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Problem Description

Background:

Ensemble Kalman Filtering (EnKF] is a technique that has shown successful for history matching
dynamic models with a high number of states, in particular distributed models such as
metrological and ocean models, and more recently, reservoir models for oil and gas fields. An
ensemble of typically 100 models is updated with field data. Both dynamic states (pressure,
saturation, etc] and parameters (porosity, permeability) for a large number of cells are estimated.
Some reservoir knowledge is built into the method by the selection of noise covariance matrices.
The covariance used in the Kalman gain is estimated from the differences within the ensemble.
The updated models may be used for reservoir surveillance, production and injection planning,
etc.

In control theory this technique will be included in the term state and parameter estimation for a
highly nonlinear and large scale system. Interesting aspects as observability (high number of
states and parameters and small number of measurements with not too good accuracy) and
constraint handling then arise. These aspects have not been investigated before to our knowledge.
An updated dynamic model can be used for short term planning and control of production and
injection. Events like production choke failures, changing processing capacity, changing receiving
pressure (topside], water break through, sand production, can be responded to by feedback
control with an accurate updated model and adequate instrumentation. The use of an commercial
simulation like ECLIPSE in a nonlinear MPC raise challenges like robustness, computation time,
discontinuities (these will be addressed in another MSc thesis by Patrick Meum). The long term
goal is to develop a combined online solution, including both state and parameter estimation
(history matching of reservoir model by EnKF) and nonlinear MPC for auto- or semiautomatic
choking of production and injection wells using the updated reservoir model for predictions.

Tasks:

1) Literature review on EnKF and specifically on its application on reservoir models. Compare with
other known estimation techniques for large scale systems.

2) Discuss observability of and constraint handling for EnKF for large scale systems

3) Implement and test method on simple ECLIPSE simulation model: Let one instant of the model
represent the true reservoir and simulate this with a production and injection plan. Implement an
EnKF and investigate how well the method works.

4) Sketch how EnKF can be combined with nonlinear model predictive control (MPC) in a combined
estimation and control scheme for advanced control of wells and reservoir.

Assignment given: 09. January 2007
Supervisor: Bjarne Anton Foss, ITK






Preface

Oil production is a popular area for research these days. Due to high oil prices and demand a
great deal of funding is available for research. Production optimization is important to enhance
the recovery of oil from the reservoir. The technology that is put into the reservoirs allows for
advanced control of the production. The basis for this control is models of the reservoir. Building
and maintaining these models is probably one of the most challenging areas.

This field is both challenging and interesting, and it also ties many disciplines together. That is
why I chose to work with continuous model updating. EnKF is a new method, which is not that well
established compared to other methods. This is both a risk and a challenging task, but in the end it
was a rewarding experience. After looking back at this assignment, I feel that the task was a little
ambitious. Getting into the history matching, the statistics, the EnKF method, the implementation
and reservoir modelling is a lot to cover. This resulted in a little shortage of time to work with the
simulations and results. In the end I think I managed to tie the ends together and learn a lot about
the EnKF and its use for history matching. In the paper a lot of interesting pointers are given and
the EnKF is in general presented from a little different angle. This is since my background is in
control engineering, while the authors of most EnKF material has a mathematical background. I
am satisfied with how I brought the control engineering terms and “way of thinking” into the EnKF
methodology.
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Abstract

In reservoir management it is important with reservoir models that have good predictive abilities.
Since the models initially are based on measurements with high uncertainties it is important to utilize
new available data. Ensemble Kalman Filter (EnKF) is a new method for history matching that has
received a lot of attention the last couple of years. This method is sequential and continuously update
the reservoir model states (saturations, pressures etc.) and parameters (permeabilities, porosities
etc) as data become available.

The EnKF algorithm is derived and presented with a different notation, similar to that of the
Kalman Filter (KF) used in control engineering. This algorithm is also verified on a simple linear
example to illustrate that the covariance of the EnKF approaches that of the linear KF in case of
an infinite ensemble size.

In control theory this method falls under the category of parameter and state estimation of
nonlinear large scale systems. Interesting aspects as observability and constraint handling arises,
and these are linked to the EnKF and the reservoir case. To determine if the total problem is
observable is a nearly impossible task, but one can learn a lot from introducing this concept.

The EnKF algorithm was implemented on a simple “shoe box” reservoir model and four different
problem initializations were tested. Although decent results were achieved from some of the simu-
lations other failed completely. Some strange development in the ensemble when little information
is available in the measurements was experienced and discussed.

An outline was presented for a reservoir management scheme where EnKF is combined with
Model Predictive Control (MPC). Some challenges was pointed out and these involve computation
time, predictive ability, closed-loop behavior etc.
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Chapter 1

Introduction

ESERVOIR management is important to increase overall profitability. Models of the reservoirs
R are important assets in reservoir management, but such models are only valuable if they have
good predictive abilities. Before the production starts the models are based on seismic data, well
tests etc and there are high uncertainties associated with this data. In general the predictive value
of such models is limited and tends to deteriorate over time. To prevent this some form of model
updating have to be done at regular intervals. The update consider the new production data from
the system to update the model. This procedure is known History Matching and is a well established
field in reservoir engineering. At the beginning this procedure was done manually, but as this was
quite time consuming a lot of research is done to automate this procedure. History matching is
a difficult task, with models containing many parameters subject to high uncertainty and with
few measurements available. Typically the new commercial reservoir models contains thousands of
cells, all consisting of a number of dynamic and static parameters. Therefore there is a demand
for automatic methods that are computationally efficient. A new method for History Matching is
the Ensemble Kalman Filter (EnKF). This method was first introduced by G. Evensen in 1994 18|
for use on oceanic models, while the first history matching application was given by G. Naevdal
et al. in 2002 [36]. This method has shown promising results on several history matching cases,
is computational efficient compared to more traditional methods and computes sequentially. The
last property provides continuous model update, meaning it uses all production data as it becomes
available to update the model and tries to improve the models predictive abilities. All these qualities
make EnKF suitable for integration with reservoir management.

In recent years there has been an interest in closed-loop reservoir management. The closed-loop
is used with optimal reservoir control. A requirement for optimal control, is a model with predictive
abilities. This is especially important for long-term reservoir management. Some work has been
done to incorporate continuous model updating in this closed loop scheme. Still there are still many
challenges related to coupling these two methods into a complete automatic reservoir management
system. Such procedures are however well established in control engineering theory. Interesting
aspects in this matter is observability and constraint handling. A lot of the closed-loop system
analysis is however only performed on smaller systems. This paper seeks to address these terms in
a reservoir management perspective.
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Next the layout of this paper will be presented. In Chapter 2 some statistic fundamentals are
described. This acts as a basis for understanding the filter theory presented in Chapter 3. In
Chapter 3 the EnKF algorithm will be presented with a basis in the linear Kalman Filter (KF)
and the nonlinear Extended Kalman Filter (EKF). This algorithm is the basis for the further work
done with the EnKF. Chapter 4 outline a property of the EnKF measurement perturbation scheme,
using a simple linear system and a comparison with the linear KF. These Chapter (2-4) considers
the EnKF as a method independent of application. In the rest of the report the EnKF is considered
for reservoir model updating. In Chapter 5 an outline of the previous work done with EnKF on
continuous reservoir model updating is given. Further the methodology for performing a history
match using the EnKF is described. To put the EnKF in some perspective a comparison with
traditional methods for history matching is presented at the end of this chapter. In Chapter 6,
observability and constraint handling is outlined and discussed with basis in the EnKF. Chapter 7
presents the implementation of EnKF for history matching on a simple “Shoe box” reservoir model.
Chapter 8 presents an outline of a closed-loop scheme combining both Model Predictive Control
(MPC) and EnKF for optimal reservoir management with continuous model update. To conclude
the report the conclusions is presented in Chapter 9 and an outline of the further work in Chapter
10. At the end one can find the references and various appendices.



Chapter 2

Statistic Fundamentals

O obtain an understanding of the Ensemble Kalman Filter (EnKF) it is important to understand
T some basic statistic principles. The statistics given in this chapter is a short overview of
some of the fundamentals, aimed at providing the reader with a basis for understanding the filter
theory. First some basic terms in statistics is presented. After that an introduction to the Gaussian
probability distribution is given. Afterward a Monte Carlo approximation to distributions using
samples is outlined. The latter forms the basic for introducing the EnKF. For a more detailed
description of the statistics the reader should refer to the three books that this introduction is based
on. First the work by A. H. Jazwinski[29] is a book explaining principles of stochastic processes and
filtering theory. R. G. Brown and P. Y. C. Hwang|8| provides an introduction to random signals
and applied Kalman Filtering. Last G. Evensen [16] presents some statistics in his introduction to
data assimilation using the EnKF. In addition some references on Monte Carlo statistical methods
is referred to later in this chapter.

2.1 Random variables

A real random variable is a real finite-valued function X (-) defined on Q if, for every real number,
the inequality

Xw) <z (2.1)
defines a set w whose probability is defined. The function
A
Fx(z) = Pr{X(w) <z} (2.2)

is called the cumulative distribution function (CDF).

2.2 Probability density function

The probability density function (PDF) states the probability that a random variable X will take a
particular value . The PDF fx(z) must satisfy (2.3a) and (2.3b).

fx(x)>0 Vuz (2.3a)
/_ fx(z)dz =1 (2.3b)
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2.3 Expected value, Variance and Covariance

Expected value

The expected value for a random variable X is given both in the discrete and the continuous case

by

Discrete Continuous
E[X] =) pa; E[X]= [ xfx(x) (2.4)
i=1

where fx(z) is the PDF for the continuous case and p; is the probability of X = x; for the discrete
case.

Variance

The variance of a random variable is given in (2.5).
VAR(X) = E [(X — E[X])?] = E[X?] — E[X]? (2.5)

In a qualitative sence, the variance of X7 is a measure of the dispersion of X about its mean. Another
property of the random variable X is the standard deviation (o), which is defined as the square root
of the variance.

Covariance

The covariance is defined in (2.6) for two random variables X and Y.
COVIX,Y] = E[(X — E[X])(Y — E[Y])] (2.6)

Here the joint probability function can be defined as f(X,Y"). If X and Y are independent f(X,Y) =
F(X)f(Y) and accordingly COV[X,Y] = 0. Qualitatively the covariance describe the dependency
between the two random variables X and Y.

2.4 Probability distributions

Random variables have a certain distribution given by their PDF. There exist many distributions
for random variables. the most common is the normal or Gaussian distribution. The Gaussian
distribution PDF is given by

fx(@) = <= |50 — BIX))? 2.7
The normal distribution has a distribution function and PDF as illustrated in Figure 2.1 Here the
CDF and PDF is plotted for different standard deviations o given a Gaussian distribution.
X ~ N(E[X],0?) is a short note for telling that a random variable X is normal distributed with an
expected value of E[X] and standard deviation o. If X is a vector of Gaussian distributed random
variables with mean E[X] and a covariance matrix @ then this can be denoted
X ~ N(E[X],Q). The diagonal elements of ) denotes the variance for each of the random variables
in X and the off-diagonal elements represent the covariance between the variables.

4
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Figure 2.1: CDF and PDF for a Gaussian distribution

2.5 Approximations using samples from a distribution

In this section an approximation to the expected value, variance and covariance is proposed. This
approximation is based on using an ensemble of samples to describe a probability distribution. The
theory used is based on the description given in J. S. Liu [31] and C. P. Robert and G. Casella [38].
First a description of an integral approximation using a Markov Chain Monte Carlo method is used.
Afterward the sample approximation for the expected value, variance and covariance is outlined.

Markov Chain Monte Carlo method

To understand the need for using approximations to derive the expected value, variance and covari-
ance an integral is observed. Solving the integral given in 2.8 is an essential part of many scientific
problems.

I:/Dg(m)da: (2.8)

Here D is often a region defined in a high-dimensional space and g(x) is the function of interest.
Solving this integral using numerical integration can become very complex at dimensions higher than
3-4. Consider a case with 5 dimensions where there is a need for 10 grid points in each direction to
have a proper representation of the function. To solve this a grid with 10° points would have to be
kept for reference. Storing this alone would require a lot of hard drive space and to compute the
problem 10° grid points would need to be evaluated.

To cope with problems of this magnitude an alternative calculation of the integral is available.
Assume that N independent and identically distributed (i.i.d.) random samples x® 2N

are
drawn uniformly from D. Then the following approximation to I can be obtained

A 1

Iy = N g(xWy + ..+ g(w(N))] (2.9)

The average of many independent random variables with common mean and finite variances tends
to stabilize at their common mean. This translates into

lim Iy = I, with probability 1. (2.10)

N—oo
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The convergence rate is defined from the central limit theorem as follows
VN(Iy —I) — N(0,0?) (2.11)

where 02 = VAR[g(z)]. The "error term" of the Monte Carlo approximation is O(N~1/2). Note
that the error term is independent of the dimensionality of &, but two intrinsic difficulties arise

2 can be formidably large

e When the region D is large in high-dimensional space, the variance o
e One may not be able to produce uniform random samples in an arbitrary region D

To compensate for this the idea of importance sampling can be employed. More details on this
can be found in Robert and Casella or Liu. The MCMC method proposed here can be used to
approximate the expected value, the variance and the covariance for a given sample.

Expected Value

Given a sample of N independent realizations of  where = has dimension m and the distribution
f(x). The expected value can be approximated by

N
EX|~&= %Zw (2.12)
=1

which is the sample mean. The expected value is in other word the value that is the expected
outcome if infinitely many data are present.

Sample Variance

The sample variance can in a similar way be approximated as shown in (2.13).
;X
= — 2 ~ — )2 = — . — 2
VAR[X]|=F [(X E[X]) ] ~ (x—x) N1 ;Zl(wz x) (2.13)

where IV — 1 is used rather than N to provide an unbiased estimator for the variance.

Sample covariance

The covariance is derived using the same properties as above and is given by

COVIX,Y] = E[(X — E[X))(Y — E[Y])] (2.14)
N

~Te @y 9) =y D@~ )i~ 9) (215)
=1

This section has described the basic statistical definitions which forms a basis for the filter
presented in this paper. The focus now moves to the Ensemble Kalman Filter and the structure of
this filter will be presented in the next section.



Chapter 3

Theoretical formulation of the EnKF

HE original Kalman Filter (KF) first presented by R. E. Kalman in 1960 [30] was designed for
linear models. An early attempt to adapt this filter to nonlinear problems was done using the
Extended Kalman Filter (EKF), which is based on linearization of the nonlinear model using the
Jacobian. This is not suitable for large scale problems or problems that are too nonlinear. The
Ensemble Kalman Filter (EnKF) was introduced by Evensen in 1994 [18] to handle large nonlinear
oceanic models, and has had promising results in many areas.

To introduce the EnKF a linear estimation problem is outlined and the basic linear KF is
presented as a solution. After the focus moves to a nonlinear estimation problem and the EKF is
presented as a possibility for solving such cases. These filters however have shown some weaknesses
on problems like the reservoir parameter estimation in this paper, but is excellent as an introduction
for the parameter estimation problem. Last a problem description for a nonlinear problem is outlined
and an EnKF algorithm is proposed as a solution to the problem.

3.1 Linear Kalman Filter

The Kalman Filter (KF) is a good basis for understanding the EnKF. A good description of the
Kalman filter is given in the book Brown and Hwang [8].

The problem

Consider a discrete stochastic system with the true state xj; at time k represented by a linear
dynamical model according to (3.1).

Tyl = Pxy + Auy + gy (3.1a)
yp = Cxp + v (3.1b)

Here @ is a linear model matrix, yj are the measurements at time k and C'is the linear measurement
matrix. A is the input matrix and uy are the inputs at time k. The true initial state is given by xq
and it is normal distributed N (0, Pp), where Py is the initial covariance matrix for the stochastic
process x. qj is the unknown model error at time k and wvj is the measurement error at time k.
These errors are assumed normal distributed as shown below

qr ~ N(0,Qy) (3.2a)
o ~ N (0, Vi) (3.2D)

where Qj and V; are the covariance matrices for respectively the model noise and the measurement
noise.
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The Kalman filter equations

The problem described in (3.1) is considered. Here xj, denotes the system state at time ¢; and
Zp+1 the state at some time #x1 where 41 > t. Let @, be the a priori estimate of the process
state, based on the previous information available up until this point (¢;41). Similarly let & be the
best estimate of the system state with filtered information up to time t;. This can be written in
mathematical terms as

Ty = E(@raly”) (3.3)
Ty, = E(zx|y")

where yx* are all the available measurements up to time t;. The model for a priori prediction of the
states forward in time can be derived using (3.1):

Ty = P+ Auy, (3.5)
The a priori covariance matrix is updated using the following matrix relationship
P, =%P®" +Q; (3.6)
where

P, =E [(ilzﬂ — 1) (&), — ack+1)T|y>k] (3.7)
Pk =F [(if';k — ack)(:ﬁk - wk)T\y*]

The filtering step is where the a posteriori estimates are calculated. The a posteriori state is
updated using the following equation

& = &), + Ki(yr — Cz})) (3.9)
where the Kalman gain K}, is given by
_ p—T —~T -1
K,=P C' (CP C" +V) (3.10)
The a posteriori covariance matrices are updated as follows
P, =(I-K,C)P, (3.11)

The filter can the be summarized in Algorithm 1.



EnKF for state and parameter estimation on a reservoir model John P. Jensen

input: 2o, Py, Vi, Qy

k=0
while true do
Prediction step

2., — PP+ Auy // Forecast the state ahead
P, < OP.®" 4+ Qy // Forecast the covariance matrix ahead

Filtering step
K, « P CT(CP;C"+V,) ' //Compute the kalman gain

Ty, — &, + Ki(yr — Cx}) // Update state estimate with measurement
P — (I-K;C)P, // Update the covariance matrix
k — k+1

end

Algorithm 1: Basic Linear Kalman Filter (KF)

Here the two steps of prediction and filtering are illustrated. For the Kalman filter the initial
estimate for the state (&) and the state covariance (Py) is needed together with the model error and
measurement covariance (respectively Qy, and Vj). These variables are used to tune the Kalman filter
response. If the initial state and/or the state covariance is close to its true value then the settling
time will naturally be shorter. Both the measurement and the model error covariance tuning adjust
the Kalman gain Kj. When the measurement covariance is large this suggests that there is a lot of
error in the measurement. As a result the Kalman gain will be smaller and the observed effect of
the analysis step will decrease. If the model error covariance is large the Kalman gain will increase
and push toward a stronger influence from the analysis step. These two tuning parameters have to
be considered together and in the end it is the ratio between them that matter. More details about
the tuning and examples can be found in Brown and Hwang|§].

3.2 Extended Kalman Filter

The Extended Kalman Filter (EKF) may be applied to nonlinear dynamics. A friendly exposition of
the EKF can be found both the book by Jazwinski [29] and the book by Brown and Hwang [8]. This
filter uses an approximate linearized equation for prediction of the error statistics. The nonlinear
system is defined by

Tr1 = f(xk) + ak (3.12a)
yr = g(xk) + vk (3.12b)

The forecast and analysis steps are the same as for the linear Kalman filter in Algorithm 1. The only
difference is that the model and measurement matrices are linearized in the analysis part at each
step from the system given in (3.12). The linearized model and measurement matrices are shown in
Equation 3.13.

_ Of(x)

B = 5 . (3.13a)
dg(x)

Ci=—5~ . (3.13b)
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input: 2o, Py, Vi, Qy

k=0
while true do
Prediction step

2., < f(@) // Forecast the state ahead
P, < @, P2 + Q // Forecast the covariance matrix ahead

Filtering step
K, « P Cl(CyP;Cl+Vy)™! //Compute the kalman gain

&y — &, + Ki(yr — Crzy,) // Update state estimate with measurement
Py — (I -K,Cy)P_ // Update the covariance matrix
k — k+1

end

Algorithm 2: Extended Kalman Filter (EKF)

The result of this is that the system matrices used for updating the covariances and the gain are
Linear Time Variant (LTV). The EKF is presented in Algorithm 2. The EKF presents an approx-
imate equation for the error covariance evolution. Thus the properties of the model dynamics will
strongly influence the suitability of the EKF.

There are some problems regarding the usage of the KF and EKF with high dimensional and
nonlinear dynamics. Using a KF or EKF on high dimensional problems poses some demands of
storage and computation time. Given a model with m unknowns in the state vector, then the error
covariance matrix will have m? unknowns. The update of the error covariance matrix according
to (3.6) requires the cost of 2m model integrations. As a result the KF and EKF is not very
suitable for high-dimensional systems. Another issue is the one mentioned earlier regarding the
linearization done in the EKF. The linearization leads to poor error covariance updates and in some
cases unstable growth. To cope with this higher order approximations may be used, but this leads
to a higher storage requirement and more calculation time. In general there is a need for a better
way to update the covariance equation when working with nonlinear, high-dimensional problems.

3.3 Ensemble Kalman Filter

The idea behind the EnKF is to provide a filter that is suitable for large-scale nonlinear systems. The
basic and extended Kalman filter have proven difficult to adapt to such systems due to computation
time and handling of nonlinear dynamics. Often the difficulty lies in computing the error covariance
matrix. In the EnKF the covariance matrix estimate (P) is predicted and analyzed using the
ensemble statistics.

The EnKF was introduced by G. Evensen in 1994 [18| for the purpose of handling large-scale
nonlinear ocean models. The EnKF has been developed and examined further for various appli-
cations in many papers. A good source for articles and developments of the EnKF can be found
online [2|. This page is established as a reference page for users of the EnKF made by G. Evensen
and Nansen Environmental and Remote Sensing Center (NERSC). At this page one can also find a
Fortran 90 EnKF implementation and some examples.

The method was originally used with oceanic forecasting models and, in addition to the work of
Evensen, the ocean model described by K. Brusdal et. al. [9] has also showed good potential. An-
other application where EnKF has showed promising results is the marine ecosystem case presented
by both M. Eknes and G. Evensen [15] and J. I. Allen et. al. [4]. Lately the properties of the EnKF

10
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has showed promising results in oil reservoir modelling. The latter application is the focus of this
paper and will be discussed in Chapter 5. The theoretical formulation of the EnKF will be described
in this section. A more detailed exposition of the EnKF can be found in the book by Evensen [16].

3.3.1 Problem formulation

The EnKF is usually considered for large scale problems. These problems is often arranged in a grid,
where each grid block contains a number of dynamic and static variables. It is then appropriate
to define these variables as a function of space and time. The model state can then be defined
as x(z,t;) € R™ and consists of n, dynamic variables at each location z in space and at time
tr. Some of the static variables are usually poorly known. Let these poorly know parameters
be denoted 8(z) € R™ consisting of ny static variables and is defined in space as the dynamic
parameters. Consider the following problem

x(z,tpr1) =f(x(2,t),0(2)) + q(=z,t) (3.14a)
0 =6y(z) + 0'(2) (3.14Db)
Y =g(z(2, 1), 0(2)) + v(tr) (3.14c¢)

where f(x(z,tx),0(z)) is the nonlinear model operator and q(z,t) is the model noise. The model
state is initially given as x(z,tp). An initial guess of the poorly known parameters are given by
Oo(x) € R™. The measurements y € R™ may be direct point measurements of the solution or
complex parameters nonlinearly related to the model state.

The error term gq(z,t), which is included in (3.14), represent the model errors. Without these
errors the system would be overly specified and have no solution. But introducing these errors
implies that there are infinitely many solutions to the system. To cope with the infinite possibilities
an assumption that the errors are normal distributed with expected values being zero and the
covariances known.

3.3.2 Ensemble covariances

In general the error covariance matrices for the predicted and filtered ensemble are given by

P = (2, —x)(Z), —xp)T (3.15)
Pk = (ik — wk)(:?:k - il}k)T (316)

Since the true state is in general hard to acquire one can instead redefine the ensemble covariance
in regards to the ensemble means (Z, %, ) as shown in (3.17. 3.18).

Py =@, — &)@

Eol|
|
(S5
|
S~—

T (3.17)
Py, = (&), — Tp) (&1, — &3) 7 (3.18)

Introducing this enforces an interpretation that the ensemble mean is the best estimate and that the
spreading of the ensemble around defines the error in the ensemble mean. Now the error covariance
can be represented using an appropriate ensemble of model states. How to select this ensemble will
be described later in this chapter. Consider the error term from the Monte Carlo integration given
in Section 2.5. The description of the error term also hold for the ensemble covariance. As the size
of the ensemble N increases, the errors in the MC sampling will decrease proportional to 1/ V'N.
Evensen [16] concluded that the information contained by a full probability density function can be
exactly represented by an infinite ensemble of model states.

11
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3.3.3 Ensemble representation

Earlier the system states & and poorly know parameters 8 were defined. These can be put together
in a matrix A(z,t;) € R™¥, where n = n, + ng, holding the N ensemble members at time ;. In
mathematical terms this become

w(l)(z7tk) .’L'(Z)(Z,tk) e m(N)(z’tk)
The ensemble mean can now be written as
Az, ty) = Az, tg) - 1n (3.20)

where 1 is a vector consisting of N x 1 elements of value 1/N. The ensemble covariance in space
can then be estimated as

P(Zl, zZ9, tk) = ﬁ(A(Zh tk) — Z(Zl, tk))(A(ZQ, tk) — Z(ZQ, tk))T (3.21)

The measurements can also be formulated using an ensemble representation. For a system
consisting of J measurements, J vectors consisting of N perturbed measurements is defined as

Y; = y; + 5, l=1,...,.N j=1,....J (3.22)

where y§ is the "true" measurement from the original process. These variables can be stored in a
measurement matrix J); and a measurement perturbation matrix £; as in (3.23)-(3.24) for each of
the system measurements j € [1...J].

Vi=(y,v,....u) (3.23)
Sj:(v},v?,...,vjv) (3.24)

For the j € [1...J] measurement the covariance can be estimated using the ensemble measurement
perturbations as follows

E;ET
N -1
The argument for using this perturbation is further investigated in Section 4.1 and shows that in
the case of infinite ensemble size the EnKF will converge to a KF for a linear system.

Vty); =

(3.25)

3.3.4 EnKF algorithm

The ensemble can be expressed as a function of time only by stacking the states and parameters.
Given the a finite set of space parameters z = [2; ... 24, S states and P poorly known parameters
at each location. Each state x;,i € [1,.5] and parameter 6}, j € [1, P] can then be expressed for all
locations in space as follows.

2V t) 2@t - 2™t

Xi(ty) = : : : : (3.26a)
L e Ggot) 2Pz th) o 2™z te)
_9§1)(Z17tk) «9](.2)(21,%) 0](.N)(z1,tk)

0, (1) = : : : : (3.26D)
| 00 g te) 0Pt o 0 (20 t1)
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The A matrix can now be redefined from (3.19) containing all ensemble states and parameters for
all locations in space. This matrix works as an augmented state vector to be used in the EnKF.
Combining (3.26a) and (3.26b) the ensemble matrix can be derived as

X1 (tg) ]
Xo(tr)

Ap = Alty) = );15(5;’3) (3.27)

0 (t)

aPktk) i

The same notation can be used for the measurements using (3.23)

[ Vi(te)

Yi = Y(ty) = Va{in) (3.28)

i yJ.(tk)
A

The matrix containing the measurements from the true system is stored in Y} = [yiyl. ..y}
Similarly this can be done for the ensemble measurement perturbation using (3.24)

E1(ty)

E, = E(ty) = Ex(tr) (3.29)

thtk)

For a general nonlinear system the measurement is given according to (3.14c). The estimated
states and parameters for all the ensembles are denoted Ag. Let the measurements of the estimated
ensemble at time t; be given by the following nonlinear relationship

M(Ay) =gV g™M] = [g(@)M. (0,)M) .. g((@) ™, (6;,)M)] (3.30)

For convenience the estimate for the states, parameters and measurements are stacked in a big
ensemble matrix as shown below.

. . A,

A = Alty) [ M(Ay) } (3.31)
The Ensemble Kalman filter updates the estimate of the states and variables by updating the
ensemble matrix Ag. Note that M(A), in the ensemble matrix from (3.31), is treated as a diagnostic
variable in the system. This is because its update is not used in the next step of the filter. The EnKF
also updates the mean of the ensemble matrix Aj.. The superscript ~, as defined previously, denotes
that an estimate is a priori. To initialize the filter one must provide the model and measurement
covariances, respectively Qp and V. In addition one must specify an initial ensemble, which will
be discussed in further detail later. Let Hj be the measurement index matrix at each time step k
defined such that

H A, = M(Ay) (3.32)

Using this notation the Ensemble Kalman Filter is summarized in Algorithm 3. There are three
sub functions, which involves the statistics, in the presented algorithm and they will be described
in more detail in the next section.
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input: Qi, Vi
Ay < computelInitialEnsemble(...)

while true do

Prediction
dq «— computeModelNoise(Qy)

A —

A, — f(A1) +dg

Py — (A — A (A — AT

Filtering
E; «— computeMeasurementNoise(V})

Y. — I/kt—l-Ek
K, < Pk_Hk(HkPk_H]? + V)_l
A = A+ Ky(Ys, - Hy A

~ ~

A, A+ Ky(Y;, - HuAD)
P — (Ak — j‘lk)(Ak — ;lk)T

end

Algorithm 3: Ensemble Kalman Filter (EnKF)

3.3.5 Managing the uncertainties

The EnKF is based on statistics and consequently uncertainties comes into play in many parts of
the algorithm. Generating ensembles or adding model/measurment noise is all built on statistic
properties.

Adding of model and measurement noise is important for the filter to work. The statistical
theory behind the measurement noise perturbation is discussed further in Section 4.1. The model
noise is used to describe model uncertainty in the filter. This is a characteristic of EnKF, namely
that it solves both the parameter and the state estimation problem. The adjustment of the model
noise is something that vary with the different problem cases and is based on, among other, the
severeness of the nonlinearities of the problem. Some questions around the model noise for large
scale system will also be addressed in Section 10.3.

Constructing the initial ensemble is an essential part of the kalman filter. The initial ensemble
contains information about the initial states, parameters and their uncertainties. There are various
strategies for creating these samples representing the uncertainties. Evensen [16] suggested three
sampling strategies that might be applied

1. Sampling all variables randomly. The mean and variance will vary within the accuracy that
can be expected for a given ensemble size.

2. Sampling all variables randomly, but correcting the sample such that it will have the correct
mean and variance.

3. Using the improved sampling scheme presented by Evensen.

From running several tests Evensen concluded that there was a slight improvement from strategy
1 to strategy 2. The third strategy and more complex strategy gave a better result than the two

14
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previous even though it is not so computationally expensive. The improved sampling scheme seeks
to generate ensembles with full rank and better conditioning than using a random sample. Evensen
[17] suggested that since the improved sampling scheme also generates a better conditioning of the
ensemble during the forward integration it might be useful when computing the model noise. The
improved sampling can be used in the following two ways

e Reduce the computation time by decreasing the ensemble size and still obtain the same results
e Improve the EnKF results even further

In this paper the first two sampling strategies will be used for the comparison of linear Kalman filter
and EnKF in Section 4.

A common factor of these sampling strategies is that the samples are created using the mean
and the covariance. To create samples based on these variables one need some more information.
An assumption that the ensemble is Gaussian distributed is made. In practice this means that the
probability density function (pdf) of the a priori ensemble is assumed to be Gaussian distributed
for the update to be correct. The Gaussian assumption result in the EnKF solving for the mean
and not the mode. In the case of a Gaussian distribution these values coincides. One reason this
assumption is made is that the mean is easier to estimate using a small ensemble size. Neevdal [35]
tested the EnKF on a scalar case with skew-normal initial distribution of the state. The results are
shown in Figure 3.1. On the left is the initial ensemble, with a skew-normal distribution. On the
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Figure 3.1: Example illustrating EnKF on a system with non-gaussion prior

right, the prior and posterior ensemble is plotted at time step 5. For the initial ensemble the mean
is not a good estimate of the true solution since the distribution is non-Gaussian. This error, as the
EnKF assimilates data, gets smaller and the mean becomes a better estimate. In general the EnKF
have proven to work well with a large number of nonlinear dynamic models. Evensen [16] gave some
examples both where the EnKF inherited some non-Gaussian structures in the analyzed ensemble
and where the EnKF failed.

The implementation for a large scale systems in this paper uses a more sophisticated sampling
scheme. This scheme takes into consideration a 3-dimensional correlation between the elements in
the distribution. More details on this is to be found in Section 7.3. Given this introduction to the
EnKF it will be interesting to compare it with a linear KF to test some of the basic principles.
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Chapter 4

Comparison of a linear Kalman Filter
and EnKF

HE purpose of this chapter is two compare the performance of a linear Kalman Filter (KF)
T and EnKF. There are two reasons for doing this comparison. First, this comparison acts as
an argument for using the measurement perturbation scheme as described in Section 3.3.3. The
alternative to this scheme would be letting all ensemble members see the same measurement. This
section seeks to prove that by using this scheme, the EnKF converges toward the KF for a linear
case. Secondly this comparison is works as a simple way of verifying the EnKF implementation that
is described in Section 7.3. Since this is a simple linear example it is possible to quickly implement
an algorithm as a reference. Setting up the provided EnKF code on the other hand took quite a
lot of effort, since this is adapted to reservoir cases. The exercise however proved to be useful for
understanding the complex implementation. In this section there will first be made a theoretical
comparison and afterward an implementation of each of the two filters are made to verify this.

4.1 Theoretical comparison

When comparing KF and EnKF it is natural to examine the covariance matrices. The analysis
scheme in the KF uses the definitions of (3.16). Burgers et al. [10] showed that it is essential that
the observations are treated as random variables with a mean equal to the system observation and
covariance equal to V¢, The ensemble of observations is given in (3.22). Comparing the filtering
step in the KF and the EnKF one can see that the relation between the apriori and aposteriori
ensemble is identical, apart from the use of P~ and Pj. Given an ensemble of size N and the a
posteriori update of the state and the state mean from Algorithm 3, the following relationship can
be derived for ensemble member .

# -3 =(I-KH) (&) —@))+ Ky -3 (4.1)

Here the Kalman gain is the same as in the formula from both Algorithm 1 and 3. Using this
relationship and considering the ensemble covariance from the EnKF the following derivation can
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be done.
P, = (& — k) (&x — C'A?k)Ti
— (I~ KH) @} - &)+ Ky ~50) (--)
= (I - KH)(&; — )@, —&,)"(I - KH)" + Ky, —9)(w -9 KT (4.2)

(

(I-KH)P,(I-KH)" + KVK”

P, -KHP, - P H' K"+ K(HP, H" + V)K"
(I-KH)P,

Here the result is the minimum error covariance as used in the KF scheme. The conclusion here
is that the EnKF analysis step converges to that of the KF when the ensemble size converges to
infinity. For this to hold the observations (y) must be treated as random variables.

4.2 Implementation

Given the theoretical comparison of EnKF and KF it is natural to test this with a small linear
system and a pure state estimation problem. Consider the following system

Trr1 = Az +qp

yr = Cxp+ v (4.3)
where
A:[g'g gi’] C =[1 05]
’ ) (4.4)

Elgrq] = [ 0'(?1 0.002 } Elvgol] =1 0.01 |

The state is initialized as

20— [ 0 ] (45)

The system is analyzed using both a linear KF according to Algorithm 1 and an EnKF according
to Algorithm 3. The filters seek to estimate the two states in the system. The KF and EnKF state
was initialized as follows:

G = [ ' ] (4.6)

The covariance matrix for this system in both the KF and the EnKF is shown in Figure 4.1
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Figure 4.1: Comparison of KF and EnKF - Covariance Matrix

19



EnKF for state and parameter estimation on a reservoir model John P. Jensen

The state estimates for this system in both the KF and the EnKF are shown in Figure 4.2
From both Figure 4.1 and 4.2 one can observe that as the ensemble size grows larger the EnKF
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Figure 4.2: Comparison of KF and EnKF - States

behavior approaches that of the KF. This supports the theory presented in the previous section.
The MATLAB [1] code for the filter that was used in these tests can be found in Appendix A. The
same tests were run with the IRIS EnKF implementation (see Section 7.3) and similar results were
shown. As described earlier setting up these tests took quite a lot of effort since the IRIS code was
originally built for reservoir problems and some smaller modifications had to be made to make it
work. The consistency of the IRIS implementation was proven and a lot of experience with the code
was gained by the author.
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Chapter 5

EnKF for continuous reservoir model
updating

HE EnKF was as mentioned earlier first introduced in association with oceanic forecasting mod-
T els. But later effort have been put into adapting this method for continuous reservoir model
updating. Currently a lot of effort is put into developing this method as a contestant for automatic
history matching. However, there is still some work left to be done. This chapter is meant as an
introduction to EnKF for continuous reservoir model updating. To start of an outline of the previous
work done on the subject is given. Following this is an outline of the methodology of setting up
and running the EnKF as a parameter estimation tool. Last a short comparison with some other
automatic history matching methods is given.

5.1 Previous work

In recent years there has been an interest in both mathematical and statistical methods for history
matching. Most of these methods have considered the problem as a parameter estimation problem.
In 1994 Evensen [18| introduced the EnKF as parameter and state estimation method. The EnKF
differs from the other methods because it estimates both the parameters and the states. Previous
methods usually perform history matching by minimizing an objective function. This objective
function describes the difference between the observed and simulated measurements. This problem
usually becomes highly nonlinear and the solution lies in a space with dimension equal to the number
of parameters. The usage of EnKF for history matching was first proposed by Neevdal et al. [36] and
following his work many others have contributed to the discussion of EnKFs potential for history
matching. Some of the papers that discuss EnKF applications in regards to reservoir simulation
models are listed below.

e Neevdal et al. (2002) [36]: Used EnKF for permeability estimation on a simple reservoir
application and showed good results.

e Neevdal et al. (2003) [37]: Continued showing good results using EnKF. Now estimating the
permeability of the whole reservoir using a simplified 2D reservoir model of a North Sea field.

e Gu and Oliver (2004) [23]: Examined the use of EnKF for state and parameter estimation on

the PUNQ-S3 reservoir test case and got good results. Some issues regarding an overshoot in
the porosity and permeability was presented.

21



EnKF for state and parameter estimation on a reservoir model John P. Jensen

Brouwer et al. (2004) |7]: Investigated EnKF in a closed loop setting with optimal reservoir
control. They showed good results on a simple 2-dimensional model.

Gao,Zafari and Reynolds (2005) [21]: Compared EnKF with another method called Random-
ized Maximum Likelihood (RML). Both methods showed similar results. One major difference
between the method is that RML is an adjoint based method whereas the EnKF does not
require much effort in coupling with the reservoir model.

Liu and Oliver (2005) [32]: Used the EnKF both for history matching and for facies estimation
in a reservoir simulation model. This is a very difficult problem both to implement and
solve. EnKF showed many good properties for this type of problem. The same year they
compared these results to that of a traditional gradient-based minimization method and EnKF
outperformed the traditional method [33].

Wen and Chen (2005) [48]: Provided an improved EnKF algorithm on a two dimensional
reservoir. Examined the effect of variation in the ensemble size.

Zafari and Reynolds (2005) [50]: Tested the method on some nonlinear problems to validate
the EnKF. EnKF was proven to have difficulties on multi-modal distributions and that the
Gaussian assumption of EnKF is very critical. They also tested the improved algorithm of
Wen and Chen and found it to be inconsistent.

Skjervheim et al. (2005) [44]: Suggested a method based on EnKF to incorporate 4D seismic
data in continuous model updating.

Haugen et al. (2006) [24]: Tested EnKF for history matching on a North Sea field case. They
showed how EnKF can improve the model parameters for history matching and also discussed
the updating of the reservoir states. They showed promising results, but concluded that work
should be done to be able to estimate other reservoir parameters using the EnKF.

Evensen et al. (2007) [19]: Also showed how EnKF can be used in assisting history matching
of a North Sea reservoir model. They also attempted to estimate WOC and GOC using EnKF
and showed an decrease in uncertainty regarding the parameters.

This time line shows the evolution of EnKF from an early theoretical point of view toward a more
mature tool for assisting history matching. This paper will focus on the EnKF implementation on
a test case reservoir, hence not all of the applications in the newer literature will be tested in the
implementation part (Section 7). A closer look on some of the newest applications of EnKF will be
given in the further work chapter in Section 10.
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5.2 The EnKF methodology

The method of history matching using EnKF is a complex procedure which require collaboration
between many areas of expertise. This description seeks to put the procedure into a system and
explain each of the steps. Solving a parameter estimation problem for a reservoir can be organized
in the following procedure

1. Create an initial model of the reservoir based on geological interpretation
2. Parameterize the estimation problem (Static and dynamic variables, measurements, etc.)

3. Define the problem in mathematical terms (Put the parameters into the mathematical form
of Section 3.3)

4. Create the initial ensemble
5. Run the filter
6. Interpret the results

If the results are not satisfactory one have to analyze them in order to determine where in the
procedure it went wrong and redo the procedure from that point. The steps in this procedure will
now be discussed in more detail.

The creation and maintenance of a reservoir model is a complex task. This process includes ge-
ological modelling, seismic reservoir characterization, reservoir simulation, and conditioning models
to all available data. To implement EnKF as a tool for assisting model updating there are many
challenges. A very important aspect is to have an understanding for the reservoir geology. By this
it is understood that all initial information about the reservoir have to be taken into consideration.
It is important to map out all available information and to create an initial reservoir model which
describes the geology in the reservoir. Before a reservoir starts producing one can never be one hun-
dred percent sure of what is underneath the surface. And this is where continuous model updating
comes into play. This underlines that before the EnKF comes into play a lot of work has to be done
from the reservoir engineers to create a good model. After this has been done the information has
to be incorporated in the EnKF configuration.

The first step is to create a parameterization of the problem. The idea is to find the parameters
in the model wherein the uncertainty lies. As described by G. Evensen [19] the structural model is
assumed accurate, since there is no current way of estimating structural parameters using EnKF. To
specify the uncertainty in the model good communication is critical between the reservoir engineers
and the people setting up the EnKF. So what parameters can be estimated. Evensen listed some
examples of parameters that can be estimated in reservoir models:

e Fluid Contacts (GOC, WOC etc.)
e Porosity and permeability fields

e Fault transmissivities

e Vertical transmissivities

The fluid contacts are parameters where initial information usually is derived from the drilling of wells
through the specific areas. This often leads to a large uncertainty in these important parameters and
a need for better estimates is often present. Porosity and permeability fields describes the reservoirs
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ability to transport fluids. These are the main parameters to adjust to match both observed rates
and the timing of water and/or gas breakthrough. The transmissivities are important parameters
in for instance reservoirs containing many faults and little information about pressure. In addition
to the parameters also the states in the reservoir can be estimated. These usually are the pressure
P and the saturations of gas, oil and water (Sy, S, and Sy,).

In addition to the static and dynamic variables, the measurements that should be used have to
be defined. It is important to choose the measurements wisely as the measurements are the only
information available to tune the model. But in general the measurements are given by facilities
and there is no real choice. An understanding for history matching and concepts of observability
can however assist in planning where to incorporate measurements in the facilities. This will be
discussed further in Chapter 6.

Once the parameters and states to be estimated are defined an augmented state vector for the
filter can be derived as

where xgl)(zo,tk) denotes the states for ensemble [ in grid block o at time k. Similarly 0](.l)(zo,tk)

denotes the poorly known parameters to be estimated. The measurements to use in the filter
updating is also to be defined. Usually these consists of rate and pressure measurements. Now the
model is defined and the ensemble can be written in the form presented in (3.31).

When the problem has been defined the next step is to initialize the EnKF. This is a very
important part of the EnKF as will be illustrated next. Evensen [16] stated that the solution for the
static parameters is only searched for in the space spanned by the initial ensemble of parameters.
An example to illustrate this is given in Appendix B. This poses that one can effectively reduce the
degrees of freedom by spanning a smaller space in which the filter searches for the solution. On the
other hand it is important that consideration is put into the problem reduction so that the solution
does not fall outside the span. In practice the problem reduction can be done by assuming the fields
of permeability and porosity to be smooth. This smoothness can be described in the prior statistics
using vertical and horizontal correlations.

After the problem has been parameterized and the ensemble initialized the EnKF is ready to be
run. The EnKF algorithm can be implemented with different options that might be turned on or off.
These options are in general available to implement extra features that might improve the EnKFs
ability to solve the problem. Some of the improvements will be discussed in the implementation
section in Chapter 7.

After the EnKF has been run over a period in time the results needs to be interpreted and
verified. G. Evensen et al. [19] asked the question "What are we solving for?". As discussed
earlier the EnKF solves for the mean of the posterior pdf. In addition to solving for the mean, the
uncertainty is described in the standard deviation. In some cases it can also be interesting to observe
the solution in the individual ensemble. One example can be if the mean does not give a solution
that is realistic, a realistic solution might be caught in one of the ensemble members. Also in case
something goes wrong in the parameter estimation one can interpret information from the individual
samples. In any case this comprehension of the results call for a collaboration with the reservoir
engineers. Both the work by G. Evensen et al. and V. Haugen et al. [24] describes interpretation of
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results from a North Sea Field Case.

In general one can say that performing a history matching using the EnKF is a complex task
which requires both in depth knowledge of the reservoir and EnKF properties. There are also some
advantages in using EnKF compared to more traditional history matching methods. This will be
described in the next part.

5.3 Comparison with traditional history matching

The EnKF is a new approach to history matching. The history matching problem for reservoir
models on the other hand has been around for quite a while. In this section some of the differences
between the classical method for automatic history matching and EnKF will be outlined.

There are four categories in which the history matching methods can be placed under

1. Manual history matching
2. Gradient-based algorithms
3. Genetic algorithms

4. Statistical methods

The manual history matching is the first method, where the reservoir engineers would look at the data
from a reservoir and try to tune the parameters manually to improve the fit with the measurements.
The gradient based algorithm methods for history matching involves minimizing an objective func-
tion, thereby minimizing the difference between the observed and simulated measurements. These
methods in general use the following loop:

1. Run the flow simulator for the complete history matching period
2. Evaluate the cost function
3. Update the static parameters and go to the first step

The search in these methods usually search a space with dimension equal to the number of param-
eters. This is a very complex problem and is usually highly nonlinear with many local minima. Up
until 1972 most of this work was done using a perturbation method according to Dougherty [14].
A lot of work have been put into creating good algorithms for the history matching optimization
problem, and the gradient calculation will be discussed later. The genetic algorithms are algorithms
that also solves the problem of minimizing an objective function. These evolutionary algorithms are
usually good for solving large scale problems with many local minima. On the other hand there are
no guarantees in the solution of these algorithms. R.W. Schulze-Riegert et al. [43] did some work
with evolutionary algorithms and also showed how prior information can improve convergence. The
last class of methods is the statistical methods and the EnKF falls under this category. In the rest
of this section the comparison between EnKF and other methods will focus on comparison with the
gradient-based methods. Note that these method will be referred to as traditional history matching.

One of the differences between EnKF and traditional history matching lies in what the method
solves for. The methods that search for the minimum of a cost function solves for the mode of the
posterior pdf. The EnKF on the other hand solves for the mean of the pdf since the mean is easier
to estimate with a small ensemble size. This, as described in the theory earlier, imposes a Gaussian
assumption to the pdf. Effectively EnKF simplifies the problem by searching for the mean and by
limiting the search to the space spanned by the ensemble. This makes EnKF more computationally
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efficient, but requires greater care in initializing the problem. Similar methods for restricting the
search in gradient methods has also been applied and is referred to as Regularization. C.B. Chung
et al. [12]| explained how a priori information could be incorporated into history matching.

The computation of the pdf also raises the question of uncertainty. In EnKF the uncertainty is
calculated directly by the standard deviation of the ensemble and the measurements. In gradient
based methods the uncertainty has to be calculated by different means. B.A. Foss [20] proposed
a method for calculating the uncertainty in the parameters by using the Hessian of the objective
function. This might become a complex task for large objective functions in big reservoir models. A
newer method to quantify the uncertainty in history matching is Randomized Maximum Likelihood
(RML). Liu and Oliver [33] compared the EnKF with this such a RML method. They tested
both methods ability to history match geologic facies, which is a very difficult problem. In their
experiments the EnKF outperformed the traditional method both in calculation time and results.

Another thing that separates the EnKF from traditional history matching lies in the computation
of the gradient. The traditional methods requires the computation of the gradient of the objective
function values. Even though the newer adjoint based methods have reduced the computation
significantly the gradient computations requires some simulations of the reservoir model for the
whole the horizon. The task that requires most computation time is just simulation of the reservoir
hence extra simulations should be avoided. J.R.P. Rodrigues [39] proposed an implementation of
the forward and adjoint based methods for derivative calculation in a full-featured adaptive implicit
black-o0il simulator. In EnKF the gradient is not calculated which saves a lot of extra runs of
the simulator compared to the traditional gradient-based methods. In general the computation
time of the EnKF is equal to NN simulations over the whole horizon plus some overhead for the filter
calculations and model restarts. The EnKF unlike most of the gradient-based methods is a recursive
algorithm. This means that when new data arrives one can just compute the next step and there is
no need to run a full new optimization over the horizon.

The early versions of the gradient-based methods were like the EnKF independent of the simu-
lator source code. When using adjoint methods for computation of gradients, access to the source
code is needed. This means that implementing gradient-based methods is a choice of long run time
or implementing extra features on a reservoir simulator source code basis. The EnKF on the other
hand is very easy to adapt to different simulators. There is only a need for an interface to make the
filter communicate with the reservoir model. One example of this is described in the implementation
part of this paper in Section 7.3.

To summarize this comparison, the traditional gradient-based methods have been around for
a long time. Several modifications have been done since the description of these methods in 1972
by Dougherty. The EnKF is a new method which have shown promising results on many reservoir
cases. The advantage of the EnKF methods is that it is computationally efficient and easy to imple-
ment compared to the traditional methods. It incorporates uncertainty calculation in a smart and
understandable way using ensemble statistics. The EnKF also computes the estimates sequentially
and updates both the static and dynamic parameters. Which forms an optimal starting point for
computing prediction and makes EnKF suitable for operational reservoir monitoring and prediction
(V. Haugen et al. [24]).
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Chapter 6

Observability and constraint handling
for EnKF

BSERVABILITY is a term often used in control engineering. Observability relates to system
O identification and deals with whether or not the initial state of a system can be observed
from the output. In the linear case it exists a well established method to define observability.
The first part of this chapter presents the linear theory and a simple example as a background for
understanding nonlinear observability. After that the focus moves to the nonlinear case. Proving
global observability for a nonlinear system is difficult, and certainly not practical for large scale
systems. A criteria for local nonlinear observability have been developed and a lot of research
has been done in this area. In this chapter a definition of nonlinear local observability is given.
Further this is related to the EnKF and various problem reducing strategies already implemented
in the EnKF are related to improving the observability. The purpose of establishing this connection
between observability and EnKF is to outline a different angle to approach the continuous reservoir
model updating problem using EnKF. Constraint handling is another term often used in control
theory. Constraints appears in many problems. The most common forms of constraints are as
limitations in variables, inputs and/or outputs. In addition relationships between these parameters
(usually in form of a model or specifications) can act as constraints. An outline of how EnKF is
suited for constraint handling will be given last in this chapter.

6.1 Linear observability theory

To start of the linear case is investigated. Goodwin et al. [22| gave the following definition of
observability

The state xo # 0 is said to be "unobservable" if, given 2:(0) = z¢ and u[k] =0 for & > 0
, then y[k] = 0 for £ > 0. The system is said to be completely observable if there exists
no nonzero initial state that it is unobservable

also an alternative definition is found in Chen [11]
The state equation (6.1) is said to be observable if for any unknown initial state x(0),
there exists a finite ¢; > 0 such that the knowledge of the input v and the output y

over [0,t1] suffices to determine uniquely the initial state x(0). Otherwise the equation
is said to be unobservable.
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Consider the following linear time invariant system

T = Az + Bu (6.1a)
y=Cx+ Du (6.1b)

and the observability matrix
Q, = [ ct (AT’ ... (cAHT ] (6.2)

where n is the number of states. A method to check if a linear system is observable is given in
Theorem 1.

Theorem 1. The system (6.1) is observable if and only if Rank(Q,) = n. Where Q, is defined as
(6.2).

A simple example

To illustrate the definitions a simple example is considered. A car is driving along a straight road.
The goal is to observe both the position and velocity, what measurements are needed to determine
this? Lets create a simple linear system for the car

[ﬂ:[géHﬂ (6.3a)
v=lao][}] (6.3b)

where x is the position and v is the velocity. a and b are two constant used to vary the measurement
y. That is if a = 0,b = 1 the velocity is measured and if a = 1,b = 0 the position is measured. For
simplicity the input in this system is not considered and only the relationship between position and
velocity is illustrated. Using (6.2) the following observability matrix is obtained

Qoz[z 2] (6.4

From this one can conclude that if the position or a linear combination of the position and velocity
is measured the system is observable. On the other hand if only the velocity is measured the system
is not observable. This is pretty intuitive. If the position and time is known, the velocity is easily
calculated. On the other hand if the velocity is known one can integrate to get the change in position
over the time, but without a position reference somewhere one can not know the exact position.

6.2 Large scale nonlinear observability

So how can the observability defined in the previous section relate to the EnKF and the reservoir
estimation case? First consider a general nonlinear problem
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where (t,z) € SC R'xR", u€ R, CR!, y € R, C R™,and t € [tg, T]. The observability problem
is: under what conditions can &g be uniquely determined from y(t) and w, t € [tg, T|? An overview
of different approaches to investigate observability in nonlinear systems have been suggested by
Hwang and Seinfeld [27] and more details and references around the theory can be found here. In
addition Hedrick and Girard at University of California (Berkley) gave a good summary of nonlinear
observability using Lie derivatives in their lecture notes [25]. First they define distinguishability as
in Theorem 2.

Theorem 2. Two states xg and x1 are distinguishable if there exists an input function u* such
that: Ylay # Ylan

Afterward the local observability around a state xg is defined in Theorem 3

Theorem 3. The system (6.5) is locally observable at x if there exists a neighbourhood of xgy such
that every x in thath neighbourhood other than xq is distinguishable from xg.

Given these definitions, a method to test local observability was outlined by Hedrick and Girard.
This test involves using Lie derivatives and creating a nonlinear version of an observability matrix.
To generate this matrix, one must compute the derivative of h(¢, z(t)) with respect to both the state
x and the input u.

It is clear that the method described above becomes unpractical for large scale systems. In the
reservoir case using a commercial reservoir simulator it is very difficult to obtain this matrix. But
the idea of identifying if the problem is locally observable is something to consider. If the reservoir
model is locally observable in an space E € R"= " around the true solution and our initial ensemble
does not span outside E it should be possible to find the solution. So the question the becomes,
what can one do to ensure observability?

Consider a general problem of the same size as the shoe box problem described earlier. The
system has approximately 9000 parameters to be identified using only eight measurements. This
alone sounds like an impossible problem and the need for more information about the system is
obvious to ensure local observability. So where can one introduce more information to the problem?
Some suggestions are made below

e Through the model:
The model contains relationships between the input,unknown parameters, states and output,
hence it limits the degrees of freedom.

e Through excitation of the system:
Different excitations of the model may trigger different model properties in the measurements.
As seen in Theorem 2 and 3 the input w is important for observability. A more complex system
input will potentially make more states distinguishable.

e Searching only in a subspace of the total space spanned by the parameters:
An example of this has been described earlier by the EnKF searching only in the space spanned
by the initial ensemble. This is based on some prior knowledge of the system parameters. If
a smaller space close to the true solution is searched in, the space is more likely to lie within
the locally observable region F.
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e Add more measurement:
More measurements also have the potential to make more states distinguishable according to
Theorem 2. However, not all measurements provide more information to the system. A very
easy example is that if one measure both the oil rate and the gas rate. Adding a measurement
of the GOR does not add more information to the system since this is only a combination of
the previous two.

In Figure 6.1 an observability region F is illustrated together with the true solution zg. The actions
previously described tries to either increase E or to search in a smaller region closer to zg.

Figure 6.1: Observability region

The EnKF update would be interesting to analyze with regard to observability. The idea is to
investigate how the Kalman gain is determined. The Kalman gain decides how much the variables
are updated from the information in the measurements. To investigate this the state vector and
Kalman gain equation are repeated and analyzed. Remember the ensemble state vector .A% at step
k for ensemble member [, which was expressed as follows

el
l i
M(a}, 0)
The EnKF gain is given by
K = P, Hl (H,P, Hl + V)™ (6.7)

Next the information the different matrices in (6.7) contains is described in (6.8). Note that when
writing state it is understood the augmented state containing bot the dynamic and the poorly known
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static variables (AL = [0} z!]T from 3.27 for ensemble member [).

Covariance: | Covariance:
state state
-1
! 1 | |
state M((state) Covariance:  Covariance:
Ky = Hl | Mstate) + (6.8)
! !
Covariance: | Covariance: M (state) v
state M(state)
! !
M(state) M(state)

So the covariance matrix (P, ) expresses the covariance for the state ( and 8), between the state and
the computed nonlinear measurements (M (xy, 6y)) and for the computed nonlinear measurements.
The matrix (Hx P, H] +V)~! holds information about the measurements (y) covariance (V') and
computed nonlinear measurements covariance. When computing the EnKF gain by (6.8) its content
can be interpreted as (6.9)

Covariance: | Covariance: Covariance:

state M(state) + y
! ! !
M(state) M state) y

measurement gain

The measurement gain is of no interest since the updated computed measurements are disregarded
before the next step. This shows that there are two factors that determine how much each state will
be updated by each measurements error.

1. How much correlation there is between the states and the computed nonlinear measurements

2. A factor describing the uncertainty in the model compared to the uncertainty in the measure-
ments

This means that the EnKF will have more update in the states (x and 6) that has the strongest
influence on the computed nonlinear measurements, than in the once with less influence. Some
regions in the field are more likely to influence the measurements than other. Consider a simple
example of the permeability field in a 2-dimensional reservoir with one producer and one injector.
Then the area around and between the wells are more important than the area closer to the corners.
This can be illustrated as in figure 6.2. The blue area illustrates the area where the permeability
is of less importance for the history match. This is of course dependent of the reservoir properties,
but in general there are often some areas where the parameters are of less importance than others.
This means that one should assume the standard deviation to first decrease in the white are of the
figure. It can not be concluded that the blue regions wont be estimated properly since the system is
highly nonlinear and information from these parameters may be propagated through several steps of
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Producer Injector

Figure 6.2: Observability region

the EnKF algorithm. This analysis can not conclude whether parameters can be identified or not,
but is meant as an illustration to how the EnKF works. It can also give some pointers of where to
expect the parameter estimation to be harder.

This section has tried to introduce the strict definition of observability into the parameter esti-
mation problem in reservoir models. Traditionally the success of this problem have been described
using the term identifiability. A.T. Watson et al. [47] said the following about identifiability

Since the number of parameters to be estimated in a reservoir history match is poten-
tially quite large, it is important to determine which parameters can be estimated with
reasonable accuracy from the available data. This aspect can be called determining the
identifiability of the parameters.

However, Watson et al. also described the desired knowledge regarding identifiability. That is to
answer the two following questions

1. Which parameters can be determined uniquely if the measurements were exact?

2. Given the expected level of error in the measurements, how accurately is it expected to be
able to estimate the parameters?

The first question is related to a definition similar to that of observability. Watson et al. describes
obtaining this information in general as impossible for large scale systems. This relates to the
conclusions of the observability analysis in this chapter. However, the observability theory presented
in this paper is good guidelines on how to reduce the problem according to both questions presented
above.
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6.3 Constraint handling

The most common forms of constraints are limitations in variables, inputs and/or outputs. In
addition, relationships between these parameters (usually in form of a model or specifications) can
act as constraints. In the parameter estimation problem there is mostly one type of constraint that
is interesting, that is the constraint in the variables (parameters and states). One of the strengths
in traditional history matching using gradient-based method is constraint handling, and how this
easily can be implemented in the algorithm. When using genetic algorithms or EnKF constraint
handling requires more thought.

The simplest way of enforcing constraints on the static variables in the EnKF is to put upper and
lower bounds on them. Then every time the variables are updated the algorithm sets the parameters
that break the constraints equal to respectively the upper or lower limit. The question is then how
does this interfere with the method. Consider the case of where porosity is assumed to be low, say
a mean of 0.1. Let the uncertainty in this parameter be large, for instance 0.05. The probability
density function (pdf) in this parameter will then be as illustrated in Figure 6.3a and the pdf with
a lower bound at 0 will be as in Figure 6.3b. This can then relate to the discussion in Section

a) Gaussian pdf b) Gaussian pdf with ¢>0

— p=0.1, 0=0.01 — p=0.1, 0=0.01

-0.4 -0.2 0 0.2 0.4 0.6 -0.4 -0.2 0 0.2 0.4 0.6
® ®

Figure 6.3: Probability density function with (a) and without (b) constraint

3.3.5 since the distribution is no longer Gaussian. However, it is assumed to give sufficient results
for the EnKF on a reservoir case. In general constraint handling will be complex to implement
correctly in EnKF and only an approximate implementation for constraints on the parameters has
been suggested.

Constraint handling is also interesting when coupling EnKF with optimal reservoir control. This
will be discussed further in the Chapter 8 were some challenges regarding this are posed.
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Chapter 7

EnKF applied on a simple reservoir
model

NE of the goals for this paper is to implement and test the EnKF as a parameter and state
O estimator for a reservoir model. For this paper a simple shoe box reservoir model was used
to test the EnKF method. The EnKF algorithm used was made by the International Research
Institute of Stavanger (IRIS). The purpose of this section is to investigate the properties of the
EnKF on a large scale 3-dimensional reservoir case. To start of a short description of the reservoir
model is given. Afterward the implementation of EnKF is discussed before the various simulations
are outlined and the results are presented and discussed.

7.1 Model description

The reservoir model used in this paper is implemented in the commercial oil reservoir simulator
ECLIPSE [42] developed by Schlumberger. The model is a simple, cubic, shoe box model which is
2-phase and consists of only water and oil. Two high permeable layers are separated by one with a
lower permeability making the water flooding time vary in the different layers. The model is also
created with a general flow pattern in each layer going from z,y grid block (1,1) to (15,15) as
illustrated in figure 7.1. The reservoir geometry is illustrated in Figure 7.2

1,1

15,15

Figure 7.1: The shoe box reservoir flow pattern
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Figure 7.2: The shoe box reservoir layout

and the number of grid cells is found by

mxnxk=15x 15 x 10 = 2250 (7.1)

which yields 4500 pressure and saturation variables. A more detailed description of the reservoir
geometry is given in Table 7.1. The producers and injectors are located in the reservoir as shown in

Variable Description Value Units
m, n grid blocks in z and y direction 15 -

0 grid blocks in z direction 10 -

Ax grid block width in x direction 94 m
Ay grid block width in y direction 80 m
Az grid block heigth 5.6 m

Py init initial pressure 260 bar

Table 7.1: Shoe box reservoir properties

Table 7.2. The reservoir is set to produce with a liquid rate at 2000 Sm?3/d and an upper bound for

Well Description X y z

PROD1 Producing well1 4 13 [2...7]
PROD2 Producing well 2 12 13 [2...7]
INJ Injector well 8 3 [3...8]

Table 7.2: Shoe box well placements

the oil rate at 1500 Sm?/d for each producer. The BHP is bounded below at 100 bar. For the water
injection, the rate is controlled at 4000 Sm®/d with an upper BHP limit at 400bar. The resulting
rates and pressures from the simulation of the shoe box reservoir is illustrated in Figure 7.3. Here it
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is observed that both wells have their water breakthrough at around 500 days of production. Before
the wells produce water there is pressure buildup in the wells and when the wells start producing
water the pressure drops. The model is set up with 7 measurements for the whole field and 8

Well Production Rate (PROD1 PROD2) Well Bottom Hole Pressure (INJ PROD1 PROD?2)

WOPR:PROD2 (MODEL1) WWPR:PROD1 (MODEL1) WBHP:INJ vs. TIME (MODEL:
—— WWPR:PROD2 (MODEL1) WBHP:PROD1 vs. TIME (MOI
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Figure 7.3: The shoe box rates and BHP

measurements that are on a well basis. The measurements available are described in more detail
in Table 7.3. For the well measurements the wells that have the specific measurement is listed in
parenthesis in the description. This model is the basis for the implementation and testing of the
EnKF. Now that the model is available the focus moves to the problem specification.
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Measurement Description Unit
WWIR Well Water Injection Rate (INJ) Sm3/d
WWIT Well Water Injection Total (INJ) Sm?
WOPR Well Oil Production Rate (PROD1, PROD2) Sm?/d
WOPT Well Oil Production Total (PROD1, PROD2) Sm?
WWPR Well Water Production Rate (PROD1, PROD2) Sm?/d
WWPT Well Water Production Total (PROD1, PROD2) Sm?
WBHP Well Bottom Hole Pressure (PROD1, PROD2, INJ) bar
WWCT Well Water Cut (PROD1, PROD?2) -
FOPR Field Oil Production Rate Sm?/d
FOPT Field Oil Production Total Sm?
FWPR Field Water Production Rate Sm?/d
FWPT Field Water Production Total Sm?
FWCT Field Water Cut -
FWIR Field Water Injection Rate Sm?3/d
FWIT Field Water Injection Total Sm?3

Table 7.3: Shoe box reservoir measurements

7.2 Problem specification

A simple shoe box reservoir model has been outlined for these tests. The true solution measurements
is then computed using the real porosity and permeability parameters. The true parameters is shown
in Appendix C. Then the EnKF is initialized with an ensemble of static variables and history matched
with the true solution. These tests assumes that there is no model error. The testing of systems
with model error is left out for further work, see Section 10.1.

In this paper the focus is on estimating the porosity and permeability fields. The filter estimates
the full 3-dimensional permeability field (k;(z)), which is permeability in x-, y- and z-direction for
each grid block. Also the porosity for each cell (¢(z)) is estimated. In the shoe box model the
dynamic parameters are pressure (P(z)) and water saturation (S,(z)). Given these variables the
augmented state vector can be derived as follows

P
Sw
kp
¢

Here it can be seen that both the dynamic and static parameters can be updated in the augmented
state vector. In the test case used in this paper only the static parameters are initialized with
uncertainty in the EnKF. This is because it is assumed that there is no model error and therefore
the covariance matrix for the states equals zero. The assumption of no model error is due to the
fact that the true solution is computed with the same model as the EnKF uses. So in practice, the
filter only searches for the static parameters.

There are a total of 6 variables to be estimated in each cell of the reservoir model. The porosity
and permeability together count for 4 parameters in each grid block and the saturation and pressure
count, for the other two. Thus there are 9000 unknowns in the permeability and porosity fields,
which count for many degrees of freedom (DOF).

(7.2)

J
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In the shoe box model the number of DOF can be reduced by assuming these fields to be
smooth, so that each grid node no longer consists of totally independent variables. This can be
done by specifying correlation in horizontal and vertical direction in the prior statistics. Initially
the correlation was specified to be 5 cells in each direction. This parameter is subject to tuning
parameter and its properties will be discussed in more detail later.

Another specification that has to be done for the EnKF problem is the measurements. For the
shoe box reservoir model the following measurements are used in the EnKF filtering equation.

e PROD1 - WOPR
e PROD1 - WWPR

e PROD1 - WBHP
e PROD2 - WOPR
e PROD2 - WWPR
e PROD2 - WBHP
e INJ - WWIR
e INJ - WBHP

This gives us eight measurements in total, where five are rate and three are pressure measurements.
These measurements are subject to noise in a real case and an artificial noise is added to the
measurements. For this case the noise in the rates have a variance of 100 Sm?/day and the pressures
15 bar. Given this specification it is time to consider the implementation of the EnKF and how this
cooperates with the model.

7.3 Implementation

Creating a full scale system for an EnKF on a reservoir model is a big task. In this project a
Matlab EnKF implementation with connection to the reservoir simulator ECLIPSE was used. It was
developed at the International Research Institute of Stavanger (IRIS). A big part of the implementing
EnKF on the “shoe box” reservoir was examining this code and verifying it. The IRIS code consists
of many options and settings to tweak the performance for different scenarios. A short description
of the Code will be given in this Section. More info can also be found in the manual [46].

As mentioned earlier one of the benefits of using EnKF is that it is independent of the reservoir
simulator. Still the EnKF code needs some sort of mechanism to communicate with the simulator.
In this case the commercial simulator ECLIPSE was used. So for the EnKF to work an interface
with ECLIPSE is needed. The main file describing an ECLIPSE model is the *.DATA file containing
the model setup. This file can include others using the INCLUDE keyword. The data file consists of
the following sections.

RUNSPEC

e GRID

e EDIT

PROPS
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e REGIONS
e SOLUTION
e SUMMARY
e SCHEDULE

The sections that are critical for EnKF to work are the GRID, SUMMARY and SCHEDULE sections. The
GRID section is where the static variables in the reservoir model is stored. The EnKF will need
to update these parameters according to the assimilation results as it proceeds. This has to be
done by writing text files and including them in the *.DATA file. The SUMMARY section is where the
measurements are defined. Here the output from the reservoir simulator is specified from a long list
of measurements and properties for the wells, the groups or the whole field available. The SCHEDULE
section is where the report dates for the simulator is specified.

When the simulator runs it generates restart files at the end of each section. The EnKF code
need to be able to:

1. Read these restart files
2. Compute the updated states and static variables
3. Update the restart files with the filtered data.

This also requires an interface to read and write to the output files from the simulator and requires
extensive knowledge of the output formats. When an interface for communication has been built,
one can focus on the implementation of the filter. As mentioned earlier a simple linear EnKF has
been proposed in Appendix A. When transferring the simple example to a filter that handle large
problems some new problems arise. The two first an most obvious things is memory management
and simulation time. When working with big data sets it is important to keep only the needed
variables in the memory and to do the computations efficiently. A feature that is useful is the ability
to restart if something unexpected happened or a simulation for some reason crashed. All these
implications of introducing large scale data needs to be kept in mind while creating the filter, which
leads to a more extensive code.

The filter is implemented according to Algorithm 3, but built into a superstructure contain-
ing more functionality. The prediction step contains the communication with ECLIPSE and the
functionality described above is realized. In addition the implementation for adding model noise is
added. The construction of noise will be addressed later. In the filtering step the measurements
are first computed by reading the true solution. The measurement perturbation is then added using
a standard Gaussian random generator. The computation of the covariances and Kalman gain is
straight forward matrix operations. When updating the ensemble one have to retrieve the nonlinear
measurements from the model. If one choose the formulation suggested in (3.31) the recovery of the
measurements is just a matter of picking out the right variables from the state vector.

Looking back at the generation of noise. In Section 5.2 a strategy for decreasing the degrees
of freedom in the solution space was suggested. This involves adding correlation in the noise fields
created for the static variables. The noise generator used in this implementation is built to generate a
random 3-dimensional field satisfying a Gaussian variogram in three dimensions. Basically this is to
generate normal distributed stochastic variables with covariance matrix Q. Evensen [16] described
one algorithm for creating a variogram.
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Other functionalities are also available in the code. Some of these are listed below:
e Specifying upper and lower bounds on parameters

e Specifying if model noise is to be added prior to or after the simulation - Argument for adding
noise prior to the simulation is to dampen the noise in the relationship between the static
parameters and measurements. As described earlier, the experiments in this paper will not
consider the usage of model noise.

e Choice of using log or true value of the permeability - The logarithm of the permeability is
often used since the assumption of Gaussian distribution becomes more appropriate.

Given this implementation the setup of the different simulations is the next focus of the next section.

7.4 Simulations

In this paper three strategies for selecting the initial ensemble was investigated. To test the strategies
a simulation of the ECLIPSE model containing the true parameters were used as production data.
The production data was subject to noise as described in Section 7.1. Afterward the initialization
of the ensemble was made and the EnKF applied. The results of the filter were then compared to
the true parameters and production data.

The different initializations are presented below. A visualization of these initializations is illus-
trated in appendix D, showing the permeability and porosity fields and their respective standard
deviation. The difference in the initializations is in how they define the static variables in the ini-
tial ensemble. The dynamic parameters (pressure and saturation) are initialized as the true values
without any uncertainties.

Initialization 1 - True mean

In this realization the static variables in the initial ensemble is defined with a mean that is equal to
that of the true static parameters and a standard deviation of 0.1 for the porosity and 0.5 for the
permeability (log). The initial ensemble should then span the solution. The correlation length was
initialized with a mean of [5, 5, 5] cells in the [z, y, 2] direction and standard deviation of 1 cell. This
will initially give a scattered ensemble but spanned around the true solution.

Initialization 2 - Flat mean

Here the initial ensemble is defined flat in each layer. Where the mean and standard deviation is
based on measurements made in the wells. The mean for each layer is the mean of the measurements
at each well in that layer and the standard deviation is based on the variation in these measurements.
The correlations are specified as in Initialization 1.

Initialization 3 - Offset mean

This initialization is based on the true static variables, but the mean here has an offset of respectively
0.05 and 0.2 for the porosity and permeability. The standard deviations and the correlations are
specified as in Initialization 1.
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The simulation tests

These three initializations was used as a basis in the tests in this paper. The first three tests that
were carried out are

Simulation 1: Simulation with initialization 1
As described above

Simulation 2: Simulation with initialization 2
As described above

Simulation 3: Simulation with initialization 3
As described above

When the results from these three simulations were analyzed it was clear that the correlation lengths
were wrong compared to the true case. This will be discussed in the next section. The idea was
then to run the same Initialization 2 over again, but with a correlation length closer to that of the
true solution. The following simulation was then done.

Simulation 4: Testing of the effect of the correlation:
Initialization as in Simulation 2, but correlation with a mean of [2,2,0] cells in the [z,y, 2]
direction and standard deviation of 2 cells.

A presentation of the results will be given in the next section together with a discussion on some of
the observations.

7.5 Results

The three original simulations (1-3) was first conducted, and the results from these simulations
are presented. Afterward the next simulation (4) was run and the results presented. The history
matching results from these simulations can be found in Appendix E. In these plots the red line
represents the true solution. The green lines represent the simulation of the model with the initial
static variables. The blue lines is the filtered static variables, after the EnKF was run over the
time horizon, used in the model for the whole horizon. Twenty ensemble members was chosen for
these plots. In addition some of the static parameters will be presented in this chapter. The full
simulation results containing both the history matching and the static parameters can be found in
the Electronic Appendix, see Appendix G. In this appendix the static parameter is shown with the
evolution of the mean, the standard deviation and two ensemble members. These static variables
plots are shown for 5 steps in time and in addition the true solution is shown.
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Simulation 1-3

To compare the history match in more detail lets consider the water production rate (WWPR) from
PROD1 and PROD?2 for each of the three first simulations in Figure 7.4. 20 ensemble members are
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Figure 7.4: Well water production rate for simulation 1,2 and 3

plotted with the initial ensemble parameters (in greeen) and for the assimilated parameters after
the EnKF was run over the period (in blue). Here it is seen that the WWPR uncertainties from the
initial ensemble span the true solution. It can also be observed that the WWPR for the ensemble
after the 7 years of simulation has a lot less uncertainty and fits the true solution better. This
result is common for all of the three simulations. Where in general the EnKF has produced new
realizations of the model which produce a better history match for the WWPR, with less uncertainty.

The wells bottom hole pressure (WBHP) is another measurement to consider. This measurement
is investigated further in Figure 7.5 for both the two producers and the injection well for simulation
1-3. Here it is also observed that the updated parameters in blue provides better results than the
initial in green.
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Figure 7.5: Well bottom hole pressure for simulation 1,2 and 3
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There are however a couple of exceptions. In simulation 1 ensemble number 11 overestimates
the BHP in INJ, which can be seen by the blue line lying above the rest. This is made up for in
the EnKF by updating the states to get a better history match. Since the EnKF can both update
the static and dynamic parameters it somehow fails for this ensemble and chooses to update the
state when the error lies in the static variables. The updates made to the pressure states can be
seen in Figure 7.6. The plot to the left shows the history match plot, in the middle the average
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Figure 7.6: Simulation 1 - Changes made to the Pressure in ensemble member 11

absolute change in the pressure state is shown and to the right the changes for all variables over the
whole period. The same plot can be made for ensemble member 1 which has much better history
matching. In Figure 7.7 one can see that less adjustments to the state on average is done. The last
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Figure 7.7: Simulation 1 - Changes made to the Pressure in ensemble member 1

two years one observe an big increase in the update done in the pressure variables. This is due to
the fact that the standard deviation in the static parameters increases over time. That effect will

be explained later in this section.
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PRODL1 - after 0 days PRODL1 - after 243 days PRODL1 - after 699 days
2000 2000 2000
1500 1500 1500
g 1000 g 1000 g 1000
32 32 32
2 2 2
500 500 500
0 0 0
Jan05 Jan07 Jan09 Jan12 Jan05 Jan07 Jan09 Jan12 Jan05 Jan07 Jan09 Jan12
PRODL1 - after 1155 days PRODL1 - after 1612 days PRODL1 - after 2069 days
2000 2000 2000
1500 1500 1500
g 1000 g 1000 g 1000
2 2 2
= = =
500 500 500
0 0 0
Jan05 Jan07 Jan09 Janl2 Jan05 Jan07 Jan09 Jan12 Jan05 Jan07 Jan09 Jan12
PRODL1 - after 2525 days Standard deviation at different dates x 10 Sum of standard deviation
2000 500 2 T T T
/ N\ After 0 days
400} | \ After 243 days
1500 / \ After 699 days 151
/ \ After 1155 days
@ 300 / \ After 1612 days
4 1000 After 2069 days 1r
§ 2007/ After 2525 days
500 ‘ o 05f
100 T
h T——
\ Y : - N R G
Jan05 Jan07 Jan09 Janl2 Jan05 Jan07 Jan09 Janl2  Jan05Sep05 Dec06 Mar08 Jun09 Sep10 Decll

Figure 7.8: Simulation 1 - Uncertainty in the WWPR

In addition the BHP in PROD2 from Simulation 2 in Figure 7.5 shows another interesting result.
Here the initial ensemble overestimates the bottom hole pressure. From the first look one can ask,
why does this plot converge toward the true solution when the initial ensemble does not span the
solution? The reason why offsets in the results can be detected and dealt with is that a better history
match might be spanned in the static parameters even though it is not spanned in the measurements.

Lets consider where the information about the system is obtained. To investigate this the water
production rate for PROD1 is examined in Figure 7.8. The first 7 plots shows the true WWPR in red
and the WWPR for 20 ensemble members in green. The simulation was run with the parameters
acquired after respectively 0, 243, 699, 1155, 1612, 2069 and 2525 days of running the EnKF,
illustrated by black dotted line in the plots. Here it is observed that most of the information is
obtained before and under the water breakthrough. After a period without much change in the
uncertainty, it is a little strange that the uncertainty increases a little in the last period. This will
be discussed further when looking at the static variables. Another interesting perspective on this
plot is the predictive abilities of the EnKF. From such a simple example with so few measurements
the EnKF is not able to predict the water breakthrough with much certainty before it actually
happens. To achieve this more measurements would be needed.

After looking at some of the history matching for these three simulations it is time to look at
the static variables. The complete results are found in the Electronic Appendix. In this section
some interesting parameters and their results are considered. The following discussion is based on
the permeabilities in the x-direction in layer 3, similar results as these was acquired for the other
permeabilities and porosities in the different layers. The permeability evolution for PERMX in layer
3 from simulation 1-3 is shown in respectively Figure F.1, F.2 and F.3 in Appendix F. In general

45



EnKF for state and parameter estimation on a reservoir model John P. Jensen

one can observe that for Simulation 1 and 3 the mean is a good estimate and the standard deviation
decreases in the first period of the simulation (i.e. from 13 days to 608 days). In the later part
of the simulation the standard deviations increases a little in the edges of the layer. However for
Simulation 2 the standard deviation increases over the whole period. Some details on these results
are now investigated.

First consider Simulation 1 and 3 where one can observe that the standard deviation in figure
F.1(b) and F.3(b) decreases during the time of the water breakthrough. What is strange on the
other hand is that the standard deviation in the ensemble later increases in some parts. Figure 7.9
shows the average standard deviation for both the porosity and the permeability for Simulation 1. It
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Figure 7.9: Simulation 1 - Changes in the standard deviation

can be seen that on average there is a positive influence on the variance in the static variables from
when the water breakthrough occurs and until about midway through the simulation period. On
first though, one assumes that when measurements are assimilated using the EnKF, the standard
deviation should not increase. But it might fluctuate a little due to measurement noise. What is
seen in the simulations is that the uncertainty increases when there is little or no information in the
measurements, this will be discussed at the end of this chapter. It is also observed that with the
excitation used in these simulations most of the dynamic information is in the water breakthrough.
The similar plot for Simulation 3 can be found in Figure F.6 in Appendix F. The results for Simulation
3 shows approximately the same results as for Simulation 1. The average standard deviation only
gives a simplified picture, since it says that the total change in standard deviation is very small.
There are some regions of the layers that have become more certain (in terms of ensemble standard
deviation) while other have become less. The last analysis is to inspect the mean of the ensemble,
which represents the most probable parameters according to the EnKF estimation. For Simulation
1 the mean in Figure F.1(a) stays more or less the same for the first period, which is analogous with
the initial mean being correct. In Simulation 3 the mean in Figure F.3(a) is initialized a little to
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high, but as time proceeds the mean value decreases to something similar of the true solution. For
both Simulations the evolution of the mean drifts off toward the end of the simulation period. This
is caused by the same effect that affect the standard deviation as mentioned earlier.

When considering Simulation 2 the standard deviation increases during the water breakthrough
as observed in F.1(b) and F.5. Also the mean values of the ensemble static variables shows something
which totally different from the true solution. This shows that here the EnKF fails completely.

An attempt to explain why these results was obtained will now be given. In general one can
say that the EnKF does a fairly good job for Simulation 1 and 3, but suffers from an increase
in uncertainty toward the end. Simulation 2 on the other hand seems to fail completely and no
valid information can be found in either the mean or the ensemble members. When looking at
the different ensemble members and how they evolve under the update it is interesting to see the
smoothness in the solution. Especially this can be observed in Simulation 2 which is initialized with
a flat mean, while in Simulation 1 and 3 this is suppressed by having the original smoothness in the
mean. This is illustrated in in Figure 7.10, where one can observe the initialization in Simulation
2 for two of the ensemble members together with the true value all for PERMX in layer 3. If the
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Figure 7.10: Simulation 2 - Initialization in 2 ensemble members

filter correlation is far of from the true solution, the true solution might not be spanned in the initial
ensemble. So for these three initializations the correlation has been initialized to high and the filter
has problems converging toward the true solution, especially when the initial ensemble does not
contain any information about the correlations in the true system (Simulation 2).

Simulation 4

As outlined after discussing the results from Simulation 1, 2 and 3 the conclusion was that the
correlation length was to long when initialized with a mean of [5,5,5] in the [z,y, z] direction and
a standard deviation of 1. By looking at the true solution the correlation is a value closer to a
mean of [2,2,0] with a standard deviation of 2. This was then used to create the initial ensemble in
Initialization 2. A similar simulation was also done for Initialization 1 and 3, but the results where
not so different from the previous simulations. This is as expected since the correct correlation was
present in their initial ensembles in Simulation 1 and 3. These results will not be presented in the
report, but for reference they are available in the Electronic Appendix.
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In Simulation 4 a flat mean was used as initialization and the new correlation length was ap-
plied when creating the initial ensemble of static variables. This simulation crashed after running
approximately 2/3 of the time. The parameter estimation results are shown in Figure F.4. Here
it is observed that both the mean and the ensemble members diverge. This is illustrated in Figure
7.11 where the standard deviation change for porosity and permeability is plotted Here the spread
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Figure 7.11: Simulation 4 - Changes in the standard deviation

in the ensemble decreases a little as effect of the water breakthrough but after some time it starts
to increase rapidly.

The history match uncertainty for PROD1 water production rate as the filter proceeds is pre-
sented in figure 7.12 Here one can see that the uncertainty in the water production rate decreases as
the EnKF assimilates new data. This is only plotted for the first 1155 days since the history matches
after the deviation in the static variables became to large are infeasible. One can also observe the
history matching for the other measurements in the Electronic Appendix. Note that the history
match is made from the parameters assimilated after 1155 days which corresponds to the March 1st
2008.

The reason for the behavior in Simulation 4 is among others that the solution space is to large
and there is not enough information in the measurements, hence the system is not observable. One
reason for the observed behavior might be that the covariance matrix estimate is very poor. In
Section 6.2 a discussion is made on the EnKF update and more specific on the Kalman gain in
regards to parameter update. Recalling from (6.9), one can imagine a case where the covariance
between the state and the computed measurement will be completely wrong. This will happen if
the ensemble parameters are very different from each other, while the computed measurements give
approximately the same solution.
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Figure 7.12: Simulation 1 - Uncertainty in the WWPR

In the end, one problem has not been addressed yet. That is the drift in the static parameters
when there is no more incremental information in the measurements. As described earlier most of
the information in this simple example lies in the water breakthrough. Some information might also
be available through pressure measurements, but due to very few measurements this information
is assumed to be limited compared to that of the water breakthrough. Similar results have been
experienced by G. Naevdal et al. [7][37]. They describe this uncertainty to be a result of the
uncertainty in (3.22) being propagated into the system. This often happens near the edges of the
reservoir were there are little information available regarding the parameters (See Figure 6.2). They
assume the model error to dominate the information obtained from the measurements. Also here
the discussion on the Kalman gain can be incorporated. Again consider (6.9), but this time the
focus is on the measurement noise. Then, in general, the noise added in (3.22) should be dampened
by the specified measurement covariance V in the measurements. In general one should wish that
the parameters in the system would not become more uncertain when no data is present. Especially
in a case with no model error, however one can imagine that some of this could be compensated for
by different tuning of the measurement covariance matrix. A more thorough investigation of this is
however left out for further work.
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Chapter 8

EnKF and Nonlinear Model
Predictive Control

PTIMAL control of reservoir production is an area which currently recieves a lot of attention. In
this chapter a strategy for combining EnKF with Nonlinear Model Predictive Control (NMPC)
is outlined and some issues regarding the strategy is presented. This chapter has been written in
cooperation with the fellow Msc. student P. Meum and similar work is found in his Thesis [34] on
optimal reservoir control. To start of an overview of the problem is given as a quick introduction
to the optimal reservoir control problem. Afterward an outline of the system combining EnKF with
NMPC is given. Finally some challenges and potential problems are outlined. The work in this
Chapter is strictly theoretical and an implementation of such a solution is left for further work.

8.1 Problem overview

The target of the optimal reservoir control problem is to maximize the total production from a field.
To achieve the wanted production it is necessary to replace the produced fluids with another fluid to
maintain pressure support in the reservoir. In most cases this is done by injection of some of some
other fluid. This can typically be non-profitable gas or water from the sea above. When producing
from a reservoir, using such a strategy, the replacement fluid pushes the desirable fluid toward the
producing end. This is illustrated in Figure 8.1 found in D.R. Brouwer and J.-D. Jansen [6], where
a good description of dynamic optimization of the reservoir also can be found.

Figure 8.1: Illustration of reservoir flooding
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In this figure the water oil contact is illustrated as the water replaces the oil from left to right
in a simple two-phase reservoir. In general one can say that to achieve maximum recovery, it is
crucial to flood the reservoir in a way that ensures a contact front which is as smooth as possible.
This causes the most simultaneous breakthrough of the injected fluid for all the producing wells. If
the surface is less smooth the breakthrough might happen at an early stage in a few wells, which is
unfortunate for the production.

The general reservoir optimization problem is also subject to constraints, which can be both linear
and nonlinear. Examples of constraints spans from restrictions in a controllable valve or bottom hole
pressure (BHP) to a maximum flow constraint. In general these problems narrows down to solving
a constrained nonlinear minimization problem. B. Sudaryanto and Y.C. Yortsos[45] were in 2000
some of the first to systematically address the problem. They considered a 2-dimensional geometry
model with a single producer and multiple injectors. N. Dolle et al [13] investigated dynamic
optimization using a gradient-based method on a 2-dimensional reservoir in 2002. Brouwer and
Jansen took their work further and investigated the difference between rate and BHP constraints on
a 2-dimensional reservoir as illustrated in Figure 8.1. In 2002 Yeten et al. [49] took the optimization
problem further by utilizing features available in the commercial reservoir simulator ECLIPSE [42].
Costly computation time was justified with improved prediction reliability. In 2006 P. Sarma et al.
[40] presented a gradient-based optimization scheme with improvements in computational efficiency.
They used an in-house simulator facility at Standford University with adjoint models directly from
the simulator.

B. Yeten et al. in 2002 introduced an aspect of model uncertainty by considering algorithm
performance for a number of slightly different models of the same characteristics and size. But all
of the work in the introduction given above assumes to have an exact model. The solution of the
optimal reservoir control problem is based on the available reservoir information in the model. Before
the production starts this is based on seismic data, well tests etc and there are large uncertainties
associated with this data. In general the predictive value of such models is limited and tends to
deteriorate over time. In addition will prediction error in the model possibly lead to violation in
constraints when using optimal control. Hence, for closed-loop reservoir control with model miss
match, it will be necessary to include a model updating scheme to achieve satisfying results. This
was recognized by D.R. Brouwer et al. [7]. Continuous model updating is to use all available data to
update the model and improve the models predictive abilities. In general this has been difficult to
implement using traditional history matching. According to D.R. Brouwer et al. traditional history
suffers from a number of drawbacks:

1. Usually performed on a campaign basis, typically after periods of years

2. The techniques used are usually ad-hoc and involve manual involvement

3. Uncertainties are usually not explicitly taken into account

4. The resulting history-matched models often violated essential geological constraints

5. The updated model may reproduce the production data accurately but still have no predictive
ability

The EnKF as presented in this paper contain functionality which makes it more suitable for use
with optimal reservoir control. The EnKF is designed such that it should be able to overcome a
number of the shortcomings of traditional history matching. In this section the optimal reservoir
control problem has been outlined. Next a suggestion for an implementation of a closed-loop control
system with continuous model update is given.
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8.2 System outline

The optimization that is considered in this paper is long term optimization. In the suggested solution
NMPC is used for optimal reservoir control combined with EnKF for continuous model update. The
solution suggested is similar to that of D.R. Brouwer et al. [7] and is illustrated in Figure 8.2. In this
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Figure 8.2: System Layout

figure it can be seen how the model update loop (EnKF) in red and the controller loop (NMPC) in
blue interact with both the system and the system model. The flow of the system can be described
in the following procedure

1.

5.

6.

Create an initial system model is made using Geology, seismic, well logs, well tests, fluid
properties etc. From the uncertainties in the parameters an initial ensemble is created as
described in Section 5.2.

. Compute an optimal control strategy over the control horizon from t = t(k) to t(k+T}). This

is done by using MPC on the model with the most probable model parameters. The most
probable estimate is assumed to be the mean of the ensemble.

Run all ensemble members and real reservoir forward in time until there is new available data.

. The ensemble observations and the observation from the real reservoir are used together to

update the ensemble. This is done according to the filtering step in Algorithm 3. The mean
is also updated in this scheme and the result is used as the new most probable model.

If t < t(k+1) go to step 3, else proceed to the next step. !

Update the time step (k =k + 1) and go to step 2

This method is then repeated and the optimal excitation is calculated based on a continuously
updated model. This outline a closed-loop approach as known from control engineering. Make this

!Using several data observations between each control setting update, will let the estimator converge before the
next control strategy is computed and help ensure stability.
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scheme work poses some challenges. A selection of issues that has to be solved is outlined in the
next section.

8.3 Challenges in a combined solution

The suggested method in the previous section is a closed-loop approach. To make such a system
work there are some problems that has to be overcome. In this section some of these problems will
be outlined. Another good description of challenges regarding closed-loop management can be found
in J.D. Jansen et al. [28|.

The first issue is efficiency, which is the key to making this achievable in practice. To make such
a system compute a solution in a reasonable time the algorithms have to be efficient. P. Sarma et
al. [40] investigate efficient optimization algorithms using adjoint methods. This solution limits the
reservoir simulators that can be used, since not all commercial simulators have the options to compute
adjoint methods. In any case an investigation on model reduction should be done to save computation
time. T Heijn et al. |26] has showed promising improvements in computation time using amongst
other “Subspace identification” as an alternative to classical regularization methods [12]. Apart from
reduction techniques as the one mentioned above, 'proxy models’, based on experimental design and
classic upscaling techniques developed by reservoir engineers can be used. Work is currently done
in multi-scale and adaptive grid refinement methods, and promising results are shown (J.D. Jansen
et al. [28]). For an efficient model update algorithm, EnKF is a possible choice. As mentioned
earlier in this paper EnKF saves a lot of computation time compared to traditional gradient-based
methods. EnKF also computes sequentially and does not need to assimilate the old data over again
to incorporate new information.

Most of the previous work done on closed-loop reservoir management considers short term op-
timization. Here the information needed is much more limited than in long-term reservoir manage-
ment. D.R. Brouwer et al. 7] gave some references to papers considering the short-term approach.
Long-term management causes much higher demands for the models predictive qualities. One ex-
ample of a challenge is predicting the time water and/or gas breakthrough before they happen.

Another issue that has not been investigated much before is what influence closing the loop has
on the two methods combined. It can cause instability problems using a combination of parameter
estimation and optimal control. A simple example is if the EnKF has not converged fully before
the next optimal strategy is to be produced. A way of compensating for this problem is by running
several model updating steps before calculating the new control strategy. Since the system is highly
nonlinear it is hard to prove stability of such a loop and trial and error has been the approach so
far. In robotics some theory have been developed for stability analysis of closed-loop properties, i.e.
the passivity based approach by H. Berghuis and H. Nijmeijer [5]. However connecting such theory
to the reservoir case is inconvenient because of problem dimensions and the usage of commercial
simulators. Closing the loop might also influence the observability of the system. One can imagine
that strategies in the control can help the identification of the system by introducing more variety in
the excitation. In other cases the closed loop may disturb the estimation and make the task worse.
However, this has to be investigated further to draw any conclusions.

In this section some challenges to closed loop on long-term reservoir control has been outlined.
These problems have been issued in some papers where a similar scheme has been applied. In
addition to D.R. Brouwer et al. and J.D. Jansen some other methods for history matching in such a
system was proposed. P. Sarma et al. [41] investigated reservoir management using an adjoint-based
approach both for optimal control and for the history matching. I. Aitokhuehi and L.J. Durlofsky [3]
proposed another method using the same optimization method as B. Yeten presented and as model
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update they used a stochastic probability perturbation method. P. Sarma et al.[41] however argued
this method to be easy to implement, but expensive computationally and therefore might have limits
in a practical setting. In conclusion this is a very interesting field which has good potential, but the
methods still need more research before being applied on real reservoir cases.
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Chapter 9

Conclusions

NSEMBLE Kalman Filter has been examined in this paper. A thorough investigation of the theory
behind this filter has been presented and it has been applied on a linear case. The results proved
that the IRIS EnKF implementation match the theory for a linear case. In recent years a lot of work
have been done with EnKF on continuous reservoir model updating. The implementation part of
the work in this paper is at a stage somewhere between the first applications and where the EnKF
is today. Nevertheless, the work in this paper has illustrated some interesting pointers.
An observability criteria for nonlinear systems has been outlined. Also, a tie to EnKF used
for history matching has been established. In general there are two questions that describes the
identification problem

1. Which parameters can be determined uniquely if the measurements were exact?

2. Given the expected level of error in the measurements, how accurately is it expected to be
able to estimate the parameters?

The first question, which relates to observability theory, is in general hard to answer for large-scale
nonlinear problem. However, the observability theory presented in this paper work as good guidelines
on how to reduce the dimension of the history matching problem.

The simulation results have shown how important the prior information is for the result of the
filter. In the simulations where the prior information is close to that of the true solution the standard
deviation decreases. The simulation with flat mean was initially further off from the true solution
and some problems occurred. First the results concluded that the correlation length was to large in
Simulation 2. Afterward with a smaller correlation length in Simulation 4 the filter failed completely.
The reason for this was that to little information about the system was available, but still history
matching looked promising. This leads to the conclusion that the system is not observable, and
most of the parameters are not identifiable.

Also the incremental information in the measurements have been under investigation. Most of
the information in the shoe box reservoir measurements lies in the water breakthrough. After this
there are little information in the measurements. It was noted that the static variable estimates
became worse in the period subsequent to the water breakthrough. This is possibly because of the
effect of assimilated noise. This is still an issue which have to be investigated further and only
thoughts on what might be the cause were posed in this paper.

The last topic in this paper was a proposed application to combine the Ensemble Kalman Filter
(EnKF) with Model Predictive Control (MPC) in a closed-loop reservoir management scheme. The
suggested scheme has had some success in previous work by others, but mostly on simple examples.
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There are still some challenges to take the suggested application to a real reservoir, which were
outlined and discussed. In general these involve

e computation time
e reservoir model predictive ability
e effects of closing the loop

This paper have presented EnKF from the start and until where it is today. The implementation
part however came up a little short in testing all properties of the EnKF. As presented in the results
and conclusions there are still a lot of these properties that should be investigated further. An
outline of where the work should continue to focus is given in the next chapter.
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Chapter 10

Further work

HE evolution of EnKF for history matching has been presented earlier in this paper. As outlined
before, the work in this paper starts with the basic statistic theory in the EnKF and work
its way toward where the method is today. To limit the work some restrictions were made in the
implementation part. The work done in this paper on EnKF for parameter estimation is limited
to estimating only porosity and permeability and assumes a correct model. This is far from the
real cas, but an useful exercise to illustrate the method. As a result of this the further work would
involve taking this analysis all the way to a real reservoir. The steps that remain in this process can
roughly be put into three parts which are

1. Introducing model error
2. Including more information in the problem
3. Working with real reservoirs

In this chapter, these steps will be explained in more details and thoughts on how to approach

the matter are outlined. In addition to the practical aspects there is also need for more work

on establishing a theoretical basis for the improvements in the procedure. At the end of this chapter
some thoughts on where to take the methodology from today and forward is presented.

10.1 Introducing model error

In the implementation done in this paper the model was assumed correct. This is never the case
when modelling a real reservoir. The differential equations which the reservoir model is built on will
not cover all of the dynamics and some assumptions always has to be made. The EnKF potentially
has a very smooth way of incorporating model uncertainty. This is done by adding noise in the
dynamic variables and updating them during the filtering step in the algorithm. As described by V.
Haugen et al. [24] this update provides a good starting point for computing predictions. A controlled
way of testing this would be to build a complex reservoir model as a reference and a simplified model
to history match to the original one. By doing this one can introduce model error in a controlled
manner and investigate the EnKF properties. J.D. Jansen et al.[28] outlines how such a virtual
asset model can be used for development of new concepts and algorithms. Figure 10.1 is from their
paper and illustrate how a virtual asset model would be incorporated in a closed-loop scheme as the
one presented in Chapter 8. In addition to looking at model errors the task of incorporating more
information into the problem is covered in the next section.
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Figure 10.1: Virtual Asset Model used to verify a closed-loop scheme

10.2 Including more information in the problem

In this paper only the porosity and permeability have been subject to estimation in the imple-
mentation. Evensen et al. [19] proposed estimating other parameters like contact surfaces and
transmissivities. These are important parameters which often are subject to a lot of uncertainty. A
method that could predict the water oil contact before any information on the water breakthrough
is a valuable asset in for instance optimal reservoir control |7].

Incorporating more measurements is, as discussed before, a way of improving the chance of good
results. Interesting work with measurements like 4-D seismic|44| etc. has been done with good
results. Implementation consists of coupling the EnKF solution today with rock physics and seismic
modelling software.

Both these suggestions would have to be investigated further and tested in a case like the one
presented in the previous section.

10.3 Working with real reservoirs

Most of the early work that has been done with EnKF has applied the method on test case reservoirs.
Only in the last year or two the work has moved its focus to the real case. There is a step up from the
model used in this paper and implementing the EnKF on a real reservoir model. Some challenges has
been mentioned above in introducing mode errors and including more information in the problem.
In addition some obstacles regarding to the larger models needs to be overcome. The reservoir
used in this paper have been simulated on a single desktop computer with reasonable computation
time. However, implementing real reservoir cases poses the need for parallel processing. This issue
has not been discussed in this paper, but the EnKF algorithm is excellent for parallel processing,
spreading the simulations in the prediction step on several computers. Another approach to this
problem is reducing the model. A model reduction was the described in the model error section.
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Here a complex reservoir model was suggested to be approximated using a more coarse grid, hence
decreasing computation time.

In general when using real life reservoir cases the understanding for geology and phenomenas
that occur in reservoir simulation. By this it is understood that not everything is as perfect as in
the model. The model might not be able to express all dynamics in the reservoir. Some of this can
also be investigated in the case suggested to introduce model error, but there will always be some
challenges with real life reservoirs that can not be foreseen. In addition the measurements may be
poor with noise, biases and outliers'. Methods for handling such problems with measurement will
have to be implemented. When dealing with measurements it is also worth noting that the EnKF is
a method that improves the results as more information enters the method. Therefor the new and
intelligent wells with many measurements will make the history matching process easier.

In this section some problems with EnKF applied on real reservoirs has been outlined. A lot of
these challenges were discussed by both V. Haugen et al. [24] and G. Evensen et al. [19] when they
applied EnKF to a North Sea Reservoir Model.

10.4 The future of EnKF

EnKF has shown good results on history matching cases both for real reservoirs and test models.
Brouwer et al.|7| also showed how EnKF works together with optimal reservoir control. This is
something that had potential to increase oil recovery, but still contains many aspects to investigate.
The goal would be an automatically updated reservoir model used with optimal control for automatic
reservoir management. For this to work the EnKF has to be made robust against problems that
might occur. Also tuning in the form of specifying model and measurement noise is an issue. Some
of the instability issues, that have been illustrated both in this paper and in some of the other work,
have to be solved

The final step of the further work is to make the product more commercial. Building a user
interface and simplifying the process of maintaining the filter. This implies that the model is
developed to a stage where it can be incorporated with reservoir management procedures. Though
the EnKF is not at this stage yet and a lot more research on the method have to be done, the author
believes that the method has both the potential and many of the qualities that is needed to get
there.

'Outliers are single measurements that are corrupt and completely off compared to the rest of the measurement
sequence
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Appendix A

Matlab Code for Linear EnKF and KF

IN this appendix a simple matlab code for a linear EnKF and KF algorithm is proposed. Some
of the methods in the EnKF algorithm regarding the noise creation is not published, but their
functionality is outlined in this paper.

R kR
Comparison of KF and EnKF
SHAFHHHHHFFH A

oe

$Initialization of the true system
x_{k+1} =Ax_{k}+g_{k}
y_{k} =Cx_{k}+v_{k}
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o° oo o

=
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Elgg']=0Qtrue E[vv']=Wtrue
Ctrue=[1 0.5];
Atrue=[0.5 0.1; 0.2 0.3]1;
Qtrue=diag([0.01 0.02]);
Wtrue=0.01;
t=1:50;
xinit=[0;01];
numStates=2;
numParam=0;
%$Compute true solution
if —exist ('trueSolution.mat','file')
[ytrue,Q,W]=computeTrueSolutionLinear. ..
(Atrue,Ctrue, Qtrue, Wtrue, xinit, t);
save ('trueSolution.mat', 'ytrue','Q', 'W");
else
load('trueSolution.mat', 'ytrue','Q"', 'W");

NN NN N 2 2 R e e e 2 e
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end

NN
N O

$Initial State for the filters
xinit=[1 ; 11;

$Initialization of noise covariance matrices for the Filters
Qfilter=[0.2 0.01 ; 0.01 0.271;
Wfilter=Wtrue;

$Initialization for EnKF

W oW W W w NN
B W N = O O

ensSize=1000;
meanState=xinit;
LPapost=chol (Qfilter) ';
Afilter_EnKF=Atrue;

w W w
~N OO
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38 Cfilter_EnKF=Ctrue;

39 ensemble=zeros (size (meanState, 1) ,ensSize);
40 for ii=l:ensSize

41 ensemble (:,1i)=addgnoise (meanState,Qfilter);
42 end

43 options.outlist=1; %see EnKF.m

44 S%Initialization for KF

45 xhat=xinit;

46 Phat=Qfilter;

a7 Afilter_KF=Atrue;

48 Cfilter_KF=Ctrue;

49

50 %The loop
51 for i=l:length(t)

52 S #HHHHHHEHAFH AR EE  EnKE  fhdHH A A A S A S

53 %$Storing results

54 bigEnsemble ([2x (1—1)+1 ; 2% (i—1)+2], :)=ensemble;

55 Penkf (:,:,i)=LPapostxLPapost’';

56 xenkf (:,1)=meanState;

57 %$Prediction step

58 for j=l:ensSize

59 $Prediction

60 ensemble (1l:numStates, j)=...

61 Afilter_ EnKF*ensemble (l:numStates, j);

62 $Legge pd modellstoy

63 ensemble (:, j)=addgnoise (ensemble(:, j),Qfilter);

64 end

65 $Filtering step

66 $Retrieve Measurements

67 y=ytrue(:,1i);

68 $EnKF oppdatering

69 %$Apriori meanstate

70 meanState=mean (ensemble, 2) ;

71 %$Apriori covariance matrix

72 LPapri=zeros (size (ensemble));

73 for j=l:ensSize

74 LPapri(:,Jj)=(1/sqrt (ensSize—1))*..

75 (ensemble (:, j)—meanState) ;

76 end

77 $Ensemble measurement noise

78 ej=zeros (size (Wfilter,1),ensSize);

79 yj=zeros (size (Wfilter,1l),ensSize);

80 sgW=chol (Wfilter) ';

81 for j=l:ensSize

82 ej(:, j)=addgnoise (zeros(size(ej(:,73))),sqwW,1);
83 end

84 %$Adjusting to get zero mean on the measurment noise
85 We=zeros (size(ej,1l),size(ej, 1));

86 meanej=mean (ej, 2) ;

87 for j=l:ensSize

88 ej(:,j)=ej(:,j)—meane]; Snew ej w/zero mean
89 We=We+ej(:,Jj)*ej(:,3)"; Strue Wfilter

90 vi(:, 3)=y+ei(:,3); %ensemble measurment
91 end

92 We=(1/ (ensSize—1)) xWe;

93 y=mean (yJj,2);

94 %$Gain matrix

95 K=LPaprix (LPapri'*Cfilter_EnKF')*inv (...

96 (Cfilter_ EnKF+LPapri) x (LPapri'xCfilter_EnKF') +We);
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97
98
99
100
101
102
103
104
105

107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

$Aposteriori ensemble and meanstate
for j=l:ensSize
ensemble (:, j)=ensemble (:, J)+K*x (v (:, J)—. ..
Cfilter_ EnKFxensemble(:,j));
end
meanState=meanState+Kx (y—Cfilter_EnKFs*meanState);
$Aposteriori covariance matrix
LPapost=zeros (size (ensemble));
for j=l:ensSize
LPapost (:, j)=(1/sgrt (ensSize—1))*...
(ensemble (:, j)—meanState) ;
end
[meanState, ensemble, LPapost]=...
EnKF (ensemble, Wfilter,Cfilter EnKF,y, [],options);
ST HEHHHHSEHSEEHESES KF R LS LR E L
%$lagring av resultater
Pkf(:,:,1i)=Phat;
xkf (:,1i)=xhat;
%$Prediction step
%$Model
xhat=Afilter_ KFsxxhat;
Phat=Afilter KF+PhatxAfilter KF'+Qfilter;
$Filtrering step

o o

%$Gain og covariance
K=Phat*Cfilter KF'*inv(Cfilter_ KF+Phat«Cfilter_KF'+Wfilter);
Phat=(eye(size (Afilter_KF))—KxCfilter_ KF)xPhatx...
(eye(size (Afilter_KF))—KxCfilter_KF) "+K«WfilterxK';
$Filtering
xtemp=xhat+K* (y—Cfilter_KF«xhat);
xhat=xtemp (1:numStates) ;
end%the loop
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Appendix B

Illustration of initial ensemble span

HIS simple example is created to show how the search for the solution in the EnKF is influenced
by the choice of initial ensemble. Consider a system with two states (z; and x2) and one
measurement (y) defined as

Tieel | _ | 0 Tk 0.1
[ T2, k+1 } B [ 0.05 0.9 ] [ Lok } + [ o | Yk (B.1a)
L1,k
=105 ’ B.1b
w=lo ]| o] (B.1D)

Where 6 = [61,05] are two unknown parameters. The true solution of these values is " = [0.5, 1] and
in the filter they are initialized by a mean of 8y = [0.4,0.9]. Then four different standard deviations
for the initial ensemble are used in the filter. The tests are initialized according to Table B.1. The

Test 00,01 00,0
1 0.2 0.2
2 0 0
3 0 0.2
4 0.2 0

Table B.1: Initial ensemble test - standard deviations

results are shown in Figure B.1 and B.2.

The plots show the EnKF estimate and the true value for the two states (z1 and z3) and the
two parameters (0 and 63). One can observe the effects of various spans in the initial ensemble.
When observing the plots for the parameters one can observe how the estimates converge toward
the true solutions. The first test span both the #; and 8, axis and the EnKF finds the true solution.
The second test does not span any space at all and therefore no search is conducted. The third and
fourth test span respectively only along the 61 or 6 axis and search is conducted only in the span.
This means that Test 3 converge along the 6; axis but not the 5 axis and vice versa for Test 4.
From the plots of 8 for the various tests one can see that the solution is only searched for in the
space spanned by the initial ensemble.
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Another approach to this problem was outlined by G. Evensen et al.[19]. They consider the given
Kalman update in Algorithm 3 when no model noise is added to the ensemble. Further they show
that the updated ensemble is a weakly nonlinear combination of the forecast ensemble members.
This can be interpreted such that one can only expect to find corrections to the static variables
which can be represented in the space spanned by the initial ensemble.
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Figure B.1: Results with different span in initial ensemble
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Appendix C

Shoe box reservoir true parameters

N overview of the true static variables in the shoe box reservoir model is given in this appendix.

This should be considered as a reference for comparison of both the initial ensembles in Ap-

pendix B and the results presented in both Appendix F and the Electronic Appendix G. Figure C.1
displays the true permeability and porosity fields in each of the 10 layers.
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Appendix D

Simulation Initializations

HIS appendix illustrates the various initializations of the static parameters used in the simula-

tions. The reference is found in Appendix C where the true static parameters are shown. The
following plots are included

e Figure D.1 - Initialization for simulation 1
e Figure D.2 - Initialization for simulation 2

e Figure D.3 - Initialization for simulation 3
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Appendix E

Simulations history matching results

HIS appendix contains the history matching results from the simulations that were described in

Chapter 7. The measurements presented in these plots are also described in the same Chapter.

Only a selection of the results is presented in this appendix. For the full overview containing both
history matching and the static parameters, see the Electronic Appendix (Appendix G)

E.1 Simulation 1

The history match for this simulation is shown in Figure E.1.

E.2 Simulation 2

The history match for this simulation is shown in Figure E.2.

E.3 Simulation 3

The history match for this simulation is shown in Figure E.3.
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Appendix F

Parameter estimation results

THIS appendix contains the parameter estimation results from the simulations that were described
in Chapter 7. Only a selection of the results is presented in this appendix. For the full
overview containing both history matching and all the static parameters, see the Electronic Appendix

(Appendix G)

F.1 Simulation 1 - PERMX for layer 3

The permeability in the x-direction for layer 3 from simulation 1 is shown in Figure F.1. Where the
mean value, standard deviation and values for two ensemble members are plotted at various steps
in time.

F.2 Simulation 2 - PERMX for layer 3

The permeability in the x-direction for layer 3 from simulation 2 is shown in Figure F.2. Where the
mean value, standard deviation and values for two ensemble members are plotted at various steps
in time.

F.3 Simulation 3 - PERMX for layer 3

The permeability in the x-direction for layer 3 from simulation 3 is shown in Figure F.3. Where the
mean value, standard deviation and values for two ensemble members are plotted at various steps
in time.

F.4 Simulation 4 - PERMX for layer 3

The permeability in the x-direction for layer 3 from simulation 4 is shown in Figure F.4. Where the
mean value, standard deviation and values for two ensemble members are plotted at various steps
in time.
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Figure F.1: Simulation 1 - PERMX for layer 3
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Figure F.2: Simulation 2 - PERMX for layer 3
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Figure F.3: Simulation 3 - PERMX for layer 3
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Figure F.4: Simulation 4 - PERMX for layer 3
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F.5 Simulation 2 and 3 - Average standard deviation in static pa-
rameters

In addition to Figure 7.9 in Chapter 7 the average standard deviation for the static parameters as
a function of time is also plotted for simulation 2 and 3 in Figure F.5 and F.6
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Figure F.5: Simulation 2 - Changes in the standard deviation
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Figure F.6: Simulation 3 - Changes in the standard deviation
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Appendix G

Electronic appendix

TOGETHER with this report a CD is supplied with some of the material that was used in the
process. This appendix outlines the content of the Electronic Appendix and descriptions are
shown where deemed necessary.

= Report

F &= rapport.pdf  (Final version of this report in electronic format)

(o SimulationResults
+ =2 Simulation1
F -"E Sim1 EnKFresults.pdf (Full report file from Simulation 1)

- I Simulation2
+ -"E Sim2 EnKFresults.pdf (Full report file from Simulation 2)

+ 153 Simulation3
+ Z Sim3 _EnKFresults.pdf (Full report file from Simulation 3)

(I Simulation4
+ Z Sim4 EnKFresults.pdf (Full report file from Simulation 4)

+ 0 Others
I A Initl NewCorr EnKFresults.pdf (Full report file from Initialization 1 with new correlation)

- -"E Init3 NewCorr EnKFresults.pdf (Full report file from Initialization 3 with new correlation)
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