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Foreword

The routines in GBT ��� permit reliable and fast manipulation of high�dimensional
polytopes� GBT ��� is a unique computational package of its kind because of its
numerical error control� Compared with the previous version� GBT ��� is a complete
rewrite � based on experience accumulated since ���� when GBT ��� was launched�
When compared with GBT 	��� the main di
erences are�

� GBT ��� uses a di
erent polytope representation matrix but the same ellip�
soid representation� The changes were required to permit a new method for
computational error control to be introduced� There are format conversion
routines gbt��� and gbt��� to ensure compatibility with GBT 	��

� With GBT ���� it possible to handle polytopes of arbitrary topological struc�
ture� Polytopes with vertices where the number of facets that �meet
 exceeds
in number the dimension of the representation space can now be handled�
Polytopes with lower dimension than that of the representation space� can
also be handled� These changes permit arbitrary a�ne transformations of
polytopes�

� For numerical reasons �which may appear at �rst to be a limitation compared
with previous practice�� only bounded polyhedra are considered� This restric�
tion is required for e
ective error control �introduced in GBT ���� whether
�oating point �as in MATLAB� or �xed�point arithmetic �as in some DSPs�
is used�

Numerical errors are monitored in all routines to allow nearly bug�free operation�
At the heart of the package is a convex hull algorithm� similar to the quickhull ��� ��
algorithm but with special care taken to ensure numerical reliability and e�ciency�
Chapter � de�nes the standard format of convex and non�convex polytopes�

Chapter � explains the handling and monitoring of numerical accuracy within GBT
���� Chapter � is a reference manual for all routines contained in GBT ����
Associated with this �User
s and Reference Manual� there are two further man�

uals� the �Applications Manual� for the users of the package in various �elds and
the �Programming Manual� that gives detailed comments on every part of the code
and is is intended for the advanced user who wishes to modify the package or to
compile it in C�
Queries on GBT ��� can be addressed to gbt�sysbrain�com�

Sandor M Veres � David Q� Mayne
Southampton� September ����
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Chapter �

Introduction

��� Basic concepts

The objective of this toolbox is to provide tools for numerical computation with
polytopes and ellipsoids in the n�dimensional Euclidean space for n � �� The
toolbox covers such computations as convex hull determination in both the sense
of vertex enumeration and facet enumeration� polytope addition and di
erence in
the Minkowski sense� intersections� hyper�volumes� surface�areas� orthogonal pro�
jections� a�ne transformations� For ellipsoids various operations are available such
as smallest volume ellipsoid covering a polytope� interior and exterior approxima�
tions to the sum� di
erence and intersection of ellipsoids� These operations now
�nd wide applicability in science and engineering ��� �� �� 	� ���

Notation
�n will denote the n�dimensional Euclidean space� its points will be represented by
column vectors a � �a�� a�� � � � � an�T �
jaj denotes �ja�j� ja�j� � � � � janj� for a vector a � �a�� a�� � � � � an�

T

The distance of two points a � �n and b � �n will be measured in the ��norm as
ka� bk�� i�e� �

Pn
�
�ai � bi�

������
The rows of a matrixA will be denoted by A�� � � � An and its column by A�� � � � � An�
A subset of row and column vectors from indices i to j will be denoted by Ai�j and
Ai�j � respectively�
Projorth�xjS� denotes the orthogonal projection of x � �

n onto an a�ne subspace
S in �n �
dist�x� S� denotes the k�k��distance of a point x � �n from an a�ne subspace S�
Basic concepts� convex hulls� facet enumeration� vertex enumeration� polytope

addition and subtraction in the Minkowski sense will be outlined in this subsection in
terms of the ideal mathematical notions� First a few de�nitions will be introduced�

De�nition ����� For any a � �n� kak �� � and any b � � the geometric space

H
def
� f x � �n j aTx � b g �����

is called a half�space �

Intersections of a �nite number of half�spaces are polyhedra and polytopes are those
polyhedra which are �nite�

�
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De�nition ����� The intersection of a �nite set of half�spaces is called a polytope
if it is a bounded set�

The convex hull of a �nite set of points in �n is the smallest set which contains all
the points and also the connecting interval of any two of its points�

Lemma ����� The convex hull of a �nite set of points is a polyhedron� i�e� it can
be represented as the intersection of a �nite set of half�spaces� ��	 �

The most important faces of a polytope are its vertices and facets ���� The
vertices are ��dimensional faces and the facets are �n����dimensional faces� �n����
dimensional faces are called ridges� The facets of a ��dimensional polytope are its
sides and its ridges are its edges�

Main computational problems

Computing the convex hull of a �nite set of points in �n means to determine all
the facets of the convex hull polytope�

Problem � Given a set of points v�� v�� � � � � vN � �n� compute the facets of their
convex hull�

Problem � is also called the vertex enumeration problem ��� ��� Its dual problem
is the one in which half�spaces are given an the vertices of the intersecting polytope
are to be computed�

Problem � Given a set of half�spaces de�ned by aT
�
x � b�� a

T
�
x � b�� � � � � a

T
Nx �

bN � kaik �� �� ai � �
n� compute the vertices of the intersecting polyhedron�

The sum and di
erence of two polytopes will be considered in algebraic sense�
which is also called the Minkowski sum and di
erence�

De�nition ����� Let two polytopes P� and P� be given in �n� The sum of polytopes
P� and P� will be de�ned by

P� � P�

def
� f x� y j x � P�� y � P� g �����

The di
erence of polytopes P� and P� will be de�ned by

P� 	 P�

def
� f x � �n j 
y � P� � x� y � P� g �����

Problem � Given two polytopes� each by a list of their de�ning half�space inequal�
ities and list of vertices� compute their sum and di
erence�

Wider problems� which can also be solved by �nding solution to the problems
listed above� are the next two problems�

Problem 	 Given two polytopes only by their de�ning half�space inequalities� com�
pute their sum and di
erence�

Finally there are two subproblems listed here for their importance� which relate
to Problems ����

Subproblem ��� Given a polytope and a vertex� compute their joint convex hull�

This operation is also called convex�hull inclusion�
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Subproblem ��� Given a polytope and a half�space� compute their intersection�

This operation is also called polytope updating�
Further problems of common interest are� a�ne transformations of polytopes�

intersection of two polytopes� convex hull of the union set of two polytopes� etc�
These operations can be easily derived from solutions to Problems ��� as listed and
will not therefore be discussed here in detail�
GBT is a unique package which ensures best computational accuracy and logical

consistency� The accuracy problem proves to be crucial for logical consistency as
otherwise no reliable decisions can be made on whether a vertex lies on a given
hyperplane or not� The major stumbling block for earlier e
orts ��� ��� ��� �� �� ���
was how to decide on suitable error bounds which could have been used to make
adjacency decisions on vertices and facets� The numerical problems related to facet
and vertex computation persisted and have been experienced by those who needed
such computations� A few computational problems were also discovered during
the use of the Geometric Bounding Toolbox ���� ��� between ���������� Polytope
computation in GBT Versions ����	�� was based on state of the art algorithms
published in the late ��s and early ��s ��� ��� ��� which did not o
er consistent
numerical solution� GBT ��� is the �rst version of the toolbox which implements
logically consistent numerical algorithms�



� Chapter Introduction

��� List of Routines

The following list is the content of the toolbox as on ���������� � More routines are
constantly added to GBT and they can be checked atwww�sysbrain�com
gbt
gbtlist��htm

Routines for polytope creation

convh � computes the convex hull of a set of points
fconvh � computes the intersection of a set of half�spaces
defbox � generates an axis aligned box
defpipe � de�nes a parallelepiped
defsimp � de�nes a regular centred simplex with edge size �
ellapprx � computes a polytope approximation to a given ellipsoid

Characteristics of polytopes

dim � computes the dimension of a polytope
ranges � computes a tight axis aligned box around a polytope

diameter � computes the diameter of a polytope
dirext � computes extremal points in a given direction

maxface � computes the maximum possible number of facets
maxvert � computes the maximum possible number of vertices
polcent � computes the centre of a polytope
polvol � computes the volume of a polytope

surfarea � computes the surface area of a polytope

Polytope operations

intersct � computes the intersection of two polytopes
ltran � performs a�ne transformation on a polytope

poladd � computes the sum of two polytopes
poldual � computes the dual of a polytope
mindim � minimizes the dimension of representation
subtract � computes the Minkowski di
erence of two polytopes

Extracting features from polytopes

faces � extracts the half�space inequalities of polytope
facet � computes a polytope of facet in lower dimension

fv � produces the facet�vertex Boolean adjacency�table
vvf � produces vertex�vertex and vertex�facet adjacency�tables

fv�tacc � extracts maximum �tting error of vertices and facets
planeigh � lists all neighbouring facet planes to a facet

Interaction of polytopes with points and half�spaces

p conv � computes point inclusion into convex hull
intest � tests whether a set of points is in polytope

intpoint � �nds an internal point within a polytope
projpont � projects a point onto polytope
update � computes the intersection of a half�space and a polytope

Polytope graphics

view�d � displays �D wire�frame projections of polytope on pairs of axes
view�d � displays �D view of �D polytope
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Ellipsoid creation
defell � de�nes an ellipsoid

sel � �nds minimal volume ellipsoid around a set of points

Ellipsoid operations
elladd � computes an outer bounding ellipsoid to the sum of two ellipsoids
elladde � computes outer bounding ellipsoid�variants to the sum of two ellipsoids
elladdi � computes inner bounding ellipsoid to the sum of two ellipsoids
elldife � computes an outer bounding ellipsoid to the di
erence of two ellipsoids
elldi� � computes an inner bounding ellipsoid to the di
erence of two ellipsoids
ellint � computes an ellipsoid around the intersection of two ellipoids

projell � computes the projection of an ellipsoid onto a linear subspace
sphsep � computes the joining surface area of spheres

Characteristics of ellipsoids
ellrange � computes the width �range� of ellipsoid in each dimension
ellvolum � calculates the volume of ellipsoid
ellcent � extracts the centre of ellipsoid
ellicov � extracts the matrix of an ellipsoid
inell � tests whether a given point is in an ellipsoid

mcvol � estimates the volume of the intersection of ellipsoids

Ellipsoid graphics
view�del � displays �D projection on axes pairs
view�del � displays �D view of an ellipsoid

Point and vector set operations
dif � computes set�di
erence of vector sets

dirgen � generates an approximately uniform set of direction vectors
dualpon � computes a set of half�spaces �normal� to set of vectors

uni � computes the union of two point�sets
vreduce � eliminates multiple points from array of points

Routines for compatibility with GBT ��

bounded � tests whether a polyhedron is bounded
gbt��� � converts from GBT 	�� formats to GBT ��� format
gbt��� � converts from GBT ��� format to type � format of GBT 	��

��� Standard Object Representations

The toolbox uses a polytope representation that makes the best compromise be�
tween detailed description and simplicity in computations involving geometric ob�
jects� Chapter � gives a detailed analysis of the problem and explains why this type
of representation was chosen for GBT� The choice was greatly in�uenced by the
long�term experience gained with GBT ���� and the feedback received from many
users of that toolbox�

Because of its importance to the user� and for sake of clarity� we present here the
matrix form chosen to represent a polytope in GBT ���� which is also called type
� representation in GBT� Those familiar with earlier versions of GBT may know
about type � and type � polytope respresentations� type � stores the least amount
of data from all representations�
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����� Convex polyhedra

The standard form of a convex polytope in the d�dimensional Euclidean space is
de�ned by a matrix the �rst row of which consists of data� the next set of rows
consists of equalities de�ning the linear manifold in which the polytope resides and
is followed by a set of inequalities de�ning the polytope in the manifold� the �nal
set of rows specify the vertices of the polytope� Thus the GBT representation has
the form�

P �

�
������������������

ne ni � � � � � �
�st a�ne subspace
���

���
���
���

���
���

neth a�ne subspace
�st facet inequality
���

���
���
���

���
���

nith facet inequality �
�st vertex vector ��
���

���
���
���

���
���

nvth vertex vector ��

�
������������������

�����

In the �rst row� ne is the number of equalities and ni the number of inequalities�
the number of vertices nv is therfore given by nv � n � � � ne � ni where n is the
number of rows in P � The third component of the �rst row� � � �� is the worst�case
�tting error of polytope P �

De�nition ����� For a facet f �de�ned by aTx � b� kak � �� and vertex v the
quantity  �f� v� � jaTv�bj is called the �tting precision� A bound � � � is called
the adjacency tolerance of a polytope if all its �tting precisions are less than ��

An example

Using standard operations a random polytope was generated in GBT by the
following commands�

�� V�rand������

�� P�convh�V�

The P matrix is displayed in the command window�

P �

	 
�				 	�				 	

�	�
�
� 	����� �	�
��� �	���
�
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	���
	 	����� 	�
��� ���				

	���	� 	�

�� 	�
��� ���				

Closer examination of the P����� element reveals that it is not actually zero�

��P�����

ans �

����	�e�	��

The P����� entry is the calculated accuracy bound of the vertex�facet adjacency
�the �tting precision� in this numerical representation of the polytope� All entries
displayed in the command window are given to four decimal points� their internal
representations are more precise�
What else can we read from this matrix by inspection!

� As the representation matrix has � columns� the maximum dimension of the
polytope is ��

� P������� indicates that the polytope is full dimensional �no equality con�
straints� which in this case means that the polytope is non�degenerate in �D�

� P������	 indicates the number of ��dimensional facets on the boundary of the
polytope� The linear forms associated with each facet are listed in rows ����

� As the total number of rows is in the matrix representation is ��� the number
of vertices is �����	��� By convention all vertex rows are ended by a ���

Note that the linear forms for each facet are de�ned by normalised vectors� this
can for instance be veri�ed by the command�

�� diag�P���
������P���
��������

ans �

��				 ��				 ��				 ��				 ��				 ��				

By de�nition� �� appears in the last column of each row of the vertex list� this
convention enables vertices to be easily identi�ed and saves time in some computa�
tions�

����� Ellipsoid representation

Let P be a positive de�nite d� d symmetric matrix and c � �d� Then the set

E � f x j �x� c�TP���x� c� � � g �����

is called a d�dimensional ellipsoid� For singular P a degenerate ellipsoid is de�ned
by

Edeg � f x j �x� c�TP��x� c� � � g ���	�

where P� denotes the Moore�Penrose semi�inverse of P �
The matrix representation of an ellipsoid in MATLAB is



� Chapter Introduction

P rep �

�
������

� � � � � �
P�� � � � P�d c�
P�� � � � P�d c�
���

���
���

Pd� � � � Pdd cd

�
������ �����

The � in the �rst row indicates that the ellipsoid is full dimensional� If P rep
��

is
� then by de�nition the ellipsoid is degenerate with a singular P � If n � P rep

��
� �

then the second row down to the nth row de�ne equations for a�ne subspaces in
which the lower dimensional ellipsoid lies� From row n� � down to the last row of
P rep the matrix P and centre c� as in the case of the full dimensional matrix� are
listed�
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Numerical Error Monitoring

��� Computational problems

During the computation of polyhedral regions of parameters� states or inputs� the
vertices and faces will inevitably be described by �nite numerical precision� To
handle the inaccuracies is important as in some cases small numerical errors can
propagate to cause large errors later and the geometric regions will be computed
inaccurately� The problems are non�negligeable and can cause serious malfunction�
especially in on�line applications where there is no time or engineer available to
investigate the cause of problems�
The numerically and logically consistent algorithms will here be based on the

assumption of �oating point arithmetic and in case of �xed�point arithmetic the
algorithms would have to be modi�ed to make them bug free in applications�
A binary �oating point number is represented in the form

f � m� �n� � � m � �� �L � n � L �����

where m is the mantissa of �xed length l and L is the maximal allowed exponent�
In standard MATLAB computations the �oating point relative accuracy � �called

eps in MATLAB� is the distance from ��� to the nearest �oating point number
less than �� � �written for eps�is used as a default tolerance by PINV �pseudo�
inverse� and RANK �rank of a matrix�� as well as several other MATLAB functions�
realmax and realmin are the largest and smallest positive �oating point numbers
representable on a given computer� respectively� Using single precision in MATLAB
on an IBM compatible PC� these values are

eps�����	�e�	�
� realmax� ��
�

e��	�� realmin�������e��	�

The implications of this are that any irrational real number x can only be rep�
resented with some relative accuracy�

x � x� � �� � �� �����

where x� is the precise desired �theoretical� value� � is the relative error such that
j�j � �� In addition to this jxj � realmax must be satis�ed� anything bigger is
handled as inf � to be more precise �� � ���� 
 eps� 
 �����	e� ��� � inf but

�



�� Chapter Numerical Error Monitoring

�� � ���� 
 eps� 
 �����	e � ��� is still represented as a number�� Thus inf is a
symbol to denote excessively large numbers in MATLAB�
Relative accuracy � represents however only the largest possible accuracy of sinle

number and not the actual accuracy after some computations� For instance assume
that an inequality

ax � b �����

is given to bound a semi�in�nite interval in dimension � ��D�� i�e� on the real
axis� Assume that a � � and b are given with relative accuracy � so that they are
represented by "a� "b numerically� The end point of the interval is in theory

v � b�a �����

if a is non�zero� otherwise inequality ����� does not de�ne a semi�in�nite interval�
The actually computed v will rather be

"v � "b�"a �
b� �b
a� �a

� �����

where �a � jaj� and �b � jbj�� The relative accuracy of v will then be

"v � v

v
�
�b � �b���a� �a� � v

v
�

a�b � b�a
�a � �a�b

�
�a� �a��b � �b� �b��a

�a� �a�b
�

�
�b
b
�

�
� �

�b
b

�
�a

a� �a
� �� �� � ��� � ��� ���

where the last inequality can be attained as equality by suitably chosen errors�
This means that the relative worst�case accuracy of "v representing v is roughly
proportional to ������ If the endpoint "v of this interval is used in further numerically
sensitive computations� then the initial numerical error can be further ampli�ed to
become a major source of error�
This example at least demonstrates that if linear inequalities are given with

maximum numerical accuracy to de�ne a polyhedron� then its vertices may not
be possible to compute with the same maximum accuracy� The example provided
is the simplest and it is in �D� In higher dimensions the problem becomes more
acute because of the matrix inversions needed to compute vertex and hyperplane
locations� If no su�cient care is taken then after long computations the adjacency
tables �Boolean tables indicating which vertex �ts to which facet�� can become
incorrect as a result of numerical errors and can lead to logical inconsistencies of
the de�nition of polytope adjacency tables� The aim of this section is to introduce
logically consistent algorithms for computation with polytopes�

��� Analysis of possible polytope representations

In this section some alternatives of polytope representation are looked at which are
di
erent from the one used in GBT ��� � The aim is to explain why the repre�
sentation de�ned in Chapter ��� was selected for use in GBT ��� � The analysis
will conclude that the representation used by GBT ��� makes the best compro�
mise between informative storage of polytope features and speed of operations on
polytopes�
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#

One de�nition of a polyhedron is that it is the intersection of a �nite number
of half�spaces� For polytopes� i�e� bounded polyhedra� another possible de�nition
is that a polytope is the convex hull of a �nite set of points� Both of these de�ni�
tions o
er a way of representing a polytope numerically� We will now assess what
advantages$disadvantages these representations would bring when large number of
operations are to be carried out on these geometric objects�

�� Polytope representation by a list of inequalities only� This represen�
tation is called e�cient if the inequalities listed are all active� i�e� none of the
inequalities is implied by some others in the list�

A�ne transformations� These are straightforward computations if the trans�
formation is of full rank� For singular tranformation the procedure of �nding
inactive redundant inequalities may lead to a large number of LP problems�

Intersection of two polytopes� Straightforward computation� large number of
LP problems may have to be used to check for inactive inequalities�

Computing the vertices of the polytope requires the computation of the convex
hull represented by vertices�

Union of two polytopes� Computationally heavy as convex hull computation
is involved�

Minkowski sum and di
erence of two polytopes in the form of a set of inequal�
ities are heavy computational procedures�

Updating of polytope by a new half�space� Relatively straightforward� Finding
the inactivated facets can amount to a lengthy LP problem�

�� Polytope representation by a list of vertices only� The representation
is called e�cient if the vertices listed are all active� i�e� none of the vertices
is contained in the convex hull of some others in the list�

A�ne transformations� These are straightforward computations if the trans�
formation is of full rank� For singular tranformations �nding redundancy of
some vertices may lead to a large number of LP problems�

Intersection of two polytopes� Computationally heavy�

Computing the facets of the polytope requires the computation of the convex
hull represented by faces�

Union of two polytopes� Computationally straightforward� large number of
LP problems may have to be used to check redundancy of inequalities�

Minkowski sum and di
erence of two polytopes in the form of a set of inequal�
ities are heavy computational procedures requiring convex hull computations�

Updating of a polytope by a new half�space� Finding the new vertices can lead
to a complex logical analysis of facet$vertex adjacency�

�� Polytope representation by a list of vertices and hyperplanes of
facets and accuracy parameter �� A representation is called consistent
if the vertex�facet adjacency table de�ned by � corresponds to the adjacency
table of a polytope�
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A�ne transformations� These are straightforward computations if the trans�
formation is of full rank� For singular transformations the algorithm of convex
hull operation can be used�

Intersection of two polytopes� Facet inequalities can be combined and the
convex hull operation can be applied in the dual space�

Computing the vertices to a set of inequalities would require to compute the
convex hull using the convex hull operation�

Union of two polytopes� Computationally straightforward� the union of the
set of vertices can be formed and convex hull operation applied�

Minkowski sum and di
erence The sum is computationally straightforward�
the Minkowski sum of the two sets of vertices can be formed and convex hull
operation applied� Similarly for the di
erence of polytopes A and B� using
the vertices of B� a set of inequalities can be can be formed for the di
erence
A	B� First converting to the dual�space� convex hull operation can be used
to computer the resulting polytope�

Updating of polytope by a new half�space� By �rst converting to the dual�space�
convex hull operation can be applied to get the new polytope�

�� Polytope representation by a list of vertices and hyperplanes of
facets and adjacency lists of vertices and facets�

There are two versions of this approach�

�i� One version handles only simple polyhedra� i�e� ones which have only
d facets adjacent at each vertex� where d is dimension of the space� This
approach can be made to work in practice �as in earlier versions of GBT �����
by �micro�randomization� of hyperplane directions� which would produce a
small cloud of very near vertices in the rare case a polytope is required which
has more than d facets at a vertex� The numerical accuracy can be controlled
by suitably small micro�randomization�

�ii� Another version handles any kind of polyhedron in which any large number
of facets can meet at a vertex� In this version full adjacency tables are updated�
The complete testing of this algorithm is complicated and bug free operation
is not guaranteed until further de�nitions are introduced for what is meant
by numerical adjacency of a vertex and a facet �����

In principle each of the �rst two and the fourth approaches outlined above could
be made working� Unfortunately none of these have received su�cient logical anal�
ysis �in numerical terms� in the published literature so that they could work reliably
in all situations in on�line applications� The purpose of the following sections will
be to give a completely algorithmic description on the basis of representation ����

��� Logically consistent computations

To follow the approach outlined under ��� in the previous subsection� the following
representation of a polyhedron will be agreed upon�

De�nition ����� In the d�dimensional space a convex numerical polyhedron P will
be represented as a quadruple �E�F� V� �� where E is a set of �d����dimensional a�n



���� Logically consistent computations ��

subspaces which all contain P � F is a set of facet inequalities� V is a set of vertices
and � is a tolerance constant which helps to de�ne the accuracy of facet�vertex
adjacency� Furthermore� in this representation it is assumed that the elements of E
and F are all de�ned by using unit normal vectors�

The standard form of a convex polyhedron in the d�dimensional Euclidean space
will be de�ned by a matrix

P �

�
������������������

ne ni � � � � � �
�st a�ne subspace
���

���
���
���

���
���

neth a�ne subspace
�st facet inequality
���

���
���
���

���
���

nith facet inequality �
�st vertex vector ��
���

���
���
���

���
���

nvth vertex vector ��

�
������������������

���	�

where the number of vertices nv is the remaining number of rows in the matrix so
that nv � n� �� ne � ni if n is the number of rows in P �

De�nition ����� For a facet f de�ned by aTx � b� kak � �� and vertex v the
quantity  �f� v� � jaTv�bj is called the �tting precision� A bound � � � is called
the adjacency tolerance of a polytope if all of its facet�vertex �tting precisions
are less than ��

Let VP and FP denote the lists of vertices and facets of a polytope P � Precision
of vertex�facet adjacency is then described by the function  �f� v�� f � FP � v � VP �
An adjacency tolerance � for a polytope P is called tight if the Boolean function

B�f� v�
def
� �f� v� � � is identical to the adjacency relationships of a polytope�

Example� Consider the nearly rectangular polygon with vertices

V � f����� ������� �� ��� �� ��� ����� ��g

and set of facets

F � f�� � ������ ��� � ��� �� � ��� �� � � ��g

Then the adjacency matrix will be

 �

	
BB

����� ���� ����� �����
���� � � �
���� � � �
� ���� � �

�
CCA

For � � ����� this gives the correct adjacency Boolean table

AP �

	
BB

� � � �
� � � �
� � � �
� � � �

�
CCA



�� Chapter Numerical Error Monitoring

For a too small � � ������ the Boolean table becomes

AP �

	
BB

� � � �
� � � �
� � � �
� � � �

�
CCA

which does not correspond to the adjacency table of any polygon�
For a large � � ���� the Boolean table becomes

AP �

	
BB

� � � �
� � � �
� � � �
� � � �

�
CCA

which again cannot represent the Boolean table of any polygon� This example
shows therefore that in computations the adjacency of vertices and faces is not an
absolute concept� it depends on the accuracy tolerance speci�ed��

De�nition ����� A numerical polytope P � �E�F� V� �� is called consistent if its
facet�vertex adjacency table de�ned by � is topologically equivalent to the adjacency
table of a polytope�

A basic requirement on any of the numerical binary or unitary operations per�
formed on polytopes is now that if their inputs are consistent numerical polytopes
than their outputs must also be consistent numerical polytopes� The adjacency tol�
erance of the output polytope does not have to be equal to the adjacency tolerance
of the input polyhedra�

De�nition ����	 The algorithm of a polyhedron operation is called numerically
consistent if its output is a consistent numerical polytope whenever its inputs are
consistent numerical polytopes�

It was indicated in the previous subsection under polytope representation ���
that the algorithm of convex hull operation �CONVH� is a basic algorithm which
can serve as the crucial part of most other operations� To be more precise� this
algorithms computes the set of facets to a given set of points so that the resulting
numerical polytope is consistent�

��� The convex hull operation �CONVH�

The problem is to compute the facets of the convex�hull for a given set of points�
The idea of the solution is to start from a simplex of d � � points and to include
all the rest of the elements of the set into the convex hull one�by�one� In this
convex�hull algorithm the inaccuracy of the computation of a facet can be caused
by ill�conditioning of the linear system of equations which determine the normal
of the facet� For instance in �D� if three points are given which lie nearly along a
straight line� then computing the normal of the plane which �ts to the three points
can be done only with much reduced accuracy� The inaccuracy of the calculation
of a facet can lead to an incorrect decision whether a point is inside or outside
the convex hull� This may then result that including the points in di
erent order
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will result in a di
erent solution� i�e� di
erent list of facets and vertices� Also� the
accuracy of the resulting convex hull description can vary� This indicates that a
mechanism for numerical error control is necessary�
The input of this algorithm is a set of points in the d�dimensional space so that

each of the points is assumed to have � relative accuracy in each of its co�ordinates�
The output is a numerical polytope in the �E�F� V� ���form� The main result with
regard to this algorithm is that it always results in a consistent numerical polytope�
The user of the routine can de�ne a desired initial tolerance � but the routine may
increase this if it is not possible to ensure the desired tolerance�
The next algorithm is a subroutine of CONVH and is called P CONV� Its pur�

pose is to include a given single point x into the convex hull of a set of points
represented by a polytope P � It also starts with a given desired tolerance � which
it may increase if it turns out to be impossible to achieve the desired adjacency tol�
erance� P CONV always produces a consistent numerical polytope of the standard
form �E�F� V� ���
Linear transformations of polytopes of the standard numerical form can be per�

formed by the LTRAN algorithm� The linear transformation is given by a matrix
A so that the linear mapping is x� Ax� a where a is an o
set vector� The algo�
rithm is able to transform and embed a lower dimensional polytope into a higher
dimensional space or map a higher dimensional polytope into a lower dimensional
one� depending on the dimensions of A� If the input of LTRAN is a consistent nu�
merical polytope then its output is also a consistent numerical polytope� LTRAN
calls CONVH to perform the intensive computations�
Given a polytope P � �d� its dual is de�ned by

Pdual � fx j x � �d� xy � �� y � Pg �����

If P contains the origin �zero vector� as one of its internal points� then the dual
of a polytope is also a polytope� In this case the vertices of P can be brought
into one�to�one correspondence with the facets of Pdual� Vica�versa� the vertices of
Pdual can be brought into one�to�one correspondence with the facets of P � This fact
can be used to convert the convex�hull computation for a set of vertices into the
convex�hull computation for a given set of hyperplanes in order to obtain the set
of vertices� The algorithm FCONVH is doing just that� given a set of inequalities�
it produces the set of vertices for the polyhedron de�ned by the inequalities� using
CONVH� A desired tolerance can be given at its input and it always produces a
consistent numerical polyhedron of the standard form�
Given a polytope P and a half�space H de�ned by an inequality of the form

xTa � c� computing the intersection of the polytope P and the half�space H is
called polytope updating� The algorithm UPDATE performs polytope updating by
a single half�space� FCONVH computes the intersection of a polytope with a given
�nite set of half�spaces�
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CONVH CONVH

Purpose

CONVH computes the convex hull of a set of points in m�dimensional space�
Let S be a �nite set of points in �m� m � �� The convex hull of the points in S is
de�ned by

convh�S�
def
�

�
y � �m j

�xi � S� i � �� � � � � N � y �
PN

i�� 	ixi� with some

	i � �� i � �� � � � � N �
PN

i�� 	i � �




The convex hull is to be computed to a given accuracy � � � and points ��near
to the convex hull are allowed to be neglected� If � is set relatively high this will
reduce computational complexity�

Algorithm

The algorithm is based on straightforward inclusion of the points of the set one�
by�one into the convex hull� Initialization is based on �rst computing the dimension
of the given set of points �as they may lie in a lower dimensional linear manifold�
and computing a possible large simplex with vertices from the given set of points
�which can be lower dimensional than m��
After initialization the remaining points of the given set S are included one�

by�one using the P CONV routine� This routine calls various routines and among
them CONVH itself� This way the CONVH can call itself both directly as well as
through P CONV� but this always happens for a lower dimensional problem and
therefore the depths of self�calls is �nite�

�	
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Usage

�H�acc��convh�V��

where

V � a matrix of row�vectors of the set of points

H � Polytope in GBT 
�	 �format

acc � fitting accuracy of hyperplanes to vertices

Example

The following code de�nes � random points in �D and computes their convex
hull�

S�rand�
���� P�convh�S�� view�d�P��� � � ����

Then the wire�frame view of the convex hull is displayed from 	 directions in Figure
����
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Figure ���� The convex hull of � random points in �D�
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DEFBOX DEFBOX

Purpose

DEFBOX de�nes an axis aligned box in GBT ��� format� To de�ne the box
its lowest �in terms of its co�ordinates� and highest corner point has to be given as
input to DEFBOX�

Algorithm

Straightforward de�nition of the faces from the given corner points of the box�
The plane�vertex �tting precision is de�ned by default as � � ������� ������

Usage

P�defbox�Lcorner�Hcorner�

where

Lcorner � the lowest corner of the box

Hcorner � the highest corner of the box

Example

The following code de�nes a �D box with low corner at ������������� and its high
corner at �� � � � ���

Box�defbox����������������� � � � 	���view�d�Box��� � � ����

The wire�frame view of the resulting box is shown Figure ����



���� Principle Routines ��

−1 −0.5 0 0.5 1
2

2.5

3
Projection to 1−2 axes

−1 −0.5 0 0.5 1
1

1.5

2
Projection to 1−3 axes

−1 −0.5 0 0.5 1
3

3.5

4
Projection to 1−4 axes

2 2.2 2.4 2.6 2.8 3
1

1.5

2
Projection to 2−3 axes

2 2.2 2.4 2.6 2.8 3
3

3.5

4
Projection to 2−4 axes

1 1.2 1.4 1.6 1.8 2
3

3.5

4
Projection to 3−4 axes

Figure ���� View of the wire�frame of a 	D box from 
 directions� The edges of the box are
actually on the �gure frames�axes�

DEFELL DEFELL

Purpose

DEFELL de�nes an ellipsoid with given �covariance� matrix and centre in GBT
��� format�

Algorithm

Straightforward de�nition of covariance matrix and centre� DEFELL calls no
other routines from GBT ���� With P covariance matrix and centre c the ellipsoid
de�ned is

E � fx j �x� c�TP���x� c� � � g

P has to be positive de�nite matrix�

Usage

P�defell�Cov�cent�

where

Cov � pos� def� covariance matrix of the ellipsoid

cent � centre of the ellipsoid
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DEFPIPE DEFPIPE

Purpose

DEFPIPE de�nes a parallelepiped in GBT ��� format from a given double in�
equality b� � Ax � b� �

Algorithm

Straightforward application of UPDATE is to the set of inequalities obtainable
from the double�inequality� The plane�vertex �tting precision is de�ned by default
as � � ������� ������

Usage

P � defpipe�b��A�b���

where

b� � a column vector �n x ��

A � a matrix �n x n�

b� � a column vector �n x ��

Example

The following code de�nes a �D parallelepiped�

A�� � � 	 	�� � � 	�	 � � ��	 	 � ���

P�defpipe�������������A��� � � �����view�d�Box��� � � ����

view�d�P��� � � ����

Then the wire�frame view of the resulting �D parallelepiped is shown Figure ����
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Figure ���� View of the wire�frame of a �D parallelepiped de�ned by b� � Ax � b��

DEFSIMP DEFSIMP

Purpose

DEFSIMP de�nes an regular� i�e� equilateral simplex with unit length of its
edges and centred to the origin�

Algorithm

A direct algorithm which builds up the simplex in a recursive procedure� The
plane�vertex �tting precision achieved is � � ������� ������

Usage

S � defsimp�d��

where

d � the dimension of the simplex required

S � name of the regular simplex to be computed

Example

The following code de�nes a �D simplex�

P�defsimp�
�� view�d�P��� � � ����

The wire�frame view of the resulting �D simplex is shown Figure ��� from 	 direc�
tions�
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Figure ���� Wire�frame views of a �D regular simplex�

DIAMETER DIAMETER

Purpose

DIAMETER computes the end points of a diameter of a polytope and its lengths�

Algorithm

A direct algorithm based on �nding the largest distance between vertices�

Usage

�diam�ds�de��diameter�P��

where

P � the polytope of which the diameter is required

diam � the length of the diameter in Euclidean norm

ds � row�vector of the starting point of the diameter

de � row�vector of the ending point of the diameter

Example

The following code de�nes a �D random polytope and computes its diameter�

V�rand�������P�convh�V�� �dia�ds�de��diameter�P��
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view�d�P��� ���� l��line��ds����de������ds����de������

set�l���LineWidth�����set�l���LineStyle�������

Then the wire�frame view of the polytope is shown projected onto the ��� plane in
Figure ����
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Figure ��	� Wire�frame view of a 	D polytope and its diameter indicated by the dotted line�
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DIF DIF

Purpose

DIF computes the set�di
erence of two sets of points in the d�dimensional Eu�
clidean space with a given tolerance � for the discrimination of points by 
��distance�

Algorithm

For A 	B DIF checks point�by�point in B whether it is equal to a point in set
A with 
� accuracy � ��

Usage

U�dif�U��U���

where

U��U� � matrices of row vectors

U � the set difference

Example

The following code de�nes two sets of points with � points shared and checks
the number of points of the di
erence set�

A�rand������B��A�������� rand������� C�dif�A�B�� m�size�C���

m �

�

DIM DIM

Purpose

DIM returns the true dimension of a polytope� As the dimension of the space of
the polytope representation can be greater that the true dimension of a polytope�
this routine returns the dimension of the smallest linear manifold containing the
polytope�

Algorithm

A direct extraction from the polytope representation� A single point is de�ned
as zero dimensional ��D�� a linear interval is �D� a square is �D� etc�
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Usage

�dactual�d�mu� � dim�P�

where

dactual � actual dimension with fitting precision delta

d � formal dimension of the polytope description �dactual��d�

mu � worst�case accuracy of facet�vertex fits

Example

The following code de�nes a �D random polytope and computes its diameter�

V�rand������P�convh�V�� �d�dactu�delt��dim�P�

In a run of this code the following result was obtained�

d �

�

dactu �

�

delt �

���
�
e�	�
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DIREXT DIREXT

Purpose

DIREXT returns the extremum points of a polytope along a given direction
both ways� Direction is de�ned by a straight line along which the two extrema of
the polytope are to be found� The width of the polytope in the given direction is
also computed�

Algorithm

All vertices of the polytope are projected onto a straight line parallel with the
given direction and the extrema are found along the line� The width is the distance
between the maximum and minimum point on this line�

Usage

�vmax�vmin�width� � dirext�G�di��

where

G � polytope

di � direction vector to search for extremal point

vmax � extremal point in positive direction �di

vmin � extremal point in negative direction �di

width � the width of the object in direction di �

Example

The following code de�nes a �D random polytope and computes its extrema and
width in direction �� � � �
�

V�rand������P�convh�V��di��� � ����

�vmax�vmin�width��dirext�P�di�� view�d�P��� ����hold on�

plot�vmax����vmax�����x��� plot�vmin����vmin�����x���

A wire�frame view of the �D polytope P is displayed in Figure ��	�
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Figure ��
� Wire�frame view of a �D polytope and its extreme points in the 
� � �� direction
indicated by � �

ELLADDE ELLADDE

Purpose

ELLADDE calculates an outer�bounding ellipsoid of the sum of two ellipsoids�
Usage

�e�p�v� � elladde�e��e��rin�

where

e � the bounding ellipsoid

p � vector containing

the calculated parameter value�

the lower bound�

the upper bound for parameters

producing tight ellipsoids� and

v � vector containing

the corresponding values

�in case of rin numerical� it is set to 	�s��

e��e� � two ellipsoids of equal dimensions

rin � either a scalar parameter � 	� or

the string� �vol�� �tr��� or �tr���

Example

The following code generates two random ellipses and computes an external
approximation to their Minkowski sum�
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A�rand������e��defell�A�A���

A��rand������e��defell�A���A���

ax�view�del�e���

title��The two ellipses to be added and their sum �dashed line����

ax�view�del�e���� ���ax��red���

e�elladde�e��e���tr����

ax�view�del�e��� ���ax��r�������

The ellipses and their external sum with trace criterion �denoted by dashed line�
is displayed in the �gure�
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The two ellipses to be added and their sum (dashed line)

Figure ���� The two ellipses and their �external� sum �dashed line��
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ELLADDI ELLADDI

Purpose

ELLADDI calculates an inner�bounding ellipsoid of the sum of two ellipsoids�
Usage

�e�S�v� � elladdi�e��e��S	�

where

e � the bounding ellipsoid�

S � matrix containing the calculated

parameter matrix� �in case of S	 a matrix� S�S	��

v � scalar containing det�Q� �in case of S	 a matrix� v�	��

e��e� � two ellipsoids of equal dimensions

S	 � matrix parameter �positive definite�

Examples

The following code generates two random ellipses and computes an internal
approximation to their sum� based on the volume criterion�

A�rand������e��defell�A�A���

A��rand������e��defell�A���A���

ax�view�del�e���

title��The two ellipses to be added and their sum �dashed line����

ax�view�del�e���� ���ax��red���

e�elladdi�e��e���

ax�view�del�e��� ���ax��r�������

The ellipses and their �internal� sum with volume criterion �denoted by dashed
line� is displayed in the �gure�

ELLAPPRX ELLAPPRX

Purpose

ELLAPPRX calculates tight polytopes inside and outside an ellipsoid�
Usage

�Hout� Hin� � ellapprx�e�nord�
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The two ellipses to be added and their sum (dashed line)

Figure ���� The two ellipses and their �internal� sum �dashed line��

where

e � ellipsoids to be approximated

nord � order of polytope approximations for method��polell�

Hout � list of outer tangent hyperplanes

Hin � list of inner hyperplanes

Example

The follwing code de�nes a random �D ellipsoid and computes inner and outer
bounding tight polytopes to it with approximation order 	 �

A�rand������E�defell�A�A����Po�Pi��ellapprx�E�
��ax�view�d�Po��� ����

view�del�E��� ���ax��view�d�Pi��� ����r��ax��
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Figure ���� A random �D ellipsoid and its 
th order inner and outer approximations by two
polytopes�

ELLDIFE ELLDIFE

Purpose

ELLDIFE calculates an outer bounding ellipsoid of the di
erence of two ellip�
soids�

Usage

�e�S�v� � elldife�e��e��S	�

where

e � the bounding ellipsoid�

S � matrix containing the calculated

parameter matrix�

�in case of S	 a matrix� S�S	��

v � scalar containing det�Q��

�in case of S	 a matrix� v�	��

e��e� � two ellipsoids of equal dimensions

S	 � matrix parameter �positive definite�

Example

The following code generates two random ellipses and computes an external
approximation to their di
erence� based on the volume criterion�
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A�rand������e��defell�A�A���

A��rand������e��defell�A���A���

ax�view�del�e���

title��The two ellipses and their difference �dashed line����

ax�view�del�e���� ���ax��red���

e�elldife�e��e���

ax�view�del�e��� ���ax��r�������

The ellipses and their �external� di
erence with volume criterion �denoted by
dashed line� is displayed in the �gure�
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The two ellipses to be added and their sum (dashed line)

Figure ����� The two ellipses and their external approximation to their di�erence �dashed line��

ELLDIFI ELLDIFI

Purpose

ELLDIFI calculates an inner bounding ellipsoid of the di
erence of two ellipsoids�
Usage

�e�p�v� � elldifi�e��e��rin�

where

e � the bounding ellipsoid

p � vector containing

the calculated parameter value�

the lower bound�
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the upper bound for parameters

producing tight ellipsoids� and

v � vector containing

the corresponding values�

�in case of rin numerical� it is set to 	�s��

e��e� � two ellipsoids of equal dimensions

rin � either a scalar parameter � ���

or the string� �vol�� �tr��� or �tr���

Example

The following code generates two random ellipses and computes an internal
approximation to their di
erence� based on the trace criterion�

A�rand������e��defell����A�A���

A��rand������e��defell�A���A���

ax�view�del�e���

title��The two ellipses and their difference �dashed line����

ax�view�del�e���� ���ax��red���

e�elldifi�e��e���tr����

ax�view�del�e��� ���ax��r�������

The ellipses and their �internal� di
erence with trace criterion �denoted by dashed
line� is displayed in the �gure�
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The two ellipses to be added and their sum (dashed line)

Figure ����� The two ellipses and internal approximation to their di�erence �dashed line��
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ELLICOV ELLICOV

Purpose

ELLICOV extracts the covariance matrix from and ellipsoid representation�
Usage

C � ellicov�E�

where

E � ellipsoid in GBT format

C � covariance matrix of ellipsoid defined by �x�x	��C����x�x	���

ELLINT ELLINT

Purpose

ELLINT calculates an ellipsoid around the intersection of two ellipoids�
Usage

E � ellint�e��e��method�nord�

where

e�� e� � two ellipsoids to be intersected

E � resulting ellipsoid

method � � � for searching between convex

combinations of the two ellipsoid

� � �default� for computing first approximate

polytope hulls and fitting an ellipsoid around

the intersection

nord � order of polytope approximations for method��polell�

Example

The following code de�nes two ellipses and computes an ellipse around their
intersection�

E��defell��� 	���	�� ����������E��defell�eye����� E��ellint�E��E���

ax�view�dell�E���view�del�E���� ���ax��g���view�del�E���� ���ax��r���
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Figure ����� Two ellipses and a tight ellipse aroud their intersection�

ELLRANGE ELLRANGE

Purpose

ELLRANGE calculates the ranges of projections of an ellipsoid onto each of the
coordinate axis�

Usage

�vmin�vmax��ellrange�P�

where

P � ellipsoid

vmin � column�vector of the lower limits

vmax � column�vector of the upper limits

ELLVOLUM ELLVOLUM

Purpose

ELLVOLUM calculates the volume of an ellipsoid�
Usage
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v�ellvolum�E�

where

v � the volume of ellipsoid E

FACES FACES

Purpose

FACES returns the set of facet inequalities of a polytope and their number�

Algorithm

Direct operation for extracting the sub�matrix of facet inequalities�

Usage

�F�nh� � faces�P�

where

P � polytope in GBT format

F � list of hyperplane equations� Each row F�i� has the form

�a�i�� b�i�� with the meaning a�i��x �� b�i� where a�i� is

unit vector

nh � number of hyperplane faces

Example

The following code de�nes a �D random polytope and computes its facets�

V�rand�
����P�convh�V��view�d�P��� � � ����F�faces�P�

A wire�frame view of the �D polytope P is displayed in Figure ���� from 	 directions
in the �D space� The list of the facets are�
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Figure ����� Wire�frame view of the �D polytope�

FACET FACET

Purpose

FACET computes a facet of a polytope in lower dimension�

Algorithm

Given the index of the facet required� FACET computes the neighbouring facets
and de�nes a same dimensional polytope representation� of the facet� This full
dimensional representation is reduced to lower dimension by MINDIM�

Usage

�fac�P���facet�P�plno��

where

P��� 	�� 	�� � polytope

plno��� � index of facet

fac�	� � facet polytope in lower dimension

P��	� � same dimensional facet polytope

Example

The following code de�nes a �D random polytope and computes its facets�
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V�rand������P�convh�V��

F�facet�P����view�d�P��� � ����figure����view�d�facet�P������ ����

A wire�frame view of the �D polytope P is displayed in Figure ���� from � directions
in the �D space� The �rst facet polytope F �in Figure ����� has the followingmatrix
representation�

F�

	 ��				 	�				

	����	 �	��
�� �	����


	���	� 	��


 �����


�	����� 	��	�	 	�	
��

	�	
�� 	��
	� ���				

	����� ������ ���				

	����� ������ ���				
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Figure ����� Wire�frame view of the �D polytope P�
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Figure ���	� Wire�frame view of the �rst �rst facet of P� which is a �D polytope�

FCONVH FCONVH

Purpose

FCONVH computes the intersection of a polytope and a set of half�spaces�

Algorithm

This is a direct algorithm based on the use of UPDATE� If no initial polytops
is de�ned then the enclosding hypercube with edge size �#KAPPA is used as initial
polytope�

Usage

�P��acc��fconvh�H�P��

where

H � ��A b� a set of half spaces defined by Ax��b

P � a polytope

P� � is the intersection polytope

acc � actual vertex�facet fitting accuracy

Example

The following code de�nes a random polygon and updates it with a half�plane�

V�rand�
����	���P�convh�V��h��� � 	�� P��fconvh�h�P��

aou�view�d�P��view�d�P���� � ��aou��g���hold on�plot�	�	������
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Polygon P is updated by a half�plane through the origin in Figure ���	�
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Figure ���
� The polygon updated by a half�plane through the origin�
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FV FV

Purpose

FV computes lists of vertex indices �tting to each facet�
Usage

�FV�nv�nh��fv�P�

where

P � a polytope

FV � vertex�facet adjacency table

nv � number of vertices

nh � number of facets

FVFITACC FVFITACC

Purpose

FVFITACC calculates the worst�case facet�vertex inaccuracy for a polytope�
Usage

mu�fvfitacc�P�

where

mu � the maximum inaccuracy of facet�vertex fits in polytope P

measured in terms of abs�a�v��b� for a vertex v and facet �a b�

INELL INELL

Purpose

INELL tests whether a point is in an ellipsoid
Usage

bool�inell�p�E��

where

bool � Boolean variable indicating whether point p is inside ellipsoid E
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INTERSCT INTERSCT

Purpose

INTERSCT computes the intersection of two polytopes�

Algorithm

First the faces of the polytopes are extracted and one of the polytopes is updated
by the facets of the polytope with the smaller number of facets�

Usage

P � intersct�P��P���

where

P�� P� � polytopes

P � the calculated intersection of P� and P�

Example

The following code de�nes two �D random polytopes and computes their inter�
section�

V�rand�
����P��convh�V��V�rand�
����P��convh�V�� P�intersct�P��P���

ax�view�d�P���� ����r���view�d�P���� ����g��ax��view�d�P��� ����k��ax��

A wire�frame view of the two �D polytopes P� and P� are displayed in Figure ����
together with there intersection as projected onto the ��� plane�
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Figure ����� Wire�frame view of two �D polytopes and their intersection projected ont the ���
plane�

INTEST INTEST

Purpose

INTEST tests whether a given set of points is inside a given polytope with
accuracy � �

Algorithm

A direct algorithm which checks for each facet�plane which side the points falls
into�

Usage

T�intest�V�P��

where

V � set of points

P � polytope

Example

The following example de�nes an �D random polytope and tests whether the
origin falls inside�
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V�rand�������	���P�convh�V��

orig�in�intest�zeros������P��

INTPOINT INTPOINT

Purpose

INTPOINT �nds an internal point within a given polytope with given margin
� from each facet�

Algorithm

The centre of mass is tested whether it is to a distance of at least � from all
facets� If not than ���� random points are generated around the centre of mass to
�nd a suitable point� If none of the randomly generated points has a ��margin� the
routine returns an empty matrix�

Usage

p�intpoint�P��

where

P � is a polytope in GBT 
�	 format

p � point inside the polytope

Example

The following code de�nes a random �D simplex and produces and internal point
with margin � � ����� �

V�rand�
�
��P�convh�V��p�intpoint�P��view�d�P��� ����

hold on�plot�p����p�����x���

The wire�frame view of the resulting �D simplex is shown in Figure ���� projected
onto the ��� plane�
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Figure ����� Wire�frame view of a �D simplex and one of its internal points projected onto the
��� plane�

LTRAN LTRAN

Purpose

LTRAN can be used to compute an a�ne mapping of a polytope which will be
another polytope� It is allowed that the polytope operated on is not full dimensional�
Also� depending on the rank of the linear mapping� the resulting polytope may be
not full dimensional� For a polytope P in the m�dimensional space� the a�ne map
of P by a linear transformation %A de�ned by matrix A �A � �n � �m�� and shift
vector a � �n� is de�ned by

%AP
def
� fy � �n j y � Ax� a� x � Pg

The resulting polytope will be represented in the n�dimensional space but will not
necessarily be full dimensional� depending on whether A is of full rank or whether
P is m�dimensional or not�

Algorithm

First the vertices of P are extracted and each of them is mapped by matrix A�
Then the convex hull of the mapped set is computed by CONVH� Also the lowest
upper bound for the accuracy of vertex�facet adjacency is computed by CONVH
and is passed on to LTRAN�

Usage

�Pt�acc��ltran�P�A�a��

where



�	 Chapter Reference Manual

Pt � the transform of P

A � transformation matrix

a � offset vector �column vector with the same number

of rows as A �

P � polytope to be transformed

acc � resulting accuracy of facet�vertex fits

Example

The following code de�nes a �D polytope which is mapped into �D by a given
a�ne transformation matrix�

�P�acc��convh��� � � ��	 � 	 	�� � �� ����� � � ���� �� � ����

figure����view�d�P��� � � ���� A�� � 	 	�� ����� 	 � ����a���� ���

�Pa�acc��ltran�P�A�a�� figure����view�d�Pa��� ����

The result of this code is displayed in Figures ���� and ���
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Figure ����� �D wire�frame projections of the �D polytope P �
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Figure ����� The �D polytope Pa obtained by the a�ne transformation de�ned by A applied to
P �

MAXFACE MAXFACE

Purpose

Given the number of vertices n in the d�dimensional space� MAXFACE computes
the vector containing the maximum number of possible lower�dimensional faces for
each dimension from � to d� ��

Algorithm

Applies direct formulas for the maximum number of faces achievable by con�
structing cyclic polytopes as de�ned in ��	� �

Usage

f � maxface�n�d��

where

n � number of vertices

d � dimension

f � �d����dimensional vector containing the maximal number

of faces

Example

The following command applies MAXFACE for ��� vertices in 	D�
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f�maxface��		�
�

The result is�

f �

�����		

�����		

����
		

����			

��
�			

Here f��� contains the maximum number of �D faces� i�e� edges� f��� indicates
the maximumnumber of �D faces� etc� f��� indicates the maximumpossible number
of �D facets�

MAXVERT MAXVERT

Purpose

Given the number n of half�spaces in the d�dimensional space� MAXVERT com�
putes the maximum number of possible vertices which is actually achievable for a
cyclic polytope ��	��

Algorithm

By duality it applies MAXFACE and takes the �d����component of the resulting
vector ��	��

Usage

nov � maxvert�n�d��

where

n � number of half�spaces

d � dimension

nov � maximum number of vertices

Example

The following command applies MAXFACE for ��� vertices in 	D�

nov�maxvert��		�
�

The result is�

nov �

��
�			
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which is the last component of the vector obtained in the example provided for
MAXVERT�

MCVOL MCVOL

Purpose

MCVOL estimates the volume of the intersection of a set of ellipsoids by the
relative number of uniform rectangular grid points falling into the intersection�

Usage

vol�mcvol�E�n��

where

E � list of ellipsoids in standard GBT format

n � degree of approximation n��	� the number of grid

points in each coordinate axis

Example

The following example de�nes � random ellipsoids in � dimensional space and
estimates the volume of their intersection�

E����for i�����

A�rand������P����A��A� � generating random covariance matrix

E��E�defell�P�rand������	����� � building list of elllipsoids

end�

vol�mcvol�E��	��
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P CONV P CONV

Purpose

P CONV computes the convex hull of a polytope and a given point� i�e� the
routine�includes� a new point into the convex hull�

Algorithm

A direct algorithm is applied which computes �rst the �visible facets� of the
polytope from the point� Then cones are computed for each visible facet with a
peak at the point given� All the cones obtained are united with the polytope to
obtain the new convex hull�

Usage

�O�acc��p�conv�xn�P��

where

xn � point to be included in the convex hull

P � polytope in GBT 
�	 format

O � convex hull polytope of �xn� and �P�

acc � accuracy of facet�vertex fits at the output in O

note that also O������acc is defined for d�� �

Example

The following code de�nes a random �D simplex and �includes� �� � � �� into
the convex hull�

V�rand�
����P�convh�V��p��� � � � ��P��P�CONV�p�P��view�d�P���� � � ����

Then the wire�frame view of the resulting �D convex hull is shown in Figure ����
from 	 directions projected onto �D planes�
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Figure ����� Wire�frame view of a �D simplex and one of its internal points projected onto the
��� plane�

POLADD POLADD

Purpose

POLADD computes the algebraic sum �i�e� Minkowski sum� of two polytopes�
For polytopes P� and P� the sum can be de�ned as

P� � P�

def
� fx� y j x � P�� y � P�g

Algorithm

The algorithm takes the sums of vertices of the two polytopes in evry combina�
tion and then the convex hull algorithm is used to the set of points obtained�

Usage

�P�acc� � poladd�P��P��

where

P�� P� � first and second geometric object

P � the sum of P� and P�

acc � resulting accuracy of facet�vertex fits

P������acc by definition for d��
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Example

The following code de�nes a rectangle and a quadrilateral polygon obtained
as the convex hull of four given points� The sum of these two polygons is then
computed by POLADD�

P��defbox���� �����	 ����

P��convh��� ��	 ��� ���� ����

P�poladd�P��P���

ax�view�d�P��� ����r���

view�d�P���� ����b��ax��

view�d�P���� ����g��ax��

The result of this code is displayed in Figure �����
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Figure ����� Addition of two polygons� the 
�� ���� ���� ��� 
�� 
��� �� polygon is the sum of the
polygon 
�� ���� �� and the polygon 
� ��� ��� ���� �� �

POLCEN POLCENT

Purpose

POLCENT can be used to compute the 
p Chebyshev centre of a given polytope�
The 
p�centre of a polytope P is de�ned by

centrep�P �
def
� arg min

y��m
sup
x�P

ky � xkp

Algorithm

This is an algorithm by A� Kuntsevich �����
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Usage

�c�f� � polcent�P�typ�p�

where

P � a polytope

c � centre of ellipsoid or polytope

typ � �mass� � centre of mass for the vertices taken with unit mass

�cheb� � the Chebishev centre in lp�sense

The default of �type� is �cheb��

p � a real number p �� � � p � inf

Example

The following code de�nes a �D polytope an POLCENT computes its centre
according to the four most important interpretations�

�P�acc��convh��� � � ��	 � 	 	�� � �� ����� � � ���� �� � ����

c��polcent�P��cheb����� c�� polcent�P��cheb����� c���polcent�P��cheb������

cmass�polcent�P��mass��� i���j���

view�d�P��i j��� hold on�

plot�c��i��c��j���r����

plot�c��i��c��j���r����

plot�c���i��c���j���ro���

plot�cmass�i��cmass�j���r���

The result of this code is displayed in Figure �����
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Figure ����� Wire�frame of P is projected to the �D�plane de�ned by the ��� axes� The di�erent
types of centres of polytope P are wide apart� ���centre� � � ���centre� � � ����centre �near to ��
centre�� � � centre of mass� � �
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POLDUAL POLDUAL

Purpose

POLDUAL computes the dual of a polytope which contains the origin of the
co�ordinate system inside�

Algorithm

The algorithm converts the vertices into hyper�planes and the facets into vertices
in the dual space�

Usage

�D�acc��poldual�P��

where

P � a polytope in GBT 
�	 format

D � dual of P in GBT 
�	 format

acc � vertex�facet fitting actual accuracy obtained

D������acc by definition

Example

The following code de�nes a box and then computes its dual�

P�defbox���� �� �� ������ � � ����

D�poldual�P�� view�d�D��� � � ����

The result of this code is displayed in Figure �����

POLVOL POLVOL

Purpose

POLVOL computes the volume of a given polytope�

Algorithm

The algorithm computes the volume recursively relying on the lower�dimensional
volumes of its facets� A detailed description of the algorithm by Lasserre can be
found in ���� �

Usage
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Figure ����� Wire�frame projections of the diamond shape dual polytope to the box de�ned�

volume�polvol�P�

where

P � polytope in GBT 
�	 format

Example

The following code de�nes a random �D polytope displays its wire�frame view
in Figure ���� and computes the projection of the �� � � �� onto its surface�

V���� � �� ��� � 	 �� ��� �� � �� � � �� � �� � � � �� � �� �� �� ���

P�convh�V�� view�d�P��� � � ���� vol�polvol�P�

where

vol �

���			

The following code de�nes a �D polytope� displays its wire�frame view in Figure
���� and computes its volume�
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Figure ���	� Wire�frame projections of the �D polytope for volume computation�

PROJPONT PROJPONT

Purpose

PROJPONT computes the projection of an external point onto the surface of a
polytope�

Algorithm

The algorithm computes all visible faces of all dimensions from the point� Then
the projections to the visible�faces are computed and the projection point falling
onto the surface of the polytope is selected�

Usage

p�projpont�p�P��

where

p � point to be projected

P � polytope onto which projection is made

Example

The following code de�nes a random �D polytope� displays its wireframe view
in Figure ���	 and computes the projection of the �� � � �� onto its surface�

V�rand�
���� P�convh�V�� view�d�P��� � � ���� p�projpont��� � � ���P�
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The result of the projection is the point p shown�

p �

	��
�


	��
��

��	
��

	�����

The result of this code is displayed in Figure ���	�
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Figure ���
� Wire�frame projections of the random �D polytope�

SEL SEL

Purpose

SEL �nds an ellipsoid of the minimal volume containing a set of given points�
Usage

E�sel�C�method�options�

where

C � set of points� each row represents a point

method � method to be used� Choose

� � minimize the non�smooth penalty function �direct

problem�

using the algorithm with space dilatation
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� � the method of successive space dilatation

� � minimize the non�smooth penalty function �dual problem�

using the algorithm with space dilatation

The default is ���

options � an array of control parameters of iterative algorithms

options��� � the termination tolerance for the coefficients

of matrix E � if method��� or method����

options��� � maximal number of iterations

�the default is ���e�����	��

E � resulting ellipsoid in GBT format

Example

The following code generates �� random vectors in �D and computes the samllest
volume ellipsod around them�

V�rand������E�sel�V��

figure�view�del�E��hold on�plot�V������V�������gx���

The �gure displays the � points and the �tted ellipsoid�
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Figure ����� A tight ellipse around the �� points�
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SETDELTA SETDELTA

Purpose

SETDELTA is an interactive m��le to specify the edge�size of the hypercube
which will contain all polytopes to be computed with�

Usage

setdelta

prompts for �� i�e� the global variable KAPPA to be typed in�

Half�edge�size of a hypercube centred to the

origin which will include all polytopes to be

used �default of KAPPA is �		�� KAPPA�

after which the global variable �� i�e� DELTA is set and displayed�

The facet�vertex fitting tolerance DELTA is set to the

following value for all computations in GBT routines�

DELTA �

��				e�	��
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SUBTRACT SUBTRACT

Purpose

SUBTRACT computes the algebraic di
erence of two polytopes� For polytopes
P� and P� the algebraic di
erence is de�ned by

P� 	 P�

def
� fx � P� j 
y �� P� x� y � P�g

Algorithm

The algorithm �rst extracts the vertices of P� and using these computes a system
of linear equations for the di
erence P�	P�� The dual of the convex hull algorithm
is then applied to obtain the polytope in GBT ��� format�

Usage

D � subtract�A�B�

where

A� B � two polytopes for which the difference is sought

D � the difference polytope �can be empty� i�e� � � �

Example

The following code de�nes two random polygons of di
erent sizes and computes
their di
erence�

V���	�rand������P��convh�V���V����rand��������P��convh�V���

P�subtract�P��P��	�				���

view�d�P���� ����view�d�P���� ����b�����view�d�P��� ����g�����

Polygons P� and P� and their di
erence are shown in Figure �����
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Figure ����� Two polygons and their di�erence�

UNI UNI

Purpose

UNI computes the union set of two sets of vectors by reducing the number of
multiple copies� Two vectors are considered equal if their 
��norm distance is less
than a given � accuracy limit�

Algorithm

The algorithm examines each new addition to the set by testing its distance
from existing members for it being greater than � in the 
��sense�

Usage

U�uni�U��U���

where

U��U� � matrices of row vectors

U � the union

Example

The following code de�nes two random set of vectors with � vectors shared
between them� Then the union set is computed and its number of vectors is checked�

V��rand��	����V���V���������rand�
����� V�uni�V��V��	�			��� nv�size�V���
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UPDATE UPDATE

Purpose

UPDATE computes a new polytope which is the intersection of half�spaces or
the intersection of half�saces and a polytope� The half�spaces are to be described
by linear inequalities�

Algorithm

The algorithm is based on analysing which vertices of the polytope fall inside or
outside of the given half�space�

Usage

�P��acc��update�h�P��

where

h � a row vector representing a linear inequaility

P � Polytope in GBT 
�	 � format

acc � fitting accuracy of hyperplanes to vertices

Example

The following code de�nes � random inequalities in �D and computes the inter�
section of the corresponding half�spaces and an initial box with edge size �����

IQ��rand�
����	�� ones�
����� v��e���ones������P�defbox��v�v��

for i���
� P�update�IQ�i����P��end�

view�d�P��� � � ����

Then the wire�frame view of the resulting polytope is displayed from 	 directions
in Figure �����
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Figure ����� The convex hull of � random points in �D�

VERTICES VERTICES

Purpose

VERTICES extracts the vertices of a polytope and lists them in an array so that
each row contains the co�ordinates of on vertex�

Algorithm

Straightforward sub�matrix operation based on the matrix representation of a
polytope in GBT ��� �

Usage

�V�nv��vertices�P��

where

P � polytope in format of GBT 
�	

V � array of vertex row�vectors

nv � number of vertices

Example

The following code de�nes a random polygon and extracts its vertices�
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F��rand�
����	�� ones�
�����P�fconvh�F�� �V�nv��vertices�P��

view�d�P��� ���� hold on� for i���nv� plot�V�i����V�i���������end�

The vertices of the polytope with random faces in Figure ���� are indicated by �
signs�
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Figure ����� Wire�frame projections of a random polytope�

VIEW�D VIEW�D

Purpose

VIEW�D displays projections of wire�frame views of a polytope onto �D�planes

de�ned by pairs of axes� The number of view displayed can be one of

�
�
�

�
�

��

�
�
�

�
� ��

�
�
�

�
� 	� depending on whether �� � or � indices of axes are

de�ned�

Algorithm

First the vertex�facet adjacency table is computed� Then the projection of �D
edges are displayed in the suitable �gure� Settings of color and overlay of objects
are taken into account�

Usage
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aout�view�d�P�a�c�hold�ax�acc��

where

P � the name of the object

a � a vector of indices of axes for which

all �D projections are to be displayed

c � colour of object ��b���r���g�� etc��

ax � axes handle to be used

aout � axes handle

Example

The following code de�nes a random polygon and extracts its vertices�

V�rand�
����	���P�convh�V��h��� � � 	�� P��fconvh�h�P�	�				���

figure����clf�view�d�P��� � ����

figure����clf�aou�view�d�P��� � ����view�d�P���� � ����g����aou��

V��rand��	����P��convh�V���figure����clf�view�d�P���� � � ����

A random �D polytope is cut by a half�space going through the origin and the
new and old polytopes are superimposed in Figures ���� and ����� Figure ����
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Figure ����� Wire�frame projections of a �D random polytope�

displays 	 projected wire�frame views of a randomly generated �D polytope�



		 Chapter Reference Manual

−0.6 −0.4 −0.2 0 0.2
−0.4

−0.2

0

0.2

0.4

0.6

−0.6 −0.4 −0.2 0 0.2
−0.5

0

0.5

−0.4 −0.2 0 0.2 0.4 0.6
−0.5

0

0.5

Figure ����� The polytope is cut by plane 
� � � �� and the new polytope is superimposed�

VIEW�D VIEW�D

Purpose

VIEW�D displays �D views of a �D polytope�

Algorithm

First the visible facets are computed and the associated facet�vertex adjacency
table� Then a patch object is constructed for the view of visible facets� Finally
colors and shading are introduced depending on the light directions and rendering
options which can be de�ned separately for the �D axes� There is full compatibility
with the facilities of �D viewing in MATLAB as the view is a patch object placed
in an axes�

Usage

�axout�p�ligh��view�d�P�axin�style�pcolor�

where

P � is the name of the �D polytope to be diplayed

axin � existing axes where the polytope should be displayed

style � �plane� of �interp� �default�

pcolor � ��vector to define the basic colour of the object

�standard format of colors in MATLAB �

p � object handle of the patch object of the polytope

ligh � handle of the light source introduced
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Figure ����� A randomly generated 	D polytope�s wire�frame projections onto 
 axis�planes�

Example

The following code de�nes a random polytope box and displays its wire�frame
view as shown in Figure ���	�

figure�P��convh�rand�������P��convh�rand�������

ax�view�d�P���view�d�P��ax��

Figure ����� �D view of two random polytopes superimposed�

newpage
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VIEW�DEL VIEW�DEL

Purpose

VIEW�DEL displays �D views of an ellipsoid�

Algorithm

First the surface of a sphere is transformed into an ellipsoid surface and iyt is
deisplayed with the SURFL or MESH routines� depending on a type of plot reuqired�
The handles of the axes� surface object and light are returned and can be further
mulipluted by the user in a standard way as it is usual in MATLAB graphics� Angle
of view can be set by VIEW and light sources can be de�ned by LIGHT as standard
in MATLAB�

Usage

�axout�p�ligh��view�del�E�a�axin�col�

where

E � ellipsoid

a � list of axis indices

axin � handle of axes to be used

col � colour of ellipsoid projection required

Example

The following code de�nes two ellipses and computes an ellipse around their
intersection and displays them all using VIEW�DEL�

E��defell��� 	���	�� ����������E��defell�eye����� E��ellint�E��E���

ax�view�dell�E���view�del�E���� ���ax��g���view�del�E���� ���ax��r���
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Figure ���	� Two ellipses and a tight ellipse aroud their intersection�

VIEW�DEL VIEW�DEL

Purpose

VIEW�DEL displays �D views of a �D ellipsoid�

Algorithm

First the surface of a sphere is transformed into an ellipsoid surface and it is
displayed with the SURFL or MESH routines� depending on a type of plot required�
The handles of the axes� surface object and light are returned and can be further
altered by the user in a standard way as it is usual in MATLAB graphics� Angle of
view can be set by VIEW and light sources can be de�ned by LIGHT as standard
in MATLAB�

Usage

�axout�p�ligh��view�del�P�axin�style�resol�

where

P � is the name of the �D polytope to be diplayed

axin � existing axes where the polytope should be displayed

style � �smooth� �default� of �mesh�

resol � number of divisions used in each dimension to approximate

axout � axes handle

p � object handle of the patch object of the ellipsoid

ligh � handle of the light source introduced
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Example

The following code de�nes a random polytope box and displays its wire�frame
view as shown in Figure ���	�

A�rand������	���E��defell�A�A���ax�view�del�E���

for i�����

A�rand������	���E�defell�A�A���ax�view�del�E�ax��

end�

Figure ���
� �D view of four random ellipsoids centered and superimposed�
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VREDUCE VREDUCE

Purpose

VREDUCE reduces the number of points in space by grouping into one the
��near ones�

Algorithm

The �rst vector is compared with the rest and the ��near ones in 
��sense are
discarded� The �rst vector is included in the reduced set� From the remaining
points again the �rst is taken and compared with the rest and the procedure is
repeated� This operation continues until the remaining set becomes empty and the
new reduced set is built up�

Usage

nV�vreduce�V��

where

V � given set of points � one point in each row

nV � new set of points

Example

The following code de�nes a large set of random points� reduces them to with
accuracy ���� and takes the approximate convex hull of the points�

N��		�V�	����rand�N����	����	���ones�N����

V��vreduce�V�	�	���P��convh�V��	�			���

figure����clf�outh�view�d�P���� � ����

axes�outh�����hold on�for i���N� plot�V�i����V�i���������end�

axes�outh�����hold on�for i���N� plot�V�i����V�i���������end�

axes�outh�����hold on�for i���N� plot�V�i����V�i���������end�

figure����clf�outh�view�d�P���� � ����N��size�V�����

axes�outh�����hold on�for i���N�� plot�V��i����V��i���������end�

axes�outh�����hold on�for i���N�� plot�V��i����V��i���������end�

axes�outh�����hold on�for i���N�� plot�V��i����V��i���������end�

Figure ���� displays the original cloud of points and the reduced complexity
polytope �tted to their convex hull� Figure ���� only displays the reduced set of
points from which the reduced complexity polytope was obtained�
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Figure ����� The original large set of points and the approximate polytope �tted�

VVF VVF

Purpose

VVF computes the vertex�vertex and vertex�facet adjacency tables of a polytope
with given vertex�facet �tting accuracy � � �� The tables of adjacency use indices of
the vertices and hyper�planes in the order as they occur in the matrix representation
of the polytope� Hence the width of the the tables depend on the maximumnumber
of adjacent vertices and facets� respectively�

Algorithm

The Boolean�table of vertex�facet adjacency is computed �rst� Next the tables
of vertex�vertex adjacency and tables of vertex�facet adjacency are constructed by
straightforward operations�

Usage

�VV�VF�nv�nh��vvf�H��

where

VV � vertex�vertex adjacency table

VF � vertex�facet adjacency table

nv � number of vertices

nh � number of facets

Example
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Figure ����� The reduced set of points and the polytope �tted�

The following code de�nes a polytope and produces the adjacency tables�

V���	�� �	�� 	���	�� 	�� 	����	�� 	�� 	���� 	�� 	�	� �	����	�� �	�� �	����

P�convh�V�� �VV�VF�nv�nf��VVF�P�	�					��

figure����clf�view�d�P��� � ����

Figure ���� displays the polytope considered� The results of the VVF routine in
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Figure ����� Wire�frame view of the polytope in the example for VVF�

this example are�
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Here the matrix representation of the polytope P was�
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��� Auxiliary Routines

COMBIN COMBIN

Purpose

Auxiliary routine to PROJPONT� COMBIN computes the binomial coe�cients�
n
k

�
� n � k�

Usage

�C�nc��combin�n�k��

where

C � matrix with a combination in each row

nc � the number of combinations � coefficient �n over k�

n � positive integer

k � nonnegative integer
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FIRSTEQU FIRSTEQU

Purpose

Auxiliary routine to VREDUCE� Given a set of points in a matrix� it compares
the �rst point ��rst row� with all other points �other rows� and it �nds those which
are less than � distance from the �rst point in 
��sense� The ��near points to the
�rst are combined into a single point and the rest of the points are left unchanged�

Usage

�v�nV��firstequ�V�del��

where

V � set of points

del � tolerance

v � combined point

nV � rest of the points
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