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Abstract. Lifetime extension needs lewost assessments that can identify the remaining
useful life of offshore wind monopiles. A novel concept for load monitoring was developed
that only needs strain gauges installed at one level of the support structure. Damage
equivalent loads were calculated from strain measurements and extrambetgc monopile
using a regression algorithm. In this paper, @éissumptions behind thead extrapolation
algorithm were verified with two consecutivenonths ofmeasurement data froan offshore
wind park. Theverification was performed separately for two offshore wind turbifBegh
turbines had strain gauges installed at a distance of approximatelyabhsl 25 m. Results
show that monthly damage equivalent loads can be predictedewors smaller than 4%
based on measurement data oRtgdiction usindinearregression resulted gimilar results

for the total fatigue damagas a nonlinear knearest neighbor approadbut individual 10-
minute damage equivalent loads showed ladifégrences than for the more robush&arest
neighbor algorithm, especially f@mall loads These results are very promising and should
motivate further research.

Keywords: lifetime extension; offshore wind turbine; load monitoring; monopile; strain
gauge; fatigue; fearest neighbor


http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.marstruc.2019.04.003

1. Introduction

Offshore wind is still a young industry. The majority of assets have been operational for a
few years only while the design lifetime of offshore wind turbines and their support structure
has been typically 2@5 years in the past. Nowadays, the industry prepares to design new
offshore wind farms for a longer lifetime in order to lower the cost of energy. For existing
offshore wind farms, extension of the service life is appealing for operators to increase retu
on investments. Lifetime extension is technically possible if the turbine as well as its support
structure have sufficient structural reserves left. Monopiles form the majority of installed
support structures today] [and are subject of this study.

In general, monopiles may have structural reserves at the end of their design life if either
loadings are lower or material resistances are higher dieaigned for. This can be, for
example, due to conservatism in environmental parameters (e.g. soil, wind speeds),
operational conditions (e.g. turbine downtime), or material properties (e.g. manufacturing
tolerances). Technical assessments are necessg@mp\e that operating assets do not fall
below required safety levels during lifetime extensions. According to DNV ZjLtlese
assessments care banalytical and practical, and/or daft@/en. Lowcost solutions for
lifetime extension assessments are desirable since it is uncertain beforehand whether a
potential for lifetime extension can be confirmed or not.

Analytical assessments are renev@at simulations with updated design models of the
wind turbine and support structure as presented by Ziegler and MusgulO&fa gathered
during the service life of the offshore wind turbine should be used to update design models as
well as environmental and operational assumptions. Practical assessments are inspections on
site, which is afflicted with significant costs and risks due to the oféslenvironment. In
addition, Ziegler and Muskulug][showed that the probability of detecting decisive fatigue
cracks in circumferential welds afonopiles is low. Datdriven assessments may include
monitoring of loads or structural health. Load monitoring tracks the load history and enables a
direct comparison between design loading and occurred loading to derive the remaining
useful lifetime (RW) of the structure.

Load monitoring of steel structures is established practice for aging infrastructure. As an
example, full field strain measurements are applied to evaluate the remaining fatigue life of
existing steel bridges by Zhosd][ Leander et alg], and Frangopol et al]. Zhou [5] claims
that strain measurements atisting bridges are more accurate for assessing RULs than
analytical fatigue assessments, which typically result in overestimation of stress ranges.
Leander et ald] demonstrate how load monitoring with strain gauges can clarify the status in
case analytical assessments and inspections yield different results. In the case of a Swedish
railway bridge, analytical fatigue reassessments showed thealihdated fatigue life of the
stringers was already exceeded while inspections with-eddgnt and magnetic particle
methods gave no detection of fatigue damage. A monitoring program with strain gauges
confirmed the stress ranges calculated in the doalyassessmens][ Frangopol et al7]
highlight the impact of possible sensor errors associated with electrical strain gauges on
fatigue reliability assessments of a steel bridge. Current studies in the field focus on
probabiligic fatigue life prediction using strain monitoring daghdnd methods to extrapolate
results to structural areas where no sensors are ing@&lé} In practice, it is not possible
monitor all areas of interest due to cost and access restrictions.

This is particularly relevant for monopiles of offshore wind turbines, for which large
parts of the structure are under water and below mudline. It is possible to monitor these areas



directly if the monopile is equipped with strain gauges before pile driving, which has been
done in several projects for research and development purposes. Many of these projects,
however, experience troubles with the survival rate of the strain gaugesg gua driving.

For existing assets, it is expensive (below water) or impossible (below mudline) to retrofit
strain gauges. Therefore, it would be advantageous to extrapolate measurements from a
limited number of sensors to the entire structure. In thghofe wind industry, several
researchers have investigated load monitoring strategies with a limited number of sensors
using physical models or artificial intelligence. Mothelsed timalomain approaches include
Kalman filters, joint inpusstate estimatio, and modal expansion algorithnikl{13]. These
methods aim to track the time history of the vibrations of the whole structure. Artificial
intelligence algorithms typically work with i@inute statistics, such as damage equivalent
loads [14,15].

In many existing offshore wind farms, some assets have strain gauges already installed at
one height of the structure, typically at the transition piece above water. This data i®ready
use for lifetime extension assessments at no additional costs. However, Idhake
measurements need to be extrapolatkmhg the entire support structure. In our previous
work, we have proposed a novel method for extrapolation of measured loads using a
simulation model and statistical algorithrhg]. The method is based on the assumption that a
statistical relationship exists betweenrthute damage equivalent loads at two locations,
one of which is monitored’he novelty of this work is theerification of this assumptiomwith
measurement data. Twoomths of strain measurements frotwo elevations atwo offshore
wind monopiles are used for this purposbe datawas firstverified againstsensomoiseby
utilizing that recordings from strain gaugas opposite sideof the circumference of the
monople should mirror each otheAfterwards, one month of data was used for training and
the other month of data was used for testing the developed methodology to extrapolate
damage equivalent loads along a single monppdmgboth linear regression amchonlinear
k-nearest neighbor regression algorithm.

The remainder of the paper is structured as follows: Section 2 describes the load
extrapolation algorithm and the measurement data used wethiEation study. Results of
theverificationare discusseith Sedion 3 and concluded in Sectidn

2. Methodology

2.1. Fatigue loading of offshore wind turbines

Offshore wind turbinesperatein a complex environment with wind, waves, current, and
various operational conditions. Aerand hydrodynamic excitation causes lgagn cyclic
loading at the support structure. The loadiigjory at a specific structural hot spot considts
load ranges Wi variable amplitudes, each occurring for a specific nurobeycles. Gclic
loadingrestricts he fatigue life othe supporstructure. The fatigukmit stateis often driving
the desigrof monopileg17].

It is common industry practice to perform fatigue analysisig SN-curves[18,19,20].
SN-curves specify how many load cyclesaddpecific amplitude a material can endure before
failure. The PalmgreMiner rule of linear damage accumulation is commonly applied to
calculate fatigue damag@1]. This hypothesis allows simplifying a varialdenplitude load
time series into a single damage equivalent load (DEL). DEL is arbeagewith constant



amplitude that when applied for a geific number of reference cycléscauses the same
amount of fatigue damage as the original varianlitude load time serig¢45].
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Figure 1. (a) Time series of strain measurements from four strain gauges at the
transition piece of an offshore wind turbine are transformed into power spectral
densities using Fast Fourier transfoi(fm. Four strain gauges are installed at level 1
and 2. They are spaced in 90° intervals. Level 3 only contains strain gauge C and D.
(c) Schematic position of strain gauges at two offshore wind turbines used for the
validation study. At one turbine, the strajauges are installed at the transition piece

at two levels. The distance between the two levels is approximately 15 m. At a
second turbine, strain gauges are installed at level 1 and at the upper part of the
monopile (level 3). The distance between lelvahd level 3 is approximately 25 m.

2.2. Load «trapolation algorithm

The developed load monitoring concept extrapolates DR¢asuredvith strain gauges
at oneelevationto another location (or, in principlalongthe entiremonopilé. It utilizes that
DELs between differerglevationsof a structure are correlated through the vibrational modes
of the structure. If the structure vibrates in one mode only, DELs at diffelerdtionsof the
structure will be highly correlated.

Figurel (a) shows power spectral densities of strain measurements at the transition piece
of an offshore wind turbine. Excitation frequencies are gstasgic contributions from wind
forces, wave excitation, first foi@t and sideside bending frequencies, rotatal blade
passing frequencies (1P and 3P), and the secondfioamd sideside bending frequencies.
Consequently, for each DEL measured at elegation a range of DELs at anothelevation
can occur depending on how the structure vibrates. Zieghé[Hf] showed that this range of
DELs has a weltlefined lower bound with limited scatter for a monopile support structure.
This allows the apptation of a statistical model to predict DELsadbwer elevation such as
near or below mudline (where it is difficult to plaemd maintainstrain gauges)from
measurements athigherelevation such as the transition piece.

The extrapolation can be performed either based on data or based on simulaticns. Data
based extrapolation requires that strain measurements were performed at all elevations of
interest for a representative period of time. This data can be used to traxirdgeolation



algorithm for future use once measurements at one of the elevations are terminated. If strain
measurements were never taken at an elevation of interest, it is required to train the
extrapolation algorithm with data from numerical analy§las papermpresents results fahe
databased extrapolation approacetith the aim of verifying itin a limited setting (between

only two locations and with only two months of dataut we mention and discuss the
simulationbased approach also, for compleess The methodologyor both approacheis
visualized in Figure and summarizedn the following. The reader is referred {d.6] for

further details

A. MeasurementsBending strain is measured efevatiors 1 , o€ theimonopilethrough
adequately installed sensors. An example of sensor typkslanement is given in
Section2.3. In addition, recordings from operational and environmental conditions (such
as from SCADA, wave buoys, met masts, etc.) are optional to use in the load
extrapolation concept.

B. Data processing:The measured straind are transformed into bendjnmomentsM
according to Equatioh. Ei s t h e Y o u n gZésshe atastet sectiorsmodutus

M=EQ®@ 1)

The time series are then split into-idnute intervalsRainflow counting is performed on
each time series to obtain the load ran§emnd corresponding number of cycs[20].
Results are transfimed into measured DELswith Equation 2 Nk is the number of
reference cyclesnis the inverse slope of the considered@Mve, and is the number of
load ranges.
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C. Numerical analysis In the simulatiorbased approach, ee>rhydro-serveelastic
simulations are performed with a finite element model that represents the global dynamic
behavior of the installed offshore wind turbine. The finite element model used in design
should be updated with esite measurements to ensure that modal ptiege(such as
natural frequencies, mode shapes, and damping) are represented cofi@stlys
typically an iterative process that tries to minimize the error betvegenlated and
measured responses, e.g., using a gratli@sed optimization algorithm.

Realistic environmental and operational conditions as input for the load simulations are
assembled into load cases. Sources for information on realistic conditions-site on
measurements (e.g. wave buoy, met mast), recordings from the turbine couitrol an
performance monitoring system (SCAR and site assessments during deskpr. each

load case, aerbydro-serveelastic simulations in line with design requirements and
current statef-art should be performe@?2).

10-minute time series of loads at specifielévatiors are obtained from the simulations
for each load cas@heelevatiors are the point at the structure where sensors are installed
(el evat i) and the desimclevation to extrapolate to(elevationn + 1 ,).é, z
Rainflow counting igperformedand DELSs are obtainddr each 18minute time interval.
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Figure 2. Methodology of strairbased load extrapolation algorithm



D. Extrapolation:The methodology to extrapolate DELSs is similar for the -daised and the
simulationbased approach. First, a reference elevation, which is continuously equipped
with strain gauges, and aelevation to extrapolate to, ishosen If historical strain
measuements forthe extrapolation elevatioexist, datebased extrapolation (D1) can be
performed Otherwise simulationbased extrapolation (D2) must be applied.

DELs (measured or simulated) from both elevations are agsg@mblednto pairs These

joint measurement®rm the data basis for extrapolatich simple approach to relate the
values at the reference elevation with the values at the extrapolation elevation is linear
regression. We will see below that this can result in an accurate estimate tofathe
damagencurred

However, a disadvantage of linear regression is that it cannot accurately capture nonlinear
relationship between the two variables of interest (DEL at reference elevation and DEL at
extrapolation elevation)We therefore proposed alternative, more robust nonlinear
regression algorithm in [16] that is shortly explained hBfgLs are sorted ascending for

the reference elevatiokach DEL at the reference elevation has a corresponding DEL at
the extrapolation elevation. These eitbecur at the same timen(case oimeasurements)

or for the same input conditions (terms ofload @ses used in simulations). The sorting
order from the DELs ahe reference elevation is applied to the DELs of the extrapolation
elevation ale. This resilts in the data basis for extrapolation, namely a row of ascending
DELs from the reference elevation each having a corresponding DEL at the extrapolation
elevation.

Once a new DEL is measured at the reference elevation, it is sorted into the ascending
aray of DELs from the data basis for extrapolati@mumber of neighbors of DELfsom

the data basis and the corresponding DEL pairs at the extrapolation elevation are chosen.
The choice purely depends on the absolute value of DEL; underlying environraedtal
operationakonditionsare ignored. This assumes that loading conditions do not affect the
extrapolation omore specifically, that deviatiores/erage out over tim@.e., among the

set of different loading conditions occurring in the period of interest) without a systematic
bias The DEL at theextrapolation elevation is predicted the mean (or weighted mean)

from the chosen, neighboring DEIlo$ the data basis. This an application of the-k
nearest neighbor regression algorithm.

The selection of neighbors can be altered if information on operational or environmental
parameters is available, e.g. from the SCADA syst@my neighbors with similar input
conditionsare then considered for the extrapolation.

We remark that the extrapolation in step D can also be performed with other algorithms,
but the knearest neighbor regression algoritisnaonceptually simple, easy to implement,
andhas been found to result ialatively accurate result$herefore the results presented

in this paper focus on therkearest neighbor regression algorithm.

2.3. Measurement data

In this paper, we analyzed measurement data from two offshore wind turbines on
monopile foundations. Bothre situated in the same wind farm and stendardvariable
speed, pitckcontrolled wind turbines. The location of the wind farm is a typical North Sea
site with mediumrange water deptiBoth turbineswere exposed to similar environmental
conditions with less than 3 m difference in water depthio months of measurement data



were available for both offshore wind turbines. The momtbege consecutive in the year and

had similar operational conditiondNave onditions during the measurement period were
somewhatmore benign than design conditions. The mean significant wave height was
approximately 30% lower than the mean calculated from scatter diagrams used in fatigue
assessments during design of the monoplmwvever, the mean peak periods, important for
fatigue due to possible resonant excitations, differed only by 4% between the measurement
period and the design baskurther information on the type of wind turbines and site are
excluded for confidentialitpurposes.

The wind turbines are equipped with the following sensor system:

1 At the first turbine , electrical resistance strain gauges were installed at the transition
piece of the support structure at two different heights. The distance between the two
levels is approximately 15 m. Figutg(c) shows the approximate position of the two sets
of strain gauges at level 1 and level 2. On each level, four axial strain gauges are placed
with 90° spacing around the circumference of the transition piece. Theiseagundant
which makes it possible to detect calibration errors and to identify the amount of noise in
the measurements. Figut€b) shows spacing and labeling of the strain gauges.

1 The second turbine has electrical resistance strain gauges at the upgerof the
transition piece (level 1) and upper part of the monopile below water (level 3). The
distance between both levels is approximately 25 m.eldéetionof the strain gauges is
illustrated in Figurel (c). On level 1, four axial strain gawwae placed similar to
turbinel. On level 3, only two axial strain gauges are placed at position C and D.

1 The strain gauges were calibrated and compensated for temperature effects. The sampling
resolution was 20 Hz.

1 10-minute average values of power output, turbine status, yaw direction, and mean wind
speed from the nacelle anemometer were obtained from the SCADA system.

2 4. Verification study

The databasedload extrapolation algorithm iserified with strain gauge databtained
from two offshore wind turbines as described in the previous secme month of the data
was used tdrain the extrapolation algorithnftraining data set)The performance of the
algorithm was then tested with data from the second mpesing data set)Consequently,
no aerchydroservaelastic simulations have been performed in this work. The simuiation
based extrapolation (cf. Figure 1) shall be addressed in future work.

Three validation studies were performed for turbine 1; two studiesufbine 2. The
validation studies are shown in Table 1case ]1the complete data set of DELs was used for
the extrapolation. This includes all time periods for which strain measurements were
uninterrupted during Hninute intervals and timeynchrotized SCADA data was available.
In case 2 the extrapolation was performed conditional on power production recorded by the
SCADA system. The algorithm was trained to distinguish between DELs recorded in three
operational states: idling (mean produced potxer0 kW) , rated power ( me
O rated power), and tcase3the datasetwas cdegned by otitizing i on s
the redundancy of the sensor layout of turbine 1. Time series from strain gauges at opposite
sides of the transitionigce (AC and BD) should mirror each other. Therefore, the same
DEL should be obtained from both sensors under ideal conditions. The difference between



DELs from opposing strain gauges was evaluated to obtain an estimate of the noise level of
the measureants. In the cleaned data set, only 95% of the DELs were further processed in
the validation study. 5% of the DELs with the largest differences between opposing strain
gauges were deleted from the data set.

Table 1.Validation studies of the load extraptbnalgorithm performed for
turbinel and turbine 2.

Case Description Turbine 1 Turbine 2
1 Extrapolation of DELs X X
2 Extrapolation of DELs with filter for power productior X X
3 Extrapolation of DELs with cleaned data set X

3. Results anddiscussion

3.1.Data processing

The measured data was checked for measurement noise and plausibility. 3(gyre
presents the time series of raw strain data of turbine 1 from the strain gauges B and D during
one day. The time series show an opposing behavior. Fig{lmeshows the DELs obtained
from the time series in Figui@ (a) after rainflow counting. The ELs show a good match
with a mean absolute percentage error of 3.0% for this day. This indicates that the sensors
perform well with little measurement noise. The DELs measured by strain gauge D are
slightly higher than from strain gauge B indicating srgalh differences in the calibration of
both strain gaugesigure4 (a) shows the difference between strain gauges B and D for the
two measuremerglevatiors at the transition piece for one month. The differences between
the strain gauge at the uppevaion are higher than for the lowetevation On average, the
differences are below zero at both leyelhich indicates that there is a small gain error in the
calibration in line with Figure3 (b). Note that the figures show normalized data (due to
confidentiality reasons), whereas all analyses were performed withoramalized data.

In Figure 4 (b) the measured mean femft bending moment from i@inute time
intervals is plotted as a function of mean wind speed from the SCADA system. The data was
seleted so that the turbine rotor is facing in approximately the same direction as the strain
gauge. For this example, the strain gauge is located at 315°. All data points where the yaw
direction of the turbine lies between 305° and 325° are included in tte Tgle mean
bending moments at the height of the strain gauge resulting from a theoretical thrust curve are
plotted asa black line in the same figure. The theoretical thrust curve was estirfiatad
typical thrust coefficient$or a turbine of that sizand from basic geometrgince no detailed
information on thrust was available. The measurements follow the shape of the calculated
bending moment due to thrust, thus it is concluded that the data is plausible to use for the
validation study. Bending moments at wind speeds bédlows are higher than the theoretical
value possibly due to turbulence, inaccuracy of wind speed measurements from the nacelle
anemometer, or potential offsets in the calibration of the strain gauge.
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Figure 3. Strain gauge (SG) data from turbine 1. The data is normalized to the
maximum of the time serie¢a) 24 hours of measurements from strain gauges at
opposite positions of the circumferential of the transition pi@mel0-minute DELs

from opposing strairgauges after rainflow counting. The difference between the
DELs from the two strain gauges is small.
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Figure 4. (a) Difference of DELs obtained from opposing strain gauges B and D of
turbine 1 during one month in percenhe differences are normalized to the value of

DEL B at the respective elevatio®nly 95% of the DELs with the lowest
differences between opposing strain gauges were considered in the cleaned data set.
This corresponds to a threshold value of £10.3% ljrex). (b) Mean foreaft (FA)

bending moment (grey dots) from -biinute time intervals as a function of wind
speed. The calculated bending moments from a theoretical thrust curve of the turbine
(black line) were estimated from turbine size and basic gemseill data was
normalized to the maximum of the theoretical thrust curve.
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Table 2.Sizes of data set used in validation study. The cleaned data set is shown in

brackets.
Turbine 1 Turbine 2
Month 1 Month 2 Month 1 Month 2
No. of DELs 4453(4230) 4214 (4003) 4226 4115
Data availability 99.8% (94.8%) 97.6% (92.6%) 94.7% 95.3%

Max. deviation  39.0% (10.3%) 855.9% (11.5%) . -

Table 2 shows the size of the data sets used in the validation study. Ideally, a month with
31/30 days should havé464A320 DELs recorded. The uncleaned data set of both turbines is
smaller due to interruptions of strain measurements or missing SCADA data. The data
availability of the uncleaned data set is above 94% for both turbines. The maximum
differences between DELs from opposing strain gauges in the uncleaned data set were 39.0%
and 855.9%. The large difference of 855.9% belongs to a DEL that is very small (<0.05
MPa), therefore the impact of sensor noise is large. For case 3 of the validatipr(cs.

Table 1), 5% of the DELs which have the highest differences were excluded from the data set.
This corresponds to a threshold value of £10.3% differences between DEL B and DEL D that
is allowed in the data set for this month. The threshold valugarkedoy brokenred linesin

Figure4 (a). This final data set used in the study is shown in Table 2. Only the data set for

turbine 1 was cleaned since turbine 2 did not have opposing strain gauges for comparison.

3.2.Data-based extrapolation

Figure 5 (a) shows two months of DELs from turbinefdr the two measurement
elevations. DELsvere sortedin ascendingorderfor the upper measuremeelevation(grey
dots) thereby discarding the information about the time of occurreflee corresponding
time stamp when these DELs occur svendexed. The indewas then used to sort the DELsS
from the lower measurement elevation in the same order (black siatf)that corresponding
DELs appear at the same horizontal positibhe lowerelevationis approximately 3 m
belowthe upper elevatian

In Figure5 (b) DELs are colored that correspond to idling and rated power conditions.
Idling DELs were selected by filtering SCADA data for entries where power output is zero
(black dots).The nean wind speed of these-frfinute time intervals is below the eutwind
speed of the turbine. Rated power DELs were filtered from SCADA also (red dots). All
remaining data points (grey dots) correspond to mean wind speeds betweewiodt speed
and rated wind speed of the turhiiB®th rated power and idling conditions show less scatter
than the remaining data points.
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Figure 5. (a) Measured DELs at twelevatiors of the structure of turbine 1 during

two months. DELs are normalized to the maximum of the I@l@ration (b) DELs

where the turbine 1 produces rated power are colored in red. The black colored DELs
are idling conditions where the power output is zero and the average wind speed is
below cutin wind speed of the turbine. The remaining grey dots correspameda

wind speeds between eutand rated wind speed.

3.3.1. Results with linear regression

Before testing the nonlinearrearest neighbor algorithm a linear regression analysis was
performed. Figure 6 (a) shows scatterplots of the DELs for both manthe two elevations
for Turbine 1 illustrating the joint distribution of the measuremenitke values from both
locations are strongly correlated with afvRriance score of 0.96, for both montBgtween
the two months, te maximum DELvalue differed by less than 2%, and the standard
deviation of the DELs differed by less than 28%, with slightly higher values for location 2
than for location 1The ratio between predicted and actual DELs was up to 2.24 (rivtith
and 1.75 (montiM2), respectively, with a mean of 1.03 (momi#i) and 0.98 (monttv2).
The highest relative differences were observed for the lowest DEL values.

All 10-minute DELs were combined into a monthly DEL ratio uskguation3. The
ratio between predicted and measiitotal DEL for month M1 is 0.99 for predictionof
month M2, using the regression line estimated for maxth it is 0.95 The ratio between
predicted and measured accumulated dan(iageng the exponenmn in Equation3) was 0.97
(Month M1) and 0.82 (MonthM2), respectively.Although the total damage could be
predicted very well within the training month, the prediction deterioriethe test month.
This is not surprising, as the true regression line for month M2 hsain@what different
slope than the regression line for month M1.

1

o k ~E
DELmonth = %. DEI—lm8 (3)
(; i=1 -
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