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Abstract—To keep pace with the developments in medical 

informatics, health medical data is being collected continually. 
But, owing to the diversity of its categories and sources, medical 
data has become highly complicated in many hospitals that it 
now needs Clinical Decision Support (CDS) system for its 
management. To effectively utilize the accumulating health data, 
we propose a CDS framework that can integrate heterogeneous 
health data from different sources, such as laboratory test 
results, basic information of patients, and health records into a 
consolidated representation of features of all patients. Using the 
electronic health medical data so created, multi-label 
classification was employed to recommend a list of diseases and 
thus assist physicians in diagnosing or treating their patients’ 
health issues more efficiently. Once the physician diagnoses the 
disease of a patient, the next step is to consider the likely 
complications of that disease, which can lead to more diseases. 
Previous studies reveal that correlations do exist among some 
diseases. Considering these correlations, a k-nearest neighbors 
algorithm is improved for multi-label learning by using 
correlations among labels (CML-kNN). The CML-kNN algorithm 
first exploits the dependency between every two labels to update 
the origin label matrix and then performs multi-label learning to 
estimate the probabilities of labels by using the integrated 
features. Finally, it recommends the top N diseases to the 
physicians. Experimental results on real health medical data 
establish the effectiveness and practicability of the proposed CDS 
framework. 
 

Index Terms—Diagnosis recommender systems, clinical 
decision support system, heterogeneous data sources, multi-label 
classification  

I. INTRODUCTION 
N the era of fourth revolution of industry (Industry 4.0), the 
associated services (smart services) develop rapidly [1]. In 
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this context, Health 4.0 has been growing as a vital strategic 
concept for health domain, which is aimed at providing 
real-time and personalized health services (called smart 
healthcare services) for patients and professionals [2]. Health 
data from numerous medical sources (Cyber-Physical 
Systems, the Internet of Things) is collected continuously, 
facilitating the growth of healthcare industry [3].  

It is widely accepted that health information tools and 
machine learning techniques can be exploited successfully to 
help doctors in diagnosing and treating their patients more 
efficiently [4]. Using their experience and knowledge, the 
physicians classify patients and diagnose their diseases, but in 
doing so, it is probable that they commit some mistakes, 
particularly when they lack adequate experience or when their 
faculty of judgment is poor. In such situations, Clinical 
Decision Support (CDS) systems, including systems that 
provide diagnosis, personalized medical measurement, 
treatment and relevant knowledge, would be helpful to the 
physicians by way of providing them with specific knowledge, 
patients’ information and intelligent applications, which can 
improve the efficiency of their decision-making processes [5]. 
CDS systems focus on extracting characteristics of patients, 
based on which they classify patients and provide 
corresponding clinical suggestions to the physicians. Patients’ 
medical information is extracted from their personal medical 
data, such as the physiological data, electronic health records 
(EHRs), 3D images, radiology images, genomic sequencing, 
and clinical and billing data. Through CDS applications, the 
physicians can avoid the mistakes that are likely to arise from 
medical negligence and thus improve the quality of their 
medical service. In the medical field, the demand for 
high-quality clinical support systems has been steadily on the 
increase [6]. In medical scenes, the specifies of scoring 
standards and the context complexity of medical field are the 
challenges of clinical decision support system. 
 Medical institutions keep accumulating health medical data, 
which is highly complex in most of the recognized research 
labs and hospitals. Government agencies have been working 
hard to utilize such complex and diverse types of medical data 
to diagnose patients’ diseases correctly and offer them the 
right treatment [7]. To make this happen, the physicians have 
to consider multiple types of health information of patients, 
like laboratory test results, basic attributes, health records and 
monitoring data. Medical data comes from different sources, 
and most of it is unstructured. Integrating complex medical 
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data and transforming it into appropriate format are 
challenging tasks for the CDS systems. 

 At present, although many CDS systems have been 
developed to assist the doctors, they are still unsatisfactory, 
because they consider only a single medical condition [8-9]. 
But, it is not uncommon that a patient has more than one 
medical condition, at the same time, because of the 
complications of the first disease. For instance, a patient with 
diabetes mellitus type 2 may develop some cardiovascular 
diseases [10] and a patient with hypertensive heart disease 
may get coronary disease or/and angina pectoris [11]. A 
clinical decision support system might be more complicated to 
discover more possible diseases as references to clinics. After 
analyzing real-world diagnostic information, it is found that 
the majority of the patients have more than one disease. 
Therefore, the clinical decision support system recommends a 
list of possible diseases rather than only a single disease. 
Consequently, the task of recommendation transforms itself 
into a multi-label classification problem [12]. In dealing with 
this problem, ML-kNN algorithm [13] has gained wide 
acceptance because of its simple procedure and effectiveness. 
But, this method estimates each label independently and 
ignores the correlation among labels. Considering the 
correlations among diseases, we applied a novel multi-label 
classification approach in the clinical decision support 
framework. 

What one gets to see today is the emergence of Health 4.0. 
It unfolds the coming-together of all these technologies, 
coupled with real-time data collection, increased use of 
Artificial Intelligence (AI) and an overlay of invisible user 
interfaces. By focusing on collaboration, coherence, and 
convergence the healthcare can be made more accurately 
predictive and personalized. The main focus of this work is to 
build a clinical decision support framework for heterogeneous 
data sources (HDS CDS) for assisting doctors in diagnosing 
the diseases of their patients and treating them more 
efficiently. Fig. 1 illustrates the proposed improvement in 
HDS CDS system. In a tech-free system, the patients need to 
wait for a long time before they get to consult the doctor; 
besides, their repeated inquiries reduce diagnosis efficiency of 

their doctors. Also, inexperienced doctors may find it difficult 
to diagnose complicated illnesses. Traditional CDS systems 
(clinical decision support systems) improve efficiency and 
effectiveness of diagnosis by giving decision support to the 
physicians. They integrate historical medical records, which 
would be helpful in identifying potential diseases and thus in 
reducing fault risks. HDS CDS systems further improve the 
efficiency and effectiveness of CDS systems, especially by 
enhancing the wholeness of the system. HDS CDS systems 
collect and analyze healthcare data from diverse sources, 
rather than a single source. They suggest several correlative 
diseases by formulating a multi-label estimation model. Thus, 
HDS CDS system improves its performance in terms of 
comprehensiveness and accurate diagnosis. In the ongoing 
HDS CDS system, the patients initially offer information and, 
in return, they get information from both the system and the 
physician. As a result, the interaction among patients, 
physicians and system will be enhanced and information 
dissemination will improve. The proposed clinical decision 
support framework for heterogeneous data sources is depicted 
in Fig. 2. 

The main contributions of this paper are as follow: 
1) A novel framework is proposed for retrieving the most 

relevant information of patients from multiple data 
sources, such as laboratory test data, basic information of 
patients, symptoms of patients and electrocardiogram 
data, and for combining them to generate integrated 
features.  

2) Considering the likely complications due to multiple 
medical diseases (conditions), k-nearest neighbors 
algorithm is proposed for multi-label learning, by using 
correlations among labels (CML-kNN) and for 
anticipating more potential diseases of a patient, so that a 
list of diseases can be recommended to the physician 
simultaneously. 

3) Using the laboratory test data and basic information of 
patients, a set of experiments of different multi-label 
learning methods were performed to confirm the 
effectiveness and practicality of the proposed framework. 

 
Fig. 2.  The Description of Clinical Decision Support Framework for Heterogeneous Data Sources 

 
Fig. 1.  The Improvement of Clinical Decision Support System 
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The remainder of the paper is organized as follows. Section 
II presents some related works about clinical decision support 
systems and multi-label learning algorithms. We describe 
methods in section III, and the analysis of the correlations in 
the health data is given in section IV. In Section V, the paper 
introduces the model validation.  Finally, section VI concludes 
the paper and gives an outlook on future works. 

II. RELATED WORKS 
Big data has five attributes: Volume, Velocity, Variety, 

Value and Veracity [14]. The number of visiting patients in a 
general hospital is generally large. For example, Haikou 
peoples’ hospital had received 46,000 inpatients and 95,000 
outpatients approximately last year. The health medical data of 
such a large number of patients would obviously be of peta or 
zeta bytes, and this refers to the Volume of Big data. The 
patient’s information will be updated as soon as he/she visits 
the hospital again, and this represents the Velocity of health 
medical data. The health medical data consists of structured, 
semi-structured and unstructured data. Moreover, the health 
medical data is of different categories: electronic health 
medical records written by physicians; data from real-time 
monitors; images collected by computed tomography (CT); 
nuclear magnetic resonance images (MRI); cardiac 
angiographs etc.  Each patient’s medical records from 
professional physicians and medical instruments reflect his/her 
real physical condition, which represent the Veracity of health 
medical data. Furthermore, the amenability of the collected 
health data for transformation into useful and meaningful 
knowledge, which represents the Value of the data. Therefore, 
health medical data is a kind of “Big data” to some extent. 

 Nowadays, the data-intensive applications require a large 
number of efficient models. Numerous stochastic methods [15] 
were exploited by different researchers for healthcare 
parameter analysis. Furthermore, physicians consider the 
similarity between the health parameters of a patient for 
accurate diagnosis decision [16]. Analysis of big data is 
applied in healthcare to identify clusters of patients and groups 
of diseases, which are used to estimate future health condition 

with the help of different machine learning techniques [17]. 
Utilization and analysis of health medical data play a vital role 
in healthcare system.  

The clinical decision support (CDS) system is an 
information system that offers knowledge and personalized 
information to users in enhancing health and healthcare 
outcomes [18]. The system is aimed at aiding physicians in 
diagnosis and treatment planning. CDS system can be used for 
routine requirements or applied to a specific situation, like 
implant placement, and the output can be submitted to users 
before, during or after clinical decision [19]. For designing 
and implementing CDS system, the following five concepts 
must be followed: 
1) Correct information (treatment planning and drug 

interaction) 
2) Appropriate user (clinicians, patients) 
3) Through the applicable channels (mobile devices, 

working stations) 
4) Applying the right intervention format (alarm, graphics, 

buttons) 
5) At the right time within clinical working process (before 

working on the drug prescription, at the point of nursing) 
The CDS system can utilize appropriate computing 

technology to improve the efficiency of decision-making [20]. 
The big data of health has been recognized as a great 
opportunity for improving CDS systems [21]. Many machine 
learning techniques, such as ensemble learning [22], SVMs 
[23], deep neural networks [24] and rule-based algorithm [25] 
were employed in developing clinical decision support 
systems for some specific diseases. Although these systems 
achieved high accuracy, the effectiveness of improvement is 
unsatisfactory, because they considered only a small number 
of selected features [26]. These methods may prove ineffective 
if they are to deal with a large number of different kinds of 
features. The existing clinical decision support systems are 
poor in processing large volumes of multi-structured 
healthcare data and in providing accurate health 
recommendation, in practice [27-28].   

 
Fig. 2.  The Description of Clinical Decision Support Framework for Heterogeneous Data Sources 
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Traditional classification methods belong mainly to 
binary-class or multi-class, in which each sample belongs to a 
single class. For analyzing some samples with multiple labels, 
those methods are transformed to multi-label learning 
methods, whose task is to estimate possible labels of target 
samples. It is possible for a sample from multi-label data to 
own multiple labels, while the sample from single-label data 
owns only one distinct label. Thus, multi-label data is more 
complex and varied. Multi-label learning methods can be 
divided into two groups: problem transformation method 
(PTM) and algorithm adaption method (AAM) [29].  

Problem transformation method first transforms one 
multi-label dataset into multiple single-label datasets, and then 
exploits existing single-label learning algorithm to process 
each single-label dataset. Problem transformation method 
makes multi-label data to adapt algorithms. Traditional 
problem transformation approaches are BR (binary relevance) 
method [30], LP (label powerset) method etc. However, 
algorithm adaption method relies on a certain machine 
learning algorithm, such as decision tree [31], support vector 
machine [32], BP neural network [33] etc., and enables it to 
tackle multi-label data directly. 

Compared to other algorithms, kNN algorithm, which does 
not require training model or optimizing parameters in 
advance, has the advantages of low complexity and better 
performance in classification. BRkNN, proposed by 
Spyromitros et al. [34], improves the running efficiency of 
classification algorithm, but it retains the disadvantage of BR, 
namely ignoring the correlations among labels. Zhang et al. 
[13] proposed a multi-label lazy learning algorithm by 
applying kNN algorithm and Bayesian theory in multi-label 
learning. ML-kNN received wide attention immediately, 
because it is simple and effective.  However, ML-kNN 
algorithm estimates each label independently, but it ignores 
the correlations among labels. Based on ML-kNN algorithm, 
the authors propose here a k-nearest neighbors algorithm for 
multi-label learning by using correlations among labels 
(CML-kNN) to recommend diagnosis to physicians.  

A Shared Decision-Making System for Diabetes Medication 
Choice is adopted as a decision aid for clinical purpose by 
using Random Forest to predict a list of appropriate 
medications simultaneously [12]. Xu et al. developed an 
effective Chinese Medicine diagnostic model for coronary 
heart disease by using a multi-label learning algorithm, which 
is based on mutual information feature selection [35]. 
However, the correlations among diseases are not considered 
by these systems. Hence, the authors exploit the proposed 
CML-kNN in the HDS CDS framework to recommend a list 
of diseases of a patient to his/her physician simultaneously. 

III. METHODS 

A. Overview of the Framework 
The authors propose a novel framework–A Clinical 

Decision Support Framework for Heterogeneous Data Sources 
(HDS CDS). The HDS CDS framework is designed to process 
and analyze huge volumes of various types of healthcare data 
in a medical context. Patients’ features, extracted from 
different sources, such as laboratory test data, health medical 
records and monitoring data, are exploited by a novel 

multi-label learning method for recommending possible 
diseases to physicians. 

The HDS CDS framework is divided into two stages. The 
first stage is to integrate different categories of health medical 
data from different sources. The hospital stores medical data 
of each patient daily, in different databases, in terms of the 
datatype. For example, the laboratory test data, in terms of 
some blood parameters and symptoms of patients, has been 
found to be relevant in diagnosing some diseases [36]. Thus, 
different features may be relevant to different diagnoses. The 
proposed framework considers four categories of patient’s 
information, including laboratory test data, basic information 
of patients, symptoms of patients and electrocardiogram data, 
to generate the integrated features. The first stage consists of 
the following modules. 
1) The module of analyzing laboratory test data: Comparing 

the results of testing items with the reference ranges of 
those items to identify the abnormal items and quantify 
the levels of their abnormality. 

2) The module of analyzing basic information of patients: 
Analyzing the texts to extract information, in terms of 
gender, age, temperature, height and weight of patients, 
from the health medical records to build the basic 
attributes of patients. 

3) The module of analyzing symptoms: Extracting and 
building a set of specific symptoms and quantifying their 
degrees by natural language processing techniques. 

4) The module of analyzing monitoring data: Identifying the 
exceptions from monitoring data and classifying them. 

The second stage is to employ the proposed multi-label 
learning method to generate the list of diseases to be 
recommended.  
5) The module of reconstructing label matrix: Using cosine 

similarity in estimating the relevance between every two 
labels to construct label-to-label similarity matrix, and 
then to reconstruct the label matrix by label-to-label 
similarity matrix. 

6) The module of diagnoses to be recommended: Exploiting 
ML-kNN [13] to identify possible diseases of target 
patients and recommend the same to physicians. 

B. Available Features of Patients 
1) Features from Laboratory Test Data: The results of testing 
items are shown in each patient’s laboratory test report and 
stored in the laboratory table of the database. Once the results 
come out, each item’s result is compared with the 
corresponding biological reference interval. If the lab result is 
out of the biological reference range, the testing item is 
regarded as abnormal; otherwise, it is regarded as normal. All 
testing items are considered as features of laboratory test data 
and the features are denoted by a vector. Therefore, the lab test 
vector of a patient is defined as 1 2{ , , , }nL l l l= K , where l 
indicates the item of lab test reports, and n indicates the 
number of items in the lab test reports.  
2) Features from Basic Information of Patients: The basic 
information of patients (gender, age etc.), listed in the textual 
medical health record, is extracted and categorized as basic 
attributes of patients by text processing methods. Hence, the 
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vector of these attributes is defined as 1 2{ , ,..., }nA a a a= , where n 
is the number of attributes of the patient.  
3) Features from Symptoms of Patients: The symptoms are 
recorded, while describing the illness, in the form of a few 
sentences in medical health records. The Natural Language 
processing can carry out the task of extracting features of each 
patient from medical health record [37]. At first, each sentence 
of illness description is divided into several words by Chinese 
word segmentation technique. After extracting useful words, 
LDA (Latent Dirichlet Allocation) model [38] is performed to 
obtain patient-based topic distribution 1 2{ , , , }Kθ θ θ θ= K  , where 
K is the number of topics in patients. 

4) Features from ECG of Patients: The hospital has many 
devices for monitoring some physical signals of patients, such 
as cardiac monitoring system and glucose monitors. 
Electrocardiogram, one form of monitoring data, can be easily 
collected by the electrocardiograph (ECG). Signal processing, 
high performance computing and data mining techniques, used 
in the analysis of electrocardiogram, are helpful to doctors in 
improving the quality of their diagnosis. Some features of 
electrocardiogram can be identified only by referring 
techniques and not by naked eye. Many researchers have 
worked to identify different heartbeat classes from 
electrocardiograms [39-41]. This study is focused on five most 
common heartbeat cases in MIT-BIH arrhythmia database [42], 
including (i) normal heartbeat (NORM); (ii) left bundle branch 
block (LBBB); (iii) right bundle branch block (RBBB); (iv) 
ventricular premature contractions (VPC); (v) atrial premature 
complexes (APC). Based on the heartbeat class of the patient, 
the ECG vector of each patient is created as 1 2{ , , , }nE e e e= K , 
where e is a heartbeat class and n is the number of heartbeat 
classes. 

5) Integrating Features of Patients: Features from different 
health data sources are integrated to generate the final features 
of patients. With increasing number of new patients, the 
number of final features may increase rapidly. To maintain the 
efficiency of clinical decision support system, some 
dimension-reduction approaches, like PCA (Principal 
Component Analysis) [43] and LDA (Linear Discriminant 
Analysis) [44], are used for reducing the number of features. 

C. Model of Disease Recommendation 
1) Problem Transformation: For a patient having one or more 
diseases at the same time, the disease recommendation will be 
made by using multi-label learning method. The input of the 
model will be the integrated features of the target patient and 
the output will be one or more possible diseases of the target 
patient. In this study, “labels” are denoted as the diseases to be 
recommended, which are the results recommended by the 
model. Furthermore, the patients are denoted as “samples” in 
the recommendation model. 

1 2{ , , , }bF f f f= K  is the space of feature with b dimensions, 
and 1 2{ , , , }qL l l l= K is the space of label with q dimensions.  
Given a multi-label data 1 1 2 2{( , ),( , ), ,( , )}n nT X Y X Y X Y= K , where 

1 2( , , , )bi i i iX x x x= K denotes a feature vector of the sample iX  

and j
ix  is the value of iX in feature jf , and 

1 2( , , , )bi i i iY y y y= … denotes the label vector of the sample iX , 

1j
iy = when iX has label jl ; otherwise, 0j

iy = . The task of 
multi-label learning is to learn a classification model to 
estimate the possible label vector for testing sample X, which 
has no known label. 

2) Multi-label Disease Recommendation Model: Owing to the 
correlation and dependency among some common labels, the 
relevance between every two labels should be considered in 
multi-label learning method. For example, if a patient is ill, it 
is very likely that he or she may, sooner or later, develop 
complications of this illness, because the current disease(s) 
may give rise to its complications. Therefore, the co-currency 
and dependency between every two labels are exploited to 
update the origin label matrix and obtain a potential and 
abundant label matrix. Motivated by the idea of dependency 
propagation of labels [45], a k-nearest neighbors algorithm for 
multi-label learning is applied to the system by using 
correlations among labels (CML-kNN). Fig. 3 describes the 
flowchart of the CML-kNN.  

First, the label-to-label similarity matrix is generated. Every 
two labels’ frequencies of co-occurrence in the same patient 
can be used to evaluate the similarity between two such labels. 
Cosine similarity is employed as follows to evaluate the 
similarity between every two labels: 

 ( , ) ij

i j

ik jk
k P

i j

ik jk
k P k P

r r
sim I I

r r
∈

∈ ∈

=
∑

∑ ∑
 (1) 

where ijP is the set of samples with label iI  and jI . ikr is 1, 
when sample k  got label i ; otherwise, ikr is 0. ( , )i jsim I I  falls 
into [0,1]; when it is closer to 1, it implies that label Ii   and 
label  jI are more related. 

Based on the similarity between the labels, label-to-label 
similarity matrix q qS ×∈ °  is generated as follows: 

 
 

Fig. 3.  The Flowchart of CML-kNN 
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where each entry of similarity matrix ( , )ij i jS sim I I= represents 
the similarity between iI  and jI . 

 Then, the label matrix is recreated by label-to-label 
similarity matrix, as follows: 
 ( )g Y S= ×Y  (3) 
where ( )g g is a function for transforming each entry of matrix 
to 0 or 1. ( )g g is defined as follows: 

 
1,   0.5

( )=
   0,   otherwise

ijXg X
≥⎧

⎨
⎩

 (4)
 

After updating each label vector, traditional multi-label 
learning algorithm ML-kNN [34] is carried out to estimate 
possible labels for testing samples, as detailed under 
Algorithm 1. For the purpose of recommending illness to 
physicians, the step of ‘Generating suggested label vector’ is 
changed to ‘Choose N labels whose probabilities are ranked 
top N in the probabilities of all labels’.  

IV. ANALYSIS OF HEALTH DATA 

A. Health Medical Data 
The authors analyzed laboratory test data and some health 

medical records of a randomly selected patient, which were 
collected by a local hospital from 18th May to 18th October. 
Laboratory test data was stored in the databases in a structured 
format, while basic information, medical history and 

symptoms of the patient were recorded in an unstructured 
format. The Natural Language processing technology was 
exploited to extract basic information of each patient from 
medical health records and to diagnose his or her disease [46]. 
After processing the medical health records, 9 common 
diseases were selected to analyze.  

B. Correlation between Information and Diseases 
1) Laboratory Test Data: A patient, who was diagnosed with 
hyperlipidemia, was selected from the health medical database. 
This patient’s exceptions of laboratory test results and basic 
information are listed in Fig. 4. This patient is a female and 53 
years old, and her condition reflects the fact that the incidence 
of hyperlipidemia is higher in menopausal women [47]. 
Triglyceride (TG), Total Cholesterol (TC), Total Lipids (TL) 
and High Density Lipoprotein Cholesterol (HDL-C) are shown 
as the exceptions of her lab tests. In the patients with 
hyperlipidemia, the results of TG, TC and TL are usually 
higher than their biological reference intervals, whereas the 
result of HDL-C is lower [48]. Hence, physicians require 
laboratory test results to diagnose some diseases.  
2) Gender: Fig. 5 shows the number of patients, in terms of 
gender, suffering from coronary heart disease, brain infarction, 
fatty liver and diabetes mellitus type 2. For coronary heart 

 
Fig. 4.  The Basic Information and Lab Tests of a Patient 

 
 

Fig. 5.  The Statistics of Different Diseases, in terms of gender 

Algorithm 1 A k-nearest neighbors algorithm for multi-label 
learning by using correlations among labels 
Input: Testing sample X, the number of neighbors k, 

training set 1 1 2 2{( , ),( , ), ,( , )}n nT X Y X Y X Y= K , the space of 
label L, the number of recommended label N 

Output: The suggested label vector of  X 
Step 1 : Generate label-label similarity matrix 
FOR i= 1 to q: 
          FOR j = 1 to q: 
Sij is computed by formula (1) 
Step 2 : Update each label vector by formula (3) 
Step 3 : Obtain N(X),which is the set of k neighbors of  X  
FOR il L∈  

Step 4 : Based on traditional ML-kNN [34], 
collect ( )x iC l , which is the number of sample with label 
i  in the N(X), and achieve the probability that X has 
label il : 

1 ( ) 1
1

( )
0

( ) ( | )

( ) ( | )

x i

x i

i i i
C l

i
j i i
a C l a

a

p H p E H
p

p H p E H
=

=

∑
 

END FOR 
Step 5 : Combine probabilities of all labels: 

1 2( , , , )qP p p p= K  
Step 6 : Recommend N labels with probabilities ranked top 
N in P  to physicians. 
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disease, diabetes mellitus type 2 and brain infraction, the 
numbers of males are higher than those of females. The 
number of men who drink and/or smoke is much higher than 
that of women who drink and/or smoke. Therefore, men are 
more prone to be affected by these illnesses. However, the 
number of males with osteoporosis is smaller than that of 
females, because osteoporosis is more common in women than 
in men [49]. These statistics illustrate that some diseases are 
correlative with gender.  

3) Age: The numbers of patients, in terms of age, suffering 
from coronary heart disease, brain infraction, fatty liver and 
diabetes mellitus type 2 are shown in Fig. 6. According to the 
standards of World Health Organization (WHO) [50], age is 
divided into 3 groups, namely young group (<44), middle-age 
group (45-60) and old-age group (>60). From the figure, it can 
be seen that the incidence of coronary heart disease and brain 
infraction is higher in the old-age group than in other groups, 
implying thereby that people of over-60 years of age are more 
vulnerable to be affected by those illnesses.  The incidence of 
fatty liver in the young and middle age groups is almost the 
same as that in the old-age group. Furthermore, the percentage 
of people from the middle age group affected by diabetes 
mellitus type 2 is the largest, almost 65%. This implies that 
fatty liver and diabetes mellitus type 2 are two common 
diseases of middle age group. These statistics again 
demonstrate that some diseases are correlative with age.  

C. Correlation between Diseases   
In the medical context, complication is a negative evolution 

or consequence of a disease or a physical condition. Once the 
physician diagnoses the disease of a patient, he or she will 
make a list of the disease’s most common complications and 
recommend the treatment required for recognizing or 
preventing those complications, easily and rapidly. 

Diabetes mellitus type 2 and hyperlipemia are the two most 
common diseases in the world. Diabetes mellitus type 2 can 
give rise to more than 100 complications, and hyperlipemia 
has the propensity of inducing some heart diseases. The 
diagnostic results of 495 patients with diabetes mellitus type 2 
and those of 117 patients with hyperlipemia were analyzed 
and the results are shown in Figs. 7 & 8, in terms of the 
percentages of patients affected by associated complications. 

In Fig. 7, the percentages of brain infarction, coronary heart 

disease, fatty liver and hyperlipemia are, respectively, 34.7%, 
24%, 18.8% and 17.4%. These figures suggest that patients 
with diabetes mellitus type 2 are more likely to get those 
complications. In Fig. 8, the percentages of six diseases have 
exceeded 19%, especially those of diabetes mellitus type 2 and 
brain infarction, which have reached 73.5% and 65% 
respectively. This demonstrates that hyperlipemia is closely 
related to diabetes mellitus type 2 and brain infarction. 

 

V. MODEL VALIDATION 

A. Multi-label Dataset 
Patients with one or more of the nine common diseases, 

namely diabetes mellitus type 2, hyperlipemia, fatty liver, 
kaliopenia, diabetic nephropathy, brain infarction, coronary 
heart disease, hypoalbuminemia and osteoporosis, were 
chosen from Haikou people’s hospital as experimental 
samples. Their laboratory test reports and basic information 
were collected as the input features. After data cleaning, 459 
cases with five basic attributes of patients and 278 items of 
laboratory test reports were obtained. Gender, age, 
temperature, height and weight were extracted as the basic 
attributes of patients from the textual medical health records 
by text processing methods. The value of gender is binary, i.e., 

 
 

Fig. 8.  The Percentages of Some Complications in Patients with 
Hyperlipemia 

 
 

Fig. 7.  The Percentages of Some Complications in Patients with Diabetes 
Mellitus Type 2 

 
 

Fig. 6.  The Statistics of Different Diseases, in terms of age 
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male is 0 and female 1. Age, temperature, height and weight 
were recorded as numerical values, and hence their true 
numerical values were kept in the vector of attributes. The lab 
test values include both numerical values and textual 
description values. For an item with numerical value, the value 
was set to 0, when it fell in the reference range, and to true 
numerical value when the value fell beyond or below the 
reference range. For an item with textual description value, 
different textual description values of that 

item were collected and arranged as a list with the help of a 
clinical expert. If the textual description value was the same as 
that of the reference, it was set to 0 in the vector; otherwise, it 
was set to its corresponding index number in the list. The 
statistics of the final features and those of the final labels are 
shown in TABLES I & II. Sixty percent of the patients were 
males and remaining patients were females. The average age, 
temperature, height and weight of the patients were 64.64, 
36.5, 167.81 and 67.75 respectively. From the statistics of 
labels (illnesses), diabetes mellitus type 2 and brain infarction 
were found to be the two most common illnesses among the 
illnesses under consideration. Actually, these diseases are 
common among the old people.  

B. Evaluation Metrics 
The evaluation metrics of multi-label classification 

problems are divided into two groups: (1) Rank-based 

evaluation metrics, whose purpose is to rank relevant cases 
before irrelevant cases; (2) Binary prediction measures, whose 
purpose is to make a strict yes/no classification about each 
target sample. In this study, Hamming Loss, Precision, Recall 
and F1-score were employed. 

Hamming Loss is defined as the average difference between 
the suggested and true labels of test samples, which is assessed 
thus: 

 
1

1 | ( ) |
p

i i
i

Hamloss h x Y
p =

= Δ∑  (5)
 

where ( )ih x is the set of suggested labels of test sample ix ; p 
is the number of test sets; iY  is the set of true labels of test 
sample ix ; and Δ  is the symmetric difference.  

Precision is defined as the ratio of the number of hit labels 
in the recommended list and the number of all suggested 
labels in the recommended list. The Precision is calculated as 
follows: 

 
1

1 ( )Precision | |
( )

p
i i

i i

Y h x
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∩
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 Recall is defined as the ratio of the number of hit labels in 
the recommended list and the number of all true labels from a 
target sample. Recall is calculated as follows: 

 
1

1 ( )Recall | |
| |

p
i i

i i

Y h x
p Y=

∩
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 F1 score synthesizes Precision and Recall for taking these 
evaluation metrics into account. In other words, this score 
considers both false positives and false negatives. The 
following is the formula for obtaining F1 score: 

 
2 Recall PrecisionF1
Recall Precision
× ×

=
+

 (8)
 

C. Model Performance 
For the purpose of evaluating the performance of the 

proposed model, the following state-of-art methods are chosen 
for comparison. 
1) BRkNN: By combining BR method and kNN algorithm, 

Spyromitros et al. [34] proposed the BRkNN method, in 
which the labels of k neighbors of a test sample are used 
to estimate the possible labels of the test sample. The 
number of neighbors is set to 10. 

2) ML-kNN: A lazy learning approach to multi-label 
learning, proposed by Zhang et al. [13], combines 
k-nearest neighbor algorithm with Bayesian theory into 
multi-label learning method. Through learning label 
information from k-nearest neighbors of each unknown 
sample, it estimates the possible labels based on 
maximum a posteriori principle. The number of neighbors 
is set to 10, and the smoothing factor to 1. 

 In CML-kNN, the number of neighbors and smoothing 
factor are set as ML-kNN. In all the algorithms, the number of 
suggested labels was 2. Seventy percent of 459 cases were 
included in the training set and the rest in the test set. Ten-fold 
cross validation was exploited to perform the experiments, and 
the final result is the average value of 10 experiments’ results. 
The experimental results of different algorithms are shown in 
TABLE III. 

For CML-kNN, its precision was 0.236, the recall was 

TABLE I 
STATISTICS OF INPUT FEATURES 

Input Features  Number Mean 
Basic Information    
Gender Male 279  
 Female 180  
Age   64.64 
Temperature   36.5 
Height   167.81 
Weight   67.75 
Lab test results    
Items  278  

 

TABLE II 
STATISTICS OF OUTPUT LABELS 

Output labels The number of patients 
Diabetes mellitus type 2 168 
Hyperlipemia 34 
Fatty liver 138 
Kaliopenia 36 
Hypoalbuminemia 84 
Diabetic nephropathy 17 
Brain infarction 147 
Coronary heart disease 127 
Osteoporosis 7 

 

TABLE III 
EXPERIMENTAL RESULTS OF MULTI-LABEL LEARNING ALGORITHMS 

Algorithm Ham loss↓ Precision↑ Recall↑ F1 score↑ 
CML-kNN 0.2117 0.2360 0.3793 0.2915 
ML-kNN 0.2594 0.2133 0.3366 0.2611 
BR-kNN 0.2622 0.2049 0.3157 0.2485 
↓: The smaller the value is, the better the performance is. ↑: The larger the value 
is, the better the performance is. 
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            (a)                                                                                                                       (b) 

Fig. 9. Two Screenshots of the Clinical Decision Support System for Heterogeneous Data Sources Prototype 

0.3793 and the F1 score was 0.2915, which was much higher 
than those of other algorithms. Compared to ML-kNN, whose 
results are ranked at second, the precision, recall and F1 score 
of proposed algorithm achieved an 11% improvement, a 13% 
improvement and a 12% improvement. Furthermore, the 
Hamming Loss of CML-kNN is 0.2117, lower than that of 
others. Therefore, the performance of CML-kNN is better than 
other two algorithms. 

 

D. System Implementation 
The proposed clinical decision support system prototype 

was so developed that it can be run on the web browser. 
Python was used to process health data and implement 
CML-kNN, and Mysql was used to manage the structured data. 
Fig. 9 shows two screenshots of the clinical decision support 
system prototype; Fig. 9 (a) is physician’s main work interface 
and Fig. 9 (b) is the lab test results report of the patient. The 
work interface (see Fig. 9 (a)) shows the basic information of 
the patient (see the pink region), some physical signs of the 
patient (see the purple region) and medical record (see the 
green region). The patient’s basic information includes name, 
gender (Female), birth day (1965), occupation, visiting time 
and physician’s name; the patient’s temperature (36.8), height 
(170cm) and weight (75kg) are shown against the physical 
signs. To safeguard the patient’s privacy, only those of his or 
her attributes, which are considered necessary for the proposed 
method, are described. Medical record requires that the 
physician fill in the chief complaint of the patient, diagnosis of 
patient’s disease(s) and prescriptions, including the medical 
prescription, decoction pieces prescription, transfusion 
prescription and common prescription. Sometimes, the 
physician needs to check the correctness of his or her 
diagnosis for which he or she needs the laboratory test results 
of the patient. Once these results are uploaded into the system, 
the physician can click the left green button to access the 
laboratory test results (see Fig. 9 (b)). Also, the physician can 
see the abnormal laboratory test results (see the blue region in 
Fig. 9 (b)) and review all the laboratory test results by clicking 
the green button. Based on the laboratory test results and basic 
attributes, the system identifies two possible diseases of the 

patient and shows them to the physician (see orange region in 
Fig. 9 (b)). The physician can click the blue button to add the 
recommended disease to his or her diagnosis if he or she 
agrees with the recommended disease. Once the key of “add 
the recommended disease to diagnosis” is clicked, the disease 
will be added to the diagnosis text box automatically. Then the 
physician can click the return key of the browser to get back to 
Fig. 9 (a) and continue to record diagnosis.  

VI. CONCLUSIONS AND FUTURE WORK 
 Promoted by Industry 4.0 and Health 4.0, Health data from 

massive medical infrastructures (Cyber-Physical Systems, the 
Internet of Things) is collected continually to generate “Big 
data” in the health domain. To fully utilize the health data and 
support smart health services, the authors propose here a 
clinical decision support framework, which integrates 
heterogeneous health medical data from different sources, 
such as laboratory test results, basic information of patients, 
health medical records and monitoring data, including 
structured and unstructured data, to construct an integrated 
representation of features for all the patients. An improved 
multi-label classification was applied to this representation of 
features to recommend suggested diseases to physicians in the 
framework. After the physician diagnoses the disease of a 
visiting patient, he or she has to consider the complications of 
that disease for recognizing possible other diseases. It is an 
accepted fact that correlations do exist among some diseases. 
Therefore, a k-nearest neighbors algorithm was improved for 
multi-label learning by using correlations among labels 
(CML-kNN), which can be applied it in the proposed 
framework to recommend diseases to physicians. 

Some experiments were performed on real medical data to 
evaluate the proposed framework. For conducting the 
experiments, patients with 9 common diseases were selected 
as samples. Five kinds of basic information and 278 laboratory 
test results of the patients were combined to generate 
integrated features and carry out multi-label learning methods. 
The experimental results show that the improved multi-label 
classification method performs better than the existing 
methods. Based on the design of the proposed framework, the 
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clinical decision support system prototype was developed as 
well. 

For their future work, the authors propose to continue 
integrating textual and monitoring data to generate more 
comprehensive integrated features for each patient. The 
increasing diversity in data types calls for an appropriate 
method to decrease the number of integrated features for 
ensuring the efficiency of the clinical decision support system. 
Because of the scale of labels, the processing of improved 
multi-label algorithm will be a little slow. Therefore, a more 
appropriate and efficient method to correlate labels will have 
to be developed. 
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