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Abstract

Plant-wide oscillation detection is an important task in the maintenance of

large-scale industrial control systems, owing to the fact that in an interactive

multi-loop environment oscillation generated in one loop may propagate to

the different parts of the plant. In such a scenario, its is required that dif-10

ferent loops oscillating due to a common cause and hence similar frequency

may be grouped together. In this paper an adaptive method for plant-wide

oscillation detection based on multivariate empirical mode decomposition

(MEMD) along with a grouping algorithm is proposed. The method can

identify multiple oscillation groups among different variables as well as vari-15

ables with random noise only. The proposed method is also applicable to

both non-linear and non-stationary time series where the techniques based

on the conventional Fourier analysis are prone to errors. Within each group

that oscillate due to a common cause, the method can also indicate the loca-

tion of the probable root cause of oscillations. The efficacy of the proposed20

method is established with the help of both simulation and industrial case

studies.
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1. Introduction25

The observation that only a third of all industrial controllers give accept-

able performance and 30% of all industrial control loops oscillate (Srinivasan

et al. (2007)) led to increased research in the field of oscillation detection

and root cause diagnosis. The topic is important because oscillations give

rise to product variability and greatly impact the profitability of plant oper-30

ations. Sustained oscillations are also harmful for plant equipment, leading

to increased wear and possibly premature failure. There can be thousands

of loops running in a plant, and oscillations in any of them can propagate to

different parts of the plant owing to underlying interactions and coupling ef-

fects. It is therefore important to find and group the variables that oscillate35

due to a common cause. This will be very helpful in finding a root cause of

a specific plant-wide oscillation, as there is little reason for searching for a

root cause among variables not affected by the oscillation in question.

Oscillations can be caused due to a variety of reasons, like poor controller

tuning, external disturbances and process non-linearities, to name a few40

Choudhury et al. (2008). Oscillation detection can be subdivided into two

categories, namely oscillation detection in individual loops and plant wide

oscillation detection. The present work deals with the later subcategory

only. The presence of multiple oscillations, noisy measurements along with

non-stationary and non-linear effects make plant wide oscillation detection45

a challenging problem. The salient features of a reliable and robust plant

wide oscillation detection method can be outlined as:

• The ability to group different variables oscillating with similar fre-

quency.

• The capacity to detect multiple oscillations (oscillations due to multiple50

sources) in a variable and to assign each oscillation to corresponding

group. This also includes the ability to separate out variables void of

any oscillation, thus containing random noise only.

• Applicability to signals with both non-stationary and non-linear effects.
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• Adaptability i.e. the minimum possible dependence on any a priori55

assumptions, pre-processing or underlying process dynamics.

• Ability to identify the set of variables/nodes that are closest to the

source of the oscillations.

Different attempts have been made in recent years by researchers to ad-

dress the problem of plant wide oscillation detection using both time and60

frequency domain methods. Time domain methods require the knowledge

of process order and time delays among measurements. Gathering this in-

formation typically requires significant effort. Frequency domain methods

are insensitive to phase lags, but suffer from the restrictive condition of

signal stationarity.65

The use of principal component analysis (PCA) for the detection of plant

wide oscillations is proposed by Thornhill et al. (2002). In this method,

normalized power spectra of different time trends are subjected to dimen-

sionality reduction using PCA and each principal component represents a

group oscillating with similar characteristics. Apart from the power spec-70

trum, PCA of the Auto Covariance Function (ACF), which is independent

of phase lags, is also shown to give similar performance Thornhill et al.

(2002).

Another method based on similarity among the power spectra of differ-

ent variables is put forward by Tangirala et al. (2005). In this method a75

correlation index among the power spectra is used to construct the power

spectral correlation map (PSCMAP).

Xia et al. (2005) and Xia and Howell (2005) proposed a spectral indepen-

dent component analysis (ICA) based method where dimensionality reduc-

tion and grouping is accomplished by employing ICA, but with a condition80

that the sources of oscillation are statistically independent.

The limitations of the PCA and ICA based method are highlighted by

Tangirala et al. (2007), and another method based on Non-Negative Matrix

factorization (NMF) is proposed instead. This method is aimed at over-

coming the limitations of the PCA and ICA based methods. In an analogy85

to the singular value decomposition performed in standard PCA, the pro-

posed method call for the pseudo singular value decomposition (PSVD) to
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determine the dimensionality of basis space. The main issues in NMF as

highlighted in Tangirala et al. (2007) are initialization of basis functions

and the absence of any solid method for basis size determination, though90

singular value decomposition (SVD) of the spectral matrix is used as a tool

for the basis initialization in the work by Tangirala et al. (2007). The NMF

based method is powerful tool yet the emphasis is more on determining the

basis shape of the linearly independent oscillations in a plant-wide setting

and at times it fails to group the variables oscillating with similar frequen-95

cies. This aspect will be illustrated by the simulation example later in the

paper.

Moreover, A genetic algorithm (GA) based matrix factorisation technique

has been adopted by El-Ferik et al. (2012). A method based on intrinsic

time-scale decomposition has been proposed recently by Lang et al. (2018).100

Almost all the methods used for the plant wide oscillation detection,

except Lang et al. (2018), are based on conventional Fourier analysis, in one

way or the other. Therefore they are vulnerable to errors when it comes to

time trends that are outcome of non-linear and non-stationary processes.

In order to overcome these problems a fully adaptive and automated plant105

wide oscillation detection method based on Multivariate Empirical Mode

Decomposition (MEMD) has been proposed in this work.

The MEMD is the extension of the standard univariate Empirical Mode

Decomposition (EMD) to higher dimensions. The MEMD likes its predeces-

sor EMD is applicable to both non-linear and non-stationary time series and110

can adaptively decompose the n-dimensional signal into functions called In-

trinsic Mode Functions (IMFs), without any a priori assumptions or knowl-

edge about the underlying process. The MEMD has also been used by the

authors for detecting non-linearity induced oscillations in individual control

loops in the presence of non-stationary effects (Aftab et al., 2017a,b), but115

the present work is focussed on the plant-wide oscillation detection problem.

An important consequence of MEMD is its mode alignment property

where common modes in data are extracted in the same indexed IMFs.

This mode alignment property along with a grouping algorithm is exploited

to give a robust plant wide oscillation detection method in this work. The120
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proposed method does not require any pre-processing or assumptions re-

garding the signal generating process and is both applicable to non-linear

and non-stationary time series. The method can handle multiple oscillations

and group the variables oscillating due to the same cause. An added ad-

vantage is the automatic determination of the oscillation frequency of each125

group via ACF (Thornhill et al., 2003; Aftab et al., 2017a), that is not pos-

sible for existing Fourier based methods. This fact also helps in identifying

the presence of harmonics for non-linearity induced oscillations. Further-

more the method is also helpful in identifying the variables associated with

the root cause of oscillations.130

The paper is organized as follows. Section 2 gives an overview of the

multivariate EMD. The mode alignment property and proposed grouping

algorithm are discussed in sections 3 and 4, respectively. Section 5 and 6

outline the default parameter settings and the proposed algorithm. Simula-

tion examples are discussed in section 7 followed by industrial case studies135

(section 8) and conclusions.

2. Multivariate Empirical Mode Decomposition (MEMD)

The multivariate EMD (MEMD) is an extension of the standard uni-

variate EMD. EMD aims at decomposing the input signal into AM-FM

modulated components called intrinsic mode functions or IMFs ci(t) and a140

bias term or residue r(t).

x(t) =
N∑
i=1

ci(t) + r(t) (1)

where x(t) is the input time series and N is the total number of IMFs. An

IMF is defined as a signal having zero mean where the number of extrema

and zero crossing must either be equal or at most differ by one (Huang et al.,

1998). In order to process signals of higher dimensions, extended versions of145

the standard EMD, termed Bivariate EMD (Rilling et al. (2007)), Trivari-

ate EMD (Rehman and Mandic (2010)) and Multivariate EMD (Rehman

and Mandic (2009)) have been developed . Bivariate and Trivariate EMD
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deals with two and three dimensional signals respectively, whereas MEMD

is generalization of the same to n dimensions. The primary challenge in150

extending the univariate EMD to the multivariate case is the calculation of

the envelope and the local mean in higher dimensions.

Rilling et al. (2007) proposed that, for the bivariate case, the envelope

can be constructed by projecting the signal in multiple directions (repre-

sented by k uniformly distributed unit vectors in the complex plane) and155

by interpolating the extrema of projected signals via spline fitting. The

same concept is extended to three and general n dimensions by considering

uniformly sampled points on the unit three and n-dimensional spheres re-

spectively. The multiple directions are then represented by the unit vectors

(direction vectors) from the center of the n-sphere to these points. Mathe-160

matical details can be seen in Rehman and Mandic (2009) and Aftab et al.

(2017a).

The multiple projections are used to generate the envelope and its mean.

The projection onto each unit vector results in a one-dimensional variable

for which it is easy to identify the extrema. Once the projections in each165

direction are calculated; the (one-dimensional) extrema are sampled and

corresponding time indices are recorded. The corresponding time indices for

each vector gives its extrema. That is, if an extremum is identified in any

projection direction, the full n-dimensional point at that time is recorded

as an extremum. The envelope is then generated for these extrema and the170

process is repeated for multiple directions. Thus multiple n-dimenisonal

extrema curves are generated which are averaged to get the mean envelope.

The MEMD method to decompose n-dimensional input signal x =

[x1, x2, . . . xn] into IMFs is summarized below (Rehman and Mandic, 2009).

Step I Set up K direction vectors uk with k = 1 . . . K by choosing uni-175

formly distributed points on the n dimensional sphere.

Step II Find the projections pk(t) of the input signal X along the direction

vectors uk.

Step III Identify the maxima of projections pk(t) and corresponding time

instants tk.180

6



Step IV Generate n-dimensional envelope curve ek(t) by interpolating

[tk,X(tk)].

Step V The n-dimensional mean of envelope curve is then given by

m =
1

K

K∑
k=1

ek(t) (2)

Step VI Extract n-dimensional detail d(t) using d(t) = X(t)−m(t).

Step VII Repeat the steps I-VI using d(t) as input till it fulfils the criteria185

for an IMF.

Step VIII Calculate the residue r(t) = X(t) − d(t) and iterate the proce-

dure on r(t) till there are no more IMFs left to be extracted.

3. Mode Alignment Property of MEMD

An important consequence of MEMD is its mode alignment property.190

By virtue of this characteristics the different common oscillating modes in

the multivariate signal are aligned in the same indexed IMFs Rehman and

Mandic (2009). This can be explained by the use of following illustrative

example.

3.1. Mode Alignment :: Illustrative Example195

In order to accentuate the mode alignment property, we consider a mul-

tivariate signal of four variables A, B, C and D containing four oscillatory

modes (f1, f2, f3, f4). The signals are generated in such a way that they have

some modes common among them. In order to illustrate the robustness of

the MEMD to phase difference between different data channels, different200

initial phase angles are also incorporated. A time varying bias (b = 0.1t) is

also added in variables A and B to make the signals non-stationary. The

signals composition, variance of added noise and the associated phase angles

are given in Table 1 (only phase angles with non-zero value are mentioned).

The D variables also contains significantly higher noise level as well.205
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Table 1: Signal composition (mode alignment example)

Variables↓ f1 f2 f3 f4 Phase Bias Noise var

A 3 – 3 3 6 f4 = π/2 +ve 0.2
B – 3 3 – 6 f3 = −π/2 -ve 0.2
C 3 3 – 6 f1 = π/4 – 0.2
D 3 3 – 3 – – 1.0

The objective is to analyze this tetra-variate signal using MEMD and to

observe whether it can align these modes in the same indexed IMFs. The

signals and the resultant IMFs from MEMD process are shown in Figure 1.

In total nine (9) IMFs and a residual are extracted. The noise content

has been extracted in the first three IMFs with variable D IMFs showing210

significant noise levels. It can be seen that oscillations common between

A, B and C with frequency f3 are present in the fifth IMF of A, B and C,

whereas the f2 mode, common between B and D, is extracted in the sixth

IMF of these variables. Similarly f1 is present in the eighth IMFs of A,

C and D. The mode f4, present in A and D, being the highest frequency215

oscillation is extracted in the fourth IMF of A and D variable i.e the first

IMF after the noise content. The non-stationary effects arising due to the

time varying bias are extracted in residue of variables A and B, as other

two variables have no bias. Thus, this example illustrates the ability of the

MEMD to align the common oscillatory modes in different signals that can220

be utilized for the plant wide oscillation detection.

The end effects are reduced using the mirror symmetry as proposed by

Rilling et al. (2003). The parameters used for stopping criteria are σ1 =

0.075, σ2 = 0.75, α = 0.075 (Rilling et al., 2003)1.

4. Grouping Algorithm225

It has been shown that MEMD is capable of aligning common oscilla-

tory modes in multivariate signal in same indexed IMFs, but in order to

have automatic plant wide detection and grouping of different oscillatory

1For details of σ1, σ2, α please refer to Rilling et al. (2003)
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Figure 1: Mode alignment illustrative example
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modes based on MEMD, some post processing is required. In this section we

propose a grouping algorithm that is used for automatic plant wide oscilla-230

tion detection.The major steps involved in grouping algorithm are explained

next.

4.1. Normalized Correlation Coefficient Matrix

The first step in the algorithm is the calculation of a correlation coefficient

matrix Λ. This is required because the MEMD, like the standard EMD235

process, may also generate spurious IMFs, due to spline fitting issues as

highlighted in (Peng et al. (2005), Aftab et al. (2016), Aftab et al. (2017a),

Srinivasan and Rengaswamy (2012)) and leakage effects where one principal

mode may leak into other IMFs. As the IMFs so generated are nearly

orthogonal, these pseudo-components will be poorly correlated with the240

original signal.

Therefore the correlation coefficient can be used to assess the significance

of IMFs as reported in (Peng et al. (2005), Srinivasan and Rengaswamy

(2012) and Aftab et al. (2016)). For the jth variables of the multivariate

signal xj(t), the correlation coefficient ρij with corresponding ith IMF is245

calculated from

ρij =
Cov(cij , xj)

σxj
σcij

, i = 1, 2, 3 . . . N (3)

where Cov is the covariance, cij(t) is the ith IMF corresponding to jth vari-

able and xj(t) is the jth variable in input signal; σxj
and σcij are the standard

deviations of the jth variable and corresponding IMF i, respectively. N is

the total number of IMFs and J is the total number of variables in the250

multivariate signal.

The normalized correlation coefficient λij, for each variable j, is calculated

for all N IMFs using

λij =
ρij

maxi(ρij)
, i = 1, 2, 3 . . . N (4)

The matrix Λ is then constructed from the individual λij, in such a way

that each row contains the correlation coefficient of same indexed IMF with255
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jth variable, thus giving N byJ matrix of correlation coefficients.

Λ =



λ11 λ12 . . . λ1(J−1) λ1J
λ21 λ22 . . . λ2(J−1) λ2J
...

...
...

...
...

λ(N−1)1 λ(N−1)2 . . . λ(N−1)(J−1) λ(N−1)J
λN1 λN2 . . . λN(J−1) λNJ


(5)

4.2. Grouping Algorithm

Although owing to the mode alignment property of MEMD all the same

indexed IMFs (each row in matrix Λ) represent similar oscillatory modes,

yet due to presence of pseudo IMFs (as highlighted in previous section), a260

grouping algorithm is required, so that only the dominant modes in signifi-

cant IMFs shall be considered for plant wide oscillation detection.

Thus the proposed grouping technique searches every row (same indexed

IMFs for all J variables) for all the correlation coefficients greater than cer-

tain threshold, say η. The variables in a row, that are greater than the265

threshold, are grouped together representing same oscillatory mode. In this

way all rows are searched one after another to group common oscillatory

modes across all variables. The grouping is accomplished using the proce-

dure outlined in Table 2

In case of multiple oscillations, one jth variable may reside in more than270

one group, thereby giving the insight into the different oscillatory modes

present in each variable.

4.3. Finding Noisy IMFs and Regrouping

Noisy IMFs may have significant correlation with the input signal, in

particular for signals comprising of random noise only or with higher noise275

content. Therefore these noisy IMFs may be grouped together with high

frequency oscillatory modes. In order to find the IMFs (identified in the

previous step), void of any oscillatory mode, the method proposed by Hoyer

Hoyer (2004) and used by Srinivasan and Rengaswamy (2012) is considered

here.280
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Table 2: Grouping algorithm

1. For each row i of matrix Λ, find variables j with
λij ≥ η.

2. Assign the variables with λij ≥ η to group Gk.

3. The j variables within the same Gk represent oscil-
lation group with similar frequency.

The process called sparseness index (SI) calculation uses the fact that

the noisy signal will have power in a broad frequency range, whereas the

oscillatory mode will have dominant magnitude at only one frequency. So

the sparseness index of the signal x given by (6) will be approximately zero

for the noise signal and will be nearly one for purely oscillatory signals.285

SI(x) =

√
N −

(∑
|Xi|/

√∑
|Xi|2

)
√
N − 1

(6)

where X is the frequency spectrum of times series x(k) and N is the number

of frequency bins.

The SI of the IMFs grouped in each Group Gk is calculated from their

frequency spectrum and only those IMFs are retained that have sparseness

greater than some threshold γ, while rest are shifted to group G0 represent-290

ing noise only.

5. Default Parameter Settings

The grouping algorithm described in the previous section relies on tuning

of parameters like number of direction vectors for MEMD and thresholds for

the correlation coefficient and sparseness index. This section briefly outlines295

the motivation for choosing the default settings of these parameters. The
12



settings are also summarized in Table 3.

5.1. Number of Direction Vectors

The multidimensional envelope for MEMD process is generated using the

signal projection in different directions. The number of direction vectors300

shall be sufficient to allow accurate envelopes to be generated and thus

ensure that multivariate sifting process yields consistent results. A too high

number of direction vectors gives rise to unnecessary computational load

without improving the results much.

It has been observed that results are quite consistent if the number of305

direction vectors is about four times the number of control loops in question.

Increasing the number of direction vectors further does not effect the results

much. Therefore the default setting for number of direction vectors used in

this work is four times the number of variables in the input signal.

5.2. Correlation coefficient (η)310

The grouping algorithm requires the definition of the threshold η for the

threshold normalized correlation coefficient. In the work by Srinivasan and

Rengaswamy (2012) the threshold used to distinguish the dominant IMFs

from the pseudo-components is taken as 0.5. The same threshold is used in

this work as the default setting as it ensures that only dominant oscillatory315

modes are captured. The same threshold is also used in our recent work

Andersson et al. (2017). This threshold can be lowered but this will increase

the risk getting spurious groupings.

5.3. Sparseness Index Threshold (γ)

Sparseness index is used to distinguish between IMFs with significant320

noise content and ones with pure oscillations. The signal with higher SI will

have a narrower frequency band and therefore the IMFs with SI greater than

certain threshold, representing the pure oscillatory modes, are retained. The

IMFs with SI lower than the threshold are classified as the ones with signif-

icant noise content. As the objective is to group variables having distinct325

oscillation the threshold used in this work is taken to be 0.58 (same thresh-

old used in previous work Aftab et al. (2017a)). This threshold will ensure
13



that the signals with narrower frequency band, containing the primary oscil-

lations and the related harmonics (if any) can be captured. The lower value

is not desirable as only the dominant and distinct oscillations need to be330

considered. The threshold can be increased but it may risk some boundary

line cases to be excluded.

More detailed explanation about the selection of the said threshold can

be seen in Aftab et al. (2017a).

Table 3: Default Parameters Setting

Parameter Default value
Direction Vectors 4 x number of loops

Correlation Threshold (η) 0.5
Sparseness Threshold (γ) 0.58

6. Proposed Algorithm335

The proposed algorithm for plant wide oscillation detection can be divided

into the following steps.

Step I Process the multivariate input signal using MEMD.

Step II Calculate the correlation coefficient ρij of each ith IMF with cor-

responding input variable. i.e jth variable of multi-variable input340

as given in equation (3).

Step III Calculate corresponding normalized correlation coefficient λij us-

ing relation in equation (4).

Step IV Construct the Correlation Coefficient Matrix Λ according to equa-

tion (5).345

Step V Search each row of Λ to group similar oscillations using the group-

ing algorithm given in section 4.2.
14



Step VI Calculate the sparseness index all IMFs per criteria given in sec-

tion 4.3.

Step VII IMFs with sparseness less than the given threshold are transferred350

to 0th group G0 .

Step VIII If transferring of IMFs as per step VII makes any group empty

then re-number the group index k.

Step IX Find the characteristic power spectrum of each group using the

member with maximum sparseness.355

Step X Calculate the frequency/period of oscillations for each group using

IMF with maximum sparseness via ACF method (Thornhill et al.,

2003) .

Step XI In case of two or more groups show same frequency, the variables

are merged into one group.360

7. Simulation Example

In this section the proposed algorithm is applied on the simulation ex-

ample consisting of tetra variate signal (same signal as discussed in Section

(3.1)). The MEMD process generated 9 IMFs and a residue component and

the normalized correlation coefficient matrix is given in Table 4.365

The elements of Λ that fulfil the grouping criteria in each row are high-

lighted. The final grouping for the simulation example is shown in Table

6.

All the significant IMFs are checked for sparseness and it is found that

first three IMFs of variable D are noisy (SI < γ) and hence transferred370

to G0. In total four oscillatory groups are identified corresponding to four

oscillatory modes (f1 . . . f4). Frequencies f4, f3 . . . f1 are arranged in groups

(G1 . . . G4) respectively with highest frequency residing in the first group

(as the frequency of IMF decreases with IMF index). Furthermore, the

proposed method also successfully highlighted the modes that are common375

among different variables. Apart from grouping similar modes significant

noise component in D is also confirmed.
15



Table 4: Normalized correlation coefficient matrix (simulation example)

↓ IMF / Variable → A B C D

1 0.18 0.20 0.16 0.93

2 0.13 0.14 0.14 0.69

3 0.36 0.09 0.12 0.70

4 1.00 0.32 0.34 1.00

5 0.95 0.96 0.97 0.32

6 0.12 1.00 0.10 0.95
7 0.15 0.08 0.03 0.12

8 0.86 0.47 1.00 0.96
9 0.19 0.19 0.11 0.23

Residue 0.63 0.80 0.16 0.24

Table 5: Spectral shape associated with variables (NMF method)

↓ Basis Functions Variables
w1 A,C
w2 B
w3 D
w4 A,D

7.1. Simulation Example with NMF Method

The same signals are analysed with NMF method for comparison pur-

poses with the non-stationary bias terms removed from the data for this380

analysis (since it is known that the NMF method has problems with non-

stationary signals). The NMF method, like principal component analysis

(PCA) and independent component analysis (ICA), works on the matrix

of power spectra and decomposes this power spectra matrix as a sum of p

basis functions w
′
1 . . . w

′
p (Thornhill and Horch, 2007). The basis functions385

determine spectrum of each cluster.

The results depicting the frequency spectrum of each basis function is

shown in Figure 2. Variables associated with different spectral shapes (ba-

sis functions) are shown in Table 5. It can be seen that basis functions

contains multiple frequency peaks, that are not too different from the indi-390
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Figure 2: Basis functions from NMF method for simulation example

Table 6: Final grouping simulation example

Variable # ↓ G0 G1 G2 G3 G4

A – 3 3 – 3

B – – 3 3 –
C – – 3 – 3

D 3 3 – 3 3

vidual power spectra of the variables. Moreover grouping based on common

oscillations is not so obvious and needs further scrutiny of the basis spectra.

The comparison shows that the proposed method points out different

common modes in all loops quite effectively and in an automated manner,

while catering for the the non stationary trends in the data as well.395

8. Case Studies

8.1. Case Study-I

Time series data from 12 measurements (tags) of the challenge prob-

lem (1934 samples with sampling rate 1 minute) (Tangirala et al., 2005)

(Thornhill et al., 2002) is analyzed using the proposed scheme. The data400

is from a pulp manufacturing process simulation where a stream of desired
17
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Figure 3: Process schematic case study-I

composition, from the combination of soft and hard wood pulp, is formed

(process schematic shown in Figure 3). It is being reported that the trends

exhibit two oscillatory modes, one at 0.002min−1 (≈ 500 mins) and other

with higher frequency 0.02min−1 (≈ 50 mins) (Thornhill et al., 2002). The405

objective is to process this 12-variate signal (shown in Figure 4) using the

proposed method, and to analyze how well the method can group the time

trends with similar modes.

The correlation coefficient matrix (5) formed by the proposed method is

given in Table 7. The entries highlighted in green are the ones that fulfilled410

the grouping criteria given in section 4.2.

In total four distinct groups are identified in the final arrangement (Table

8), G0, with Tag 2 and 5, representing trends with noise and G1, with Tag11

as the only member, represents presence of a mode with frequency 0.0424

min−1.415
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Figure 4: Time trends (normalized) case study-I

G2 represents oscillation with frequency 0.02 min−1 and contains Tags 1

and 11. The group G3 groups oscillations with frequency 0.004min−1 and

tag 4 is the only member of this group. The primary oscillation with fre-

quency 0.002min−1 is represented by G4, and Tags 3-10 and 12 exhibit this

oscillation. The frequencies and the members of each group are summarized420

in Table 9. The corresponding power spectra of the each group are shown

in Figure 5.

8.1.1. Root Cause Analysis

The results (Table 8) shows that 9 out of 12 tags (Tags 3-10 and 12) are

oscillating with frequency 0.002min−1 and group G4 represents this primary425

oscillatory mode. It is therefore, quite intuitive to search for the root cause

of this oscillation.

In case this oscillation arises due to non-linearity some of the tags in

G4 (frequency 0.002min−1) must exhibit higher order harmonics (Thornhill

et al., 2001). G3, coming from IMF 7, contains Tag 4 only. Figure 7 shows430
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that IMF7 contains the second and third harmonics of the oscillation in

IMF8, which is present in G4. Thus presence of higher order harmonics

confirms the presence of non-linearity as the source of oscillation.

Table 7: Corelation coefficient matrix Λ for case study-I

IMF Tags (j)
(i)↓ 1 2 3 4 5 6 7 8 9 10 11 12

1 0.01 1.00 0.12 0.03 1.00 0.13 0.03 0.05 0.02 0.02 0.11 0.47

2 -0.01 0.75 0.07 0.05 0.80 0.10 0.02 0.03 0.02 0.02 0.14 0.42

3 0.06 0.52 0.11 0.09 0.57 0.11 0.03 0.10 0.01 0.01 0.21 0.36

4 0.25 0.33 0.12 0.22 0.35 0.11 0.01 0.24 0.01 0.03 0.69 0.34

5 0.69 0.19 0.13 0.23 0.17 0.08 0.07 0.22 0.01 0.00 0.88 0.31

6 1.00 0.13 0.10 0.26 0.15 0.19 0.01 0.17 0.06 0.03 1.00 0.42

7 0.17 0.11 -0.02 0.61 0.29 -0.05 0.16 0.36 0.31 0.12 0.20 0.23

8 0.11 0.07 1.00 1.00 0.84 1.00 1.00 1.00 1.00 1.00 0.28 1.00
9 -0.01 0.07 0.12 -0.01 0.01 0.07 -0.02 -0.13 -0.07 -0.11 -0.03 0.06
10 -0.00 0.08 -0.09 -0.10 -0.04 -0.15 0.01 -0.15 -0.09 -0.03 -0.04 0.06

8.1.2. Advantages of the Proposed Scheme

Apart from the applicability to the non-stationary time series another435

foremost advantage offered by the proposed method is the level of automa-

tion where groups are identified readily and the frequency of oscillation is

determined. The IMFs with their particular characteristics can be readily

used to determine the frequency of oscillations via ACF method as discussed

in Aftab et al. (2017a). This level of automation is hard to achieve in the440

Table 8: Final grouping case study-I

Group # ↓ Tag 1 Tag 2 Tag 3 Tag 4 Tag 5 Tag 6 Tag 7 Tag 8 Tag 9 Tag 10 Tag 11 Tag 12
G0 3 3

G1 3

G2 3 3

G3 3

G4 3 3 3 3 3 3 3 3 3
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Table 9: Groups and associated frequencies (case study-1)

Group # ↓ Frequency Tags

G0 Noise 2, 5
G1 0.0424 min−1 11
G2 0.02 min−1 1, 11
G3 0.004 min−1+ harmonics 4
G4 0.002 min−1 3, 4, 5, 6, 7, 8, 9, 10, 12

Frequency [min-1]

10-3 10-2 10-1

G
0

G
1

G
2

G
3

G
4

Figure 5: Frequency response of each group case study-I
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conventional Fourier based methods like NMF, PCA and ICA. Moreover,

this fact also helps in identifying the presence of harmonics, thereby indicat-

ing the presence of non-linearity as root cause and assisting in the further

diagnosis.

Furthermore, the method is also able to identify the presence of multiple445

oscillation in Tag 11 with frequencies 0.0424min−1 and 0.02min−1. The

faster mode cannot be captured by PCA (Thornhill et al., 2002) and GA

(El-Ferik et al., 2012) methods.

8.2. Case Study-II

We now consider a more complex case study, where time trends from a450

refinery process are considered. The process is a hydrogen reformer and

the same case study is being analyzed by Thornhill et al. (2002); Tangirala

et al. (2005) and Tangirala et al. (2007) using PCA, PSCMAP and NMF

based methods respectively. The schematic of refinery process is shown in

Figure 6. The data consists of 37 Tags (Figure 7) each with 512 data points455

and sample rate 1 min.

The data trends from 37 tags are processed using the proposed method

and the final grouping is given in Table 10. In total 9 groups (G0-G8) are

identified with G0 representing random noise. Different frequency modes

associated with each group can also be seen in spectra plotted in figure 8.460

Modes with low frequency (< 0.0004min−1) are captured in G8 and con-

tains Tags 5, 21, 22, 31 and 36. Tag 5 also finds its place in the slightly

higher frequency group, i.e. G7, thereby confirming the result reported by

Thornhill et al. (2002). The next group G6 gives the trends with oscillatory

mode having frequency around 0.0008min−1 and contains Tags 8, 12 and465

35-37. Oscillatory mode with frequency around 0.001min−1 are represented

by G5 and Tags 7-8, 12, 14-15, 31 and 35-37 are part of this group. Here

again Tags 35-37 are part of both G5 and G6 correctly indicating presence

of more than one modes in these tags. The frequencies around 0.002 are

represented by G4 with Tags 12, 14-18 and 26 as the members.470

The biggest cluster is that at frequency 0.06min−1 and the oscillations

are attributed to valve non-linearity Thornhill (2005). The results show

that Tags 1-4, 6-8, 10-11, 13, 15-20, 24-26, 28, 30, 33-34 and 37 exhibit
22
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Figure 6: Process schematic case study-II

this oscillatory mode. Tags 2, 11 and 33-34 are shown to have oscillation of

frequency 0.12min−1 and grouped in G2. Tag 37 with frequency 0.3min−1475

is the only member of group G1. Group G0 contains the tags that represent

variables with only noise or significant noise contribution. Tag 23, 27 ,

and 29 are members of G0 only thereby contain random noise, whereas

other members 6-9, 13, 15-16, 24-26 and 30 have significant noise content

in addition to the presence of oscillatory modes. A strange inclusion in G0480

is Tag 32, that contain high frequency mode at 0.3min−1 as reported in

Thornhill et al. (2002). This is so because significant noise content in Tag

32 gives the sparseness index of 0.46 and is therefore not included in G1

along side Tag 37.

8.2.1. Oscillation Diagnosis485

The main oscillatory mode in this case study is the one with frequency

0.06min−1 and represented by group G3. The majority of the control loops

are affected by this oscillation and hence can be considered as the primary

oscillation in the process. It is therefore interesting to see if the proposed
23
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Figure 7: Time trends (normalized) case study-II
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method can give some hint about the source of this oscillation. Table 10490

shows that group G2 is subset of G3 and oscillation (frequency 0.12min−1) is

twice as that of G3 (Figure 8). Therefore G2 can be considered as containing

the second harmonic of oscillations captured by G3 and the non-linearity is

the source of this oscillation in the plant.

The tags included in G2 can help in locating the source of this non-495

linearity induced oscillation. The analysis reported by Thornhill (2005),

Choudhury (2006) and Zang and Howell (2007) also shows that Tags in-

cluded in G2 exhibit non-linearity signatures. Though Tags 33 and 34 are

declared most probable source of this oscillation by Thornhill (2005), and

Zang and Howell (2007) respectively.500

Therefore the proposed method is able to detect different clusters in the

plant data on the basis of dominant modes and at the same time identify the

set of variables that are most likely to be the source of the primary oscilla-

tion. Clearly, it is recommended that the this analysis is complemented by

additional investigations, for example non-linearity analysis (Aftab et al.,505

2017a; Thornhill, 2005; Choudhury, 2006; Zang and Howell, 2007) to accu-

rately pinpoint the source of the primary oscillation. However, the preced-

ing analysis has significantly reduced the number of tags that need to be

analyzed in more detail.

9. Conclusions510

In this paper a novel plant wide oscillation detection based on adaptive

multivariate data analysis is presented. The method is shown to be robust in

identifying dominant oscillations and grouping them together, as illustrated

on case studies that have been frequently used in previous literature. The

proposed method is capable of handling non-linear and non-stationary time515

series, where the standard Fourier-based methods are liable to be erroneous.

The proposed method is also shown to be capable of indicating the variables

that are most likely to be the root cause of oscillation. Furthermore, the

method is adaptive in nature and doesn’t require a priori assumption or

pre-processing or any kind of filtering.520

25



Frequency [min-1]

10
-3

10
-2

10
-1

10
0

G
1

G
2

G
3

G
4

G
5

G
6

G
7

G
8

Figure 8: Frequency content of each group (case study-II)
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Table 10: Final grouping case study-II

Tag # ↓ G0 G1 G2 G3 G4 G5 G6 G7 G8

1 3

2 3 3

3 3

4 3

5 3 3

6 3 3

7 3 3 3

8 3 3 3 3

9 3

10 3

11 3 3

12 3 3 3

13 3 3

14 3 3

15 3 3 3 3

16 3 3 3

17 3 3

18 3 3

19 3

20 3

21 3

22 3 3

23 3

24 3 3

25 3 3

26 3 3 3

27 3

28 3 3

29 3

30 3 3

31 3

32 3

33 3 3

34 3 3

35 3 3

36 3 3 3

37 3 3 3 3
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