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Abstract

Oscillation detection is usually a precursor to more advanced performance

monitoring steps such as plant wide oscillation detection and root cause

detection. Therefore any false or missed detection can have serious impli-

cations. Oscillation detection is a challenging problem due to the presence

of noise and multiple modes in the plant data. This paper presents an

improved and robust automatic oscillation detection algorithm based on

noise-assisted data analysis that can handle multiple oscillatory modes in

the presence of both colored and white noise along with non-stationary

effects. The dyadic filter bank property of multivariate empirical mode

decomposition has been used to accurately detect the oscillations and to

calculate the associated characteristics. This work improves upon the exist-

ing auto covariance function based methods. The robustness and reliability

of the proposed scheme is demonstrated via simulation and industrial case

studies.

Keywords: multivariate empirical mode decomposition, mode mixing,

multiple oscillations, dyadic filter bank property.

1. Introduction

Oscillation detection is an important aspect of control loop performance10

assessment (CLPA) owing to the fact that about 30% of all industrial control
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loops are reported to be oscillating (Srinivasan et al. (2007)). Oscillations

can be caused by a variety of issues such as process degradation, poor con-

troller tuning, presence of non-linearities, and external disturbances. Oscil-

lations, if allowed to carry on unchecked, can adversely impact productivity,15

integrity and economics of any industrial process (Chaudhry et al., 2004;

Tangirala et al., 2007).

Reliable and accurate detection of oscillation is paramount in identify-

ing control loops requiring further investigation. Such further investigation

may involve looking for the cause of oscillation within the loop itself, or20

looking for causes elsewhere in the plant. Thus detection of any false mode

or failure to identify any real oscillation can ruin the whole diagnosis pro-

cess. Furthermore, accurate estimate of the oscillation characteristics like

period of oscillation and amplitude are also helpful in plant wide oscillation

detection and fault localization.25

Broadly speaking oscillation detection can be subdivided into two groups,

namely a) Oscillation detection in individual loops/variables, and b) Plant

wide oscillation detection where loops/variables oscillating with similar fre-

quencies are grouped together to look for the common cause of performance

degradation30

The latter group is not an oscillation detection method in a stricter sense,

as it only groups different variables without identifying the presence or

extent of oscillations within each loop (Li et al., 2010). Therefore this

work will be focused on the first type, i.e. oscillation detection, and a

summary of some oscillation detection methods is presented here. More35

detailed description can be found in review papers by Thornhill and Horch

(2007) and Bacci di Capaci and Scali (2018).

Hägglund (1995) proposed an on-line and a simple yet effective procedure

based on monitoring of the control error and computing integral absolute

error (IAE) between successive zero crossings, to detect the oscillations.40

A Modified Empirical Model Decomposition (EMD) method is proposed

by Srinivasan et al. (2007) where a non-constant mean from plant data is

removed using modified EMD process.

Li et al. (2010) have developed a method where the Discrete Cosine Trans-
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form (DCT) is used to isolate the different frequency components in the os-45

cillatory signal followed by checking the regularity of zero crossings in these

isolated components to identify the presence or absence of oscillations. The

recent list of oscillation detection methods also includes the works by Xie

et al. (2016b,a).

Several authors have investigated the use of the Auto Covariance Function50

(ACF) for detection and characterization of oscillations. The ACF of an

oscillating signal oscillates with same period as the original signal and at

the same time it is less sensitive to noise as white noise is confined to zero

lag only. This idea is being used by Miao and Seborg (1999); Thornhill et al.

(2003); Srinivasan and Rengaswamy (2012); Naghoosi and Huang (2014);55

Karra et al. (2010); Wardana (2015) to detect the oscillations in the control

loops data.

Of all the methods listed above the ACF based methods are more robust

and reliable in the presence of noise, that is always present in physical mea-

surements and can complicate the analysis to a significant extent. But in60

spite of all these advantages the presence of multiple oscillations in the pres-

ence of white and coloured noise needs special treatment and care even in the

ACF based methods. In the work by Thornhill et al. (2003), a filter is used

to filter out the different oscillatory modes before the detection procedure.

Tuning of filter parameters is an uphill task and needs good understanding65

of the underlying process dynamics. The EMD based approach given by

Srinivasan and Rengaswamy (2012) gets rid of the filter requirement and is

reported to be performing better than the DCT based approach given by

Li et al. (2010), and can handle non-linear and non-stationary time series,

but it suffers from inherent limitations associated with the EMD process70

itself, i.e. the EMD process is prone to mode mixing, especially in presence

of noise and multiple oscillations. Presence of colored noise complicates the

things further. This mode mixing can adversely affect the oscillation detec-

tion mechanism and has a tendency to cause erroneous results. Moreover,

the accuracy of existing schemes decrease significantly with the increase in75

the noise variance and with the presence of colored noise.
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1.1. Contribution of This Paper

In this work, the limitations of the EMD based oscillation detection pro-

cess are highlighted using simulation studies as well as industrial data, and

an improved oscillation detection method based on Noise-Assisted Multi-80

variate EMD (NA-MEMD) is presented. The dyadic filter bank property

of MEMD is exploited to improve the accuracy and reliability of the os-

cillation detection mechanism. The proposed method can handle multiple

oscillations in the presence of both white and coloured noise with equal

robustness and reliability. Moreover, the proposed method also helps in85

characterizing the oscillations caused by non-linear effects by highlighting

the presence of harmonics.

This paper is organized as follows. Section 2 gives the detailed description

of the proposed method with a summary of EMD and the mode mixing

issues related with it. It also highlights the basics of MEMD and NA-90

MEMD procedure. Simulations studies are presented in the section 3 and

finally industrial case studies are given in section 4 followed by conclusions.

2. Noise-Assisted Oscillation Detection

In this work, the use of noise-assisted multivariate EMD (NA-MEMD) is

proposed to detect the presence and frequency of oscillations in the signal.95

This method can handle both non-linear and non-stationary time series

and is found to be better than existing EMD based method proposed by

Srinivasan and Rengaswamy (2012). Here the mode alignment and dyadic

filter bank property of MEMD is utilized to formulate a robust and reliable

oscillation detection mechanism. The advantages of the proposed method100

over the standard EMD based method (Srinivasan and Rengaswamy, 2012)

are highlighted using Monte-Carlo simulations with varying noise levels and

industrial case studies.

The input signal is decomposed into constituent IMFs using NA-MEMD.

The IMFs so obtained are converted to the corresponding ACFs and the105

zero crossings are used to detect the presence or absence of oscillations. In

this section the limitations of the standard EMD process, especially with

regards to mode mixing problems, are highlighted.
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Next, a brief overview of the multivariate EMD is given, followed by the

steps involved in proposed oscillation detection algorithm.110

2.1. Empirical Mode Decomposition: Basics and Inherent Limitations

2.1.1. Empirical Mode Decomposition

Empirical mode decomposition adaptively decomposes the signal into sub-

components called Intrinsic Mode Functions or IMFs. Each IMF is a func-

tion that has zero mean and the number of extrema and zero crossings in the115

whole data set must either be equal or at most differ by one. The advantage

lies in the fact that the procedure doesn’t need any a priori assumption or

knowledge about the underlying process dynamics (Huang et al., 1998). The

EMD process basically sifts out fast oscillations from the input time series

(x(t)) by iteratively removing slow frequencies. These slow oscillations or120

modes are in fact local means m(t) of the envelope defined by spline fitting

of the extrema.

d(t) = x(t)−m(t) (1)

where d(t) represents the local fast mode component (Rilling et al., 2003).

The sifting process is iterated on d until it is an IMF (named c1(t)). Once

the IMF is extracted it is subtracted from the original signal and the sifting125

procedure is started again on the residue. This continues until there are no

more IMFs to be extracted. If ci(t) is the ith IMF and r(t) is the residue,

the sifting procedure gives

x(t) =
N∑
i=1

ci(t) + r(t) (2)

where N is the total number of IMFs. The details of the procedure can be

seen in Huang et al. (1998) and Rilling et al. (2003).130

2.1.2. Limitations of EMD

Although the EMD process is finding its way into a number of application

areas yet it is not free from problems or shortcomings. The foremost of

them all, that is well known and documented, is the mode mixing problem

(Gao et al., 2008). Mode mixing is defined as when one oscillatory mode135
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(here mode refers to an oscillation frequency) is present in more than one

IMF or one IMF contains several contrasting modes (Wu and Huang, 2009;

ur Rehman et al., 2013). This mode mixing can lead to erroneous results

when it comes to the detection of oscillations in a signal having multiple

oscillatory modes, noise and non-stationary effects. The simulation case140

study (section 3) highlights the effect of this mode mixing on the oscillation

detection problem.

2.2. Multivariate EMD (MEMD)

Multivariate EMD (MEMD) as the name suggests is an extension of the

standard univariate EMD algorithm, to multivariate or n−dimensional sig-145

nals. The term univariate signal here refers to a time series consisting of

single variable 1. Similarly time series having more than one variables are

termed multivariate or multidimensional2. For instance a multivariate sig-

nal X consisting of n variables x1 . . . xn with each variable having l samples

is given by150

X =


x1(1) x2(1) . . . xn(1)

x1(2) x2(2) . . . xn(2)
...

... . . .
...

x1(l) x2(l) . . . xn(l)

 (3)

The critical issue is how to get the envelope and its local mean in a higher

dimensional space. Rehman and Mandic Rehman and Mandic (2010) pro-

posed to get the signal projection in multiple directions in n−dimensional

space. Multiple directions are represented via direction vectors from the

center of a unit sphere to uniformly spaced points on its surface. The de-155

tails can be seen in Rehman and Mandic (2010) and Aftab et al. (2017).

2.2.1. Multivariate EMD (MEMD):: Algorithm

The MEMD of a multivariate signal X (given in equation 3) is carried

out using the following steps.

1The same definition applies to a single channel signal
2Thus, a n-dimensional signal means a time series consisting of n variables
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Step I Set up K direction vectors uk (k = 1 . . . K) via uniform sampling160

on the n-dimensional sphere.

Step II Find the projections pk(t) of the input signal along the direction

vectors using:

pk(t) = Xuk ∀ k = 1 . . . K (4)

Step III Identify the extrema of the projections pk(t) and the correspond-

ing time instants tk.165

Step IV Generate an n-dimensional envelope curve ek(t) by interpolating

[tk,X(tk)] using cubic splines.

Step V The multidimensional mean envelope curve m(t) is then given by

m(t) =
1

K

K∑
k=1

ek(t) (5)

Step VI Extract the n-dimensional detail d(t) (fast component) using170

d(t) = X(t)−m(t).

Step VII Repeat the steps I-VI using d(t) as input till it fulfils the criteria

for an IMF.

Step VIII Calculate the residue r(t) = X(t)−d(t) and iterate the procedure

on r(t) till there are no more IMFs left to be extracted.175

2.2.2. Dyadic Filter Bank Property of Multivariate EMD

An important aspect of EMD is its dyadic filter bank property in the

presence of noise. By virtue of this property the EMD process essentially

behaves like a sequence of band pass filters. Flandrin et al. (2004, 2014);

Wu and Huang (2004) have empirically demonstrated the dyadic filter bank180

characteristics of the EMD by applying it to a white noise sequence. The

same dyadic filter bank structure of standard EMD is preserved in higher

order variants i.e. MEMD (Rehman and Mandic, 2011).
7
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Figure 1: Dyadic Filter Bank property of MEMD (Aftab et al., 2017).

The dyadic filter bank property is further elaborated here by processing

a three channel3 white noise sequence using MEMD. The power spectrum185

of the resulting IMFs show two important properties of the MEMD: a) The

IMF power spectrum can be seen as the output of a series of band pass filters,

with band frequencies decreasing with IMF index, and b) the mode align-

ment characteristics, i.e., the same indexed IMFs have similar frequency

content.190

These effects are quite clear in the Figure 1, where the average power

spectrum of a three-channel noise sequence for 1000 white noise realizations

is plotted.

2.3. Noise-assisted MEMD (NA-MEMD)

The dyadic filter bank and mode alignment property of MEMD, as dis-195

cussed in the previous section, is exploited to eliminate the mode mixing

problem in the standard EMD procedure. The idea is to append two chan-

nels of white noise sequences to the signal under study to make a 3-channel

sequence This three channel signal is processed using MEMD and the IMFs

3The term channel signal here refers to a time series consisting of single variable.
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corresponding to the original signal are retained whereas IMFs of the noise200

sequences are discarded (ur Rehman et al., 2013). This procedure is called

Noise-Assisted MEMD (NA-MEMD) and the detailed algorithm is given in

Table 1.

As the noise channels span a broad frequency range, the MEMD arranges

their IMFs according to the dyadic filter bank structure. The IMFs of the205

original signal also follow the same pattern, thereby reducing the mode

mixing to a considerable extent.

Table 1: Noise-Assisted Multivariate EMD Algorithm

Step I Generate two uncorrelated white Gaussian
noise sequences with the same length as that
of the original signal.

Step II Add the two noise sequences (from step I) to
the original signal to make a multivariate sig-
nal of three variables/channels.

Step III Process the signal using MEMD. The resulting
IMFs will have three channels or variables.

Step IV Retain the IMFs in the channel corresponding
to the original signal, and discard the IMFs
corresponding to the noise channels.

2.4. Discarding Spurious and Noisy IMFs

2.4.1. Discarding Spurious IMFs

The NA-MEMD method used in this work, like the standard EMD pro-210

cess, may also generate spurious IMFs, due to spline fitting issues, as high-

lighted in (Peng et al. (2005)), Aftab et al. (2016), Srinivasan and Ren-

gaswamy (2012). These pseudo-components will be poorly correlated with

the original signal as both EMD and MEMD yields near orthogonal IMFs.
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The correlation coefficient therefore can be used to identify significant IMFs215

as reported in Peng et al. (2005), Srinivasan and Rengaswamy (2012) and

Aftab et al. (2016). The correlation coefficient ρi of the ith IMF ci with the

input signal x(t) is calculated from

ρi =
Cov(ci, x)

σxσci
, i = 1, 2, 3 . . . N (6)

where Cov denotes the covariance; σx and σci are the standard deviations of

the signal and the IMF, respectively, and N is total number of IMFs. Next220

the correlation coefficient ρi is normalized using 7. IMFs with normalized

coefficient λ greater than a certain threshold η are retained, while the others

are eliminated and added to the residue. The threshold η = 0.5 is used in

this work to remain consistent with the standard EMD based method of

Srinivasan and Rengaswamy (2012), so that results can be compared in an225

unbiased manner.

λi =
ρi

max(ρi)
, i = 1, 2, 3 . . . N (7)

2.4.2. Discarding Noisy IMFs

NA-MEMD, like the standard EMD may produce noisy IMFs that are cor-

related with the original signal (especially when noise amplitude is higher).

In order to eliminate these IMFs, the method proposed by Hoyer Hoyer230

(2004) and used by Srinivasan and Rengaswamy (2012) is adopted. The

sparseness index of signal X (here X denotes the magnitude of power spec-

trum of the signal x), given by (8), will be approximately zero for a white

noise signal and will be nearly one for a periodically oscillatory signal.

Sparseness(x) =

√
I −

(∑I
i=1 |Xi|/

√∑I
i=1 |Xi|2

)
√
I − 1

(8)

where I gives the number of frequency bins in power spectrum, while the235

index i identifies a particular frequency bin. IMFs with sparseness greater

than certain threshold are retained. The threshold used in this work is 0.5
10



to be consistent with the standard EMD based procedure, so that the com-

parison of proposed method is not influenced by the choice of this threshold.

2.5. Auto Covariance Function (ACF) of IMFs240

The Auto Covariance Function (ACF) of a signal is a popular choice to

analyse oscillations owing to the fact that white noise is confined to zero

lag of the ACF. The zero crossings of the ACF of the oscillatory IMFs, that

have qualified the correlation and sparseness test, is used to compute the

average period of oscillation T̄p and regularity index r of oscillations. If ∆t245

is the time interval between two successive zero crossings, then the average

period of oscillation T̄p for H such intervals will then be given by (Thornhill

et al., 2003; Srinivasan and Rengaswamy, 2012)

T̄p =
2

H

H∑
i=1

(∆ti) (9)

and the corresponding r statistics, that shows the regularity of oscillations

is then250

r =
1

3

T̄p
σTp

(10)

where σTp is the standard deviation of the time intervals between zero cross-

ings.

As discussed by Thornhill et al. (2003), oscillations are reported only if the

regularity index r for that particular signal is greater than 1. Furthermore,

as recommended by Thornhill et al. (2003), the first 11 zero crossings of the255

ACF are used in this work for calculating the average period of oscillation

and regularity index .

2.6. Proposed Algorithm

The proposed oscillation detection algorithm based on Noise-assisted

MEMD is given below.260

Step I Process the signal using NA-MEMD according to the steps in

Table 1.
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Step II Discard the IMFs that are noisy or uncorrelated with the original

signal according to criteria given in sections 2.4.2 and 2.4.1.

Step III Calculate the ACF of each retained IMF.265

Step IV Calculate the regularity index of oscillation r, mean period of

oscillation T̄ p and standard deviation σTp .

Step V Report the presence of oscillation if the regularity index r > 1,

along with estimates of T̄ p and σTp .

3. Simulation Studies270

The simulation studies are aimed at highlighting the advantages of the

proposed scheme in presence of non-stationary effects and both white and

colored noise. The simulations studies are carried out using examples from

Srinivasan and Rengaswamy (2012) and Li et al. (2010) with varying white

noise levels and also with colored noise. The results for 10000 such simula-275

tion runs for each case are compared with the existing standard EMD based

approach to ascertain the robustness and reliability of the proposed scheme.

The standard EMD based scheme, as already discussed, is prone to report

inaccurate results due to the mode mixing problem and this inaccuracy

increases with increase in the noise level.280

3.1. Example 1: Oscillation Detection with Varying White Noise levels

Consider a signal containing two modes or frequencies and a non-

stationarity corrupted with white noise (same as Example 3 from Srinivasan

and Rengaswamy (2012) and Li et al. (2010)).

x(k) = 0.05k2 + sin(2πf1k) + sin(2πf2k) + ν(k) (11)

with f1 = 0.2Hz,f2 = 1.0Hz, sampling rate 0.1 second and white Gaussian285

noise ν with variance σ2
v . Note that the parabolic term introduces non-

staionarity in the data. Simulations with 10000 different realizations of

white noise are carried out to compare the performance of proposed and

existing methods for different noise variances; σ2
v = 1.3, σ2

v = 3 and σ2
v = 4

12



that gives the signal to noise ratio (SNR)4 of 2.5, 1.7 and 1.4 respectively.290

The results in terms of success rate % are summarized in Table 2.

The oscillation detection is defined as successful if two oscillation frequen-

cies are reported for a simulation. Any other number of oscillations mean

that the detection has failed.

It can be seen that the proposed methods performed much better than the295

EMD based method whose detection capability is greatly compromised with

increasing noise levels. For barely 39% of the simulations it could detect

the two frequencies successfully when noise variance was 4 (SNR=1.4) as

compared to 94% for the proposed method. The histograms of estimated

mean periods of oscillation (with bin size 0.1) for the successful iterations300

are plotted in Figures 2-4. The vertical axis of the figures show the number

of iterations for a particular estimate of the period of oscillation, whereas

the horizontal axis shows the spread of estimated period of oscillations. The

proposed method gives quite accurate estimate, with almost all estimates

confined to one bin. In comparison the period estimates from the EMD305

based method show quite significant spread specially for higher noise levels.

3.2. Example 2 :: Effect of Colored Noise

The presence of coloured noise in the oscillating signal makes the detection

more difficult as discussed in Karra et al. (2010); Li et al. (2010). The

coloured noise ACF is not confined to zero lag, and oscillation detection in310

the presence of colored noise therefore needs extra care. In this example

the accuracy of the existing and proposed methods is analysed using the

signal containing two frequencies (as in example 1) in the presence of a non-

stationary trend and coloured noise. Colored noise generated by passing a

white noise of unit variance through a low pass filter 1/(1− 0.7z−1).315

The signal composition remains the same as in example 1 except that

the white noise has been replaced by colored noise. The simulations for

10000 different realizations of colored noise are carried out and results are

summarized in last row of Table 2. The results confirms the fact that the

introduction of coloured noise has reduced the success rate. In this case320

4SNR as defined in Li et al. (2010)
13



again the proposed method performs better with success rate of 80% as

compared to 66% of EMD based method in determining the two oscillation

frequencies correctly. The proposed method also gives better estimates of

the period of oscillation (Histogram Figure 5).

Table 2: No of successful Iterations as %age of 10000 noise realizations

Noise Type Success rate(%)
EMD based Method Proposed Method

Example 1
White σ2

v = 1.30 76% 97 %
White σ2

v = 3.0 50% 96%
White σ2

v = 4.0 39% 94%
Example 2 Coloured 66% 80%
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Figure 2: Histograms for estimates of period of oscillation, example 1 (white noise σ2 =
1.3). First row (EMD based method), second row (proposed method).

4. Industrial Case Studies325

In this section the robustness and advantages of the proposed scheme are

highlighted using the the three industrial case studies. The measurements
14
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Figure 5: Histograms for the estimates of period of oscillation, example 2 (coloured
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have multiple oscillatory modes or frequencies and also contain non-linearity

induced oscillations. Therefore, the case studies can effectively test the

ability of the proposed scheme to detect multiple oscillations in a real plant330

data.

4.1. Case Study-I

The data from a hydrogen reformer, also analysed in Thornhill et al.

(2002), Tangirala et al. (2005); Aftab et al. (2017); Karra et al. (2010), is

used in this case study. Five different tags 6, 11, 14, 19 and 33 (Figure335

6) show presence of multiple oscillations that are hard to identify man-

ually. The trends are processed by the existing and proposed oscillation

detection methods. The results given in table 3 show that the proposed

method is more effective and accurate in detecting the presence of multiple

oscillations and related characteristics. Moreover the proposed method also340

highlights the presence of harmonics in case of oscillations generated due to

non-linearity.
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The proposed method is able to identify multiple oscillations in tag 6,

whereas the existing EMD based method could only identify one oscillatory

frequency. Similar results are reported for tag 11 where standard EMD345

based method fail to identify the slow frequency oscillation.

For tags 14 and 19, the proposed method gives more reliable and accurate

estimates of oscillations characteristics. As far as tag 33 is concerned the

proposed method has correctly highlighted the presence of harmonics, a

characteristic of oscillations due to non-linearity. It has been reported in a350

number of studies that the said oscillations are generated due to valve non-

linearity, thus the proposed oscillation detection method has also confirmed

this fact. The detailed method for automatic detection of harmonics can be

seen in our previous work Aftab et al. (2017).

4.1.1. Comparison with Other Methods355

This case study has been mostly used for the plant-wide oscillation detec-

tion and root cause analysis. Karra et al. (2010) has used the same data set

for the oscillation detection problem. The results reported in Karra et al.

(2010) did not identify the multiple oscillations in different tags. Moreover,

the results reported for the one oscillation frequency are also less accurate360

as compared to the method proposed in this paper. The work by Karra

et al. (2010) requires additional filtering to isolate multiple oscillations and

noise effects and that requires the frequency known to be in advance.

4.2. Case Study - II

The data from four control loops, represented by tags 8, 9, 11 and 12365

(time trends and spectra given in Figure 7), from the challenge problem

(Thornhill et al. (2002)) are also analyzed. The results for both the schemes,

the proposed and existing one, are given in Table 4.

The time trend and spectrum of tag 8 shows a slow oscillation with period

around 500 mins. The existing EMD based method cannot capture this370

oscillation (r < 1). In contrast the proposed method is able to detect

this oscillation in the signal. Moreover, the proposed method has correctly

pointed out the presence of harmonics in tag 9, thereby confirming the non-

linearity as the source of oscillation. EMD based method only identifed
17



Table 3: Oscillation Characteristics Case Study-I

Tag Method IMF r value Tp σTp Oscillation
[min] [min]

Std. EMD 1 1.20 21.6 6.0 yes
Tag 6

Proposed
1 2.51 17.6 2.3 yes
2 5.1 39.8 2.6 yes

Std. EMD 1 5.5 16.7 1.0 yes
Tag 11

Proposed
1 5.9 16.5 0.93 yes
2 2.13 83.2 13.00 yes

Std. EMD 1 3.2 48.2 4.9 yes
Tag 14

Proposed Method 1 7.9 49.8 2.1 yes

Std. EMD
1 3.46 16.4 1.577 yes
2 2.73 70.6 8.59 yes

Tag 19
Proposed Method

1 6.48 16.4 0.84 yes
2 5.74 82.20 4.70 yes

Std. EMD 1 5.90 16.54 0.93 yes
Tag 33

Proposed Method
1 1.95 5.45 0.934 yes (3rd harmonic)
2 4.52 8.18 0.60 yes (2nd harmonic)
3 5.90 16.54 0.93 yes

18
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Figure 6: Time trends and spectra for case study-I

the fundamental harmonic. The oscillation statistics reported by proposed375

method are also more accurate than the standard EMD based method.

Similarly for the multiple oscillations in tag 11, the r statistic and σTp

shows that the proposed method gives more accurate estimates of related

characteristics as compared to the existing method. Same is the case with

the slow oscillation in tag 12.380

4.3. Case Study-III

The data for three control loops, namely tag 1 ,2 and 3 from an industrial

paper plant has been analysed for the presence of oscillations. The time

trends and the spectra are shown in Figure 8. The results presented in

Table 5 clearly indicates the advantages of the proposed method.385

The proposed method identifies three oscillation frequencies in tag 1 but

the standard EMD approach can only identify two of them. Similarly for tag

2 the standard EMD can identify only one oscillation whereas the proposed

method indicates the presence of multiple (three) oscillations. Moreover,
19



Table 4: Oscillation Characteristics Case Study-II

Tag Method IMF r value Tp σTp Oscillation
[min] [min]

Std. EMD 1 r< 1 no
Tag-8

Proposed 1 13.3 517.3 12.94 yes

Std. EMD 1 5.29 514.33 32.4 yes
Tag-9

Proposed
1 76.98 253 1.09 yes (harmonic)
2 45.71 510.6 3.72 yes

Std. EMD
1 3.0 23.27 2.5 yes

Tag-11 2 8.2 51.0 2.07 yes

Proposed
1 4.08 22.9 1.86 yes
2 16.9 51.27 1.0 yes

Tag-12 Std. EMD 1 4.0 572.3 46.7 yes
Proposed 1 23.2 501.2 7.24 yes
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Figure 7: Time trends and spectra for case study-II
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the noise-assisted technique has correctly identified the presence of single390

oscillation in Tag 3 that the standard EMD method could not detect.

Table 5: Oscillation Characteristics Case Study-III

Tag Method IMF r value Tp σTp Oscillation
[min] [min]

1 3.98 5.15 0.43 yes
Std. EMD

2 1.6 19.7 4.0 yes
1 4.8 5.03 0.34 yesTag 1

Proposed 2 1.87 8.24 1.47 yes
3 3.37 18.85 1.86 yes

Std. EMD 1 1.0 6.72 2.24 yes
Tag 2

Proposed
1 1.38 3.51 0.84 yes
2 2.0 6.67 1.07 yes
3 3.28 8.85 0.90 yes

Tag 3
Std. EMD < 1 – – – no
Proposed 1 4.27 11.78 0.91 yes

5. Conclusions

An improved and more robust oscillation detection method based on

Noise-Assisted Multivariate EMD (NA-MEMD) is presented. It is shown

with the help of both simulations and industrial case studies that the pro-395

posed method is less prone to the mode mixing problem, and is more reli-

able and accurate in determining the presence of multiple oscillations and

related oscillation characteristics as compared to the standard EMD based

approach. The proposed method can handle the non-stationary effects and

can highlight the presence of harmonics in non-linearity induced oscillations400

as well.
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