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Problem Description

The purpose of this project is to develop and implement a control system for ROV Minerva. ROV
Minerva is currently manually controlled by an operator. In order to improve the performance of
survey operations, a closed-loop control system must be developed for the ROV.

1. Develop a full 6DOF modell of ROV Minerva, including the cable drag force.

2. Develop a controller for pitch and roll control, estimating and compensating for the cable force.

3. Develop a control system that makes Minerva follow a lawn-mower system at the same time as
it keeps a constant distance from the sea bed. ROV Minerva is equipped with 4 sonars that
measure the distance to the seabed. The assignment is to develop a system that lets the ROV keep
a constant distance to the seabed, while following, in turn, a set of parallel lines in the horizontal
plane. The purpose is to get a visual mapping of the seabed. The control system should preferably
be robust to model parameter errors and influence from currents.

4. Verify the theoretical results by simulations and experiments, doing a back-to-back comparison
between simulation and experimental results.

5. (Possibly) consider the case where the lateral thruster fails/the ROV/AUV has the typical
thruster configuration of AUVs without lateral thrusters.
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Abstract

In this project a robust adaptive controller has been developed for Minerva,
NTNU’s research ROV. The controller was tested in simulation using Mat-
lab/Simulink with a mathematical model of the vessel. It was also tested in a
practical experiment at sea, with the ROV Minerva.

The simulations, the control system performs very well. The results from the
practical experiment are promising, but several improvements are necessary
before the system works satisfactory. The single factor which is believed to
degrade the perfomance the most is an error in the mapping between thrust
force and rotational speed.
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Chapter 1

Introduction

This project is a continuation of the work done in (Svendby, 2006), where a
robust adaptive control system for the ROV Minerva was developed. Four
degrees of freedom were controlled, surge, sway, heave and yaw.

1.1 The ROV Minerva

The ROV is a SUB-Fighter 7500 from Sperre AS. It has five thrusters, two
vertical, one lateral and two forward thrusters. An umbilical cable is used for
communication between the ROV and the mother ship, R/V Gunnerus.

ROV Minerva is at present only controlled directly by an operator. The project
wishes to augment the ROV with a path following control system.

The hydrodynamic parameters of the mathematical model of the ROV are
uncertain. They will also be altered when the ROV is mounted with different
equipment, including lights and cameras. When at great depths, the ROV
may experience compression. This will change the parameters. Because of the
factors stated here, it has been decided that the controller shall be an adaptive
one.

1.2 Project Objectives

A control system for the remotely operated underwater vehicle, ROV Minerva,
shall be developed. All six degrees of freedom will be controlled, and cable
drag will be accounted for.

1



1.2. PROJECT OBJECTIVES

A simulator shall be implemented in Matlab/Simulink, based on the available
data from the ROV. Theoretical results should be validated through simulations
using the simulator, and experiments with the ROV Minerva.
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Chapter 2

Modelling

2.1 Kinematics

2.1.1 Degrees of Freedom

The ROV Minerva is assumed to be a rigid body. In order to describe the
motion of a rigid body in space the SNAME definition with six degrees of
freedom (DOF) is used. The first three DOF describe the position and trans-
lational motion of the body, while the last three DOF describe the orientation
in space and the rotational motion. The standard definition of the DOF of
marine vessels is presented in table 2.1 (Fossen, 2002).

Table 2.1: DOF notation for marine vessels

DOF Velocities Positions and Euler angles
1 motions in the x-direction (surge) u x

2 motions in the y-direction (sway) v y

3 motions in the z-direction (heave) w z

4 rotation about the x-axis (roll) p φ

5 rotation about the y-axis (pitch) q θ

6 rotation about the z-axis (yaw) r ψ

2.1.2 Reference Frames

Two reference frames are utilised in this project; the n-frame and the b-frame
described in (Fossen, 2002). The vessel will only operate inside a small ge-
ographical area, which means that one can assume the Earth to be flat for

3



2.1. KINEMATICS

this operating area. The origin of the n-frame is is fixed to some point on the
tangent plane of the surface of the Earth. The x-axis points towards north,
the y-axis points towards east, and the z-axis points downwards, normal to the
tangent plane.

The b-frame is also known as the BODY-frame. The x-axis points ahead,
the y-axis points starboard, and the z-axis points downwards, normal to the
xy-plane

Vectorial Representation

In this report two vectors will be used to represent position, orientation and
velocity. Position and orientation is given in the n-frame by:

η =

⎡
⎢⎢⎢⎢⎢⎢⎣

x

y

z

φ

θ

ψ

⎤
⎥⎥⎥⎥⎥⎥⎦

Translational and angular velocity is given in the b-frame by:

ν =

⎡
⎢⎢⎢⎢⎢⎢⎣

u

v

w

p

q

r

⎤
⎥⎥⎥⎥⎥⎥⎦

Transformation between frames

The standard transformation matrix for 6 DOF is used to express the relation:

η̇ = J(Θ)ν (2.1)

Θ is the vector that describes the orientation of the vessel, that is:

Θ =

⎡
⎣ φ

θ

ψ

⎤
⎦
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CHAPTER 2. MODELLING

The expression for the transformation matrix is found in (Fossen, 2002).

2.2 Dynamics

In order to synthesise the controller, a mathematical model describing the dy-
namics of the ROV Minerva is needed. An extended version of the model used
in (Svendby, 2006) will be used. The model is based on the general model
for marine vessels presented in (Fossen, 2002). There one can find methods
for determining the rigid body inertia matrix and the vector of gravitation-
al/bouyancy forces and moments.

Mν̇ +D(ν)ν +Kcd(η − ηcd) + g(η) = τ + w (2.2)

where

M - system inertia matrix
D(ν) - damping matrix
g(η) - vector of gravitational/buoyancy forces and moments
Kcd - cable drag matrix
τ - vector of control inputs
w - vector of environmental disturbances
ηcd - position of umbilical end point.

This model is the standard model for a 6 DOF vessel with position mooring,
and disregarding the Coriolis and centripetal forces. These forces can be dis-
regarded because the vessel will operate at low speeds, rendering the Coriolis
and centripetal forces negligible.

For position mooring a spring model is used. For this specific vessel this spring
model will be used to describe the effect of cable drag from the umbilical.

2.2.1 System Inertia

The system inertia matrix is a sum of the rigid body inertia matrix and the
added mass inertia matrix. The former is possible to find analytically using
knowledge of the geometry of the vessel (see (Fossen, 2002)), but the latter is
difficult to determine.

5



2.2. DYNAMICS

2.2.2 Damping

The D(ν) matrix represents the hydrodynamic damping, with contributions
from several damping phenomena. It can be represented as a sum of the linear
and the quadratic damping (Fossen, 2002):

D(ν) = Dl +Dqν (2.3)

These damping matrices contribute significantly to the behaviour of the vessel.
They are also difficult to determine, both analytically and empirically. These
factors justify the use of an adaptive controller.

When implementing the controller, only the diagonal elements of the quadratic
damping matrix are assumed to be important. The off-diagonal elements are
assumed to be negligible because of the low speed at which the vessel operates.

2.2.3 Gravitational and Bouyancy Forces and Moments

The forces and moments due to gravity and bouyancy are represented by the
vector:

g(η) =

⎡
⎢⎢⎢⎢⎢⎢⎣

(W −B) sin θ
−(W −B) cos θ sinφ
−(W − B) cos θ cos φ

−(ygW − ybB) cos θ cosφ+ (zgW − zbB) cos θ sin φ
(zgW − zbB) sin θ + (xgW − xbB) cos θ cosφ
−(xgW − xbB) cos θ sinφ− (ygW − ybB) sin θ

⎤
⎥⎥⎥⎥⎥⎥⎦

where W is the force of gravity on the vessel, B is the bouyancy force, and

rg =

⎡
⎣ xg

yg

zg

⎤
⎦

and

rb =

⎡
⎣ xb

yb

zb

⎤
⎦

are the vectors describing the distance of the origin from the centre of gravity
and the centre of bouyancy, respectively.
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CHAPTER 2. MODELLING

2.2.4 Cable Drag

The ROV Minerva is attached to an umbilical cable which provides it with
power and control signals, and communicates measurement signals from the
ROV to the mother ship. This cable will impose forces on the ROV due to
drag.

There are several ways to model the cable drag. One approach is to model
the cable as several lumped masses attached to eachother through springs.
The number of lumped masses is dynamic, as it depends on the length of the
cable. For this reason implementation is complicated. Due to its simplicity, a
mass-spring-damper system is used to model the vessel with umbilical.

The umbilical adds both spring and damping effects. The spring effects are
modelled as position mooring in the standard model of (Fossen, 2002). The
spring constant matrix is assumed to be a diagonal matrix.
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Chapter 3

Control Theory

3.1 The Adaptive Controller

Motivated by the uncertainties of the parameters in equation 2.2, the controller
will be adaptive. This signifies that in the control law the uncertain or varying
parameters are represented by adjustable parameters. An adaptive law governs
the adjustment of these parameters.

According to (Slotine and Li, 1991) and (Ioannou and Sun, 1996) there are
two main approaches to adaptive control. These are the model-reference adap-
tive control method (MRAC) and the self-tuning method. The latter method
focuses on estimation of the unknown parameters. These estimates are then
used to determine the controller parameters, using a conventional technique,
for example pole placement. The drawback of this approach is that it requires
parameter estimate convergence in order to ensure stability. In fact, the param-
eter estimates will only converge to the true parameter values if the reference
signal satisfies certain conditions; the signal has to be persistently exciting.

The parameter convergence requirement, and the requirements of the reference
signal to ensure this convergence, means that a complex initialisation routine
is necessary. This is highly undesirable because designing such a routine is not
a trivial task, and performing it raises the threshold for using the ROV.

The MRAC method, on the other hand, guarantees convergence to the desired
path. The parameter estimates will adapt so as to follow the desired path,
and will not preoccupy with converging to the true parameter values. It is of
course possible that they converge to the true values, but only if the condition
of persistently exciting reference signals is satisfied.

The ability of the model-reference adaptive control method to let the vessel

9



3.1. THE ADAPTIVE CONTROLLER

start its path following right away, makes it a good choice for the application
in this project.

3.1.1 Nonlinear Model-Reference Adaptive Control

Both (Slotine and Li, 1991) and (Fossen, 2002) suggest equivalent model-
reference adaptive control schemes for nonlinear systems. The latter will be
implemented in this project, and is presented here.

Based on the vessel dynamics equation, the control law is:

τ = M̂ab + D̂lν + D̂q |ν| ν + K̂cd(η − ηcd) + ĝ(η) − ŵ (3.1)

The hat means that the parameters are estimates, and ab is the commanded
acceleration, decomposed in the b-frame. The commanded acceleration, de-
composed in the n-frame, is defined as:

an = η̈d −Kd
˙̃η −Kpη̃ (3.2)

where ηd is the desired position,

η̃ = η − ηd (3.3)

and the dot denotes the derivative.

The left-hand side of equation 3.1 is parameterised so that:

τ = Φ(ab, ν, η)θ̂ (3.4)

θ is a vector of the unknown matrix parameters and θ̂ is the estimate of it,
while Φ(ab, ν, η) is a matrix that contains the variables. These are measured
and hence known.

The parameter adaptation law used to update the parameter vector is:

˙̂
θ = −ΓΦT (ab, ν, η)J−1s (3.5)

where the combined error is defined as

s = ˙̃η + λ0η̃ (3.6)

, λ0 is a positive constant and Γ = ΓT > 0 is the adaptation gain matrix.

The resulting error dynamics are then:

M [ν̇ − ab] = [M̂ −M ]ab + D̃lν + D̃q |ν| ν + K̃cd(η − ηcd) + g̃(η) − w̃ (3.7)

10



CHAPTER 3. CONTROL THEORY

Parameterising the right-hand side and transforming the left-hand side to the
n-frame yields:

MJ−1(η)[η̈ − an] = Φ(ab, ν, η)θ̃ (3.8)

Using equation 3.2 one gets:

MJ−1(η)[¨̃η −Kd
˙̃η −Kpη̃] = Φ(ab, ν, η)θ̃ (3.9)

The proof of stability for this control system is found in (Fossen, 2002).

3.1.2 Robustness

One of the principal motivations for choosing MRAC to control the vessel
is the robustness it exhibits regarding parameter uncertainty. As stated in
section 3.1, the controller guarantees tracking, but not parameter convergence.
However, the robustness to noise is a different matter altogether. If measures
aren’t taken, noise can cause parameter drift, which in turn may render the
system unstable. Even small disturbances have the potential to make the
system unstable (Slotine and Li, 1991). This was confirmed in simulations,
where adding noise to the measurements instantly made the system unstable.

In order to counteract the effects of noise, one can add dead-zones to the error
signals that are used for parameter estimation. This means that one will ignore
small tracking errors, motivated by the fact that a relatively large part of these
will be noise.

˙̂
θ =

{
−ΓΦT (η̈b

r, ν, η)J
−1(η)y, if |e| > Δ

0, if |e| < Δ
(3.10)
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Chapter 4

Simulation

4.1 Implementation

One important aspect is to find a platform on which to implement the system so
that real-time requirements are satisfied. Also in (Svendby, 2006) the problem
of communication delays was identified.

Some preliminary testing of communication was performed in C on a Linux
platform. However, as Matlab/Simulink provides great opportunities for ma-
trix operations, and the Real-Time Workshop toolbox addresses the real-time
issues, this platform was chosen for the implementation of the control system.

The control system was initially developed as a script in Matlab, and later
adjusted for use with the Matlab Embedded Function block in Simulink. The
resulting Simulink model was then compiled/built with Real-Time Windows
Target so that it could run in external mode. In external mode the compiled
model is run in the Matlab Real-Time Kernel.

4.1.1 Guidance

To produce the desired trajectories that the vessel should follow, the following
equations are used.

A reference model is used to produce the desired heading, ψd, and yaw rate,
rd = ψ̇d. It is given by:

ψ̈d + 2δωψ̇d + ω2ψd = ω2ψr (4.1)

where δ is the relative damping ratio and ω is the natural frequency. ψr is the
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4.1. IMPLEMENTATION

reference heading given by:

ψr = arctan
yk − y

xk − x
(4.2)

(xk, yk) are the coordinates of the current waypoint, while (x, y) is the current
position of the vessel.

The desired heading is used to determine the desired horizontal path:

ud = Ud cos(ψd) (4.3)

vd = Ud sin(ψd) (4.4)

Ud is the desired horizontal speed, as defined by:

Ud =
√
u2

d + v2

d (4.5)

Ud is determined by:

TdU̇d + Ud = Ur (4.6)

Ur is the reference horizontal speed.

The desired depth of the vessel is governed by the following equation:

Tz żd + zd = zr (4.7)

where the reference depth, zr, may be the z-coordinate of the current waypoint,
or be given by an algorithm that seeks to keep the vessel at a constant distance
from the seabed.

The resulting desired velocity vector is given by:

νd =

⎡
⎢⎢⎢⎢⎢⎢⎣

ud

vd

wd

0
0
rd

⎤
⎥⎥⎥⎥⎥⎥⎦

The desired path is given by the set of desired position vectors, ηd, which is
found from:

η̇d = J(Θ)νd (4.8)
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CHAPTER 4. SIMULATION

4.2 Simulation

For the simulation presented here, waypoints in three dimensions forming a
lawnmower pattern in the horizontal plane were defined.

The vessel starts with zero speed, but the reference horizontal speed, Ur = 0.3
m/s. When the vessel enters a vertical cylinder of acceptance about a waypoint
the reference horizontal speed is set to zero. It remains equal to zero until the
vessel’s heading and depth are acceptably close to their reference values, then
its value is set back to 0.3 m/s.

The nature of an MRAC system is that its performance improves if its es-
timated parameters have values close to those of the real vessel parameters.
When the initial value of all the parameter estimates is set to zero, the perfor-
mance of the controller is not optimal, and it demands much more thrust force
than the vessel thrusters can supply. Because of these factors, an initialisation
run is performed. Then the final values of the parameter estimates are used as
initial values for any subsequent simulation run.

The combined error parameter is:

λ0 =

⎡
⎢⎢⎢⎢⎢⎢⎣

10 0 0 0 0 0
0 10 0 0 0 0
0 0 10 0 0 0
0 0 0 10 0 0
0 0 0 0 10 0
0 0 0 0 0 10

⎤
⎥⎥⎥⎥⎥⎥⎦

The controller gains used for the simulation are:

Kp =

⎡
⎢⎢⎢⎢⎢⎢⎣

100 0 0 0 0 0
0 100 0 0 0 0
0 0 50 0 0 0
0 0 0 50 0 0
0 0 0 0 50 0
0 0 0 0 0 100

⎤
⎥⎥⎥⎥⎥⎥⎦

Kd =

⎡
⎢⎢⎢⎢⎢⎢⎣

20 0 0 0 0 0
0 20 0 0 0 0
0 0 20 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 10

⎤
⎥⎥⎥⎥⎥⎥⎦

15



4.2. SIMULATION

Γ =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.5 0 0 0 0 0
0 0.5 0 0 0 0
0 0 0.5 0 0 0
0 0 0 0.5 0 0
0 0 0 0 0.5 0
0 0 0 0 0 0.5

⎤
⎥⎥⎥⎥⎥⎥⎦

However, to obtain the parameter estimate initial values, a different set of
controller gains was used:

Kp =

⎡
⎢⎢⎢⎢⎢⎢⎣

100 0 0 0 0 0
0 100 0 0 0 0
0 0 100 0 0 0
0 0 0 50 0 0
0 0 0 0 50 0
0 0 0 0 0 100

⎤
⎥⎥⎥⎥⎥⎥⎦

Kd =

⎡
⎢⎢⎢⎢⎢⎢⎣

10 0 0 0 0 0
0 10 0 0 0 0
0 0 10 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 10

⎤
⎥⎥⎥⎥⎥⎥⎦

Tz = 50 seconds, TU = 30 seconds and the threshold from the deadzone (equa-
tion 3.10), Δ = 0.1. The radius of the cylinder of acceptance is 1 metre. The
position of the end point of the umbilical, ηcd = 0.

Initially,

η =

⎡
⎢⎢⎢⎢⎢⎢⎣

10
0
10
0
0

0.7

⎤
⎥⎥⎥⎥⎥⎥⎦
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and ν = 0.

The waypoints are given by the following three vectors:

wpt.x =
[

10 60 58.8 8.8 7.6 57.6 56.4 6.4
]

wpt.y =
[

10 20 25.88 15.88 21.76 31.76 37.64 27.64
]

wpt.z =
[

10 15 15 20 20 30 30 20
]

4.2.1 The Vessel Model

In this simulation, the parameters of equations 2.2 and 2.3 are:

M =

⎡
⎢⎢⎢⎢⎢⎢⎣

405 0 0 0 121.5 0
0 405 0 −121.5 0 0
0 0 405 0 0 0
0 −121.5 0 98.21 0 0

121.5 0 0 0 164.14 0
0 0 0 0 0 129.22

⎤
⎥⎥⎥⎥⎥⎥⎦

Dl =

⎡
⎢⎢⎢⎢⎢⎢⎣

300 0 0 0 0 0
0 300 0 0 0 0
0 0 300 0 0 0
0 0 0 100 0 0
0 0 0 0 100 0
0 0 0 0 0 100

⎤
⎥⎥⎥⎥⎥⎥⎦
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Dq =

⎡
⎢⎢⎢⎢⎢⎢⎣

280.5 0 0 0 0 0
0 563.5 0 0 0 0
0 0 578.2 0 0 0
0 0 0 100 0 0
0 0 0 0 100 0
0 0 0 0 0 100

⎤
⎥⎥⎥⎥⎥⎥⎦

Kcd =

⎡
⎢⎢⎢⎢⎢⎢⎣

−10 0 0 0 0 0
0 −10 0 0 0 0
0 0 −10 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

w =

⎡
⎢⎢⎢⎢⎢⎢⎣

100
−50
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

The parameters used to find g(η) are W = 405 N and B = 400 N.

rg =

⎡
⎣ 0

0
0.3

⎤
⎦

and rb = 0.

The M matrix is approximated using the mass and shape of the ROV Minerva.
The Dq matrix is found using the projected area in the case of the first three
DOF. The last three are chosen to be reasonable values in relation to the first
three DOF. All off-diagonal elements are set to zero, as these have little impact
on the model.

The Dl matrix is chosen in a similar way to Dq, but here all values are chosen
and none calculated.
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CHAPTER 4. SIMULATION

4.2.2 Simulation Results

In this section the most relevant plots from the simulation are presented. The
reader is referred to Appendix A for the remaining plots.

In figure 4.1 the lawnmower pattern that the vessel travels is displayed.
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Figure 4.1: The path travelled in the xy-plane

η as a function of time is shown in figure 4.2 . One can verify that the vessel
reaches the desired waypoints definded in surge, sway and heave. In roll and
pitch the deviation from zero is not very large.

The error in position and orientation is presented in figure 4.3. The error is
very small, but increases when the vessel reaches a new waypoint.

Reduced Damping in Yaw

The experiments carried out suggest that the damping in yaw is very small, and
that this causes problems controlling the heading. To investigate this further,
the yaw element on the diagonal of the damping matrices is reduced from 100 to
1 and the simulation is performed again. The error in position and orientation,
η̃, from this alternate simulation is shown in figure 4.4.

Comparing figures 4.3 and 4.4, it is evident that the vessel with the most damp-
ing experiences a greater error when switching waypoints. Also, its response
to this error is slower.

19



4.2. SIMULATION

0 100 200 300 400 500 600 700 800 900
0

20

40

60

Time (s)

x−
po

si
tio

n 
(m

et
re

s)

0 100 200 300 400 500 600 700 800 900
0

20

40

Time (s)

y−
po

si
tio

n 
(m

et
re

s)

0 100 200 300 400 500 600 700 800 900
0

10

20

30

Time (s)

D
ep

th
 (

m
et

re
s)

0 100 200 300 400 500 600 700 800 900
−0.01

0

0.01

Time (s)

R
ol

l a
ng

le
 (

ra
di

an
s)

0 100 200 300 400 500 600 700 800 900
−0.02

0

0.02

Time (s)

P
itc

h 
an

gl
e 

(r
ad

ia
ns

)

0 100 200 300 400 500 600 700 800 900
0

2

4

Time (s)

Y
aw

 a
ng

le
 (

ra
di

an
s)

Figure 4.2: η as a function of time

Without Lateral Thruster

If the lateral thruster does not work, but the control allocation remains the
same (section 5.1.2), the control system does not work at all. The vessel is
moving about, but is totally out of control.

Changing the control allocation to account for the lack of the lateral thruster
did not resolve the problem. As it is an underactuated problem to control the
vessel in four DOF with three thrusters, the sway mode had to be removed from
the commanded force vector. It is clear that in order to make the vessel work
without the lateral thruster a more elaborate analysis of the underactuated
problem is necessary.
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Figure 4.3: η̃ as a function of time
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Figure 4.4: η̃ as a function of time with reduced damping in yaw
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Chapter 5

Practical Experiments

The controller was tested with the ROV Minerva in experiments performed
from the R/V Gunnerus on the 14th and 15th of May 2007.

5.1 Implementation

5.1.1 Communication and Real-Time Execution

A vital part of the control system, when used for practical experiments, is the
communication with the vessel.

The commanded force to the thrusters is communicated to the ROV Minverva
through the umbilical, instead of using the control console that normally steers
the vessel. The details of the data telegram sent can not be disclosed by
agreement with Sperre AS.

The measurements of the position and orientation of R/V Gunnerus are ob-
tained from the GPS onboard (Seatex DPS116). The position of ROV Minerva
relative to R/V Gunnerus are obtained from a HiPAP SSBL system, and the
surge velocity is given by a RDI Navigator 600kHz DVL. These measurements
are processed by the navigation program Navipac, and transmitted as strings of
characters on a serial line, using the RS-232 protocol, to the control computer.

The measurements of the depth, heading and yaw rate are obtained from in-
struments on the ROV, and are transmitted directly to the control computer
using the RS-232 protocol.

Using the built-in functions for serial communication that Matlab offers is not
a good option as they are too slow. Using them would introduce time delays
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5.1. IMPLEMENTATION

in the control loop. This is unacceptable for applications with fast dynamics,
such as the one in question. It was shown in (Svendby, 2006) that the time
delay renders the controller useless.

Aiming to address the real-time issues, Real-Time Workshop was going to be
used. Utilising the Real-Time Windows Target, the Simulink implementation
of the controller was compiled to be run in external mode. In order to read to
and write from the serial ports, S-functions was written in C and included in
the Simulink model. However, the Real-Time Windows Target imposes severe
limitations on the number of library C functions that can be used in S-functions
in the model. Because of this, it was not possible to read the measurement
data from the serial port with the necessary reliability.

After exhaustively attempting to make the communication work with Real-
Time Workshop, it was deemed necessary to abandon it. The solution was to
use a set of RS-232 blocks and a Real-Time block from (Daga, 2006). They
are also available at Mathworks’ Matlab Central. The Real-Time block makes
the Simulink model run in real-time without compiling.

5.1.2 Control Allocation

The controller calculates a force and moment vector, τ , in six DOF, that should
be applied to the vessel. To do this, the forces and moments in τ must be
translated into force output by each of the five thrusters, given by the vector
u. The relation between τ and u is given by:

τ = T (α)u (5.1)

where T (α) is the actuator configuration matrix and α is a vector of angles of
the thrusters. u is a column vector composed of:

u1 - force from the lateral thruster
u2 - force from each of the two vertical thrusters
u3 - force from the port thruster
u4 - force from the starboard thruster.

For the ROV Minerva, the angles of the thrusters are fixed. The angles of the
port and starboard thrusters are −10◦ and 10◦ respectively.

Using figures 5.1 and 5.2, and assuming the centre of gravity in the xy-plane

to be in (
total length

2
, total breadth

2
) and the centre of gravity on the z-axis
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CHAPTER 5. PRACTICAL EXPERIMENTS

to be in the lower part of the ROV one can verify that, given the relation in
equation 5.1:

T(α) =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 cos(−10◦) cos(10◦)
1 0 sin(−10◦) sin(10◦)
0 2 0 0

−lz1 0 −lz4 sin(−10◦) −lz5 sin(10◦)
0 −lx2 lz4 cos(−10◦) lz5 cos(10◦)
lx1 0 lx4 sin(−10◦) − ly4 cos(−10◦) lx5 sin(10◦) − ly5 cos(10◦)

⎤
⎥⎥⎥⎥⎥⎥⎦
,

where

lx1 = 0.163m

lz1 = −0.03m

lx4 = −0.570m

ly4 = −0.30m

lz4 = 0.42m

lx5 = −0.570m

ly5 = 0.30m

lz5 = 0.42m

These values are approximated, since the actual location of the centre of gravity
is unknown, and can move.

(Sørensen, 2005) presents a procedure for finding T (α).

The number of actuators is less than the number of degrees of freedom, hence
the ROV is underactuated and the T (α) is not invertible. It is, however, pos-
sible to find a pseudo-inverse, T †. Unfortunately, in the case of ROV Minerva

TT † �= I (5.2)

It is the roll and pitch modes that are difficult to control, as the control forces
in these modes are lost in the translation TT †. This motivates a reduction in
the number of DOF that will be controlled. If one ignores the roll and pitch
elements in τ , one can translate this vector into individual thruster force using:
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5.1. IMPLEMENTATION

T4(α) =

⎡
⎢⎢⎣

0 0 cos(−10◦) cos(10◦)
1 0 sin(−10◦) sin(10◦)
0 2 0 0
lx1 0 lx4 sin(−10◦) − ly4 cos(−10◦) lx5 sin(10◦) − ly5 cos(10◦)

⎤
⎥⎥⎦

This reduction can be justified by assuming that the roll and pitch modes are
stable; they will always return to zero if perturbated.

5.1.3 Mapping between Thrust Force and Rotational

Speed

After distributing the control forces on the various thrusters, the forces need
to be transformed into rotational speed for each thruster. The relation is given
by

u = KtρD
4 |n|n (5.3)

where:

u - force from thruster
Kt - thrust coefficient for thruster
ρ - density of water
n - revolutions per second
D - propeller diameter.

ρ andD are known, but the thrust coefficient, Kt, presents significant problems.
Kt depends on the advance number, J , which in turn depends on the water
velocity into the propeller, Va, and revolutions per second, n.

Measurements of Va were not available for the experiment, hence finding J was
impossible. According to (Smogeli and Sørensen, 2006), one often assumes J =
0, and uses the constant Kt0. The expressions for Kt supplied by (Ludvigsen
and Ødegaard, 2006) cannot be linearised in this manner, as some of them
would yield negative values for Kt0. Kt must always be strictly positive.

Instead, inserting maximum rotational speed of the thrusters, and maximum
force shown by the ROV in all directions into equation 5.4 yields the unknown
parameter h in the generalisation of equation 5.3:

u = h |n|n (5.4)

The maximum force is found in bollard pull experiments referred in (Ludvigsen
and Ødegaard, 2006).
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5.1.4 Measurements

As well as position and orientation of the mother ship, measurements of six
DOF were available for the ROV. These were:

x - position North
y - position East
z - depth
ψ - heading
v - forward velocity
r - yaw rate

5.1.5 Settings

The estimation of the cable drag was removed in the experiment because its
contribution to the commanded thrust force was enormous. It caused all the
thrusters to reach their saturation values. This could be caused by too high
initial values of the estimated parameters or too high gain values in the adap-
tation law for these parameters.

The initial values of the estimated parameters are the same as for the simula-
tion.

The model runs at 10 Hz, the commanded thrust is sent to the thrusters at a
rate of 5 Hz and the measurements are received at a rate of 2 Hz.

When the experiment was carried out, the following gain matrices were used:

Kp =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 4 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0.5

⎤
⎥⎥⎥⎥⎥⎥⎦

Kd =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.3 0 0 0 0 0
0 0.3 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0.5

⎤
⎥⎥⎥⎥⎥⎥⎦
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λ0 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.005 0 0 0 0 0
0 0.005 0 0 0 0
0 0 0.005 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0.005

⎤
⎥⎥⎥⎥⎥⎥⎦

Γ =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.5 0 0 0 0 0
0 0.5 0 0 0 0
0 0 0.5 0 0 0
0 0 0 0.5 0 0
0 0 0 0 0.5 0
0 0 0 0 0 0.5

⎤
⎥⎥⎥⎥⎥⎥⎦

Tz = 50 seconds, TU = 30 seconds and the threshold from the deadzone (equa-
tion 3.10), Δ = 0.1. The radius of the cylinder of acceptance is 3 metres.

The waypoints are given by the following three vectors:

wpt.x =
[

7035178 7035185 7035177 7035168
]

wpt.y =
[

567985 567931 567930 567984
]

wpt.z =
[

65 65 65 70
]

The values used in the mapping between thrust force and rotational speed were:

starboard/port thrusters, u ≥ 0 66
starboard/port thrusters, u < 0 98
lateral 73
vertical 103
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After the experiment was performed, an error in the mapping code was dis-
covered. The lateral thruster was assigned the same mapping as the starboard
and port thrusters, meaning that a commanded thrust force would produce
different force values depending on the sign of the commanded force.

5.2 Results

In this section the most relevant plots from the practical experiment are pre-
sented. The reader is referred to Appendix B for the remaining plots. There
are a lot fewer plots compared to the simulation. This is caused by the lack of
measurements. Some of the adaptations are driven by variables that are not
measured, and hence the parameters remain constant. Plots of these parame-
ters are not included.

The vessel manages to go to the defined waypoints, and to maintain its heading,
albeit with some oscillations about the desired heading. The position and
heading of the vessel is presented in figure 5.3.

From figure 5.4 one can see the deviation of the actual position and heading
from the desired position and heading. It shows that the desired depth is
maintained within margins less than 0.5 metres. The error in heading is great
for the first 150 seconds, before stabilising with small oscillations about zero.
The desired xy-position is maintained within margins of less than 5 metres
on each axis. It is worth noticing the occurrence of several drop-outs, that is
the measurements become unavailable for a period of time. When the position
is maintained exactly the same for a period of time before jumping to a new
value, this indicates a drop-out.

If the vessel is stationary, the heading is maintained within margins of 7 degrees
(3-4 radians).

Figure 5.5 shows the velocity in surge and the yaw rate of the vessel, both of
them exhibiting an oscillatory behaviour.

The thrusters rarely reach their maximum rotational speed of 1450 rounds per
minute. Like the velocities, these too are oscillatory. Notably, the vertical
thrusters have the smallest oscillations. The depth is also the DOF with the
least error. Ideally, the trusters would converge to constant values between
waypoints. The rotational speed of the thrusters are presented in figure 5.6.

Figure 5.7 shows the development of the estimated diagonal parameters of
the system inertia matrix M . These change as the vessel approaches the first
waypoint, and from then stabilise. There are some minor adjustments when
changing waypoints.
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In figure 5.8 one can see the development of the estimated diagonal parameters
of the linear damping matrix Dl. These change steadily throughout the test
run. The surge parameter change the most when changing waypoints. The
values of these parameters remain insignificantly small. This is also the case
with the damping parameters in the simulation (Appendix A).
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Figure 5.1: Thruster configuration of ROV Minerva, view from top (Courtesy of
M. Ludvigsen)
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Figure 5.2: Thruster configuration of ROV Minerva, view from side (Courtesy of
M. Ludvigsen)

32



CHAPTER 5. PRACTICAL EXPERIMENTS

0 100 200 300 400 500 600
−10

0

10

20

30

Time (s)

x−
po

si
tio

n 
(m

et
re

s)

Position and heading as a function of time

0 100 200 300 400 500 600
−60

−40

−20

0

20

Time (s)

y−
po

si
tio

n 
(m

et
re

s)

0 100 200 300 400 500 600
64

66

68

70

72

Time (s)

D
ep

th
 (

m
et

re
s)

0 100 200 300 400 500 600
0

2

4

6

8

Time (s)

H
ea

di
ng

 (
ra

di
an

s)

Figure 5.3: η as a function of time
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Figure 5.4: η̃ as a function of time
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Figure 5.5: ν as a function of time
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Figure 5.6: RPM of thrusters as a function of time
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time
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Discussion

The control system shows very good performance in simulations. The devia-
tions from the desired η and ν are minor, although peaking when the vessel
reaches a new waypoint and prepares to go to the next. It also exhibits good
adaptability to changes in the vessel model.

In the experiments at sea the results are not as good. However, the control
system successfully steers the vessel to all the waypoints. The depth control
is very good despite the velocity not being measured. The problem seems
to be the heading control. Although performing very well when the ROV is
stationary, the error is significant when the ROV is moving. This leads to
errors in surge and sway, as these two DOF are intimitely connected to the
heading.

The most obvious source to this behaviour is the error in the mapping between
thrust force and rotational speed for the lateral thruster. This results in that
if comparing two instances of commanded thrust force, equal and opposite,
would not yield equal and opposite actual forces. This is a likely explanation
of the oscillations in the heading. It is surprising that the system did perform
as well as it did, considering the graveness of this error.

In the experiment at sea the cable drag was excluded from the controller.
Simulating without the cable drag parameters in the control system yielded
results inferior to those with the complete controller. The results were still
good. In the experiment, before removing the cable drag component, the λ0

was drastically reduced compared to the value used in simulations. This was
because using the larger λ0 caused the τ to become extremely large. It is
possible that removing the cable drag component would eliminate the need for
a small λ0, but this was not confirmed in experiments. A larger λ0 will increase
the response to errors in position and orientation and could have improved the
performance of the control system.
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The measurements remains a source for improvement. The lack of velocity
measurements reduces the performance potential. Including derivative action
in the control system would make it more responsive.

It was noted during the experiment that the time constants for velocity and
depth were very large. Using smaller values for these time constants will in-
crease the vessel’s acceleration in both surge and heave. For bottom tracking,
the time constant for depth needs to be much smaller.
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Chapter 7

Conclusions

In this project, which is based on the work in (Svendby, 2006), a robust adap-
tive controller have been developed in order to control the research ROV Min-
erva. The project aims to control all six degrees of freedom, but only four were
achieved; the underactuated nature of the vessel rendered the roll and pitch
modes uncontrollable.

The control system was implementented using Matlab and Simulink, running
in real-time, but without Real-Time Workshop.

The controller is performing well in simulations. It is also working in the ex-
periment at sea, but the performance is not good enough to be of any practical
use. However, the experiment suffered from lack of measurements and a serious
error in the mapping between thrust force and rotational speed. Without this
error, and with measurements of all states it may be possible to achieve good
performance in experiments as well.
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Chapter 8

Further Work

A new experiment should be carried out, this time with the correct mapping
between thrust force and rotational speed, in order to verify whether the per-
formance is improved enough for the controller to be of practical use.

One should aim to get measurements of all degrees of freedom, alternatively
an observer may produce estimates of the states not measured.

The protocol for obtaining the measurements from the instruments should be
improved. Ideally, one should custom make programs for this purpose, and
compile these before using them in the Simulink model.
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Appendix A

Simulation Plots
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Figure A.1: ν as a function of time
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Figure A.2: ν̃ as a function of time
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APPENDIX A. SIMULATION PLOTS

0 100 200 300 400 500 600 700 800 900
−500

0

500

Time (s)

F
or

ce
 in

 s
ur

ge
 (

N
)

0 100 200 300 400 500 600 700 800 900
−500

0

500

Time (s)

F
or

ce
 in

 s
w

ay
 (

N
)

0 100 200 300 400 500 600 700 800 900

−500

0

500

Time (s)

F
or

ce
 in

 h
ea

ve
 (

N
)

0 100 200 300 400 500 600 700 800 900
−40

−20

0

20

40

Time (s)

F
or

ce
 in

 r
ol

l (
N

m
)

0 100 200 300 400 500 600 700 800 900
−50

0

50

Time (s)

F
or

ce
 in

 p
itc

h 
(N

m
)

0 100 200 300 400 500 600 700 800 900
−50

0

50

Time (s)

F
or

ce
 in

 y
aw

 (
N

m
)

Figure A.3: τ as a function of time
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Figure A.4: First row of estimated system inertia matrix
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Figure A.5: Second row of estimated system inertia matrix
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Figure A.6: Third row of estimated system inertia matrix
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Figure A.7: Fourth row of estimated system inertia matrix
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Figure A.8: Fifth row of estimated system inertia matrix
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Figure A.9: Sixth row of estimated system inertia matrix
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Figure A.10: First row of estimated linear damping matrix
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Figure A.11: Second row of estimated linear damping matrix
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Figure A.12: Third row of estimated linear damping matrix
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Figure A.13: Fourth row of estimated linear damping matrix
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Figure A.14: Fifth row of estimated linear damping matrix
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Figure A.15: Sixth row of estimated linear damping matrix
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Figure A.16: The estimated quadratic damping matrix
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Figure A.17: The estimated environmental disturbance
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Figure A.18: The estimated spring constant from the cable
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Figure A.19: The estimated gravitational/bouyancy force
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Appendix B

Plots from Experiments
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Figure B.1: First row of estimated system inertia matrix as functions of time
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Figure B.2: Second row of estimated system inertia matrix as functions of time
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Figure B.3: Third row of estimated system inertia matrix as functions of time
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Figure B.4: Sixth row of estimated system inertia matrix as functions of time
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Figure B.5: First row of estimated linear damping matrix as functions of time
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Figure B.6: Second row of estimated linear damping matrix as functions of time
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Figure B.7: Third row of estimated linear damping matrix as functions of time
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Figure B.8: Sixth row of estimated linear damping matrix as functions of time
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Figure B.9: Diagonal elements of estimated quadratic damping matrix as functions
of time
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Figure B.10: Estimated environmental disturbance as a function of time
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Figure B.11: Estimated gravity/bouyancy parameters as functions of time
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Appendix C

Simulator in Matlab/Simulink

The simulator used for the simulations is on the CD-ROM appended to the re-
port. One must first execute the init.m file before running the controlsys.mdl.
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