
Gaze Insights into Debugging Behavior Using Learner-Centred
Analysis

Katerina Mangaroska
Norwegian University of Science and

Technology
Trondheim, Norway
mangaroska@ntnu.no

Kshitij Sharma
Norwegian University of Science and

Technology
Trondheim, Norway

kshitij.sharma@ntnu.no

Michail Giannakos
Norwegian University of Science and

Technology
Trondheim, Norway
michailg@ntnu.no

Hallvard Trætteberg
Norwegian University of Science and

Technology
Trondheim, Norway

hal@ntnu.no

Pierre Dillenbourg
École Polytechnique Fédérale de

Lausanne
Lausanne, Switzerland

pierre.dillenbourg@epfl.ch

ABSTRACT
The presented study tries to tackle an intriguing question of how
user-generated data from current technologies can be used to re-
inforce learners’ reflections, improve teaching practices, and close
the learning analytics loop. In particular, the aim of the study is to
utilize users’ gaze to examine the role of a mirroring tool (i.e. Exer-
cise View in Eclipse) in orchestrating basic behavioral regulation of
participants engaged in a debugging task. The results demonstrated
that students who processed the information presented in the Ex-
ercise View and acted upon it, improved their performance and
achieved higher level of success than those who failed to do it. The
findings shed a light how to capture what constitute relevant data
within a particular context using gaze patterns, that could guide
collection of essential learner-centred analytics for the purpose
of designing usable and modular learning environments based on
data-driven approaches.

CCS CONCEPTS
• Human-centered computing → Empirical studies in HCI;
User centered design; • Social andprofessional topics→Com-
puter science education;

KEYWORDS
Eye-tracking, Learner-centred analysis, Mirroring tools, Behaviour
regulation, Debugging

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
To gain greater understanding in user’s needs and behaviors, re-
searchers should utilize the available multifaceted user-generated
data, that will empower them to design technology enhanced hu-
man learning. More specifically, they should employ various modal-
ities of user-centred analytics to improve learning, predict behavior,
and advice users and educators by converting educational data into
meaningful information. However, most of the educational systems
still have concerns regarding what constitutes relevant data [38],
and fail to consider user’s perspective, as well as actively involve
users in the design and development of learning experiences. More-
over, majority of past studies [25] focus on data extraction based
on availability (e.g. click-stream data from learning management
systems), rather than on data that cannot be captured verbally, with
learning systems or observations. Hence, this study aims to use
eye-tracking to gain insights into user debugging behavior (e.g.
how user process information or interact with visual information)
utilizing a mirroring tool. The mirroring tool is a special plug-in (i.e.
Exercise View in Eclipse) that captures user programming actions
and visualizes them to the users. The idea behind the mirroring tool
is to raise awareness of user’s own actions and reinforce reflective
learning. Through this paper we contribute to the knowledge base
of learning-centred analysis by providing evidence how mirroring
tools can orchestrate behavior regulation skills within academic
context.

On the other hand, gaze data have already proven its value in
understanding how students learn to program and debug [34]. How-
ever, despite the great potential, little consideration has been given
to how gaze data can be combined with other forms of more conven-
tional learning analytics (e.g. click-stream) to inform user-centred
design. Taking this into consideration, the aim of the study is to
examine the role of Exercise View into user’s debugging behavior
and empower multimodal user-centred analysis to design relevant
learning strategies for programming/debugging. As a result, this
study addresses the following research questions:
Question 1:What is the level of students’ visual attention to the
mirroring tool (i.e. Exercise View)?
Question 2: How students’ expertise, success, and gaze patterns
are associated?

Post-print version of the paper by Mangaroska et al. in LAK, (2018)

https://doi.org/10.1145/nnnnnnn.nnnnnnn

K. Mangaroska et al.

Question 3: How does the time spent on the mirroring tool relate
to the performance (i.e. code produced to solve a task)?
Question 4: What gaze patterns relate to high debugging success
and what is the role of mirroring capabilities (i.e. Exercise view)?

2 RELATED WORK
2.1 User-centred design and learning analytics
Digital technology is rapidly changing the way students learn and
engage in learning activities. At the same time huge amount of
user-generated data is becoming available. In order to utilize the
produced data streams to support the design of user-centred learn-
ing systems, new tools and practises are required. To accomplish
this requirement and design user-centred learning environments
that are usable and underpin a robust learning experiences, there
is an ongoing challenge to converge techniques and methods from
interdisciplinary fields such as software engineering, cognitive sci-
ences, and technology enhanced learning (TEL) [2]. To cope up
with this goal, researchers need to utilize learning analytics to in-
form learning designs, and develop data-driven tools and learning
strategies that are appropriate to enhance teaching practices and
student learning experiences [24, 25, 35].

Most of the current educational systems focus on educators’ view
and rarely involve students in the design and development pro-
cesses. For instance, a literature study [13] documented that from
22 learning analytics related systems only 5 are designed purely
to be used by students, and only few are available for general use.
Martinez-Maldonado et al. [26] employed a five-stage LATUX work
flow to design, deploy, and validate awareness tools in TEL, utiliz-
ing user-centred analysis. The study underlined the importance of
user-centred design as a process of refining and designing visual
awareness tools for specific contexts. Moreover, Wise [40] proposed
a pedagogical intervention design concept that emphasize the im-
portance of enhancing existing learning analytics practices in the
design of user-centred teaching and learning activities consider-
ing new technologies. Dawkins [12] working at the intersection
of learning analytics and user-centred design, depicted the signifi-
cance of ’content strategy’ as a valuable and missing component
of learning analytics for improving learning design. This aspect
has been neglected in many studies as data extraction is based on
availability rather than users needs. Thus, selecting and deciding
how to employ different learning analytics to support user-centred
design is a challenging task and requires contextual information
for interpretation. Consequently, one of the aims in this study is
to examine the contextual set up of a programming environment
for the purpose of observing what constitutes relevant data when
learners engage in problem-solving tasks (i.e. debugging task), as
this information could be a valuable input in designing user-centred
learning experiences for teaching and learning programming using
gaze data.

2.2 Eye-tracking and user-centred design
Eye-tracking helps researchers to gain insights into user behavior
(e.g. how the user process information or interacts with visual in-
formation) that cannot be captured verbally, via other more ordinal
user-data (e.g. click-stream) or with observations [11]. Moreover,

in educational technology, designers and researchers need to de-
sign systems with high-quality user experience and high degree of
learnability (i.e. learning experience) [16]. In order to accomplish
this, the systems need to follow user-centred design guidelines,
maintain minimal errors, and avoid user-frustration [8].

In eye-tracking studies, saccades and fixations are the main indi-
cators of user behavior for interacting and processing information.
Previous studies [1, 15, 17, 37] used eye-tracking data to evaluate
and improve the design and the user experience in different devel-
opment stages. In one of the studies [15] the authors reported that
high number of saccades indicates long time to search for informa-
tion, while a high number of fixations represents a high degree of
user uncertainty. In a different study [28], researchers evaluated
the design of a Learning Management System (LMS) interface and
highlighted the user’s need for simplicity, memorability (e.g. how
easy is it for the returning user to perform effectively) and control
over the interaction with the LMS. The findings from these studies
support Federici’s idea that eye-tracking is a "psychotechnology"
because it emphasizes the intra-systemic perspective of the relation
between the user and the technology [27]. These studies show that
eye-tracking provides a unique access to user’s behavior (in educa-
tional contexts, learners), hence one can use the learners’ gaze data
to extract information and feed the data back to the learners while
efficiently closing the LAK loop [10]. Thus, as eye-tracking is con-
sidered to be an objective technique that can provide insights into
many aspects of human cognitive abilities, such as problem solv-
ing, reasoning, and mental strategies [3, 22, 41], gaze data can be
utilized to inform the design of learning technologies by effectively
covering wide range of user’s needs and behaviors.

As it can be seen from the past studies [14, 27], eye-tracking
is a promising methodology for collecting data, measuring user
behavior, and the amount of processing (e.g. ease of use, perceived
playfulness, cognitive load) when users interact with computer
systems. This is a relevant way of observing the dynamic trace
where is the user’s attention directed in relation to the presented
visual information, so that designers can embrace and practice user-
centred design.

2.3 Eye-tracking and problem solving
Most results show that eye-tracking allows researchers to get atten-
tional data for users while they perform tasks. Likewise, previous
studies [19, 21, 23, 29] had shown that eye-tracking can explain
various constructs like contextual expertise, task dependency, and
task complexity.

Reingold et. al, [29] conducted a study to understand how the
expertise of chess players (novices, intermediate, and experts) and
their way of encoding a given chessboard state are related. Using
two different chess configurations (random and original) the re-
searches tried to calculate the area of visual span while participants
were asked to detect a modified piece. The results showed that
experts had larger area of visual span and were faster in detect-
ing modifications in original game configurations than in random,
while there were no differences found among novices and inter-
mediate players. Moreover, the researchers reported that experts
do encode larger chunk of the configuration from the rest of the
players due to their use of foveal and parafoveal regions [9].

Post-print version of the paper by Mangaroska et al. in LAK, (2018)

Gaze Insights into Debugging Behavior Using Learner-Centred Analysis

Considering the relation between task dependency and gaze
patterns, Kaller et al. [23] conducted a study to gain a better under-
standing of the time course of visuospatial problem solving. During
the experiment, the participants were randomly assigned to two
groups depending on where the start state and the goal state were
presented. For the start-goal group, the start states were always
presented at the left side and the goal states were presented on the
right side. For the goal-start group, the arrangement was inverted.
During the initial thinking time 1 most of the subjects directed their
fixationsmainly to the left side irrespective of the state arrangement.
As a result, the authors discovered a strong dependency between
the personal preferences and the gaze patterns. Moreover, the data
from the experiment displayed task-dependent eye-movement pat-
terns with respect to the subsequent gaze alternations, supporting
a sequential model of problem solving as internalization, planning,
execution, and verification.

Another relevant study was carried out comparing car drivers
driving while performing (or not performing) arithmetic tasks [19].
The results showed that drivers pay less attention to the mirrors,
instruments, and the peripherals while performing a task rather
than when they have no additional cognitive task other than focus-
ing on driving. Moreover, the subjective ratings about the cognitive
load, reduction of safety, and distraction was found to be increased
from no task to easy task to difficult task conditions.

Jones [21] used a Car Park problem2 to find the relation between
the problem solving processes and the gaze data. The authors looked
at the fixation time three moves prior to the object car move and
three moves after the object car move. The fixation time on the
problem was longer for the object car move, than that in the prior
or succeeding moves to the object car move. Moreover, non-solvers
spent significantly more time on the free area than the solvers.

Aforementioned studies show that a relation exists between the
gaze patterns and the expertise (e.g. chess players), task complexity
(e.g. driving), and the task-based performance (e.g. car park prob-
lem). Hence, in the next subsection the authors give examples of a
specific problem solving tasks (i.e. debugging a code) which were
considered while setting up the research task in this study.

2.4 Eye-tracking and debugging
Previous eye-tracking studies [4–7] show a clear relation between
gaze patterns and task-based performance in debugging. Bednarik
et al. [6] conducted a study of restricted focus viewer (RFV) 3 against
a control condition (without RFV) in a debugging task. The results
showed no significant difference between the two experimental
conditions, but displayed a relation between debugging success and
expertise. In terms of gaze behavior, the RFV condition induced
more switches from the code area to the output area than the control
condition [6]. In a different study, Bednarik et al. [7] investigated
the relation between expertise, gaze among code visualization, and
debugging success of programmers. There was a relation between

1time between the presentation of the problem and onset of the first action
2The goal of the car park problem is to manoeuvre a car out of a parking space.
The parking space has other cars as well, which can be moved only in their initial
orientation.
3an RFV is a special tool that blurs parts of the screen to make participants focus on a
specific AOI.

expertise and success, but the results were non-conclusive regard-
ing the use of the visualization in the debugging task. Finally, in a
most recent study, Bednarik [4] investigated whether programmers
who did well (regardless of expertise) were also the ones who used
and integrated different information sources more than the pro-
grammers who did not perform well. The author found that greater
expertise allowed participants to spend more time integrating the
information from multiple representations, but the difference was
more significant during the last stages of the debugging task.

Moreover, in [32] authors compared the first scan time 4 against
the different levels of debugging success. The results showed that
successful debuggers had a significantly lower first scan time than
the less successful ones. In terms of gaze behavior, this study showed
that successful debuggers had a more vertical gaze than those who
perform less successfully during the debugging task.

3 RESEARCH OBJECTIVE
The presented examples have shown that visual attention could be
an important proxy for understanding the mechanisms underlying
learning to program or to debug. However, the current understand-
ing of the role of visual attention in program comprehension or
debugging and coordination of representations is still in an early
stage. Previous studies [4, 6, 7, 36] have tried to use eye-tracking to
capture programmers’ visual attention while debugging (i.e. find-
ing and reporting errors/bugs) and construct interpretations of
individual differences and expertise. Nonetheless, it has not been
sufficiently explored whether and how visual attention strategies
contribute in the process of learning programming and debugging,
and how the strategies differ across various levels of expertise.
Consequently, this study attempts to explore this issue further, by
adding novelty and uniqueness to the research design of the per-
formed experiment. The following are the salient characteristics of
the present study:
(1) We allowed participants to edit the code. This way we have
more complete task than the studies described in Section 2.4. Since
the debugging process consists of three phases: program compre-
hension, finding the bug, and removing the bug, not allowing stu-
dents to write the code, makes us fail in capturing the last phase of
the debugging process. Therefore, instead of just finding the bugs
as it was the case in [4, 6, 7, 33], the participants in the present
study were also required to remove those bugs.
(2) We have a more systematic way of debugging in a form
of unit tests. We designed the unit tests for the code and the
participants were required to solve all of them in a designated
time period. This was not the case with the experiments reported
in Section 2.4. Moreover, in most of the studies the participants
were provided with a sample code and one instance of the output
[4, 6, 30, 31], and they could not edit the code. As we pointed in
the previous paragraph, not letting the participants to debug the
program, hinders the understanding of the debugging process.
(3) In the present study,we designed amirroring tool (as a plug-
in to Eclipse), that reflects the progress to the participants, as
well as their successes or failures during the debugging task.
The successes or failures were based on the number of unit tests
passed by each participant.

4the time takes by the participants to read the code for the first time.

Post-print version of the paper by Mangaroska et al. in LAK, (2018)

K. Mangaroska et al.

(4) Previous studies [6, 30] used an external graphical representa-
tions of the code (data flow, control flow, class-object diagrams)
to aid the understanding of the participants. However, these rep-
resentations might hinder the understanding of the code if the
participants had no previous knowledge of using representations
in learning programming; as it was evident from the reported gaze
patterns. The participants did not pay much attention to the visual
representations. In our study, we used the “variable view” pro-
vided by the Eclipse IDE to show the state of different selected
variables during the debugging of the code. Participants could
choose when to enable this view and when to remove this view
from the screen if they find it redundant.
(5) In terms of eye-tracking analysis, the saliency comes from
the previous four points. Since we allowed the participants to edit
the code and execute it as many times as they want it, there were
frequent switches among the code, errors, and output areas of
the IDE. Moreover, frequent switches were observed between the
code and the unit test panels. When the participants enabled the
“variable view” to get the help from the IDE to debug the code,
this action added an Area of Interest (AOI) on the screen. Another
important difference was the number of used AOIs. In most of the
reported studies, the authors used three AOIs (code, visualization,
output) and few of them used a fourth one, called sequence. In our
study we decided to define 7 main AOIs (i.e. code, exercise view,
JUnit test, problems, console, variable view, and debug view) to get
a better understanding of users cognitive skills. Additionally for
completion we added two more AOIs based on the IDE: toolbar
and project explorer. Table 1 presents the detailed description of
the AOIs. Finally, during the analysis stage, we decided to calculate
two and three-way transitions for greater understanding of user’s
cognitive needs, as well as higher validity and reliability of the
study, while previous studies reported in Section 2.4 analyzed only
two-way transitions.

Table 1: Descriptions of the AOIs in Eclipse IDE.

AOI Description
Toolbar the toolbar of the IDE.

VariableView (VV)

during a debug, allows to change
the value of a variable to test how
your program handles a particular
value or to speed through a loop.

DebugView (DV)
allows to manage the debugging
or running of a program in the
workbench.

ProjectExplorer provides a hierarchical view of the
artifacts in the workbench.

JUnit (JU) allows to list the unit tests to be
passed by the main Java class.

Code panel where the code is written.

ExerciseView (EV) allows to see the coding, saving,
testing, and progress.

Problem (P) shows the errors and/or warnings
raised by the Java Compiler.

Console (C) shows the output of the code.

4 METHODOLOGY
4.1 Debugging activity
The authors designed and implemented a debugging activity in con-
junction with the partners from the University École Polytechnique
Fédérale de Lausanne. The main task assigned to the participants
was debugging a Java class named Person, that manages parent-
child relationships. The provided code tried, but failed to ensure
consistent object relationships, such as a mother of a child is female
and a father of a child has that child in its list of children. The
participants could check the correctness of the code by running the
provided unit tests.

4.2 Participants
During the spring 2017, an experiment was performed at a con-
trived computer lab setting at the University École Polytechnique
Fédérale de Lausanne with 40 computer science majors (12 females
and 28 males) in their third semester. The mean age of the par-
ticipants was 19.5 years (Std. Dev. = 1.65 years). In the previous
semester, all of the participants had taken a Java course, where
they were predominantly using Eclipse as Integrated Development
Environment (IDE). Moreover, they were also familiar with the
built-in debugging tool provided by Eclipse. The focus of this study
is examining how user-generated gaze data can be used to reinforce
students’ reflection practices. Moreover, the study also considered
whether students can practice problem-solving strategies (e.g. de-
bugging a code) coupled with reflections (from a mirroring tool)
rather than trial and error attitude.

4.3 Procedure
Upon arrival in the laboratory, the participants signed an informed
consent form. After this and prior to the debugging task, each par-
ticipant had to pass an automatic eye-tracking calibration routine
to accommodate the eye tracker’s parameters to each participant
eyes to ensure accuracy in tracking the gaze. Their gaze during the
debugging task was recorded using an SMI RED 250 eye-tracker
at 250Hz. Next, the participants were asked to perform a pre-task,
which required removing 90 errors from a skeleton code within
10 minutes. After this task, the participants were given 40 min-
utes to solve 5 debugging tasks presented as a part of the main
method of the main class of a 100 lines of Java code. The code for
the main debugging task contained no syntactic errors, and the
participants were notified about this fact. Throughout the experi-
ment we recorded and later analyzed participants’ fixations (i.e. the
state when the eye remains still over a period of time) and saccades
(i.e. the rapid motion of the eye from one fixation to another) [20].
For their participation in the experiment, the participants were
rewarded with an equivalent of CHF 25.

4.4 The mirroring tool
For the purpose of the experiment, the students were using the
Eclipse IDE to complete the exercise. The exercise had pre-written
unit tests and 5 questions that led the students to check the correct-
ness of the code and debug it. Their Eclipse installation had been
extended with an Exercise View (EV) plug-in that collected data
from their use of Eclipse (see Figure 1). The data that this plug-in

Post-print version of the paper by Mangaroska et al. in LAK, (2018)

Gaze Insights into Debugging Behavior Using Learner-Centred Analysis

collected and mirrored it back to the students included: lines of
code, number of errors and warnings in the code, how many times
the standard Java main method was launched, the unit test results
(success, failure or error), debugging events (e.g. stopping on break
points or resuming execution), and execution of commands (e.g.
stepping through code). The success, failure or error of the tests
give students some type of feedback about their progress that could
support them to incrementally work towards the exercise’s learning
goals. It is more than obvious that students could not learn to debug
in 40 minutes, but researchers could observe the gaze transitions
between the different elements in the IDE, as well as when and how
often students attend to the information that EV reflects. This in-
formation could later be used to implement user-centred approach
in designing learning strategies for programming and debugging.

Figure 1: The Exercise View configured for the experiment.
The top panel shows the progress of the “Person” class. The
first line shows lines of code, number of errors andwarnings
by the Java compiler, and the number of times the code has
been compiled. The second line shows the number of times
the code has been run (not as part of a unit test). The third
line shows the counts of unit tests. Arrows show the change
of the metric, the direction shows the increase/decrease of
themetric, while the color shows whether the change is con-
sidered as an improvement (i.e. green) or not (i.e. red). The
bottom panel shows statistics from using the Eclipse debug-
ger.

4.5 Variables
Expertise – The expertise was decided by the pre-task test, where
the students were presented with a task of removing 90 errors from
a skeleton code. The simple instruction was to write the minimal
“stub” for a Java class so that the errors could be removed. The
students were given 10 minutes to complete the pre-task. All but
5 students were able to finish the pre-task in the allotted amount
of time. These five students were labelled as “novices”. The rest of

the 35 students were labelled as “experts” or “novices” based on the
minimalism in their code.

Debugging success – For the debugging task, there were 10
unit tests prepared by the instructor (see subsection Procedure).
To limit the debugging to one of the panels of the Eclipse IDE, the
researchers introduced few bugs in otherwise complete code that
would make the code fail all 10 unit tests. In order to pass all of
the unit tests, the students were required to solve the debugging
exercises in a particular order. Participants were given 40 minutes
to complete the task. At the end of the 40 minutes, they were told
to stop, and the number of unit tests passed at that point of time
was taken to be the measure of the “debugging success”.

Individual Areas of Interest (AOIs) – Eclipse IDEwas divided
into nine AOIs. Table 1 gives a brief overview of all AOIs for this
experiment. During the analysis, the researchers computed the pro-
portion of time spent on each of the AOIs as well as the transitions
between the different AOIs. The results for the AOIs were later
compared to the participant performance and expertise.

Transitions among AOIs – For the purpose of data analysis,
the researchers decided to compute the transition probability of
moving from one AOI to another. This is called a two-way transi-
tion probability. This type of transition shows the attention shift
from one part of IDE to another, which might correspond to a spe-
cific behavioral pattern while students were debugging the code.
For example, the transition from code to console might depict the
behavior of having a hypothesis about the functionality of the code
after changing a few lines of code and checking for the output in
the console in order to verify the hypothesis. Moreover, the re-
searchers also computed a three-way transition probability among
different AOIs to capture a longer sequence of behavior similar to
the one captured by the two-way transition. For example, a three
way transition “code–console–Variable View” could depict a behav-
ior of a non-verified hypothesis about the functionality of the code
and a subsequent attempt to experiment with different values of a
variable under question.

Code reading patterns – Understanding the pre-written code
is an essential part of debugging tasks. Sharma et. al [34] have
shown in their experiment about program comprehension, that a
specific way of reading the code is important for successful pro-
gramming. When a programmer follows the data flow of a code
written in a procedural/object oriented language, the eyes move
mostly in vertical direction. However, when the code is being read
as an English text, the eyes move mostly in horizontal manner. For
the purpose of the experiment, the researchers computed the aver-
age “saccade horizontality” as a measure of the different reading
patterns.

4.6 Data analysis
To address the research questions (RQs) presented in the Intro-
duction section, the authors propose the following analysis to be
conducted for each RQ:
(1) Considering the level of users’ visual attention to the mirroring
tool, a descriptive statistic will be used to compute the percentage
of the total time spent looking at the EV.
(2) Regarding the relation between expertise, gaze, and debugging
success, the authors will use Analysis of Variance (ANOVA) for

Post-print version of the paper by Mangaroska et al. in LAK, (2018)

K. Mangaroska et al.

comparing the variables across different categories. For example, a
one-way ANOVA will be conducted to test any potential differences
between the performance levels of experts and novices. In addition,
the authors will check the assumptions for ANOVA, and if they find
variables which does not satisfy the homoscedasticity condition, a
version of ANOVA will be used where homoscedasticity will not
be assumed.
(3) To examine the relation between the gaze patterns on EV and
the students’ performance, the authors decided to measure a Pear-
son’s correlation, which is about quantifying the strength of the
relationship between variables, as both variables are continuous
and not ranked.
(4) To find out what gaze patterns relate to debugging success, the
authors decided to use linear models, with the debugging success as
the dependent variable and the gaze patterns (time on AOIs, 2-way
and 3-way transitions) as the process variables.

5 RESULTS
In this section the authors present the relations among the gaze
patterns, the expertise, and the debugging success considering the
study’s research questions. 5

Question 1. What is the level of students’ visual attention to
the mirroring tool (i.e. Exercise View)?

The results showed that the participants pay attention to the
Exercise View (EV). The mean proportion of the overall time the
participants spent on the EV is 14.8% (Std. Dev. = 5.3%). Figure 2
shows the distribution of the overall time spent on the EV by all of
the participants.

Figure 2: Proportion of gaze on the Exercise view by differ-
ent students during debugging task.

Question 2. How students’ expertise, success and gaze patterns
are associated?

In this study, 25 of the participants were categorized as experts,
while 15 participants were categorized as novices. The authors
observed a significant difference between the performance levels
of experts and novices. A one-way ANOVA without assuming the
equal variances revealed that experts performed significantly better
than novices (F[1,36.77] = 15.09, p = 0.0004, see Figure 3).

Tables 2, 3, and 4 show the relation between the debugging
success and the gaze patterns. The results confirmed that these two
5We would like to point out here that in the rest of this paper whenever we mention
“time spent”, we consider the “proportion of overall time spent looking at”.

Figure 3: Debugging success for the different levels of exper-
tise. The blue bar shows the 95% confidence intervals.

relations are similar to each other, hence in the rest of this section
the authors present the analysis results from the relation describing
the interaction of debugging success and the participants’ gaze
patterns.

Question 3. How does the time spent on the mirroring tool
relate to the performance (i.e. code produced to solve a task)?

There is a significant negative correlation between the time
spent on EV and the debugging success (r(38) = −0.56 p = .0002).
The fact that the time spent on EV and the success are negatively
correlated is not unexpected, since it is not important how many
times participants looked at the EV, but how the information they
perceived from the EV guided their further actions. Thus, that is
why the authors aimed to observe two and three-way transitions
among EV and the rest of the AOIs.

Question 4.What gaze patterns relate to high debugging success
and what is the role of mirroring capabilities (i.e. Exercise view)?

In order to analyse the relation between the gaze and the per-
formance, the authors considered the time spent on individual
AOIs, the proportion of transitions among two AOIs (hereafter re-
ferred to as “2-way transitions”) and the proportions of transitions
among three AOIs (hereafter referred to as “3-way transitions”).
Furthermore, the authors computed the average horizontality of
the saccades while the students were reading the pre-existing code
or what they had already written.

Table 2 shows the results from a linear model with the debugging
success as the independent variable and the time spent on the indi-
vidual AOIs as the process variables. Pearson’s test verified that the
time spent on EV is negatively correlated to the debugging success,
while verified the relatively strong positive relation between the
debugging success and the time spent on JUnit, console, problem,
and variable view.

Since Pearson’s correlation test demonstrated that the time spent
on EV is negatively correlated with the success, the authors decided
to analyze the gaze patterns as 2-way transitions to verify the hy-
pothesis that, it is not the time spent on EV that contributes to the
performance, but the steps taken after processing the information

Post-print version of the paper by Mangaroska et al. in LAK, (2018)

Gaze Insights into Debugging Behavior Using Learner-Centred Analysis

Table 2: Proportion of time spent in each AOI and the rela-
tion with the debugging success

Estimate Error t-value Pr(>|t|)
Intercept 2.55 1.45 1.76 0.08
EV -19.88 6.46 -3.07 0.004
JUnit 11.71 4.03 2.91 0.006
Console 9.25 4.35 2.13 0.04
Problem 13.32 4.60 2.89 0.006
Variable
view 19.64 6.40 3.07 0.004

from the EV. Moreover, the authors also examined what gaze pat-
terns mostly contributed to the debugging success. Table 3 shows
the significant results from a linear model with the debugging suc-
cess as the independent variable and the 2-way transitions as the
process variables. The results demonstrated that the transitions
involving EV (e.g. EV-JUnit, Console-EV, Problem-EV) explain a
significant proportion of variance of the debugging success. To
cross validate the results, the authors contrasted this model (Table
3) against a model without any EV related transitions and used
ANOVA to compare the two models. The output from ANOVA
showed a significant increase (F [3, 28.54] = 6.80, p = 0.001) in the
AIC value of the model without EV transitions (149.75) as compared
to the AIC value of the model with EV transitions (136.03). Conse-
quently, these findings support the role of EV as a mirroring tool
that could regulate basic behavior skills and improve performance.

Table 3: Transition probabilities (2-way transitions) and the
relation with the debugging success

From AOI
To AOI Estimate Error t-value P(>|t|)

Intercept 1.51 0.42 3.64 0.0009
EV to JU 21.05 7.62 2.76 0.009
Code to C 12.02 2.12 5.62 0.00001
C to EV -11.58 5.64 -2.05 0.05
P to EV -5.77 2.82 -2.05 0.05

JU to Code 6.50 2.02 3.22 0.003
VV to Code 16.27 4.75 3.43 0.002
C to Code 6.25 2.61 2.39 0.02

Next, the authors decided to examine the relation between 3-
way transitions and the debugging success. The 3-way transitions
capture longer sequence of user behavior that could point to pos-
sible new perspectives for interpretation of the relation. Table 4
shows the significant results from a linear model with the debug-
ging success as the independent variable and the 3-way transitions
as the process variables. The results demonstrated that the transi-
tions involving EV (e.g. EV-JUnit-code, EV-Junit-variable) explain a
significant proportion of variance of the debugging success. The
authors contrasted this model (Table 3) against a model without
any EV related transitions and used ANOVA to compare the two
models. The output from ANOVA shows a significant increase (F [2,
2.16] = 5.38, p = 0.01) in the AIC value of the model without EV

transitions (68.02) as compared to the AIC value of the model with
EV transitions (59.75).

Table 4: Transition probabilities (3-way transitions) and the
relation with the debugging success

From AOI1
To AOI2
To AOI3

Estimate Error t-value P(>|t|)

Intercept -0.91 0.19 -4.80 0.00001
EV to JU
to Code 2.73 ‘1.21 2.26 0.03

Code to C
to VV 16.34 4.92 3.32 0.002

Code to VV
to Code 1.55 0.74 2.08 0.05

VV to Code
to VV 15.53 6.44 2.41 0.02

Code to C
to Code 1.85 0.63 2.94 0.006

C to Code
to C 1.74 0.52 3.37 0.002

EV to JU
to VV 1.74 0.69 2.51 0.02

JU to Code
to VV 4.77 1.92 2.48 0.02

JU to VV
to Code 3.90 0.84 4.66 0.00001

Finally, the last part of the analysis aimed to examine the code
reading patterns among the experts and the novices, and observe
the level of understanding of the pre-written code. Hence, the au-
thors computed the average horizontality of code reading saccades
(specifically when students were not editing the code). The find-
ings showed that experts had significantly more vertical saccades
than the novices (F [1, 30.8] = 6.85, p = 0.01, see Figure 4) meaning
that experts managed to demonstrated a better level of program
comprehension. Moreover, saccade horizontality is also correlated
with the debugging success (r (38) = 0.67, p < 0.0001, see Figure
5) confirming the fact that a specific way of reading the code is
important for successful debugging.

6 DISCUSSION
The prime motivation of having a mirroring tool is to have a basic
behavioral regulation as mirroring tools are known as awareness
tools [18]. Mirroring tools offer the most basic level of support as
the system simply reflects user’s actions through graphical visual-
izations without processing the information. Increasing student’s
awareness of their own actions without abstracting or evaluating
these actions, could help students to maintain representation of
their progress and encourage them to enhance their metacognitive
activities. Consequently, this study tried to orchestrate a behavioral
regulation (e.g. visual attention, following instructions, working
memory) of participants engaged in a debugging task. The behav-
ioral regulation skills fall under the category of self-regulation,

Post-print version of the paper by Mangaroska et al. in LAK, (2018)

K. Mangaroska et al.

Figure 4: Debugging success and saccade horizontality. The
blue line shows the linear model and the gray are shows the
95% confidence intervals.

Figure 5: saccade horizontality for the different levels of ex-
pertise. The blue bar shows the 95% confidence intervals.

which is an essential feature for academic performance [39]. How-
ever, the question of how to enhance behavioral regulation skills
within the academic context requires identification of mechanisms
through which such interventions are most effective.

One such mechanism categorized as a mirroring tool (i.e. Ex-
ercise View) is suggested and presented in this study. The results
from the study demonstrated that mirroring tools could regulate
behavior depending on the contextual set up of the programming
environment. With this in mind, the authors created a systematic

debugging task that requires students to solve the task in a par-
ticular order to pass all of the unit tests and finish with success.
The students who processed the information presented in the Ex-
ercise View (EV) and acted upon it, improved their performance
and achieved higher level of debugging success than those who
failed to process the information from EV. Moreover, experts were
significantly more successful than novices. This result is consistent
with the results reported from the studies mentioned in Section
2.4. However, what is more important regarding this distinction
between novices and experts is the transitions they both performed
among the different elements in IDE (e.g. AOIs), as these gaze pat-
terns could be a potential input in developing relevant learning
strategies based on expertise and knowledge level.

First of all, we considered the relation between the time spent on
individual AOIs and the debugging success (hereafter referred to as
“success”). The results show that time spent on EV was negatively
correlated with success, while gaze on JUnit, console, problem, and
variable view were positively correlated to success. This supports
our claim that it is not the time that a student spends looking at
EV important for success; but it is the time spent in processing the
information from EV and acting upon it, which correlates to success.
In order to figure out mistakes that a student made, (s)he had to
check the unit test definition (JUnit) and the variable concerned
(variable view). If the student did not look at this particular elements
in IDE, his/her actions might suggest a hypothesis that the student
is practicing trial and error attitude instead of a problem-solving
strategy. Moreover, the gaze towards problem and console might
suggest a hypothesis verification process opted by the student. To
confirm this, we considered 2-way and 3-way transitions.

Considering 2-way transitions, we observed that EV to JUnit,
code to console, console to code, variable view to code, and JUnit
to code transitions were positively correlated with success. On the
other hand, console to EV, and problem to EV transitions were
negatively correlated with success. The positively correlated gaze
transitions show a debugging behavior which corresponds to the
following:
• understanding that there is a bug and finding the problem state-
ment (EV to JUnit);
• locating the problem in the code (JUnit to code);
• trying to remove the bug while looking for corresponding output
(code to console);
• going back to another part of the code to obtain the correct output
(console to code);
• finding the variable causing the problem and locating it in the
code (variable view to code).

On the other hand, the shifts from console to EV and problem to
EV do not bring meaningful information to the debugging process.
Hence, this could suggest that the student has a misconception
regarding the role of EV by considering it as a feedback mechanism
(e.g. trying to find answers in the EV) rather than a reflection mech-
anism (e.g. processing the information from EV and acting upon
it). Another explanation might be that visual attention strategies
among novices are not well developed as they are among experts.

Similarly, all significantly correlated 3-way transitions also demon-
strated a positive correlation with success. Their corresponding
debugging behavioral depictions are:

Post-print version of the paper by Mangaroska et al. in LAK, (2018)

Gaze Insights into Debugging Behavior Using Learner-Centred Analysis

• understanding that there is a bug, finding the problem statement,
and locating the problem in the code (EV to JUnit to code);
• understanding that there is a bug, finding the problem state-
ment, and locating the variable causing the problem (EV to JUnit
to variable view);
• trying to remove the bug while looking for corresponding output,
and going back to another part of the code to obtain the correct
output (code to console to code; console to code to console);
• finding the variable causing the problem, fixing it in the code,
and repeating this for a few times before executing the code (code
to variable view to code; variable view to code to variable view);
• finding the problem description, locating the variable causing
the problem and/or locating the problem in the code (JUnit to code
to variable view; JUnit to variable view to code).

These findings communicate the importance of EV as a mirror-
ing tool in behavior regulation. Moreover, the authors decided to
strengthen this finding by comparing two models to show how EV
fits into the gaze patterns explaining success; one model with gaze
patterns including EV, and another model without gaze patterns
including EV. The results demonstrated that we loose a significant
amount of information when we remove the gaze patterns includ-
ing EV. This indicates the fact that information presented in EV
and how students use this information is important for levels of
success achieved.

On the other side, the significant negative correlation, between
the saccadic horizontality and success, depicts that those who
achieved higher success were also having more vertical saccades.
This is highlighted by the finding of [34], from a pair program
comprehension task.

All these findings fit in the aim of the study to observe a par-
ticular contextual set up of a programming environment in which
researchers could detect what constitutes relevant data when per-
forming debugging. Knowing what is essential in order to teach
problem-solving skills, empowers teachers to create various learn-
ing strategies taking into account expertise and knowledge level.
Moreover, having more AOIs than other studies (see Section 2.4)
allows researchers to gain deeper understanding of user’s cogni-
tive needs and behavior patterns. Hence, greater understanding
empowers easier regulation of behavioral skills and development
of efficient tools and methodologies for teaching problem-solving
skills.

7 CONCLUSION
The present eye-tracking study investigated the correlation be-
tween a mirroring tool developed in Eclipse and users’ debugging
success in a programming task. The aim of the study was to or-
chestrate a basic behavioral regulation of participants engaged in a
debugging task. Thus, 40 computer science majors were given 40
minutes to solve 5 debugging tasks presented as a part of the main
method of the main class of a 100 lines of Java code. The results
have demonstrated that the gaze patterns of successful debuggers
corresponded with attention shifts among EV and other AOIs (i.e.
console, problem, and JUnit). The fact that the time users spent on
EV and their success was negatively correlated, proves that it is
not important how long and how many times participants looked
at the EV, but how the information they perceived from the EV

guided their further actions. This fact was further examined with
2-way and 3-way transitions among EV and the rest of the AOIs.
The results from the analysis confirmed that users who processed
the information from EV and displayed debugging behavior as pre-
sented in Table 3 and Table 4, correlates to successful completion
of the debugging task.

Due to the encouraging results from this study, the authors plan
to continue the research with the mirroring tool by including a
more controlled study to investigate the availability of a mirroring
tool and its relation with the debugging success, as well as the moti-
vational aspects of the tool. Another interesting aspect to consider
in future studies is the notion of mirroring tools as instruments that
trigger deeper form of interactive learning in terms of cognitive ef-
fort, where the users can interact with the information presented in
real-time. Finally, as a general acknowledgment comes the fact that
human decision making is a part of successful analytics solution as
any other technical component [40]. Therefore, it is very important
to engage participants in designing and developing a pedagogically
sound and user-centred future learning environments. To achieve
this goal, researchers and designers need to follow and practice
user-centred design approach while utilizing user-centred analytics
to support their actions.

8 ACKNOWLEDGEMENTS
This work was supported by the Research Council of Norway under
the project FUTURE LEARNING (255129/H20).

Post-print version of the paper by Mangaroska et al. in LAK, (2018)

	Abstract
	1 Introduction
	2 Related Work
	2.1 User-centred design and learning analytics
	2.2 Eye-tracking and user-centred design
	2.3 Eye-tracking and problem solving
	2.4 Eye-tracking and debugging

	3 Research Objective
	4 Methodology
	4.1 Debugging activity
	4.2 Participants
	4.3 Procedure
	4.4 The mirroring tool
	4.5 Variables
	4.6 Data analysis

	5 Results
	6 Discussion
	7 Conclusion
	8 Acknowledgements
	References

