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Abstract We study geometric properties of Krylov projection methods for
large and sparse linear Hamiltonian systems. We consider in particular energy-
preservation. We discuss the connection to structure preserving model reduc-
tion. We illustrate the performance of the methods by applying them to Hamil-
tonian PDEs.
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1 Introduction

Large and sparse linear Hamiltonian systems arise in many fields of science
and engineering, examples are models in network dynamics [1] and the semi-
discretization of Hamiltonian partial differential equations (PDEs), like the
wave equation [2,3] and Maxwell’s equations [4,5]. In the context of Hamilto-
nian PDEs, the energy conservation law often plays a crucial role in the proof of
existence and uniqueness of solutions [6]. Energy-preservation under numerical
discretization can be advantageous as it testifies correct qualitative behaviour
of the numerical solution, and it is also useful to prove convergence of numeri-
cal schemes [7]. There is an extensive literature on energy-preserving methods
for ordinary differential equations (ODEs) [8,9,10,11], but these methods need
to be implemented efficiently to be competitive for large and sparse systems
arising in numerical PDEs. Krylov projection methods are attractive for dis-
crete PDE problems because they are iterative, accurate and they allow for
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restart and preconditioning strategies. But their structure preserving proper-
ties are not completely understood and should be further studied. This paper
is a contribution in this direction.

It is well known that integration methods cannot be simultaneously sym-
plectic and energy-preserving for general Hamiltonian systems [12]. However,
the situation changes when we restrict to linear systems. An example is the
midpoint rule which is symplectic and is also energy-preserving on linear prob-
lems; this is because the energy is quadratic for linear problems and the mid-
point rule preserves all quadratic invariants. The midpoint method is implicit
and requires the solution of one linear system of algebraic equations at each
time step. The structure preserving properties are then retained only to the
precision of the linear iterative solver. In this paper, we investigate preserva-
tion of geometric properties in Krylov projection methods for the exponential
function. These are popular methods for the solution of discrete linear time
dependent PDEs [13,14], but because of the Krylov projection, structure is
only preserved to the accuracy of the method. On the other hand, we show
that some of these Krylov projection methods can be energy-preserving to a
higher level of precision, and can preserve several first integrals simultaneously.
We finally discuss the connections to structure-preserving model reduction and
variational principles. In particular, we consider modified Hamilton’s princi-
ple as the natural variational formulation for projection methods based on
block J-orthogonal basis. Previous work in the context of structure preserv-
ing Krylov projection methods can be found in [15,16] and for Hamiltonian
eigenvalue problems for example in [17].

The structure of this paper is as follows. We discuss symplecticity in section
2. Section 3 is devoted to the preservation of first integrals. Section 4 is devoted
to projection methods based on block J-orthogonal bases and their connection
to structure preserving model reduction. In Section 5, the geometric properties
of the considered methods are illustrated by numerical examples.

2 Krylov projection and symplecticity

Consider a linear Hamiltonian initial value problem of the form

ẏ = f(y) = JH y, y(t0) = y0, J = Jm =

[
0 Im
−Im 0

]
, (1)

where y(t) ∈ R2m, H ∈ R2m×2m is symmetric, HT = H, y0 ∈ R2m, and Im is
the m×m identity matrix. In what follows we denote by A the product A =
JH. The matrix J is skew-symmetric, JT = −J , and it defines a symplectic
inner product1 on R2m, ω(x, y) := xTJy. Considering the energy function
H(y) := 1

2y
THy, we have the gradient of H is ∇H(y) = Hy. The vector field

1 A symplectic inner product on a vector space is a nondegenerate skew-symmetric bilinear
form [18].
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of equation (1) is a Hamiltonian vector field, i.e. ω(f(y), v) = ∇H(y)T v, ∀v ∈
R2m. From this it follows that the flow map,

ϕt : R2m → R2m, y0 7→ y(t),

is a symplectic map [19], i.e. it satisfies

Ψy0(t)T J Ψy0(t) = J, where Ψy0(t) :=
∂ϕt(y0)

∂y0
. (2)

A non-constant function I(y) is a first integral of the ODE ẏ = f(y), if
dI(y)
dt |y=y(t)= ∇I(y)ẏ = ∇I(y)f(y) = 0 for all y. So I(y) is constant along the

solution trajectory: I(y(t)) − I(y(t0)) =
∫ t
t0
∇I(y)ẏdt = 0. The energy func-

tion H(y) is a first integral of (1). An approximation one-step method for (1)
is said to be energy-preserving if H is constant along the numerical solution,
and symplectic if the numerical one-step method (numerical flow map)

φh : R2m → R2m, y0 7→ ỹ ≈ y(t0 + h)

is such that
∂φh(y0)

∂y0

T

J
∂φh(y0)

∂y0
= J,

[19].
The idea of Krylov projection methods is to build numerical approxima-

tions for (1) in the Krylov subspace:

Kr(A, y0) := span{y0, Ay0, · · · , Ar−1y0},

which is a subspace of R2m of dimension r << 2m. Let us consider even di-
mension r = 2n. A basis of K2n(A, y0) is constructed. The most well known
Krylov projection method is the one based on the Arnoldi algorithm [20] gener-
ating an orthonormal basis for K2n(A, y0). The method gives rise to a 2m×2n
matrix V2n with orthonormal columns, and to an upper Hessenberg 2n × 2n
matrix T2n such that I2n = V2n

TV2n, and T2n = V T2nAV2n. The approximation
of y(t) is

yA(t) := V2nz(t), where ż = T2n z, z(0) = z0 = V T2ny0. (3)

We will denote this method by Arnoldi projection method (APM). Consider
J2n and the corresponding symplectic inner product in R2n, ω(u, v) := uTJ2nv.
If n < m, unless we make further assumptions on H, the projected system (3)
is not a Hamiltonian system in R2n, this is because J−12n T2n = J−12n V

T
2nJHV2n

is in general not symmetric and J−12n T2nz is in general not the gradient of some
energy function.

Instead of using an orthonormal basis, one can construct a J-orthogonal
basis for K2n(A, y0) using the symplectic Lanczos algorithm [21]. The matrix
S2n whose columns are the vectors of this J-orthogonal basis satisfies

ST2nJS2n = J2n.
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We will denote the corresponding Krylov projection method by Symplectic
Lanczos projection method (SLPM). The projected system for SLPM is analog
to (3), with V2n replaced by S2n, T2n by J2nST2nHS2n and an appropriate z0
(see Section 3.3). This projected system is a Hamiltonian system. But for
n < m, the approximation yS(t) := S2nz(t) is not symplectic. In fact, yS is
the solution of the system

ẏS = (S2nJ2nS
T
2n)H yS , yS(t0) = y0, (4)

and (4) is a Poisson system with Poisson structure given by the matrix S2nJ2nS
T
2n

which is skew-symmetric and depends on the initial condition2. For n = m,
J2m = J , and yS = y. However, the case n < m is the most relevant for the
use of the method in practice. In spite of not preserving the symplectic in-
ner product ω, SLPM clearly shares important structural properties with the
exact solution of (1) and is energy-preserving, see Section 3.3.

The symplectic Lanczos algorithm is not the only way to obtain a J-
orthogonal basis of the Krylov subspace. We will consider block J-orthogonal
bases in Section 4 and show that they can be viewed as techniques of struc-
ture preserving model reduction, in the spirit of [22]. We propose one Krylov
algorithm based on these ideas.

3 Preservation of first integrals and energy

We first present a result about the first integrals for a general linear Hamilto-
nian system. Recall that two first integrals F and G of an ODE are said to be
in involution if their Jacobi bracket {F,G} := (∇F )TJ∇G vanishes [19].

Proposition 1 For A = JH where J is skew-symmetric and invertible, and
H is symmetric and invertible, the system ẏ = Ay, y(t0) = y0 has the follow-
ing first integrals in involution, Hk(y) = 1

2y
THA2ky, for k = 0, 1, . . . . The

Hamiltonian of the system is H = H0.

Proof We consider the derivative of Hk along solution trajectories y(t)

d

dt
Hk(y(t)) =

1

2

[
ẏTH(JH)2ky + yTH(JH)2kẏ

]
=

1

2

[
−yTHJH(JH)2ky + yTH(JH)2kJHy

]
=

1

2

[
−yTH(JH)2k+1y + yTH(JH)2k+1y

]
= 0,

so Hk(y), k = 0, . . . , are preserved: Hk(y(t)) = Hk(y0). The integrals are in
involution because their Poisson bracket is zero,

{Hk,Hp} = (∇Hk)TJ∇Hp = (A2ky)THJH(A2py)

= yT ((JH)2k)THJH(JH)2py = yTH(JH)2(k+p)+1y = 0,

2 A Poisson system in Rd is a system of the type ẏ = Ω∇H(y), where Ω is a skew-
symmetric matrix, not necessarily invertible and can depend on y. Ω must satisfy the Jacobi
identity, [19]. In our case, Ω depends on y0.



Krylov projection methods for linear Hamiltonian systems 5

where we have used the skew-symmetry of H(JH)2(k+p)+1.

In what follows, we will discuss the preservation of the first integrals of Propo-
sition 1 when applying Krylov projection methods.

3.1 Preservation of first integrals for the APM

It can be observed from numerical simulations that the APM fails in general
to preserve energy when applied to Hamiltonian systems, Figure 1 (left), Sec-
tion 5, but structure-preserving properties can be ensured for such method
via a simple change of inner product. Assume that H is symmetric and pos-
itive definite so that 〈·, ·〉H := 〈·, H·〉 defines an inner product. We modify
the Arnoldi algorithm by replacing the usual inner product 〈·, ·〉 by 〈·, ·〉H .
We then show that the numerical solution given by this method preserves
to machine accuracy certain first integrals. The modified Arnoldi algorithm
(see Algorithm 1a) generates a H-orthonormal basis, which is stored in the
2m× n matrix Vn, satisfying V Tn HVn = In. This algorithm generates a skew-
symmetric tridiagonal matrix Tn such that

AVn = VnTn + wn+1e
T
n , wn+1 = hn+1,nvn+1,

Vn
THVn = In, Vn

THwn+1 = 0.

In what follows, we consider the Krylov projection method

yH := Vnz, where z satisfies ż = Tn z, z(t0) = Vn
THy0.

Proposition 2 The numerical approximation yH for the solution y of (1)
preserves the following first integrals:

H̄k(yH) =
1

2
yTHHVn(Tn)2kVn

THyH (5)

for all k = 0, 1, . . . .

Proof We observe that Tn = Vn
THJHVn is skew-symmetric. So the ODE sys-

tem for z has first integrals: Ik(z) = 1
2z
T (Tn)2kz, for all k = 0, 1, . . . . There-

fore H̄k(yH) = 1
2y
T
HHVn(Tn)2kVn

THyH = 1
2z
T (Tn)2kz and d

dtH̄k(yH(t)) =
d
dtIk(z(t)) = 0, so the first integrals are preserved.

Remark 1 If n is even, the above Krylov projection method induces a projected
problem which is conjugate to a Hamiltonian system, i.e., it can be written
in the form (1) via change of variables. Since Hn is skew-symmetric, Hn can
be factorized as Hn = UnJnDnU

−1
n where Dn is diagonal. Then, Hn can be

transformed to a Hamiltonian matrix by a similarity transformation using Un.
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3.2 Hamiltonian system with JA = AJ

We now consider J given by (1). Assume that A and J commute, then A is
skew-symmetric, and the Hamiltonian system (1) has two Hamiltonian struc-
tures, one associated to A with Hamiltonian 1

2y
T y, the other to J with Hamil-

tonian 1
2y
THy. The APM with Euclidean inner product 〈·, ·〉 preserves modi-

fied first integrals. To proceed, we first give the following result.

Proposition 3 Suppose A is a Hamiltonian matrix. Then J and A commute
if and only if the matrix A is skew-symmetric.

Proof Suppose A is a Hamiltonian matrix and A = JH, where J and H are
defined as in equation (1). Then the fact that J and A commute implies that
JJH = JHJ , i.e. −H = JHJ and by multiplying J−1 from right side, we
get −(JH)T = JH, namely AT = −A. On the other hand, the fact that A
is skew-symmetric implies that (JH)T = −JH and using this we get JA =
JJH = −J(JH)T = JHJ = AJ .

The first integrals of the system (1) are given by the following proposition.

Proposition 4 If JA = AJ , the Hamiltonian system (1) has the following
first integrals in involution, Hk(y) = 1

2y
TA2ky for k = 0, 1, . . . , and the fisrt

integrals are in involution with the Hamiltonian H(y) = 1
2y
THy.

Proof From Proposition 3 we know that A is skew-symmetric. Then Propo-
sition 1 holds with J replaced by A, and H replaced by the identity matrix.
The integrals are in involution with the Hamiltonian H(y) = 1

2y
THy in fact

{Hk,H} = yTA2kJHy = yTA2kAy = 0, k = 0, . . . .

Remark 2 By a direct application of Proposition 2, the APM to the Hamilto-
nian system (1), under the assumption JA = AJ , gives a numerical approxi-
mation yA := Vnz which preserves the following modified first integrals

H̄k(yA) :=
1

2
yTAVn(Hn)2kV Tn yA, k = 0, 1, . . . . (6)

We next prove that the Hamiltonian of (1) is bounded by yA under the as-
sumption that J and A commute.

Proposition 5 Assume the APM is applied to (1). Under the assumption
JA = AJ , the energy H(y) = 1

2y
TJ−1Ay, is bounded along the numerical

solution.

Proof This result follows directly from Remark 2 with k = 0, i.e.,

1

2
yA

TJ−1AyA ≤
1

2
yA

T yA‖J−1A‖2 =
1

2
y0
T y0‖J−1A‖2.

Proposition 5 explains the good behaviour of the APM in [23].
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3.3 Symplectic Lanczos projection method

We now consider the symplectic Lanczos projection method (SLPM). Krylov
subspace methods based on the symplectic Lanczos algorithm are widely used
for the computation of eigenvalues of large and sparse Hamiltonian matrices
[24,25,26]. For their use in the approximation of linear Hamiltonian systems
see [27], [14].

Given A ∈ R2m,2m and the starting vector y0 ∈ R2m, the symplectic
Lanczos method generates a sequence of matrices

S2n = [v1, ..., vn, w1, ...wn] satisfying AS2n = S2nT2n + rn+1e
T
2n, (7)

where T2n is a tridiagonal Hamiltonian matrix, and rn+1 = ζn+1vn+1 is J-
orthogonal with respect to the columns of S2n. Since S2n has J-orthogonal
columns, i.e., S2n

TJS2n = J2n, we know that

T2n = J−12n S
T
2nJAS2n = J2nS

T
2nHS2n, (8)

and the projected system is a Hamiltonian system, where z0 = J−12n S
T
2nJy0.

Moreover, we have

HS(z) =
1

2
zTJ−12n T2nz ≡

1

2
zT0 J

−1
2n T2nz0. (9)

Proposition 6 The SLPM is an energy-preserving method for (1).

Proof The result follows by computing the Hamiltonian of (1) along numerical
trajectories yS = S2nz, H(yS) = 1

2yS
TJ−1AyS , and then using (7) and (9).

4 Projection methods based on block J-orthogonal basis

We now consider a general strategy for Krylov projection methods to obtain
J-orthogonal bases, this will lead automatically to energy preserving methods
for (1). In what follows we will use the notation (qT , pT )T = y and write H in
block form, and rewrite (1) accordingly:

q̇ = HT
12q +H22p,

ṗ = −H11q −H12p,
H =

[
H11 H12

HT
12 H22

]
. (10)

Assume that we can construct two matrices with linearly independent columns
Vn ∈ Rm×n and Wn ∈ Rm×n such that VnTWn = In. Then the matrix

S2n :=

[
Vn 0
0 Wn

]
(11)

has J-orthogonal columns. We will approximate y by the following projection
method: y ≈ yB defined by

yB = S2n z, where z satisfies ż = J2n S
T
2nJ
−1AS2nz, z(t0) = z0, (12)

and for the SLPM z0 = J−12n S
T
2nJy0.
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Proposition 7 If y0 = S2nz(t0), then the energy of the original Hamiltonian
system (1) will be preserved by the numerical solution (11)-(12).

Proof Notice that H(S2n z) = 1
2z
TST2nJ

−1AS2n z is constant with respect
to t because z is the solution of a Hamiltonian system with energy E(z) =
1
2z
T (ST2nJ

−1AS2n) z. The result then follows directly from the fact that E(z) ≡
E(z0) = H(y0).

We here propose one strategy to construct S2n as in (11) with WT
n Vn = In

and Vn = Wn. Let Kn be the Krylov matrix 2m× n, and consider the first m
rows of Kn and the last m separately:

Kn := [y0, Ay0, . . . , A
n−1y0], Kn =

[
Kq
n

Kp
n

]
.

We then find an orthonormal basis Vn for span{Kq
n,K

p
n} ⊂ Rm by either a

QR-factorisation (algorithm 1b in the Appendix 3) or a Gram-Schmidt process.

4.1 Structure preserving model reduction using Krylov subspaces

In this section we consider Hamilton’s phase space variational principle (also
called modified Hamilton’s principle) [28, Ch. 8-5] which is the fundament of
the projection methods based on block J-orthogonal basis. Since our system
(1) is given in the form of an Hamiltonian system, it is natural to use the phase
space variational principle, which is formulated in terms of the variables p and
q and the Hamiltonian function H(q, p), rather than the classical Hamilton’s
principle which is formulated in terms of q and q̇ and the Lagrangian function
L(q, q̇). Following [22], we restrict the phase space variational principle to low
dimensional subspaces of Rm and derive the projected Hamiltonian system
taking variations on the low dimensional subspaces.

Assume [qT , pT ]T := y and q and p are m-dimensional vectors belonging to
Rm and its dual respectively, and that the Hamiltonian H : Rm×(Rm)∗ → R
is H(q, p) := H(y).4 Considering the action functional S : Rm × (Rm)∗ → R

S(q, p) :=

∫ tend

t0

(
pT q̇ −H(q, p)

)
dt, (13)

Hamilton’s phase space variational principle states that

δS = 0

for fixed q0 = q(t0) and qend = q(tend), and it is equivalent to Hamilton’s
equations (1), [28, Ch. 8-5] . By projecting q and p separately on appropri-
ate subspaces span{Vn} ⊂ Rm and span{Wn} ⊂ (Rm)∗, i.e., q ≈ Vn q̂ and

3 Notice that to obtain a stable algorithm it is an advantage to replace the Krylov matrix
with an orthonormal matrix obtained by the Arnoldi algorithm.

4 The duality pairing between Rm and (Rm)∗ is here simply 〈p, q〉 := pT q.
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p ≈ Wn p̂, one restricts the variational principle to span{Vn} × span{Wn}:
Ŝ(q̂, p̂) := S(Vn q̂,Wn p̂). Taking variations

0 = δŜ(q̂, p̂) = δ

∫ tend

t0

(Wnp̂)
TVn ˙̂q −H(Vnq̂,Wnp̂)dt

for fixed endpoints q̂0 = q̂(t0) and q̂end = q̂(tend), we obtain the Hamiltonian
equations associated to this reduced variational principle

˙̂p = −VnTH12Wnp̂− VnTH11Vnq̂,

˙̂q = Wn
TH22Wnp̂+Wn

THT
12Vnq̂,

(14)

which coincide with the system for z in (12). This explains the connection of
the projection methods based on block J-orthogonal basis, (11) and (12), with
the techniques of structure preserving model reduction derived in [22] and here
modified for the phase space variational principle.

Assuming additional structure on H, we will show in the next section that
the usual APM applied to the resulting system falls in the same class of projec-
tion methods based on block J-orthogonal basis and is a structure preserving
model reduction method in the spirit of [22]. Model reduction methods for
general second order systems obtained projecting the differential systems onto
Krylov subspaces using an Arnoldi or a Lanczos process have been previously
studied [29].

4.2 Special case H1,2 = O, H2,2 = I.

This special case is directly related to the setting in [22]. Denoting y =
(qT , pT )T , we consider the corresponding Hamiltonian system

ẏ = Ay with A =

[
0 I
−H11 0

]
. (15)

and we notice that p = q̇ in this case. The action functional (13) from the
previous section is the integral of the Lagrangian density function

L(q(t), q̇(t)) =
1

2
q̇(t)

T
q̇(t)− 1

2
q(t)

T
H11q(t), (16)

and in this case because q̇ = p the phase space variational principle coin-
cides with Hamilton’s principle. Let Vn be the basis of the Krylov subspace
Kn(−H11, p0) obtained via the Arnoldi algorithm. The reduced Lagrangian
becomes

L(q̂(t), ˙̂q(t)) =
1

2
˙̂q(t)

T ˙̂q(t)− 1

2
q̂(t)

T
Vn

TH11Vnq̂(t), (17)

and the corresponding Hamiltonian equations are

˙̂q = p̂,

˙̂p = −VnTH11Vnq̂(t).
(18)
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By solving (18), we obtain (q̂T , p̂T )T and then can construct the model reduc-
tion approximation ((Vnq̂)

T , (Vnp̂)
T )T ≈ (qT , pT )T .

Proposition 8 When applied to (15) with y0 = (0, pT0 )T , the model reduction
procedure outlined in (16)-(18) coincides with the APM.

Proof Let e1, e2 ∈ R2 be the two vectors of the canonical basis in R2. Denote
by ⊗ the Kronecker tensor product. We have

K2n(A, y0) = span{e1 ⊗ p0, e2 ⊗ p0, e1 ⊗ (−H11p0), e2 ⊗ (−H11)p0, . . . }.

Denote by U2n ∈ R2m×2n the orthogonal matrix generated by the usual
Arnoldi algorithm with matrix A, vector y0 = (0, pT0 )T and Euclidean inner
product. Then U2n is given by

U2n =

[
0 v1 0 v2 0 . . . 0 vn
v1 0 v2 0 v3 . . . vn 0

]
,

and satisfies

U2n
TAU2n = Π2n

[
0 In

−V Tn H11Vn 0

]
Π2n

T and U2nΠ2n =

[
Vn O
O Vn

]
,

where v1, v2, . . . vn are the columns of Vn and Π2n is a 2n × 2n permutation
matrix. After a permutation of the variables w = Π2n

T z, the projected system
by APM ż = U2n

TAU2nz, z(t0) = U2n
T y0 can be rewritten in the form (11)-

(12).

5 Numerical Examples

In this section, several numerical examples are presented to illustrate the be-
havior of the following methods:

– APM: Arnoldi projection method using Euclidean inner product, Section
3;

– APMH: Arnoldi projection method using the inner product 〈·, ·〉H , Section
3;

– SLPM: symplectic Lanczos projection method, Section 3.3;
– BJPM: block J-orthogonal projection method with QR factorization, Sec-

tion 4.1.

These methods are applied to solve randomly generated linear Hamiltonian
systems, and linear systems arising from the discretization of Hamiltonian
PDEs. If not stated otherwise, the dimension of the original space is set to be
2m = 400 and the dimension of the Krylov subspace is chosen to be 2n = 4,
for all Krylov methods compared. The reference solution is computed using
the Cayley transformation (midpoint rule) with step-size 0.004. The solution
of the projected system (3) is obtained with the same method and the same
step-size used for the reference solution. All the errors in energy and in first
integrals are relative errors.
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To obtain a desired global error accuracy on [0, T ] for large T , we either use
a sufficiently large dimension of the Krylov subspace or use a time-stepping
(restart) procedure. More precisely, this entails subdividing [0, T ] into subinter-
vals [tr, tr+1] and performing the projection on each subinterval recomputing
the basis of the Krylov subspace with starting vector yr ≈ y(tr). In the exper-
iments, we use subintervals of size tr+1 − tr = 0.2. The restart procedure is of
practical interest because it allows to use a Krylov subspace of low dimension.
In exact arithmetic the first integrals would be preserved exactly, however,
due to the propagation of roundoff errors, a small linear drift in the preserved
quantities is observed. The numerical experiments show that the drift in the
energy error can be lessened by applying the restart technique. However, the
restart compromises the preservation of the first integrals of Propositions 2
and 4 for APM and APMH simply because the basis Vn is recomputed on
each subinterval.

5.1 Randomly generated Hamiltonian matrices

5.1.1 Case JA = AJ : APM
In the experiment considered in Figure 1 (left), H = J−1A is block diagonal,
symmetric and positive definite but with no particular extra structure. There
is a clear drift in the energy for the APM, and the energy is preserved for the
APMH and SLPM. Similar experiments show that the global error of APMH
and SLPM is bounded, while the global error of the APM is not (these errors
are not reported here). If we apply the APM to an example where JA = AJ ,
the first integrals are preserved and the energy error and global error are
bounded, see [23].
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Fig. 1: Left: Methods without the restart applied to a block diagonal matrix A. Energy
drift for APM and energy conservation for SLPM and APMH. Middle: Global error of
APM and Model reduction versus time. Right: Relative energy error of APM and Model
reduction versus time.

5.1.2 Case H1,2 = O, H2,2 = I: Model reduction

In this numerical test, we consider a Hamiltonian matrix A of the special form
(15) with an initial vector of the form y0 = (0, pT0 )T and we apply the APM to
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this system. For comparison, we use the model reduction procedure described
in Section 4.2: we generate the orthogonal matrix Vn using the Arnoldi al-
gorithm with matrix −H11 and vector p0. The methods behave as predicted,
see Figure 1 (the middle and right figures). The experiment confirms that the
APM in this case behaves as the model reduction method and preserves the
energy. A small linear drift is observed at the level of roundoff and we will
consider this error propagation in the next subsection.

5.1.3 Full matrices: Comparison of APMH, SLPM, BJPM

In this subsection, we consider a randomly generated, full Hamiltonian matrix
A = JH. In Figure 2, we report numerical results for the methods APMH,
SLPM and BJPM without restart. The left panel of Figure 2, reports the
relative energy error for the methods. The right panel of Figure 2, illustrates
the convergence of the methods: the global error at T = 2 decreases when the
dimension of the Krylov subspace increases.

APMH is the method that better preserves the energy, but a linear error
growth in time at the level of roundoff can be observed for all the methods and
also in the error of the first integrals for APMH. To examine this propagation
of roundoff errors, we compare the relative energy error and the error in the
Cayley transformation as a function of time, see middle panel of Figure 2.
For tk = ∆tk, we denote with Cay(tkTn) :=

(
(I − ∆t

2 Tn)−1(I + ∆t
2 Tn)

)k
the Cayley transformation approximating exp(tk Tn). The error in the Cay-
ley transformation is measured by verifying the orthogonality of the ma-
trix Cay(tkTn). After one step (t1 = ∆t), this error is close to machine ac-
curacy, ‖(Cay(∆tTn))TCay(∆tTn)) − I‖2 = 1.1224e − 16, but we see that
‖(Cay(tkTn))TCay(tkTn))− I‖2 grows with tk and comparably to the relative
energy error. Likely, this error is the main cause of the roundoff error propa-
gation in the energy. In this experiment, we have chosen ∆t := 2−s, where s
is the minimum positive integer such that 2−s‖Tn‖1 ≤ 1

2 , see for example [30].
In Figure 3 (left), we see that the roundoff error drift is mitigated by

applying the restart technique. In the right figure, we observe that for the
methods with restart, the global error behaves well and stops increasing after
a certain time.

5.2 Hamiltonian PDEs

In this section we apply the methods to the wave equations and the Maxwell’s Equations.

5.2.1 Wave equation

We consider the 2D wave equations

φ̇ = ψ, ψ̇ = 4φ, (19)
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Fig. 2: Krylov projection methods applied to full matrices. Left: energy error for SLPM,
APMH and BJPM, methods without restart. In this experiment ∆t := 2−s, where s > 0 is
such that 2−s ‖Tn‖1 ≤ 1

2
. Middle: relative energy error of APMH (solid line), reference line

‖(Cay(tkTn))TCay(tkTn))−I‖2 (dotted square). Error in orthogonality and skew-symmetry:
‖V T

n HVn − I‖2 = 2.8728e− 16, ‖TT
n + Tn‖2 = 0 and ‖(Cay(∆tTn))TCay(∆tTn))− I‖2 =

1.1224e−16. Same step-size as left panel. Right: global error versus dimension of the Krylov
subspace.
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Fig. 3: Left, energy error, right, global error, methods with restart.

on [0, 1] × [0, 1] with homogeneous Dirichlet boundary conditions φ(t, 0, y) =
φ(t, 1, y) = φ(t, x, 0) = φ(t, x, 1) = 0 and a randomly generated initial vector.
Semi-discretizing on an equispaced grid xi = i∆x and yj = j ∆y, ∆x = ∆y,
i, j = 0, . . . , N and assuming u(xi, yj) ≈ Ui,j , we obtain a system

U̇ = AU, U(0) = U0, A =

[
0 I
G 0

]
(20)

with G the discrete 2D Laplacian obtained by using central differences. This
is a Hamiltonian system with energy H = 1

2U
TJAU ≡ 1

2U(0)TJAU(0). We
perform experiments with all the Krylov projection methods discussed in this
paper. Figure 4a shows that all the methods are energy-preserving.

5.2.2 1D Maxwell’s equations

We consider 1D Maxwell’s equations

∂tE = ∂xB,

∂tB = ∂xE
(21)
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Fig. 4: Figure 4a: energy error for Wave equation in 2d, methods with restart are considered
and the dimension of the problem is 392, namely N = 15. Figure 4b: energy error for
Maxwell’s equations in 1d, method with restart is considered.

for x ∈ [0, 1] and t > 0 with boundary conditions E(0, t) = E(1, t) = 0, Bx(0, t) =
Bx(1, t) = 0 and initial conditions E(x, 0) = sin(πx) and B(x, 0) = cos(πx).
After semi-discretization with E(xi, t) ≈ Ei(t) and B(xi, t) ≈ Bi(t), i =
0, . . . , N , we get a system of ODEs

U̇ = S̄DU, U(0) = U0, (22)

where U = [E1, ..., EN−1, B0, ..., BN ]T and

S̄ =
1

2h

0N−1,N+1 G

−GT 0N+1,N−1

, G =


−2 0 1
−1 0 1

. . .
. . .

. . .

−1 0 1

−1 0 2


and D = diag(IN−1,

1
2 , IN−1,

1
2 ). Equation (22) fits the framework of section

3, with S̄ skew-symmetric and D symmetric and positive definite, therefore
APMH can be applied to this problem. The numerical approximation of U
obtained applying the APMH preserves the first integralsHk(Ū) of Proposition
2. The tables about preservations of first integrals asre not reported here. In
Figure 4b, we consider the maxwell equation with fixed and given initial value
in (21) and also the restart technique is used. We observe that the energy is
preserved well.

5.3 Numerical results for 3D Maxwell’s equations

We consider 3D Maxwell’s equations in CGS units for the electromagnetic field
in a vacuum

∂tE = −c∇×B,
∂tB = c∇× E.

(23)

The boundary conditions are zero and the initial conditions are randomly
generated for both fields. We consider c = 1. We get the following Hamiltonian
system after semi-discretization:
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U̇ = AU, U(0) = U0,
A =

[
0 −G1

G1 0

]
, (24)

where U = [Ex1,1,1, ..., E
z
N−1,N−1,N−1, B

x
1,1,1, ..., B

z
N−1,N−1,N−1]T and G1, sym-

metric and of the size 3(N −1)3, is the discretization of the curl operator ∇×.

Remark 3 The matrix A is skew-symmetric in equation (24). Therefore the
APMH with J = A,H = I applied to the system (24), equals the APM and
preserves the first integrals Hk(Ū) of Proposition 2.

Remark 4 Equation (24) can be rewritten as a Hamiltonian equation U̇ =
JHU, with H = J−1A a symmetric matrix. Therefore we can also apply
SLPM and BJPM to system (23) and the energy H(U) = 1

2U
TJ−1AU is

preserved. However, APMH cannot be used here because H is not a positive
definite matrix, and the inner product 〈·, ·〉H is degenerate. This can lead to
instabilities and both global error and energy error might blow up during the
iteration.
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Fig. 5: The dimension of the problem is 384, namely N = 5. In Figure 5b the methods
with the restart technique are used. Figure 5a corresponds to the energy error considered
as in Remark 3, while figure 5b to the energy error considered in Remark 4. In Figure 5c
we consider L2 norm of the global error at t = T = 2 as a function of the dimension of the
Krylov subspace.

Figure 5a shows that the energy error of APM is bounded as stated in
Remark 3.

Figure 5b shows that the energy H(U) = 1
2U

TJ−1AU is preserved for
BJPM as stated in Remark 4. In Figure 5c, we report convergence plots for
the methods. As the dimension of the Krylov subspace increases, the global
error decreases very fast for all the methods. All the methods converge well
also for larger end time, such as T = 200. Also in this example we observed a
small linear growth in the error of the first integrals, due to the propagation
of round-off errors (figures are not presented here).
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6 Appendix

6.1 Algorithms

(a) Arnoldi’s algorithm with modified in-
ner product

1: Input: a matrix J ∈ Rm×m, H ∈ Rm×m,
a vector b ∈ Rm, a number n ∈ N and a
tolerance ι ∈ R.

2: A = JH
3: v1 = b

〈b,b〉
1
2
H

4: for j = 1 : n do
5: compute wj = Avj
6: for k = 1 : 2 do
7: for i = 1 : j do
8: hi,j = 〈vi, wj〉H
9: wj = wj − hi,jvi
10: end for
11: end for
12: hj+1,j = 〈wj , wj〉

1
2
H

13: if hj+1,j < ι then
14: Stop
15: end if
16: vj+1 = wj/hj+1,j

17: end for
18: Output: Tn, Vn, vn+1, hn+1,n.

(b) Algorithm to generate Vn (by QR fac-
torization)

1: Matrix A ∈ R2m×2m, vector b ∈ R2m,
number n ∈ N.

2: v = b
3: Kn = v
4: for i = 1 : n− 1 do
5: v = Av
6: Kn = [Kn, v]
7: end for
8: Kq

n = Kn(1 : m, :)
9: Kp

n = Kn(m+ 1 : 2m, :)
10: [Q,R] = qr([Kq

n,K
p
n])

11: Vn = Q(:, 1 : k), k = rank([Kq
n,K

p
n]) ≤

2n
12: Output Vn.
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