
SUMMARY

A thrust allocation system is used to determine how the desired forces, com-
puted by a high level control sytem, can be distributed among the thrusters.
The main goal of the thrust allocation is to obtain the desired force, but
other objectives can also be included. Such secondary goals can be to mini-
mize fuel consumption, keep wear and tear of the thruster to a minimum and
avoid overloading the power systems. The thrust allocation should also take
forbidden sectors and actuator rate constraints into account. It is essential
to safe operation that the allocation system provides a solution, and provides
the solution in time.

In this thesis MPC (Model predictive control) is suggested as a method to
solve the control allocation problem for CyberRig I (a scaled model of a semi-
submersible drilling unit). 3 MPC algorithms are simulated in matlab, and
the most complete are chosen for on-line implementation. The algorithm is
based on an extended thrust formulation, and allows for rotatable thrusters.
The cost function penalizes change in thust magnitude and in the azimuth
angle. Forbidden sector constraints and rate constrains, both for thrust
magnitude and angle, are implemented.

It is shown in simulations that the MPC algorithm performs well in compar-
ison with an existing quasi-static method. Its main bene�t over the quasi-
static method is the ability to handle constraints. The cost of using MPC is
increased computational e�orts.
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CHAPTER

1

INTRODUCTION

A thrust allocation system is used to determine how the desired forces, com-
puted by a high level control sytem, can be distributed among the thrusters.
The main goal of the thrust allocation is to obtain the desired force, but
other objectives can also be included. Such secondary goals can be to mini-
mize fuel consumption, keep wear and tear of the thruster to a minimum and
avoid overloading the power systems. The thrust allocation should also take
forbidden sectors and actuator rate constraints into account. It is essential
to safe operation that the allocation system provides a solution, and provides
the solution in time.

Various strategies using optimization exists to solve the thust allocation
problem (Fossen and Johansen,2006). In this thesis the thrust allocation
problem will be investigated using a Model Predictive Control (MPC) for-
mulation. MPC is an advanced control technique where an explicitly formu-
lated process model is used to predict and optimize future behaviour. MPC
has a great ability to take care of constraints, and this is one of the reasons
why it may be well suited to thrust allocation where constraints are always
present. Otherwise the hope is that it will minimize fuel consumption.

An online numerical solution will be imlemented, and later on compared
with and existing (quasi-)static optimization-based thrust allocation method.
This is a method where the angles of the thrusters are held �xed, and only
the thrust magnitude can vary for each of the thrusters.

CyberRig I is a scaled model of a semi-submersible drilling unit, and will be
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used for testing in real time. The rig has eight rotatable azimuth thrusters
and virtual controller speci�es surge, sway and yaw forces. Each thruster is
limited in thrust magnitude, but can rotate 360 degrees.

Structure of thesis:

In Chapter 2 the existing methods for control allocation are described.

In Chapter 3 a methodological overview of Model Predictive Control is pre-
sented.

Chapter 4 describes the problem in detail, MPC formulations are suggested
and important assumptions made.

In Chapter 5 results from simulation in Matlab are �rst presented. Then
results from simulations of the online implementation is presented. Results
from comparison of MPC control allocation and quasi-static control alloca-
tion is shown.

Chapter 6 contains discussion of the results, and a comparation of a MPC
formulation and an existing static optimization method is provided.

Chapter 7 contains the conclucion and suggestions for furhter work.

The appendices contain details about hardware, software, lab and some se-
lected code and simulation results.
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CHAPTER

2

CONTROL ALLOCATION

Dynamic positioning (DP) is a system that automatically maintain a vessels
position and heading by using its propellers and thrusters. On marine vessels
under DP operation, control allocation systems are used to determine how
the desired generalized forces can be distributed among the thrusters. The
control allocator recieves the desired generalized forces from the control sys-
tem, and computes the neccessary forces and angles for each of the thrusters.
A block diagram of the role of the Control Allocation-system in the control
hierarchy is shown in Fig. 2.1.

It is critical that the control allocator always provides a solution, and that
this solution is made available in time, to provide safe operation.

A vessel can be under-, fully- or overactuated. Underactuated means that
the desired generalized force can not be obtained by the available thrusters.
On a fully actuated vessel this is possible. However, an overactuated vessel
will be the focus in this report. For an overactuated vessel the generalized
can force not only be produced, but can be provided in several ways. One
then chose a solution based on other criteria, typically in order to minimize
power consumption, drag, tear and wear or other costs. Anoter important
role of the control allocator is to take into account forbidden sectors and
actuator rate constraints.
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Figure 2.1: Control Hierarchy (Breivik, 2007)

2.0.1 Actuators

Fossen (2002) presents the most common actuators for marine vessels:

Main propeller: Produce the necessary force in the x-direction needed for
transit. They are mounted aft of the hull, usually in conjunction with
rudders.

Tunnel thrusters: Tranverse thrusters going through the hull of the vessel.
The propeller unit is mounted inside a tranverse tube, and it produces
force in the y-dirction. Their use is limited to low-speed maneuvering
and DP.

Azimuth thrusters: Thruster units that can be rotated about the z-axis,
and hence produce two force components in the horizontal plane. They
are usually mounted under the hull of the vessel. They are especially
well suited for DP systems, due to their ability to produce forces in
di�erent direction, leading to optimizable overactuated control prob-
lems.

Aft rudders: Primary steering device for conventional vessels, located aft
of the vessel. The rudder force Fy will be a function of the rudder
de�ection. A rudder force in the y-direction will produce a yaw moment
which can be used for steering control.
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Stabilizing �ns: Used for damping of vertical vibrations and roll motions.
They produce a force Fz in the z-directions which is a function of the
�n de�ection. The lift forces are small at low speed, so they work best
in transit.

Control surfaces: Produces lift and drag forces and can be mounted at
di�erent locations.

2.1 Modelling

Following Fossen (2002) the forces and moments in 6 DOF corresponding to
the force vector f = [Fx, Fy, Fz]T can be written:

τ =
[

f
r× f

]
=



Fx

Fy

Fz

Fzly − Fylz
Fylz − Fzlx
Fylx − Fxly

 (2.1)

Forces and moments can be written:

τ = T (α) f (2.2)

f = Ku (2.3)

where α are the angles (in the case of azimuth thruster) and u are the control
inputs. f = Ku is a vector of control forces. An azimuth thruster have two
force components Fx = Fcosα and Fy = Fsinα.

K is called the force coe�cient matrix and is always diagonal:

K = diag {K1,K2, · · · ,KI} (2.4)

K−1 = diag

{
1
K1

,
1
K2

, · · · , 1
KI

}
(2.5)

where I is the number of actuators.

T(α) is called the actuator con�guration matrix. It is written:

T (α) = [t1, t2, . . . , tI ] (2.6)
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The column vector ti for an azimuth thruster with 5 DOF is:

ti =


cosαi

sinαi

−lzi sinαi

lzi cosαi

lxi sinαi − lyi cosαi

 (2.7)

Dynamic positioning is concerned primarily with control of the ship in the
horizontal plane: surge, sway and yaw.3 DOF representation (with surge,
sway and yaw) is found by deleting the 3rd and 4th row, and ti becomes:

ti =

 cosαi

sinαi

lxi sinαi − lyi cosαi

 (2.8)

In low-speed allocation it is common to use a 3-degrees-of-freedom model,
taking surge, sway and yaw into account. The generalized forces (vessel
�xed) is then τ = [X,Y,N ]T .

The generalized forces acting on the vessel is given by:

Xi = Ti cosαi, (2.9)

Yi = Ti sinαi, (2.10)

Ni = Ti(li,x sinαi − li,y cosαi) (2.11)

2.2 Control allocation methods

A good survey of methods for control allocation is presented by Fossen and
Johansen (2006). They divide the methods into three categories:

• Linear quadratic unconstrained control allocation

• Linear quadratic constrained control allocation

• Nonlinear constrained control allocation

2.2.1 Linear quadratic unconstrained contol allocation

Linear quadratic unconstrained control allocation is the simplest form of al-
location problem. The easiest allocation problem is obtained if the thrusters
do not rotate: the angle α is a constant α0 and T (α) = T (α0) = constant.
If the allocation in addition is unconstrained the problem is simple to solve.
If it is equal or more control inputs than controllable DOF, it is possible to

6



�nd a ('optimal') solution using an explicit method. Considering an uncon-
strained least-squares optimization problem one can compute a generalized

inverse T†w and then �nd the control input vector u as:

u = K−1T†wτ (2.12)

The LS optimization problem in question is given by:

J = min
f

{
fTWf

}
subject to : τ −Tf = 0 (2.13)

W is a matrix (positive de�nite) weighting the control forces. The general-
ized matrix can then be found as:

T†w = W−1TT
(
TW−1TT

)−1
(2.14)

If the thrusters are allowed to rotate, one can solve this problem using an
extended thrust representation (Sørdalen, 1997). Following the notation in
Spjøtvold and Johansen(2007), the extended thrust vector is found by de-
composing the individual thrust vectors in the horizontal plane according to:
ui,x := Xi, ui,y = Yi and ui := [ui,x ui,y]T ∈ R2.

This way a linear relationship is obtained:

τ = Bu (2.15)

u is the decomposed thust vectors in the horizontal plane for all the actuators:
u = [u1,x, u1,y, u2,x, u2,y · · · uI,x, uI,y, ]T , and the matrix B is:

B =

 1 0 · · · 1 0
0 1 · · · 0 1
−l1,y l1,x · · · −lI,y lI,x

 (2.16)

The thrust force Ti can be found as
√
u2

x + u2
y and the angle αi are recovered

by arctan(uy

ux
).

2.2.2 Linear quadratic constrained control allocation

The solutions in Sec. 2.2.1 does not take constraints into account. Consid-
ering actuator limitations such as saturation and tear and wear leads to a
constrained allocation problem. Other constraints can be due to the wish

7



to minimize the fuel consumption and hence the costs. Various approaches
exists to solve the constrained control allocation problem, and some will be
shortly described.

Firstly, an explicit solution using piecewise linear functions is presented.
Tøndel et al.(2003) developed an explicit solution approach for parametric
quadratic programming, and Johansen et al. (2005) presented applications
to marine vessels. The constrained opimization problem is given as:

J = min
f,s,f

{
fTWf+ sTQs+ βf̄

}
subject to :
Tf = τ − s (2.17)

fmin ≤ f ≤ fmax

−f ≤ f1, f2, . . . , fr ≤ f

where s is a vector of slack variables. Choosing the weighting matrix Q ��
W makes the slack variables close to zero, and assures an accurate gener-
alized force. The optimization problem can be reformulated as a convex

QP problem with p =
[
τT , fTmin, f

T
max, β

]T
as the parameter vector and

z =
[
fT , sT , f̄

]T
. The QP problem is a convex quadratic program in z

parametrized by p, where a global solution is found due to covexity. The
optimal solution z∗(p) is a continuous piecewise linear function. An exact
representation can be computed o�ine using mpQP-algorithms. The reader
should go to the references for a more throughout explanation.

The above method applies to a vessel with nonrotatable actuators. An exten-
sion to vessels with azimuthing thrusters has also been presented (Johansen
et al, 2003).

Other solutions to the constrained control allocation problem are explicit
solutions based on Minimum Norm and Null-space methods. They solve the
control allocation problem applied in �ight and aerospace control systems.
Also another possibility is mentioned: to use an iterative solution to solve
the QP-problem. This method is more �exible, but may require that several
iterations are performed at each sample in order to �nd the optimal solution.

2.2.3 Nonlinear constrained control allocation

A vessel equipped with azimuth thrusters leads to a non-convex optimiza-
tion problem that is hard to solve. A possible criterion for minimization is
presented in Johansen et al(2004b):
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J = min
f,s,α

∑r

i=1
P i |fi|3/2 + sTQs

+ (α−α0)TΩ(α−α0)

+
%

ε+ det(T(α)W−1TT (α))
.

subject to :
T(α)f = τ + s

fmin ≤ f ≤ fmax

αmin ≤ α ≤ αmax

∆αmin ≤ α−α0 ≤ ∆αmax

The �rst term in J represents power consumption, and the last term is in-
cluded to avoid the singularity that is introduced if det(T (α)W−1T T (α)) is
equal to zero. The resulting problem is a non-convex nonlinear program.
Therefore Fossen and Johansen (2006) suggests two implementation strate-
gies in order to avoid the demanding computations.

Firstly, one can �nd a dynamic solution using Lyapunov methods. For more
information about this, the reader is refered to Johansen (2004). Secondly,
an iterative solution using quadratic programming is proposed. This is done
approximation the problem in Eq. 2.18 with a convex QP problem that is
easier to solve. (Johansen et al., 2004b).

Two other methods to solve the problem in Eq. 2.12 are also mentioned:
Iterative solutions using linear programming, and explicit solution using the
singular value decomposition and �ltering techniques.

2.3 Thruster model

It is assumed that the thrust force from each thruster is given by (Fossen,
2002):

T = KTρD
4 |n|n (2.18)

KT is a strictly positive thrust coe�cient, ρ is the water density, D is the
propeller diameter and n is the propeller speed. ρ and KT are assumed to
be constant, and the propeller speed n is recovered from:

n = sgn(T ) ∗

√∣∣∣∣ 1
ρKTD4

∣∣∣∣ ∗ 60 (2.19)
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In the equation 60 is included to transform from rps (revolutions per second)
to rpm (revolutions per minute).

2.4 Thruster-thruster Interactions

When two azimuthing thrusters are operating within close prximity to each
other, interaction between their respective slipstreams can occur depending
on their azimuth angles α. For the rig this is highly relevant, as the thrusters
are mounted in pairs on each leg of the rig. Brown and Ekstrom (2005) states
that either a reduction or an increase in thrust can occur when one thruster's
slipstream is in�uenced by the other thruster's slipstream. Little litterature
exists on the topic, and experimental tests should be conducted. Analytical
results are di�cult to derive due to the complexity of hydrodynamical �ow.
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CHAPTER

3

MODEL PREDICTIVE

CONTROL

Model predictive control (MPC) is one of the most commonly used techniques
within advanced control today. Its �rst applications were in the petrochem-
ical industry, but due to several factors it is gaining increasingly popularity
also in other areas. An important reason for this is its ability to take care
of constraints (Maciejowski, 2002). There are many variants of MPC con-
trollers, having in common that an explicitly formulated process model is
used to predict and optimize future behaviour.

In the literature the term receding horizon control (RHC) is occasionally
used. MPC is the conventional name of this technique, and is the term
being refered to in this report.

The purpose of this chapter is to give a short survey of the history of MPC
and its theory.

Mayne, Rawlings, Rao and Scokaert (2002) says that:

"Model predictive control is a form of control in which the
current control action is obtained by solving, at each sampling
instant, a �nite horizon open-loop optimal control problem, using
the current state of the plant as the initial state; the optimization
yields an optimal control sequence and the �rst control in this
sequence is applied to the plant."
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The open-loop control sequence is repeatedly solved at each time step, giv-
ing the the controller an inherently closed-loop e�ect. As the new control
sequence is calculated from the present state of the system, a stabilizing
feedback control can be obtained. This is its main di�erence from conven-
tional control which uses a pre-computed control law. The ability to handle
control problems where o�-line computation of the control law is di�cult or
impossible is one of the greatest advantages by using this technique. How-
ever, initially other features suchs as capability for controlling multivariable
plants were considered more important (Mayne et.al, 2002).

The main reason why MPC �rst gained popularity was its ability to handle
constraints. Constraints, such as actuators beeing limited in the force they
can apply and safety limits in temperature, pressure and velocity, are almost
always present. Steady-state operation close to the boundary of the set of
permissible states leads to more pro�table operation.

The time consuming on-line computations initally led to MPC beeing used
only in slow processes. However, with faster computing hardware and im-
proved optimization algorithms, there is no need for predictive control beeing
con�ned only to slow processes (Maciejowski, 2002).

3.1 The idea behind receding horizon

Fig. 3.1 from Torpe(2007) shows the principle of MPC. A system is sought
to be controlled at a set point, given by r(t). The controller calculates an
optimal input sequence for the control horizon Tc. The �rst element of the
input sequence is applied as the input signal to the plant. As the time
progresses all horizons are moved ahead as well, so they slide along by one
sampling interval at each step.

A mathematical formulation is now given, following Allgöver, Findeisen and
Nagy (2004). A continuous time formulation is provided, se for example
Mayne et.al(2000) for a discrete time formulation. Consider a general class
of continious time systems described by a di�erencial equation

ẋ(t) = f(x(t), u(t)), x(0) = x0, (3.1)

which is subject to input and state constraints of the form:

u(t) ∈ U, ∀t ≥ 0, (3.2)

x(t) ∈ X, ∀t ≥ 0. (3.3)
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Figure 3.1: Principle of MPC

Here u(t) ∈ Rm is the vector of inputs, and x(t) ∈ Rn is the state vector.
The sets U and X typically takes the form:

U := u ∈ Rm |umin ≤ u ≤ umax, (3.4)

X := x ∈ Rn |xmin ≤ x ≤ xmax, (3.5)

with umin, umax, xmin and xmax beeing constant vectors.

At every time instant the optimal open-loop control is given by solving the
following problem:

min
u(·)

J(x(t), u(·)) = min
u(·)

∫ t+Tp

t
F (x(τ), u(τ))dτ (3.6)

subject to

ẋ = f(x(τ), u(τ)), x(t) = x(t), (3.7)

u(τ),∀τ ∈ [t, t+ Tc] , (3.8)

u(τ) = u(t+ Tc), ∀τ ∈ [t+ Tc, t+ Tc] , (3.9)

x(τ) ∈ X,∀τ ∈ [t, t+ Tp] (3.10)
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Tp is the prediction horizon and Tc the control horizon. u denotes internal
controller variables, while x denotes the system response to the input vector
u, that is, the solutions to Eq. 3.6. The cost function J is as sum of per-
formance costs, F (·) at each time step. The cost function often arises from
some economical consideration on the systems operational point (xop, uop)
through a quadratic form:

F (x, u) = (x− xop)TQ(x− xop) + (u− uop)TR(u− uop) (3.11)

That is, the cost is given as a result of deviations form the operational set
point, speci�ed by positive de�nite weighting matrices Q and R. One can
also �nd additional terms in F which penalize movements of the inputs where
that is appropriate.

The solution to Eq. 3.6 is de�ned to be u∗(t0;x0) = u∗0, where the �rst set
of inputs are applied to the system:

u(t) = u∗(t0, x0) = u∗0. (3.12)

The opitmal cost yielded by u∗ is then a function of the stat x(t) alone. This
optimal cost is often referred to as the value function

V (x) = J(x(t), u∗(t;x(t)). (3.13)

3.2 Origin of MPC

For a while, there where several quite independent streams in the MPC
litterature: the one dealing with theoretical foundations, the 'process control
litterature' used by the indystry, and litterature on generalized predictive
control having its roots in minimum variance and adaptive control (Mayne
et.al, 2002).

Theoretical foundations: Optimal control litterature is highly relevant
to the development op MPC. Firstly two ideas in the optimal con-
trol litterature from the 1960s underly MPC: Hamilton-Jacobi-Bellman
therory (Dynamic Programming) and the maximum principle. DP pro-
vides su�cient contidions for optimality and a method to �nd an op-
timal feedback controller u = κ(x). The maximum principle motivates
computational algorithms to, given an initial state x, determinate the
optimal open-loop control u0(·;x). "The link is: κ(x) = u0(0;x) for
all x", meaning that optimal feedback can be obtained by solving an
open-loop control problem for each state x.
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Secondly there is the important observation by Kalman (1960), say-
ing that optimality does not imply stability. However, in�nite horizon
optimal controllers are stabilizing under given circumstances. The con-
troller is known as the Linear Quadratic Regulator (LQR) (Kalman,
1960a,b).

The process control litterature: LQG theory (Linear quadratic Gaus-
sian) soon gained popularity in a wide range of applications. But this
did not a�ect the control technology developement in the process indus-
tries much (Qin and Badgewell, 2003). The theory did not correspond
to many of the concerns of the industry, beeing:

• constraints

• process nonlinearities

• model uncertainty (robustness)

• unique performance criteria

• cultural reasons (people, education, etc.)

Stability were not addressed by the industrial proponents of MPC, and
the controllers were not automatically stabilizing. But the focus were
on stable plants and using large horizon, hence stability properties are
achieved.

Generalized predictive control: Generalized predictive control has its
roots in adaptive control litterature. Stability was not guaranteed in
the original versions of GPC, due to �nite horizon, but was achieved by
tuning (of cost and horizon parameters). In spite of its possible poten-
cial in the market for a self-tuning MPC controller, very few adaptive
MPC algorithms have reached the marketplace. Qin and Badgewell
(2003) states that this as a situacion that is unlikely to change unless
there is a theoretical breakthrough.

This concludes the chapter on MPC theory. From a focus on methodological
overview, the following chapter suggests to use MPC in control allocation,
and more speci�cally, applied on CyberRig I.
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CHAPTER

4

PROBLEM DESCRIPTION AND

IMPLEMENTATION

As seen in Chapter 2 control allocation systems on overactuated vessels are
important in order to obtain the required generalized thrust and minimize
power consumption. In this chapter the control allocation problem for a ma-
rine vessel is proposed solved using a MPC formulation. A few formulations
will be suggested, and the most promising will be chosen for implementation
on a real-life model of semi-submersible drilling unit. Importent aspects on
implementation, such as how to implement constraints, will also be com-
mented on.

4.1 CyberRig I

As a case study CyberRig I will be used. It is a scaled model of a semi-
submersible drilling unit. The model has four legs with two azimuth thrusters
on each leg. The CyberRig I (CRI) has 8 rotating thrusters, giving many
degrees of fredom and leading to a problem that is higly optimizable. Im-
plemented on CRI is a DP control system (Tyssø and Aga, 2006). The
CyberRig I is shown in Fig. 4.1, while the numbering of the thrusters is
shown in Fig. 4.2.
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Figure 4.1: CyberRig I with camera positioning system

4.2 MPC-formulations

To solve the control allocation problem 3 MPC-formulations will be sug-
gested. They will all be simulated in Matlab, and one will be chosen for
implementation on CyberRig I. To include the varying angles, the work will
be based on the extended thrust representation described in Sec. 2.2.1. Tra-
ditionally this gives the problem that the optimal solution for α can jump
at each sample, and that constraints can not be implemented. However, by
combining this representation with MPC this can be managed. With MPC,
constraints are easily implemented. For control allocation both rate con-
straints and forbidden sectors should be included, and with MPC they can
be. MPC is also well suited because it handles error situations. If one of
the thrusters fail, the associated control can be set to zero in the equality
constraints (or removed from the formulation), and the other constraints will
take care of optaining the commanded force.

First of all the notation will be decribed.

The thrust vector is given by:
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Figure 4.2: Numbering of azimuth thrusters

u = uk
i (4.1)

k is the time index, k ∈ [1, . . . , N ] and i is the index of the azimuth thruster
i ∈ [1, . . . , I]. N is the time horizon used for the prediction algorithm, and
I = 8 azimuth thrusters for CyberRig I. Also remember from Sec. 2.2.1 that
ui = [ui,x ui,y]T .

α is the thusters angle, and T the force magnitude.

αi = arctan

(
ui,y

ui,x

)
(4.2)

Ti =
√
u2

i,x + u2
i,y (4.3)

α = [α1, α2, . . . , αI ] and T = [T1, T2, . . . , TI ].
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Figure 4.3: T and alpha

Algorithm 1:

In the �rst algorithm it will be assumed that α∗ and T ∗ are the 'optimal'
values for α and T for the present commanded force τcomm. They will be
computed by an optimization algorithm that also takes forbidden sectors
into account. This optimization algorithm is a QP-problem minimizing the
force u, with τcomm = Bu + s as equality constraints and forbidden sectors
as unequality constraints.

J = ΣN
k=1((α∗)k − αk)TQ((α∗)k − αk) + ((T ∗)k)TR(T k)

subject to : (4.4)

Ak
1α

k ≤ bk1, ∀ k ∈ [1, N ]
Ak

2T
k ≤ bk2, ∀ k ∈ [1, N ]

−∆αk
min ≤ ∆αk ≤ ∆αk

max, ∀ k ∈ [1, N ]
−∆T k

min ≤ ∆T k ≤ ∆T k
max, ∀ k ∈ [1, N ]

This algorithm has the advantage that it deals with the problem of con-
straints, as the rate constraints can be easily implemented.
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Algorithm 2:

For algorithm number 2 the goal is to minimize the error between the desired
and implemented generalized force over the time horizon. The cost function
J is formulated as:

J = ΣN
k=1

∥∥∥(Buk − τk
comm)

∥∥∥
Qk

subject to : (4.5)

Akuk ≤ bk1, ∀ k ∈ [1, N ] (4.6)

−∆αk
min ≤ ∆αk ≤ ∆αk

max, ∀ k ∈ [1, N ]
−∆T k

min ≤ ∆T k ≤ ∆T k
max, ∀ k ∈ [1, N ]

It is more complicated to implement because the varibles for rate constraints
are not the same as the optimization vector (see Sec. 4.3.2). But it may take
greater advantage of the prediction horizon.

Algorithm 3:

The MPC algorithm should also minimize power consumption. To do this it
is normal to add an energy term to the cost function. This can be approx-
imated to be u2 for simplicity. But with the formulation in Eq. 4.7 this is
not possible, as it violates the minimisation of the error term.

To overcome this problem a third algorithm is suggested:

J = ΣN
k=1‖(uk − uk−1)‖Q + ‖sk‖R (4.7)

subject to : (4.8)

Buk + sk = τ k, ∀ k ∈ [1, N ] (4.9)

Akuk ≤ bk, ∀ k ∈ [1, N ] (4.10)

−∆αk
min ≤ ∆αk ≤ ∆αk

max, ∀ k ∈ [1, N ] (4.11)

−∆T k
min ≤ ∆T k ≤ ∆T k

max, ∀ k ∈ [1, N ] (4.12)

This algorithm includes the power consumption in the �rst term of Eq. 4.7,
and also weight that change in angle also in�uence on the power consump-
tion. Following of the reference τ comm is assured by the �rst equality con-
straint. s is a vector of slack variables, allowing the following of the reference
to be violated if this is neccesary due to the other contstraints. But the
weighting matrix R is chosen to be much larger than Q to make s as small
as possible.
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Please notice that also the constraints are varying at each sample for the
above formulations. In the following sector some implementation issues are
commented on.

4.2.1 Implementation

In order to implement the mpc algorithms available software must be used.
Therefore the problems are formulated as QP problems that have solvers
both in matlab and in C available (quadprog and qld respectively, see App. C).

To do this the problems for each time istant is simply stacked. In this
section it will be shown how the stacking is done for algorithm 3, although
the procedure is the same for all of the algorithms.

U =


u1

u2

...
uN

 (4.13)

u1 =


u1

1,x

u1
1,y
...

u1
I,x

u1
I,y

 , u2 =


u2

1,x

u2
1,y
...

u2
I,x

u2
I,y

 etc. (4.14)

S =


s1

s2

...
sN

 (4.15)

s1 =

s11s12
s13

 , s2 =

s21s22
s23

 etc. (4.16)

N is the time horizon and I is the number of actuators.

J = ΣN
k=1‖(uk − uk−1)‖Q + ‖sk‖R (4.17)

= UT QU− UT QU0 − UQ(U0)T + (U0)2 + SRST (4.18)

= UT QU− 2(U0)T QU + (U0)2 + SRST (4.19)
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Qk =


q 0

q
. . .

0 q


︸ ︷︷ ︸

I

, Rk =

r 0
r

0 r


︸ ︷︷ ︸

3

(4.20)

Q =


Q1 0

Q2

. . .

0 QN


︸ ︷︷ ︸

N

, R =


R1 0

R2

. . .

0 RN


︸ ︷︷ ︸

N

(4.21)

This results in the vector to optimize over:

X =
[
U
S

]
=



u1

u2

...
uN

s1

...
sN


(4.22)

J = min
X

1
2

XTHX + fT X (4.23)

H = 2
[
Q 0
0 R

]
, f = 2(X0)TH2, H2 = 2

[
Q 0
0 O

]
(4.24)

X0 is the optimal X∗ from the last step.

The constraints must be on the form AuneqX ≤ Buneq and AeqX = Beq.

The equality constraints takes the form:
B1 I

B2 I
. . .

. . .

BN I


︸ ︷︷ ︸

Aeq

X =


τ1

τ2

...
τN


︸ ︷︷ ︸

Beq

(4.25)
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where

I =

1
1

1

 , Bi = B ∀k ∈ [1, N ] (4.26)

and B is the linearized matrix from Eq. 2.16. It will be assumed that the
future commanded forces τk are equal to the present one, τcomm.

When it comes to the unequality constraints two types are implemented:
forbidden sector constraints, and rate constraints. The rate constraints are
on the form ∆α and ∆T , but should be on the form Au ≤ b. They will be
closer described in Sec. 4.3.2.

The forbidden sector constraints will be on the form:
sa1

sa2

. . .

saI


︸ ︷︷ ︸

SA

u ≤


sb1
sb2
...
sbI


︸ ︷︷ ︸

SB

(4.27)

sai are matrices and sbi are vectors. The forbidden sector constraints do
not vary from sample to sample, and can be simply stacked to acheive the
constraints for the whole prediction horizon:


SA1 0

SA2 0
. . .

. . .

SAN 0

X ≤


SB1

SB2

...
SBN

 (4.28)

The forbidden sector constraints is described more closely in Sec. 4.3.1.

The result of the optimization is X∗, containing U∗ beeing the future vector
of forces. The �rst term U1,∗ is applied to the plant, and the optimization
algorithm is redone. Fig. 4.4 shows a blockdiagram of the process.
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Figure 4.4: Block diagram
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4.3 Constraints

4.3.1 Forbidden sectors

Figure 4.5: Allowed sectors for the thrusters

Forbidden sectors are introduced to prevent the thrusters to enter certain
sectors. The sectors are arti�cial in the sense that they are introduced to
avoid non-linear interaction between the thrusters. Forbidden sectors are
also useful to prevent the thruster to pump water in certain directions due
to for example maintenance (boats, divers etc. in the sea).

In implementation instead of forbidden sectors, constraints are made to keep
each thruster within a certain area. This way minimum and maximum values
for T and α are also implemented. In Fig. 4.5 the shadowed area is the
allowed area for the thrusters. The allowed sectors are approximations of half
circles. The half circles are approximated by the half of regular polygons.1
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Figure 4.6: Rate constraints

4.3.2 Rate constrains

From step to step it is desirable that the rpm and angles of the azimuth
thrusters only can change by certain values. Therefore rate constraints are
introduced. In Fig. 4.6 these constraints are visualized by a polynomial. The
allowed section for the next step limited by the lines l1, l2, l3 and l4 on the
�gure.

For a given point p = [u0
x, u

0
y] the angle α and magintude T are given, see

Fig. 4.6. For the next iteration αmax = α + ∆α and αmin = α − ∆α. For
the maginitude equally: Tmax = T + ∆T and Tmin = T −∆T .

But to be implemented in the qp-problem, the constraints should be on the
form Au1 ≤ b. (u1 = [u1

x, u
1
y]).

Let p1 be a point on line l1 and p2 be a point on line l2 such that:

p1 = [p1,x, p1,y] = [cos(αmin), sin(αmin)] (4.29)

p2 = [p2,x, p2,y] = [cos(αmax), sin(αmax)] (4.30)

The constraints for alpha are then:[
p1,y −p1,x

−p2,y p2,x

] [
u1

x

u1
y

]
5

[
0
0

]
(4.31)

1A regular polygon is a polygon which is equiangular (all angles are congruent) and
equilateral (all sides have the same length).
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The magnitude constraints are constructed as follows:

The technique is di�erent depending on the quadrant, here an example of
how to �nd the constraint for line l3 in the �rst quadrant is given.

Let p3 be a point on line l3 such that:

p3 = [p3,x, p3,y] = [Tmincos(α), Tminsin(α)] (4.32)

Let a, b and c be given as in Fig. 4.7.

α3 =
π

2
− α (4.33)

c =
p3,y

tan(α3)
(4.34)

b = c+ p3,x (4.35)

a = b ∗ tan(α3) (4.36)

Line l3 is found to be:

y = a− a

b
x (4.37)

giving the constraint:

[−a
b
, −1]

[
u1

x

u1
y

]
≤ −a (4.38)

The same is done for line l4, and all the constraints for angle and magnitude
are stacked.
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Note that if ux or uy is zero or the point p is in another quadrant, the results
are a bit di�erent. Please see the code in App. E to see how this is done.

This was how the rate constraints are found for one actuator at one time
step. This has to be done for all the constraints over the time horizon.
But the future values of uk are not known. As an approximation, the last
optimal prediction U0∗ is used, and the polynomials are constructed around
the di�erent values in this prediction.

A special situation occur if
√
u2

x + u2
y is very small, i.e. close to zero. To

prevent jumping when α is zero, this is solved by �x α when
√
u2

x + u2
y ≤ ε.

4.4 Comparison with an existing (quasi-)static method

To see how the MPC algorithm perform, it will be compared to an existing
allocation method, namely the (quasi-) static method outlined in Sec. 2.2.1.
This is a method that is valid for all α0 = cte., but it is not optimal with
respect to a time-varying α. τ comm = T (α)f. In this case the thrusters are
held at �xed positions 90 degrees relative to each other as seen in Fig. 4.4.
This results in a constant matrix T (α) = T (α0) = B.

Figure 4.8: Azimuth angles relative to the sylinder(Tyssø and Aga(2006))

The constant actuator conguration matrix is called B to avoid it to be mixed
up with the thrust maginitude T .

J = min
f

{
fTWf

}
subject to : τ −Bf = 0 (4.39)
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W is a matrix (positive de�nite) weighting the control forces. The general-
ized matrix can then be found as:

B†w = W−1BT
(
BW−1BT

)−1
(4.40)

Note that u is the same as the thrust magnitude T referred to previous this
chapter. The weighting matrix W is chosen to be:

W =


1 0

1
. . .

0 1


︸ ︷︷ ︸

I

, I = 8. (4.41)

Then the thrust magnitude u is given by:

u = K−1B†wτ comm (4.42)

This allocation method does not enable constraints. To be able to compare
it to the MPC algorithm, 'fake' constraints will be added in simulations.
That is, if u is bigger than the last value u0, the u applied will be equal to:

uapp = u0 + ∆u (4.43)

∆u will be the same as the one used in the MPC algorithm (∆T ).
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CHAPTER

5

RESULTS

The three MPC-algorithms have been simulated in Matlab. Algorithm 3 has
been implemented in C, in order to run it on CyberRig I. Simulations of
these algorithms are shown in this chapter.

Note that all angles are calculated with reference to a vessel �xed coordinate
system with traditional xy-coordinates. The thrusters mounted on the rig
rotate [-180, 180] degrees from the angle they are mounted in. See Fig. 5.1.
Angle zero is de�ned to be at the point [1 0] in the vessel �xed coordinate
system. To obtain the same force with thruster 1 135◦ has to be subtracted.
Note that for marine applications is it normal to let x be the longitudinal
axis directed from aft to fore, y the transversal axis directed to starboard,

Thruster Degrees Radians

1 -135 -3π/4
2 -135 -3π/4
3 +135 3π/4
4 +135 3π/4
5 +45 π/4
6 +45 π/4
7 -45 -π/4
8 -45 -π/4

Table 5.1: Added angles when MPC-algorithm is run on CRI
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and x the normal axis directed to bottom.

Figure 5.1: Vessel �xed coordinate system and thrusters

5.1 Algorithm 1

Algorithm 1 was implemented for simulations in Matlab. Fig. 5.2(a) and
Fig. 5.2(b) shows the computed α and T where α∗ and T ∗ has been assumed,
and there is a step in α∗ and T ∗ for each of the thrusters. There is a maximum
of ∆αi = 0.1 ∆Ti = 0.1 for i ∈ [1, N ] over the whole horizon. Q and R are
chosen to be the identity matriz I.

Fig. 5.3(a) and Fig. 5.3(b) shows the computed α and T when the optimal
values α∗ and T ∗ have been computed by the algorithm brie�y described in
Sec. 4.2, and there is a step in the commanded generalized force to τ comm =
[10, 10, 0]T .

With this formulation rate constraints are implemented, which is an improve-
ment from the quasi-static method. Also the thrusters are allowed to rotate.
But it is seen that the time horizon N has little e�ect on the result, and that
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in general this formulation does not bene�t from the prediction horizon. α
and T will go to the 'optimal' values α∗ and T ∗ as fast as the rate constraints
let them, and not choose a better path or di�erent goal, knowing the future
constraints.
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(a) mpc1 - alpha

(b) mpc1 - T

Figure 5.2: Algorithm 1, α∗ and T ∗ given
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(a) mpc2 - alpha

(b) mpc2 - T

Figure 5.3: Algorithm 1, τcomm = [10, 10, 0]T
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5.2 Algorithm 2

Algorithm 2 was implemented for simulations in Matlab. This algorithm
minimizes the error between the commanded force τ comm and the computed
force Bu. The algorithm simulated implements constraints, but in a rather
incomplete way. Instead of using the rate constraints from Sec. 4.3.2, they
are approximated with a 'moving circle'. This means that the allowed sector
to move from one step to another is a circle around [u0,xu0,y] with radius
0.1. Forbidden sectors are also implemented. The simulations are done with
a step in τ comm from [0, 0, 0]T to [10, 10, 0]T , then to [0, 0, 0]T again, and
lastly to [−10,−10, 0]T .

In the results the last weight (diagonal matrix with eight elements) is QN =
diag(50), while Qk = diag(1) for k ∈ [1, N − 1]. The time horizon is N=6.
Fig. 5.4 shows the commanded generalized force, and the resulting force after
optimization. Fig. 5.5 and Fig. 5.6 shows the calculated α and T respectively.
Fig. 5.7 shows how the actuator 'responds' in an xy-plot. An approximation
to the allowed sectors is shadowed.

How variations in the time horizon and the last element of the weighting
matrix QN a�ects the results have also been examined. The combinations
in the plots are:

-N = 2, QN = diag(1)

-N = 10, QN = diag(1)

-N = 3, QN = diag(50)

-N = 10, QN = diag(50)

A larger time horizon than N = 10 is not recommended, as computational
e�orts increase a lot with increasing time horizont. The relevant �gures can
be found in App. B. The plots indicates that a short time horizon combined
with a high value of QN is not a good combination. Apart from that the
plots diverges surprisingly little from each other. The reason for this is
discovered: The rate constraints are constructed around the last step optimal
value U0. It is assumed that the thrusters initially are positioned to be in the
middle their respective allowed sector, with a small thruster magnitude, for
all future times in the prediction horizon. This means that u0,∗ = u1,∗ = u2,∗

etc initially. This way the rate constraints become a problem, as the future
maximum and minimum values for uk are all equal to the present max and
min values, and the prediction horizon is of little value. The MPC problem is
reduced to a normal qp-problem, but with considerably higher computational
e�orts.

The problem of rate constraints around U0 and the shortcoming of imple-
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menting circles as approximations to the rate constraints are dealt with in
the implementation of the next algorithm.
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Figure 5.4: Algorithm 2: tau
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Figure 5.5: Algorithm 2: Alpha
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Figure 5.6: Algorithm 2: T
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Figure 5.7: Algorithm 2: Allowed sectors for the thrusters
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5.3 Algorithm 3

Algorithm 3 is the most interesting. It includes energy minimizing, forbidden
sector constraints and the rate constraints from Sec. 4.3.2.

The problem with rate constraints around U0 is solved with changing the
values of ∆α and ∆T , instead of changing U0. It is hard to see how U0

could be predicted initially. ∆α and ∆T are increased initally, more speci�c:
∆2α = 2 ∗∆α for k = 2, ∆3α = 3 ∗∆α for k = 3 etc.

As algorithm 1 and 2, this algorithm has also been simulated in Matlab. The
relevant �gures can be found in App. B. This algorithm have been chosen for
online implementation. To allow it to run in real-time on the target pc on
CyberRig I, the algorithm has been implemented as a S-function in c, with
the help of S-function-Builder in Simulink.

The algorithm has been simulated with a time-horizonN = 3. The weighting
matrices are chosen to be Qk = diag(1) for k ∈ [1, N − 1], QN = diag(5)
and R = diag(25). ∆α = 0.1 and ∆T = 0.1. Another good weighting
is to increase Rk with increasing k, to ensure that the last element τN is
the closest possible to τ comm. R should be much bigger than Q anyway, to
minimize the slack-variables. In the appendix the simulated τ under a step
in the commanded force is also shown (in Fig. B.0.2).

Fig. 5.8 shows tau commanded and tau mpc, where τ comm is generated by
a joystick. The sampling time is 0.1 s.

Fig. 5.10 visualizes how the forces are kept within the allowed sectors, while
Fig. 5.9 shows a detail of T and alpha. It is noticed that the constraints are
overheld, at the same time as the referance is followed.
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Figure 5.8: Tau commanded and tau mpc
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Figure 5.9: Detail showing T and alpha

44



(a) Actuator 1 (b) Actuator 2

(c) Actuator 3 (d) Actuator 4

(e) Actuator 5 (f) Actuator 6

(g) Actuator 7 (h) Actuator 8

Figure 5.10: Simulated force for each of the actuators and the corresponding
allowed sectors using mpc control allocation
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5.4 MPC-CA vs. quasi-static-CA

Fig. 5.12 shows the simulated force for each of the actuators using the quasi-
static control allocation described in Sec. 4.4. Clearly by using this method
it is no way to implement forbidden sectors. One has to calculate optimal
values for T, and later on limit them. This way one can not assure that the
computed force vector τ is correct, moreover, it will probably not be correct.
For example, in order to avoid that stream from one thruster is pumped into
the other at the same leg and result in nonlinear interactions, T ∗ should be
greater then or equal to zero.

Fig. 5.11 shows the resulting force when quasi-static CA is used with T ∗

saturated between [0, 2.4] (which is the limit for T ∗ also in the MPC CA).
Obviously the resulting force is only the half of the commanded force, as
negative T is not allowed.

Fig. 5.13 shows the commanded force, the force computed by the MPC-
algorithm and the force using the quasi-static formulation. Tau commanded
is generated by a joystick. For the quasi-static algorithm 'fake' rate con-
straints as descibed in Sec. 4.4 are applied, but there are no limit on the
minimum and maximum values for α and T .

46



Figure 5.11: Simulated force by using quasi-static control allocation with
saturation
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(a) Actuator 1 (b) Actuator 2

(c) Actuator 3 (d) Actuator 4

(e) Actuator 5 (f) Actuator 6

(g) Actuator 7 (h) Actuator 8

Figure 5.12: Simulated force for each of the actuators using quasi-static
control allocation
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Figure 5.13: Tau commanded, tau mpc and tau quasi-static
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CHAPTER

6

DISCUSSION OF RESULTS

In the previous chapters 3 MPC algorithms for control allocation have been
suggested and simulated. Of them, algorithm 3 is considered the best and
most complete. It was the algorithm elected for online implementation.
Therefore Algorithm 3 forms the basis for the analysis in this chapter. In
this chapter advantages and disadvantages are beeing discussed, and a com-
parision between MPC control allocation and quasi-static control allocation
is carried out.

As seen in Sec. 5.3 the MPC algorithm performs very well and follows the
reference given by τ comm. With a step in τ comm the applied thruster magni-
tude and angle results in an slowly rising computed τ , as the rate constraints
must be overheld. It is also seen how the MPC algorithm keeps the force
magnitude and angle for each azimuth thruster within the allowed sector.

As seen in the �gures in Sec. 5.4 both the MPC algorithm and the quasi-static
algorithm follow the reference, the commanded generalized force τ comm quite
well. Sometimes MPC performs best, and at other times the quasi-staic is
better. It seems that the quasi-static method gives smoother results with
less oscillations. This can come of inaccuracies in the implementation in c,
as some things have had to be solved ad hoc as problems came along.

However, there are various bene�ts of using MPC over the quasi-static method
in Control Allocation. Most important is the ability of MPC to handle con-
straints. Rate constraints and forbidden sectors have been implemented with
success. Another bene�t is that MCP allows for fault tolerant allocation, al-
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though this has not been done in this thesis. If one of the thrusters fail,
its associated control [ux, uy] can be set to zero in the equality constraints,
and the other constraints will take care of obtaining the commanded force.
Another option is to remove all the associated controls from the problem
formulation.

If the future reference signal is known, this can be incorporated in MPC, and
resulting in a better response. In the implementation the future reference
was assumed to be equal to the present, but this is easily changed. Using the
quasi-static method it is not possible to include the known future reference.

However, the MPC method requires a considerably greater computational
e�ort. The quasi-static method is very easy to implement, and does not re-
quire much storage space or computational e�orts. Allowing for the thusters
to rotate will probably increase mechanical wear and tear. But the power
consumption is minimized in the cost function, and rotation may lead to
that τ comm is reached faster, and gives greater �exibility.

So, what are the main drawbacks of using MPC in control allocation? First
of all the computational e�orts are big. Large matrices requires storage
space, and demanding computations have to be carried out online. Updating
the matrices is a time-consuming task, and increased time horizon for the
prediction increases the time required for qp-calculation drastically. It it
easy to imagine that an increase in the prediction horizon will result in a
qp-problem that cannot be solved in real-time.

Secondly the rate constraints are constructed around an unknown future
state for the actuators. In the algorithm, the future values were assumed
to be U∗0, or the last optimal trajectory computed. This is problematic for
two reasons. 1) It is not known whether the approximation U∗0 is correct.
But control allocation is a open-loop problem and the thruster dynamics is
included in the formulations (as rate constraints), so the di�erence between
what is applied and what the result is should not be so big. 2) There is
the problem of initiation of U∗0 and rate constraints. In the implementation
it is assumed that the thrusters initially are positioned to be in the middle
their respective allowed sector, with a small thruster magnitude, for all fu-
ture times in the prediction horizon. Instead of changing the U∗0 that the
constraints are made around, the rate constraints are made bigger linearly
with increasing k. This is not optimal, as larger jumps in α and T than
desired are made possible.
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CHAPTER

7

CONCLUSION AND FURTHER

WORK

7.1 Conclusion

Three Model Predictive Control algorithms for control allocation have been
proposed. Of them, Algorithm 3 is considered to be the most complete.
It minimizes energy, and implements constraints for forbidden sectors and
rate constraints. Simulations shows that the commanded generalized force
is followed with this method.

In comparison with a quasi-static method the MPC algorithm perform very
well. Forbidden sectors and rate constraints are implemented with MPC, and
this is not possible with the quasi-static method. The quadric programming
approach that MPC utilize also yields a lower energy consumption compared
to using generalized inverces with �xed angles. The main drawbacks using
MPC in control allocation are complexity and larger on-line computational
e�orts.

7.2 Further work

There are several possible threads for futher research on the topic:
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• A formulation based on 3 DOF has been developed. An extencion to
6 DOF could be carried out.

• The MPC algorithm has been compared with a quasi-static method
for control allocation. It would be interessting to see how MPC per-
form in comparison other more complex constrained methods, such as
linear quadratic formulation from Sec. 2.2.2 or a nonlinear method al-
lowing for azimuthing thrusters. Especially bene�ts of mpc (if any) vs
increased computational e�ort is interesting.

• The present cost function penalizes change in thrust magnitude and in
azimuth angle, to reduce the power consuption. A more complete cost
function can be formulated.

• The problem with initializing U∗0 /create consistent rate constraints
over time horizon should be addressed.
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APPENDIX

A

CODE

Algorithm 3: mpc_varying_wrapper.c

Wrapper-�le in c. for Algorithm 3. The �xed constraints (equality con-
straints and forbidden sectors) included in matrices in header-�le matri-
ces2.h.

/*

*

* --- THIS FILE GENERATED BY S-FUNCTION BUILDER: 3.0 ---

*

* This file is a wrapper S-function produced by the S-Function

* Builder which only recognizes certain fields. Changes made

* outside these fields will be lost the next time the block is

* used to load, edit, and resave this file. This file will be overwritten

* by the S-function Builder block. If you want to edit this file by hand,

* you must change it only in the area defined as:

*

* %%%-SFUNWIZ_wrapper_XXXXX_Changes_BEGIN

* Your Changes go here

* %%%-SFUNWIZ_wrapper_XXXXXX_Changes_END

*

* For better compatibility with the Real-Time Workshop, the

* "wrapper" S-function technique is used. This is discussed

* in the Real-Time Workshop User's Manual in the Chapter titled,
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* "Wrapper S-functions".

*

* Created: Thu Nov 15 19:33:50 2007

*/

/*

* Include Files

*

*/

#if defined(MATLAB_MEX_FILE)

#include "tmwtypes.h"

#include "simstruc_types.h"

#else

#include "rtwtypes.h"

#endif

/* %%%-SFUNWIZ_wrapper_includes_Changes_BEGIN --- EDIT HERE TO _END */

#include <math.h>

#include "matrices2.h"

#include "constrAT.h"

void c2f(double *in, double *out, int n, int m)

{

int i, j;

for(i=0;i<n;i++){

for(j=0;j<m;j++){

out[j*n+i] = -in[i*m+j];

}

}

}

/* %%%-SFUNWIZ_wrapper_includes_Changes_END --- EDIT HERE TO _BEGIN */

#define u_width 3

#define y_width 1

/*

* Create external references here.

*

*/

/* %%%-SFUNWIZ_wrapper_externs_Changes_BEGIN --- EDIT HERE TO _END */

/* extern double func(double a); */

/* %%%-SFUNWIZ_wrapper_externs_Changes_END --- EDIT HERE TO _BEGIN */

/*

* Output functions

*
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*/

void mpc_varying_Outputs_wrapper(const real_T *tau,

real_T *y0,

real_T *y1,

real_T *y2,

const real_T *xD)

{

/* %%%-SFUNWIZ_wrapper_Outputs_Changes_BEGIN --- EDIT HERE TO _END */

#define ME 9 //: NUMBER OF EQUALITY CONSTRAINTS.

#define N 57 //: NUMBER OF VARIABLES.

#define M 249 //: TOTAL NUMBER OF CONSTRAINTS

#define MMAX M+1//: ROW DIMENSION OF A. MMAX MUST BE AT LEAST ONE AND GREATER THAN M.

#define NMAX N+1//: ROW DIMENSION OF C. NMAX MUST BE GREATER OR EQUAL TO N.

#define MNN M+N+N// : MUST BE EQUAL TO M + N + N.

#define LWAR 6*(3*NMAX*NMAX/2 + 10*NMAX + 2*MMAX)+30000

#define LIWAR 5000

double xxx[N], lambda[MNN], war[LWAR];

double d[NMAX], xl[N], xu[N];

int m = M; // Number of constraints

int me = ME; // Number of equality constraints

int mmax = MMAX; // Max number of constraints

int n = N; // Nuber of variabels

int nmax = NMAX; // Max nuber of varabels

int mnn = MNN;

int iout = 1;

int iprint = 1; // No error messages

int lwar = LWAR; // Dimension of real working array

int liwar = LIWAR; // Dimension of integer working array

int ifail, iwar[LIWAR];

double eps1 = 1.0e-15; // Machine precision

int jj, ii, kk, nn, mm, i;

double T, alpha, ux, uy, temp, temp2;

// FILE *fp, *fp2, *fp3, *fp4;

char linje[20]; /* string with space for 20 signs */

double Auneq3[97][58];//

double buneq3[97];

double Atotal[250][58];

double Atotal_f[58][250];

double btotal[250];

double Any[58][154];
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//to update Auneq3:

double G[4][2], g[4];

double k1,k2,T_temp,alpha_temp, delta, k1_forrige, k2_forrige;

int actuator, index, ind1, ind2, index0;

int na=8;

int HZ=3;

i=xD[66];

//tau commanded

b[0]=tau[0];

b[1]=tau[1];

b[2]=tau[2];

b[3]=tau[0];

b[4]=tau[1];

b[5]=tau[2];

b[6]=tau[0];

b[7]=tau[1];

b[8]=tau[2];

//lower and upper bounds

//(but already taken care of in allowed sector constraints):

for(ii=0;ii<n;ii++){

xl[ii]=-10;

xu[ii]=10;

}

////Auneq3: rate constraints:

for(ii=0;ii<97;ii++){

for(jj=0;jj<58;jj++){

Auneq3[ii][jj]=0.0;

}

buneq3[ii]=0.0;

}

k1_forrige=0.0;

k2_forrige=0.0;

delta=0.1;

for(kk=0;kk<HZ;kk++){

for(jj=0;jj<na;jj++){ //j is the number of the present actuator

index=kk*2*na+jj*2;

k1=xD[index];

k2=xD[index+1];
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if (fabs(k1)>0.01 || fabs(k2)>0.01){

actuator=0;

delta=0.1;

constrAlphaT(&G[0][0], &g[0], k1, k2, actuator, delta);

}else if (fabs(k1)<=0.1 && fabs(k2)<=0.1){ //if close to zero

if(i==1){//first round, have to initalize

delta=0.1;

actuator=jj+1;

constrAlphaT(&G[0][0], &g[0], k1, k2, actuator, delta);

}else if(i!=1){ //let constraint be equal to last constraint

alpha_temp=xD[57+jj]; //keep the angle from the last sample

if(kk==1){

T_temp=0.205; //small T, to construct the constraint

delta=0.2;

}

else if(kk=2){

T_temp=0.305;

delta=0.3;

}else{

T_temp=0.1;

delta=0.1;

}

k1=T_temp*cos(alpha_temp);

k2=T_temp*sin(alpha_temp);

actuator=0;

constrAlphaT(&G[0][0], &g[0], k1, k2, actuator, delta);

delta=0.1;

}

}

//put in constraints for each actuator

ind1=kk*4*na+jj*4;

ind2=kk*2*na+jj*2;

for(nn=0;nn<4;nn++){

for(mm=0;mm<2;mm++){

Auneq3[ind1+nn][ind2+mm]=G[nn][mm];

}

buneq3[ind1+nn]=g[nn];

}
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}//end for jj

}//end for kk

//end Auneq3

//making the whole matrices Atotal and btotal with all the constraints:

//A: equality constraints and allowed sector constraints

for(ii=0;ii<153;ii++){

for(jj=0;jj<57;jj++){

Atotal[ii][jj]=A[ii][jj];

}

}

for(ii=153;ii<249;ii++){

for(jj=0;jj<57;jj++){

//Atotal[ii][jj]=Auneq3_u[ii-153][jj];

Atotal[ii][jj]=Auneq3[ii-153][jj];

}

}

for(jj=0;jj<153;jj++){

btotal[jj]=b[jj];

}

for(jj=153;jj<249;jj++){

//btotal[jj]=buneq3_u[jj-153];

btotal[jj]=buneq3[jj-153];

}

c2f(&Atotal[0][0], &Atotal_f[0][0], mmax, nmax); //c to fortran (for ql0001_)

///////////////////////end constraints///////////////////////////

//beq=kron(ones(N,1),tau);

//f=[u_horizon zeros(1,3*N)]*H2; %zeros because of slackvariables

for(ii=0;ii<N;ii++){

for(jj=0;jj<N;jj++){

temp=temp+H2[ii][jj]*xD[jj];
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}

d[ii]=temp;

temp=0;

}

iwar[0] = 0;

ql0001_(&m,&me,&mmax,&n,&nmax,&mnn,&H[0][0],&d[0],&Atotal_f[0][0],&btotal[0],...

...&xl[0],&xu[0],&xxx[0],&lambda[0],&iout,&ifail,&iprint,&war[0],&lwar,...

...&iwar[0],&liwar,&eps1);

//The solution is the first 16 values in xxx. (ux1, uy1, ux2, uy2...ux16, uy16)

ii=0;

kk=0;

jj=0;

while(ii<16){

jj=ii+1;

ux=xxx[ii];

uy=xxx[jj];

temp2=ux*ux+uy*uy;

T=sqrt(temp2);

if( temp2<0.01 ){ //keep angle if close to zero

alpha=xD[57+kk];

}else{

alpha=atan2(uy,ux);

}

temp2=ux*ux+uy*uy;

T=sqrt(temp2);

y0[kk]=alpha; //y0 contains alpha(8 of each)

y1[kk]=T; //y2 contains T

ii=ii+2;

kk=kk+1;

}

for(ii=0;ii<48;ii++){

y2[ii]=xxx[ii]; //u over time horizon

}

/* %%%-SFUNWIZ_wrapper_Outputs_Changes_END --- EDIT HERE TO _BEGIN */

}

/*

* Updates function
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*

*/

void mpc_varying_Update_wrapper(const real_T *tau,

const real_T *y0,

const real_T *y1,

const real_T *y2,

real_T *xD)

{

/* %%%-SFUNWIZ_wrapper_Update_Changes_BEGIN --- EDIT HERE TO _END */

int ii;

for(ii=0;ii<57;ii++){

if(ii<48){

xD[ii]=y2[ii]; //u

}

else{

xD[ii]=0; //s

}

}

for(ii=57;ii<65;ii++){

xD[ii]=y0[ii-57]; //alpha

}

xD[66]=xD[66]+1;

/* %%%-SFUNWIZ_wrapper_Update_Changes_END --- EDIT HERE TO _BEGIN */

}

Algorithm 3: constrAT.h

void constrAlphaT(double *A, double *but, double u01, double u02, ...

... int actnr, double del){

double u1,u2;

double poly3[3],poly4[3];

double dL,dalpha,angle,L,l3,l4;

double a,b,c,alpha3,alpha4;

double p3[2],p4[2];

double anglem, anglep;

double point1[2], point2[2];
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double poly[4][3];

double pi=3.1416;

if(actnr==0){

u1=u01;

u2=u02;

}

else if(actnr==1 || actnr==2){

u1=-0.1;

u2=0.1;

}

else if(actnr==3 || actnr==4){

u1=-0.1;

u2=-0.1;

}

else if(actnr==5 || actnr==6){

u1=0.1;

u2=-0.1;

}

else if(actnr==7 || actnr==8){

u1=0.1;

u2=0.1;

}

// Legal change in angle and thrust magnitude

dL=del;

dalpha=del;

angle=atan2(u2,u1);

L=sqrt(u1*u1+u2*u2);

l3=L-dL;

l4=L+dL;

if (u1==0){

if (u2>0){

//poly3=[0 -1 -l3];

//poly4=[0 1 l4];

poly3[0]=0;

poly3[1]=-1;

poly3[2]=-l3;
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poly4[0]=0;

poly4[1]=1;

poly4[2]=l4;

}

else if (u2<0){

//poly3=[0 1 -l3];

// poly4=[0 -1 l4];

poly3[0]=0;

poly3[1]=1;

poly3[2]=-l3;

poly4[0]=0;

poly4[1]=-1;

poly4[2]=l4;

}

}

else if (u2==0){

if (u1>0){

//poly3=[-1 0 -l3];

//poly4=[1 0 l4];

poly3[0]=-1;

poly3[1]=0;

poly3[2]=-l3;

poly4[0]=1;

poly4[1]=0;

poly4[2]=l4;

}

else if (u1<0){

//poly3=[1 0 -l3];

// poly4=[-1 0 l4];

poly3[0]=1;

poly3[1]=0;

poly3[2]=-l3;

poly4[0]=-1;

poly4[1]=0;

poly4[2]=l4;

}

}

else{

if (l3>0){

p3[0]=l3*cos(angle);

p3[1]=l3*sin(angle);

alpha3=(pi/2)-angle;

c=p3[1]/tan(alpha3);
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b=c+p3[0];

a=b*tan(alpha3);

//poly3=[-a/b -1 -a];

poly3[0]=-a/b;

poly3[1]=-1;

poly3[2]=-a;

if (u2<0){

poly3[0]=-poly3[0];

poly3[1]=-poly3[1];

poly3[2]=-poly3[2];

}

}

p4[0]=l4*cos(angle);

p4[1]=l4*sin(angle);

alpha4=(pi/2)-angle;

c=p4[1]/tan(alpha4);

b=c+p4[0];

a=b*tan(alpha4);

//poly4=[a/b 1 a];

poly4[0]=a/b;

poly4[1]=1;

poly4[2]=a;

if (u2<0){

poly4[0]=-poly4[0];

poly4[1]=-poly4[1];

poly4[2]=-poly4[2];

}

}

anglem = angle-dalpha; // Lower limit for next angle

anglep = angle+dalpha; // Upper limit for next angle

point1[0] = cos(anglem);

point1[1] = sin(anglem); // Calculate lower vector

point2[0] = cos(anglep);

point2[1] = sin(anglep); // Calculate upper vector

//lage begrensninger

if (l3>0){

poly[0][0]=point1[1];

poly[0][1]=-point1[0];

poly[0][2]=0;

poly[1][0]=-point2[1];

67



poly[1][1]=point2[0];

poly[1][2]=0;

poly[2][0]=poly3[0];

poly[2][1]=poly3[1];

poly[2][2]=poly3[2];

poly[3][0]=poly4[0];

poly[3][1]=poly4[1];

poly[3][2]=poly4[2];

/*

poly = [ point1(2) -point1(1) 0

-point2(2) point2(1) 0

poly3

poly4];

*/

}else{

poly[0][0]=point1[1];

poly[0][1]=-point1[0];

poly[0][2]=0;

poly[1][0]=-point2[1];

poly[1][1]=point2[0];

poly[1][2]=0;

poly[2][0]=0;

poly[2][1]=0;

poly[2][2]=0;

poly[3][0]=poly4[0];

poly[3][1]=poly4[1];

poly[3][2]=poly4[2];

/*

poly = [ point1(2) -point1(1) 0

-point2(2) point2(1) 0

0 0 0

poly4];

*/

}

A[0]=poly[0][0];

A[1]=poly[0][1];

A[2]=poly[1][0];

A[3]=poly[1][1];

A[4]=poly[2][0];

A[5]=poly[2][1];

A[6]=poly[3][0];

A[7]=poly[3][1];
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but[0]=poly[0][2];

but[1]=poly[1][2];

but[2]=poly[2][2];

but[3]=poly[3][2];

//A=poly(:,[1 2]);

//b=poly(:,3);

}
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APPENDIX

B

RESULTS OF SIMULATIONS

B.0.1 Algorithm 2

Fig. B.1 and Fig. B.2 shows the computed τ for each of the combinations,
where τ comm is the same as in the former simulation. Fig. B.3 and Fig. B.4
shows the corresponding values of α. Fig. B.5 and Fig. B.6 the corresponding
values of T . Fig. B.7 and Fig. B.8 is an illustration of the movements of the
actuators in an xy-plot.
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(a) QN=1, N=2

(b) QN=1, N=10

Figure B.1: Algorithm 2: τ for various horizon and weigths
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(a) QN=50, N=3

(b) QN=50, N=10

Figure B.2: Algorithm 2: τ for various horizon and weigths
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(a) QN=1, N=2

(b) QN=1, N=10

Figure B.3: Algorithm 2: α for various horizon and weigths
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(a) QN=50, N=3

(b) QN=50, N=10

Figure B.4: Algorithm 2: α for various horizon and weigths
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(a) QN=1, N=2

(b) QN=1, N=10

Figure B.5: Algorithm 2: T for various horizon and weigths
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(a) QN=50, N=3

(b) QN=50, N=10

Figure B.6: Algorithm 2: T for various horizon and weigths
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(a) QN=1, N=2

(b) QN=1, N=10

Figure B.7: Algorithm 2: Actuators for various horizon and weigths
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(a) QN=50, N=3

(b) QN=50, N=10

Figure B.8: Algorithm 2: Actuators for various horizon and weigths
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B.0.2 Algorithm 3

From simulations in Matlab, Fig. B.9 shows the resulting force for steps in
τ comm. Fig. B.10 and Fig. B.11 shows the corresponding α and T for the
actuators, and Fig. B.12 how the force for each actuator 'move' around in
the xy-plane.

Fig. B.0.2

Figure B.9: Algorithm 3: Matlab simulation of force.

80



Figure B.10: Algorithm 3: Matlab simulation of thruster angle α

Figure B.11: Algorithm 3: Matlab simulation of thruster magnitude T
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Figure B.12: Algorithm 3, Matlab simulation. Allowed sectors for the
thrusters
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Figure B.13: Algorithm 3, implementation in C. Generalized force
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APPENDIX

C

CYBERRIG I

CyberRig I (CRI) is a scaled replica of a semi-submersible drilling unit. It
is equipped with two azimuth thrusters on each leg, eight in total. Each of
the thrusters is controlled by a position-controlled step motor rotating the
propeller housing, and a PRM-controlled motor driving the propeller.

Table C.2 shows relevant physical data for CyberRig I.

C.1 Hardware

The inboard micro PC of CyberRig I is an IEI Wafer-5822-300 PC/104 com-
patible board powered by a 300 MHz Pentium compatible CPU with 512 Mb
RAM. It is running a QNX Neutrino Version 6.2 real time operating system,
which is installed on a seperate 50 Gb hard drive, and controls 8 di�erent
cards connected to the PC/140 bus. The command station is a Dell LATTI-
TUDE D800 laptop PC running Windows XP. It has a 1.6 GHz Pentium M
processor and 512 Mb RAM. The micro PC placed on CyberRig I and the
host PC communicate through a LAN.

The azimuth thruster propeller velocity is controlled by four Mesa Electronics
4127 Motor Controller Cards. 4127 is a low cost, LM629 based 2 axis DC
servo motor control system implemented on a Stackable PC/104 card. Ther
per axis output of the 4127 is an 8 bit sign-magnitude PWM signal that
drives a Mesa 7127 dual H-Bridge intended for motion control applications.
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Water density, ρ 1000
Propeller diameter, D 0.05 m
Thrust coe�cient, KT 0.6173

Sampling frequency 10 Hz
l1,x -0.305 m
l1,y 0.365 m
l2,x -0.365 m
l2,y 0.305 m
l3,x -0.365 m
l3,y -0.305 m
l4,x -0.305 m
l4,y -0.365 m
l5,x 0.305 m
l5,y -0.365 m
l6,x 0.365 m
l6,y -0.305 m
l7,x 0.365 m
l7,y 0.305 m
l8,x 0.305 m
l8,y 0.365 m

Upper limit on thrust magnitude, T i 2.4 N
Lower limit on thrust magnitude, T i 0 N

Table C.1: Physical data for CyberRig I
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The rotation of the azimuth thrusters is controlled by three 5936 Stepper
Motor Controller PC/104 Stackable cards. 5936 allows a PC/104 based
computer sytem to control three independent SERVEX two phase stepper
motor drivers. The orientation is read by a position sensor that outputs a
analog votage between 0-5V to a DM6210 PC/104 compatible I/O card.

The case holding the eight cards of the PC/104 stack and the CPU is located
in the middle of the rig connected to 4 boxes each containing a dual H-
bridge and two stepper motor drivers. These boxes are connected to the
corresponding cylinders numbered from 1 to 4, each containing two stepper
motors for azimuth rotation and two RPM controlled propeller motors.

A conceptual schematics of the CyberRig I hardware is shown in Fig. C.1
according to Tyssø and Aga (2006).

Figure C.1: Block diagram with control allocation block

The addresses of the motor driver cards and the I/O card on the CyberRig
PC/104 bus are listed in Table C.2.
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Card Address

4127 Motor Controller Card 1 0x200
4127 Motor Controller Card 2 0x210
4127 Motor Controller Card 3 0x240
4127 Motor Controller Card 4 0x250
5936 Stepper Motor Card 1 0x300
5936 Stepper Motor Card 1 0x310
5936 Stepper Motor Card 1 0x320
DM 6210 I/O Card 0x350

Table C.2: CyberRig PC/104 address table

C.2 Software

The low-level software of CRI is written in C and implemented as s-functions
in MATLAB/SIMULINK. The C code can be found in App. E. The SIMULINK
models are handled by the Opal RT-lab which compiles all code necessary
to download the model to the target QNX real-time system. The RT-Lab
standard require the model to be divided into a console and a master sub-
system. The console model (SC_Console) represent the user operated PC.
The master console (SM_Master) represent the target QNX on CyberRig I.

C.2.1 quadprog vs. ql0001

In the implementation one has to be avare of that the quadratic program-
ming solvers quadprog in matlab and ql001 in c works slightly di�erent. In
quadprog the following problem is minimized:

J = min
x

1
2
xTHx+ fTx (C.1)

subject to:

Mx ≤ n (C.2)

Meqx = neq

lb ≤ x ≤ ub

In ql001 on minimize the following:

J = min
x

1
2
xTCx+DTx (C.3)
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alpha_cmd

RPM_c

tau_cmd

opt_enable

alpha_bias

RPM_meas

alpha measure

u

alpha bias

RPM mpc

alpha mpc1

SM_Master

RPM

alpha_meas

u

alpha_bias

rpm_mpc

alpha_mpc

alpha_cmd

RPM_c

tau_cmd

opt_enable

alpha_b

SC_Console

Figure C.2: The console and master subsystems

subject to:

A(J)x+B(J) = 0, J = 1, . . . ,ME (C.4)

A(J)x+B(J) ≥ 0, J = ME + 1, . . . ,M
xl ≤ x ≤ xu

It is reqognized that C = H, D = f , xl = lb, xu = ub. But for the �rst two
constraints some signs must be changed, noticing that:

−Meqx+ neq = 0
−Mx+ n ≥ 0

Then we have that

A(J) = −Meq, B(J) = neq, J = 1, . . . ,ME

A(J) = −M, B(J) = n, J = ME + 1, . . . ,M

Also when using the function ql001 one should be avare of that matrices are
saved as in fortran: row major order. In c it is saved in column major order.
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[
1 2 3
4 5 6

]
⇒ row major order −→ 1 2 3 4 5 6
column major order −→ 1 4 2 5 3 6

(C.5)

Therefore, while working with multiple arrays in c (and S-function Builder),
the matrices should be transposed before they are used by ql001. This is
done using the function c2f(...).
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Figure C.3: The master subsystem
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Figure C.4: The console subsystem

92



APPENDIX

D

MCLAB

The Marine Cybernetics Laboratory (MCLab) is an experimental labora-
tory for testing of ships, rigs, underwater vehicles and propulsion systems.
As the name indicates, the facility is especially suited for tests of marine
control systems, due to the relatively small size and advanced instrumen-
tation package. It is also suitable for more specialised hydrodynamic tests,
mainly due to the advanced towing carriage , which has capability for precise
movement of models in 6 degrees of freedom.

The laboratory was appointed as an Marie Curie EU Training Site in 2002.
The laboratory is a joint facility between Department of Engineering Cyber-
netics at NTNU, Department of Marine Technology at NTNU and Marintek
(the Norwegian Marine Technology Research Institute).

Capacities:

• Tank Dimensions: L x B x D = 40m x 6.45m x 1.5m

• Wave generator : Hs = 0.3m, T=0.6-1.5s (irregular waves)

• Carriage : towing speed 2 m/s, 5 (6) DOFs forced motions

• Current generation: 0-0.15m/s

• Computer system for control, data recording and analysis

• Typical scaling ratios: l = 50-150

• Typical ship model lengths:1-3m
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A picture of CyberRig I in MCLab is shown in Fig. D

Figure D.1: CyberRig I in MCLab

For more information about the lab, please visit

http://www.itk.ntnu.no/marinkyb/MCLab/index.html.
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APPENDIX

E

DIGITAL ATTACHMENT

The attached zip-�le contains:

• This report

• Code for Matlab-simulations

• Simulink models and control-allocation algorithms written in C, im-
plemented as Matlab S-functions
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