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Abstract. Objective measurements of physical behaviour are an inter-
esting research field from the public health and computer science per-
spective. While for public health research, measurements with a high
quality and feasible setup is important, the analysis of and reasoning
about the data is what we will present in this work. Our focus in this
work is the comprehensive representation of physical behaviour through-
out consecutive days and allowing to find subgroups in the population
with similar physical activity levels.
We have a unique data set of 4628 participants wearing tri-axial ac-
celerometers for six days and will present a case-based reasoning (CBR)
system that can find and compare similar activity profiles. In this work,
we focus on creating a CBR model using myCBR and do initial ex-
periments with the resulting system. We will introduce a data-driven
approach for modelling local similarity measures. Eventually, in the ex-
periments we will show that for the given data set, the CBR system
outperforms a k-Nearest Neighbor regressor in finding most similar par-
ticipants.

Keywords: Physical Activity, Case-Based Reasoning, Local Similarity
Modelling, k-Nearest Neighbor

1 Introduction

Physical inactivity and poor sleep are considered global health problems [16,25]
that contribute substantially to poor health and premature mortality. It is esti-
mated that physical inactivity is responsible for about 9% premature mortality
[19], which is similar to the effect of smoking [31] and obesity [1].

CBR has become more popular over the last few years, especially in an area
where continuous measurements become more and more available [9,23]. It offers
a way for abstracting and transferring specific domain expert knowledge into a
self-explanatory and user-friendly tool, which can be used to generate solutions
for problems ranging from simple daily life tasks to complex issues (which other-
wise necessitate expert help), with an appropriate reasoning behind them. Not
only is it being applied for finding similar cases to provide solutions, but also
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for the classification of medical [33,8] and activity data [30]. In [30], the authors
propose a CBR method to classify different physical activities of elderly based
on their pulse rate.

In this paper, we focus on the knowledge engineering process of creating a
CBR model and present a data-driven approach for modelling local similarity
measures for physical activity data in the myCBR workbench [5,29]. We will
show in our experiments that a CBR system comparing physical activity profiles
is less erroneous than a k-Nearest Neighbour (k-NN) regressor model. In our
experiments, both approaches are used to find groups of similar activity pro-
files and their performance is evaluated statistically. The second contribution
of this paper is a method for modelling the local similarity measures utilizing
data driven methods. We will showcase how a data set can lead to strong ini-
tial definitions for numerical value ranges and therewith easen and stratify the
knowledge modelling process.

The remaining of this paper is divided into sections as follows: in section 2,
we discuss related work on reasoning about physical activity behaviour using
various approaches within machine learning and artificial intelligence. In section
3, we discuss the importance of objective measurements of physical activity
behaviour from both public health and computer science perspective. Section 4
is dedicated to similarity modelling for the data set in myCBR. In section 5, we
present the experiments performed to evaluate the CBR model generated and
compare it with that of k-NN model. Section 6 and 7 are for discussion and
conclusion respectively.

2 Related Work

The amalgamation of sensors, Internet of Things (IoT) and Artificial Intelli-
gence (AI) provides a unique opportunity not only for health researchers, but
also for AI researchers to perform objective measurements and utilize raw data
recordings to generate physical activity profiles of a large number of partici-
pants and determine similar physical activity profile groups. With the help of
AI techniques, it is possible to perform objective analysis of sensor data stream
to not only identify different physical activities uniquely [7,4,32], but also find
out groups of similar activity profiles. Finding and clustering similar physical
activity profiles is crucial in facilitating the understanding of health and activity
characteristics of a population and identifying different activity phenotypes3. In
[21], the author proposed an ATLAS index to cluster and identify four activity
phenotypes using NHANES4 data set. Similarly, in [32], authors proposed a sta-
tistical machine learning model to identify different sleep and physical activity
phenotypes. Further, the authors in [13] apply latent class analysis to identify
five different activity phenotypes among young adults in a cohort study where
data was collected using hip-worn accelerometers for seven days. Our long term

3 https://www.biology-online.org/dictionary/Phenotype
4 https://wwwn.cdc.gov/nchs/nhanes/default.aspx
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goals and target data are similar to these studies, however the approach differs
slightly.

Similar to the preference-based CBR framework presented by Hüllermeier
and Schlegel [14], we are presenting a framework for modelling local similarity
measures based on the data set available. Therewith we can tailor each similarity
measure to the application domain. In the continuation of their work Abdel-Aziz,
Strickert and Hüllermeier [2] show that the data distributions and distances in
data sets can be used for learning similarity measures. While the authors focus
on learning preferences, we show with the work presented here that the data-
driven view can be carried over to general knowledge engineering tasks. Using
a data-driven approach for automatic similarity learning and feature weighting
has been presented by Gabel and Godehardt [11]. In their work they trained a
neural network to induce local and global similarity measures. While we are not
automatically assigning the similarity measures, we also use existing cases to de-
rive them. In [28], the authors explore a case-based approach for recommending
5km times for marathon runners in order to achieve their personal best. The
approach they apply is similar to the one presented in this paper as they use
timing profiles as basis for the similarity-based assessment. In a slightly different
approach, Sani et. al. [27] explore using k-NN for detecting physical activities
from wrist worn sensors. In their work they show that applying k-NN for detect-
ing movement patterns is very successful for creating personalized models. Even
though the approaches differ, our work is similar in terms of comparing physical
activity profiles with raw data coming for accelerometers.

3 Physical Activity Analysis for Public Health
Application Scenarios

Regular physical activity is important for people of all age groups, including
the elderly. It can significantly reduce the risk of various health problems such
as stroke, diabetes, various types of cancer, depression, as well as hypertension
and improve bone and muscle health5. Physical inactivity is one of the most
important public health problems of this century and has a strong negative
impact on the physical and mental well being of an individual. It is estimated
that about 23% adults and 81% adolescents globally are physically inactive. The
figures are alarmingly high for adolescents. Moreover, being physically active is
not just about moving around in the house or walking at a slow pace, they must
include some form of Moderate to Vigorous Physical Activity (MVPA) such as
brisk walking, dancing, running, cycling, or moving/lifting heavy load.

Over the last few years, researchers in public health domain have moved
rapidly from using self-reported subjective activity data to objectively measured
activity data with the use of body-worn sensors [4,18,20]. Not only are the sen-
sors a more viable option due to the simplicity of extracting and utilizing raw
data, but also eliminate the problem of bias due to self reporting [24,17], which

5 http://who.int/features/factfiles/physical_activity/en/
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has been a major concern among researchers as it leads to inaccuracy and uncer-
tainty. Moreover, the accelerometers directly measure the subject’s physiology
motion status to indicate the motion pattern within a given time period, which
is helpful in activity recognition and are much more energy efficient.

The physical activity data used for this work is primarily based on accelerom-
eter data collected during the HUNT46cohort study. The Nørd-Trøndelag Health
Study (HUNT)7 in Norway is one of the largest health studies of its kind. The
study consists of a large amount of health data collected through questionnaires
and clinical examinations during three intensive previous studies (HUNT1 1984-
86, HUNT2 1995-97 and HUNT3 2006-08). In the ongoing study HUNT4 (2017-
19), each participant is offered to participate in the objective measurements data
collection. If accepted, they are fitted with two wearable tri-axial accelerometers,
placed at their thigh and lower back, which are used to collect activity data for
one week. The raw sensor data is then classified into 17 different physical ac-
tivities using Support Vector Machines (for the synchronization of sensor data)
and Random forest classifiers (for the prediction of activity classes). Afterwards,
these activities are grouped into six main physical activities: lying, sitting, stand-
ing, walking, running, cycling, which is the basis data set for our work 8.

By determining the variation among participants in different activity clusters
through similarity, it is possible to provide activity recommendations to less
active profiles in order to make them more active. Every person has different
activity characteristics and finding a group of activity profiles most similar to
that person with respect to the duration of every activity is a challenging task
and we aim to address this task using Case-Based Reasoning (CBR), because it
offers the flexibility and transparency in its reasoning process.

4 Data-driven Knowledge Modelling

In this section, we explain how we implement a CBR system that can be ap-
plied to find and compare similar activity profiles from objectively measured
population data. We are using the local-global-principle [26] for creating simi-
larity measures and thereby build a knowledge model that tailors the similarity
measure for each attribute. Once the local similarity measures are defined, we
continue to use weighted sum for defining the global similarity.

While the HUNT4 data set is unique in the world, the challenges for utilizing
it for developing a CBR system are very common such as the identification of
suitable data set context for the problem at hand, definition of initial similarity
measures, representation of cases and determination of valuable cases for popu-
lating the casebase. In this work we will introduce a method for utilizing a given
data set to model similarity measures. Further we will take into account the
effect of growing casebases and show a methodology that can help to visualize
and understand how a CBR system learns.

6 https://www.ntnu.no/hunt4/
7 https://www.ntnu.no/hunt/
8 Since the study is ongoing, we have used the data available by March, 12 2018.
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This section is further divided into subsections as follows: First, we describe
how we populate the casebase and generate cases in the developed case rep-
resentation. Second, we describe our data-driven approach to model the local
similarity measures for the numerical activity attributes. Once the model is in
place, we then query the casebase and compare the most similar activity profiles
retrieved.

4.1 Case Generation

Developing a case representation is the first part of the system development.
Depending on the domain and the available data this can be a challenging process
on its own [12,6,15]. For our application domain we utilize the pre-processed
HUNT4 data. While HUNT4 collects a very comprehensive set of data, we are
only focusing on the objective measurements. The sensor data is collected over a
period of seven days per participant and the overall data collection in the cohort
stretches over 18 months, starting from the autumn of 2017 until February 2019.
It is an ongoing study and until March 2018, data for 17409 participants has
been automatically classified and for each participant aggregated into the six
main physical activities. In Table 1 we present the description of the six activity
types used in our data set.

Activity Description

Lying The person lies down

Sitting When the person’s buttocks is on the seat of the chair, bed or floor

Standing Upright, feet supporting the person’s body weigh

Walking Locomotion towards a destination with one stride or more

Running
Locomotion towards a destination, with at least two steps where
both feet leave the ground during each stride

Cycling The person is riding bicycle

Table 1. Activity Descriptions

Each participant is fitted with two tri-axial accelerometers, AX3 Axivity9,
one on the thigh and second on lower back. The sensors are used to detect
vibrations, movement and orientation changes in the three axes. The sampling
frequency of the sensors is set at 50Hz. After the participant has worn the sensors
for seven days, they are returned to the HUNT research center where the raw
data is downloaded, extracted and classified using Support Vector Machines and
Random Forest algorithms. The resulting data set contains the H4ID (unique
ID for each HUNT4 participant), number of minutes of each different activity,
the date and day of the week in a csv file.

When preparing the data for the CBR system, we further process it by re-
moving the records where we assume the sensor was taken off or the prediction

9 https://axivity.com/downloads/ax3
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failed. Those are very long times of the same activities. Records are removed
based on the following criteria:

– sum of all the activities for a single record exceeds 1440, which is the total
minutes in a day

– records containing zero minutes for lying, sitting, standing and walking
– data set for one participant has less than seven days of data

Eventually, we chose to keep records where exactly six days of data per H4ID
was present, while the rest of the records were removed. For each unique H4ID,
the total minutes of each activity were summed up for six days. We experimented
with different knowledge representations including mean, maximum and sum of
duration of each activity per H4ID and found the sum representation to suit
best since it captures the overall physical behaviour of the participants over the
days as well as the variance of the similarity measure over its’ entire range. At
this point, after pre-processing, the data set contains 4628 rows, each record
containing sum of each activity over six days for a single participant. Table 2
gives a brief account of the data set.

Lying Sitting Standing Walking Running Cycling

count 4628 4628 4628 4628 4628 4628

mean 3090.49 3322.82 1401.22 790.67 6.86 26.45

min 7.35 253.25 56.50 1.55 0 0

max 7513.80 7846.10 4247.10 2101.65 172.70 719.10

Table 2. Data set Statistics

Cases are populated from the previously described data set by loading into
the previously defined case representation using the myCBR tool. A single case
in myCBR is represented as shown in Fig. 1, where Participant is the name
of the concept which consists of six attributes namely cycling, lying, running,
sitting, standing and walking.

4.2 Data-driven Similarity Measures Development

The local-global-principle requires that both types of similarity measures, the
local one on the attribute level and the global one on the conceptual need to be
defined.

Modelling the local similarity measures for different attributes in myCBR
can be challenging as researchers have to balance the input from the domain
experts and the available data. Having criteria which can lead the knowledge
modelling process is helpful for both parties. We therefore suggest to make use
of the existing data in this process. As we assume that the collected data set
covers the scope of what type of problems (cases) we have seen before, this is
a useful departure point. In the following, we would have a reality check with



Fig. 1. Case representation in myCBR

the domain experts that discusses whether the defined value ranges cover the
domain well. While setting upper and lower limits is straight forward, assigning
the similarity behaviour is not. Consecutively, we assume that numerical local
similarity measures are distance functions and the question is how steep of a sim-
ilarity decline should be chosen. We use polynomial functions to model similarity
measure since they are more flexible and provide better convergence when using
continuous numerical data. Therefore, we will focus on the polynomial function
of the similarity measure and our goal is to determine their degree.

Taken this task in our application domain, we see an activity variation among
different profiles, but also in the aggregation of activities over all profiles. We
use box plots for visualizing the distributions and variations in our data set and
transfer this into modelling local similarity measures.

Fig. 2. Example for Data-driven Local Similarity Modelling: On the left there is a
screen shot of a polynomial similarity function for a value range between 0 and 7500.
With the arrows we depict how the box-plot for sitting relates to the decrease of
similarity at a certain distance. IQR ∗ 1.5 method has been used for the box plots.



Fig 2 shows an example of a numerical local similarity measure. In the exam-
ple, it is the total amount of sitting during six days. From there we look into the
Q1 and Q3 which indicated the majority spread for the data set. We decided to
take these values as reference points for determining the decrease of similarity.

Hence, creating a box-plot of the data set will allow modelling each activity
attribute since we only take the Inter Quartile Range (IQR) and the range (min
to max) into account:

r1 = IQR

r2 = range
(1)

It represents the difference between upper (Q3) and lower (Q1) quartiles in
the box-plot, that is IQR = Q3 −Q1.

We assume that all similarity functions are polynomial and adjust the poly-
nomial degree of the similarity function such that

y(r1) ≈ 0.30

y(r2) ≈ 0
(2)

We can observe in Fig 2 how the similarity function varies after applying the
methodology in equation 1 and 2. The bigger the polynomial degree, the steeper
the similarity function and more precise the attribute values in retrieved cases.
The decline in the similarity function is steeper in the beginning until at r1 it
reaches close to y(r1) and then decreases gradually until at r2 it is approximately
close to y(r2). This way, the similarity function covers the entire attribute range
as well as the similarity measure range [0, 1]. While the choice of y(r1) and y(r2)
depends on the domain-expert’s knowledge and satisfaction with the outcome, we
however experimented with different values and found these best suited for our
application domain. We use this as the initial definition of similarity measures. If
required, the function can of course be further customized if the relevant domain
knowledge is available.

4.3 Comparing Physical Activity Profiles

Once the casebase and similarity measures are in place, the model can be used
to find similar profiles. Fig 3 shows the result of one such query retrieval in
myCBR. The figure shows that the retrieved cases are sorted by similarity value
in descending order, that is, most similar case are displayed at the top while
least similar are at the bottom. On the lower part of the screen shot the four
most similar profiles are shown in a detailed view. The tool marks closer matches
darker.

While the myCBR workbench indicates that we can do a similarity-based
retrieval, it is hard to judge how the CBR system works with increasing casebase
or changing similarity measures. In the next section we will investigate how the
casebase size and different retrieval methods perform in our application domain.



Fig. 3. A Query and its retrieval result in the myCBR workbench

5 Evaluation of Increasing Casebase Sizes and Retrieval
Methods

A performance evaluation of the CBR model has been conducted using holdout-
repeat cross-validation in which 200 random cases were held out to be used for
testing. Therewith for each run our casebase consisted of 4428 cases. A test
set, comprising of ten randomly selected cases from the held out set of 200
cases, represents a single epoch in the experiments and performance is reported
using Mean Relative Error (MRE) as a measure of precision. Each experiment
is repeated five times and the results are averaged over all the epochs.

For each query instance qi in the test set, the number of similar cases retrieved
r from the casebase is 20. The relative error of each activity is the computed
between qi and r for one case at a time. The errors are averaged to obtain MRE
of each activity for qi. The process is repeated for every qi in the test set, that
is, for i = [1, 10].

The MRE of the six activities are added to get the total relative error for
each qi. MRE is then calculated by averaging the relative errors for the entire
queried test set.

The total relative error T for each queried instance is calculated as:

T =

6∑
i=1

MRE(Ai)

where A is the activity type as they were introduced in section 4.1. MRE for
the each test set is calculated as:

MRE =

∑10
i=1 Ti

10

The experiments in this evaluation are performed in two ways: First, by
calculating the MRE of retrieved instances against each queried test instance



with increasing casebase size. Second, by comparing the different results obtained
using the CBR model and k-NN regressor model.

5.1 Increasing Casebase Size

This experiment focuses on the variation observed in MRE with the increasing
size of the casebase. The CBR model was implemented using myCBR, however
the tool does not support batch queries, which was the need of the hour for
conducting the experiments for our work. To overcome this limitation, we used
a myCBR Rest API 10 for batch querying the casebase using POST calls and
the implementation was done in Python (version 3.6.3).

In this experiment, a test set is passed as a query using POST call when
the casebase initially has 500 instances. Subsequently, MRE for that test set is
calculated. 500 cases are then added to the casebase and the process is repeated
until the casebase consists of the entire data set. The experiment is repeated five
times, each with a different random test set. The average MRE of all the epochs
for the given casebase size is shown in Fig 4.

Fig. 4. MRE comparison between the CBR model and k-NN regressor model with
increasing casebase sizes (MRE is calculated for k = 20 retrieved cases)

In order to have a comparison of the performance of the CBR model, the
same experiment was conducted using k-NN regression model (with k = 20). The
implementation of the k-NN regressor was done using Scikit learn [22] library
(version 0.19.1) in Python (version 3.6.3). The results obtained with the k-NN
model are presented along with the results of the CBR model in Fig 4, where
x-axis shows the size of the casebase (or size of data set for k-NN) and y-axis
shows the MRE averaged over five epochs.

10 https://github.com/kerstinbach/mycbr-rest-example
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It can be observed from the results that MRE decreases steadily with increase
in size of the casebase in the CBR implementation. However, the same cannot
be said for k-NN, as the results show uncertain response to the increase in size
of the data set. Even after introducing the entire data set, no improvement
is observed. This decline in performance in k-NN is caused by the presence
of outliers in the test set. CBR is able to estimate closest similar cases with
respect to every activity for outliers very well, whereas k-NN cannot estimate
the nearest neighbors with respect to every activity when presented with outliers.
For instance, if there is an instance in the test set which has some or all attributes
with values either below 25% or above 75% of the data range for those attributes
in the data set, it leads to the k-NN algorithm computing nearest neighbors which
are closer to the non-outlier attributes but farther from the outlier attributes.
Thus, resulting in higher MRE even with an increased size of the data set.

5.2 Selection of k

Selecting an appropriate value of k is crucial in determining the success or failure
of a k-NN regressor model. To see how the error varies, we experimented with
different values of k in the range [3,100]. Fig 5(b) shows the variation in MRE
with the change in value of k. Here, x-axis shows the value of k and y-axis shows
the MRE.

Fig. 5. Number of closest cases: On the left is the graph depicting the variation in
MRE with the number of most similar cases retrieved (n) in CBR implementation. On
the right is the graph for k-NN model depicting the variation in MRE with different
values of k.

Although the determination of the closest similar profile in the CBR model
is independent of n (number of retrieved cases), it is interesting to see how the
MRE changes by varying n progressively. This allows us to further compare
and contrast the performance of CBR model with that of k-NN model. Fig 5(a)
shows the variation of MRE with increasing value of n in myCBR, where the
x-axis shows the value of n and y-axis shows the MRE. It is clear from the



results that the value of k in k-NN (refer Fig 5(b)) has a huge impact on the
MRE for each epoch. The implication of this graph is that with an increase in k,
more neighboring cases are taken into consideration which are either less similar
altogether or less similar with respect to a subset of activities, resulting in the
sudden variation in errors. Whereas the CBR model has a relatively smoother
response in creating the number of retrieved similar cases. It can be argued from
the results that lower values of k would have been more suitable due to less MRE.
However, our aim in this work is not to predict using k-NN, but to find a number
of nearest neighbors of the queried profile, which is why we chose k = 20 for our
experiments. As our data set is large, k = 20 is reasonably acceptable for this
application domain. Also, from CBR perspective, considering more neighboring
profiles helps in making improvements to the similarity measure to a greater
extent than considering just one neighbor profile.

5.3 Composition of Error

As we are using activity data to find other similar profiles, it is important to
know the error observed in the approximation of each activity in the similar
profiles.

Fig 6 shows the MRE (in log) for each activity using both the approaches
when introduced with the entire data set. The figure underlines that for inactive
time (lying, sitting, standing) - which is the majority for the participants (see
Table 2 and Fig 2) - the k-NN approach produces less of an error. For moderate
activities, like walking, both approaches are very close, while for rigorous ac-
tivities, which we see only limited in the data set, the CBR approach produces
much better results. This is very important for our overall aim of this work, as
we eventually want to identify beneficial physical activity phenotypes.

Fig. 6. MRE per activity for the entire data set by the k-NN regressor and the CBR
model



This observation is undermined by Fig 7, which shows the distribution of
MRE for each of the activity calculated for both approaches after introducing
the entire data set. It can be observed that in both k-NN and CBR, most of the
error is attributed to the approximation of activity running (approx. 79% and
51% respectively). On the other hand, it is far lower in CBR, the result of which
is relatively higher error composition of other activities as compared to those
in k-NN. However, since these are compositional parts and convey only relative
information, rather than concrete information, we must take into consideration
the actual MRE, refer to Fig 4, which is significantly lower in case of CBR.

(a) CBR (b) k-NN

Fig. 7. Error Composition for the CBR (a) and k-NN (b) model

6 Discussion

The experimental results shown in Fig 4 demonstrate that the CBR model per-
forms well in finding similar physical activity profiles. While k-NN is able to
well approximate four out of six physical activities when finding the nearest
neighbours, however it fails miserably in finding with respect to the other two
activities, which results in higher MRE. On the other hand, the CBR model
is able to determine the most similar physical activity profiles with respect to
every activity more closely, resulting in far lower MRE as compared to the k-
NN model. Furthermore, k-NN is susceptible to outliers, which is the cause of
increase in MRE even after introducing the entire data set. Whereas this is not
an issue with the CBR model. In Fig 5 we observe very minor increase in MRE
with increasing number of retrieved instances using CBR model, whereas the



variations are more pronounced when using the k-NN model. These experiments
demonstrate that the similarity modelling approach presented is working suc-
cessfully for our application domain. Consequently, the CBR model significantly
outperforms the k-NN algorithm and is more robust in finding similar physical
activity profiles in a population. CBR approach can be applied to find and clus-
ter similar activity groups, which will further be helpful in determining activity
phenotypes.

7 Conclusion and Future Work

In this paper, we presented an approach to model the local similarity measures
for physical behaviour data in myCBR in a data-driven manner. This model can
be applied on physical behaviour data acquired using wearable sensors to find,
group and compare similar activity profiles. We have demonstrated through ex-
periments and statistical evaluation how the CBR model outperforms the state-
of-the-art k-NN regressor model. Thus, it can be concluded that CBR approach
is a suitable and viable option for application such as this in the public health
domain. It can further be utilized in determining activity phenotypes in order to
provide personalized activity recommendations to participants and help slowly
transform an inactive into a more active lifestyle. We have also demonstrated
through experiments the effectiveness of similarity modelling approach presented
in this paper for the public health domain and it will be safe to conclude that it
can be transferred to other similar domains dealing with continuous numerical
data.

The method presented can further be enhanced to automatically assign the
local similarities based on the attributes’ values in the casebase using machine
learning techniques, similar to what [11] presented in their paper. It can signifi-
cantly reduce the efforts required to create new CBR models using different data
sets from scratch.

In the future, we aim to extend our research towards compositional data
analysis [3] on the HUNT4 data and applying CBR on the resulting composi-
tional data. Compositional data analysis has been applied by researchers [10] for
estimating the effect of change in physical activity behaviour for daily activities.
Whether a change in one type of behaviour is beneficial or harmful for health
depends on the compensatory shifts in other behaviours. The compositional na-
ture of the HUNT4 data has therefore important consequences for both the an-
alytical approach undertaken and interpretation of effects on health outcomes.
Utilizing CBR for compositional data analysis will facilitate (i) getting insights
into the behavioural characteristics between similar profiles in a population, (ii)
understanding the association and co-dependency among various behaviours in
different profiles, and (iii) identifying physical behaviour phenotypes.
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