set equal to that
of the process. A set of adaption laws are also presented, both adapting friction and
leak parameters, including leak position. The observer only uses measurements of
pressure and flow rates at inlet and outlet, measurements which often are available,
and hence the observer can be used without installing new equipment.

In (Hauge 2007), two instances of this observer-type is implemented. One of them
was a Matlab observer already presented in (Nilssen 2005), which solves the two
equations using a finite differential method. The other uses OLGA as its model,
which is already a widely used fluid dynamic simulator. The observers are throughly
tested in many scenarios, including cases with shutdown and varying production.
Simulations showed that the OLGA observer was superior to the Matlab observer.
The OLGA observer also has the option of modeling pipelines with varying inclina-
tion, and temperature could easily be included.
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Chapter 2

Theory

This chapter will cover different topics within the science of leak detection and
pipeline flow. First a set of general boundary conditions, which are valid for any
hyperbolic flow model, will be developed. These boundary conditions mimic output
injection, and are compared to the conditions which already have proved useful for
single-phase flow. A two-fluid model is derived, made hyperbolic by adding a virtual
force term, and used in the general boundary conditions. Subsequently, boundary
responses in a two-phase pipeline are examined. A leak in the pipeline has its
parameters altered. Leak adaption laws for two-phase flow are developed based on
the examples.

2.1 Numerical boundary conditions

In this section, a general expression for boundary conditions in hyperbolic systems
will be derived. The goal is to utilize this set of conditions on the boundaries
of a pipeline observer model and have the observer converge to the real system
fast. In (Aamo et al. 2005), a set of boundary conditions was derived, by analysis
of the characteristics of a single phase flow system and utilizing output injection.
Multi-phase flow models are often very complex due to their interphase interaction
terms. Such models are often hard to work with analytically. For this reason,
a set of boundary conditions will be derived, which behave like output injection.
They are derived using a linearized model, and should be applicable to a number of
different flow models, and hence named general boundary conditions. Later these
conditions will be analyzed and compared to the single-phase boundary conditions
which are throughly investigated in (Hauge 2007). They will also be used in a
two-fluid observer with the same type of setup as that of the single-phase observer.

9



10 CHAPTER 2. THEORY

Consider a strictly hyperbolic system on the quasilinear form

wt +A(w)wx = B(w)w. (2.1)

w ∈ Rn is a vector of dependent variables. For abbreviation, we write w(x, t) as
w and ∂w/∂x as wx. (x, t) ∈ (0, 1) × R+, and A ∈ Rn×n is the system matrix.
Consider the transform into

qt + Λqx = ϕq, (2.2)

by using w = Rq, A = RΛR−1 and B = RϕR−1. As with w, we write q(x, t) as q.
The columns of R are the eigenvectors of A, which gives Λ non-zero values only on
the diagonal. This follows from the fact that A is hyperbolic, and these values are
the eigenvalues of the system.

Let Λ ∈ Rn×n and q ∈ Rn be arranged such that

Λ =
[

Λ− 0
0 Λ+

]
q(x, t) =

[
q(x, t)−

q(x, t)+

]
(2.3)

where

Λ− = diag(λ1, λ2, . . . , λp), λ1, λ2, . . . , λp < 0,
Λ+ = diag(λp, λp+1, . . . , λn), λp, λp+1, . . . , λn > 0,

while q− ∈ Rp and q+ ∈ Rr. Now consider a(x) and b(x) as the time-invariant
versions of A and B respectively within a time-step. a(x) and b(x) will converge
toward A and B when the time of one step approaches zero. Within each time step,
(Besson, Tchousso & Xu 2006) proves that the following boundary conditions will
give profitable convergence:

q+(0, t) = D0q
−(0, t), (2.4)

q−(1, t) = D1q
+(1, t). (2.5)

where D0 ∈ Rp×r and D1 ∈ Rr×p. According to (Besson et al. 2006) these boundary
conditions guaranties exponential convergence towards zero as long as for all ω− ∈
Rp, ω+ ∈ Rr,

ωT−
[
Λ−(1) +DT

1 Λ+(1)D1

]
ω− ≤ +r1 ‖ω+‖2Rp (2.6)

ωT+
[
Λ+(0) +DT

0 Λ−(0)D0

]
ω+ ≥ −r2 ‖ω−‖2Rr (2.7)[

ω−
ω+

]T [
δ + ϕT − ∂

∂x
Λ
] [

ω−
ω+

]
≤ 0 (2.8)

In addition, the system has to be hyperbolic, which is true for the above mentioned
system. These conditions generally say that the system has to be strictly dissipative.
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Not investigating these restrictions further at this point, focus is put on a general
system with an observer. Consider an observer on the same form as the model,

q̂t + Λ∗q̂x = ϕ∗q̂ (2.9)

The hat above variables indicate it is an observer value, corresponding to the variable
from the model without the hat. Consider now the two systems put together,

q̃t + Λq̃x + (Λ− Λ∗)q̂x = ϕq̃ + (ϕ− ϕ∗)q̂, (2.10)

where q̃ denote the difference between the model and the observer, q̃ = q− q̂. q̃ is the
vector that is desired to converge to zero. In order to use the theorem mentioned,
the observer is assumed to be a linearized version of the model, and the difference is
ignored. This difference between Λ and Λ∗ is assumed small as long as the observer
states are close to those of the model. This will clearly be a cause for error, but
results later prove that the assumption give profitable conditions. The resulting
system is

q̃t + Λq̃x = ϕq̃. (2.11)

In an observer based on n system equations, there are n boundary conditions which
must be set, and n measurements. Often, there is an even number of measurements
and controlled variables at each end. Assume w is arranged such that the top
variables are measured and used when deciding values on the controlled variables at
the bottom. The following derivation is almost identical if you let the top variables
be controlled variables. Measured and controlled variables will be denoted with
subscript m and c respectively. Note that it is only in the observer some variables
are named controlled variables. In the real process, all n variables are measured.

w̃ =
[
w̃m
w̃c

]
, w̃m ∈ Rm, w̃c ∈ Rc. (2.12)

w̃ again denote the difference between the model and the observer, w̃ = w − ŵ.
Similarly, the eigenvector matrix is split into four,

R−1 =
[
S−
S+

]
=
[
Sm− Sc−
Sm+ Sc+

]
. (2.13)

Sm− ∈ Rp×m is the part of the eigenvector-matrix mapping measured variables into
the characteristic values corresponding to negative eigenvalues. Equal interpreta-
tions can easily be found for the other sub matrices. It now follows that

q̃− = S−w̃ = Sm−w̃m + Sc−w̃c, (2.14)
q̃+ = S+w̃ = Sm+w̃m + Sc+w̃c. (2.15)

Inserting (2.14)-(2.15) into (2.4)-(2.5),
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Sm+w̃m + Sc+w̃c = D0(Sm−w̃m + Sc−w̃c) (2.16)
Sm−w̃m + Sc−w̃c = D1(Sm+w̃m + Sc+w̃c) (2.17)

Remember that (2.16) is a condition at inlet, while (2.17) is valid at the outlet.
After some manipulation,

(Sm+ −D0Sm−)w̃m = (D0Sc− − Sc+)w̃c, (2.18)
(Sc− −D1Sc+)w̃c = (D1Sm+ − Sm−)w̃m, (2.19)

it is easy to obtain the following boundary conditions:

Inlet:

ŵc = wc − (D0Sc− − Sc+)−1(Sm+ −D0Sm−)(wm − ŵm), (2.20)

Outlet:

ŵc = wc − (Sc− −D1Sc+)−1(D1Sm+ − Sm−)(wm − ŵm). (2.21)

The convergence-performance for these conditions will be discussed in later sections,
where they will be labeled output injection. This is to some extent a misuse of this
term, as they are based on a linearized model, where the working point is that of
the model. Note from (2.4)-(2.5), what goes into the pipe depends on what comes
out. When implementing these conditions, the system matrix A must be evaluated
at both ends where you want to apply the conditions. Hence Sm− in (2.20) will
probably not have the same values in (2.21).

By rearranging (2.12) and (2.13), (2.20)-(2.21) is valid with the controlled variables
on top also.

2.2 General boundary conditions and single phase flow

In this section, the general boundaries, (2.20) and (2.21), will be compared to the
boundary conditions found by (Aamo et al. 2005). In order to do so, the eigenvector
matrix for the single-phase system is found and used in (2.20)-(2.21). First, the
one-phase model is given,

∂p

∂t
+ u

∂p

∂x
+ ρc2∂u

∂x
= 0, (2.22)

∂u

∂t
+ u

∂u

∂x
+

1
ρ

∂p

∂x
= 0, (2.23)
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where the first equation is derived from mass conservation, while the second from
momentum conservation(Nilssen 2005). Putting the system on the general form by
(2.1),

∂

∂t

[
p
u

]
+A(p, u)

∂

∂x

[
p
u

]
= 0 (2.24)

where, using the general density model

ρ = ρref +
p− pref
c2

(2.25)

and k = ρrefc
2 − pref , the system matrix becomes

A(p, u) =

[
u k + p
c2

k+p u

]
. (2.26)

Knowing that the eigenvalues are λ1 = u− c and λ2 = u+ c, the eigenvector matrix
can easily be shown to be

R(p, u) =
[

k+p
c

k+p
c

−1 1

]
, R−1(p, u) =

[
1 −k+p

c

1 k+p
c

]
. (2.27)

Using the general boundary conditions found, utilizing full output injection, i.e.
D0 = 0,D1 = 0, we get the following expressions. At inlet, the velocity to be set is

û = u+
c

k + p
(p− p̂) (2.28)

Equally, for pressure at outlet,

p̂ = p− k + p

c
(u− û) (2.29)

In comparison, (Aamo et al. 2005) found, with k0 = 0 and kL = 0

ûa = u+ c ln(
k + p

k + p̂
), (2.30)

p̂a = (k + p)e
û−u

c − k (2.31)

Looking closely into the two expressions for velocity, the difference between û and ûa
is what is multiplied with c on the right hand side. That is, how does p−p̂

k+p compare

to ln(k+p
k+p̂). Using

lnx = (x− 1) +
∞∑
n=2

(−1)n+1 (x− 1)n

n
[0 < x < 2] (2.32)
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and considering k+p
k+p̂ < 2 which is valid for most practical cases, (2.30) can be written

as

ûa = u+
c

k + p
(p− p̂) +

∞∑
n=2

(−1)n+1

n
(
p− p̂
k + p

)n (2.33)

Similar, by using

ex =
∞∑
n=0

xn

n!
(2.34)

(2.31) can be written

p̂a = p− k + p

c
(u− û) +

∞∑
n=2

(û− u)n

cnn!
(k + p) (2.35)

Both û − ûa and p̂ − p̂a are the higher order terms of a series expansion, and in
both cases the difference is linearly dependent on the difference between model
measurements and observer values. It is not possible to gain any higher order terms
of p̃ or ũ into the general boundary conditions, as they are built up of a linear
mapping between physical and characteristic variables. Also note that for large c
(remember that a large c means a large k), the sums become infinitesimal, and the
two sets of boundary conditions are practically identical. This is the case for oil
flow, where high sound velocity c and density makes k very large. These boundaries
are throughly tested in (Hauge 2007). For gas the difference is notable, however.

2.3 Flow patterns in oil and gas pipelines

There are many flow patterns in two-phase flow. For oil and gas flow, the most
common patterns are stratified smooth flow, stratified wavy flow, slug flow, bubble
flow and annular flow (Liu, Yang & Wang 2008). The regimes depend on pipe
diameter, and large diameter gas and oil transportation pipelines are mostly limited
to stratified flow and slug flow (Lu, Wang & Jia 2006).

Prediction of flow patterns are important when flow resistance is concerned, and it is
not an easy task with frequent pattern transitions. At low flow rates the regime will
be stratified, whereby the liquid phase flows along the bottom and the gas above it.
Phase velocities might vary, but when the liquid velocity increases, slugging occurs.
Slugging is characterized by large bubbles of gas alternated with liquid or bubbly
flow. At even higher rates, pure bubbly or annular flow might occur.

Adaption will be depending on estimates of both interphase and wall friction forces.
Being able to predict the correct flow regime is crucial, but will be flawed. Wall
friction adaption would be able to compensate for some of that error, but perhaps
not satisfactory at transient behavior with frequent transitions.
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Another problem concerning flow regimes occurs when a small change in flow rate
or valve opening causes a pattern transition. This may drastically change the flow
resistance and hence also the pressure drop. When this happens to an observer
attempting to converge toward a model, it will probably end up as an unexpected
response, and might be hard to distinguish from the response of a small leak.

All considered, there is no doubt, different flow regimes and transitions will cause
problems when attempting leak detection in a two-phase gas and oil pipeline. If
the observer was limited to to a single pattern, this would certainly also limit the
means of convergence to a limited interval of boundary conditions which maintain
that pattern. The most general approach would be to create an observer able to
handle any flow regime, accepting the error this might cause.

2.4 Two-Fluid Model

In this section the Two-Fluid model for gas and oil flow in pipelines will be derived.
This is a model based on conservation laws and interphase terms. The interphase
interaction terms depend on flow pattern, while the conservation laws are universal.
Energy equations will be ignored, and all variables averaged over a cross section,
leaving an isothermal one dimensional model. Negative sources are added in order
to account for leakage. In the next section, further terms are added in order to make
the model strictly hyperbolic.

Figure 2.4 shows a pipeline segment of length dx. The cross section area A is
constant. As all variables are averaged over a cross section, the length x is the only
dimension in the system. The pipe is inclined with an angle γ compared to the
horizon.

Figure 2.1: A segment of a pipeline illustrating forces.
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2.4.1 Mass balance

Adding up the mass flow in and out of a segment, for both phases individually, leads
to the following mass balance equations:

A
∂(εkρk)
∂t

dx+
[
εkρkAuk −A

∂(εkρkuk)
∂x

dx

]
− εkρkAuk + fk(x)dx = 0 (2.36)

for (x, t) ∈ (0, L) × R+. εk, ρk and uk are volume fraction, density and velocity
respectively. Two versions of this equation exists, one for each phase, and variables
for the two phases are indexed k ∈ {G,L} for gas and oil respectively. Note that
the volumetric fractions sum up to one, εG + εL = 1. fk is a function describing gas
leakage at position x, and is modeled as

fG(x) = flεlδ(x− xl), (2.37)
fL(x) = fl(1− εl)δ(x− xl). (2.38)

fl is mass leakage, εl is the fraction of gas leaking, and xl is the position of the leak.
δ is the Dirac distribution.

Dividing (2.36) by Adx, rearranging and inserting phase variables leads to the two
mass conservation equations

∂

∂t
(εGρG) +

∂

∂x
(εGρGuG) = −fG(x)

A
, (2.39)

and
∂

∂t
(εLρL) +

∂

∂x
(εLρLuL) = −fL(x)

A
. (2.40)

2.4.2 Momentum balance

When deriving momentum balance, consider a material volume, i.e. a fixed set of
particles contained in a volume V (t). This allow the use of Newton’s second law,

d(m̄GuG)
dt

=
∑

F (2.41)

for (x, t) ∈ (0, L)× (0,∞). The derivation will consider the gas phase, but momen-
tum balance for liquid phase can be derived in the exact same way. Let the mass
inside the material volume, as the one illustrated in Figure 2.4, be m̄G = ρGεGAdx.

d(ρGεGuGAdx)
dt

=
∑

F (2.42)
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As the control volume is the time-varying volume of which a specific set of particles
is contained, the mass is constant, and it follows that

d

dt
(m̄GuG) =

duG
dt

m̄G +
dm̄G

dt
uG =

duG
dt

ρGεGAdx (2.43)

By combining the mass balance with Reynolds’ transport theorem (Egeland &
Gravdahl 2002), it follows that

duG
dt

m̄G =
∂

∂t
(ρGεGuG) +

∂

∂x
(ρGεGuGuG) (2.44)

Newton’s law, (2.41), may now be written as

A
∂

∂t
(ρGεGuG) +A

∂

∂x
(ρGεGuGuG) =

∑
F (2.45)

The forces working on the material volume are∑
F = −AεG

∂PG
∂x

+ ΓGw + ΓGi −AεGρGg sin γ +Mvm (2.46)

The first term in the sum is the pressure gradient. PG is the gas phase pressure. Since
the model is one-dimensional, PG is considered equal to the liquid phase pressure
PL. The second and third term, ΓGw and ΓGi, are wall and interphase friction
forces respectively, and depend on flow regime. g is the gravity and γ the pipe angle
relative to the horizon, but by assuming horizontal pipes, the fourth term will be
neglected. The fifth term is the virtual mass force term, which will be accounted
for in section 2.4.5. Following the same procedure for the liquid phase, momentum
balances are summed up as

A
∂

∂t
(εGρGuG) +

∂

∂x
(AεGρGuGuG) +AεG

∂PG
∂x

+Mvm = ΓGw + ΓGi, (2.47)

A
∂

∂t
(εLρLuL) +

∂

∂x
(AεLρLuLuL) +AεL

∂PL
∂x
−Mvm = ΓLw + ΓLi. (2.48)

2.4.3 Density models

The number of dependent variables has to be reduced in order to solve this equation
set, hence models for density is introduced. Densities are modeled as a functions
of pressure, and pressure is assumed equal in both phases over a cross section, i.e.
p = PG = PL. The ideal gas law, (2.49), replace gas density. Oil density is modeled
as in the single phase model,(2.25), and repeated in (2.50).

ρG =
p

c2
G

(2.49)
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ρL = ρrefl +
p− pref
c2
L

=
kL + p

c2
L

(2.50)

where kL = c2
Lρrefl − pref .

2.4.4 Conserved variables

The desired quasi-linear form of the system is

∂w̄

∂t
+A(w̄)

∂w̄

∂x
= S(w̄), (2.51)

where w̄ is the state vector. Basing states on the conserved variables simplifies the
system matrix, hence w̄ is chosen as

w̄ =


mG

wG
mL

wL

 =


ρGεG
ρGεGuG
ρLεL
ρLεLuL

 , (2.52)

Substituting the conserved variables into system equations, they may be written as

∂

∂t
(mG) +

∂

∂x
(wG) = −flG

A
, (2.53)

∂

∂t
(mL) +

∂

∂x
(wL) = −flL

A
, (2.54)

∂

∂t
(wG) +

∂

∂x
(
w2
G

mG
) + εG

∂PG
∂x

+Mvm = ΓGw + ΓGi, (2.55)

∂

∂t
(wL) +

∂

∂x
(
w2
L

mL
) + εL

∂PL
∂x
−Mvm = ΓLw + ΓLi. (2.56)

In order to replace pressure as a variable, the following function is introduced:

Pk = P (mG,mL) k ∈ {G,L}. (2.57)

It follows that

∂p

∂x
= µg

∂mG

∂x
+ µl

∂mL

∂x
, (2.58)
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where

µg =
∂Pp(mGi ,mLi)

∂mG
, (2.59)

µl =
∂Pp(mGi ,mLi)

∂mL
. (2.60)

In search of the function P (mG,mL), consider now the conserved variables, and
insert the density models:

mG = ρGεG =
pε

c2
G

, (2.61)

mL = ρLεL =
(p+ kL)(1− ε)

c2
L

, (2.62)

where ε = εG = 1−εL is introduced. By eliminating ε from the two equations above,
the following equation is obtained:

mGcG
2

p
=
−mLcL

2 + p+ kL
p+ kL

. (2.63)

This is a second order equations in terms of p, and can easily be shown to have the
following solutions:

P (mG,mL) = ς ±
√
ς2 + mGcG2kL, (2.64)

where

ς =
mGcG

2 +mLcL
2 − kL

2
. (2.65)

Looking carefully into the solutions, one of them can be eliminated, as the physical
solution must be positive. This leaves the solution

P (mG,mL) = ς +
√
ς2 + mGcG2kL, (2.66)

its partial derivatives are

µG =
∂P

∂mG
=
c2
G

2
(1 +

ς + kL√
ς2 +mGc2

GkL

), (2.67)

and

µL =
∂P

∂mL
=
c2
L

2
(1 +

ς√
ς2 +mGc2

GkL

). (2.68)

Similarly fraction is converted as

εk = Ek(mG,mL). (2.69)
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Following the same procedure as for pressure, pressure is eliminated from (2.61) and
(2.62), which leads to

mGcG
2

ε
= −mLcL

2 − kL + kLε

−1 + ε
. (2.70)

This is also a second order equations, with the following physical solutions:

EG(mG,mL) = εG =
−ς +

√
ς2 + mGcG2kL
kL

, (2.71)

EL(mG,mL) = εL = 1− −ς +
√
ς2 + mGcG2kL
kL

. (2.72)

2.4.5 Virtual Mass

The basic two-fluid model is ill-posed with complex eigenvalues of the Jacobian ma-
trix. However, adding a few additional differential terms to the momentum equation
can make the equations well-posed. These terms are named virtual mass terms, and
represents the interphase force which is created by difference in the phase accelera-
tions. As interpretation, consider the virtual mass as the liquid a gas-bubble has to
relocate in order to accelerate relative to the liquid phase. The virtual mass terms
are an attempt to model the extra forces needed to accelerate because of the virtual
mass.

The motivation for adding the virtual mass terms to the system is not to model
the relatively insignificant force they represents, but to make the model hyperbolic.
This method is commonly used, but the form of the virtual mass terms in realistic
two-phase flow is not known exact, and consequently the differential terms used
vary. Common for all formulations are that they do not appreciably change the
momentum results, but cause the system to be hyperbolic.

In this work, we choose the general virtual mass term (2.73) presented in (Toumi &
Kumbaro 1996). (Chung, Lee & Chang 2001) present an even more general term,
but eventually use (2.73) in the code.

Mvm = −εGεLρcvm(
∂

∂t
(uG − uL) + uL

∂uG
∂x

+ uG
∂uL
∂x

) (2.73)

where
ρ = mG +mL. (2.74)

cvm is the virtual mass coefficient. One of the disadvantages of virtual mass terms
is that this coefficient is determined empirically without any theoretical reasoning.
For a single, non-deformable, spherical particle in an alien fluid, according to (Drew
1979), cvm = 0.5. For two-phase flow of practical concern cvm is likely to give values
less than 0.5, independent of flow regime.
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In a mixed bubbly flow, with bubbles close to spheres, cvm should have a value
between zero and 0.5. However, in a regime of smooth separated flow, the amount
of alien fluid a particle must relocate in order to accelerate is close to zero. Clearly,
cvm depend on flow regime.

(Chung et al. 2001) add interphacial pressure jump terms to his equations, in ad-
dition to the virtual mass terms. This guarantee hyperbolicity, but might add
unphysical responses. Instead a condition suggested by (Tiselj & Petelin 1997) is
used,

cvm =

{
(1 + 2ε)/(2− 2ε), ε < 0.5√

(3−2ε
2ε )2 − (ε−1)(2ε−1)

(1+ερG/ρL−ε)2 , ε > 0.5
, (2.75)

which guarantees hyperbolicity as long as the relative velocity uG − uL is less than
30% of sonic velocity in the medium, i.e. uG−uL < 0.3c where c is the sonic velocity
in the medium.

2.4.6 Hyperbolic Two-Fluid model on quasi-linear form

Consider again the quasi-linear form

∂w

∂t
+A(w)

∂w

∂x
= S(w)w, (2.76)

The inclusion of virtual mass has complicated the model significantly, and for to ease
the derivation, another change of variables is introduced. In order to eliminate the
virtual mass term from one of the momentum equations, the variable wG is replaced
with wG + wL. In addition, the virtual mass terms are separated from the main
equations as follows, where subscript δ denote matrices with virtual mass terms.

(I +Mδ(w̄))w̄t + (As(w̄) +Aδ(w̄))w̄x = S(w̄)w̄ (2.77)

As contains the system matrix without virtual mass terms. w̄ and As(w̄) are given
by

w̄ =


mG

mL

wG + wL
wL

 (2.78)

As(w̄) =


0 0 1 −1
0 0 0 1

µG −
w2

G

m2
G

µL −
w2

L

m2
L

2wG
mG

2( wL
mL
− wG

mG
)

εLµG εLµL 0 2wL
mL

 (2.79)
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The matrices corresponding to the virtual mass terms are given by

Aδ(w̄) = δ


0 0 0 0
0 0 0 0
0 0 0 0

(1− c)uGuL −cuGuL −(1− c)uL u

 (2.80)

and

Mδ(w̄) = δ


0 0 0 0
0 0 0 0
0 0 0 0

(1− c)uG −cuL −(1− c) 1

 (2.81)

where

δ =
ρ2

ρGρL
cvm (2.82)

u =
wG + wL
mG +mL

, (2.83)

c =
mG

mG +mL
, (2.84)

Ss(w̄) = (I +Mδ(w̄))−1S(w̄) (2.85)

This leaves the system matrix A = (I + Mδ(w̄))−1(As(w̄) + Aδ(w̄)) which has real
eigenvalues for sufficiently large cvm > 0.

Ignoring the leak at this point, S(w̄) is found to be

S(w̄) =


0 0 0 0
0 0 0 0
0 0 ΓGw

wG

ΓLw
wL

0 0 0 ΓLw
wL

+ ΓLi
wL

 (2.86)

Simulation show that the system has two eigenvalues in the range between sound
velocities in the two phases, one negative and one positive. The third eigenvalue is
in the range between velocity of gas and velocity of oil. The fourth eigenvalue is
very small, negative, and vary much with cvm. A smaller cvm tends to give smaller
fourth eigenvalue.

While the two eigenvalues with the largest magnitude have opposite signs, the
smaller eigenvalues might change sign. If there are not two negative eigenvalues,
a pseudo-inverse is used instead of the inverse in equation (2.20) and (2.21). When
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these are implemented in the OLGA observer, there will only be set three bound-
ary conditions, which means some information is lost anyway. The pseudo-inverse
should not prevent the output injection appreciably, but the optimal solution would
be to set a number of conditions at one end of the pipeline equal to the amount of
ingoing waves at that position. This number depends on the signs of the eigenvalues.

2.4.7 Modeling leakage

Leakage is modeled as

f̂l = ĉv

√
ρl(p̂l − p̂ambl ), (2.87)

f̂G = f̂lεlδ(x− x̂l) (2.88)

f̂L = f̂l(1− εl)δ(x− x̂l) (2.89)

where
ρl = ερG + (1− ε)ρL. (2.90)

Subscript l denote values at leak position. f̂G and f̂L are leakage of gas and oil
respectively. ĉv is a general leak magnitude parameter. p̂ambl is the ambient pressure
outside the leak.

The reason for this structure is justified in Section 2.5 where adaption laws for the
parameters are derived.

2.4.8 General boundary conditions and restrictions

The general boundary conditions were derived with the assumptions (2.6)-(2.8).
First, note, when concerned with these restrictions, the optimal value for D0 and
D1 must be zero. This can be seen by rearrange the left hand side of (2.6) to

wT−Λ−(1)w− + (D1w−)TΛ+(1)(D1w−). (2.91)

Since the Λ+ is positive definite, the second term can never be negative, and its
lowest value is when D1 = 0. Equivalent, D0 = 0 is the best choice when it comes
to comply with restriction (2.7).

Now consider the condition (2.8). For the two-fluid model, ϕ = Ss(w̄), which depend
on friction-forces. A high ϕ will cause the condition to become invalid, and hence
the general boundary conditions are limited to low friction flow. Exactly where the
limit is, will not be investigated, but this should be kept in mind when conducting
simulations.
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Using the general boundary conditions (2.20)-(2.21) with D0 = D1 = 0 and the
model derived, results in the boundary conditions,[

ŵG + ŵL
ŵL

]
=
[
wG + wL
wL

]
+ S−1

c+Sm+

[
mG − m̂G

mL − m̂L

]
(2.92)

at inlet, and [
m̂G

m̂L

]
=
[
mG

mL

]
+ S−1

c−Sm−

[
wG + wL − ŵG − ŵL

wL − ŵL

]
(2.93)

at outlet. The controlled variables are chosen to correspond with OLGA boundary
conditions as will be clear through the next chapter. Sc− and Sm− are part of
the eigenvector matrix at outlet while Sc+ and Sm+ are part of the eigenvector
matrix at inlet. The system matrix from where the eigenvector matrix is derived is
A = (I +Mδ(w̄))−1(As(w̄) +Aδ(w̄)).

2.4.9 Flow Regimes

The model derived this far is based on mass and momentum conservation only, and
is thus not limited to any flow regime. What makes up the difference between flow
regimes in the two-fluid model is the phase interaction terms, including Γkw and
Γki. The interaction is easiest modeled for a stratified flow pattern. The virtual
mass term, however, has the parameter cvm which is dependent on the flow regime,
and is easiest adopted to mixed flow.

Still, what is derived this far can be used on any two-fluid flow regime without
specifying the phase interaction terms. However, it must be expected to have varying
success on the different flow patterns. The linearization on boundaries assume states
to be somewhat equal throughout the pipe, which is the case for stratified and mixed
flow. As was pointed out in Section 2.3, slugging is often present, which would give
alternating conditions on boundaries. However, as will be discussed in Section 3.3,
by filtering the alternation on boundaries during slugging, the conditions derived
may also be employed on this flow pattern. Simulations presented in Chapter 4
will test adaption on both major flow regimes; stratified flow and mixed flow with
slugging.

2.5 Adaption laws

The goal of the thesis is to create an observer adapting to the behavior of a model
both in order to detect a leak and to estimate the leak parameters. This is done
with adaption based on measurements on the boundaries of the pipeline.
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A set of adaption laws has to be produced, using boundary deviation between ob-
server and model. These adaption laws must be based on dynamics coming from
inside the pipeline, limiting the variables used for adaption to q−(0) and q+(L).
q+(0) and q−(L) is set by the boundary conditions derived in section 2.1, and obvi-
ously give no new information on what is happening inside the pipeline. In order to
draw information out of these variables, they are transfered into physical variables,

w̌(0) = R−(0)q̃−(0)
w̌(L) = R+(L)q̃+(L)

(2.94)

where R− and R+ are matrices consisting of the eigenvectors corresponding to q−(0)
and q+(L) respectively. w̌(0) and w̌(L) give information on how the observer differs
from the model.

In order to use this information to decide which leak parameters needs to be adjusted
and in which direction, a few examples are considered. The source is simulations in
OLGA of a straight pipeline and constant boundary conditions. For pipe-properties,
see Table B.1 in the appendix.

2.5.1 Leak position parameter adaption

Figure 2.2 illustrate two examples, where the blue graphs show boundary response
with a leak at xl = 1150m and the green graphs show boundary response with a
leak at xl = 3250m. Flow rates at inlet and pressure at outlet are constant, and
the flow-regime is stratified flow. The leaks does not occur until 3 minutes after the
simulation starts. For simulation-parameters, see Table B.2.

Figure 2.3 show another set of boundary-values in a mixed flow regime. The leak
position is xl = 1150m for the blue graphs and xl = 3250m for the green graphs,
exactly like in the previous examples. Simulation-parameters are presented in Table
B.3.

When considering these examples, the convergence-properties of the observer is not
yet known, and the adaption-laws should as little as possible depend on transient
behavior on the boundaries. For these laws to be stable, they should work with end-
lessly slow adaption. Consequently, when looking for a pattern on the boundaries,
only steady state values are considered.

From what it seems, the only steady state indication on whether the leak position
parameter is to be increased or decreased, which is apparent in both figures, is mG

and mL at inlet. Consider the heuristic law

˙̂xl = κxGm̌G(0) + κxLm̌L(0). (2.95)

In Figure 2.2 the values at outlet seem to change toward the end of the simulation.
In this flow pattern, fluid velocity is slower than in the mixed flow examples. When
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a leak occurs, the fraction will change at the point of the leak, and the change
propagate at a velocity in the range of the phase velocities. This change propagating
toward the outlet will be labeled a fraction-wave. An example of this is illustrated
in Figure 2.7. In the stratified flow example with a leak at 3250m, this fraction
wave reaches outlet before the simulation is stopped. In the example with a leak at
1150m, however, it does not. This phenomena is also observed in mixed flow. In
both examples with a mixed flow pattern, plotted in Figure 2.3, the fraction wave
reaches outlet within 10 minutes after the leak occurs. This is due to the higher
phase velocities in mixed flow.

Notice the small peaks at inlet flow rates, even though it was stated that these rates
are constant. These peaks are due to the way flow rates are measured, which is
described in section 3.1.

Also note the y-axis in Figure 2.2. The difference at inlet is very small. Actually,
the inlet pressure only differs by 0.25 bar between the two cases. This is because
interphase friction is lower in stratified flow in addition to the lower friction against
pipe wall due to lower velocity. Also, fraction changes are only marginally different,
which is why mG and mL does not change much. The difference is more noticeable
in the cases of mixed flow. This suggests such flow regimes might be more robust,
in that the response is more distinguishable. Adaption in mixed flow should be less
vulnerable to noise, measurement error and perhaps also modeling error.

2.5.2 Leak magnitude parameter adaption

Figure 2.4 illustrate three new examples in a stratified flow regime, where the leak
position xl is kept constant, but magnitude of leakage, cv, is changed. Also this pipe
is described by the parameters in Table B.1. The black graphs show a default case
where total leakage is 40 kg/s and gas fraction in leakage is εl = 0.1. The green
graphs show an identical leak, only the amount of gas leaking is reduced from 4 kg/s
to 1 kg/s. The blue graphs show a similar case, only where oil leakage is reduced
from 36 kg/s to 9 kg/s. Simulation-parameters are listed in Table B.4.

Similar examples in a mixed flow regime are given in Figure 2.5, with corresponding
simulation-parameters in Table B.5. As in the previous examples, green graphs show
a drop in gas leakage and blue graphs a drop in oil leakage.

In both flow regimes, when a leak occurs, there is an initial change and a delayed
response visible only when the fraction-wave reaches outlet. This is easier to see
in the stratified flow regime, where the fraction-wave propagate slower. This will
be illustrated by two examples. Figure 2.6 show pressure profiles shortly after the
leak occur in a stratified flow regime. Within a few seconds, the change in pressure
has propagated throughout almost half the pipeline. Fraction profile from the same
example is plotted in Figure 2.7. Note that these profiles range over 15 minutes.
One can clearly see the change in fraction propagating toward the outlet, but at a
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Figure 2.2: Boundary values of simulations with leaks at 1150m(blue) and
3250m(green) - Stratified flow
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Figure 2.3: Boundary values of simulations with leaks at 1150m(blue) and
3250m(green) - Mixed flow
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Figure 2.4: Boundary values in pipeline with stratified flow and a leak at 3450m.
Black graphs show default leak. Green graphs show decrease in gas leakage, while
blue graphs show decrease in oil leakage.
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Figure 2.5: Boundary values in pipeline with stratified flow and a leak at 3450m.
Black graphs show default leak. Green graphs show decrease in gas leakage, while
blue graphs show decrease in oil leakage.
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much slower rate than the pressure did. Notice also how fraction seem to drop at
outlet. This is caused when the pressure wave reaches outlet. All states will change
once when the pressure wave reaches outlet and once later, when the fraction wave
does the same. Let us denote these two changes as the first drop and the second
drop, although not all variables drop in value.
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Figure 2.6: Pressure profiles before and after a leak occurs in a stratified flow pattern.
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Figure 2.7: Fraction profiles after a leak occurs in a stratified flow pattern.

For all six simulations, the first drop causes flow rates at outlet to decrease. Even
when very little gas is leaking, there will be a distinct drop in gas rate at outlet.
Actually, two leaks at the same position, but with different leakage fraction εl, might
give nearly identical responses at outlet. This, however, changes when the fraction
wave reaches outlet. Eventually flow rates at outlet is the difference between what
flows into the pipeline, and what is leaking. In the event of pure gas leakage, oil
flow should go back to pre-leak values after the fraction wave reaches outlet.

Consider a case when an observer settle at a leak with εl = 0 while the real value is
1. When the fraction wave reaches outlet, and the observer detect it is mistaken, the
last part of the pipeline is already filled up with too much gas. In an extreme case,
the last part of the pipeline might be filled entirely with oil, while the same part
of the observer is filled with gas only. The adaption laws would be corrupted with
this error until the observer could replace the excessive oil with gas. Regardless
of pipe length, this would clearly be time-consuming. Although this example is
rather extreme, and perhaps not possible, it suggests that when the fraction wave
generated by a leak reaches outlet, it might be too late to change εl. Actually, at
this point a very good estimate of εl could be concluded from model inlet minus
outlet flow.
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So, its not possible to estimate εl before the fraction wave reaches outlet, and when
it does, it is probably too late. And there is more reasons for why adaption should
not depend on information from the fraction wave. The flow into the pipeline would
probably be shut down as soon as a leak is detected, and the fraction wave would
never reach outlet. The leak might be placed at arbitrary length from outlet, causing
the fraction wave to take an arbitrary amount of time before it reaches outlet. Also,
adaption laws would most probably have to change when the fraction wave reached
outlet, in order to cope with responses different from the initial ones. All of this
considered, εl will not be adapted, but set to the best estimate available.

Leaving out fraction from our considerations, the only parameter left to adapt is ĉv.
Looking at the examples, the general tendency is a drop in flow rates relative to the
amount of leakage. As wG and wL are not directly affected by the pressure set at
outlet, they are used for adapting ĉv with adaption-law

˙̂cv = κuGw̌G(L) + κuLw̌L(L). (2.96)

where κuG and κuG are positive constants.

This adaption law is based on boundary responses before the fraction wave reaches
outlet. Adaption beyond this point would be corrupted in many ways. First, if the
estimate of εl is wrong, it will take quite a while before the observer has converged
toward the model. Also, after the fraction wave has settled, the model is at steady
state, and the real value of εl is directly available through mass conservation. Adap-
tion would be unnecessary, also on cv, which at steady state can be read directly.
Third, but not least, with a wrong estimate of εl, there would be no way the observer
could settle to the steady state boundary values of the model. Whatever it did, the
leakage could never be the same as the model, and outlet flow rates would never
settle at the values of the model.

Based on these facts, adaption will be limited to a window in time. On the other
hand, adaption may be repeated for this window many times, keeping the parameter
values from previous runs. This also gives a chance to change εl, and if data is
available past this window, perhaps εl and cv can be estimated through mass balance.
If during each run through the time-window, leak parameters have converged toward
its true value, this method should produce correct parameters eventually. Leaks very
close to the outlet would have a very short time window, which might complicate
the adaption, but should also provide good leak estimates through mass balance.

2.6 Observer summary

In the chapters to come, the general boundary conditions will be implemented on
the boundaries of an OLGA model. OLGA is based on the two-fluid model, but
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have more equations than the basic two-fluid model presented in this chapter. The
main results of this chapter for use in later chapters are summarized here.

At the boundaries of the observer, the following conditions will be used:

Inlet: [
ŵG + ŵL
ŵL

]
=
[
wG + wL
wL

]
+ S−1

c+Sm+

[
mG − m̂G

mL − m̂L

]
(2.97)

Outlet: [
m̂G

m̂L

]
=
[
mG

mL

]
+ S−1

c−Sm−

[
wG + wL − ŵG − ŵL

wL − ŵL

]
(2.98)

where Sc− and Sm− are part of the eigenvector matrix at outlet while Sc+ and
Sm+ are part of the eigenvector matrix at inlet. The system matrix from where the
eigenvector matrix is derived is A = (I +Mδ(w̄))−1(As(w̄) +Aδ(w̄)).

The leak is parameterized as

f̂l = ĉv

√
ρl(p̂l − p̂ambl ), (2.99)

f̂G = f̂lεlδ(x− x̂l) (2.100)

f̂L = f̂l(1− εl)δ(x− x̂l) (2.101)

where x̂l and ĉv is adapted using adaption-laws

˙̂xl = κxGm̌G(0) + κxLm̌L(0), (2.102)

and
˙̂cv = κuGw̌G(L) + κuLw̌L(L). (2.103)

εl is kept constant, based on an initial guess, but a search algorithm may be used
to fit it to the data running through the dataset several times.
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Chapter 3

Method

This chapter will give a brief explanation on how to construct both model and
observer. OLGA is a state of the art computational fluid dynamics simulator, and
is employed as both observer and model. OLGA has limited options for leaks, and
how this is handled is also explained in this chapter. In addition there is a section
on adaption and one on result comparison.

The software used is Mathworks Matlab version 7.4.0.287 (R2007a), and OLGA
5.2.1 with OLGAMatlabToolbox version 1.1.

3.1 Measurements in OLGA

Two instances of a pipeline is modeled in OLGA, whereof one is used to generate
model measurements, and the other is used as the model in an observer. Both OLGA
pipelines are simulated through Matlab and Matlab OLGA Toolbox. Matlab is used
to store model data-sets and in the case of the observer, load measurements, generate
the correct boundary conditions, and control the OLGA simulations in general.

When Matlab is reading data from OLGA, there are two types of variables readable.
One type is defined as volume-variable and values can be obtained in the middle of
an OLGA pipe section. The second type of variables is boundary-variable, which can
be read only at the boundaries between two sections. This type of scheme is normal
for numerical partial differential solvers, such as Roe-solvers, which is also the reason
why variables are defined this way in OLGA. General boundary conditions derived
in the previous chapter require model measurements of state variables at two specific
points labeled inlet and outlet. The separation of measurement-points makes this
impossible as half the variables are measured at one set of points and the rest at
another. Figure 3.1 illustrate the points at which measurements are taken relative
to a section.

35
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The pipeline is partitioned into n segments of length ∆x. The OLGA pipeline model,
on the other hand, is partitioned into sections, which should not be mixed with
segments. Inlet is defined as the start of segment 1 and outlet at the end of segment
n. The boundary variables, as velocity and flow rate, are read directly at these
points. Pressure and fraction, however, must be estimated from the neighboring
measurement-points. For better estimates, the distance between the inlet/outlet and
the closest measurement-points should be small. On the other hand, small segments
drastically increase the runtime of simulations. In order to get good measurements
while keeping the simulation-time down, the first and last segment is partitioned
into several sections as illustrated in Figure 3.1 and 3.2. A section in OLGA must
be no more than twice the length of neighboring sections, which leads to a setup
with sections at different lengths.

Closed
node

First segment

OLGA sections

Volume measurement

Boundary measurement

Source

Inlet

Figure 3.1: OLGA sections and segment overview at inlet. Illustrates the first six
sections in OLGA whereof the last four form the first segment in the model.

Closed
node

First segment

OLGA sections

Volume measurement

Boundary measurement

Source

Inlet

Outlet
Open nodeLast segment

OLGA sections

Figure 3.2: OLGA sections and segment overview at outlet. Illustrates the last four
sections in OLGA which form the last segment in the model.

For to estimate the values of volume variables at inlet and outlet, an interpola-
tion scheme is introduced, using the three closest measurements. Following (Nilssen
2005), only with varying section length, the following relations are derived in Ap-
pendix A,
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α0 =
9
5
α1 − α2 +

1
5
α3 (3.1)

αm =
9
5
αm−1 − αm−2 +

1
5
αm−3 (3.2)

α is any volume variable, and α0 = α(0), α1 = α(∆x/16), α2 = α(3∆x/16), α3 =
α(6∆x/16), αm = α(L) ,αm−1 = α(L − ∆x/16), αm−2 = α(L − 3∆x/16) and
αm−3 = α(L− 6∆x/16).

3.2 Setting boundary conditions in OLGA

At inlet, an OLGA source-element is added to control inlet flow rates of both gas
and oil in the OLGA pipelines. The inflow is separated into two different sources in
order to let one be negative while the other is positive, which would not be possible
otherwise.

At outlet, which is an open node, OLGA let the user set pressure, but not fraction
or any other variable appearing in the system equations presented in Section 2.4.
The two-fluid model presented in the previous chapter has four system equations,
and thus has four boundary conditions to be set. The reason OLGA only has
three boundary conditions, is probably because of the inclusion of a slip relation.
Unfortunately, the details of the OLGA model is not known.

3.2.1 Observer boundary conditions

The general boundary conditions derived in the previous chapter give four conditions
in total, two at inlet and two at outlet. The inlet boundary-conditions are flow rates
of gas and oil, taken directly from equation (2.97). The outlet boundary-condition
is pressure. The pressure would be found using (2.66) mapping the values of m̂G

and m̂L found by using (2.98) into pressure. However, another problem arise as the
density-models are not exact. Even if m̂G and m̂L are equal to mG and mL, equation
(2.66) will never give the same pressure as the model, and a steady state error is
unavoidable. For this reason, when implementing output injection at outlet, the
pressure set is a modification of the model pressure rather than the value produced
by (2.66). Model measurements for mG and mL are used to find a pressure value
with the density models, which is then compared to the same result using m̂G and
m̂L. The difference between the two is added to the model pressure, which is what
is used at the outlet for the observer. This value can be expressed as

p̂ = p+ (P (m̂G, m̂L)− Pp(mG,mL)). (3.3)

where m̂G and m̂L are values generated from (2.98).
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As fraction is not set, it is not possible to control both mG and mL as desired, and
this drastically reduces the benefit of output injection.

In Figure 3.1, notice that there is two sections prior to inlet. The first of them
include the source elements controlling inlet flow rates. Sources are always placed
in the middle of their sections. This structure is necessary for steady flow rate
measurements at inlet. Without the empty second section, fraction would not cor-
respond to the flow rates. This, however, create a delay before the set flow rate
affects measurements at inlet, and if the distance is large, this is clearly a source
for error. On the other hand, it is yet another reason to make the first few sections
shorter than average.

A filter is put on the inlet flow rates, as changes faster than the mentioned delay
will only cause oscillation and in some cases strange behavior. Consider the filter

w∗k,n = w∗k,n−1 −
dt

T
(w∗k,n−1 − wk,n) k ∈ {G,L} (3.4)

where the time constant T is set relative to the delay. Subscript n denote time step,
while superscript * denote filtered variable. In this thesis, T is found heuristic and
T = Ldelay/min(uG, uL) was found to yield good results. Ldelay is the distance from
source to inlet, and dt is the length of one time step.

Output injection is set off the first 15 seconds in order to let OLGA settle, as there
is often an initial peak. If this peak give a pressure too high or too low, OLGA will
produce an error and terminate the simulation. This is due to the lack of values in
fluid properties tables used in OLGA. The peak occur because OLGA steady state
pre-processor does not give exact steady state conditions. The 15 seconds is enough
for the observer to settle.

3.3 Flow patterns in OLGA

OLGA has two basic flow regime classes, distributed and separated flow. Distributed
flow include both mixed flow and slugging. Separated flow contains stratified and
annular flow. The most common flow patterns in oil and gas flow is stratified flow
and mixed flow with slugging (Lu et al. 2006). This is confirmed by OLGA, as
annular flow was never observed throughout this thesis. Pure mixed flow may be
observed, but when a leak is present, slugging will most probably occur. Also, an
observer trying to mimic a model with a pure mixed flow pattern is likely to adopt
slugging.

OLGA calculate the dominant flow regime for every section alone, and mostly in-
dependent of the flow regime in neighboring sections. When slugging is appointed
to one section, OLGA applies an averaged slug flow. The slug flow is assumed to
be infinitely many identical slug cells, and mass flow is averaged. This means flow
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out of the section will be the average flow, and for the neighboring section, is hardly
distinguishable from mixed flow.

While mixed flow and slugging is closely related, transitions between mixed/slug
flow and stratified flow, however, is less common. In addition to being hard to
separate from slugging, pure mixed flow only appear at high flow rates, which again
leads to high friction. Considering the restriction in friction by (2.8), simulations
will be limited to stratified flow and a mix between mixed and slug flow. This
latter mix will be denoted as mixed flow only, but in some cases slugging might be
dominant both in the model and the observer.

While the flow through the pipeline is averaged in slug flow, the leakage seems to
be dependent on slug bubbles. When slugging occur, small ripples occur on gas
leakage. These are relatively small compared to leakage magnitude in total, and
does not seem to affect boundaries.

3.4 Modeling the leak

Recall the leak-equations (2.87)-(2.89). The leak is modeled as two leaks, one for
each phase, but at the exact same position. The magnitude of leakage will be
distributed over two segments depending on the estimated position of the leak.
The segments at which the leak is distributed are the two closest to estimated leak
position. Their positions are x1 and x2, where x1 < x2.

OLGA has an element named ”leak”, but this feature does not allow the user to
specify what phase is leaking, only the leak magnitude. For this reason, a negative
source element is used instead. The leak distribution from (Hauge 2007) is adopted,
slightly modified to account for two phases. Distribution among the two neighboring
sections is


fG,1
fG,2
fL,1
fL,2

 =
[
G−1
l 0
0 G−1

l

]
f̂G
f̂G
f̂L
f̂L

 (3.5)

where

Gl =
[

∆x ∆x
∆x+ 2l − l2

∆x
l2

∆x

]
(3.6)

∆x is the segment length and l is the distance between x1 and the actual leak
position. fG,1 and fL,1 denote the leakage at x1 of gas and oil respectively, while
fG,2 and fL,2 correspond to x2.
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For this method to work properly, the pipe must be divided into sufficiently small
segments. It is argued in (Hauge 2007) that segment-length under a certain constant
∆xs will only marginally change convergence properties, and this segment-length
suffice.

Pressure at the leak position has to be estimated, and this is done in a similar way
as distributing the leakage. This pressure is used in the density-model to generate ρl
as well, together with volumetric fraction. By assuming constant spatial derivative
of pressure in segments, one can set up the following equations,

∆p̂
∆x

=
p2 − p1

∆x
, (3.7)

p̂l = p1 + l
∆p̂
∆x

. (3.8)

p1 and p2 are pressures at x1 and x2 respectively, while pl is pressure at the leak
position. Fraction can be found using the same method, but do not mistake this
fraction for εl which is the leakage fraction.

3.5 Restarting simulations

In section 2.5, it was pointed out that adaption beyond the point in time when the
fraction-wave reaches outlet, would diverge. The fraction-waves in question is the
one generated from the occurrence of a leak, illustrated in Figure 2.7. This fraction
wave travel at a speed relative to phase velocities, and can be expected to have
velocity equal to one of the eigenvalues of the system. It was previously mentioned
that the largest of these eigenvalues has a value in the range of gas and oil velocity.
Based on an estimate of its velocity, the observer and model will be reset before the
fraction wave is expected to reach outlet. Consider the following inequality,

max(ūG, ūL)(tr − t) < L− x̂l (3.9)

where tr is the time of the previous reset. ūG and ūL are phase velocities averaged
over a time window. The window will be set as the last minute before time t. Any
time the inequality is not valid, all variables will be reset to pre-leak values, but
leak parameters will be kept. tr is set to t again. Figures where the values are reset
illustrate this with vertical lines, but it will be mentioned when this happens.

Note this is by no means a perfect condition for when to restart the simulations, but
in most cases it gives a satisfactory window of convergence. The observer will be
vulnerable when x̂l is too small, as the observer will not expect a fraction-wave at
outlet until it is too late. If this error is large, the estimates may fluctuate enough
for the total adaption within the time-window to diverge. In that case, adaption
will not converge independent of how many times the dataset is used to adapt onto.



3.6. OBSERVER TUNING 41

3.6 Observer tuning

Note that adaption coefficients are both lower and upper bounded. If adaption is
faster than the pressure wave response leak parameters generate, it will oscillate or
diverge. If adaption is slower than the fraction wave it will also diverge.

Tuning of the observers was done by a heuristic method, but with theory in mind.
Remember how leak position did not affect the steady state flow rates at outlet.
Leak magnitude, or cv in this case, should then be identifiable independent of leak
position adaption. This is, of course, only true the interval before the previously
described fraction-wave reaches outlet. The transient response within this time in-
terval, however, will be different. Too aggressive tuning will make the magnitude
drift too far away until response is settled, and cause oscillation. During tuning,
ignoring adaption of position, coefficients κuG and κuL are set such that quantifica-
tion is stable within a few minutes. This is done, basically, by setting a low value
on the two coefficients, and increasing until oscillations occur, and then lower them
slightly.

When correct quantification is found, the position can obtain its correct value. Tun-
ing of κxG and κxL is done similar, by setting low values initially, and increasing
them until adaption on x̂l start oscillating. At this point, they are lowered slightly.
In this thesis, κuG is kept equal to κuL , and κxG equal to κxL .

3.7 Computing measures of performance

In order to express adaption performance with values, consider the following defi-
nitions. These measures are almost identical to those found in (Hauge 2007), and
when using the same parameters, can be compared directly.

3.7.1 Observer error

Observer error is described using the L2-norm through the pipeline. The error of
an arbitrary variable v will be denoted e(v, t) and expressed through

e(v, t) =

[
N−1∑
i=2

‖vi(t)− v̂i(t)‖2
] 1

2

, t ∈ (0, t) (3.10)

where i denote one of N segments of the pipeline. As the first and last segment of the
OLGA pipeline is partitioned into four sections, and no measurement is available at
the center, the first and last segment is left out of this measure.
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3.7.2 Leak adaption time

As a measure of how close the adapted leak position is to the actual value, consider

Φ(t) =
1
T

∫ t−T

T
|x̂l(τ)− xl| dτ (3.11)

which is the average position deviation in a window in time of duration T. Now let
t ∈ [tm, tend] be the longest interval where the inequality

Φ(t) < M (3.12)

is valid, where tend is the end of simulation. The time between a leak occurs and tm
will be denoted tc, and used as a measure of performance in terms of convergence.
Note that tc might not exist if the adaption do not converge to the correct values.
This is indicated with the value -1. M will be set to 300 in this thesis.

3.7.3 Average deviation

Leak position and leakage magnitude will be averaged as

v̄ =
∫ tend

tl

v(τ)− v̂(τ)dτ (3.13)

where v is either xl, fG or fL and tl is the time when the leak occur.



Chapter 4

Results

This chapter presents the main results of simulations conducted throughout the
course of this thesis. All results come from simulations of two-phase oil and gas flow
in the fluid simulator OLGA. Performance in terms of convergence is inspected at
first. Afterward, the observer presented is run with data produced by an OLGA
model of a straight pipeline. Many different scenarios are tested, and the results
will be discussed in the following chapter.

4.1 Convergence

In this section, performance of the observer will be investigated in terms of con-
vergence. Through several simulations it will be tested with and without output
injection both for mixed flow and for stratified flow.

An OLGA model is run at steady state, first with a mixed flow pattern. Boundary
conditions are given in Table 4.1. Remember that mixed flow, in this case, may
include averaged slug flow in some or all sections. Even if the model only had the
pure mixed flow pattern, the observer would likely include slugging at some point.
Read more on this in Section 3.3. Pipe properties are listed in Table B.1.

Table 4.1: OLGA model boundary conditions - Mixed flow
Property Value

Inlet flow rate gas 20 kg/s
Inlet flow rate oil 375 kg/s
Outlet pressure 50 bar

The observer is run three times with an initial steady state where inflow of gas and
oil rate 50% higher than the model. Also, outlet pressure is 5% higher than that of
the model. During the first simulation, boundary conditions are set equal to those of

43
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the model, i.e. no output injection is employed. The second time, output injection
is employed at the inlet through boundary condition (2.97). Finally, the observer is
run with output injection at both ends, employing (2.98) at outlet. Figure 4.1 show
the L2-norm of observer error for the three cases.

For a real pipeline, boundaries will vary with production, and fast convergence is
vital for adaption to work. If convergence is slow, the observer error will corrupt
adaption. In addition, sudden changes may be mistaken for a leak. In section
2.5 it was pointed out how leak adaption is restricted in time, and it follows that
convergence during the first few minutes is of most importance. Therefore, Figure
4.2 show the same L2-norm for the first 10 minutes only.

Another steady state mixed flow example was tested, with twice the flow rate of the
first. The aim was to obtain pure mixed flow, which should be present at high flow
rates (Liu et al. 2008). The result was that the boundary conditions diverged, and
OLGA aborted the simulations. This is probably connected with the high friction
force at these velocities, and the restriction (2.8), as mentioned in Section 2.4.8.

Next, the same pipeline model is simulated at steady state with stratified flow
pattern. This is achieved lowering flow rates, and simulation-parameters are given
by Table 4.2. As for the previous case, L2-norms are plotted in Figure 4.3, with the
first 10 minutes repeated in Figure 4.4.

Table 4.2: OLGA model boundary conditions - Stratified flow
Property Value

Inlet flow rate gas 5 kg/s
Inlet flow rate oil 91 kg/s
Outlet pressure 50 bar

When adapting to a real pipeline, it will probably not be in steady state as above,
but a change might be followed by another change soon after. The mixed flow case
above is run with a pulse-like oil flow rate at inlet as plotted in Figure 4.5. The
observer is run again, three times, with the resulting L2-norms plotted in Figure
4.6.

Comment Remember how it was pointed out in the previous section that pressure-
waves are used for adaption, and thus convergence in terms of pressure is of greater
importance than other variables.

4.2 Leak adaption

In this section, the observer presented will be tested in many different scenarios, with
focus on adaption of leak parameters. Performance will be presented as graphs and
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Figure 4.1: L2-norm of observer error in mixed flow. Black graphs show L2-norm
of observer error without output injection. Green graphs show error when output
injection is employed at inlet only, while the blue graphs show error when output
injection is employed at both inlet and outlet.
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Figure 4.2: L2-norm of observer error in mixed flow during first 10 minutes only.
Black graphs show L2-norm of observer error without output injection. Green graphs
show error when output injection is employed at inlet, while the blue graphs show
error when output injection is employed at both inlet and outlet.
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Figure 4.3: L2-norm of observer error in stratified flow. Black graphs show L2-norm
of observer with no output injection. Green graphs show error when output injection
is employed at inlet only, while the blue graphs show error when output injection is
employed at both inlet and outlet.
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Figure 4.4: L2-norm of observer error in stratified flow during first 10 minutes only.
Black graphs show L2-norm of observer with no output injection. Green graphs
show error when output injection is employed at inlet only, while the blue graphs
show error when output injection is employed at both inlet and outlet.
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Figure 4.5: Oil mass flow at inlet.

in terms of the measures given in the previous chapter. The section is divided into
subsections, where each subsection concerns one subject. A discussion of the results
will follow in the next chapter. Based on results in the previous section, where
output injection at both ends proved to give better convergence, it is employed at
both inlet and outlet in all simulations unless stated otherwise.

4.2.1 Steady flow and perfect leakage fraction estimate

First, a simple case is considered, with the intention to compare adaption perfor-
mance with and without output injection. The case include a nominal model with
stratified flow, perfect measurements, and εl known prior to the leak. Model pa-
rameters and observer parameters are listed in Table 4.2 and Table B.6 respectively.
Leak parameters are listed in Table 4.3. Note that the leakage is constant, and
not relative to pressure at the point of the leak. The observer is run twice, once
with output injection and once without. Both cases are plotted in Figure 4.7. A
summary of the performance is listed in Table 4.4.

Table 4.3: Leak parameters - Leakage relative to pre-leak flow rate
Property Value

Leak position 1650m
Leakage gas 20%
Leakage oil 20%

Next, a similar case in a mixed flow regime is considered. The leak is placed at
2250m in the same pipeline as above, and model boundary conditions are given by
Table 4.1. Observer coefficients equal those in the previous case, and the result is
plotted in Figure 4.8. Values of performance are listed in Table 4.4.

Notice that in this case, the Matlab script reset simulation before it expect the
previously described fraction wave to reach outlet. Several times both the model
and observer is reset to the states when the leak was detected. In these simulations,
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Figure 4.6: L2-norm of observer error with pulse flow at inlet. Black graphs show
L2-norm of observer with no output injection. Green graphs show error when output
injection is employed at inlet only, while the blue graphs show error when output
injection is employed at both inlet and outlet.
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Figure 4.7: Leak adaption in stratified flow with a leak at 1650m.
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a reset was programmed every seven minutes instead of using the formula 3.9. In
the figure, a reset is indicated by stippled horizontal lines. Boundary values for the
state vector w̄ is plotted in Figure 4.9. The left column show inlet values, while the
right column show values at outlet. Also in this figure, restarts are indicated with
horizontal lines.

Table 4.4: Summary of leak adaption
Measure

tc[min] x̄l[m] f̄G[kg/s] f̄L[kg/s]

Stratified
flow

With
Output Injection

2.4 -56.5 0.065 1.17

Without
Output Injection

7 -345 0.042 0.75

Mixed
flow

With
Output Injection

5.5 175 0.32 5.78

Without
Output Injection

6.4 319 0.56 10.1

Output injection has proved to give increased performance, and from now on, is
employed in every simulation. A set of simulations will follow, where the observers
stability will be tested. A single observer with a fixed set of coefficients will be tested
on a range of different leaks, including all flow regimes. The observer parameters
are listed in Table B.7.

First, the observer is tested in stratified flow, with model boundary conditions equal
to the previous stratified cases. The leak object in OLGA is used, modeling the
leakage. This model depend on both internal variables and flow regime, while the
observer leak model is still unchanged. In the model, leakage magnitude, leakage
fraction and leak position are varied. The results from adapting leak parameters
are listed in Table 4.5.

The same observer is now run on the same model, only with a mixed flow pattern.
For model inlet and outlet conditions, again, see Table 4.1. Model leak parameters
are varied as for stratified flow, and the resulting adaption performance is listed in
Table 4.6.

4.2.2 Leakage fraction unknown

The two models from above are now considered again, but now with wrong estimates
of εl. Four different values are used, ε̂l = 〈0.02, 0.1, 0.5, 0.95〉. The real value is
εl = 0.0526, and was set constant by using two negative source elements instead
of a leak element in the OLGA pipeline. First consider the model from Table 4.2,
the stratified flow case. Observer coefficients are unchanged, and is listed in Table
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Figure 4.8: Leak adaption in mixed flow with a leak at 2250m. The horizontal
stippled lines indicate a restart of observer and model states, while leak parameters
are kept.
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Figure 4.9: Boundary values when adapting a leak in a mixed flow regime. Horizon-
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Table 4.5: Summary of leak adaption with different leak parameters in a stratified
flow regime.

Stratified Flow
Leak
size

Leak position
Measure 950m 1950m 2950m 3950m

fG ≈ 2%
fL ≈ 7%

tc[min] 14.2 -1 -1 -1
x̄l[m] -489 -44.6 436 943

f̄G[kg/s] 0.0222 0.0144 0.00723 0.000247
f̄L[kg/s] 1.29 0.839 0.423 0.0158

fG ≈ 11%
fL ≈ 33%

tc[min] 2.8 6.1 9 10.6
x̄l[m] 59.1 165 292 438

f̄G[kg/s] 0.0281 0.0188 0.00983 0.000138
f̄L[kg/s] 1.53 1.04 0.563 0.0443

fG ≈ 25%
fL ≈ 63%

tc[min] 2.3 3.7 4.7 21.8
x̄l[m] -63.4 2.96 74.1 69.6

f̄G[kg/s] 0.0224 0.0128 0.0016 -0.0137
f̄L[kg/s] 1.18 0.76 0.245 -0.463

fG ≈ 40%
fL ≈ 85%

tc[min] 13.4 19.8 15.9 NA
x̄l[m] -357 359 -199 NA

f̄G[kg/s] -0.0104 0.5 -0.0313 NA
f̄L[kg/s] -0.108 19.2 -0.773 NA

Table 4.6: Summary of leak adaption with different leak parameters.
Mixed Flow

Leak
size

Leak position
Measure 950m 1950m 2950m 3950m

fG ≈ 4.2%
fL ≈ 7.2%

tc[min] 21 9.5 8.3 8.1
x̄l[m] 448 230 210 272

f̄G[kg/s] 0.15 0.0675 0.0505 0.0307
f̄L[kg/s] 4.56 2.04 1.51 0.911

fG ≈ 17%
fL ≈ 27%

tc[min] 17.3 6.4 5.6 4.9
x̄l[m] 327 241 204 180

f̄G[kg/s] 0.394 0.241 0.18 0.153
f̄L[kg/s] 11.7 7.32 5.5 4.58

fG ≈ 29%
fL ≈ 45%

tc[min] 11.8 5.4 4.9 4.3
x̄l[m] 235 201 169 131

f̄G[kg/s] 0.512 0.339 0.262 0.24
f̄L[kg/s] 14.5 10.1 7.86 6.93

fG ≈ 38%
fL ≈ 55%

tc[min] 11.3 4.9 4.7 4.2
x̄l[m] 194 170 142 106

f̄G[kg/s] 0.555 0.374 0.304 0.276
f̄L[kg/s] 15.2 11 9.02 7.77
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B.6. Output injection is employed in all simulations, both at inlet and outlet. The
resulting leak adaption corresponding to all four values of ε̂l are plotted in Figure
4.10. Values of performance are listed in Table 4.7.

Next, the same four values are tested for the mixed flow model. Also in this case,
the real value is εl = 0.0526. For model boundary values, see Table 4.1. The results
are plotted in Figure 4.11. Values of performance are listed in Table 4.7 together
with values from cases with stratified flow.

Table 4.7: Summary of leak adaption with varying fraction. The real fraction is
εl = 0.0526.

Measure
tc[min] x̄l[m] f̄G[kg/s] f̄L[kg/s]

Mixed
flow

ε̂l = 0.02 9.2 218 2.16 -19.9
ε̂l = 0.1 6.7 250 -1.08 26.7
ε̂l = 0.5 - 313 -3.62 65.3
ε̂l = 0.95 - 342 -4.10 72.5

Stratified
flow

εl = 0.02 - -130 0.51 -6.59
ε̂l = 0.1 - 20.3 -0.26 6.82
ε̂l = 0.5 - 158 -0.80 16.42
ε̂l = 0.95 - 384 -0.82 18.1

Consider now varying εl, as an OLGA leak element is used to model the leak. A
good estimate of fraction in leakage may be the mass flow fraction immediately
upstream of the leak position. Especially in mixed flow, this should be a good
estimate. In stratified flow, however, fraction is dependent on where the leak is
present in a cross section, i.e whether it is on top or on bottom of the pipeline.
Still, ε̂l is set equal to mass fraction of flow inside the pipeline, and the observer is
tested on several different leaks in both the mixed and stratified flow case above.
The results are listed in Table 4.9 for adaption in stratified flow and Table 4.8 for
adaption in mixed flow.

Table 4.8: Summary of leak adaption in mixed flow with different leak parameters.
εl ≈ 0.033 while ε̂l is based on mass flow fraction and equal ε̂l ≈ 0.05.

Mixed Flow
Leak
size

Leak position
Measure 950m 1950m 2950m 3950m

fG ≈ 29%
fL ≈ 45%

tc[min] 18.6 9.4 8.2 4.2
x̄l[m] 252 264 204 143

f̄G[kg/s] -0.3 -0.855 -1.05 -1.11
f̄L[kg/s] 27.5 29.3 28.8 27.5
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Figure 4.10: Leak adaption with varying guesses of ε̂l in a stratified flow regime.
The real fraction is εl = 0.0526.
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Figure 4.11: Leak adaption with varying guesses of ε̂l in a mixed flow regime. The
real fraction is εl = 0.0526.
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Table 4.9: Summary of leak adaption in stratified flow with different leak parame-
ters. εl ≈ 0.028 while ε̂l is based on mass flow fraction and equal ε̂l ≈ 0.05.

Stratified Flow
Leak
size

Leak position
Measure 950m 1950m 2950m

fG ≈ 43%
fL ≈ 83%

tc[min] 10.6 12.5 11.9
x̄l[m] -320 26.9 -164

f̄G[kg/s] -1.41 -1.3 -1.3
f̄L[kg/s] 24.3 27 21.2

4.2.3 Varying boundaries

It is not likely that the inflow will stay constant very long. Production changes will
cause varying boundaries, hence in this section a few scenarios with sinusoidal inlet
flow will be presented. The same OLGA model is used, only with the change in flow
rates. The observer parameters are listed in Table B.7.

First, for stratified flow, the inflow rates are given in Figure 4.12. The amplitude of
the sinusoids is 20% of the average value except in the case with the higest frequency
which has 30% amplitude. Note that there is a 180◦ phaselag between the sinusoids
for gas and oil flow rate. Estimated leak position is plotted in Figure 4.13, and
measures of performance in Table 4.10. For plots of leak magnitude, see Figure
C.1-C.3 in the appendix.

Next follows the same procedure for mixed flow, with sinusoidal inflow rates at
three different frequencies. The case with the highest frequency also has a higher
amplitude. The inflow is illustrated in Figure 4.14, and the resulting leak adaption
is presented in Figure 4.15. Resulting measures of performance are listed in Table
4.10. Again, adaption of magnitude is found in the appendix, in Figure C.4-C.6.

Table 4.10: Summary of leak adaption performance during scenarios with sinusoidal
varying flowrates.

Measure
tc[min] x̄l[m] f̄G[kg/s] f̄L[kg/s]

Stratified
flow

Case 1 - 1060 0.053 0.87
Case 2 - 692 0.047 0.83
Case 3 - 1461 0.16 2.86

Mixed
flow

Case 4 8.6 106 0.063 1.08
Case 5 19.9 190 0.073 1.01
Case 6 - 248 0.021 0.37
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Figure 4.12: Sinusoidal varying inflow for Case 1-3 - Stratified flow
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Figure 4.13: Leak adaption in stratified flow with varying boundaries.
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Figure 4.14: Sinusoidal varying inflow for Case 4-6 - Mixed flow
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Figure 4.15: Leak adaption in mixed flow with varying boundaries. Horizontal lines
indicate a reset of model and observer.
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4.2.4 Biased Measurements

Until now, measurements have been perfect. In this section, a wide range of simu-
lations will be conducted, inspecting the effect of biased measurements. There are
four measurements, both phase flow rates, pressure and volumetric fraction. These
will be inspected in pairs, cross-checking the effect of bias on both flow rates before
the same is done with pressure and fraction.

The models will be the same as in previous scenarios, with flow rates given in Table
4.2 and Table 4.1 for stratified and mixed flow respectively. The observer listed in
Table B.7 is still used. The bias is present at both inlet and outlet. Perfect estimates
of εl are used.

Four sets of simulations follow. First, flow rates are changed with ±1% or kept
constant. The results from all nine simulations for each flow regime are presented
in Table 4.11. The left column list bias on gas flow, while the top row show the bias
on oil flow. Afterwards, the bias is increased to ±5%, and an identical set of results
for the new biases are presented in Table 4.12.

Table 4.11: Summary of leak adaption with minor bias on measurements of flow
rates.

Mixed Flow Stratified Flow
Error
wg

Error wL Error wL
Measure -0.01% 0% +0.01% -0.01% 0% +0.01%

-0
.0

1%

tc[min] 8.5 5.6 5.9 2.8 2.6 2.5
x̄l[m] -56 95.2 242 -132 -24 82

f̄G[kg/s] 0.20 0.18 0.16 0.043 0.040 0.037
f̄L[kg/s] 3.56 3.18 2.88 0.78 0.73 0.67

0%

tc[min] 8.4 5.7 5.9 2.6 2.5 2.4
x̄l[m] -6 145 282 -63 44 149

f̄G[kg/s] 0.18 0.164 0.149 0.040 0.037 0.034
f̄L[kg/s] 3.29 2.96 2.69 0.72 0.67 0.62

+
0.

01
%

tc[min] 8.4 5.7 6 2.5 2.4 -1
x̄l[m] 43 188 329 7 110 214

f̄G[kg/s] 0.17 0.15 0.14 0.037 0.034 0.031
f̄L[kg/s] 3.06 2.75 2.51 0.66 0.61 0.56

Following the same procedure, similar simulations are conducted only with a bias on
measurements of pressure and fraction instead. For the first set of results, pressure
bias is ±0.1 bar and fraction bias is ±0.01. The results are presented in Table 4.13.
Next, the bias is increased to ±0.2 bar for pressure and ±0.05 for fraction. Results
are presented in Table 4.14.
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Table 4.12: Summary of leak adaption with large bias on measurements of flow
rates.

Mixed Flow Stratified Flow
Error wL Error wL

Error wG Measure -0.05% 0% +0.05% -0.05% 0% +0.05%

-0
.0

5%

tc[min] -1 -1 -1 -1 -1 2.6
x̄l[m] -1031 -117 607 -858 -330 129

f̄G[kg/s] 0.329 0.223 0.131 0.067 0.049 0.025
f̄L[kg/s] 5.92 4.01 2.36 1.20 0.88 0.45

0%

tc[min] -1 5.7 -1 -1 2.5 -1
x̄l[m] -679 145 807 -510 44 540

f̄G[kg/s] 0.266 0.164 0.118 0.049 0.037 0.020
f̄L[kg/s] 4.79 2.96 2.12 0.88 0.67 0.36

+
0.

05
%

tc[min] -1 -1 -1 8.7 -1 -1
x̄l[m] -388 351 966 -239 350 873

f̄G[kg/s] 0.17 0.10 0.082 0.024 0.018 0.007
f̄L[kg/s] 3.12 1.77 1.48 0.43 0.32 0.12

Table 4.13: Summary of leak adaption with minor bias on measurements of pressure
and volumetric fraction.

Mixed Flow Stratified Flow
Error p Error p

Error ε Measure -0.1 bar 0 +0.1 bar -0.1 bar 0 +0.1 bar

-0
.0

1

tc[min] 8.5 8.4 8.4 2.4 2.4 2.4
x̄l[m] -56 -6 42 -18 -21 -55

f̄G[kg/s] 0.198 0.18 0.17 0.011 0.033 0.052
f̄L[kg/s] 3.56 3.29 3.06 0.20 0.60 0.94

0

tc[min] 5.6 5.7 5.7 2.5 2.5 2.5
x̄l[m] 95 145 188 48 44 42

f̄G[kg/s] 0.18 0.164 0.15 0.015 0.037 0.060
f̄L[kg/s] 3.18 2.96 2.75 0.27 0.67 1.07

+
0.

01

tc[min] 5.9 5.9 6.0 2.6 2.6 2.6
x̄l[m] 242 282 329 88 85 79

f̄G[kg/s] 0.16 0.15 0.14 0.016 0.038 0.060
f̄L[kg/s] 2.88 2.69 2.51 0.28 0.68 1.08
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Table 4.14: Summary of leak adaption with large bias on measurements of pressure
and volumetric fraction.

Mixed Flow Stratified Flow
Error p Error p

Error ε Measure -0.2 bar 0 +0.2 bar -0.2 bar 0 +0.2 bar

-0
.0

5

tc[min] -1 -1 -1 -1 -1 -1
x̄l[m] -694 -727 -766 -518 -518 -529

f̄G[kg/s] 0.12 0.18 0.24 -0.041 0.002 0.047
f̄L[kg/s] 2.20 3.24 4.29 -0.74 0.04 0.85

0

tc[min] 5.7 5.7 8.1 2.5 2.5 2.5
x̄l[m] 165 145 121 53 44 38

f̄G[kg/s] 0.10 0.164 0.23 -0.007 0.037 0.082
f̄L[kg/s] 1.80 2.96 4.15 -0.13 0.67 1.48

+
0.

05

tc[min] -1 -1 -1 -1 -1 -1
x̄l[m] 992 972 951 237 225 212

f̄G[kg/s] 0.27 0.33 0.39 -0.004 0.041 0.085
f̄L[kg/s] 4.85 5.89 6.97 -0.06 0.73 1.53

4.2.5 Shutdown

In many cases, when a leak is detected, especially in gas and oil pipelines, flow
into the pipeline is halted. A leak identification system should certainly be able to
handle such conditions. In this section, such a scenario is simulated, but because of
OLGA fluid property file limitations, it is not a complete shutdown. Neither was it
possible to reduce flow in stratified flow sufficiently for to simulate such a scenario.
Therefore, only mixed flow with slugging is tested in this section.

The inflow rates are illustrated in Figure 4.16 while the outlet pressure is kept
constant at 50 bar. Two minutes after the leak occurs, shutdown is initiated, which
lasts for one and a half minute. The final flow is then 40% of initial flow. The
observer is still unchanged, and listed in Table B.7. Leak parameter estimates are
plotted in Figure 4.17. During this simulation, a perfect value of εl is used. A second
simulation where there is a 10% error in ε̂l is presented in Figure 4.18. Results are
summed up in Table 4.15. ε̃l denote the error in ε̂l in percentage of εl.

In these cases the adaption would converge eventually, but in a real shutdown,
adaption would cease when flow was halted. In such a scenario, the only data
available would be the first few minutes after leak occurense. Next, a simulation is
conducted, reusing the first two minutes before a shutdown is initiated. This will
cause adaption to restart every two minutes, but leak parameters are kept. Consider
the case from above, including the error in ε̂l. Figure 4.19 show the leak adaption,
while values of the state vector w̄ is illustrated in Figure C.7 in the appendix. Results
are also listed in Table 4.15.
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Figure 4.16: Inflow rates of gas and oil during the shutdown scenario.

Table 4.15: Summary of leak performance during shutdown scenario, both for perfect
ε̂l and ε̂l with a 10% error. Stippled lines indicate estimates while the solid line is
real values.

Scenario
Measure ε̃l = 0 ε̃l = 10% ε̃l = 10% w/restarts
tc[min] 11.6 - 8
x̄l[m] 120 378 290

f̄G[kg/s] 0.149 0.036 0.12
f̄L[kg/s] 4.99 8.09 10.46
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Figure 4.17: Estimates of leak parameters during the shutdown scenario. εl is known.
Stippled lines indicate estimates while the solid line is real values.
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Figure 4.18: Estimates of leak parameters during the shutdown scenario. ε̂l is 10%
off.
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Figure 4.19: Estimates of leak parameters during the shutdown scenario. Only data
from two minutes after leak occurense is used. There is a 10% error in εl. Stippled
lines indicate estimates while the solid line is real values. Horizontal lines indicate
a reset of model and observer.



Chapter 5

Discussion

In this chapter, the main results presented in the previous chapter will be discussed.
The discussion is partitioned into sections corresponding to how they were presented.
The chapter is finished by a discussion on future work.

Notice that the boundary conditions will be labeled output injection, but based on
a linearized model, they are more an approximation.

5.1 Convergence

When convergence is concerned, for both flow regimes, there are variations in perfor-
mance when looking at the different variables. In general, when prioritizing pressure,
output injection must be said to be favorable. On the other hand, for the mixed
flow example, gas velocity and volumetric fraction converge slower when output
injection is employed. When looking at the short term graphs, however, the lines
alternate on being lower. Oil velocity and pressure seem to converge faster with the
new boundary conditions. Initially, they both seem to have a profile similar to that
found for pressure in single phase systems (Aamo et al. 2005). This is promising,
but it is not surprising that mixed flow behave similar to single-phase flow. If well
mixed, it may be considered as a single medium. On the other hand, especially
during the first 10 minutes when there is a lot of changes going on, the observer
has many sections with varying degree of slugging. This does not seem to ruin the
good effect these boundary conditions have on convergence. It is reassuring that the
boundary condition also work for slug flow, when slug flow, although often avoided,
is one of the two most common flow regimes in two-phase flow(Lu et al. 2006).

Not considering fraction, in stratified flow, all variables seem to converge faster when
output injection is employed. Error in fraction is almost identical for all three cases.
Although all variables seems to profit, pressure does not seem to converge quite as
fast as in mixed flow. Something that looks like steady state error is observed in

69
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stratified flow. This is actually because of the slow oil phase, which have not yet had
time to flow through the pipeline after 100 minutes. After 2 hours and 20 minutes,
this error would have faded.

The simulations in mixed flow showed that the observer not employing output injec-
tion had converged to the model within 15 minutes, while the observers with output
injection use close to one hour. Any time-window less than 10 minutes favor out-
put injection. Note that most cases of adaption presented in the previous chapter
have more or less converged within 10 minutes. When it comes to the stratified
flow example, convergence in general is a lot slower than the mixed flow examples.
While the observer not employing output injection used 15 minutes to converge in
mixed flow, it uses more than two hours in stratified flow. Remember that the phase
velocities in this flow regime is slower than in mixed flow. The faster response seen
on the L2-norm is due to the pressure waves propagating fast through the pipeline,
while the slower response is linked to the lower eigenvalues of the model. The slow
dynamic is related to the phase velocities, which is faster for mixed flow, and hence
the convergence is also faster.

Output injection at inlet compared to output injection at both ends, does not seem
to change considerably. Remember that output injection could not be implemented
at outlet as it should. Only pressure is set, while the boundary conditions give
values for both mG and mL. Optimally, fraction should have been specified at
outlet. Another limiting factor is that pressure was modified by (3.3) instead of
being set directly. The effect of adding this reduced output injection at outlet is not
as evident as that of output injection at inlet. Most variables see a slight increase
in performance or is unchanged, except for oil velocity in stratified flow for which
performance is reduced. A less restricted model would probably benefit more by
these boundaries than OLGA does, and hence, all results to follow would perhaps
have been affected.

When considering the case with varying boundaries, again, fraction is the only
variable that does not benefiting from output injection. Actually, fraction seems to
diverge, which is alarming. However, performance is again increased most in terms
of pressure, which is promising. The pulse-like inflow is probably not realistic in
a real system, where changes would be less often, smaller in magnitude or more
ramp-like.

5.2 Leak adaption

The adaption laws seem to work as intended. Independent of flow regime, both
leakage and position are estimated within the 30 minute simulation. Restarting the
observer work as intended, but limit its features to offline estimation. Leak detection
systems are available today, it is the estimation of position which is new, and hence
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emphasized. Therefore, using this observer offline together with a leak detection
system should be as useful as observing online.

While output injection improved performance both in terms of quantification and
location when the flow regime was mixed flow, quantification in stratified flow was
slower. Locating the leak, on the other hand, was faster also in this case. In most
practical scenarios, location is of greater interest than quantification, and output
injection must be said to have a positive effect in both examples. Note that in
Figure 4.8, leak position adaption reaches the lower boundary. It is kept constant
at 150m for a while. The longer an observer is bounded, the further it would have
fluctuated away, and the longer it would take to come back if it was not bounded.
As the case without output injection stays bounded longer, output injection would
probably give an even better advantage if they were not bounded. Still, output
injection end up reducing convergence-time even when both cases reach the lower
restriction on x̂l.

Also note that in the examples with stratified flow, both the case with and without
output injection end up at a steady state error in leak position. This is related to
the apparent steady state error in the convergence, which actually is no steady state
error but an error due to slow convergence. Although the pressure waves have long
since reached the ends of the pipeline, differences in mass inside the pipeline causes
a slight difference in inlet pressure drop, which affect the leak position.

When testing the observer on many different leaks, in most cases, it converge eventu-
ally. Performance vary much, however, from one case to another, and if the observer
was individually tuned, convergence-time could have been improved drastically. In
a realistic system, the leak is not known, and tuning is not an option. Therefore,
it is important that one observer is able to handle a wide range of leaks. Running
several different observers concurrently could be an option in a real-time system,
increasing the range and performance of the system in total.

In both flow regimes, the leak with the least leakage seems harder to estimate. In
the stratified flow regime, the lesser leak was not located at three of four positions.
Also, leaks toward the end of the pipeline seem harder to locate than leaks in the
first half of the pipeline. This is because all leaks start at zero leakage, which will
make the adaption of position start drifting toward inlet. Not until the leakage is
near quantified does the leak approach its real position, which would at that point
be closer if it was in the first half of the pipeline. This is also the reason why
the initial observer leak position is in the last half of the pipeline, and not in the
middle. A more aggressive tuning would quantify the leakage faster, but would make
the observer less stable, decreasing the range of cases it would succeed.

A perhaps surprising fact, is that leaks in stratified flow with a larger leakage will
have an overshoot in estimated leakage, while small leakage will be quantified slower,
with the estimated value seldom exceeding true value. This can be observed by
f̄G and f̄L, which is negative for severe leakage, indicating the overshoot. This
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phenomena is not observed in mixed flow.

Adaption in mixed flow converge every time, but always with x̄l positive. This is due
to the undershoot observed in Figure 4.8, which is present in almost every scenario.
Another interesting fact is that all f̄G and f̄L are positive also. This information
would not have been observed if mean deviation was measured instead. The main
reason why it is always positive is, again, because leakage start at zero. When a
leak is detected, it is not likely to be zero, and a jump in leakage could have been
initiated. A non-zero leakage would in most cases be no worse guess than zero,
and f̄G and f̄L would improve. Considering what was mentioned above, this could
perhaps reduce x̄l also.

The few cases where the observer did not position the leak, was observed in stratified
flow, and would actually converge eventually. As the leakage was slowly quantified in
these cases, an error built up inside the observer, which corrupt the adaption. More
aggressive tuning would limit this error. Since convergence is slow in stratified flow,
it is important that the leak parameters are estimated fast. The faster the observer
reaches some steady values, the higher is the chance they are correct. If the observer
uses a long time to find steady values, it certainly has been wrong at some point,
and an error has been built up depending on how long it has been wrong.

All in all, this one observer seems able to handle most cases, eventually finding the
leak position and correct quantification. This is a promising result, as stability is
important when considering its robustness. It is also reassuring that very little time
was put into tuning. Since the adaption can both be too slow and too fast, it is
important that coefficients which are neither too slow nor too fast in one case also
work for most others.

5.2.1 Leakage fraction unknown

When estimating a leak with a wrong guess of fraction, not in any case does the
adaption seem to settle. Either it oscillates, or it drifts off. The guesses at ε̂l = 0.95
and ε̂l = 0.5 are rather unrealistic, as the total gas flow in the pipe is 5%. Still,
adaption with these values does tend to drift in the correct direction. In the mixed
examples, they even start oscillating around the correct position, even when ε̂l is
off by 1800%. This is promising, but the examples in stratified flow does not seem
to be as robust. In fact, none of these tests settle, but leak position estimate drifts
away. There seem to be a connection between f̄G, f̄L and in which direction the
position adaption is drifting. The only case where x̂l drifts toward outlet is the case
when gas fraction in leakage is guessed too low. Also f̄G and f̄L have oposite sign
when x̂l is too low, compared to when it is guessed too high. If this is a general
trend, it may be used for to obtain a better estimate of εl. Still, in the two cases
where estimated fraction is closest to its real value, position estimates are not far
off, and give a clear indication to where the leak could be. Also note that all four
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graphs cross at one point which is near the correct position. Perhaps could these
trends be used to estimate leakage fraction. As an example, starting with ε̂ at a high
value, lowering and running simulations for many values until the drifting changes
direction, should give a good estimate.

Simulations in a mixed flow regime, instead of drifting when ε̂l is too low, oscillate
at a position slightly closer to inlet than the actual leak. Both when ε̂l is off by 50%
and 200% does the adaption give very good estimates of position. Just as when εl
was known, x̄l has positive values due to undershoot. The amplitude of oscillation
seems to vary, and have a higher amplitude the more fraction is off. This means
that the third parameter, leakage fraction, can be identified. A search algorithm
trying to minimize position oscillation could be used to find the correct value. Both
this method, and the example for stratified flow, require steady flow to work. As
leaks often occur with changes in production, it is perhaps unlikely that conditions
are steady.

When using mass flow fraction as ε̂l, a good indication of leak position is found in all
cases, including both flow regimes. As f̂G is always negative, and f̂L is always posi-
tive, the OLGA leak model have leakage fraction lower than mass flow fraction. The
real εl is approximately 0.033 and 0.028 for mixed and stratified flow respectively,
while the flow mass fraction is 0.05 in both models. This means it is off by 40%, but
the adaption still gives a good estimates of leak position. The adaption does not
drift away, nor does it oscillate as much as the rather rough estimates tested above.
This indicates that if mass flow fraction is not a good enough estimate of leakage
fraction, the estimate does not have to be perfect in order to give a good indication
on position.

5.2.2 Varying boundaries

A sinusoidal inlet flow was employed on the models. Clearly, when the model flow
pattern is stratified flow, the observer is not able to converge fast enough. Adaption
diverge to zero in all three cases presented. In mixed flow, however, good estimates
of leak position is found even with the most severe sinusoidal inlet flow. This result
is directly related to the convergence study of Section 4.1. Convergence was shown
to be slower in stratified flow, and clearly not fast enough to handle this kind of
inlet flow. The conclusion of these scenarios are easy. Observers with mixed flow
handle production changes better than observers with stratified flow.

5.2.3 Biased measurements

The first set of simulations consider a ±1% bias, and in most cases, adaption con-
verges towards a fairly good estimate. Only one case does not, which is the scenario
with a positive bias on both flow rates conducted with a stratified flow model. Still,
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even in this case, x̄l is not far off. All other scenarios with stratified flow have tc
only marginally different from the case with no bias at all. f̄G and f̄L seem also
rather unaffected. There is a trend in x̄l, however, where negative bias cause lower
values. This is simply because lower flow rates cause a lower pressure drop, and
hence estimated position drifts towards outlet to compensate.

For mixed flow, the bias on oil flow seems to affect the convergence time tc, while bias
on gas flow seems not to. Still, every case converge within ten minutes, and again the
biases have little effect on leak magnitude. x̄l still seem correlated to the bias sign.
tc values in the mixed regime should not be compared to tc values in the stratified
regime. Clearly, this observer adopt to stratified flow faster. This is dependent
on the observer coefficients, however. Some tuning could change convergence times
the other way around, being faster in mixed flow. Since the observer seemed to
handle these lesser errors quite well, the new set of scenarios with larger biases were
conducted.

With five percent bias on flow rates, almost every case diverge. Only when bias on
oil flow is negative correlated to the bias on gas flow, does the observer converge.
Also, this is only the case when the flow pattern is stratified. Clearly, 5% is too far
off for to find the correct position. However, note that in most cases, f̄G and f̄L are
small. This is because the outlet pressure is constant, which means the difference
in pressuredrop end up affecting inlet pressure values, which again only affects leak
position adaption. Consequently, cv is more or less unaffected by these biases.

When it comes to pressure, a 0.1 bar bias does not seem to affect the convergence of
position, independent of sign. f̄G and f̄L, on the other hand, is both affected. Bias
on fraction, however, does affect convergence of position. The bias used on fraction
is ±0.01. This is a rather large error as volumetric fraction typically ranges from
0.02-0.06 in this thesis. In this case, the error is approximately 25% of real value.
The negative bias on fraction changes tc from 5.7 to 8.4, which is a 50% increase.
In terms of absolute value, this must be considered robust, but process equipment
may have problems measuring exact fraction, especially when leaks occur. Leakage
might even change the flow pattern, which would render the equipment made for
the original flow regime useless.

Next, the bias on fraction is increased to ±0.05, while the bias on pressure is in-
creased to ±0.2 bar. This may seem unreasonable, as the bias on pressure in per-
centage is nothing compared to the bias on volumetric fraction. However, measuring
pressure is far easier than measuring volumetric fraction. Perhaps not surprisingly,
the 0.2 bar bias on pressure does not prevent the observer from obtaining good
estimates of leak parameters. On the contrary, the 0.05 bias on fraction causes the
observer to diverge with high values of x̂l. This may very well be the weakest link
of this observer, as volumetric fraction is not something one usually measure.
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5.2.4 Shutdown scenario

With a perfect estimate of ε̂l, the observer seems to handle the drop in flowrate
well. As pointed out already, this is not a real shutdown, only a drastic change in
production. Looking at the leakage estimate, it follow that of the model, while the
position seems to. With the small error in leakage fraction, however, the observer
does not settle, although it does give an indication to where the leak might be.

When adapting to the short data set between the time the leak is detected and
shutdown, the observer find an almost perfect estimate of leak position, even with
the error in ε̂l. For an offline system, this is a very important result. It allows the
operator to shut down almost immediately after detection, and there can still be
good estimates of position. By extracting a short dataset, one can also avoid sudden
production changes or other changes preventing the observer from converging. It
also give the observer a chance to try out many values of ε̂l, and if close to the true
value, adaption should settle. If ε̂l is far off, the observer will likely oscillate or drift
instead. On the other hand, some oscilliation must be expected due to noice and
modelling error.

5.3 Future work

Even though the observer seems to work reasonable in most scenarios, aspects such
as temperature and inclination is ignored. Constant inclination would probably not
be a problem when modeled correct, but a pipeline with varying inclination would
certainly put the observer to the test. Especially slug flow in inclined pipelines would
test performance, as slugging is harder to model. Large changes in temperature
could also prove critical, but again it would depend on the model. These are fields
which clearly should be investigated.

Another significant part of the model which has not been investigated is friction.
When this type of observer was studied for single-phase flow, friction adaption was
an important field(Hauge 2007). As adaption of friction factor may to some extent
neglect modeling error, scenarios such as bias on measurements could most certainly
benefit from this feature. Friction adaption in two-phase flow should not prove more
difficult than it was for a single phase, but unfortunately the OLGA Matlab toolbox
license used in this thesis did not allow tuning of friction.

When using this observer, volumetric fraction must be measured. In order to avoid
this, other measurements could be included instead, and used to calculate an es-
timated fraction. One option could be to measure flow rates and phase velocities
instead. Using the formula wk/uk = mk for phase k, one could produce ε from these.
Most probably this would prove just as hard, as the two sets of measurements are
linked. Mass flow with an accuracy of 2-3% would be hard to measure, not to men-
tion the problems that could arise because of correlation between measurements in
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phase velocities and mass flow. In a stratified flow regime, a slip relation should be
included, and perhaps adapted to fit the model. Such thoughts could perhaps ease
the implementation.

OLGA prevent output injection from being used at outlet. A less restrictive model
could improve convergence and hence also adaption and its robustness.

The observer does not estimate ε̂l, but there seems to be patterns in behavior related
to its error. A search algorithm trying to minimize oscillation or drifting could prove
to solve this problem, but would limit the system as an offline observer. For example,
in mixed flow, any error in ε̂l caused the estimate x̂l to either oscillate or converge.
As long as the boundaries are somewhat steady at the time the leak occur, a window
in time following the occurrence may be reused giving endless adaption. There are
known methods for finding the ε̂l which minimizes these oscillations. Similar, in
stratified flow, adaption of x̂l does not seem to settle unless ε̂l ≈ εl. It should be
possible to derive similar algorithms for such cases, searching for a good estimate of
εl.

Simulations showed that if the estimated position or leak magnitude did not con-
verge, it did give an indication on the values. As it is only two of the systems
four characteristics that reach outlet and inlet, it should only be possible to adopt
two leak parameters. However, after estimation, one of the estimated parameters
could be set fixed, while leakage fraction was estimated instead. For example, leak
magnitude was often found near correct, even in difficult scenarios. With cv fixed
at the final estimate, leak position and leakage fraction could be estimated running
through the dataset a second time. This could of course be repeted any number of
times.

The tuning parameters are both upper and lower bounded, and optimal tuning vary
within the regimes. Perhaps tuning parameters could have been expressed in terms
of inlet flow or something similar. This could both improve performance and make
the observer more stable.

The velocity of pressure waves should be somewhat equal throughout the pipeline.
When a leak occur, there would most probably be a delay between pressure drop
at outlet and at inlet. This delay could have been used to estimate position, which
could be the initial position of xl. In addition, there should be a jump at cv when
a leak was detected, as the leak is most certainly not zero. If successful, this could
improve adaption considerably.

This thesis to some extent mirror the Luenberger-type observer for single phase(Aamo
et al. 2005) and make it work on two phases. Many pipelines include water in ad-
dition to oil and gas. It is not unlikely that the observer might also work for three
phases, either by treating oil and water as one medium or by expanding the model.
This might require more measurements, however.
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Conclusion

The set of general boundary conditions derived is based on a linearized model of
the system, and can be implemented on any hyperbolic flow model. The boundary
conditions are implemented on an observer in order to obtain output injection, and
with it, improved convergence.

The observer is a Luenberger-type observer, and employs OLGA, a computational
fluid dynamics simulator, as its model. The boundaries are controlled through
Matlab, and model measurements are also generated by an OLGA model. The
general boundary conditions improve convergence when the time window is limited.
The effect is more evident when the model has a mixed flow pattern, as opposed to
a stratified.

A set of adaption laws is presented, adapting to the pressure waves generated by
the occurrence of a leak. When implementing them on the observer, it success-
fully identifies leak position and leakage as long as there is an estimate of leakage
mass fraction. Tests using the mass flow fraction as an estimate on leakage fraction
prove to be sufficient. The adaption laws are valid only before the slower dynam-
ics generated by the leak reach the outlet. The observer is programmed to reuse
measurements if this give a too short timewindow. This is also used to avoid large
production changes as in the case of a shutdown, and successfully identify the leak
only using a short dataset. This does not prevent the observer from running online,
but it must do calculations offline after a leak is detected.

The observer is tested on a wide range of scenarios, both with distributed and
separated flow. An observer with a fixed suboptimal set of coefficients seems to
handle most cases. The observer seems to be more robust to production changes
when the flow regime is distributed. Minor leaks are harder to identify than larger.

The observer depends on four measurements both at inlet and outlet, and if the
measured or estimated volumetric fraction deviates too much, the observer does
not converge. Tests showed that the observer could handle a small bias on all
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measurements, but diverged if the bias was too severe, and it was especially sensitive
to error in fraction.

All in all, the observer handle most scenarios, and could probably perform better
with different tuning. However, there seem to be two reasons for concern. Fraction
in leakage is not adapted, and a good estimate must be found in some other way.
Also, the observer is dependent on good measurements of volumetric fraction which
might prove hard to obtain.
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Appendix A

Interpolation

A second order interpolation scheme is used to estimate measurements of volume-
variables at boundaries between sections. The distance between the three measure-
ments to be used and the position of the estimate is illustrated in Figure 3.1 and
3.2. Consider the general second order equation

α(x) = ax2 + bx+ c (A.1)

The estimate will be denoted α0 = α(0), while the three measurements will be
denoted α1, α2 and α3 at the position x = ∆x/16, x = 3∆x/16 and x = 6∆x/16
respectively. Searching the parameters a, b and c, consider (A.1) evaluated at the
different points:

α0 = α(0) = c (A.2)

α1 = a(
∆x
16

)2 +
∆x
16

b+ c (A.3)

α2 = a(
3∆x
16

)2 +
3∆x
16

b+ c (A.4)

α3 = a(
6∆x
16

)2 +
6∆x
16

b+ c (A.5)

which yield a system of equations to determine the three unknown constants. In
matrix form the equations may be written

 (∆x
16 )2 ∆x

16 1
(3∆x

16 )2 3∆x
16 1

(6∆x
16 )2 6∆x

16 1

 ·
 a
b
c

 =

 α1

α2

α3

 (A.6)

Solved for a, b and c, a
b
c

 =


1
10( 16

∆x)2 −1
6( 16

∆x)2 1
15( 16

∆x)2

− 9
10( 16

∆x) 7
6( 16

∆x) − 4
15( 16

∆x)

9/5 −1 1/5

 ·
 α1

α2

α3

 (A.7)
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Realizing that only the last row of (A.7) is needed to produce the estimate, the
resulting equation becomes

α0 =
9
5
α1 − α2 +

1
5
α3 (A.8)

Notice that this equation is valid in both ends of the pipeline, as the section-sizes
are equal, a redefinition of the x-axis leads to identical results,

αm =
9
5
αm−1 − αm−2 +

1
5
αm−3 (A.9)

where subscript m denote the outlet value, while αm−1-αm−3 are the three known
values closest to outlet.



Appendix B

Simulation properties

Table B.1: Pipe and simulation properties
Property Value

Pipe length 5000m
Pipe roughness 1 · 10−5

Pipe diameter 20 inches
Segment length 100m

Inflow temperature 4◦C
Ambient pressure 1 bar

Table B.2: Simulation data - Position adaption stratified flow example
Property Value

Time step 0.02s
Inlet flow rate gas 5 kg/s
Inlet flow rate oil 91 kg/s
Outlet pressure 50 bar

Dominant flow regime Stratified Flow
Gas leakage 80%
Oil leakage 40%
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Table B.3: Simulation data - Position adaption mixed flow example
Property Value

Time step 0.02s%
Inlet flow rate gas 40 kg/s
Inlet flow rate oil 730 kg/s
Outlet pressure 50 bar

Dominant flow regime Mixed Flow
Gas leakage 38%
Oil leakage 9.5%

Table B.4: Simulation data - Magnitude adaption stratified flow example
Property Value

Time step 0.02s%
Inlet flow rate gas 5 kg/s
Inlet flow rate oil 91 kg/s
Outlet pressure 50 bar

Dominant flow regime Stratified Flow
Default gas leakage 80%
Default oil leakage 40%

Table B.5: Simulation data - Magnitude adaption mixed flow example
Property Value

Time step 0.02s%
Inlet flow rate gas 40 kg/s
Inlet flow rate oil 730 kg/s
Outlet pressure 50 bar

Dominant flow regime Mixed Flow
Default gas leakage 25%
Default oil leakage 25%

Table B.6: Observer coefficients
Property Value

Initial leak position 4000m
κxG 0.2
κxL 0.2
κuL 0.21̇0−4

κuL 0.21̇0−4

cG 314.5 m/s
cL 1161.3 m/s
kL 1.2113 · 109
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Table B.7: Observer coefficients
Property Value

Initial leak position 3000m
κxG 0.2
κxL 0.2
κuL 0.4 · 10−4

κuL 0.4 · 10−4

cG 314.5 m/s
cL 1161.3 m/s
kL 1.2113 · 109
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Appendix C

Additional plots

This section holds some additional plots not included in the main thesis, but might
be of interest to the reader.
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Figure C.1: Leak magnitude adaption for Case 1 with varying boundaries in strati-
fied flow.

87



88 APPENDIX C. ADDITIONAL PLOTS

0 5 10 15 20 25 30 35
0

0.5

1
G

as
 le

ak
ag

e 
[k

g/
s]

Time [min]

 

 
Case 2
model

0 5 10 15 20 25 30 35
0

5

10

O
il 

le
ak

ag
e 

[k
g/

s]

Time [min]

 

 
Case 2
model

Figure C.2: Leak magnitude adaption for Case 2 with varying boundaries in strati-
fied flow.
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Figure C.3: Leak magnitude adaption for Case 3 with varying boundaries in strati-
fied flow.
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Figure C.4: Leak magnitude adaption for Case 4 with varying boundaries in mixed
flow.
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Figure C.5: Leak magnitude adaption for Case 5 with varying boundaries in mixed
flow.
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Figure C.6: Leak magnitude adaption for Case 6 with varying boundaries in mixed
flow.
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Figure C.7: Boundary values with restart every second minute after the leak is
detected.
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