
July 2007
Jan Tommy Gravdahl, ITK

Master of Science in Engineering Cybernetics
Submission date:
Supervisor:

Norwegian University of Science and Technology
Department of Engineering Cybernetics

Kalman filter for attitude determination
of student satellite

Jan Rohde

Problem Description
NTNU is planing to build a student satellite made exclusively by students attending the university.
The satellite is going to be outfitted with an estimator for attitude determination. The task is to
create, implement and if possible test a Kalman filter based estimator that is going to be used for
attitude determination on board the student satellite.

Assignment given: 15. January 2007
Supervisor: Jan Tommy Gravdahl, ITK

Kalman filter for

attitude determination of student satellite

Master’s Thesis

by

Jan Rohde

Norwegian University of Science and Technology
Department of Engineering Cybernetics

Trondheim

July 2007

2

I

Abstract

In the autumn of 2006 a satellite project was started at NTNU. The goal of
the project is two-folded, first it seeks to create more interest and expertise
around the field of space technology, secondly to create a satellite platform
which can be modified and equipped with different payloads to perform se-
lected tasks in a Low Earth Orbit.

For a satellite to be able to complete missions involving sensory and imaging,
an attitude determination and control system is needed to give the satellite a
stable attitude. In order to create a good attitude control system, a Gauss-
Newton improved extended Kalman filter is used together with reference
models to supply the controller with estimates of both satellite angular ve-
locity and orientation.

This report focuses on the Attitude Determination System, ADS, realized
by implementing the improved extended Kalman filter on a microcontroller.
The challenge is to create an estimator that will provide the control system
with adequate estimates without requiring to much computational power,
as this is a limiting factor on board a micro satellite. The need for good
computational power comes from the multidimensional matrix mathemat-
ical operations performed on float numbers. Based on previous work, an
improved Extended Kalman filter has been developed and implemented on
a microcontroller for further testing. A new filter, the Unscented Kalman
Filter has also been explored but not implemented.

II

III

Preface

This master thesis is part of an ongoing project that started in the autumn
of 2006 at the Norwegian University of Science and Technology with the
goal of creating the University’s first student satellite. The work began with
the announcement of a competition by NAROM, National Center for Space-
related Education, where a satellite proposal should be handed in. The
student satellite is based upon the Cubesat framework which means that
available power is a limiting factor. A second goal of the satellite project is
to increase the interest and competence within space related fields.

This master thesis focuses on the attitude determination system that is
going to be implemented on the satellite. It was the intention that the At-
titude Determination System, ADS, should be based on previous work done
at the Department of Cybernetics Engineering at NTNU but also that new
approaches should be investigated and refinements be done to existing so-
lutions if needed. The attitude determination system is implemented on a
microcontroller and it is important to design it in such a way that compu-
tational requirements are kept low. In addition, a new type of Kalman filter
has been explored called the Unscented Kalman Filter.

I would like to thank my Advisors, Jan Tommy Gravdahl and Jo Arve Al-
fredsen for their valuable feedback through this project as well as the people
in office D444 for creating a good and inspiring environment to work in.

Trondheim, 05.06.2007

Jan Rohde

IV

V

Contents

Abstract I

Preface III

Abbreviations IX

1 Introduction 1

2 Attitude Representation 5

2.1 Parameter representation . 5

2.1.1 Vectors . 5

2.1.2 Rotation matrices . 7

2.2 Attitude . 9

2.2.1 Euler angles . 9

2.2.2 Unit Quaternions . 9

2.3 Reference frames . 10

2.3.1 Earth-centered inertial (ECI) frame 10

2.3.2 Earth-centered Earth-fixed (ECEF) reference frame . . 10

2.3.3 Earth-Centered Orbit frame 10

2.3.4 Orbit frame . 11

2.3.5 Body frame . 11

2.4 Transformation between frames 12

2.5 Reference models . 14

2.5.1 Magnetic . 14

2.5.2 Light . 18

2.6 Satellite model . 20

VI

3 Kalman Filter 25
3.1 Extended Kalman Filter . 25
3.2 Euler parameters . 27
3.3 Gauss-Newton . 28

3.3.1 Gauss-Newton Algorithm 28
3.4 Extended Kalman Filter with the Gauss-Newton method . . . 29

3.4.1 The complete filter . 31
3.5 Unscented Kalman Filter . 31

3.5.1 Unscented Transformation 32
3.5.2 The Unscented Filter 34

4 Simulink Model 39

5 Hardware 41
5.1 Microcontroller . 41
5.2 Sensors . 45

5.2.1 Light-to-Frequency converter 45
5.2.2 Magnetometer . 48

5.3 Communication . 49
5.3.1 Sun sensor interface 49
5.3.2 Magnetometer interface 49
5.3.3 Communication bus 50

5.4 Development tools . 52
5.4.1 CrossWorks . 52
5.4.2 JTAG . 52
5.4.3 Eagle - PCB layout editor 52

6 Implementation 53
6.1 Introduction . 53
6.2 Programming Real-Time systems 53
6.3 Overall view . 56
6.4 Idle process . 56
6.5 System initialization process 57
6.6 Estimation process . 58

6.6.1 Get measurements . 60
6.6.2 Gauss-Newton Algorithm 61
6.6.3 Kalman gain update 62

VII

6.6.4 Estimation error update 62
6.6.5 State estimation update 63
6.6.6 Error covariance update 63
6.6.7 State transition . 64
6.6.8 Propagation . 64
6.6.9 Transmit estimate . 64

6.7 Communication process . 65

7 Prototype Testing 67
7.1 Matlab S-function . 67
7.2 Programmed test environment 68

8 Concluding Remarks and Recommendations 69
8.1 Conclusion . 69
8.2 Recommendations . 70

Bibliography 73

A Linearized Angular Velocity Model i

B Simulink Model iii

C CD Contents v

VIII

IX

Abbreviations

Abbreviations used in this report

• Digitally controlled oscillator - DCO

• Extended Kalman Filter - EKF

• Kalman Filter - KF

• Light to Frequency converter - LF-converter

• Low Earth Orbit - LEO

• Multiplexer - MUX

• Serial Clock - SCL (TWI transmission)

• Serial Data - SDA (TWI transmission)

• Two-wire interface - TWI

• Unscented Kalman Filter - UKF

• Universal Serial Synchronous/Asynchronous communication interface
- USART

• Unscented Transformation - UT

X

1

Chapter 1

Introduction

Background

The Cubesat concept was developed at Stanford University by professor Bob
Twiggs. His motivation for doing this was to allow his students to complete a
satellite project during their education. The basic idea was to create satellite
framework which should be small and standardized and let students modify
the interior to create a satellite. To keep the launch costs down, the size of
the standard framework was chosen to be 10 x 10 x 10 cm, weighing up to
one kilogram. To further reduce costs of launch, a pod was created to fit
with commercial rockets. The pod also allowed several cubes to be launched
so that the cost would be spread out. Figure 1.1 shows a Cubesat and the

Figure 1.1: The Cubesat and Cubesat launcher

2

launcher

Norwegian educational institutions have in resent years attempted to design
and launch a student satellite into orbit. Two satellites were built, nCube1
and nCube2, both based on the Cubesat framework. The work was a joint
effort between several universities in Norway. Both the projects ended in fail-
ure with one satellite ending up dead in orbit and the other went down with
the delivery rocket, only two minutes after being launched from Baikonur
Cosmodrome, Kazakhstan.

In the autumn of 2006 plans were made for making a new student satel-
lite at NTNU. The idea sprung to life with NAROM’s, National Center
for Space-related Education, announcement of a competition where students
were encouraged to create a proposal for a student satellite. The propos-
als would be judged by a jury at NAROM and the winning team would be
awarded a free launch. In December of 2006 a proposal for a student satellite
created at NTNU was handed in to NAROM. The proposal can be found in
appendix C. In order to reduce the number of people involved it was decided
that the satellite is to be designed and developed only by students attending
NTNU. This should also serve to make the project more manageable.

The proposal, Narverud et al. [Nov, 2006], suggested the use of a double
Cubesat structure. Several reasons was laid to ground for this, among others
increased available power through bigger solar panels and the possibility to
add more payload if needed. This also conforms with the idea to create a
standardized fully functional satellite where different payload can be added
and removed without the need to change or reprogram the satellite.

As part of easing the project management work, a satellite database
was been developed where all the work done on the project is stored and
explained. This also eases the work for new students who come into the
project and continue on previous work.

Previous work

There has not been done a lot of prior work with respect to attitude deter-
mination on this project. Even so a huge amount of work has been done
on the subject at NTNU previous years. This work is the basis for the at-
titude determination system that will be developed for this new satellite.
The Kalman filter that will be used has been developed and tested in Sunde

3

[2004]. That work is further based on Svartveit [2003] and Ose [2004].

This report

The goal of this report is to start the work on developing a prototype unit
of the Attitude Determination System, ADS. This prototype is going to be
used for testing to uncover possible errors in the complete Attitude Deter-
mination and Control System, ADCS. The suggested Kalman filter must
be implemented on a target microcontroller to uncover if it is sufficiently
simplified to meet the computational power limitations. A new filter, the
Unscented Kalman filter is also presented in this report.

Report outline

Chapter 2 gives an introduction to attitude determination and the underlying
theories. This involves different sensor models and how they are used to
calculate the satellite attitude. In chapter 3 the Kalman filter technology
is presented, along with the implemented Extended Kalman filter and the
Unscented filter. A simulink model of the filter is presented in chapter 4
and chapter 5 introduces the hardware components that are used in the
prototype. Some comparisons are made between different hardware. The
actual implementation is presented in the next chapter, chapter 6 and ideas
on how to perform tests on the prototype ADS is given in chapter 7.

4

5

Chapter 2

Attitude Representation

In this chapter an introduction on how to describe the attitude of a satellite
is given. Different reference models will be introduced as well as a model of
the satellite.

2.1 Parameter representation

In this section we introduce the basics of vectors and rotation matrices which
are widely used in attitude representation.

2.1.1 Vectors

A vector ~u can be described by its magnitude |~u| and its direction. This
description does not rely on the definition of any coordinate frame and is
said to be coordinate-free. A vector can also be represented in the Cartesian
coordinate frame a defined by the orthogonal unit vectors ~a1, ~a2 and ~a3

along the x1, x2 and x3 axes. Here the vector ~u can be expressed as a linear
combination of the orthogonal unit vectors in the following way

~u = u1~a1 + u2~a2 + u3~a3 (2.1)

where
ui = ~u · ~ai, i ε {1, 2, 3} (2.2)

are the unique components or coordinates of ~u in a. A related description of
the vector is the coordinate vector form where the coordinates of the vector

6

are written as a column vector

u =

 u1

u2

u3

 (2.3)

The scalar product

The scalar product can be written in three different alternative forms

~u · ~v =
3∑

i=1

uivi = uTv (2.4)

The vector cross product

In coordinate-free form the vector cross product is given by

~u× ~v = ~n|~u||~v|sinθ (2.5)

where 0 ≤ θ ≤ π and ~n is a unit vector that is orthogonal to both ~u and ~v
and defined such that (~u,~v, ~n) forms a right-hand system as figure 2.1. In a

Figure 2.1:

Cartesian frame the vector cross product can be evaluated from

~w = ~u× ~v =

∣∣∣∣∣∣∣
~a1 ~a2 ~a3

u1 u2 u3

v1 v2 v3

∣∣∣∣∣∣∣ (2.6)

7

In coordinate vector notation we can define a vector in a skew-symmetric
form as

u× :=

 0 −u3 u2

u3 0 −u1

−u2 u1 0

 (2.7)

This allows us to write the vector cross product in coordinate form as

w = u×v =

 u2v3 − u3v2

u3v1 − u1v3

u1v2 − u2v1

 (2.8)

2.1.2 Rotation matrices

A vector can be represented in different Cartesian frames. Given two coor-
dinate frames a and b with orthogonal unit vectors ~a1, ~a2, ~a3 and ~b1, ~b2, ~b3,
a vector ~v can be represented with respect to any of the systems a and b.
This is written as

~v =
3∑

i=1

va
i ~ai and ~v =

3∑
i=1

vb
i
~bi (2.9)

where

va
i = ~v · ~ai

vb
i = ~v ·~bi

(2.10)

are the coordinates of ~v in a and b respectively. The relation between the
two vectors va and vb in frames a and b is given by the following calculation

va
i = ~v · ~ai = (vb

1
~b1 + vb

2
~b2 + vb

3
~b3) · ~ai

=
3∑

j=1

vb
j(~ai ·~bj)

(2.11)

The coordinate transformation from frame b to frame a is given by

va = Ra
bv

b (2.12)

where
Ra

b = {~ai ·~bj} (2.13)

8

is the rotation matrix from a to b. The elements of the rotation matrix are
called the direction cosines.

Properties of the rotation matrix

In this section a few properties of the rotation matrix will be listed. For
more details around these properties refer to Egeland and Gravdahl [2002].
The rotation matrix from b to a can be found in the same way as from a to
b by interchanging a and b in the expressions which gives

Rb
a = {~bi · ~aj} (2.14)

The rotation matrix is orthogonal and satisfies

Rb
a = (Ra

b)
−1 = (Ra

b)
T (2.15)

Furthermore, the set of all matrices that are orthogonal and with a determi-
nant equal to unity is denoted by SO(3), which is

SO(3) = {R|RεR3×3, RTR = I and detR = 1} (2.16)

where R3×3 is the set of all 3 × 3 matrices with real elements.

Simple Rotations

Simple rotations, which are rotation around a fixed axis, using Euler angles
as parameters are defined in the following way

Rx(φ) =

 1 0 0
0 cosφ − sinφ
0 sinφ cosφ



Ry(θ) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ



Rz(ψ) =

 cosψ − sinψ 0
sinψ cosψ 0

0 0 1



(2.17)

9

where x, y and z are the axes’ which the angles φ, θ and ψ revolves around.
Refer to chapter 2.2.1.

2.2 Attitude

2.2.1 Euler angles

The Euler angles, [ψ θ φ], are a widely used set of parameters for the rotation
matrix. A typical set used for describing the motion of spacecrafts are the
roll-pitch-yaw angles. Using these parameters, a rotation matrix describing
a rotation from a to b is given as

Ra
b = Rx,y,z(ψ, θ, φ) = Rz(ψ)Ry(θ)Rx(φ) (2.18)

where Rz(ψ), Ry(θ) and Rx(φ) are the simple rotation matrices from equa-
tion (2.17). This yields

Rx,y,z(ψ, θ, φ) =

 cθcψ sθsφcψ − cφsψ sθcφsφ+ sφsψ

cθsψ sθsφsψ + cφcψ sθcφsφ− sφcψ

−sθ cθsφ cθcφ

 (2.19)

where cos = c and sin = s is used for shortening. The rotation matrix is
singular for θ = ±90 deg.

2.2.2 Unit Quaternions

A unit quaternion is a quaternion with unit length and is written as

p =

(
η

ε

)
(2.20)

and satisfies
pTp = η2 + εT ε = 1 (2.21)

where ε is a vector ε = [ε1 ε2 ε3]T . Quaternions are used to overcome
the problems with singularities in the attitude representation. By using
quaternions, rotations can be expressed by the quaternion product.

10

The quaternion product

It is shown in Egeland and Gravdahl [2002] that the quaternion product of
two unit quaternions p1 and p2 is a unit quaternion

p := p1 ⊗ p2 =

(
η1η2 − εT1 ε2

η1ε2 + η2ε1 + ε×1 ε2

)
(2.22)

where p1 and p2 are quaternions.

2.3 Reference frames

This section describes the various reference frames relevant to a satellite.

2.3.1 Earth-centered inertial (ECI) frame

The ECI reference frame, denoted i, is non-accelerating where Newton’s laws
of motion apply. The center is denoted xi yi zi and is located in the center of
the Earth with the z-axis pointing toward the North Pole. The x-axis points
toward vernal equinox and the y-axis completes the Cartesian coordinate
system. The frame is fixed in space.

2.3.2 Earth-centered Earth-fixed (ECEF) reference frame

The ECEF reference frame, denoted e and given by xe ye ze, has its origin
fixed in the center of the Earth and the axes rotate relative to the inertial
frame ECI. The frequency of the rotation is approximately ωe = 7.2921·10−5

rad/s. The z-axis points toward the north pole and the x-axis points toward
the intersection between the Greenwich meridian and the equator.

2.3.3 Earth-Centered Orbit frame

The frame is denoted oc and has its center in the Earths center, the x-axis
points toward perigee, the y-axis points along the semiminor-axis and z-axis
is perpendicular to the orbital plane so that it completes the right hand
Cartesian coordinate system. The perigee and semiminor axis are further
explained in chapter 2.5.1.

11

2.3.4 Orbit frame

The orbit frame has its center in the satellites center of mass. The origin
rotate relative to the ECI frame with an angular velocity ωo. The z-axis
points toward the center of the Earth, the x-axis is the normal direction
of the orbital plane and it is important to notice that the tangent is only
perpendicular to the radius vector in the case of a circular orbit. For elliptic
orbits the x-axis does not align with the satellites velocity vector, figure 2.2
shows this. The frame is denoted o.

Figure 2.2: Orbit frame

2.3.5 Body frame

The body-fixed frame, denoted b and given by xb yb zb, is a moving coor-
dinate frame fixed to the satellite. The xb-axis points forward, the zb-axis
normally points through the nadir-side of the satellite and yb-axis completes
the Cartesian coordinate system. The position and orientation of the satellite
are described relative to the ECI frame.

12

2.4 Transformation between frames

In this section the methods used to rotate between different frames is pre-
sented.

Earth-Centered Orbit to ECEF and ECI

This transformation require knowledge of the objects orbit. The notation
used for defining such an orbit will be shown in the next chapter, under the
magnetic reference model, chapter 2.5.1. From Svartveit [2003] we have that
the rotation matrices are

Re
oc = Rz(−Ω + θ)Rx(−i)Rz(−ω)

Ri
oc = Rz(−Ω)Rx(−i)Rz(−ω)

(2.23)

where Ω is the right ascension of ascending node, i is the inclination of the
satellite, ω is the argument of perigee and θ is the ascension of the zero
meridian. Rx and Rz are the simple rotation matrices defined in equation
(2.17). Ω, i, ω and θ are Keplerian elements and are defined in figure 2.3.

ECEF to ECI

Rotation between ECEF and ECI is a rotation about the coincident zi and
ze axes. This can thus be described as a simple rotation from equation
(2.17) with α = ωiet. ωie is the Earths rotation given in equation (2.3.2) and
t is the time since the ECEF and ECI frames were aligned. The rotation
α is negative right handed and given the fact that cos(−α) = cos(α) and
sin(−α) = − sin(α) we get the following rotation matrix

Ri
e = Rzi(−α) =

 cosα sinα 0
− sinα cosα 0

0 0 1

 (2.24)

ECI to Orbit frame

The rotation between ECI and Orbit frame is dependent on the satellites
rotation velocity ωo. The orbit frame is rotated about the yi-axes by an
angle β = β0 + ωot, where β0 is the latitude position of the satellite and t
is the time since it last passed the 0◦ latitude. The rotation matrix is thus

13

Figure 2.3: Keplerian elements. Wikipedia [2007b]

given as

Ro
i = Rxi,πRyi,β =

 cosµ 0 sinµ
0 −1 0

sinµ 0 − cosµ

 (2.25)

where Rxi,π is introduced because the orbit frame is upside-down relative to
the ECI frame and µ = β0 + ωot.

Orbit frame to Body frame

The rotation between orbit and body frame is used to determine the Euler
parameters of the satellite. To derive this rotation matrix we start describing

14

the rotation matrix Ro
b using Euler parameters.

Ro
b = Re(η, ε) =

 η2 + ε21 − ε22 − ε23 2(ε1ε2 − ηε3) 2(ε1ε3 + ηε2)
2(ε1ε2 + ηε3) η2 − ε21 + ε22 − ε23 2(ε2ε3 − ηε1)
2(ε1ε3 − ηε2) 2(ε2ε3 + ηε1) η2 − ε21 − ε22 + ε23


(2.26)

The rotation from orbit to body frame can now be found by using equation
2.15 which yields

Rb
o = (Ro

b)
T =

 η2 + ε21 − ε22 − ε23 2(ε1ε2 + ηε3) 2(ε1ε3 − ηε2)
2(ε1ε2 − ηε3) η2 − ε21 + ε22 − ε23 2(ε2ε3 + ηε1)
2(ε1ε3 + ηε2) 2(ε2ε3 − ηε1) η2 − ε21 − ε22 + ε23


(2.27)

This rotation matrix can also be written as

Rb
o =

[
cb
1 cb

2 cb
3

]
(2.28)

where cb
i = [cb

ix cb
iy cb

iz]
T . When zo and zb are aligned, cb

3 = [0 0 ±1] which
gives us a quantity of the deviation between the two frames Ose [2004].

2.5 Reference models

The Attitude determination system has two different sensor systems, one for
measuring the magnetic field around the satellite and one for measuring the
light level on each side of the satellite. In order to use the measured values
a reference model for each sensor system is needed for comparison. In this
chapter both models are presented.

2.5.1 Magnetic

A magnetometer is used to measure the local magnetic field of the Earth. It
measures the magnetic field in three axes in the sensor frame. By aligning
the magnetometer with the satellites body frame no extra transformations
are needed. The senor data is compared to a reference model of Earths mag-
netic field. The most commonly used reference model is the International
Geometric Reference Field model, IGRF. This model is fixed in the ECEF

15

frame and to in order to use it we need to transform it to the orbit frame.
For this an orbit estimator is needed. When describing an orbit, Keplerian
elements are used. They are shown in figure 2.3 and a short description of
each element follows.

Orbital Inclination, i, is the angle between the orbital and equatorial
plane. If the inclination is 0◦ the orbit is called equatorial and if the angle
is 90◦ the orbit is said to be polar.

Right Ascension of Ascending Node, Ω, is the angle between the as-
cending node and vernal equinox. When the satellite passes from south to
north we get an ascending node and when it passes from north to south we
get a descending node.

Argument of Perigee, ω, is the angle between the line from perigee
through the Earth to the apogee and the line of nodes. The line of nodes is
the intersection of the equatorial plane and the orbital plane.

Eccentricity, e, is given as

e =

√
1− b2

a2
(2.29)

where a is the semimajor-axis and b is the semiminor-axis, both shown in
figure 2.4.
The satellites position in orbit is described by the following time varying
Keplerian elements, which use the previous four elements describing the ori-
entation.

Mean Motion, n, is the average angular velocity and describes the size
of the ellipse. It is related to the semimajor axis through Keplers third law

n2a3 = µe (2.30)

where µe = GMe is the Earths gravitational constant. This relationship is
the reason why mean motion is sometimes replaced by the semimajor axis
when describing a satellite orbit.

16

Figure 2.4: Keplerian elements.

Mean Anomaly, M, is used to describe the position of the satellite in
the ellipse. The mean anomaly is an angle defined from perigee and in-
creases uniformly from 0◦ to 360◦ during one revolution. When the orbit is
a non-circular ellipse this does not point directly toward the satellite except
at perigee and apogee.

Figure 2.4 shows different anomalies. True anomaly, v, is the direction from
the earth to the satellite. Eccentric anomaly, E, is the direction from the
center of the ellipse to the point on the circle where a line, perpendicular to
the semimajor axis through the satellites position, crosses the circle. The
circles center coincides with the center of the orbital ellipse and has a radius
equal to the semimajor axis.

Orbit estimator

In Svartveit [2003] several possible orbit estimators were studied and a rec-
ommendation given. The recommendation was based on the available power
of a small satellite.To create the orbit estimator a vector from the center
of the Earth to the satellite is needed. This vector is decomposed in the

17

Earth-Centered Orbit frame and is

roc = a

[
cos E−e√
1−e2 sin E

0

]
(2.31)

With this vector, equations (2.23) can be used to implement the orbit esti-
mator in ECI and ECEF frames. This yields

ri = Rz(−Ω)Rx(−i)Rz(−ω)roc

re = Rz(−Ω + θ)Rx(−i)Rz(−ω)roc
(2.32)

where Ω, i, ω and θ are the Keplerian elements described above. Svartveit
[2003] described how the accuracy of the estimator will degrade over time
due to the non spheric Earth, Ω̇J2 and ω̇J2, the Sun, Ω̇sun and ω̇sun and the
Moon, Ω̇moon and ω̇moon. An improved Orbit estimator can be obtained by
implementing these perturbations, but will result in a slightly more compli-
cated model. The estimator will now be

Re
oc = Rz(−Ω0 + (Ω̇J2 + Ω̇sun + Ω̇moon)t+ θ0 + ωei)Rx(−i)

Rz(−(ωO + (ω̇J2 + ω̇sun + ω̇moon)t))a

[
cos E−e√
1−e2 sin E

0

]
(2.33)

IGRF

The Earths magnetic Field is shown in figure 2.5. The field is highly varying
and a simplified model is needed. The International Association of Geomag-
netism and Aeronomy offers The International Geomagnetic Reference Field
model, IGRF, a model which is acceptable for a wide variety of users and
revised every fifth year. The IGRF model is rotating with the Earth and
thus given in the ECEF frame. More information on IGRF can be found
on the IGRF homepage, http://www.ngdc.noaa.gov/IAGA/vmod/igrf.html.
To transform the model to orbit frame we first need to transform it to the
ECO frame. This is done using the property of equation (2.15) on rE from
equation (2.32) which yields

Boc = (Rz(−Ω + θ)Rx(−i)Rz(−ω))−1Be

⇒ Boc = Rz(ω)Rx(i)Rz(Ω− θ)Be
(2.34)

18

Figure 2.5: Magnitude of Earth’s magnetic field

In these equations Be is the vector from the IGRF model. The model in
orbit frame is found from

Bo = (Rx(
π

2
)Rz(ν +

π

2
)Boc (2.35)

where ν is the true anomaly.

2.5.2 Light

The second sensor are six Light to Frequency converters which measures the
light on each side of the satellite. These measurements are used to describes
the suns position relative to the satellites body frame which in turn is used
to determine the attitude of the satellite. In order to use such a sensor,
knowledge of the suns position relative to the satellites orbital position is
needed for comparison. Also, when implementing a sun sensor, the effects of
the Earth Albedo error must be taken into account. This is explained later
in this section.

Sun model

To utilize the measured body frame sun vector, the sun vector in orbit frame
must be known and a rotation between the two could be estimated. For the
computation of the sun vector the Earth’s orbit is assumed to be circular
with an orbit time of 365 days. Furthermore the satellite is assumed to be

19

positioned in the center of the Earth. This will introduce an error to the
model, but the magnitude of the error is not larger then e = arctan Ra

Re ≈
4.65e − 5 rad, where Ra is the radius of the satellite orbit and Re is the
Earth orbit radius. The model presented here is based on work done by Ose
[2004]. The model is presented by describing the motion of the Sun as seen
from the Earth and is shown in figure 2.6. The elevation of the Sun, εs,

Figure 2.6: The Suns position relative to the Earth

varies between 23◦ and −23◦ depending on the time of the year. The period
is given by

εs =
23π
180

sin(
Ts

365
2π) (2.36)

where Ts is the time since first day of spring, which also gives the starting
point of the period at 0◦. The Suns orbit around the Earth is given by

λs =
Ts

365
2π (2.37)

where λs is called the Suns orbit parameter. The Suns position when the
Earth passes vernal equinox is

si
0 =

[
1 0 0

]T
(2.38)

and with this vector we can express the Suns position at a given time as

si = Ry(εs)Rz(λs)si
0 (2.39)

20

where Ry and Rz are the simple rotations given in equation (2.17). The
Suns position relative to the satellite can be found by transforming equation
(2.39) from the ECI frame to the Orbit frame using equation (2.25). This
results in

so = Ro
i s

i (2.40)

Earth Albedo error

From the satellites position there are two major light sources from which
the Light-to-Frequency converters will pick up light from. One is the Sun
and the second is reflected light from the Earth, known as Earth Albedo
light. If the Sun measurements are to be used in attitude determination, a
correction system is needed. The reflected light varies due to the different
reflective capabilities of the Earth’s surface. The model of the Albedo light
is a polynomial function which has proved to give good results in attitude
determination, Appel [2004].

2.6 Satellite model

To simulate the satellite in its environment a mathematical model is needed.
The model is also the basis for the Kalman Filter presented in chapter 3.

Kinematics

The attitude motion of the satellite is found by integrating the velocities. As
mentioned earlier, quaternions are used to prevent the existence of singular-
ities. Egeland and Gravdahl [2002] gives the differential equations used to
describe the kinematics

η̇ = −1
2
εTωb

ob

ε̇ =
1
2
[ηI− S(ε)]ωb

ob

(2.41)

Dynamics

The satellite dynamics can be derived from elementary mechanics. By fol-
lowing the derivation made in Kyrkjebø [2000] we find that the dynamics,

21

using Euler’s moment equation, can be expressed as

Ibω̇b
ib + ωb

ib × Ibωb
ib = τ b (2.42)

where Ib is the inertia of the satellite given in body frame, ωb
ib is the angular

velocity of the body frame relative to the ECI frame expressed in body frame
and τ b is the sum of all torques acting on the satellite. By applying the skew
symmetric operator the dynamics can be expressed as

Ibω̇b
ib + S(ωb

ib)I
bωb

ib = τ b (2.43)

The angular velocity of the satellite relative to the inertial frame can be
expressed in the body frame as

ωb
ib = ωb

io + ωb
ob = Rb

oω
o
io + ωb

ob (2.44)

where Rb
o is given in equation (2.27) and

ωo
io =

[
0 −wo 0

]T
(2.45)

since the orbit frame revolves relative to the inertial frame with the angular
velocity of ωo. This in turn gives the angular velocity in the body frame
relative to the inertial frame as

ωb
ib = ωb

ob − ωoc2 (2.46)

where c2 is the direction cosine from Rb
o given in equation (2.28). ωo is

derived using Newton’s laws.

There are two forces acting on the satellite in orbit, the centripetal force
and the gravitational force. For the satellite to maintain a stable orbit these
two forces must be equal and ωo can be found by representing these equations
as scalars in a orbit with radius R, and with M and m as the mass of the
Earth and the satellite respectively.

m
v2
o

R
= G

Mm

R2
→ v2

o =
GM

R
(2.47)

where G is the gravitational constant of the Earth. The orbit velocity vo =

22

Rωo, which gives us the angular velocity of the orbit frame

ωo =

√
GM

R3
(2.48)

Gravitational torque

A satellite is subject to gravitational forces from the gravitational field of
planets, the Moon and the Sun. At an altitude of 600 km the forces on the
satellite other then the ones from the Earth is negligible and this force can
be found through Newton’s law of gravitation. Kyrkjebø [2000] modeled the
gravitation torque on the satellite as

gb = 3ω2
oc3 × Ibc3 (2.49)

where c3 is the direct cosine from Rb
o defined in (2.27). The gravitational

torque is used to represent the exact motion of the satellite, but will not be
used in attitude determination.

Nonlinear state space model

The behavior of the satellite is described by the state space model. This
model is described using the dynamical model from equation (2.42) and the
attitude motion described in equations (2.41). We need a state space model
which gives us the satellite attitude relative to orbit frame and thus we need
to transform the angular velocity in the dynamical model to body frame.
The state vector is chosen to be

x = [q ωb
ob]

T = [η ε1 ε2 ε3 ωb
ob,x ω

b
ob,y ω

b
ob,z]

T (2.50)

The dynamical equation

Ibω̇b
ib + ωb

ib × Ibωb
ib = τ b (2.51)

can be rewritten in terms of angular velocity relative to orbit frame by us-
ing equation (2.44). By rearranging the equation and differentiating the
expression with respect to time, keeping in mind that ωo

io is constant, we get

ω̇b
ib = ω̇b

ob − S(ωb
ob)R

b
oω

o
io (2.52)

23

where the relation ωb
bo = −ωb

ob is used. The dynamic equation for the satellite
is now given as

ω̇b
ob = (Ib)−1[−(ωb

ob+Rb
oω

o
io)×(Ib ·(ωb

ob+Rb
oω

o
io))+τ

b]+S(ωb
ob)R

b
oω

o
io (2.53)

With the new dynamical equation the nonlinear state space model becomes

ẋ =

 η̇

ε̇

ω̇b
ob

 = f(x, τ, t) (2.54)

where f(x, τ, t) is defined to be

f(x, τ, t) =

 −1
2ε

Tωb
ob

1
2 [ηI− S(ε)]ωb

ob

(Ib)−1[−(ωb
ob+ Rb

oω
o
io)× (Ib · (ωb

ob+ Rb
oω

o
io)) + τ b] + S(ωo

ob)R
b
oω

o
io


(2.55)

Linearized model

A linearized model of the satellite attitude is found by differentiating the
nonlinear model with respect to the state vector. A linear system matrix
can be found from

F =
δf(x, τ, t)

δx
(2.56)

F is computed by performing a partial differentiation on the nonlinear model
with respect to the state vector x as shown

F =


∂f1

∂x1
· · · ∂f1

∂x7
...

. . .
...

∂f7

∂x1
· · · ∂f7

∂x7

 (2.57)

It is practical to divide the linearization process into two parts; one attitude
part consisting of the Euler parameters and one angular velocity part. This
means that the derived linear matrix F can be separated in the same way,
resulting in

F =

[
Fatt

Fvel

]
=

[
∂q̇
∂x1

· · · ∂q̇
∂x7

∂ω̇b
ob

∂x1
· · · ∂ω̇b

ob
∂x7

]
(2.58)

24

The complete differentiation results in the two matrices

Fatt =

[
0 −1

2ω
b
ob −1

2ε
T

1
2ω

b
ob −1

2S(ωb
ob)

1
2 [ηI + S(ε)]

]
(2.59)

and

Fvel =

 a51 a52 a53 a54 0 a56 a57
a61 a62 a63 a64 a65 0 a67
a71 a72 a73 a74 a75 a76 0

 (2.60)

where the elements are calculated in appendix A.

25

Chapter 3

Kalman Filter

A lot of work has previously been done to find the type of Kalman Filter
(KF) that will yield the best results based on the computation time available
in the microcontroller. This section will present the extented Kalman filter
and introduce a new method called the Unscented Kalman Filter.

The Kalman filter was developed by Rudolf Kalman and is a recursive filter
that estimates the state of a dynamic system from a series of measurements
which can be noisy. They are based on a linear dynamical systems which has
been discretized in the time domain. The Kalman filter is also known as an
estimator because it is used to estimate the current state in a system based
on the previous time step and a new set of measurements. The Kalman fil-
ter has two phases, one predict phase and one update phase. In the predict
phase, the state estimate from the previous time step is used to produce a
estimate of the current state or current time step. In the update phase, new
measurements are used to improve the current prediction and create a more
accurate state estimate for the current time step. In reality few systems are
linear and there is thus a need for a Kalman filter which can be used on
non-linear systems, such as a satellite in orbit.

3.1 Extended Kalman Filter

This section is partly based on the work done in Sunde [2004]. In an Ex-
tended Kalman Filter, (EKF), the state transition and observations do not
need to be a linear function. The EKF is designed using the model derived

26

in (2.54), consisting of a nonlinear state-space model that includes the mea-
surement and process noise. Since the Kalman filter is being implemented
on a microcontroller we use a discrete model. The discrete model, based on
continuous system discretization theory, is given by

xk+1 = f(xk) + wk

yk = Hkxk + vk

(3.1)

where k indicates the sample step, f(xk) is the nonlinear function (2.55) with
τB set to zero, wk and vk are process and measurement noise respectively. τB

is set to zero because the magnetic coils used to control the attitude generates
a magnetic field which corrupts the magnetometer measurements and is thus
turned off during estimation. The extended Kalman filter algorithm used for
the system defined in equation (3.1) is

Kk = P̄kHT
k [HkP̄kHT

k + R]−1 (3.2)

x̂k = x̄k + Kk[yb
m,k −Hkx̄k] (3.3)

Pk = [I−KkHk]P̄k[I−KkHk]T + KkRKT
k (3.4)

x̄k+1 = Φkx̂k (3.5)

P−
k+1 = ΦkPkΦT

k + Q (3.6)

where (3.2) is the Kalman filter gain matrix, (3.3) is the update of the state
estimate, (3.4) is the update of the error covariance matrix, (3.5) is the
state estimation propagation and (3.6) is the error covariance propagation.
R and Q are the expected covariance of the measurement noise v and the
process noise w. yb

m,k is the measurement from the sensors. Φk, used in the
propagation estimates, is derived using forward Euler integration defined as

Φk = I +
∂f(xk)
∂xk

|xk=x̂k
(3.7)

The state estimation update given in equation (3.3) can be divided in two,
one for the quaternion estimate part and one for the angular velocity es-
timate. The quaternion update can be interpreted as a rotation and the
quaternion product given by

q̂k = q̄k ⊗Kq,kνk (3.8)

27

is used in the update. The angular velocity estimate is updated using equa-
tion

ω̂b
ob,k = ω̄b

ob,k + Kω,kνk (3.9)

νk is the result of the innovation process given by

νk = yb
m,k −Hkx̄k (3.10)

which is the difference between the real and the predicted measurement.

3.2 Euler parameters

The use of Euler parameters in the filter is not a straight forward process
and care must be taken to avoid errors. It is important that the constraint
on the quaternion norm is maintained when used and a quaternion normal-
ization algorithm can be used for this purpose. The quaternion in the state
estimation update and the state estimation propagation equations must be
normalized to maintain the physical content of the unit quaternion. The use
of normalization in this part makes it difficult to maintain a singular covari-
ance matrix Pk due to numerical roundoff. To overcome this problem the
dimension of P is reduced by one, removing η from the state vector. This
leads to a reduced model

xr,k+1 =

[
εk+1

ωb
ob,k+1

]
= xr,k + fr(xr,k) + wr,k

yr,k = Hr,k + vr,k

(3.11)

where r denotes that it is a reduced model. Equation (3.11) is used when
calculating the Kalman gain matrix, the error covariance update and the
error covariance propagation. Equation (2.54) is however still used to calcu-
late the state propagation in equation (3.5). Using equation (3.11), the filter
equations can be rewritten as

Kr,k = P̄r,kHT
r,k[Hr,kP̄r,kHT

r,k + Rr]−1 (3.12)

Pr,k = [I−Kr,kHr,k]P̄r,k[I−Kr,kHr,k]T + Kr,kRKT
r,k (3.13)

P̄k+1 = Φr,kPr,kΦT
r,k + Qr (3.14)

28

and
Φr,k = I +

∂fr(xr,k)
∂xr,k

|xr,k=x̂r,k
(3.15)

These new reduced matrices are the ones that is used in the implementation
of the filter.

3.3 Gauss-Newton

There are two independent sensor systems on board the satellite, both of
which are used to measure its attitude. This makes the satellite a multiple
sensor system and the two sets of sensor data raises the question on how to
use them. The problem faced is that there is no quaternion that converts
the measurements taken in body frame exactly to the known reference values
which are given in orbit frame. Sources of error are mentioned in Sunde [2004]
and repeated here for convenience

• inherent sensor errors due to our crude sensor types

• variations in the magnetic and gravitational field

• sensor misalignment

This means that after the conversion the error needs to be minimized. There
are two algorithms that can be used to for this, one is the Newton algo-
rithm and the other is the Gauss-Newton algorithm. As Sunde [2004] con-
cluded, due to our limitations with respect to computational power, the
Gauss-Newton algorithm suites our problem best.

3.3.1 Gauss-Newton Algorithm

The Gauss-Newton method is a simplification of Newton’s method used for
nonlinear least-square problems. The algorithm is a numerical optimization
algorithm that uses line search to minimize the squared error function, found
in Nocedal and Wright [1999], given by

Qo = εT ε = (yo
r −Myb

m)T (yo
r −Myb

m) (3.16)

29

where yo
r and yb

m are the reference values in orbit frame and measurement
values in body frame respectively and defined as

yo
r = [Bo

r so
r]

T

yb
m = [Bb

m sb
m]T

(3.17)

M =

[
Ro

b 0
0 Ro

b

]
(3.18)

where Ro
b is the rotation matrix from body to orbit frame. Ro

b is found by
applying the properties in equation (2.15) and the fact that, Egeland and
Gravdahl [2002]

Re(η, ε)T = Re(η,−ε) (3.19)

to Rb
o found in equation (2.27).

The Gauss-Newton method for the unit quaternion is given as

q̂g,k+1 = q̂g,k − [JT (q̂g,k)J(q̂g,k)]−1JT (q̂g,k)εo(q̂g,k) (3.20)

where J is the Jacobian matrix defined to be

J = −
[

(∂M
∂ηg,k

yb
m) (∂M

∂εg,1,k
yb

m) (∂M
∂εg,2,k

yb
m) (∂M

∂εg,3,k
yb

m)
]

(3.21)

In Marins et al. [2000] we can read that this method has undergone extensive
simulations and testing to show that the iteration algorithm converges in 3
to 4 steps.

3.4 Extended Kalman Filter with the Gauss-Newton
method

The problem of implementing an EKF on a microcontroller is that the com-
putations needed are to huge for the available computational power. This is
why Sunde [2004] suggested the use of the Gauss-Newton method together
with the EKF. The point is to reduce the size of the matrices that are used
frequently in the EKF algorithm and from the reduced system equation
(3.12), we can see that the measurement matrix Hr,k is used extensively in
the computation of the Kalman gain matrix. Without the Gauss-Newton

30

method the measurements from the magnetic and sun sensors, yb
m,k, would

be used directly in the EFK algorithm. This requires the computation of a
6 x 6 nonlinear Hr,k-matrix at each sample step. The Kalman gain matrix
in this case will also be a 6 x 6 matrix. By introducing the Gauss-Newton
algorithm, (3.20), the measurement vector yb

m,k is replaced with q̂g,k for the
state estimate update. This change results in the measurement matrix Hg,k

being reduced to a 3 x 6 constant matrix which in turn results in a 6 x 3
Kalman gain matrix. The computation required to produce Kk and Pk is
reduced from 14000 to approximately 5500 matrix operations, Sunde [2004].
This reduction in the measurement matrix requires the computation of qg,k,
a computation of 2500 operations.

The Gauss-Newton algorithm results in a sensor fusion and the measure-
ments from the two independent sensor systems are represented in the form
of a quaternion. This measurement is directly comparable with the esti-
mated quaternion and the quaternion estimation error, ∆qk, can be treated
as a rotation. The innovation process is now found through the quaternion
product

∆qk = q̂g,k ⊗ q̄−1
k (3.22)

where q̄−1
k is the conjugate of q̄k. Since the system has been reduced and the

Kalman gain does not contain η only ∆ε of ∆q = [∆ηk ∆εk] can be used
for updating the estimated states. η is updated using the unit quaternion
property, (2.21), resulting in ∆η =

√
1− ‖Kε,k∆εk‖2. The total quaternion

estimate update becomes

q̂k = q̄g,k ⊗

[√
1− ‖Kε,k∆εk‖2

∆εk

]
(3.23)

where Kε,k is the top half of the Kalman gain matrix Kk. The unit quater-
nion is maintained in the calculations for the error and update values due to
the use of the quaternion product.

The angular rates, ωb
ob, estimate is updated using the ordinary method and

is given by
ω̂b

ob,k = ω̄b
ob,k + Kω,k∆̄εk (3.24)

31

where ∆̄ε is the parameter estimation error in the ε part of the quaternion
given by

∆εk = ε̂g,k − ε̄k (3.25)

3.4.1 The complete filter

With the modifications made to the filter in the above sections the Extended
Kalman filter algorithm with Gauss-Newton becomes

J = −
[

(∂M
∂ηg,k

yb
m) (∂M

∂εg,1,k
yb

m) (∂M
∂εg,2,k

yb
m) (∂M

∂εg,3,k
yb

m)
]

(3.26)

q̂g,k+1 = q̂g,k − [JT (q̂g,k)J(q̂g,k)]−1JT (q̂g,k)εo(q̂g,k) (3.27)

Kr,k = P̄r,kHT
r,k[Hr,kP̄r,kHT

r,k + Rr]−1 (3.28)

∆qk = q̂g,k ⊗ q̄−1
k (3.29)

q̂k = q̄g,k ⊗

[√
1− ‖Kε,k∆εk‖2

∆εk

]
(3.30)

∆εk = ε̂g,k − ε̄k (3.31)

ω̂b
ob,k = ω̄b

ob,k + Kω,k∆̄εk (3.32)

x̄k+1 = Φkx̂k (3.33)

q̄k+1 =
q̄k+1

‖q̄k+1‖
(3.34)

Pr,k = [I−Kr,kHk]P̄r,k[I−Kr,kHk]T + Kr,kRKT
r,k (3.35)

P̄k+1 = Φr,kPr,kΦT
r,k + Qr (3.36)

Equations (3.26) to (3.36) are the filter equations implemented on the mi-
crocontroller.

3.5 Unscented Kalman Filter

In the resent years a new linear estimator has emerged, called an unscented
Kalman Filter (UKF). The Unscented Kalman Filter is a different way of
using a Kalman Filter on a nonlinear system and is developed to overcome
the shortcomings of the EKF. Where EKF requires a linearization around
its working point which can introduce errors into the filter, the Unscented
Kalman Filter avoids this issue by not requiring any form of linearization.

32

3.5.1 Unscented Transformation

At the heart of the UKF lies the Unscented Transformation (UT) which is
a method for calculating the statistics of a random variable that undergoes
a nonlinear transformation. A set of points called sigma points are chosen
such that the sample mean and sample covariance equals x̄ and Pxx. These
points are sent through the nonlinear function to yield the transformed points
where ȳ and Pyy are the statistics of this new set of points. The number of
sigma points needed is 2n+ 1, where n is the dimension of the state vector.
Figure 3.1 shows the principle of the unscented transformation. The samples

Figure 3.1: The Unscented Transform

in the transformation are not drawn at random, but according to a specific
deterministic algorithm. A random variable of dimension n with mean x̄ and
covariance Pxx is approximated by 2n + 1 weighted points which are given
as

X0 = x̄ W0 = κ/(n+ κ)

Xi = x̄ + (
√

(n+ κ)Pxx)i Wi =
1
2
/(n+ κ) (3.37)

Xi+n = x̄− (
√

(n+ κ)Pxx)i Wi+n =
1
2
/(n+ κ)

where κ can be any real number, κ ∈ < and Wi is the weight associated
with the ith point.

Transformation procedure

The transformation procedure for the sigma points in Xi contains three steps,
first is obtaining the transformed points by sending them through a nonlinear

33

function f, followed by the computation of the mean and covariance for the
transformed points. The procedure can be written as

1 : Yi = f [Xi]

2 : ȳ =
2n∑
i=0

WiYi

3 : Pyy =
2n∑
i=0

Wi{Yi − ȳ}{Yi − ȳ}T

where it is seen that the mean is the weighted average of the transformed
points Yi and the covariance Pyy is a weighted outer product of the trans-
formed points.

Julier and Uhlmann [1997] presents a summary of the most important prop-
erties of the unscented algorithm.

• The mean and covariance of y are correct up to the second order since
the mean and covariance of the random variable, x, are captured pre-
cisely up to the second order. This result means that the mean is
calculated to a higher order of accuracy then for the EKF and the
covariance is calculated to the same order of accuracy.

• The sigma points capture the same mean and covariance unaffected
by the choice of matrix square root used, (

√
(n+ κ)Pxx)i in equation

(3.37).

• The most promising property with respect to our design and area of
application is the fact that the mean and covariance are calculated
using standard vector and matrix operations, making implementation
easy and rapid. This is due to the fact that there is no need to evaluate
the Jacobians which are needed for the EKF.

• κ provides an extra degree of freedom that can be used to "fine tune"
the higher order moments of the approximation and can be used to
reduce the overall prediction error.

The benefits to the performance when using the unscented transform can be
seen in figure 3.2 which shows the mean and 1σ contours from the different
methods. True mean lies at × with covariance contour shown as dotted,

34

Figure 3.2: Unscented transformation applied to a measurement example Julier
and Uhlmann [1997]

linearized mean lies at ◦ with a dashed covariance contour and the unscented
mean lies at 8with a solid contour. As can be seen the unscented and true
mean values and covariance are almost identical.

3.5.2 The Unscented Filter

In this section a general Unscented filter will be presented.

The nonlinear dynamic system in discrete time is given as

xk+1 = f(xk,wk)

yk = h(xk,vk)
(3.38)

where xk is the state vector, yk is the measurement signal and wk and vk

are system noise and measurement noise respectively.

xa =
(

xT wT vT
)T

, X a =
(

(X x)T (Xw)T (X v)T
)T

(3.39)

are the augmented state vector and sigma points. The sigma points can
be found using the method described in the previous chapter. The number

35

of sigma points in the augmented system is na = (nx + nw + nv). The
augmented state and covariance is initialized as

x̂a
0 = E [xa

0] =

 xa
0

0
0

 (3.40)

Pa
0 = E

[
(xa

0 − x̂a
0)(x

a
0 − x̂a

0)
T
]

= diag(P0,Pw,Pv) (3.41)

First the state estimator equations are presented, followed by the parameter
estimation equations.

State estimation

The predicted state mean and covariance are computed using the unscented
transform

X x
k|k−1 = f(X x

k−1,Xw
k−1) (3.42)

x−k =
2na∑
i=0

W(m)
i X x

i,k|k−1 (3.43)

P−
k =

2na∑
i=0

W(c)
i (X x

i,k|k−1 − x̂−k)(X x
i,k|k−1 − x̂−k)T (3.44)

W(m)
i and W(c)

i are defined as mean weight and covariance weight respec-
tively.
The mean and covariance observations are computed from the following equa-
tions

Yk|k−1 = h(X x
k|k−1,X

v
k|k−1) (3.45)

ŷ−k =
2na∑
i=0

W(m)
i Yi,k|k−1 (3.46)

Pỹkỹk
=

2na∑
i=0

W(c)
i (Yi,k|k−1 − ŷ−k)(Yi,k|k−1 − ŷ−k)T (3.47)

Furthermore the cross correlation covariance becomes

Pxkyk
=

2na∑
i=0

W(c)
i (X x

i,k|k−1 − x̂−k)(Yi,k|k−1 − ŷ−k)T (3.48)

36

The Kalman gain matrix can now be computed, followed by the measurement
update.

K = Pxkyk
P−1

ỹkỹk
(3.49)

x̂k = x̂−k +K(yk − ŷ−k) (3.50)

Pk = P−
k −KPỹkỹk

K−1 (3.51)

Parameter estimation

For parameter estimation, consider the state-space representation

wk+1 = wk + rk

dk = G(xk,wk) + ek
(3.52)

which is used to show a general process for parameter estimation using the
unscented kalman filter. The amount of sigma points needed is nb = dimen-
sion of wk. Initialization of the filter is normally given as

w0 = E [w] , Pw0 = E
[
(w − w̄0)(w − ŵ0)T

]
(3.53)

Given that Rr
k is the process noise covariance and Wk are the sigma points,

the time update is given by

ŵ−
k = ŵk−1, Pwk−1

= Pwk−1
+ Rr

k−1 (3.54)

Dk|k−1 = G(xk,Wk|k−1) (3.55)

The mean measurement calculation is based on the statistics of the expected
measurements and can be written

d̂k =
2nb∑
i=0

W(m)
iDi,k|k−1 (3.56)

37

With the equations above, the measurement update algorithm becomes

Pdkdk
=

2nb∑
i=0

W(c)
i(Di,k|k−1 − d̂k)(Di,k|k−1 − d̂k)T + Re

k (3.57)

Pwkdk
=

2nb∑
i=0

W(c)
i(Wi,k|k−1 − ŵ−

k)(Di,k|k−1 − d̂k)T + Re
k (3.58)

K = Pwkdk
P−1

dkdk
(3.59)

ŵk = ŵ−
k +Kk(dk − d̂k) (3.60)

Pwk
= P−

wk
−KkPdkdk

KT
k (3.61)

where Re
k is the measurement noise covariance and W(m)

i and W(c)
i are

weights for the mean and covariance respectively.

The article, Ma and Jiang [2005], which this general UKF is based on presents
another way of determining the sigma points which reduces the computa-
tional costs by reducing the required number of sigma points from 2n + 1
to n+ 1. This procedure requires the use of a certain spherical simplex UT
algorithm to determine the sigma points. For implementation on a micro-
controller for the satellite, this method could prove to relieve some of the
computational stress on the microcontroller. For more information on this
procedure refer to Ma and Jiang [2005] and other references therein.

Based on articles and the work produced here, an implementation of the
unscented Kalman filter might require a higher number of operations to pro-
duce an estimate. This increase can however give an increased accuracy in
the estimates. Before any conclusions can be made, proper testing is needed.

38

39

Chapter 4

Simulink Model

In order to get an overview of the Kalman filter and to make implementation
into c-code easier, a simulation model for the filter was created. The model
was created using Matlab and simulink. These simulation tools were selected
because of availability and because previous work and simulations has been
made using these tools. As the extended Kalman filter proposed has been
simulated and tested in previous work, Sunde [2004], this was not done here.
The simulink model is partly made up from building blocks in previous work
and makes use of function calls to m-files for certain operations, among others
the Kalman filter algorithm. All the m-files are included in appendix C.

The model was also created so that it could be used for testing of the
prototype unit. This method of testing is browsed upon in chapter 7. The
satellite model is continuous whereas the extended Kalman filter equations
are discrete and means that for testing and simulation, a fixed time step
simulation method must be used, for example ode3.

The simulink model consists of the complete ADCS system for the satellite
and its environment. The satellite orbit is propagated using the orbit estima-
tor from section 2.5.1. As for the satellite attitude, the gravitational torque
model from section 2.6 is used with the nonlinear model. Measurements are
simulated by rotating the reference models from orbit to body. White noise
is added with magnitude corresponding to the covariance of the respective
sensors. Figure 4.1 shows the process of simulating the measurements. This
is the same for both the magnetic sensor and the Sun sensor. For the mag-
netometer the noise magnitude is 4.3312e − 6, whereas for the Sun sensor

40

tests must be performed to acquire reasonable values for the covariance. The
simulated measurements along with the reference model values are inputs to
the Kalman filter. For simulation purposes, measurement noise and process

Figure 4.1: Simulated measurements for use with the Kalman filter

noise must be given. The initial measurement disturbance is guessed to be
an average of both the sensors. An expected range is 2.0e− 6. Process dis-
turbance consist of several components as presented by Kyrkjebø [2000] and
can be modeled as 8.5e−9 for {ε1 ε2 ε3} and 8.5e−12 for {ωb

ob,x ω
b
ob,y ω

b
ob,z}.

When the Kalman filter is initiated, the satellite will have a small angu-
lar velocity as well as angles with respect to orientation. These are unknown
and the estimator have to be designed to perform well without good initial
values. The values can however assumed to be small as the satellite performs
detumbling prior to activating the estimator. Initial values for the covari-
ance matrix for the states can be calculated as P0 = var[xo] where x0 are
the initial values of the different states Farrell and Barth [1999].

The top layer of the simulink model is presented in appendix B and the
complete model can be found in appendix C.

41

Chapter 5

Hardware

The Extended Kalman filter described in chapter 3 was designed to be imple-
mented in hardware. The hardware is supposed to function as a prototype
for testing and further development with respect to the attitude determina-
tion system. Because the primary concern when building a micro satellite
is power consumption, our components have been chosen mostly on this ba-
sis. In the initial report for the satellite, Narverud et al. [Nov, 2006], about
0.35W has been allocated to the ADCS system. In order to avoid strain on
the bus, the attitude determination system and attitude control system are
being implemented on the same microcontroller. This puts extra demands on
the speed of the microcontroller and at the same time sufficient programming
space is needed. In this chapter the hardware for the attitude determination
system is presented, including the sensor system as well as communication
with sensors and On Board Data Handling, OBDH. The chapter will also go
deeper into the realization of the sensor system.

5.1 Microcontroller

As mentioned above, the attitude determination and control system is meant
to be implemented on the same microcontroller. The controller is the brain
of the ADCS system and is executing the Kalman filter algorithm to produce
an estimate of the satellite attitude. It has to communicate on a databus,
I2C, as well as communicating with the different sensor systems. A common
type of microcontroller for the entire satellite has not been decided upon,
and as such there are several possible choices available.

42

The most obvious choice would be Atmel’s flagship within 8-bit RISC
controllers, the ATmega128. This is a commonly used low power controller
with a lot of easily available support soft- and hardware. The controller itself
features, among other:

• Low power architecture

• 128KB reprogrammable flash memory

• 6 different sleep modes

• Dual Universal serial synchronous/asynchronous communication inter-
faces (USART)

• Two-Wire Interface

• JTAG interface

A different choice from Atmel are their new 32-bits chip, the AP7000. Al-
though this chip has superior computational capabilities, it’s power consump-
tion makes it unfit for our purposes. This is also a new chip as mentioned
and there is the possibility that unexpected errors could arise.

Texas Instruments, TI, has a series of 16-bits microcontrollers called
MSP430. One of these is the MSP430f169 which has several features that
makes it a good choice for our needs.

• Ultralow-power architecture with 5 low-power modes

• 16-bit RISC CPU - applications require a fraction of the code size

• 16-bit registers

• 60KB+256B Flash memory and 2KB RAM

• Digitally controlled oscillator (DCO) - which allows wake-up from low-
power modes to active mode in less then 6µs

• two Universal serial synchronous/asynchronous communication inter-
faces (USART)

• Two-Wire communication

43

The different low-power modes differ from each other by which clocks are still
active. In low-power mode 0, (LPM0), the CPU is disabled along with the
main clock. In low-power mode 4, (LPM4), all clocks are disabled including
the crystal oscillator. This means the microcontroller can enter a mode where
it hardly draws any power from the system and with the DCO it can be back
if full active mode within 6µs. For more information on the microcontroller,
see appendix C for the MSP430 datasheet and User Guide.

The choice of controller landed on the MSP430 chip from Texas Instru-
ments, with its low power consumption and 16bit architecture it seems to be
the best choice.

The Kalman filter require high-accuracy variables for the calculations and
these are implemented as floating point variables on the microcontroller. The
C-compiler used in CrossWorks, chapter 5.4, uses the 32-bits IEEE floating
point which conform to the IEEE 754 standard. Following this standard, a
floating point is created with a base number, an exponent and a sign bit.
Figure 5.1 shows the fields of a 32-bit floating point The smallest positive

Figure 5.1: The fields in an IEEE 754 float Wikipedia [2007a]

number is given by the formula Kahan [1997]

22−2K
= 22−27

= 1.1755e− 38 (5.1)

where K is the number of bits for the exponent part of the float, 7 in the
case of the mentioned IEEE standard. This value can also been seen on as
the step size for floating points and thus a measure of accuracy. This is well
within our needs for implementing the Kalman filter equations. The largest
number for a float is given by

(1− 0.5N) · 22K
= (1− 0.524) · 227

= 3.4028e38 (5.2)

where k is the same as above and N is the number of significant bits. For a

44

float this number is 24 following the standard above.

In addition to running the Kalman filter, the microcontroller needs to com-
municate with several peripheral units using different communication pro-
tocols. The Two-Wire Interface is used to communicate on the bus and is
implemented both in hardware and software. This will be further explained
later in this chapter. Other communication include communicating with the
sensor system to retrieve sensor date for use in the Kalman filter and for
storing. The sun sensors are connected directly to Timer_B on the micro-
controller. Communication with the magnetometer is done in hardware and
software using the USART interface. Transmission correctness is done in
hardware but data handling is done in software and will be described further
in section 5.3.2.

For prototype purposes a header board was used, delivered by Olimex. The
header board contain the MSP430f169 chip with a 32.768 kHz watch crystal,
socket for a high frequency crystal and a JTAG connector. Figure 5.2 shows
the board. In order to make prototype testing and development easier a

Figure 5.2: Header board for the MSP430f169

simple development board was created, with individual header connections
for the different ports and pins on the microcontroller. The development
board is shown in figure 5.3 The board PCB layout is included in appendix
C.

45

Figure 5.3: Development board for the MSP430 header board

5.2 Sensors

The satellite uses two different sensors for attitude determination. One is
a sun sensor system and the second is a magnetometer to measure the lo-
cal magnetic field around the satellite. In the following sections the sensor
hardware is described, as well as how they work.

5.2.1 Light-to-Frequency converter

One of the sensor system on the satellite is a light sensor that measures the
inbound light on each side of the satellite. This is realized by placing one
light sensor on each side of the satellite. The measurements are combined
and used in calculating a vector which points in the direction of the Sun.

The Sun sensors are realized using Light-to-Frequency converters, LF-
converters, which output a frequency depending on the irradiance of light.
The LF-converters used are TSL235R and are delivered from Texas Advanced
Optoelectronic Solutions, TAOS. From simple tests performed it is seen that
the frequency output is dependent on the angle of attack. From other tests,
the output frequency seemed to go no higher then 804kHz. This was tested
by applying direct focused light onto the diode. In a dark environment the
output frequency was approximately 1.4kHz. The datasheet suggest that an
output frequency above 500kHz might be exposed to saturation, see appendix

46

C for more information from the datasheet.
The Sun sensor works in the way that whichever side is facing the sun

will register the highest light level and thus output the highest frequency
compared to the other LF-converters. As the satellite changes attitude some
sensors will receive more light and others less light and the internal relation
between the sensors are used to estimate the direction of the Sun. The
output vector from the sensors is written as

Sb =

 s1 − s6

s2 − s5

s3 − s4

 (5.3)

where si is the measured output from sensor i. The sensors are placed on
the satellite as shown in figure 5.4.

Figure 5.4: Placement of sun sensors on the satellite. The three remaining sensors
are placed on the opposite sides. Sensors 6 is placed on the xb axis,
sensor 2 on the yb axis and sensor 3 on the zb axis

Sun sensor accuracy

The Sun measurement is given in the sensor frame which in this case coincides
with the body frame. The Sun sensor is crude and contain some assumptions
that degrades the accuracy. The motion of the Sun is described as a circular
orbit around the Earth’s center with the satellite placed in this center. The

47

inaccuracy from this assumption is however not very large as was proved by
Kristiansen [2000] using the following formula to calculate the error

ξ = arctan
(
Ro

Rs

)
≈ 1.43e−7rad (5.4)

where Ro and Rs is distance between the Earth and the satellite and the
Earth and the Sun respectively. This error is relatively small compared to
the overall accuracy of the system and is ignored. It is however important to
know that such an error exists in our Sun sensor. The second error source is
the light reflected back from the Earth, called the Earth Albedo error. This
is explained in chapter 2.5.2.

Method of operation

The use of the LF-converters as Sun sensors open up to two different ways
of performing measurements. One way is to measure the frequency of the
converters by sending the signal to the Timer_B port on the microcontroller.
Since there is only one Timer_B input, the measurements must be done
sequentially and a multiplexer is used to send all the Sun sensor data to the
input pin. The watchdog timer, connected to the watch crystal is used as a
time reference and can be set to trigger after a specific time has elapsed. In
order to get a good measurement of the frequency the reference time needs to
be long. This will increase the time it takes to get one set of measurements
and can lead to inaccuracy.

The second method is to measure the period of the signal the sensors
emit. The lowest period corresponds to the highest frequency and in turn the
side exposed to highest light levels. This method uses the capture/compare
registers of Timer_B and does not require the use of a multiplexer since
there are 7 such registers in Timer_B.

The second option is chosen for several reasons. There is no need for
an external components, such as a MUX, and the measurements can be
performed in parallel, which reduces the time it takes to get one measurement
set. This is important because the satellite might be spinning around one of
its axes’ and sensor data will be highly inaccurate if a set of measurements
require to much time to collect.

48

5.2.2 Magnetometer

The second sensor system on the satellite is a magnetometer which measures
the local magnetic field around the satellite. These measurements are com-
pared to a reference model of the Earths magnetic field and is then used to
estimate the attitude of the satellite. In order to be able to use a magnetome-
ter for attitude determination, the satellite must be in a Low Earth Orbit,
LEO, where known reference models of the Earth magnetic field exists.

The magnetometer chosen is the HMR2300 - Smart Digital Magnetome-
ter from Honeywell, see appendix C for datasheet. This magnetometer was
chosen for several reasons, the most important being its low power consump-
tion. Other features that makes implementation easier are

• Three Axis Digital outputs (16-bits)

• RS232 interface

• High accuracy over ±1gauss

• Range of ±2gauss, <70µguass Resolution

The magnetometer is built up with three individual orthogonal magneto-
resistive sensors, measuring the X, Y and Z vector in the local magnetic
field. In addition the magnetometer comes with a development kit that
includes a demo program.

The measurements are taken in three dimensions in the sensor frame and
best results are obtained by placing the magnetometer in such a way that
the sensor frame coincide with the body frame or have a known and simple
configuration relative to the body frame. Due to the internal architecture of
the cube the last option seems to be the only possibility. The measurements
from the body frame are compared to the model of the magnetic field, which
for the IGRF model, is in orbit frame. The relation between these two frames
are used to calculate the attitude of the satellite.

Magnetic sensor accuracy

The accuracy of the magnetometer is not as good as star and horizon refer-
ences due to disturbances such as Bak [1999]

• Disturbance fields generated due to satellite electronics

49

• Model errors in the reference model

• External disturbances such as ionospheric currents

The electronics on board the satellite can influence and degrade magne-
tometer measurements unless shielding is considered when implementing the
hardware. Another source of error is the actuating system itself with its mag-
netic coils. When measurements are performed, the actuate system needs to
shut down the magnetic coils so they do not produce a magnetic field around
the satellite.

The most commonly used reference model, IGRF, is an empirical repre-
sentation of the Earth’s magnetic field. It represent the main field without
any external sources and is a weighted mean of models developed by a num-
ber of agencies.

The ionosphere is a non-uniform field with electrical currents inducing
unpredictable magnetic disturbances. This implies that we can not predict
how this disturbance will affect the magnetometer measurements.

5.3 Communication

5.3.1 Sun sensor interface

The LF-converters are connected directly to the microcontroller when used
in the way described above. Each LF-converter is connected to the CCIxB-
pins on the microcontroller, sensor 1 to CCI1B, sensor 2 to CCI2B and so
on. CCI0B is left unused. See appendix C for datasheet and information
on the input pins. The communication is one-way, from the LF-converters
to the microcontroller and is always active as long as power is connected.
For power consumption purposes the LF-converters should be powered down
whenever measurements are not gathered.

5.3.2 Magnetometer interface

The HMR2300 magnetometer has a RS232 interface which is a serial com-
munication bus called USART. The bus normally uses 3 wires, one for trans-
mitting, one for receiving and one ground. The bus can also be used to
power modules and the magnetometer is powered through this bus. A logic
high level on the RS232 bus is 12V, whereas the microcontroller uses 5V

50

for logic high level. An external chip is used to convert the signal between
the two modules and is called MAX232, delivered by Maxim. Figure 5.5
shows how the microcontroller and the magnetometer is connected through
the MAX232 chip. Datasheet for the MAX232 can be found in appendix
C. Unlike the Sun sensor, the magnetometer requires commands to be sent

Figure 5.5: microcontroller connected to the magnetometer via the MAX232 chip

from the microcontroller. These commands will be browsed upon in chapter
6 when the implementation is described.

5.3.3 Communication bus

The estimator is a small part of the overall satellite system. In addition to
communicating with the sensors the estimator must be connected to other
satellite subsystems, most importantly the OBDH system which handles
overall control of the satellite. It is also planned that the ADCS system
should be able to receive direct commands from the antenna up-link to ensure
that faults in the OBDH does not become a bottleneck point. The internal
communication between the different subsystems is implemented with a two-
wire communication bus, TWI.

This communication protocol uses, as the name suggest, two wires for
communication, one is the Serial Data wire, referred to as SDA and the
other one is the Serial Clock wire, referred to as SCL. The communication
bus is built up with master and slave nodes, where a master node can control
the clock line and a slave node can not. Since the master controls the clock
it also controls the transmission, and the transmitting node, be it a slave or
the master, synchronizes the data wire with the clock wire.
All nodes on the communication bus have a unique address of seven bits,
making a single bus capable of having up to 127 nodes connected. Commu-
nication is initialized by sending out a START condition on the bus. After

51

the START condition has been given, the address is sent transmitted on the
SDA wire. The node which is addressed replies and communication between
the two is established. Figure 5.6 shows a picture of a normal transmission
using TWI. The master node that initiated the communication decides which

Figure 5.6: Transmission using TWI

node is the transmitting one and which is the receiving one. When the last
bit has been received, a STOP condition is sent out on the bus, freeing it up
for other nodes to initiate communication.

The protocol allows multiple masters on a single bus. This is necessary in
our satellite because there are several subsystems that may wish to establish
a communication link with each other. With only one master, it would
have to periodically ask each subsystem if it wanted to transmit, a setup
which is inefficient and exposed to communications errors. But the use of
multiple masters introduces the possibility of timing errors, for example if
two masters try to send at the same time. Such problems are handled using
arbitration. This is done in the way that all nodes who transmit on the
bus also listens to the bus. If a transmitting node sends out a "1", but
reads a "0" it means that somebody else is also attempting to transmit. If
a "0" and a "1" is written to the bus, a "0" will be read, resulting in the
node who wrote a "1" to stop transmitting and enter slave mode to see if
it is the addressing node. The address is the first byte to be sent on the
bus when a transmission is initialized and is thus what is being arbitrated
on. Transmission is executed by sending the most significant bit, MSB, first
which allows the use of prioritized nodes. A low address will be given higher
priority during arbitration then a node with a higher address because a high
address will have to write a "1" on the bus sooner then a lower address.

When multiple masters are used, it is not always the case that they run
on the same clock frequency. This means that different masters may send out

52

a different clock signal on the SCL wire resulting in synchronization errors.
This problem is solved by making a wired-AND on all the different serial
clocks, yielding a combined clock with a high period equal to that of the
master that has the shortest period. The low period is equal to the master
with the longest low period.

5.4 Development tools

Different development tools, both hardware and software has been used and
they are browsed upon in this section

5.4.1 CrossWorks

CrossWorks is a development software for the MSP430f169, containing a de-
velopment environment and a c-compiler to create and download programs
to a target chip. CrossWorks is developed by Rowley Associates and can
also be used on different targets like; ARM, AVR and MAXQ. More in-
formation on CrossWorks can be found on the Rowley Associates webpage,
http://www.rowley.co.uk/

5.4.2 JTAG

Rowley Associates delives JTAG adapters for MSP430 that can be used for
programming the target chip as well as debugging the target. The JTAG
used in this work is the MSP430 CrossConnect JTAG Emulator.

5.4.3 Eagle - PCB layout editor

Eagle layout editor is delivered by CadSoft Online and from their home-
page, http://www.cadsoftusa.com/, a freeware version of the software can
be downloaded. Eagle provides a simple tool for creating your own PCB
layouts.

53

Chapter 6

Implementation

In this chapter the implementation on the microcontroller is described. The
extended Kalman filter algorithm from equations (3.26) to (3.36) have been
implemented, but the communication between other subsystems and the sen-
sors has not been completed. The intended communication setup is presented
instead. The estimator requires several multidimensional mathematical op-
erations and a library of matrix operations has been created.

6.1 Introduction

Because the complete system is not fully implemented yet, the intentions for
the non-implemented parts are presented. The program is written using the
C programming language and the complier used is CrossWorks from Rowley
Associates. The compiler has been developed to work with the MSP430
series of microcontrollers from Texas Instruments. For more information,
see chapter 5.4.

To describe the behavior of the estimator, dataflow charts will be used for
simplification. The notation is the standard notation from Microsoft Visio
and is shown in figure 6.1. First in this chapter a section on programming
Real-Time systems is presented.

6.2 Programming Real-Time systems

A lot of consideration must be taken when designing a Real-Time system.
There are many definitions of a Real-Time system, one of these are

54

Figure 6.1: Notation used in dataflow charts

A system that reacts to an external input signal and produce an output
signal within a defined time period.

Real-Time systems often control sensitive systems where an error can have
serious consequences with regards to equipment and in worst case human
lives. In the case of a satellite traveling in a Low-Earth orbit, service is
unavailable and as such the priority is to make the software failsafe. Many
errors are caught by the compiler and can be corrected before any damage
is done. Run-time errors and logical errors however are not detected by the
compiler which means that they have to be kept in mind when the system
is developed.

For the extended Kalman filter, multidimensional mathematical matrix op-
erations are performed on float numbers which requires many filter matrices
and temporary matrices to be created. A float matrix of size 6 x 6 will for
example require 6*6*4 = 144 Bytes. A microcontroller has only a limited
amount of available memory and this must be taken into consideration when

55

the EKF is implemented. The use of memory allocation, malloc, and deallo-
cation is a method for allocating memory to variables, etc where the memory
is freed or deallocated at the end of its use. The major problem with mem-
ory allocation is that the programmer have now way of determining where
in memory the variables are created. The use of malloc can easily lead to
run-time errors with respect to available memory because the controller does
not know if there is enough free memory at the time of creation. Two main
reasons for Run-time errors are listed below and explained

• Available memory

• Memory fragmentation

At compile-time, the compiler have no way of knowing how many variables
will be created using malloc or the size of these. It cannot test to see if
enough memory will be available at the point of creation. If this happens, a
run-time error will occur and the estimator will enter fail-mode due to lack
of memory.

Memory fragmentation is also common when using malloc, which means
that even though there is enough available memory, not enough continuous
memory is available and the malloc routine will return an error saying not
enough available memory. Run-time errors like these can only be rectified
by rebooting the system and resulting in the loss of estimated attitude.

There are ways in which malloc can be made safer, for example, the
routines that allocate memory can be rewritten. This gives the programmer
more control over the heap, the dynamic memory, where dynamic variables
are created. Using this approach, the malloc routine can be programmed
to only create variables of a certain size in predefined areas of the memory,
avoiding fragmentation when freeing up used memory. This however is te-
dious work and can require a lot of reprogramming which in turn can lead
to other errors.

The use of malloc() in the estimator

Memory allocation, malloc, has been used excessively in the estimator so
far. The reason for using malloc was that it enabled the use of software
from Numerical Recipes, Press et al. [2002], mainly a function for creating
the inverse of a matrix of size (n x m). The matrices has to have a certain

56

structure if they are to be used in this algorithm. The matrix creation func-
tion available from Numerical Recipes has been used and this is the function
that makes use of malloc(). The multidimensional matrix mathematical
operations were created to conform with the above matrix standard. The
use of malloc is further discussed in chapter 8.2.

6.3 Overall view

The Attitude Determination System, ADS, interact with three different ex-
ternal devices. The Sun sensor interact directly with the Timer_B cap-
ture/compare pins, the magnetometer receives and transmit messages and
measurements using RS232 and the TWI interface is used to communicate
with the other subsystems. The ADS has four different modes of operation:

• Idle. This is the initial state in the ADS. In this state the system
is dormant, waiting for the startup command from the OBDH. After
ejection from the delivery system, ADS enters the idle state during the
detumbling phase.

• System Initialization. The EKF algorithm is initialized and initial
values and matrices are loaded into memory. Interface to sensors are
also initialized.

• Estimate. The Kalman filter algorithm is executed in this process.
Measurements are brought in from the sensors and reference model
data is loaded from memory. The new estimates will be sent to the
control system.

• Communicate. Messages to and from the ADS are handled here.
Outgoing messages are formated and sent whereas received messages
are interpreted.

The next section will explain the different states in more detail.

6.4 Idle process

This is the first state the microcontroller enters after it is powered up. Be-
fore entering the "IDLE" state, a microcontroller initialization routine is
executed, uc_init();. Here the most important parts of the microcontroller

57

is initiated, such as the external crystal, watchdog timer and interrupts.
This also allows the use of Low-Power modes. In this state it awaits a com-
mand for initialization from the control system. The microcontroller enters
low-power mode to conserve power.

6.5 System initialization process

At receiving a "start command" from the control system, the initialization
process is executed. There are four subroutines here and figure 6.2 shows a
dataflow chart of the initialization process.

Figure 6.2: Dataflow chart of the system initialization process

• TWI init: twi_communication_init(); - Sets up the TWI communica-
tion protocol, bus speed and address register.

58

• LF-converter init: sun_sensor_init(); - Enables interface to LF-converters,
setting up Timer_B for capture mode.

• Magnetometer init: magnetometer_communication_init(); - Enables
interface to the magnetometer. Setting up UART interface and initial-
izes the magnetometer.

• EKF init: InitEKF(); - Creates the Kalman filter matrices and vari-
ables and loads preprogrammed variables into memory.

6.6 Estimation process

In this process the estimation of new states is performed. The Kalman
filter algorithm can be seen as a collection of several subroutines called in a
specific order. The process also controls the sensors through their respective
interfaces and transmit new estimation data to the control system. This
process makes extensively use of the matrix operations created.

Before looking at the different phases of the estimation process, the avail-
able matrix operations will be listed. They can also be found in the file
"matrix_operations.c", located in appendix C.

• copy_matrix

• matrix_addition

• matrix_subtraction

• matrix_multiplication

• matrix_transpose

• matrix_zeros

• matrix_ident

• matrix_diag

• matrix_const_multiplication

• skew_matrix_eps

• skew_matrix

59

• quat_prod

• matrix_quaternion_multiplication

• quaternion_vector_subtraction

To make the programming more intuitive, a new type Quaternion, was cre-
ated and is defined as

typedef struct quat {

float eta;

float eps[3];

} Quaternion

The use of pointers in the estimation process is substantial, both pointers
to float variables and quaternion structures and double pointers to matrices.
Whereas single pointers are normally used to represent a vector and a double
pointer used to represent a matrix, double pointers are also used to represent
vectors in this program. This enables us to use the matrix operations on the
vectors. Instead of sending the matrices between different processes, the
pointers are passed on, creating a more efficient program.

The estimation process has 7 steps, listed below and shown in figure 6.3.

• Gauss-Newton algorithm

• Kalman Gain update

• Estimation error update

• State estimation update

• Error Covariance update

• State transition

• Propagation

In addition there is one step for getting a new set of measurements and one
for transmitting the new estimates to the control system. The source code
for all the functions can be found in the file "ekf.c", see appendix C. In the

60

Figure 6.3: The estimate process

following sections the estimation process will be explained. References to the
filter equations will be presented when the c-functions are discussed. In the
file kalman.m in appendix C the corresponding implementation for Matlab
is found.

6.6.1 Get measurements

Source C-code:

GetMeasurements(y_meas, y_ref);

where y_meas and y_ref are the pointers to the float vectors containing
the new set of measurements and reference values. The y_meas vector is
built up as

61

y_meas =
[
Bb

m,x B
b
m,y B

b
m,z S

b
m,x S

b
m,y S

b
m,z

]T
y_ref is built up in the same way, containing the corresponding reference
values. The measurements are taken sequentially, first the period length
of the pulse train delivered by the LF-converters. The measurements are
combined to form the light measurement vector in equation (5.3). Next, data
from the magnetometer is read and both measurement vectors are saved to
memory.

6.6.2 Gauss-Newton Algorithm

Source C-code:

GenerateJacobian(vPointers, vQuaternions);

CreateM(vPointers, vQuaternions);

Calculate_q_hat(vPointers, vQuaternions);

where vPointers and vQuaternions are two vectors of pointers to the differ-
ent Kalman filter matrices and quaternions. Mathematical operations are
performed on the different matrices and quaternions, and then saved to its
corresponding matrix. GenerateJacobian is the function used to produce
the Jacobian matrix of equation (3.26), reproduced here:

J = −
[

(∂M
∂ηg,k

yb
m) (∂M

∂εg,1,k
yb

m) (∂M
∂εg,2,k

yb
m) (∂M

∂εg,3,k
yb

m)
]

(6.1)

The variables sent to this function are the measurement values y_meas
the reference values y_ref and the previous quaternion estimate q_hat.
CreateM uses the previous quaternion estimate q_hat to generate the rota-
tion matrix from equation (3.18). Calculate_q_hat updates the new Gauss-
Newton unit quaternion estimate with new measurements according to equa-
tion (3.27), reproduced here for simplicity.

q̂g,k+1 = q̂g,k − [JT (q̂g,k)J(q̂g,k)]−1JT (q̂g,k)εo(q̂g,k) (6.2)

This equation contains the innovation process as can be seen in the last
element of the implemented c-code.

62

6.6.3 Kalman gain update

Source C-code:

CreateK(vPointers, vQuaternions);

In this function the updated Kalman Gain matrix is computed. The matrix
corresponds to the reduced gain matrix of equation (3.28), reproduced here:

Kr,k = P̄r,kHT
r,k[Hr,kP̄r,kHT

r,k + Rr]−1 (6.3)

The gain matrix is computed using, among others, the reduced measurement
matrix Hr,k. As found in chapter 3 this matrix has not only a reduced size,
it is also a constant matrix, reducing the amount of computation required to
calculate Kr,k. The Kalman gain matrix is further divided into two matrices,
Kε and Kω, used in updating the quaternion estimate and angular velocity
estimate respectively.

6.6.4 Estimation error update

Source C-code:

UpdateEstimationError(vPointers, vQuaternions);

This function is used to find the estimation error in the quaternion estima-
tion from the Gauss-Newton method. The calculation done here refers to
equation (3.29), shown below.

∆qk = q̂g,k ⊗ q̄−1
k (6.4)

Since the error can be calculated using the quaternion product, the quat_prod()
function is used. The epsilon-part of the resulting estimation error quater-
nion is used in updating the quaternion estimate part, whereas the estimation
error for the angular velocity is computed according to equation (3.31).

63

6.6.5 State estimation update

Source C-code:

UpdateStateEstimation(vPointers, vQuaternions);

refers to two calculations, one for the quaternion update and one for the
angular velocity. For the quaternion update an estimation error for η must
be found before the new updated estimate can be found. The quaternion
estimate update is given in equation (3.30) and reproduced here:

q̂k = q̄g,k ⊗

[√
1− ‖Kε,k∆εk‖2

∆εk

]
(6.5)

Calculations for the angular velocity estimation update is given by equation
(3.32) and reproduced here for simplicity:

ω̂b
ob,k = ω̄b

ob,k + Kω,k∆̄εk (6.6)

At the end of these calculations both the updates are stored in a vector,
x_est, and saved to memory.

6.6.6 Error covariance update

Source C-code:

UpdateErrorCovariance(vPointers, vQuaternions);

will update the error covariance matrix P from equation (3.35) in the filter
algorithm.

Pr,k = [I−Kr,kHr,k]P̄r,k[I−Kr,kHr,k]T + Kr,kRKT
r,k (6.7)

This, as with the Kalman gain matrix, is done using the reduced measure-
ment matrix as well as the reduced Kalman gain matrix.

64

6.6.7 State transition

Source C-code:

UpdateStateTransitionMatrices(vPointers, vQuaternions);

is used to compute the state transition matrix Φ, used in the propagation
of states and error covariance. Φ is found using forward Euler integration.
Both a linearized propagation matrix for the reduced system as well as the
nonlinear propagation matrix are produced here and saved to memory. The
reduced matrix is used for error covariance propagation whereas the other is
used for state propagation.

6.6.8 Propagation

Source C-code:

StatePropagation(vPointers, vQuaternions);

uses the state transition matrices to propagate the states x and error co-
variance P. The corresponding equations from the Kalman filter algorithm
are

x̄k+1 = Φkx̂k (6.8)

P̄k+1 = Φr,kPr,kΦT
r,k + Qr (6.9)

6.6.9 Transmit estimate

Source C-code:

TransmitEstimates(Xhat);

will transmit the new estimates to the On-board Data Handling, OBDH.
Every time a new estimate is calculated it will be transmitted to the OBDH
using the TWI. Because the estimates are of type float a conversion to
type char is performed. This conversion is performed in the communication
process.

65

6.7 Communication process

The communication process handles communication with the other subsys-
tems. Key functions are sending new estimated states, receiving commands
from subsystems and interpreting them. The communication process should
consist of three subprocess and are shown in figure 6.4:

• Receive data - By using the interrupts available, activity on the bus is
detected and the ADS can enter slave mode and listen on the bus for
incoming messages. All messages received are interpreted by a different
process and correct action is then taken.

• Transmit data - The only data to be sent from the ADS are new esti-
mated states. Before transmission the data has to be converted. The
address of the recipient is loaded from memory and added to the mes-
sage.

• Interpret data - This is the function used to interpret incoming mes-
sages. In this function actions are taken based on the received message.
This can involve starting and stopping the magnetometer, updating
parameter values and request to transmit the latest estimates.

Data conversion

As stated in the previous section, communication using Two-Wire Interface
requires a data conversion. The TWI sends data one byte at the time so a
conversion from float of four bytes to char is necessary. The conversion pro-
cess and sequence of sent bytes must be equal and known for all subsystems
who receive or transmit on the bus.

66

Figure 6.4: Dataflow chart for the communicate state

67

Chapter 7

Prototype Testing

Due to lack of time prototype testing of the extended Kalman filter has not
been performed. Time and thought has however been put into ways that
tests may be performed. In this section a few test schemes will be presented.

7.1 Matlab S-function

Because it can be difficult to create suitable test environments the use of
Matlab S-functions can be used. This is a way to incorporate the c-code
implemented Kalman filter algorithm into a simulink model to see how it
performs. This method does of course have its limitations with respect to
useful information that can be gathered. These limitations are, among oth-
ers:

• Target capability - microcontroller speed

• Memory overflow

• Interactions with external elements; magnetometer and Sun sensors

• Communication - TWI

The Kalman filter can however be compared to the simulink implemented
filter to check performance and reveal possible logical errors in the Kalman
filter c-code. In order to do this, the c-files have to be slightly modified to
make it compatible with Matlab. How to do this is explained in detail in the
Matlab help files under "S-function".

68

7.2 Programmed test environment

To test the filter and overall system on the target, a testshell environment
can be created. This can include a secondary target programed to act as a
subsystem on the satellite. This allows for other tests to be performed on
the implemented system, such as

• Sensor communication

• TWI communication

• Run-time error tests

A test environment can be programmed and executed on a desktop computer
using RS232 to interface with the target. By using a terminal program, re-
sults from tests can be printed to the terminal to conclude on correctness of
communication. Since the sensors will not provide any useful measurements,
the Kalman filter algorithm can not be properly tested with this setup. But
the sensors will provide measurements that can be used in the filter algo-
rithm. This way timing tests and memory overflow tests can be performed
by online debugging through the JTAG interface.

The two tests together will give results on the performance of the Kalman
algorithm with respect to accuracy and performance of the microcontroller
with respect to used time, computational power and the intercommunication
between sensors, microcontroller and other subsystems. The power consump-
tion can also be measured to ensure that the ADS system does not draw more
power then it has been given.

69

Chapter 8

Concluding Remarks and
Recommendations

This report is the first work done within attitude determination for a student
satellite made exclusively by students at Norwegian University of Science and
Technology.

8.1 Conclusion

The presented Extended Kalman Filter with guass-Newton algorithm has
been implemented in c-code. In addition a library of matrix operations
that is used in the algorithm has been created. Implementation of sensor
communication has not been fully completed and thus testing to see if the
filter is sufficiently simplified with regards to computational power has not
been performed.

The Sun sensor uses hardware previously untested for a satellite and
hence testing is required before a final conclusion can be given. Preliminary
testing shows however that the irradiance level in the designated orbit might
be to high for the Sun sensor to produce usable data. A different kind of
sensor might be required for measuring the vector to the Sun.

The Unscented Kalman filter shows promise with respect to estimation
accuracy and should be further pursued to see if it can compete both with
respect to accuracy and required computational power.

70

8.2 Recommendations

In this section recommendations on further work will be presented along with
some discussions.

Hardware

If the Sun sensor hardware proves to be unfit for use in the Low Earth
Orbit, the use of light dependent resistors can be implemented with relative
few changes to the system. This type of sensor for measuring light levels has
previously proved to give adequate results for use in attitude determination
and control of a satellite.

In the time since this work started, it seems a great deal of work has been
put into the new 32-bit microcontroller from Atmel, mentioned in chapter
5. Although many of its features are of no use to the satellite functional-
ity, the computational power can prove to be very useful. The controller is
also rated as a low power microcontroller and I believe it should be tested.
At this time, when not all the subsystems such as sensors and communi-
cation hava been fully implemented, it would be the right time if any to
change controller. The already implemented Kalman filter algorithm and
matrix operations are independent of the microcontroller type and will not
require any reprogramming unlike the sensors who rely on hardware within
the controller.

Implementation

The benefits of using malloc is that it allows the use of functions from Nu-
merical Recipes. Even with these benefits, it does not outweigh the negative
consequences that might arise from its use. This means that the filter equa-
tions have to be reprogrammed to not use memory allocation when creating
the matrices. This is however not a very huge job, but still very important
in order to avoid run-time errors as explained in chapter 6. This change also
means that the multidimensional mathematical operations must be rewrit-
ten. The work effort of doing this should however not be significant as the
difference is only the indexation of the matrices.

There is still some work left to be done with regards to implementation on
the microcontroller. This is mainly communication with the sensors as well

71

as bus communication protocols. This must be completed before extensive
testing can be performed.

The unscented Kalman filter should be tested out in Simulink and im-
plemented on a microcontroller for comparison with the improved extended
Kalman filter. Testing performed by others suggest that at a slight increase
in computation time, a significant improvement in estimates is obtainable.

Testing

As this project did not see time to perform tests on the implemented system,
this will have priority in any further work that is done. There are different
ways that these tests can be performed, one is to implement the filter as a
S-function in Matlab and use it in the Simulink model. This requires some
modification of the c-code, but as mentioned the help-files for simulink are
of great help here.

The second test solution is to create a shell program and test the filter
while running on the microcontroller. This will have to be done eventually
to check for run-time errors.

72

73

Bibliography

Appel, P. [2004], ‘Attitude estimation from magnetometer and earth-albedo-
corrected coarse sun sensor measurement’, 56, Issues 1-2, 115–126.

Bak, T. [1999], ‘Spacecraft attitude determination : A
magnetometer approach’, PDF in institutional repository:
http://vbn.aau.dk/ws/fbspretrieve/108233/fulltext . Phd thesis, Aal-
borg University.

Egeland, O. and Gravdahl, J. T. [2002], Modeling and Simulation for Auto-
matic Control, Marine Cybernetics AS.

Farrell, J. A. and Barth, M. [1999], The Global Position System & Inertial
Navigation, McGraw-Hill.

Julier, S. J. and Uhlmann, J. K. [1997], ‘A new extension of the kalman filter
to nonlinear systems’.

Kahan, W. [1997], ‘Ieee standard 754 for binary floating-point arithmetic’,
Lecture Notes on the Status of IEEE 754 .

Kristiansen, R. [2000], ‘Attitude control of mini satellite’. Master Thesis,
Department of Engineering Cybernetics, NTNU.

Kyrkjebø, E. [2000], ‘Three-axis attitude determination using magnetome-
ters and a star tracker’. Master Thesis, Department of Engineering Cy-
bernetics, NTNU.

Ma, G.-F. and Jiang, X.-Y. [2005], ‘Unscented kalman filter for spacecraft
attitude estimation and calibration using magnetometer measurements’.
Proceedings of the Fourth International Conference on Machine Learning
and Cybernetics,.

74

Marins, J. L., Yun, X., Bachmann, E. R., McGhee, R. B. and Zyda, M. J.
[2000], ‘An extended kalman filter for quaternion-based orientation using
marg sensors’.

Narverud, E., Blom, E. K. and Birkeland, R. [Nov, 2006], ‘Student satellite
proposal from ntnu’. Project work at NTNU.

Nocedal, J. and Wright, S. J. [1999], Numerical Optimization, Springer-
Verlag New York, Inc.

Ose, S. S. [2004], ‘Attitude determination for the norwegian student satellite
ncube’. Master Thesis, Department of Engineering Cybernetics, NTNU.

Press, W. H., Teukolsky, S. A., Vetterling, W. T. and p. Flannery, B. [2002],
Numerical recipes in C++, 2nd edn, The Press Syndicate of the University
of Cambridge.

Sunde, B. O. [2004], ‘Attitude determination for studentsatellitten
ncubeii:kalmanfilter’. Master Thesis, Department of Engineering Cyber-
netics, NTNU.

Svartveit, K. [2003], ‘Attitude determination for norwegian nano satellite
ncube’. Master Thesis, Department of Engineering Cybernetics, NTNU.

Wikipedia [2007a], ‘Ieee 754 floating point’, Webpage.

Wikipedia [2007b], ‘Keplerian elements’, webpage. Last Viewed 8. June 2007.
URL: http://en.wikipedia.org/wiki/Keplerian_elements

i

Appendix A

Linearized Angular Velocity
Model

Fvel =

 a51 a52 a53 a54 0 a56 a57
a61 a62 a63 a64 a65 0 a67
a71 a72 a73 a74 a75 a76 0

 (A.1)

The elements aif are shown below.

a51 = 2kxωo(ε1(ωb
ob,y − c22ωo)− η(ωb

ob,z − c32ωo))− 6kxω
2
o(ε1c33 + ηc23) + 2(ηωb

ob,z + ε1ω
b
ob,y)ωo

a52 = 2kxωo(η(ωb
ob,y − c22ωo)− ε1(ωb

ob,z − c32ωo)) + 6kxω
2
o(ε1c23 − ηc33) + 2(ηωb

ob,y − ε1ω
b
ob,z)ωo

a53 = −2kxωo(ε3(ωb
ob,y − c22ωo)− ε2(ωb

ob,z − c32ωo)) + 6kxω
2
o(ε2c23 − ε3c33) + 2(ε3ωb

ob,z − ε3ω
b
ob,y)ωo

a54 = 2kxωo(ε3(ωb
ob,z − c32ωo)− η(ωb

ob,y − c22ωo))− 6kxω
2
o(ε2c33 + ε3c23)− 2(ε3ωb

ob,z + ε2ω
b
ob,y)ωo

a56 = kx(ωb
ob,z − c32ωo)− c32ωo

a57 = kx(ωb
ob,y − c22ωo) + c22ωo

(A.2)

a61 = 2kyωo(ε3(ωb
ob,z − c32ωo)− ε1(ωb

ob,x − c12ωo)) + 6kyω
2
o(ηc13 + ε2c33)− 2(ε1ωb

ob,x + ε3ω
b
ob,z)ωo

a62 = 2kyωo(ε2(ωb
ob,z − c32ωo)− η(ωb

ob,x − c12ωo)) + 6kyω
2
o(ε3c33 − ε1c13)− 2(ηωb

ob,x + ε2ω
b
ob,z)ωo

a63 = 2kyωo(ε1(ωb
ob,z − c32ωo)− ε3(ωb

ob,x − c12ωo))− 6kyω
2
o(ηc33 − ε2c13) + 2(ε3ωb

ob,x − ηωb
ob,z)ωo

a64 = 2kyωo(η(ωb
ob,z − c32ωo)− ε2(ωb

ob,x − c12ωo)) + 6kyω
2
o(ε1c33 + ε3c13) + 2(ε3ωb

ob,z − ηωb
ob,z)ωo

a65 = −ky(ωb
ob,z − c32ωo) + c32ωo

a67 = −ky(ωb
ob,x − c12ωo)− c12ωo

(A.3)

ii

a71 = 2kzωo(ε3(ωb
ob,y − c22ωo) + η(ωb

ob,x − c12ωo)) + 6kzω
2
o(ε1c13 − ε2c23) + 2(ε3ωb

ob,x − ηωb
ob,x)ωo

a72 = 2kzωo(ε2(ωb
ob,y − c22ωo)− ε1(ωb

ob,x − c12ωo)) + 6kzω
2
o(ε3c23 + ηc13) + 2(ε1ωb

ob,x + ε2ω
b
ob,y)ωo

a73 = 2kzωo(ε1(ωb
ob,y − c22ωo) + ε2(ωb

ob,x − c12ωo))− 6kzω
2
o(ε3c13 − ηc23) + 2(ε1ωb

ob,y − ε2ω
b
ob,x)ωo

a74 = 2kzωo(η(ωb
ob,y − c22ωo)− ε3(ωb

ob,x − c12ωo)) + 6kzω
2
o(ε1c23 + ε2c13) + 2(ε3ωb

ob,x − ηωb
ob,y)ωo

a75 = −kz(ωb
ob,y − c22ωo)− c22ωo

a76 = −kz(ωb
ob,x − c12ωo) + c12ωo

(A.4)

iii

Appendix B

Simulink Model

Figure B.1: Top view simulink model of satellite model and environment

iv

v

Appendix C

CD Contents

The CD contains all the different files used and created in this project. Some
files are on the root directory wheres other files are found in subdirectories
on the CD.

Files on root directory:

• Student Satellite Proposal from NTNU

The different directories are presented next.

Directories

C files
Source code files for the implementation are presented here

• ads.c - The main file. Contain the state machine which controls the
attitude determination system.

• ads_std_hdr.h - Standard headerfile included in all sourcefiles

• ekf.c - Contains all the functions of the implemented extended Kalman
filter.

• magnetometer.c

• matrix_operations.c - Contains all the matrix operations used in the
extended Kalman filter functions

• sunsensors.c

• twi.c - functions for handling TWI communication

vi

• uart.c - functions for handling USART communication

Datasheets
This directory contains relevant datasheets in pfd-format.
Development board
Schematic files for the development board are found in this directory
Matlab
Files used in the Simulink model are presented here

• ECI2ECEF.m - transformation from ECI frame to ECEF frame

• EKF_init.m - Initialization for the filter

• EKF_simulation.mdl - Simulink file for the extended Kalman filter

• euler2q.m - creates a unit quaternion from euler angles

• genJacobian.m - Used to generate the Jacobian matrix for the Gauss-
Newton method

• igrf2000.m

• kalman.m - The discrete extended Kalman filter algorithm

• LinearsystemR.m - Used to create the linear propagation matrix for
the reduced system

• nonLinearProp.m - Used to create the non-linear propagation system
for the system

• qProd.m - Performs a unit quaternion product

• qProdinv.m - Performs an inverse unit quaternion product

• Rquat.m

• Rxyx.m

• smtrx.m - computes the skew-symetric matrix of a vector

• suneci2orbit.m - Sun ECI to orbit frame

