
Abstract

We study aggregates of corporate value using a method largely unexplored in the litera-

ture: valuation multiples. Possibilities illuminated by the valuation multiple perspective

are examined using conventional and self-developed econometric methods, aiming to un-

derstand and predict the relationship between macroeconomic factors and multiples. The

methods are applied to a data set of ª2,000 listed European firms. Volatility, inflation,

term structure spread and industrial production growth emerge as principal variables and

are used for modeling multiple aggregates and cross-sectional multiple distributions. The

models unanimously forecast a future decline of multiple levels, as the current levels are

unjustifiable by the prevailing macroeconomic environment.
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Samandrag
Me analyserer aggregert prising av verksemder med hjelp av ein lite nytta framgangsmåte

mellom forskarar innanfor finans: verdsetjingsmultiplar. Multippelvinklinga gjev høve til

å skjøna og å føreseia samanhengen mellom makroøkonomiske faktorar og verdsetjing.

Me brukar konvensjonelle og eigenutvikla økonometriske metodar på eit dataset over om

lag 2000 europeiske ålmennaksjeselskap. Volatilitet, inflasjon, differansen mellom lange

og korte renter og industriell tilverking synest å vera vektige forklåringsvariablar, både for

indeksar avleidde frå fordelinga og for fordelinga i seg sjølv. Me greier ikkje å rettferdig-

gjere det noverande multippelnivået gjeve den makroøkonomiske stoda i dag, og går difor

ut ifrå at verksamdsprisinga vil gå attende.
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Abbreviations

Symbol = Definition

Abbreviations
Capex = Capital expenditures

CoGS = Costs of Goods Sold

D&A = Depreciation and Amortization

DCF = Discounted Cash Flow

EV = Enterprise Value

EBIT = Earnings Before Interest and Tax

EBITDA = Earnings Before Interest, Tax, Depreciation and Amortization

FCF = Free Cash Flow

MAD = Mean Absolute Deviation

MCap = Market Capitalization

NOPLAT = Net Operating Profit Less Adjusted Tax

NPVGO = Net Present Value of Growth Opportunities

Opex = Operational expenditures

RMSE = Root Mean Square Error

SG&A = Sales, General and Administrative costs

Models and Variables
ARIMAX(p,q,d) = AutoRegressive(p-lags) Integrated(d differentiations)

Moving Average(d-lags) with eXogenous variabels

vST50(lr)(BCt) = Implied volatility

mEUCPI(BCt) = Eurozone CPI inflation

iEUspd101 = Term structure spread

mEUpYOY = Year on year EU industrial production growth

sEUCC(d) = EU Condumer Confidence Index

mEUFAYOY = EU Fixed Assets growth year on year

Ad = Regression model with I(1)-variables selected from the Diverse data set

Ap = Regression model with I(1)-variables selected from the Predictable data set

Dd = Regression model with I(0)-variables selected from the Diverse data set

Dp = Regression model with I(0)-variables selected from the Predictable data set

Rd = Autoregressive regression model with I(0) and I(1)-variables

selected from the Diverse data set

Rp = Autoregressive regression model with I(0) and I(1)-variables

selected from the Predictable data set

qPCA = Quantile PCA-model

qOLS = Quantile OLS-model

qVAR = Quantile VAR-model

Parametric regression = Parametric distribution-based regression

Frequency regression = Frequency based distribution regression model

Models are generally denoted in italic. Note that this list is non-exclusive and serves as a overview.
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Mathematical Symbols
1w = Indicator function - is 1 if w is true, 0 else

8 = The universial quantifier

b = Index of a "bucket"

B = Number of buckets

Bt = Book equity at time t
c = The index of a specific company

C = The number of companies

dt = Differentiated (log return) of price index yt at time t
Dct = Dividend for company c at time t
D

q
t = log-difference between two quantiles

e, exp() = Euler’s number

9 = Existential quantifier

g = Dividend growth rate

h = Forecast horizon index

H = Maximum forecast horizon

H(x t ) = Function mapping from x t to a distribution of multiples m

i = Inflation rate

I (i ) = Integrated process of order i - see Alexander (2008a)

L(µ; x

1:T ) = Likelihood function for parameters µ given exogenous variables x

1:T
L (µ; x

1:T ) = logL(µ; x

1:T )

mct = Valuation multiple measure of company c at time t (

Vct
ºct

)

Mt = Stochastic variable from which multiples are drawn

N (µ,æ) = Normally distributed with mean µ and standard deviation æ
rct = Expected rate of return / discount rate at time t for company c
rc = Expected constant rate of return / discount rate for company c
r f = Risk free rate of return

R = Matrix of coefficients

s = Simulation index

S = Number of simulation

t = Time in months index

T = Time series length (223)

T (µ,æ,∫) = Student t-distributed with parameters µ, æ, ∫
Vct = Value measure of company c at time t
Vt = Stochastic variable from which valuations are drawn at time t
x t = Independent variables at time t
yt = Valuation index at time t
yqt = Quantile index at time t
Æ = Regression constant/intercept

Ø = Regression coefficients

∞ = Autoregressive coefficient

°(x) = Legendre’s notation of the Gamma function (Davis 1959)

¢b = The size of bucket b
¢x t = Differentiated independent variables at time t
≤t = Residual process at time t
¥t = Moving Average error term at time t
£(n), ≠(n), O(n) = Big-O notation for algorithm space and time complexity

§ = Loss functions

µ = Distribution location parameter

∫bt = Frequency of bucket b at time t
∫ = Distribution degrees of freedom parameter

ºct = Profit measure of company c at time t
ºt = Stochastic variable from which profits are drawn at time t
Ω = Pearson correlation coefficient

Ωt = Distribution parametes at time t
æ = Standard deviation, volatility, scale parameter

ß = Covariance matrix

™l = Autoregressive matrix for lag l
! 2≠t = Valuation multiple observation

≠t = Set of valuation multiples at time t
@ = Aggregation function (median, average, quantiles etc.)

£ = Cartesian product

Mathematical notation is introduced whenever used, and this list is intended to clarify some conven-
tions. Estimators are denoted using hat, vectors in bold, matrices in capital letters, and indices are
used in subscript and superscript. All logarithms are with base e, and set notation from Russell &
Norvig (2003) is used: x

1:T = {xt |t 2 {1, ...,T }}.
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Chapter 1

Introduction

The European stock market is currently at all-time high and has more than doubled since 2009

1

.

This kind of stock market development is unsurprising, and the essential question becomes: does the

valuation reflect underlying value creation prospects? Current earnings is a gauge of value creation,

as the S&P500 Price/Earnings index in Figure 1.1 acknowledges. However, in order to effectively

unwind the relationship between value and value creation, one must comprehend the system of

underlying drivers that affects both factors: The macroeconomic environment.
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Figure 1.1: S&P 500 Price/Earnings from 1871 to 2018

2

Our underlying aspiration is to understand and predict the relationship between general firm

valuation levels and the macroeconomic environment. We aggregate time series of individual firms

1

The broad STOXX Europe 600 Index had an open price of EUR 172.71 on March 31, 2009, and an open

price of EUR 364.40 on October 11, 2018, an increase of 111%.

2

The S&P 500 Price/Earnings index aggregates Price/Earnings multiples for S&P 500 firms and is retrieved

from Robert Shiller’s website, www.multpl.com.

1



Chapter 1. Introduction

valuation multiples to represent overall valuation levels and use familiar factors to represent the

macroeconomic environment. We also model the full distribution of valuation multiples in each

cross-section explicitly to extract information about the variability of pricing levels. Finally, we pre-

dict future multiples using the developed representations and a selection of forecasting techniques.

The conventional and self-developed methods are tested on a dataset of ª 2,000 listed European

firms from most industries.

While valuation multiples are widely used in the financial industry, the academic counterpart is

primarily concerned with price variables and equity returns.

3

Studies using multiples tend to focus

on the market cross-section at particular instances of time.

4

Campbell & Shiller (1988) use time

series of multiples adjusted for cyclicality and Kane et al. (1996), White (2000) and Shamsuddin

& Hillier (2004) regress price/earnings time series indices on macroeconomic factors. Basu (1977)

combine time series- and cross sectional data, testing the Efficient Market Hypothesis. Like Basu,

we use two-dimensional data, but we ignore individual stock movements and consider distributional

shifts. Methodically, we build on literature from econometrics, statistics, mathematics and machine

learning, particularly Alexander (2008a) and Tsay (2010),

5

A substantial share of the methodology

is self-developed, perhaps with latent applications for other researchers. Contrary to most literature,

we use multiples accounting for debt, and the perspective is macroeconomic.

6

With this, we enter a

largely unexplored area of the research field.

Chapter 2 is a contemplation of valuation, including a discussion on drivers of valuation multi-

ples. Hypotheses are formulated explicitly in Chapter 3 after assembling an empirical framework.

In Chapter 4 we regress indices on macroeconomic variables unearthing the dependency relation-

ships. This understanding is enhanced in Chapter 5, in which we develop techniques to regress the

cross-sectional distribution of multiples on macroeconomic factors. In Chapter 6, we propose three

methods of forecasting based on the results from Chapter 4 and 5. Finally, we conclude and propose

areas of further research in Chapter 7.

3

See e.g., Ding et al. (1993), Thorbecke (1997), Gultekin (1983), Kwon & Shin (1999), Maio & Philip (2015),

Chen (2009) and Cheng (1995) for use of stock market return variables.

4

See L Little & L Little (2000), Nicholson (1960), Beaver & Morse (1978) and Schreiner et al. (2007).

5

Other notable textbook sources used for methodical development include Russell & Norvig (2003), Mitchell

(1997), Roman (2007), Walpole et al. (1993), Lundgren et al. (2010) and Kreyszig (2010).

6

A comprehensive discussion on why we use multiples including debt is found in Section 3.2.

2



Chapter 2

Valuation

All discussions related to valuation are fundamentally associated with the notion of value. Value

theory

1

is concerned with how and why subjects value objects, and has been studied in philoso-

phy since the Antiquity. Plato distinguishes between instrumental and intrinsic value - referring to

whether the object is a means or an end by itself (Plato 2008). Intrinsic values were largely justi-

fied theologically before Kant introduced personal inviolability in his categorical imperative (Kant

1949). Value-nihilists deny the existence of Kant’s intrinsic values and reduce perception of value

to an emotional response, and Nietzsche (1910) claims that this realization will have grave conse-

quences for Europe. In economics, the primary concern is the value of objects

2

as opposed to moral

value, and aspects of this value may be empirically observable. The value of an object may also be

clearly definable, tangible, predictable and stable or none of mentioned, and its nature has serious

consequences for everyday life. The value we will be concerned with here is the value of a firm.

The economic value of a good is often defined as the value an agent would be willing to ex-

change for the good, while market value is the value for which exchanges actually occur. Many

theories on how economic value arises have been proposed, such as intrinsic value theories

3

often

associated with Adam Smith (1776), and subjective theories of value proposed by Jevons (1871),

Menger (1871) and Walras (1874). In the former, an objective value exists and is usually related to

a production factor, while in the latter, the determinant of value is subjective consumer needs. The

subjectivist theory is influential for neoclassicistic economic theory, which dominates mainstream

economics today. Here, supply and demand functions reflect the economic value of a good for all

actors in the market, and the equilibrium in their intersection represents the market value. In valu-

ation of a firm, the equilibrium is formed between supply and demand of the firm as an investment

opportunity and will vary the firm’s attractiveness relative to other investment opportunities.

The value of a firm is usually defined as the monetary value of equity and net debt. Investors

normally acquire equity or debt or both to get an economic return,

4

and the economic value of the

1

See Hartman (1967) or Edwards (2010) for elaborate discussions of axiology (value theory).

2

In this discussion, the term object includes anything that may be said to have a monetary value, such as

physical objects, services, rights, reputation and others.

3

Prominent examples of intrinsic value theories are Marx’ Labor Theory of Value (Marx 1867), the Land

Theory of Value proposed by the Physiocrats (Landreth & Colander 2002) and the Exchange Theory of Value

proposed by Rubin in 1927.

4

Motivations for equity ownership may include realization of transactional synergies, corporate control, mar-

ket control, and philanthropic purposes.

3



Chapter 2. Valuation

firm is effectively a valuation of the stochastic cash flow from future dividends and interest. The

equity value may be estimated using the discounted dividend model (Williams 1938):

Vc =
1X

t=1

Dct

(1+ rc )

t (2.1)

in which t denotes time, Vc is an approximation of the equity value for firm c, Dct is the dividend

and rc is the equity cost of capital. If 8t (Dct = (1+ g )Dc,t°1

), where g is the dividend growth rate,

the Gordon Growth model is obtained (Gordon 1962):

Vc = Dc1

rc ° g
(2.2)

The monetary value of the dividend growth may be estimated directly by subtracting the value of the

no-growth dividend in Equation 2.1, resulting in a dividend Net Present Value of Growth Opportu-

nities (NPVGO) model: Dc1

(

1

rc°g ° 1

rc
) = g Dc1

r 2

c °rc g
.

Much value creation from equity, however, is realized through capital gains, and dividends may

be hard to estimate.

5

Dividing Dt from Equation 2.1 into parts that might be easier to measure,

Miller & Modigliani (1961) show that an equivalent measure of equity value is:

Vc =
1X

t=1

ect °dBct

(1+ rc )

t (2.3)

where ect is equity earnings for period t and dBt = Bt °Bt°1

is the change in book equity, reflecting

retained earnings for firm reinvestments (e.g., solidity strengthening, working capital changes and

capital expenditures (capex)). Free cash flow (FCF) reflects cash-effects not captured by net income

and gives rise to the well-established Discounted Cash Flow model (DCF) (Koller et al. 2010):

Vc =
1X

t=1

ºct

(1+ rc )

t (2.4)

here, ºct is the FCF at time t , and Vc is value of equity or total firm value depending on FCF def-

inition. DCFs are frequently used in the financial industry and are considered accurate if rc and

FCFs are well known. However, the esoteric risk measurement rc may be difficult to interpret and

estimate, particularly in the presence of uncertainty or complex dynamics, such as options (Dixit &

Pindyck 1994). In this case, real options theory may be more adequate, but the frameworks have yet

to be adopted by financial professionals as it requires voluminous data on cash flow probability dis-

tributions. The value of a real option is usually based on a calculation originating in the continuous

Bellmann equation, in which d t denotes the continuous time differential and dVc the value variable

differential:

6

r d t = E(dVc ) (2.5)

The mentioned fundamental valuation models (Equation 2.1 to 2.5) estimate value based on a

postulate of intrinsic value in future cash flows. Contrarily, valuation methods may be constructed

based on empirical equity valuations, widely available from stock exchange data. Based on peers

p with associated value Vp and financial information Fp , a function h may be learned, mapping

5

Dividends are effects of leadership policy and capital strategy. Earnings are often reinvested, and dividend

payouts strategies are considered signaling effects. See Black (1976) for an illuminating perspective on the

"Dividend Puzzle".

6

If the underlying value is assumed to follow a Gaussian process, the more familiar differential equation is

obtained:

1

2

æ2V 2

@2F
@V 2

+ÆV @F
@V °ΩF = 0, in which æ is the stochastic parameter and Æ is the drift parameter in

the Gaussian process of V .

4



financial data to a value approximation for firm c being valued: Vc = h(Fc ). A conventional way

to create h is to use a multiple mp = Vp /ºp based on some profit measure ºp and to apply an

aggregation

7

to obtain a multiple m. With this, a value approximation for company c is obtained:

Vc =ºc m (2.6)

Multiples represent a convenient, pragmatic and empirical valuation method, and are extensively

used in business, usually in combination with intrinsic methods. Businesses use multiples because

they are relatable and provide an intuition on what one pays relative to what one gets. The core of our

study does not concern valuation of individual enterprises, but the general market valuation levels.

Development of the aggregate Vc from listed firms represents a valuation of the market portfolio of

firms but is associated with some fundamental issues: portfolio composition changes, firm profitabil-

ity is neglected, different markets are incomparable, and the time series are unit-root nonstationary,

volatile, and lack intuitive interpretation. We seek a valuation metric relative to the benefit obtained

by investors, and the Copernican Turn of this thesis is done to Equation 2.6, obtaining:

mc = Vc

ºc
(2.7)

This measure will be our primary concern because it provides insight into the market value rel-

ative to corporations’ abilities to generate profits. mc reflects a view on the future and serves as a

point of reference vis-a-vis intrinsic valuation. Growth expectations, risk profiles, and sentiments

of investors are implicitly included in Vc , and the inclusion of ºc allows for comparison between

enterprises, despite differences in size. The design of Equation 2.7 may be criticized for being arbi-

trary, but it turns out that it largely captures the statistical aspects of size independence.

8

While the

distributions of Vc and ºc are expected to adhere to Gitbrat’s law (Gibrat 1931), the distribution of

multiples is a fundamental representation of a state of the market valuation, and aggregated multiple

indices are valuable for investors as a gauge of the current market valuation, suggesting an answer

to the question:

What is the price for a unit of profits?

The remainder of this chapter is a cursory presentation of how the macroeconomic environment

can be expected to affect multiples, but specific hypotheses will not be formulated until an empirical

framework is established in Chapter 3. For the sake of transparency in the discussion, we may

reveal that a multiple accounting for value creation for all investors will be used in the trunk of our

analyses: median EV/EBITDA. It is instructive to distinguish between effects on the numerator, Vc ,

and the denominator ºc . The former is expected to respond to changes in variables reflecting the

investor perception of the future, while the latter mirrors the current business environment.

The numerator, Vc , is driven by the demand for investment opportunities and the supply of asset

classes, both factors varying with the underlying macroeconomic environment.

9

The intersection of

supply and demand determines the valuation of a firm:

The overall demand for investment opportunities is governed by the amount of capital seeking

to be invested in portfolios of a specific risk. Savings trends are affected by political, social and

macroeconomic factors, such as low interest rates that incentivize gearing of investments. Bernanke

(2005) argues that savings capital from emerging markets has contributed to a "global savings glut"

7

A range of techniques for aggregating a set of multiples to an individual value is discussed in Section 3.2.2.

8

In the introduction to Chapter 5, we show that the distribution of mc is roughly independent of Vc and ºc .

9

The focus of this discussion and our thesis is rational factors, although impacts of irrational and behavioral

aspects may be significant. See Shiller (2000), Barberis & Thaler (2002), Baker & Wurgler (2007), Barberis

et al. (1999) and Frazzini & Lamont (2005).

5



Chapter 2. Valuation

in developed markets, but the empirical foundations are controversial (Chinn & Ito 2007). Savings

trends may also be associated with inequality (Bourguignon 1981), and Piketty (2015) shows that

income equality has risen persistently the last fifty years. However, the neoclassicist approach of

Bourguignon is criticized for being simplistic, and Alvarez-Cuadrado & El-Attar Vilalta (2012) ar-

gue that the opposite is the case. Policymakers affect demand through central bank interest rates and

schemes such as Quantitative Easing (Joyce et al. 2011). The current levels of dry powder in the

economy have increased demand for riskier asset classes as investors are chasing higher yields in a

low interest rate environment.

The overall supply of investment opportunities constitutes substitutes

10

competing primarily

on two factors: risk and return. These are intimately linked in the risk-return spectrum and the

Sharpe-ratio - representing the fundamental trade-off in investment theory (Sharpe 1964). Risk

is incorporated in valuation as a firm’s uncertainty surrounding future cash flows and its cost of

capital, which is the price investors pay for bearing risk. Uncertainty is often measured in terms

of standard deviation,

11

and is associated with both idiosyncratic and systemic risk. According

to Sharpe (1964), the risks affecting cost of capital are primarily systemic risks reflecting, e.g.,

political, social and environmental conditions, which cannot be diversified away like idiosyncratic

risks (Markowitz 1952). Investor fear barometers, such as the CBOE Volatility Index, reflect risk

expectations and are closely followed by the markets. In many valuation methods, such as Equation

2.4, risk is included explicitly in the discount rate rt . When firms are valued at Enterprise Value

level, WACC may be used as discount rate (Reilly & Wecker 1973):

12

r
WACC

= E

D+E

re +
D

D+E

rd (1°ø) (2.8)

Consequently, interest rate hikes raise costs of capital. Sharpe (1964) and Lintner (1965) propose

CAPM

13

as a measure of re - making the equity return-interest dependency explicit.

14

Besides risk, factors affecting the prospects of future cash flows, ºct from Equation 2.4, are

determinants of the supply of investment opportunities. A natural assertion is to associate ºct growth

with GDP growth, because GDP measures overall domestic value creation (Mankiw 2014).

15

As

expected from The Efficient Market Hypothesis (Fama 1970), GDP growth is not an important driver

for stock market returns (Ritter 2005). However, a variable reflecting GDP growth expectations

would be expected to correlate with concurrent returns,

16

and this is established empirically (Lee

1992). Inflation improve future earnings prospects ºct , but Fisher (1930) argue that cost of capital

rct is increased correspondingly, netting out the effect. In fact, Modigliani & Cohn (1979) and

Ritter & Warr (2002) argue that investors suffer from a "money illusion" (term coined by Fisher

in 1919) rendering them unable to distinguish between real and nominal growth rates, resulting in

10

The substitutes are different asset classes like private and public equities, fixed income, and real estate

investments but also individual companies or even projects.

11

Conventional risk measures include q%-VaR, Expected Tail Loss, Absolute deviations and Downside risk

measures. See Alexander (2008a) for elaboration.

12r
WACC

is the Weighted Average Cost of Capital,

E

E+D

is the target Equity to Market Asset Value-ratio, re is

the return on equity, rd is the interest payment and ø is the corporate tax rate. For companies with other securities

(e.g., preferred stock) additional terms have to be added, each including security’s expected rate of return and as

a percentage of total value.

13

Capital Asset Pricing Model is the traditional model for estimating re using re = r f +Ø(rm ° r f ).

14

Fama & French (1993) propose a three-factor expansion of CAPM incorporating size and value and a five-

factor model in Fama & French (2015) including profitability and investment level, but these risk-affecting factors

are related to individuals firms.

15

Firm profits and correlated variables like wages and taxes are constitutes of the Income Approach for GDP.

16

Some indicators have been recognized as leading variables for GDP growth: Industrial production growth,

durable goods orders, business inventories, and Purchasing Managers Index (PMI) (Baumohl 2012).

6



undervaluation. Another negative impact of inflation is rooted in the inertia of revenue response to

increased operational expenditures (opex) and capex (Koller et al. 2010).

The denominator, current earnings ºc , mirrors the prevailing macroeconomic environment and

is expected to move relatively independent of Vt because the movement expectations largely will be

incorporated in the valuation before they are realized (Fama 1970). If a company delivers on ambi-

tious earnings expectations, the multiple will depreciate ceteris paribus. However, the fluctuations

of ºt are smaller than those of Vc , rendering the latter the primary driver of the multiple, while the

former provides size independency, see Figure 3.1 in Chapter 3.

The theoretical considerations in this chapter serve as a platform for understanding macroeco-

nomic drivers of firm value multiple aggregates. Many of the macroeconomic factors are interlinked

in complex ways, and in Chapter 6, some of these dynamics will be discussed. The economy tends

to alternate between periods of expansions and recessions, and the endeavor to predict business cy-

cles and to identify asset price bubbles have kept many researchers occupied.

17

Figure 1.1 is an

illustration of how this cyclicality affects multiples.

The notion of value is fascinating both from a philosophical and an economic perspective, and

the Copernican Turn from Equation 2.7 places value in the center.

17

See e.g., Yan (2011), Hamilton (1989), Al-Anaswah & Wilfling (2011), Campbell & Mankiw (1987) and

Beveridge & Nelson (1981).
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Chapter 3

Data

In order to explore the relationship between enterprise pricing and the underlying macroeconomic

environment, we need data describing both. A comprehensive and representative data set allows us

to explore a wide range of hypotheses and to obtain solid statistical foundations for our conclusions.

In this chapter, the process of extracting, rinsing, modifying, transforming, selecting and allocating

the data is described, resulting in the sets of data used for our models.

There are always issues related to the use of empirical data. Any statistical hypothesis entails

assumptions about the underlying model and the sampling process from it, and any forecast will

inexorably be subject to The Problem of Induction (Hume 1779). Even the very existence of a

statistical model is an intellectual construct (Edgeworth 1884). We will be transparent on which

assumptions we make, giving the reader an equitable impression of the validity of our inference. In

order to answer our research goals, we will define what we mean by firm pricing and macroeconomic

environment before retrieving suitable data.

3.1 Source and Data Scope
FactSet

1

is a for-pay data source, providing quality-assured financial data along with extensive de-

scriptions and metadata on a granular level. Because we explore historical relationships between

variables, all data used is time series data. The pricing variables are computed from a large set of

publicly listed firm data,

2

while the exogenous variables are indices, rates, and other time-series data

extracted directly from FactSet. Transparent and consistent data preprocessing is conducted by the

FactSet team and will be emphasized where it is relevant. The final data extraction was conducted

the 16th of August 2018.

The data horizon is 223 steps of monthly time-series data spanning from January 2000 to July

2018. This range includes business cycle expansions and recessions, and is intended to capture un-

derlying equilibrium relationships in the economy,

3

but is kept relatively short to be representative of

1

From FactSet website: FactSet creates flexible, open data and software solutions for tens of thousands of

investment professionals around the world, providing instant access to financial data and analytics that investors

use to make crucial decisions.

2

Listed firms are assumed to be a relatively good approximation of overall market valuation levels and quality

and availability are superior to private firm data.

3

See references in Chapter 2 and Keynes (1936) for an elaborate discussion of business cycles.
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Chapter 3. Data

the prevalent economic structure. Data availability, validity of resulting inference and conventional

approaches (e.g., see Shamsuddin & Hillier (2004) for similar approach) were also key in deter-

mining range. Monthly, rather than daily or annual data, was considered to be the correct balance

of smoothing out short-term fluctuations and providing a data set of appropriate size for statistical

inference. A European scope is chosen as a trade-off between global relevance, data availability

and data manageability.

4

Data on sectors and geography of individual firms was available, but not

included in the scope.

5

3.2 Measuring Firm Valuation
We seek to create a measure of the valuation of individual firms relative to their profit-generating

abilities and to use the distributions of these measurements (multiples) and resulting indices in mod-

eling. Letting Vct be a valuation metric for enterprise c at time t and ºct a profit metric, the valuation

multiple is defined as:

mct =
Vct

ºct
(3.1)

A common measurement of value Vct is Market Capitalization (MCap) - the value of all out-

standing shares and thus, the control of the firm. However, this valuation is dependent on capital

structure and fails to account for debtors as investors in the firm. As discussed in Chapter 2, the

capital structure-independent value of a firm is determined by its future dividends and future inter-

est payments. For a listed firm, the market value of future dividends is observable as the market

capitalization, while the market value of the interest payments is the net debt and may be obtained

from floated bonds or approximated by reported values. Henceforth, the valuation metric used will

primarily be Enterprise Value (EV), when not specified otherwise:

EV

6 =MCap+ Interest bearing debt°Cash & Other Liquid Assets (3.2)

Monthly time series of EV for each listed European firm are preprocessed by FactSet and include

year-end net debt values from the most recent annual report at the time. Data on floated bonds is

practically unavailable, but balance sheet values approximate market values (See IRFS 13 "Fair

Value Measurement").

The profit measurement, ºct , should approximate the underlying value creation at the moment

of observation. Net income would be natural if Vct was market capitalization since it measures the

profit attributable to equity owners after tax, but EBITDA, EBIT, and NOPLAT are more natural

as they include profits to debt holders and eliminate the distorting effect of nonoperating assets and

nonoperating income statement items. Depreciation and amortization mirror capital expenditures in

the long term, but are not cash effects, tend to fluctuate and may be incomparable across borders

in Europe.

7

Excluding D&A, EBITDA is obtained - a more stable measurement and a good proxy

of actual cash-generating abilities before investments. Its values are consistently higher than EBIT

4

The listed firm data primarily reflects large Western European economies. By firm headquarter: United

Kingdom (22%), France (12%), Germany (11%), Sweden (9%), Italy (6%), Switzerland (6%), Norway (4%),

Spain (4%), Finland (4%) and Poland (3%).

5

The five largest industries by number of firms are producer manufacturing (12%), health technology (9%),

technology services (8%), electronic technology (7%) and consumer services (7%). Note that the financial

industry is excluded from the sample because their different balance sheet structure (deposits as debt and loans

as assets) make enterprise value multiples invalid.

6

Preferred stock and minority interest are also added to EV in FactSet.

7

In particular amortization is affected by extraordinary events such as impairment of intangible assets. Thus,

one could argue that depreciation tends to mirror a more stable capex, and EBITA would be superior. However,

data availability is poor.
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Figure 3.1: Time development of total EV and total EBITDA in trillion EUR

and NOPLAT, rendering these multiples defined for more firms. However, it creates a slight bias in

valuation of companies with large investments or heavy balance sheets. A reasonable adjustment is to

subtract capex from EBITDA, as expected investments impact expected returns (Miller & Modigliani

1961). However, capex data is volatile as it includes irregular investments like project development

capex, and does not necessarily represent value creation in the concurrent year. EBITDA has a strong

rationale, performs well (Kaplan & Ruback 1995), is conventional and easily interpretable,

8

matches

EV well and has large data availability. From this point on, it will be the primary ºct measurement:

EBITDA= Sales°CoGS°SG&A (3.3)

Monthly time weighted LTM EBITDA is extracted directly from FactSet for each company.

9

Figure 3.1 displays the sum of EV and sum of EBITDA for the sample of firms. The EV decrease

and the subsequent EBITDA decrease during the Global Financial Crisis (GFC) are clearly visible.

The EV/EBITDA multiple is computed for every firm c at every time step t and will always be the

multiple referred to, unless otherwise specified. The cross-sectional median multiple development

is displayed in Figure 3.2 along with the number of companies in sample at each time |≠t |.

3.2.1 Data Synthesis
There are a few issues related to the computation of multiples; they are only defined for positive Vct
and ºct ,

10

and small ºct leads to extreme valuation multiple outliers. The issues apply to ª 5.4%,

ª 0.8% and ª 0.5%

11

of all observations, respectively. In the majority of the analyses, we will

exclude these observations, although noting that it creates a minor bias.

Figure 3.3 illustrates the fraction of observations taken out due to issues with undefined mul-

tiples. The maximum share of excluded companies over the time period under consideration is

8

Fernandez et al. (2001) suggests that EV/EBITDA is the 2nd most used valuation multiple after P/E.

9

Factset have estimated monthly LTM (Last Twelve Months) earnings ºm
ct based on yearly annual report

earnings from the preceding year º
y
cp and the current year º

y
cc as ºm

ct =
1

12

((12° t )º
y
cp + tºy

cc ). For 2018 values,

median broker consensus estimates are used.

10

Negative EBITDAs result in negative multiples, i.e., a low valuation, when in fact they are valued highly

compared to their weak earnings.

11

Extreme outliers are here defined as multiples with value larger than 50x.

11



Chapter 3. Data

Sa
m

pl
e 

si
ze

0
50

0
10

00
15

00

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Time

EV
/E

B
IT

D
A

6
8

10
12

Current: 9.8x

Median: 8xn = 1942

Figure 3.2: Median EV/EBITDA development and number of firms in the dataset

Pc
t. 

sh
ar

e

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Time (months)

Ex
cl

ud
ed

 d
at

a 
po

in
ts

 a
s p

er
ce

nt
ag

e 
of

 to
ta

l

0
5

10
15 Actual

Median

EBITDA<=0 EV<=0 EV/EBITDA>50

Figure 3.3: Upper: Excluded data points as % of total, Lower: Reason for exclusion

12



3.2 Measuring Firm Valuation

Time (months)

M
ed

ia
n

5
7

9
11

2000 2003 2006 2009 2012 2015 2018

Ordinary
Categorical

Time (months)

90
%

 q
ua

nt
ile

10
20

30
40

2000 2003 2006 2009 2012 2015 2018

Ordinary
Categorical

LTM EV/EBITDA value

# 
of

 c
om

pa
ni

es

0
50

15
0

low valuation high valuation

Ordinary multiples
Negative EV
Negative EBITDA
Extreme multiple

Time (months)

10
 %

 q
ua

nt
ile

2
4

6
8

2000 2003 2006 2009 2012 2015 2018

Ordinary
Categorical

Figure 3.4: Median, quantiles and intersection of July 2018 distribution of the "categorical model"

approximately 10% - primarily due to to the effects of the tech stock mania in 2000 and GFC in

2007/2008. We hypothesize that the bias is too small to impact results significantly, but we have

developed an algorithm to minimize the effects of the issue and will use this to test the hypothesis in

Subsection 4.1.3.

The algorithm is conducted in the following manner: Allocate EV< 0 values to a low value-

category, EBITDA< 0 to a high value-category and EV/EBITDA> 50 to another high-value category.

Now, a transitively ordered set of firm multiples may be obtained,

12

on which aggregations, such as

quantiles, may be conducted to obtain numerical or categorical values. This model is referred to as

the "categorical model", and median, quantiles and an intersection of the distribution are plotted in

Figure 3.4. The extreme quantiles are higher than the ordinary quantiles as these are proportionally

more affected by the inclusion of otherwise truncated data.

13

Generally, the categorical model and

the model with omitted extreme values are similar, but the latter is easier to interpret and to work

with, less sensitive to outliers and is numerically defined for all variables and thus, will be the main

model.

3.2.2 Index Data
Chapter 4 is concerned with analyses on time-varying index variables aggregated from the cross-

sectional distribution of multiples. Individual company multiples are computed according to Equa-

tion 3.1, before applying an aggregation function @ to the set of multiples at time t , ≠t = {mcø|ø=
t }:

14

@(≠t ) = yt i.e. @ :R|≠t | °!R (3.4)

The "aggregation problem" referred to in Chapter 2 is the problem of finding an an appropriate @.

Natural definitions of @ include median, mean, trimmed mean (Stigler 1973), ºct -weighted aver-

12

The transitive ordering is such that all values in the high-value bin are equally high and higher than values in

other bins, and correspondingly, all values in the low-value bin are equally low and lower than all other values.

13

If the qth quantile in the excluded Q = F°1

(q), the qth quantile in the categorical model will be Qcat =
F°1

(q 1+o
m ) if there are o omitted variables, m included variables and q < m

m+o .

14

The constraints we impose on @ are relatively strict. See Shiller (2000) adjusting for earnings cyclicality by

composing an index from º-weighted rolling average of S&P500 P/E- ratio for more creative @s.

13



Chapter 3. Data

Standard ADF test

Aggregation Numerator Denominator Calculation Mean Median Deviation Max Min statistic (p-value)

Median EV EBITDA MedianC (mct ) 8.15 8.04 1.27 10.4 5.25 -2.80 (0.24)

Mean EV EBITDA

1

|≠t |
PC

c=1

mct 9.38 9.39 1.43 11.9 6.07 -3.11 (0.11)

Vct -weighted EV EBITDA

VcPC
c=1

Vc

PC
c=1

Vc
ºc

9.43 8.82 1.85 15.5 6.29 -3.86 (0.02)

ºct -weighted EV EBITDA

PC
c=1

VcPC
c=1

ºc
7.85 7.61 1.36 12.7 5.04 -3.05 (0.13)

Median Price Earnings MedianC (mct ) 15.6 16.1 2.37 19.6 8.44 -2.89 (0.20)

Median EV EBIT MedianC (mct ) 11.85 11.80 1.64 15.01 7.33 -2.86 (0.21)

Median EV Sales MedianC (mct ) 1.12 1.10 0.22 1.59 0.67 -2.65 (0.30)

Table 3.1: Overview of indices and statistical properties

age

15

and Vct -weighted average.

16

Because the distribution is skewed, the mean and median have

rather different values. The multiple distribution yields extreme values making the mean unsuited,

and the weighted averages are driven by large firms and are incomparable to the distribution. The me-

dian is representative, invariant to many distributional transformations

17

and generalize naturally to

quantiles and the rest of the distribution, and will hence be the primary aggregation function, leading

to the primary index: median EV/EBITDA, which will be denoted as yt unless otherwise specified.

No logarithmic transformation of yt is conducted, because yt is relatively close to ª N (µ,æ)

18

,

yt has causal relationship with the exogenous variables (see Subsection 3.3) and a transformation

would be unconventional (see Ramcharran (2002) and Zorn et al. (2008)).

Table 3.1 displays some statistical properties of seven indices: the standard median EV/EBITDA,

three based on variations of @ and three based on variations of Vct and ºct . As expected, EV/Sales <
EV/EBITDA < EV/EBIT because Sales > EBITDA > EBIT. P/E yields numerically higher values as

earnings are net of taxes. A unit-root cannot be rejected by an ADF-test for most indices, rendering

a differentiation natural:

19

dt = log(

yt

yt°1

) (3.5)

The differentiated indices confidently reject unit root hypotheses for all models, and it is natural

to assume I (1) for the undifferentiated indices. The historical development of the seven indices

resembles that of median EV/EBITDA, as seen in Figure 3.5.

3.2.3 Distribution Data
The full data we are facing mct is panel data and could be subject to panel analysis methods.

20

However, our focus is on the macroeconomic picture and systematic risk, and not on individual

company stories and idiosyncratic risk. The objects of our study are the cross-sectional distributions,

≠t . Figure 3.6 shows a snapshot of ≠t at month-end July 2018. The distribution is skewed and has

a fat high multiple tail. Figure 3.7 shows the log distribution at the same instance for the underlying

EV and EBITDA - bell-shaped, as expected from Gibrat (1931)’s law. The underlying distribution

15

The ºct -weighted average is equivalent to the construction of an artificial firm:

1PC
c=1

ºc

PC
c=1

ºc (

Vc
ºc

) =
PC

c=1

Vc
PC

c=1

ºc
, and is the only aggregation that is unaffected by ºct < 0 or Vct < 0.

16

Strictly speaking, the ºct - and Vct -weighted index-@s are not only functions of≠t , but also of {Vc } and {ºc }.

17

For any monotonous transformation T , the following follows trivially: @(T (≠t )) = T (@(≠t )) if @=median.

18

A JB normality test gives p-value of p = 0.05 (Jarque & Bera 1980), and the Box-Cox transformation pa-

rameter is ª 1.4 (Box & Cox 1964). See Section 4.1 and Section 3.3 for respective elaborations.

19

An elaborate discussion of unit root stationarity, ADF-tests and consequences will follow in Chapter 4. See

Alexander (2008a) for notational remarks.

20

See further research, Appendix E.I, for elaboration on panel data and panel analysis methods.
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Figure 3.5: Historical development of seven indices based on four aggregation methods and four

sets of variables. Note that varying variable indices are normalized

from which ≠t is drawn, is the quotient distribution of dependent drawings from the two underlying

distributions. See Chapter 5 for a thorough discussion on this topic.

The indices provide information about the overall multiple level development, but no relative
information about the multiples like the distribution development. In Chapter 5, we develop anal-

yses involving ≠t in three representational forms: quantile data, raw sample data and frequency

data. Quantiles yqt are computed for every distribution of multiples,

21

giving an easily interpretable

measure of the cross-sectional development of multiples historically. In Figure 3.8, the 10% to 90%

quantiles are plotted. Frequency data

¯∫bt is obtained by counting the number of companies within a

certain multiple range (bucket), [m,m +¢b ), for each time t , and dividing by |≠t |. This set of data,

as displayed for t = 223 in Figure 3.6, will be utilized for analyses on the dynamics of the complete

distribution. Naturally, the frequencies adhere to

PB
b=1

¯∫bt = 1 for B buckets. The bucket ranges can

be defined by fixing ¢b or |≠bt |, or by optimizing with respect to some other statistic. Raw sample

data is used in Chapter 5 for MLE-estimation, and the sample moments of ≠t are used for compar-

ison against fitted distributions.

22

Figure 3.9 shows a 3D-plot of the development of distributional

frequencies over time, illustrating the complete dimensionality of the distribution data.

3.3 Exogenous Variables
The exogenous variables describe features of the macroeconomic environment and will be used as

independent variables in the regressions. We select variables using a structured funnel approach

illustrated in Figure 3.10 - an essential part of obtaining robust models with sensible predictions

in Chapter 4, 5 and 6. The selection approach narrows down from a universe of macroeconomic

variables to six portfolios of variables, associated with specific models presented in Chapter 4. The

funnel is comprised of filters, expansions, separations and merger steps. Subsection 3.3.2 contains a

brief description of the resulting models and variables and offers intuition on why the variables may

21 yqt for the q’th quantile is defined by: yqt = ¯!dq |≠t |e,t where

¯!nt are sorted multiples at t , indexed by n.

22

See Appendix C.IX for an overview of distributional moment development of ≠t
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Figure 3.9: Empirical EV/EBITDA distribution development from 2000 to 2018
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Transformation24

Interest rates Absolute differentiation

Financial balance sheets Log returns

Labor market Absolute differentiation

Inflation Absolute differentiation & log return

Survey data Absolute differentiation & log return

Retail sales Log return

PMI Absolute differentiation

Industrial production Delta log return

Volatility Log return

Table 3.2: Transformations performed on each category of variables

be relevant for explaining multiple development.

3.3.1 Variables Selection Funnel
The data in scope of the initial selection is a range of macroeconomic factors and other data that may

reflect the state of the European economy, obtained from FactSet. For the regressions to be fruitful,

the independent variables must have a causal exogeneity to the multiples. Consequently, financial

variables representing substitute investment opportunities, such as commodity prices, derivatives and

fixed income, are excluded. Failure to include the complete universe of variables inevitably induce

an omitted variable bias, but we start with a broad selection of categories and variables, illustrated

in Figure 3.11. A complete list of the 65 initially selected variables is provided in Appendix A.I.

The first step of the selection process is a funneling based on availability and quality. Variables

with missing values, wrong granularity, flawed or invalid values in the relevant time frame are re-

moved,

23

and some variables were deemed unrealistic or irrelevant. Consequently, the number of

variables is reduced from 65 to 40.

The order of integration I (i ) is not conspicuous for the individual exogenous variables but was

estimated based on ADF testing and interpretation of the variables’ nature. The variables are mapped

into I (1) and I (0) datasets by being differentiated the appropriate number of times. The differentia-

tion method depends on the nature of the variables: interest rates, inflation rates, and other variables

that may be negative were differentiated arithmetically, while variables of an exponential nature,

such as central bank balance sheets and volatility, were logged and differentiated. For variables with

an ambiguous nature, both methods were utilized. Table 3.2 exhibits the differentiation conducted

on each class of variable.

I (1) dependents will be regressed on I (1) independents and correspondingly for the I (0) vari-

ables - a necessary condition for regression validity

25

and intuition

26

. The two sets of independent

variables comprise a set of 55 I (1) variables for analysis of absolute pricing indices and a set of 44

I (0) variables for analysis of differentiated price indices.

23

The time frame considered is the same as for the valuation multiple data: Monthly data between January 31,

2000, and July 31, 2018.

24

For variable xt and xt°1

, differentiations are defined as: absolute differentiation - dt = xt °xt°1

, log return

- dt = log(

xt
xt°1

), delta log return - dt = log

xt
xt°1

° log

xt°1

xt°2

.

25

The Engle-Granger-cointegrating regression with independent and dependent I (i )-variables and stationary

residuals is in fact the only regression for which integrated variables may be subject to OLS (Alexander 2008a).

26

It is natural to expect that two economic variables are in a long-term equilibrium or that changes in one affect

the other, but not the combination.

18
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Figure 3.11: Categories of independent variables

In an attempt to avoid issues caused by multicolinearity in the multivariate regressions,

27

a

filtering based on inter-variable correlation was conducted by observing the correlation matrices

in Figure 1 and 2 in Appendix A.II. For each set of multicolinear variables, individual variables

are removed sequentially until all variable pair-correlations are satisfyingly low.

28

. In a stepwise

procedure, the data sets were reduced to 18 I (1) variables and 24 I (0) variables, see Figure 3 and 4

in Appendix A.II for final correlation matrices.

OLS estimation results are invariant to linear transformations, while normality-inducing trans-

formations, such as the Box-Cox transformation, may improve accuracy (Box & Cox 1964). Box-

Cox transformations are designed to make distributions more similar to the normal distribution, and

parameters are estimated using an MLE-method or using a normality test statistic (Sakia 1992). The

Box-Cox transformation is defined as follows:

x(∏) =
(

x∏°1

∏ , if ∏ 6= 0

log x, if ∏= 0

(3.6)

However, as several of the time series include negative values, we use a transformation proposed by

Yeo & Johnson (2000) without restrictions on variable domain:.

x(∏) =

8
>>>>><

>>>>>:

(x+1)

∏°1

∏ , if ∏ 6= 0, x ∏ 0

log(x +1), if ∏= 0, x ∏ 0

° (°x+1)

2°∏°1

2°∏ , if ∏ 6= 2, x < 0

° log(°x +1), if ∏= 2, x < 0

(3.7)

∏ is estimated using the car-package in R, and parameters are rounded to nearest multiple of

1

2

. The

post-transformation funnel contains 27 I (1)-variables and 44 I (0)-variables.

Interest rates, market volatility, and GDP are variables investors often are interested in. They

might not have a specific view on the development prospects, but very often, they wish to understand

pricing sensitivity to these factors. These kinds of variables will be referred to as "predictable",

while a range of other variables, including Consumer Confidence Indicators and Purchasing Manager

Indices are less intuitive and predictable. In the next funnel step, we distinguish between these two

types of variables and create a data set comprised solely of predictable variables and a diverse dataset

27

Multicolinearity makes coefficient estimators unstable and inference about drivers flawed (Alexander

2008b).

28

A rule of thumb is used: Ω(a,b) <
p

R2

for the corresponding regression. For example: a set of interest rate

variables was reduced to one long term rate and one short term rate, as initial rates were highly correlated.
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3.3 Exogenous Variables

containing all variables. The diverse sets contain 27 I (1) variables and 44 I (0) variables, respectively,

while the predictable sets contain 13 I (1) variables and 20 I (0) variables, respectively.

3.3.2 Final Variable Description
The objective of the data funnel is ultimately to output variables that adequately explain pricing

indices in regression models. Consequently, the final funnel step is a subset regression optimizing

variable selection based on explanatory power, R2

, in a given model. Six linear regression mod-

els, that will be elaborated in Section 4.1, were used for the subset regression: two cointegration

regressions using predictable I (1) and diverse I (1), two stationary regressions using predictable I (0)

and diverse I (0), and two autoregressive regressions using predictable I (0) and I (1) and diverse I (0)

and I (1). Finding the optimal R2

for n 2 [1,10] variables selected out of m 2 {13,20,27,40,44,64}

possible variables using brute force has time complexity £
°m

n
¢
=£(nm

),

29

which quickly becomes

intractable when m increases. To make the problem tractable, we use the leaps R package imple-

mentation of the branch and bound-algorithm proposed by Furnival & Wilson (1974), significantly

reducing the search tree.

After performing subset regressions, we arrived at six models with 1 to 4 independent variables,

and these models will be denoted Ad, Ap, Dd, Dp, Rd and Rp (i.e., Absolute (A), Differentiated (D),

AutoRegressive (R), predictable (p) and diverse (d)). The benefit of the inevitable increase in R2

with increasing number of variables is evaluated against risk of overfitting, significance of variables,

Bayesian information criterion (BIC) and the cost of adding a variable to be predicted. See Figure

3.12 for plot of R2

versus number of variables. A detailed explanation of the variable selection

process from the subset regression is included in Appendix A.III.

The final set of variables crystallizing from our funnel turn out to be familiar variables with

strong causal rational supporting the effect on multiples. See time series plots in Figure 3.13. De-

scriptive statistics for each of the final variables in the six models are displayed in Table 3.3, and it

is evident the Box-Cox transformed variables are more normal, as the skew and excess kurtosis are

close to 0. A critique of funnel approaches with such a large set of variables, is that the selected

variables might end up being variables that have a large R2

s by coincidence, but will fail to general-

ize well, i.e., the models overfit,

30

but our variables have solid foundations in economic theory from

Chapter 2:

Implied Volatility (vST50, vST50lr, vST50BCt) The Euro STOXX 50 Volatility (VSTOXX)

is an index measuring implied volatility based on blue chip-option pricing of the fifty largest Euro-

pean stocks, obtained from Deutsche Borse AG and SIX Group. The index represents annualized

30-day forward-looking investor volatility expectation and is computed based on the option pricing

model from Black & Scholes (1973). It is known to be a measure of investor fear and mirrors the

U.S. market VIX. Reformulating the Gordon Growth model from Equation 2.2 and assuming that

rc for the market is defined by a constant Sharpe ratio s = rc°r f
æi

, introduced in Chapter 2, we use a

Taylor series expansion to obtain:

mc = Vct

ºc1

= 1

rc ° g
= 1

sæi + r f ° g
= 1

r f ° g
° s

(r f ° g )

2

æi + ... (3.8)

29

For elaboration on Big-£, Big-O and Big-≠ notation for algorithm time and space complexity, see Cormen

et al. (2009). For n = 10, m = 64, the problem is of the order 10

11

, and if one regression takes 1ms, the problem

is solved in ª5 years.

30

A learned regression function h overfits if in-sample accuracy is better than out of sample. See Russell

& Norvig (2003) for a definition within the "Probably Approximately Correct" framework, and discussions on

consequences.
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Figure 3.12: R2

against number of variables in the six models
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3.3 Exogenous Variables

Standard Excess
Variable n Mean Deviation Median MAD Min Max Range Skew Kurtosis S.E

Ad
vST50 223 23.99 9.01 22.11 7.17 11.99 61.34 49.35 1.48 2.54 0.60

sEUCC 223 -11.58 7.63 -11.30 7.41 -34.70 2.00 36.70 -0.39 -0.07 0.51

iEU10 223 2.84 1.67 3.23 2.00 -0.14 5.63 5.76 -0.27 -1.28 0.11

mEUFAYOY 223 -0.14 11.80 0.63 3.81 -42.02 25.51 67.53 -1.97 5.83 0.79

Ap
vST50BCt 223 1.57 0.07 1.57 0.07 1.42 1.74 0.32 0.12 -0.43 0.00

mEUCPI 223 1.74 0.96 2.00 0.74 -0.70 4.10 4.80 -0.47 -0.22 0.06

iEUspd101 223 1.24 0.70 1.27 0.68 -0.16 2.72 2.88 0.01 -0.67 0.05

mEUpYOY 223 1.00 4.91 1.80 3.13 -21.40 9.46 30.85 -2.09 5.97 0.33

Dd
vST50lr 223 0.00 0.18 -0.02 0.15 -0.52 0.65 1.17 0.36 0.57 0.01

sEUCCd 223 0.01 1.50 0.20 1.33 -5.30 3.90 9.20 -0.42 0.90 0.10

Dp
vST50lr 223 0.00 0.18 -0.02 0.15 -0.52 0.65 1.17 0.36 0.57 0.01

Rd
MedianEVEBITDAn1 223 8.14 1.26 8.04 1.44 5.25 10.39 5.14 -0.17 -0.72 0.08

vST50lr 223 0.00 0.18 -0.02 0.15 -0.52 0.65 1.17 0.36 0.57 0.01

sEUCCd 223 0.01 1.50 0.20 1.33 -5.30 3.90 9.20 -0.42 0.90 0.10

Rp
MedianEVEBITDAn1 223 8.14 1.26 8.04 1.44 5.25 10.39 5.14 -0.17 -0.72 0.08

vST50lr 223 0.00 0.18 -0.02 0.15 -0.52 0.65 1.17 0.36 0.57 0.01

vST50 223 23.99 9.01 22.11 7.17 11.99 61.34 49.35 1.48 2.54 0.60

mEUCPIBCt 223 2.51 1.51 2.80 1.23 -0.61 7.01 7.62 -0.01 -0.08 0.10

Notes: vST50 - Volatility, iEUspd101d - Term strucure spread, mEUCPI - Inflation, mEUpYOY - Industrial production growth
year on year, sEUCC - European Consumer Confidence, iEU10 - Eurozone 10 year interest rate, mEUFAYOY - EU
Fixed assets growth, MedianEVEBITDAn1 - Lagged multiple, BCt - Box Cox transformed, lr - log-return, d - differentiated.

Table 3.3: Statistical properties of the independent variables

23



Chapter 3. Data

20
30

40
50

60

Time (months)

V
ST

O
X

X
 In

de
x

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

0
1

2
3

4

Time (months)

In
fla

tio
n 

H
IC

P 
(%

)

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Time (months)

Te
rm

 S
tru

ct
ur

e 
Sp

re
ad

 1
0−

1y
r (

%
)

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

−2
0

−1
0
−5

0
5

10

Time (months)

In
du

str
ia

l P
ro

du
ct

io
n 

Yo
Y

 (%
)

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

−3
0

−2
0

−1
0

0

Time (months)

Co
ns

um
er

 C
on

fid
en

ce
 In

di
ca

to
r

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

−4
0

−2
0

0
10

20

Time (months)

EC
B 

Fi
xe

d 
A

ss
et

s Y
oY

 (%
)

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Figure 3.13: Time series plots of macroeconomic variables
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3.3 Exogenous Variables

The first term may be interpreted as a risk-free multiple valuation, while the second and consecutive

perturbation terms represent the effect of implied volatility going forward. Hence a negative linear

relationship may be expected,

31

an assertion that is supported by Kane et al. (1996) finding P/E-

multiples to be closely associated with volatility.

Inflation (mEUCPI, mEUCPIBCt) In the Eurozone, consumer price inflation is measured by

the Harmonised Index of Consumer Prices (HICP) reported by the European Central Bank (ECB).

Most European policymakers (including ECB and Bank of England) attempt to maintain a target in-

flation through the monetary policy instruments, and although it is hard to control directly, targeting

makes inflation a variable that investors may have an opinion on (Bernanke & Mishkin 1997). As-

suming that the "money illusion" argument proposed by Modigliani & Cohn (1979) holds, Equation

2.4 may be augmented with a constant actual inflation rate ia and a perceived inflation rate ip . The

multiple mi n of a firm will be valued as follows:

32

mi n =
1X

t=1

(1+ g + ip )

t

(1+ rc + ia )

t = 1

rc ° g + ia ° ip
= 1

rc ° g
+

ip

(rc ° g )

2

° ia

(rc ° g )

2

+ ... (3.9)

Where the first term represents no-inflation value, the second term represents value increase from

perceived cash flow increase, and the third component represents actual value decrease due to in-

creased cost of capital from inflation. With this, the multiple is negatively impacted by inflation if

the investor perception of inflation is incorrect, an assertion empirically supported by White (2000)

and Zorn et al. (2008). The balance sheet inertia argument proposed by Koller et al. (2010) impacts

short-term cash flows directly, as depreciation remains constant while investments increase, and the

effect on multiples is trivially negative.

Term Structure Spread (iEUspd101) The spread between the yield of the 10-year and 1-

year euro benchmark bond (rspd = r
10

° r
1

) serves as a proxy for the slope of the yield curve and

is provided by Tullett Prebon Information. The slope of the yield curve is a gauge for the investor

expectation on the development of the economy (Kessel 1971). In high-activity business cycles, the

yield will be high. Hence if the slope of the yield curve is steep, it is an indication that investors

believe that we are moving towards a high-activity business cycle, and inverted or flat yield curve

has been seen as recession predictors (Ang et al. 2004). The term structure spread is a proxy for

the expected difference between the future and current interest rates and thus, is expected to be

proportional to the cost of capital and negatively correlated with the multiple. A high term structure

spread indicates that the future investment environment will be characterized by high yields and thus,

increasing cost of capital and lowering multiples.

Industrial Production Growth (mEUpYOY) Annual industrial production growth in the

Eurozone reported by Eurostat

33

measures changes in value added at factor cost of industry and

construction. The variable is strongly connected to GDP and particularly future GDP and is an

important variable in economics and monetary policymaking. If the current industrial production

growth gi p is assumed to be a leading variable for future GDP growth gGDP : GDPt (1+ gGDP ) =
GDPt+1

, and GDP growth is used as a proportional proxy for growth in Equation 2.2, the following

31

vST50BCt is Box-Cox transformed with ∏ = °0.5, and a Taylor expansion of the equivalent, more com-

plicated expression would yield a negative coefficient æbcT term. This argument is also valid for the box-cox

transformed inflation-variable mEUCPIBCt with ∏= 1.5.

32

Note that g , ip and ia were assumed sufficiently small, such that (1+ g )(1+ i ) = 1+ g + i + g i º 1+ g + i .

33

Directorate of the European Commission providing statistical information to EU institutions.
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Chapter 3. Data

relationship is obtained:

mct =
1

rc °Ægi p
= 1

rc
+
Ægi p

r 2

c
+ ... (3.10)

The first term is the no-growth multiple, while the second and consecutive terms represent the value

of growth - illustrating that growth affects multiples positively.

Consumer Confidence Indicator (sEUCC) The consumer confidence indicator is a leading

indicator of consumer confidence based on consumer surveys performed by Eurostat. It measures the

financial situation of a household based on unemployment expectations, savings, and consumption,

and multiples are expected to correlate positively with it because consumer spending drives revenues

and profits.

ECB Fixed Assets Growth (mEUFAYOY) Annual growth of the aggregated balance sheet of

fixed assets for the Eurozone reported by ECB measures changes in holdings of land and buildings,

furniture and equipment. The Fixed assets constitute ª 0.1% of total assets held by ECB as of August

2018. Central Bank balance sheets have been associated with returns in financial markets in previous

studies (Meaning & Zhu 2011) and represent investment opportunity demand side - central bank

security acquisition policies will increase demand for investment opportunities, raising multiples.

In Chapter 6, forecasts of variables from FactSet are used to build a base case scenario. Inflation

is estimated based on a Eurozone analyst consensus estimate for 2018-2022. Industrial production

growth estimates for the Eurozone were only available for 2018, 2019 and 2020 and were extrap-

olated linearly after 2020. Spread forecasts were calculated as the difference between a 10-year

Government Bonds consensus estimate weighted by the share of total companies in each country,

and the consensus estimate short-term interest rate. No volatility forecasts were available, and the

base case was set to be at a slow increase from the current historically low level.
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Chapter 4

Valuation Multiple Indices

In this chapter, we aim to understand how macroeconomic factors affect pricing indices by examin-

ing historical time series and applying relevant statistical models. These include linear regressions,

quantile regressions, nonlinear regressions, machine learning methods and autoregressive moving

average models with exogenous variables. The data sets are separated into dependent and indepen-

dent variables, based on a perception of causality rooted in economic theory from Chapter 2.

4.1 Linear Regression Models
Linear regression is the bedrock in our analyses aiming to estimate the linear impact of chosen

macroeconomic variables on valuation indices. Linearity is often effective, but might be constraining

if the underlying relationships are complex. The models specified in Subsection 4.1.1 were used to

select exogenous variables in the subset regression from Subsection 3.3.1, and those data sets, along

with the indices, are the ones that will be scrutinized: Ap, Ad, Dp, Dd, Rp and Rd. In Subsection

4.1.3, the same underlying variables will be used on other indices than the chosen main index:

median EV/EBITDA.

4.1.1 Model Specification
Pertinent unit-root stationarity considerations are imperative to avoid spurious regression, as stressed

by Granger & Newbold (1974). Table 4.1 displays ADF-test statistics conducted on Ap variables in

their absolute and differentiated forms.

1

For the differentiated variables, unit root stationarity is

uncontroversial. For the undifferentiated variables, however, the unit root hypothesis cannot be

rejected. As noted by Kwiatkowski et al. (1992), unit roots are hard to reject if processes are nearly

integrated, and the stationary nature of macroeconomic variables is eagerly debated - see Nelson &

Plosser (1982), Perron (1989) and Enders & Granger (1998). Consequently, an assumption of unit

root stationary for the absolute variables would be controversial. Trend stationarity without structural

breaks, however, is rejected by observing the coefficient obtained by including a time variable in the

regression. Despite the possibility of structural shifts and more complex nonstationarity effects, one

modelling hypothesis emerges as reasonable: The differentiated variables are I (0) and the absolute

variables are I (1).

1

ADF-tests, proposed by Dickey & Fuller (1981), uncover unit roots, i.e., ∞= 1 for yt =Æ+∞yt°1

+≤t .
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Chapter 4. Valuation Multiple Indices

Variable ADF test statistic p-value
yt °2.80 0.240

iEUspd101 °2.56 0.339

mEUCPI °3.34 0.064

mEUpYOY °4.33 < 0.01

vST50BCt °2.25 0.471

dt °5.74 < 0.01

iEUspd105d °5.98 < 0.01

mEUCPId °4.31 < 0.01

mEUpYOYd °4.43 < 0.01

mST50lrBCt °7.61 < 0.01

Critical values
10% 5% 1%

-3.13 -3.42 -3.99

Table 4.1: ADF test statistics for selected variables

Table 4.2: Results from Johansen test

Johansen Statistic

Test 10% 5% 1%

r ∑ 4 4.24 6.50 8.18 11.65

r ∑ 3 17.22 15.66 17.95 23.52

r ∑ 2 44.81 28.71 31.52 37.22

r ∑ 1 83.42 45.23 48.28 55.43

r = 0 127.09 66.49 70.60 78.87

Eigenvalues

MedianEVEBITDA iEUspd101 mEUCPI mEUpYOY vST50BCt

0.18 0.17 0.12 0.06 0.02

I (i ) variables may be regressed on I (i ) variables for i > 0 iff they are cointegrated (Engle &

Granger 1987). Table 4.2 displays results from a Johansen cointegration test on Ap variables.

2

The

rank of the Error Correction Model cointegration matrix used in the test is not ∑ 2 with p < 0.01,

indicating that there are multiple linearly independent cointegrating vectors - i.e., the variables are

cointegrated. This result is expected from the causal linear relationships between each of the underly-

ing variables and yt derived in Subsection 3.3.2, and indicates the presence of a long-term economic

equilibrium process Alexander (2008a). Furthermore, it is natural to expect that the denominator

ºct is affected by the long-term environment with an inertia.

In the exogenous variable funnel from 3.3.1, multicollinearity was largely eliminated through

selection based on correlation, rendering effects on estimators stability unlikely (Farrar & Glauber

1967). Table 4.3 displays the correlation matrix and the Variance Inflation Factors (VIF) for the

variables used in Ap. The assumption that multicollinearity is unproblematic is affirmed by VIFs

being < 10 (Farrar & Glauber 1967).

2

See Johansen (1991) or Alexander (2008a) for Johansen test details, and Appendix B.IV for results for Ad.

Johansen test for Ad is considerably less confident in determining cointegration, supporting Ap cointegration

rationale. The implementation of the Johansen test in R’s urca-package was used.
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4.1 Linear Regression Models

Table 4.3: Correlation matrix and Variance Inflation Factors for the independent variables in the Ap
model

iEUspd101 mEUCPI mEUpYOY vST50BCt

iEUspd101 1.00

mEUCPI -0.15 1.00

mEUpYOY -0.36 0.22 1.00

vST50BCt 0.29 0.05 -0.33 1.00

VIF 1.20 1.08 1.28 1.19

OLS regressions are sensitive to outliers, and this gives rise to an inherent trade-off between the

resulting estimator bias towards extreme values and ability to represent these events. Here, extreme

events are included, as the knowledge about these is an essential part of the scope, but the impact

was mitigated through differentiation and transformations in Section 3.3.1.

3

Based on the preceding discussion we create six multivariate linear models, for each of the six

final data sets.

4

Letting yt be median EV/EBITDA, x

t

be the independent variables given by Ap and

Ad, ≤t be an error process for time t and Æ and Ø be regression coefficients, the following model is

fitted for the Ap- and Ad- data sets, using OLS:

yt =Æ+Ø ·x

t

+≤t (4.1)

Table 4.4 shows the results from tests on normality, stationarity, autocorrelation, and heteroskedas-

ticity for this and subsequent model residuals. An i.i.d.-assumption is clearly invalid, but the resid-

uals are unit-root stationary, indicating that 4.1 is a cointegrating Engle-Granger regression (Tsay

2010). For Ad, the residuals are unit-root stationary with p = 0.06.

5

The residuals for both models

are autocorrelated and heteroskedastic,

6

rendering estimators inefficient and t- and F-tests flawed,

and indicating that there might be misspecification, possibly related to perturbation terms excluded

in the relationships explored in Subsection 3.3.2. The residual autocorrelation in Ap will be studied

closely in Section 4.4. The JB-test indicates that residuals of Ap fit well with the normality assump-

tions, while Ad residuals do not (Jarque & Bera 1980). This will not lead to any grave consequences,

particularly when the residuals already have been shown to be autocorrelated and heteroskedastic. A

natural model adjustment to deal with OLS-assumption issues is to use the differentiated data from

the Dd and Dp data sets. The constant term is left out, and the model is fitted with OLS:

dt =Ø
d

·¢x

t

+≤t (4.2)

where dt = log yt /yt°1

, ¢xt are the differentiated exogenous variables from Dd and Dp-data sets,

and ≤t is a conventional error process. The Dx residuals have no indications of unit roots,

7

but the

issue of autocorrelation and heteroskedasitcity persist, especially for Dp. The major issue for these

models is the loss of information about long-term relationships previously captured by the cointe-

gration and the dependence of an initial value in long-term predictions. Because the differentiated

models fail to include information about cointegration, and the absolute models fail to include the

3

The quantile regression conducted in Section 4.2 is less sensitive towards outliers, but supports the main

findings of this section.

4

Note that these models are the models used in the subset regression in order to obtain the final data sets.

5

A more confidently stationary series of residuals (ADF statistic = °4.299) is obtainable by using the Johansen

test eigenvalues as regression coefficients. See Appendix E.I.

6

Causes of autocorrelation and heteroskedasticity include omitted variables, structural breaks, inappropriate

functional form and over- or under-differencing, and is prevailing in time series models (Alexander 2008a).

7

A notational remark: Dx= {Dp,Dd}, Ax= {Ap,Ad}, Rx= {Rp,Rd}, Xd = {Dd,Ad,Rd} and Xp = {Dp,Ap,Rp}.
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Test H
0

Ad Ap Dd Dp Rd Rp

JB-test ≤t ª N (µ,æ) JB-statistic 13.2 1.9 6.5 34.2 2.93 0.01

p-value 0.01 0.33 0.04 >0.01 0.20 0.99

ADF-test ≤t has a unit root ADF-statistic -3.36 - 3.71 -5.55 -5.25 -5.30 -5.86

for 6 lags p-value 0.06 0.02 <0.01 <0.01 <0.01 <0.01

LB-test ≤t is not autocorrelated Q-statistic 643.5 678.8 53.2 96.6 48.4 63.6

for 60 lags p-value <0.01 <0.01 0.725 <0.01 0.86 0.35

BP-test ≤t is homoskedastic Breusch-Pagan LM 1.09 6.10 3.62 9.47 2.09 0.39

p-value 0.30 <0.01 0.06 <0.01 0.15 0.53

R implementation: Jarque Bera test - normtest-package, Augmented Dickey-Fuller test - tseries-package,
Ljung-Box test - stats-package using lag = 60(forecast horizon), Breusch-Pagan test - car-package.

Table 4.4: Test statistics and p-values for selected residual tests. Results not compliant with OLS

assumptions are underlined.

current information, a natural synthesis is the inclusion of an autoregressive term. Using the Rp and

Rd data and an autoregressive coefficient ∞, we propose:

yt =Ær +∞yt°1

+Ø
r

·x

t

+≤t (4.3)

The residuals of Rx do not have a unit root, and null hypotheses of non-autocorrelation, ho-

moskedasticity and normality have not been rejected in the standard tests, suggesting that the esti-

mators for these models are BLUE (Walpole et al. 2012). Both differentiated and absolute exogenous

variables were included in the subset regression on Rx to account for the possibility of the nearly-

integrated variables. In Section 4.1.2, modeling results and practical applications of the models will

be discussed.

4.1.2 Modelling Results
Table 4.5 displays the results from the 6 regression models. The F-test statistics indicate with p <
0.01 that the overall R2

values are significant for all models, but are flawed due to non-i.i.d. residuals.

Consequently, a bootstrap estimation was conducted, yielding the confidence intervals for R2

in

square brackets, supporting the F-tests result with a high degree of confidence.

8 R2

s from different

model classes are incomparable: Ax-R2

represents ability to explain variance in yt given x t , Dx-R2

represents ability to explain variance in change of yt given ¢x t , and Rx-R2

represents ability to

explaining yt given x t and yt°1

. For prediction, Ax-R2

will be independent on the horizon, while

Rx-R2

and Dx-R2

will propagate forward in the prediction horizon. This incomparability necessitates

other test methods for comparison.

For a further assessment of parameter robustness and prediction accuracy, a k-fold out-of-sample

test was developed.

9

Figure 4.1 displays in-sample, 10-fold out-of-sample and 4-fold chronological

out-of-sample results for Ap.

10

The 10-fold-prediction mitigates the impact of autocorrelation in

8

The bootstrapping was done using methods from Efron (1979) and Efron & Tibshirani (1993), as imple-

mented in the boot-package in R. The bootstrapping of R2

and coefficient estimators are bias-corrected and

accelerated (BCa), based on 1,000 simulations. This method does not account for residual autocorrelation, but

more sophisticated techniques will be examined in Section 4.4.

9

The k-fold testing algorithms are conducted by allocating the data into k partitions, before training the

algorithm on k °1 partitions and predicting the final partition, providing a complete out-of-sample accuracy test

on the sample. The allocation is random in the 10-fold test and chronological in the 4-fold test. Kohavi et al.

(1995) review k-fold testing against bootstrapping.

10

See Figure 13 to 17 in Appendix B.I for corresponding plots for Dx, Rx and Ad.
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4.1 Linear Regression Models

Table 4.5: Regression model coefficients for Ap, Ad, Dp, Dd, Rp and Rd. t-test standard error in

parenthesis and BCa bootstrapped 95% confidence intervals in brackets

Dependent variable:

Median EV/EBITDA Log return median EV/EBITDA Median EV/EBITDA

Ad Ap Dd Dp Rd Rp

Median EVEBITDA 1-lag 0.98

§§§
0.90

§§§

(0.01) (0.02)

[0.96, 1.00] [0.87, 0.93]

vST50 °0.06

§§§ °0.01

§§§

(0.004) (0.002)

[-0.06, -0.05] [-0.02, -0.01]

vST50BCt °8.99

§§§

(0.60)

[-9.92, -7.22]

vST50lr °0.13

§§§ °0.13

§§§
-0.98

§§§
-0.69

§§§

(0.01) (0.01) (0.07) (0.08)

[-0.16, -0.12] [-0.16, -0.12] [-1.14, -0.83] [-0.83, -0.54]

sEUCC 0.08

§§§

(0.004)

[0.08, 0.09]

sEUCCd 0.01

§§§
0.06

§§§

(0.001) (0.01)

[0.01, 0.01] [0.04, 0.08]

mEUCPI °0.62

§§§

(0.04)

[-0.69, -0.56]

mEUCPIBCt -0.06

§§§

(0.009)

[-0.08,-0.04]

iEU10 °0.27

§§§

(0.02)

[-0.31, -0.25]

iEUspd101 °0.49

§§§

(0.06)

[-0.61, -0.39]

mEUpYOY 0.09

§§§

(0.01)

[0.07, 0.10]

mEUFAYOY °0.03

§§§

(0.003)

[-0.03, -0.02]

Constant 11.26

§§§
23.90

§§§
0.14 1.34

§§§

(0.10) (0.92) (0.09) (0.17)

[11.18, 11.51] [21.06, 25.27] [-0.03, 0.32] [1.00, 1.71]

Observations 223 223 223 223 223 223

R

2

0.88 0.81 0.53 0.42 0.96 0.96

R

2

BCa conf. int. [0.84, 0.91] [0.77, 0.85] [0.43, 0.63] [0.31, 0.53] [0.97, 0.98] [0.97, 0.98]

Adjusted R

2

0.87 0.81 0.53 0.42 0.98 0.98

Residual Std. Error 0.45 0.56 0.03 0.03 0.19 0.18

F Statistic 385.69 231.10 124.82 163.91 3,161.16 2,643.51

Note: §
p<0.1;

§§
p<0.05;

§§§
p<0.01
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Chapter 4. Valuation Multiple Indices
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Figure 4.1: In and out-of-sample predictions for Ap-model

the explanatory and dependent variables through random sampling and thus, have negligible devi-

ations from the in-sample testing, while the 4-fold chronological tests expose the bias caused by

autocorrelation and is a more realistic representation of prediction accuracy. Nevertheless, devia-

tions between 4-fold testing and in-sample prediction are small - an indication that the coefficients

obtained are robust and that no prodigious trend shift has occurred during the time interval under

consideration.

The k-fold-tests provide insight into the robustness of the coefficients, but do not assess the

actual predicative capability. The required data to provide prediction of horizon h from time t
differs: Ax requires x t+h , Dx requires x t and yt+h , while Rx is path-dependent

11

and requires yt
and x t :t+h .

12

An in-sample prediction test is developed to assess the models’ abilities to predict

yt+k provided yt and x t :t+k using the original OLS coefficients.

13

For Ax, the predictions are

simply:

ˆyt+k = ˆÆ+ ˆØ · x t+k (4.4)

while Dx predictions are initial value dependent:

ˆyt+k = yt e
ˆØd ·¢x t+1:t+k

(4.5)

where ¢x t+1:t+k =Pt+k
i=t+1

¢x i = x t+k °x t . Rx are path- and initial value dependent:

ˆyt+k = ˆÆr
1° ˆ∞k

1° ˆ∞
+ ˆ∞k yt +

kX

i=1

Ø̂r · x t+i ˆ∞k°i
(4.6)

See Appendix B.II for proof by induction of Equation 4.6.

11

Note that Rx may be made path-independent by making assumptions on the transition from x t to x t+h .

12

The notation x a:b = {x t 0 }|(a ∑ t 0 ∑ b), borrowed from Russell & Norvig (2003) will be used consistently.

13

The in-sample coefficients are used because we isolate predicative nature of the models from the coefficient-

robustness issue, as tested in the bootstrapping and k-fold tests.
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4.1 Linear Regression Models
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Figure 4.2: In-sample prediction RMSE given independent variable in horizon period

Figure 4.2 displays Root Mean Square Errors (RMSE)

14

for the six models on five prediction

horizons. The differentiated and regressive models yield better results in short-term predictions as

these models take the current state into account explicitly. In the long-run, however, the models fail

to account for the development of the underlying variables properly and tend to revert to much to

the historical mean of yt , indicating that the cointegration relationship carries a predictive value. As

expected, Ax performs equally well for all horizons, as it is in-sample. Xp performs well compared

to Xd, despite fact that the set of variables from which Xp variables are selected is a subset of the

corresponding variable set for Xd - advocating "predictable" dataset rationale. In fact, Rp actually

performs better than Rd.

In Chapter 3, we established economic rationales for the linear dependencies materializing from

the regression models, though we can only provide evidence of correlations and never causation.

Implied volatility (vST50,vST50BCt,vST50lr) is a constituent of all models except Rd and has the

largest explanatory power in individual-variable regressions.

15

Across all models, higher implied

volatility cause lower valuation multiples. This is consistent with Sharpe (1964) and Equation 3.8,

implying that higher risk will lead to higher risk premiums and discount rates and thus, lower valu-

ations. This result is empirically supported by Kane et al. (1996), showing that increase of volatility

historically has caused decline in P/E multiples.

Interest rates appear in the models in two forms: The long-term rate (iEU10) in Ad and as term

structure spread (iEUspd101) in Ap. The coefficient of the iEU10 rate is negative, supporting the

hypothesis that interest rate increases make fixed income more attractive as investment opportunities,

moving demand away from equities and lowering returns, as well as increasing cost of capital. The

effect is amplified in the term structure spread because it reflects the expected change relative to

the current level (Campbell 1987). Notably, this effect is only present in the models leveraging

on cointegration effects, indicating that the level of the interest rate is a driver per se, not only the

changes.

14

RMSE =

1p
h

qPt+h
t 0=t

(

ˆyt 0 ° yt 0 )
2

measures mean deviation, as opposed to MAD =

1

h
Pt+h

t 0=t
| ˆyt 0 ° yt 0 | mea-

suring median deviation. RMSE is considered more appropriate because it mirrors the OLS-estimation residual

square minimization and weights large deviations more than minor deviations. Both techniques are conventional,

e.g., see Shamsuddin & Hillier (2004). MAD-aggregation for the test yields similar results in Appendix B.III.

15

See Appendix A.III for details about subset regression results, including single variable regressions.
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Chapter 4. Valuation Multiple Indices

Industrial production growth (mEUpYOY) was proposed as a leading indicator of the GDP in

Chapter 2 and appears in Ap with a positive coefficient. The causal hypothesis is that increased

mEUpYOY leads to increased GDP expectations, which again improves earnings expectations for

the firms, hiking valuations - see Equation 3.10. Inflation (mEUCPI) is the variable with the second

most explanatory power in the Ap regression, and it has a negative coefficient, supporting the "money

illusion" argument proposed by Modigliani & Cohn (1979) and concretized in Equation 3.9, and the

Koller et al. (2010) argument on the effect of inflation on FCF discussed in Chapter 2.

Two other variables, deemed non-predictable, had high explanatory value in the Xd-models: EU

Consumer Confidence Indicator (sEUCC, sEUCCd) and ECB Fixed Assets Growth (mEUFAYOY).

sEUCC reflects the market sentiment, which is very likely to be associated with multiples. Illustra-

tively, regressing multiples on number of stock broker calls mentioning the words "high multiple"

would have a large explanatory power, but similarly to sEUCC, the predictability of this variable is

low, and it is unlikely that investors have sophisticated views on development prospects. As indicated

in Chapter 2, ECB balance sheet variables have a causal rationale associated with Quantitative Eas-

ing policies. The mEUFAYOY, however, reflects 0.1% of the total balance sheet as of August 2018,

and the coefficient sign contradicts the intuition that heavier central bank balance sheets should drive

up prices. Hence, we believe it is a statistical coincidence.

In terms of OLS assumption compliance, Rp is superior to Dp and Ap, both having significant

issues with heteroskedasticity and autocorrelation. Rp explains more of the in-sample variance,

but is path dependent and fails to generalize well for long-term prediction tests. Ap is better for

predictions on horizons of 1 year or longer, is path and initial value independent, has sufficient in

sample accuracy, is easy to interpret, has strong causal interpretations of the exogenous variable, and

has robust coefficients and overall regression significance. Based on this, Ap will be the primary

model going forward.

4.1.3 OLS on Other Indices
A selection of @s and estimations of Vct and ºct were discussed in Section 3.2, and we argued that

median EV/EBITDA is well-suited for measuring overall firm valuation levels. In this subsection,

we examine how other multiple indices are affected by the four macroeconomic variables surfacing

from Ap. The cointegration arguments and the corresponding Engle-Granger regressions (4.1) are

assumed to hold for these indices, and the residual indecorousness persists. Table 4.6 displays results

from normalized OLS regressions and the coefficients are visualized in Figure 4.3.

All F-tests indicate R2

significance, and t-test significant coefficients are consistent with Ap -

supporting the fundamental causality. The categorical median EV/EBITDA introduced in Section

3.2.1 yields coefficients practically indistinguishable from the ordinary median, giving us comfort in

median EV/EBITDA despite the bias created by invalid multiple omission. The volatility coefficient

in EV-weighted and EBITDA-weighted indices are insignificant, indicating that larger companies

are less sensitive to changes in volatility. This hypothesis is supported by a supplementary analysis

in Appendix B.V that also reveals that larger companies are less disturbed by inflation and more by

growth and term structure spread. The elimination of volatility as an explanatory variable reduce R2

considerably for these models.

The coefficients vary less among the indices based on other Vct s and ºct s. Variations are as

expected from previous discussions: EV-multiple coefficient magnitudes vary with how far down

on the income statement the denominator is, and P/E coefficients are more sensitive to growth and

less sensitive to cost of capital effects, as the latter is mitigated in the long run by the denominator

which is net of interest. The indices bridge our results to existing literature (White 2000) and provide

some additional nuances into the nature of valuation multiples. However, we maintain that median
EV/EBTIDA serves as a representative and relevant index, and that our approach in Chapter 5 will

reveal a comprehensive and profound perspective on the nuances.

34



4.1 Linear Regression Models

Table 4.6: Regression results for selected indices

Dependent variable:

EV/EBITDA Other median multiples
Median Average EV Weighted EBITDA Weighted Categorical EV/Sales EV/EBIT P/E

iEUspd101 °0.268

§§§ °0.312

§§§ °0.417

§§§ °0.379

§§§ °0.271

§§§ °0.351

§§§ °0.145

§§§ °0.184

§§§

(0.032) (0.038) (0.060) (0.056) (0.033) (0.037) (0.030) (0.033)

mEUCPI °0.475

§§§ °0.422

§§§ °0.275

§§§ °0.342

§§§ °0.490

§§§ °0.394

§§§ °0.500

§§§ °0.378

§§§

(0.031) (0.036) (0.057) (0.053) (0.031) (0.035) (0.029) (0.031)

mEUpYOY 0.335

§§§
0.383

§§§
0.314

§§§
0.372

§§§
0.337

§§§
0.300

§§§
0.398

§§§
0.430

§§§

(0.034) (0.039) (0.062) (0.058) (0.034) (0.038) (0.031) (0.034)

vST50BCt °0.489

§§§ °0.397

§§§
0.038 °0.041 °0.473

§§§ °0.451

§§§ °0.518

§§§ °0.511

§§§

(0.032) (0.038) (0.059) (0.056) (0.033) (0.037) (0.030) (0.033)

Observations 223 223 223 223 223 223 223 223

R

2

0.81 0.74 0.35 0.43 0.80 0.75 0.83 0.80

Adjusted R

2

0.81 0.74 0.34 0.42 0.80 0.75 0.83 0.80

Res. Std. Error 0.44 0.51 0.81 0.76 0.45 0.50 0.41 0.45

F Statistic 231.10

§§§
155.82

§§§
29.86

§§§
40.67

§§§
223.14

§§§
163.83

§§§
269.42

§§§
222.50

§§§

Note: §
p<0.1;

§§
p<0.05;

§§§
p<0.01
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Figure 4.3: Regression coefficients for normalized variables - seven indices
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Figure 4.4: 99-Quantile regression coefficients for each of the exogenous variables. Green lines are

cofficient from regular Ap

4.2 Quantile Regression Models
As shown by Gauß (1821), conditional mean estimated by OLS is the best estimator of the distribu-

tion location parameter if the distribution is normal or normal-like. In many real-world applications,

however, the distribution is affected by anomalies and outliers, and quantile-based error distributions

descriptions may be more appropriate (Koenker & Bassett 1978). Furthermore, a quantile regression

allows us to understand the extreme cases (i.e., the quantiles) of development and is less sensitive to-

wards outliers. If the cumulative distribution of yt is specified by F (m), then the quantile regression

model is the following:

F°1

(q|x
t

) =Æq +Ø
q

·x

t

+F°1

≤ (q|x
t

) (4.7)

We estimate the parameters by solving the corresponding optimization problem using the Bar-

rodale and Roberts algorithm as described by Koenker & D’Orey (1987) and implemented in the R

package quantreg.

16

Figure 4.4 displays the quantile regression coefficients for each of the underlying variables for all

99 quantiles. Although data availability, particularly for the extreme quantiles, causes fluctuations,

the plots reveal a few things about the distribution of responses to the underlying variables and hence,

produce an indication of parameter robustness. The general level of the coefficients corresponds well

to the magnitude and sign of the coefficients seen in Section 4.1, which is marked as a green line.

There is a slight tendency of higher quantiles having larger coefficient magnitudes, reflecting the fact

that the dispersion of the distribution of the error is dependent on the absolute level of the index.

Using these coefficients along with the current observations (t = 223) we can construct a proxy

for the current conditional cumulative distribution of yt : P (yt ∏ m|x t ) displayed in Figure 4.5.

17

The cumulative distribution provides valuable insight into the dispersion of yt , conditional on x t at

16

Optimize: argminØq ,Æq

Pn
i=1

§ø(yi ° (Æq +Øq · x t )) where § is a loss function: §ø(u) = u(ø°1u<0

).

17

The cumulative density function is computed as such: P (yt ∏ q|x t ) = Æq + c q x t where (Æq ,c q ) is the

coefficient vector for the q’th quantile. P (yt ∏ q|x t ) is not generally a valid cdf, as it may be non-monotonic.

The issue may be tackled e.g., by fitting a monotonic spline, decreasing quantile resolution or increasing sample

size.
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Figure 4.5: Quantile regression approximation of the cumulative density function of median

EV/EBITDA at t = 223

a given instance of the process. yt is not drawn independently from this cdf because the residuals are

autocorrelated, but will move up and down in the distribution in a structured process. Notably, the

current median EV/EBITDA is at the estimated 80% quantile of the cdf approximation, suggesting

that the current valuation of enterprises is at a high level given underlying macroeconomic condi-

tions. Assuming that the residuals are unit-root stationary, the multiple is ceteris paribus expected to

revert to the median along the cdf. We will elaborate on the nature of the reversion in Section 4.4

and investigate the forecasting aspect in Chapter 6.

4.3 Nonlinear Regression Models
Nonlinear relationships between x t and yt would be reasonable, observing the pertubation terms

from the Taylor series that were ignored in the linear regressions. There are, however, no conspic-

uous non-linearities in Figure 4.6, and a linear regression of the residuals on third degree Taylor

series

18

and a reset-test

19

fail to reveal any momentous nonlinear relationships. Nevertheless, we do

some preliminary testing of conventional machine learning methods aiming to capture other aspects

of the relationship.

Figure 4.7 shows results from 4-fold chronological out of sample testing corresponding to Figure

4.1 for selected machine learning algorithms.

21

We tested k-Nearest Neighbors (kNN) with 1 and 20

neighbors, a Support Vector Machine (SVM) and an Artificial Neural Network (ANN). The 4-fold

18

A subset regression was conducted on the following generalized regression model: ut =P
4

i=0

P
4

j=i
P

4

k= j bi j k xi x j xk + ≤t where x
0

= 1, x
1:4

are the exogenous variables and ut are residuals from

Ap. Taylor polynomials approximate many nonlinear functions well (Kreyszig 2010). See analysis results in

Appendix B.VII.

19

A Ramsey RESET test was conducted using the R package Imtest. See results in Appendix B.VI.

20

Note that extreme growth values stemming from GFC were omitted from the scatter plot.

21

See Russell & Norvig (2003) for elaboration on the respective methods. The kNN algorithms are imple-

mented with the FNN package. The ANN is trained using backpropagation for a 3-layer implementation with 6

hidden neurons as implemented in neuralnet from R. The SVM algorithm is retrieved from the e1071 package

but without sophisticated fine-tuning of the parameters.
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Figure 4.6: Scatter plots: Ap regression residuals

20

against independent variables in Ap.

out of sample RMSE values are 1.28, 1.21, 0.98 and 0.98, respectively, compared to 0.70 for Ap. The

models do better than Ap in-sample but fail to generalize due to overfitting. The linear regression,

with five parameters, is able to capture ª 81% of the variance, while the machine learning algorithms

are more flexible, and with a sample of 223 data points overfitting is hard to avoid. SVM and ANN do

better than kNN methods, and by applying appropriate kernel functions and fine-tuning parameters,

it might be possible to surpass the performance of linear regression.

22

However, Ap is versatile,

simple, transparent, and interpretable, and wielding Occam’s razor, we are unable to pick any long

low hanging AI-fruits (Blumer et al. 1987).

23

4.4 Mitigating Consequences of Residual Autocorrelation
The problems caused by autocorrelation in the residuals of Ap were circumvented in Section 4.1.

However, autocorrelation introduce some problems in forecasting and bootstrap estimation. The

residual process of Equation 4.1 may be approximated by applying a standard AutoRegressive 1 lag

model AR(1) (Tsay 2010):

≤t = ∞≤t°1

+ut (4.8)

in which ut is assumed to be an i.i.d. error process, and ≤t is the residual process from Equation 4.1.

Letting

ˆ≤t = yt ° ˆyt represent ≤t , Equation 4.8 can be approximated:

ˆ≤t = ∞a
ˆ≤t°1

+ua
t (4.9)

in which ∞a
and ua

t and the associated

ˆ∞a
and

ˆua
t are all estimators for ∞ and ut . OLS estimation

of Equation 4.9 gives

ˆ∞a = 0.796 and a set of satisfyingly uncorrelated residuals

ˆua
t , see ACF-plot

in Figure 30 in Appendix D.IV.

The model in Equation 4.9 may be used to amend bootstrap confidence intervals for the Ap co-

efficients, using the recursive algorithm proposed by Li & Maddala (1997).

24

As seen in Figure 4.8,

22

The ANN can become exactly equivalent to the linear regression by constructing a zero-hidden layer network

with linear activation functions and a constant input node.

23

See Appendix E.I for elaboration on machine learning opportunities.

24

For s 2 [1 : 10000]: Draw T °1 random

ˆua
t . Generate correlated residuals for

ˆ≤s
1:T , and let y s

1:T = ˆy
1:T + ˆ≤s

1:T .

Conduct OLS on y s
1:T with x

1:T , obtaining coefficient estimates Øs . Finally, Ø
1:S is the bootstrap sample.
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Figure 4.7: 4-fold out of sample test of selected machine learning algorithms. In-sample actual

values in turquoise

the coefficient values are still significant (p < 0.01) but the estimator variance increases substantially.

Ap fails to account for the current state of the index in forecasting, but using Equation 4.9, the

forecast can be adjusted according to the state of the residual process. For h horizon prediction,

Equation 4.4 becomes:

ˆyt+k = ˆÆ+ ˆØ ·x t+k + (∞a
)

h
ˆ≤t (4.10)

and this model serves as the basis for endogenous and Monte Carlo based forecasts in Chapter 6.

Minimizing

PT
t=1

(

ˆua
t )

2

given

PT
t=1

ˆ≤2

t -optimal parameters do not yield the maximum likeli-

hood parameters for the whole system. Cochrane & Orcutt (1949) propose an algorithm resulting

in minimal-

PT
t=1

ˆu2

t parameters, and the R implementation in the orcutt package was used to es-

timate the parameters. A simpler way to estimate the residual process and the exogenous effects

simultaneously is to use a Moving Average with K lags MA(K) description:

≤t = ¥t +
KX

k=1

ak¥t°k (4.11)

in which ¥t are error processes and K is an integer constant. The MA(K) process is fairly successfully

in mitigating the autocorrelation for K ∏ 5, as seen in seen in Figure 4.9. The MA-eXogenous

MAX(K) model obtained from combining Equation 4.11 with 4.1 can be estimated using an ordinary

MLE approach:

25

yt =Æ+Ø · x t +¥t +
KX

k=1

ak¥t°k (4.12)

The resulting coefficients are displayed in Table 4.7. The coefficients are familiar, but the magni-

tude and significance are weaker, particularly for the Cochrane-Orcutt and the high-K MAX-models.

The volatility variable is the only variable with consistent p < 0.01. Ljung-Box statistics are im-

proved from LB ¬2 = 678.8 for Ap, but the RSS has increased from 68.0 to values between 72.7

for K = 1 and 268.3 for K = 20. The models that mitigate autocorrelation well also mitigate the ex-

planatory power of the underlying variables and render the error process prominent in describing the

system. An in-sample fixed-starting point test

26

was conducted, revealing the depleted forecasting

25

We use the algorithm proposed by Nelder & Mead (1965) as implemented in the stats package in R.

26

Provided yt and x t+h , predict yt+h .
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Chapter 4. Valuation Multiple Indices
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cursive bootstrap algorithm for 10,000 samples
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Figure 4.9: ACF values for original residuals in Ap, and

ˆ¥t -residuals for K = 1, K = 5 and K = 20
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4.5 Summary

ability, see RMSE values in the Table 4.7. The corresponding RMSE for Ap is 0.55.

4.5 Summary
The performance of a range of models has been explored, and Ap is intuitive, simple, accurate and

profoundly rooted in economic theory. The underlying variables are cointegrated, and the model is

able to account for the level of the underlying variables as well as the change. Other models, such

as the differentiated model, the autoregressive model, and models using other indices than median

EV/EBITDA generally support the findings of Ap, but they have their respective weaknesses, both

quantitatively and intuitively. Quantile regression, machine learning models and vector models con-

tribute in deepening our understanding but do not contradict fundamental discoveries of Ap. As a

result, we proclaim volatility, inflation, term structure spread and industrial production growth as

paramount macroeconomic variables for explaining variation in median valuation multiples histori-

cally.
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Chapter 4. Valuation Multiple Indices

Table 4.7: Resulting coefficients from ARIMAX model estimation

Model:

Cochrane- MAX-K
Orcutt K = 1 K = 5 K = 20

ar-1 0.981

ma-1 0.683

§§§
1.300

§§§
1.147

§§§

(0.047) (0.067) (0.080)

ma[3-5] [0.501-1.415]

§§§
[1.410-1.661]

§§§

ma[6-19] [0.502-1.599]

§§§

ma-20 0.192

§§

(0.095)

intercept 15.675

§§§
21.440

§§§
16.076

§§§
15.641

§§§

(0.969) (0.983) (0.614) (0.648)

iEUspd101 °0.006 °0.521

§§§ °0.141

§ °0.016

(0.080) (0.069) (0.084) (0.089)

mEUCPI 0.013 °0.560

§§§ °0.102

§
0.035

(0.058) (0.048) (0.061) (0.051)

mEUpYOY 0.007 0.073

§§§
0.005 °0.011

(0.009) (0.010) (0.010) (0.009)

vST50BCt °4.701

§§§ °7.462

§§§ °4.813

§§§ °4.782

§§§

(0.395) (0.630) (0.384) (0.392)

Observations 223 223 223 223

Log Likelihood °116.275 °11.332 46.714

æ2

0.166 0.064 0.037

AIC 246.550 44.665 °41.427PT
t=1

ˆ≤t
2

251.9 72.7 206.9 268.3

LB ¬2

59.0 352.2 224.5 35.6

LB p-value 0.51 < 0.001 < 0.001 0.995

Prediction RMSE 1.09 0.57 0.98 1.13

Note: LB test is with lag = 6 §
p<0.1;

§§
p<0.05;

§§§
p<0.01

42



Chapter 5

Distribution of Valuation Multiples

In the preceding chapter, drivers of the proposed pricing indices were analyzed. In the creation

of these indices, a distribution of data points is condensed to a single index data point at every

time step t . In this chapter, we exploit the information available in the complete distribution of

multiples and examine how it is affected by the exogenous variables

1

. Understanding the dynamics

of the distribution gives a profound understanding of the complete state of the valuation market

and facilitates in-depth analyses of risks and prospects. Relatively high valued and low valued

companies are affected by movements in the underlying variables and by each other in distinct ways,

not necessarily affecting the produced indices. Fundamentally, we seek to map a vector of exogenous

variables x t to a distribution, which is a learning problem in which the regression function to be

learned is H :

H :Rk ! [R+ !R+] (5.1)

where x

t

2 Rk
and the distribution of a stochastic variable Mt is ft (m) 2 R+. Mt represents the

multiple of any company at time t .

2 H may be described and approximated in multiple ways: e.g., by

using a joint probability density function (pdf),

3

by describing the corresponding cumulative density

function (cdf),

4

or by providing information about the quantiles or frequencies. The goal here is

to develop methods ultimately approximating H, such that we can obtain a complete distribution of

multiples requiring only one input vector of macroeconomic variables at time t .

The distribution of Mt is the quotient distribution of two other stochastic variables, the company

value Vt and the profit metric ºt . Naturally, the value of a company depends on the size, i.e.,

P (Vt |ºt ) 6= P (Vt ), so the distributions cannot be modeled separately. Consequently, the linear model

in Equation 5.2 is assumed to hold at each intersection t , where Æt and Øt are constants and ≤t is a

cross-sectional i.i.d. error variable which will turn out to be of immense importance.

5

logVt =Æt +Øt logºt +≤t (5.2)

1

For consistency, the independent variables from Ap will be used in this chapter.

2m 2R+ and

R1
0

f (m)dm = 1. The random multiple variable Mt is defined in R+.

3H : Rk £R+ ! R+, i.e., H(xt ,m) such that for all xt ,

R1
0

Hdm = 1, and

R¥
∞ H(xt ,m)dm is the fraction of

companies having multiples between ∞ and ¥.

4Hc : Rk £ R+ ! [0,1], i.e., Hc (xt ,m) such that for all xt , limm!1 Hc (xt ,m) = 1, Hc (xt ,0) = 0 and

Hc (xt ,¥)° Hc (xt ,∞) is the fraction of companies having multiples between ∞ and ¥ given xt . Hc (xt ,m) =Rm
0

H(xt ,m0
)dm0

.

5

The model is motivated by seemingly linear bi-variate plots historically, see chart in Appendix C.I.
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Chapter 5. Distribution of Valuation Multiples

The parameters are estimated using OLS. The mean Øt is 0.94 with a sample standard deviation of

0.028 over the time horizon under consideration.

6

The fact that Øt < 1 indicates that large compa-

nies have low valuations relative to their ºt . This may be associated with the growth cycle model

proposed by Scott & Bruce (1987), indicating that larger companies tend to reach a point where

growth prospects are smaller and thus, valuations decline.

7

Now, applying the Copernican Turn

from Equation 2.7, we can derive the distribution of Mt based on the regression model:

Mt =
Vt

ºt
=º

Øt°1

t eÆt e≤t
(5.3)

If the Øt s were equal to 1, Mt would only be dependent upon the error process ≤t . The dis-

tribution would be the log distribution of ≤t , shifted by the constant eÆt
. A JB-test rejects that the

residuals,

ˆ≤t from Equation 5.2, stem from a normally distributed process.

8

ˆ≤t is bell-shaped, highly

leptokurtic and slightly skewed. The average sample excess kurtosis is

¯

ˆ∑ = 8.56 with a standard

deviation of 6.23 and the average sample skewness is

¯

ˆS = 0.50 with a standard deviation of 0.72.

A conventional solution to leptokurticity is to assume that the error process follows a generalized

Student-t distribution.

9

By testing the generalized Student-t distribution hypothesis on historical

data, we are not able to reject the hypothesis that residuals are t distributed or equivalently that the

multiple (eÆt e≤t
) is log t distributed.

10

However, we cannot neglect that Øt 6= 1 and thus, P (Mt |ºt ) 6= P (Mt ). The complete distribu-

tion of Mt as a function of the distributions of ºt and ≤t may be found by applying the Fourier

Convolution theorem:

log Mt ° ˆÆ= (

ˆØt °1)logºt +≤t

fM (ez+ ˆÆ
) = f≤t § f

(Øt°1)logºt (z) =F 1

{

ˆf≤t · ˆf
(

ˆØt°1)logºt
}

(5.4)

where

ˆf≤t and

ˆf
(

ˆØt°1)logºt
are the Fourier transformations of the probability distributions f≤t and

f
(

ˆØt°1)logºt
(= g ), and F represents the Fourier transformation operator. Assuming that f

logºt is

relatively well behaved,

11

it is easy to see that:

lim

Øt!1

g (z) = ±(z) (5.5)

where ±(z) is the Dirac delta function. Now, the limiting Fourier transform becomes:

lim

Øt!1

Z1

°1
g (z)e°2ºiªz d z =

Z1

°1
±(z)e°2ºiªz d z = 1 (5.6)

6

See charts in Appendix C.II for an overview of the Øt -coefficients at each time step. All p-values are <0.01.

7

Also Rostow (1959) and Chandler (1962) are relevant for stages of growth.

8

See discussion on Jarque & Bera (1980) tests in Section 4.1.1 and Appendix C.III for plot of test statistics.

All p-values are <0.01, rejecting the null hypothesis of zero skewness and zero excess kurtosis.

9

See Alexander (2008b) page 98-99 where the leptokurtic character of the generalized Student-t distribution

is showcased.

10

A Kolmogorov-Smirnov (K-S) test, as described by Massey Jr (1951), is performed at each intersection. The

null hypothesis that the underlying distribution of

ˆ≤t stems from a generalized Student-t distribution cannot be

confidently (p<0.05) rejected at any of the time steps. The K-S test compares the empirical cdf of

ˆ≤t to the cdf

of a particular Student-t distribution, whose parameters were estimated by solving the corresponding maximum

likelihood problem using the fitdistr method from the MASS package in R. Time series plots of p-values for K-S

tests and estimated mean, standard deviation and degrees of freedom is found in Appendix C.IV.

11

Exotic discontinuous or fractal constructions may not adhere to this property. If certain constraints are

applied to the distribution, Equation 5.5 and the consecutive reasoning may be proved rigorously, but we will

rely on the reader’s intuition.
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5.1 Regression on Quantiles

and consequently, the limiting distribution of Mt as Øt approaches 1 is a solely a derivative of the

error term ≤t distribution, as expected from Equation 5.3:

lim

Øt!1

fM (m) = lim

Øt!1

F 1

{

ˆf≤t · ˆg }(logm °Æt ) =F 1

{

ˆf≤t }(logm °Æt ) = f≤t (logm °Æ) (5.7)

For Øt = 0.93, it is thus natural to expect that the distribution of ≤t dominates and hence, that

the practical consequences of assuming Øt º 1 will not lead to any large errors. This may also be

established empirically by assuming a particular form for the f
logºt and using numerical methods

for the convolution.

A more radical interpretation of Øt 6= 1 is that

Vt
ºt

is an inferior multiple because it fails to reflect

≤t solely and is dependent on ºt , the size of the enterprise profits. The implication of this argument

is that the correct size-adjusted "Ø-multiple" is:

Mt =
Vt

º
Øt
t

(5.8)

The multiple would be harder to interpret, but reasoning about the size of enterprises in dis-

cussions about the multiple would become superfluous because the effects already are taken into

account. Risking to be accused of theoretical fanaticism, one could argue that 1/1 is as arbitrary as

1/0.93. Appendix E.I contains some discussions on the potential of a "size adjusted" Ø multiple.

Nevertheless, the fact that Øt is close to 1 indicates that the apparently mundane Mt captures size

independency effects well.

12

As seen in Figure 3.8, the level and dispersion of the distribution vary significantly throughout

time. It is notable that the Dot-com bubble burst (2000-2002) and the Global Financial Crisis (2007-

2008) are different in their nature. The Dot-com bubble burst led to a massive shift in the upper part

of the distribution, while the lower parts were less affected. In the Global Financial Crisis, the whole

distribution shifted proportionally. Currently, the multiple values are somewhere between the height

of the Dot-com bubble and just before the Global Financial Crisis. The 90% quantile is at an all-time

high since Dot-com, while the median is still somewhat lower than in 2007.

5.1 Regression on Quantiles
A natural first step in approximating H , is to let the distribution be described by quantiles introduced

in Section 3.2.3,

13 yt ,q for q 2 {1, ...,Q}

14

, and to examine the dependency between the underlying

x t and these quantiles. The issues with stationarity for the quantiles resemble the issues for the

median as they cannot be proven with 95% significance not to have unit roots. Nevertheless, an

OLS regression is conducted on the basis that each of them is cointegrated with the underlying

variables:

15

yt ,q =Æq +Ø
q

·x

t

+≤t ,q (5.9)

This model capture variations in the whole distribution of multiples rather than just in the median

or some other index. Assuming independence between yt ,q8q , the parameters can be estimated

12

Cross-sectional regressions on the logarithm of EV/EBITDA versus EV and versus EBITDA have been

performed at each point in time (see Appendix C.V), and the corresponding coefficients are insignificant or close

to zero for the time period under consideration.

13

Quantile data obtained from the categorical algorithm introduced in Chapter 3 are applicable in this analysis

but are considered inappropriate due to incomparability to other models.

14

A full description of the distribution can be obtained when Q !1 i.e., F (z) = {q | lim|Q|!1 yq = z}.

15

The H
0

: r ∑ 2 based on the Johansen test is rejected for all quantiles with p < 0.01. See Appendix C.VI.
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Figure 5.1: Normalized model coefficients for each quantile

by standard OLS methods. The Æq and Øq coefficients obtained by OLS estimation on normal-

ized quantiles using underlying variables from Ap are displayed in Figure 5.1.

16

The regression

coefficients may be used to construct discrete approximations to the distribution given underlying

variables,

17

and their signs are consistent with the median multiple regression from Section 4.1.

The coefficients indicate that changes in the term structure spread affect the upper parts more

severely than the lower parts,

18

inflation changes have more impact on the center of the distribution,

and volatility primarily affects the lower and center parts.

19

The same overall trends are observed

in the Dx and Rx models, although with some inconsistencies.

20

No a posteriori causality interpre-

tation of these findings will be presented here, but we propose the application of System Dynamics

to model causality as an area of further research in Appendix E.I. R2

is lower for extreme quantiles,

particularly the 90% quantile with R2 = 48%, possibly due to outlier sensitivity, as discussed in Sec-

tion 3.2.1, but also potentially indicating that other variables may be more appropriate for describing

the tails of the distribution.

The assumption that dependencies between quantiles are captured by the exogenous variables

and their parameters in Equation 5.9 may not hold in order to adequately approximate H . Thus, a

natural extension of the OLS model is to postulate explicit dependency relations between quantiles,

yt ,q and yt ,q 0 . A large fraction of variance among the quantiles is common, rendering it logical to

16

Appendix C.VII contains tabulated coefficients and standard regression statistics for the normalized Ap re-

gression (Table 9) along with regression results from corresponding Rx and Dx models on the quantiles (Table 11

to Table 15). In the non-normalized regressions, the magnitude of the higher quantile coefficients is greater, as

the magnitude of their fluctuations is greater. The normalization was conducted to remove this effect, rendering

the quantile coefficients comparable.

17

A simple approximation is: ft (m) = 2

PQ
q=1

18(q0 6=q)(|m°q|<|m°q0 |)
ˆyt ,q+1

° ˆyt ,q°1

, where

ˆyt ,q are the estimated quantiles,

ˆyt ,0

=°2

ˆyt ,1

,

ˆyt ,Q+1

= 2m ° ˆyt ,Q and 1 is an indicator function. Natural extensions include continuous, smooth

and second order smooth generalizations.

18

Note the axis of Figure 5.1, displaying the actual normalized coefficient values, rather than the magnitude.

19

The marginal change in the Box-Cox transformed volatility vBC is proportional to change in the original

volatility measure v :

@vbc
@t = v°1.5

@v
@t , and v°1.5 > 0.

20

See Table 10 in Appendix C.VII for a complete overview of coefficients from all 6 regression models on

normalized quantiles. Implied volatility in Ad, like Ap affects the center and lower parts, while volatility in the

Rx and Dx models primarily affects the center. Inflation coefficients in Rp support mid-distribution trend in Ap.
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5.1 Regression on Quantiles

model inter quantile distances, ¢
q
t = (yt ,q+1

° yt ,q ), instead of quantiles themselves. We require ¢
q
t

to be positive and define D
q
t = log¢

q
t . An ADF-test reject that dD

q
t = D

q
t °D

q
t°1

has a unit root

with p < 0.01, rendering D
q
t ª I (1) a natural assumption, leading to the model:

dD
q
t = ∞q dD

q
t°1

+Øq x t +≤
q
t (5.10)

The unit root hypothesis cannot be rejected for D
q
t with an ADF-test, but the D

q
t s are cointe-

grated, and the following model will take the level of D
q
t into account directly:

D
q
t =√D

q
t°1

+Øq x t +≤
q
t (5.11)

Now, a VAR(n) model with exogenous variables is an extension of Equation 5.9 that accounts

for inter-quantile dependency, as well as being a generalization of the two previous equations:

Dt =Æ+™
1

D t°1

+ ...+™n D t°n +B x t +≤t (5.12)

where D t = (D
1:Q
t )

T
, Æ, B,™

1:n are vectors and matrices of coefficients and ✏t is a multivariate

i.i.d. error process with covariance matrix ß. The coefficients are estimated using OLS, and n is set

to 1 based on information gain.

21

The model is obviously multicolinear, but we have not been able

to identify autocorrelation for relevant lags.

22

Table 5.1 displays the estimated coefficients for a VAR(1) implementation. √i i diagonal values

and neighboring √i j coefficients are the most significant ones, but care must be taken in interpre-

tation of these estimators, because the estimator variance is large due to multicollinearity. Inflation

and volatility are the only exogenous variables with significant coefficients, but the cross-quantile

estimator fluctuations indicate that also these are unstable. Nevertheless, the eigenvalues of

ˆ™ are

inside and close to the perimeter of the unit circle, and we can expect that although the process is

near integrated, it is not explosive. The quantile VAR model is a-theoretical, but may approximate

H adequately by producing quantiles y t when given a starting set of quantiles y t°1

and a fixed point

yt ,q , e.g., median estimate provided by Ap.

23

The multicollinearity issues in the model from Equation 5.12 may be resolved by decomposing

the variance of the quantiles using a principal component analysis as originally proposed by Pearson

(1901). Letting K be the Q£T matrix of quantiles with the covariance matrix ßQ , the principal com-

ponents are the columns of P = K W , where W =
°

v

1

v

2

... vQ
¢

and v i are the eigenvectors

of ßQ .

24

The eigenvalue problem for Q = 99 is solved numerically, noting the objections of Wilkinson

(1965).

25

99.2% of the variance is explained by the first three principal components with eigenvalue

shares of 86.1%, 11.4% and 1.7%, respectively. Their historical development is plotted in Figure

5.2. The historical development of the first principal component (pc1) resembles the development

common to all quantiles, and its correlation with the median multiple is Ω =°0.99. pc2 has Ω = 0.81

correlation with the sample standard deviation

26

and can be expected to represent a dispersion effect.

21

The # of coefficients becomes large for VAR(n) models. Implementation excluding exogenous variables

with n = 1 gives AIC=°41.1, BIC=°40.1, HQ =°40.7 and n = 2 gives AIC=°41.0, BIC=°39.0, HQ =°40.2.

22

The H
0

: "≤t is i.i.d", was tested with a multivariate Portmanteau test, unable to reject significant autocorre-

lations for 15 ∏ logn lags (Hosking 1980). See Table 16 in Appendix C.VII for test results.

23

The approximation for H is given by yt ,q = yt ,q°1

+ e ˆÆq+√̂
q
1

·Dt°1

+ ˆbq ·x t
for q > 5 and yt ,q = yt ,q+1

°

e ˆÆq+√̂
q
1

·Dt°1

+ ˆbq ·x t
for q < 5, where

ˆÆ,

ˆ™= ((√̂1

1

)

T
...(√̂n

1

)

T
)

T
and

ˆB = (b̂

T
1

...b̂

T
n )

T
are estimated coefficients.

24

See Alexander (2008b) for elaborate description of principal component analysis, interpretation, and termi-

nology.

25

The eigenvalue problem was solved using the "eigen" function in the "base" package in R, a FORTRAN

implementation of a DSQD-based algorithm (differential quotient difference with shifts).

26

See Figure 24 in Appendix C.IX for time series plot of sample standard deviation, skewness and kurtosis.
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Chapter 5. Distribution of Valuation Multiples

Table 5.1: Results from VAR(n) model on quantiles

Dependent variable:

log inter-quantile distances

D t
0.1

D t
0.2

D t
0.3

D t
0.4

D t
0.5

D t
0.6

D t
0.7

D t
0.8

D t°1

0.1

0.647

§§§
0.142

§§§
0.031 °0.095

§ °0.111

§§
0.087 0.007 °0.088

(0.050) (0.047) (0.050) (0.053) (0.054) (0.057) (0.054) (0.061)

D t°1

0.2

0.199

§§§
0.522

§§§
0.164

§§§
0.104

§ °0.059 0.036 0.058 °0.075

(0.056) (0.053) (0.056) (0.059) (0.061) (0.064) (0.060) (0.068)

D t°1

0.3

°0.046 0.298

§§§
0.489

§§§
0.113

§§
0.094 °0.041 °0.011 °0.015

(0.053) (0.050) (0.053) (0.056) (0.058) (0.061) (0.057) (0.065)

D t°1

0.4

0.011 °0.059 0.200

§§§
0.429

§§§
0.080 0.004 °0.036 °0.133

§§

(0.054) (0.051) (0.055) (0.057) (0.059) (0.062) (0.059) (0.066)

™
1 D t°1

0.5

0.102

§ °0.001 0.062 0.291

§§§
0.435

§§§
0.280

§§§
0.074 0.125

§

(0.057) (0.053) (0.057) (0.060) (0.061) (0.065) (0.061) (0.069)

D t°1

0.6

°0.043 0.020 0.047 °0.018 0.231

§§§
0.427

§§§
0.060 0.062

(0.057) (0.053) (0.057) (0.060) (0.061) (0.065) (0.061) (0.069)

D t°1

0.7

0.004 °0.020 0.011 0.063 0.070 0.151

§§§
0.668

§§§
0.213

§§§

(0.047) (0.043) (0.047) (0.049) (0.051) (0.053) (0.050) (0.057)

D t°1

0.8

°0.020 °0.0002 °0.020 °0.051 0.047 0.038 0.202

§§§
0.734

§§§

(0.041) (0.038) (0.041) (0.043) (0.045) (0.047) (0.044) (0.050)

ÆT
Intercept 0.502

§§§
0.270

§§
0.450

§§§
0.507

§§§
0.264

§
0.470

§§§
0.267

§
0.863

§§§

(0.134) (0.125) (0.135) (0.141) (0.146) (0.154) (0.144) (0.163)

iEUspd101 °0.008 0.008 °0.010 °0.006 0.003 0.003 0.007 °0.010

(0.009) (0.009) (0.009) (0.010) (0.010) (0.010) (0.010) (0.011)

mEUCPI °0.022

§§ °0.015

§ °0.006 °0.024

§§§ °0.026

§§§ °0.005 °0.006 °0.029

§§§

(0.008) (0.008) (0.008) (0.009) (0.009) (0.010) (0.009) (0.010)

B
mEUpYOY °0.001 0.001 °0.001 0.001 °0.0003 °0.001 °0.001 °0.001

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.002)

vST50BCt °0.235

§§§ °0.185

§§ °0.285

§§§ °0.291

§§§ °0.228

§§ °0.313

§§§ °0.219

§§ °0.400

§§§

(0.087) (0.081) (0.087) (0.091) (0.094) (0.099) (0.093) (0.105)

Observations 222 222 222 222 222 222 222 222

R

2

0.845 0.873 0.882 0.851 0.853 0.875 0.933 0.922

Adjusted R

2

0.836 0.865 0.875 0.843 0.845 0.868 0.929 0.918

Res. Std. Error 0.073 0.068 0.073 0.077 0.079 0.084 0.079 0.089

F Statistic 95.025

§§§
119.452

§§§
130.134

§§§
99.782

§§§
101.363

§§§
122.188

§§§
240.982

§§§
206.077

§§§

Note: §
p<0.1;

§§
p<0.05;

§§§
p<0.01
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Figure 5.2: Historical development of -pc1, pc2 and pc3

Figure 5.3 depicts the effect coefficients of pc1, pc2 and pc3 on each of the quantiles. It is evident

that the (negative) first component is a trend component capturing proportional shifts in the complete

distribution.

27

The second component may be interpreted as a contraction (tilt

24

) component as

each of the distributional tails are affected oppositely. An increase in this component leads to an

expansion of the distribution. pc3 represents more complex skew-dynamics (convexity

24

), and an

increase entails a negative drift of both tails and a positive drift of the center - skewing the distribution

negatively. pc2 has one fixed point

28

in the center of the distribution and pc3 has two fixed points.

Because the pc1, pc2 and pc3 are linear combinations of quantiles that are assumed to be coin-

tegrated with the underlying variables, a regular cointegrated factor analysis is conducted using

independent variables from Ap. The resulting coefficients and R2

values are displayed in Table 5.2

and resemble Ap coefficients for pc1, likely to capture the overall trend. The other regressions are

less significant, have far weaker R2

values and the interpretation is not straightforward, because the

cointegration may be weak and nonlinear cross effects between the different principal coefficients

may affect causality. Other sets of exogenous variables may describe the principal components more

precisely.

29

Nonetheless, we note that pc2, representing dispersion, increases with volatility and

27

Note that a dispersion proportional to the standard deviation of the quantiles is encompassed in this trend

component because the quantiles are normalized in advance of the decomposition.

28

By a fixed point, we mean a point in the distribution that is inert to movements of a certain factor.

29

New subset regressions were conducted on each of the principal components. See Table 18 in Appendix

C.X for favored coefficients. The USD/EUR exchange rate, 10-year interest rate and inflation are identified as

key variables for pc2, pc3 and pc4, but we will leave this subject as an area for further research. A preliminary

hypothesis explaining the USD/EUR-rate effect is: Importing firms are valued at higher multiples than exporting

firms. When EUR is devalued, importing corporation’s cash flows diminish, leading to multiple distribution
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Chapter 5. Distribution of Valuation Multiples
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Figure 5.3: Principal component coefficients for 99 quantiles

decreases with the spread, while pc3 is affected primarily by inflation. These results are strikingly

consistent with the coefficients in Figure 5.1.

In summary, three quantile estimation models have been created: qOLS - OLS directly on quan-

tiles (Equation 5.9), qVAR - VAR on quantile differences (Equation 5.12) and qPCA - PCA-based

OLS on quantiles. qOLS and qVAR are a priori consistent with Ap, while qPCA has a negligible

deviation, rendering all models operative as extensions of Ap. Figure 5.4 displays plots of each of

the in-sample predictions against actual quantiles.

30

It is evident from the qOLS versus qPCA plot

that pc1, pc2 and pc3 capture almost all variance in the distribution as the in-sample predictions are

inseparable. In Chapter 4, Rp had a similar accuracy to Ap in in-sample modeling of the median, but

qVAR is stronger than qOLS and qPCA at higher quantile predictions (see Table 5.3). This indicates

that the propagation of distributional dynamics by building quantiles from differences implemented

in qVAR captures some profound aspects that qOLS and qPCA fail to incorporate. Even though in-

terdependencies between the quantiles in qVAR have a stabilizing effect on the quantiles close to the

median, the massive parametric flexibility may cause overfitting issues. qOLS and qPCA are less

prone to overfitting, because individual quantiles only depend on linear relationships, but underfit-

ting is significant, as seen for the 90% quantile in-sample. qPCA represents a transparent model

for the drivers of the distribution moments with far fewer degrees of freedom than qOLS, and in-

feasibility issues in predictions can be monitored by inspection of principal component coefficients,

possibly involving smoothing operations.

5.2 Parametric Distribution Regression
The quantile perspective investigated in the preceding chapter quickly becomes complicated when

accounting for various assumptions and constraints related to the fundamental properties of distri-

butions. Leveraging on the discussion from this chapter’s introduction, we have developed a method

of regressing a dynamic parametric distribution on a set of underlying variables. Assume that the

observed multiples ! 2≠t are instances of the random variable Mt . The pdf of Mt , fΩt
, is assumed

contraction.

30

Note that the qVAR distribution was built by fixing initial quantiles yt=1,q and building each cross sectional

distribution from the Ap median fitted values, according to the method explained in footnote 23.
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5.2 Parametric Distribution Regression

Table 5.2: OLS model coefficient on pc1, pc2 and pc3 using Ap underlying variables

Dependent variable:

Principal Component

pc1 pc2 pc3

iEUspd101 3.640

§§§ °1.030

§§§ °0.151

(0.438) (0.336) (0.116)

mEUCPI 4.097

§§§ °0.299 °0.688

§§§

(0.302) (0.232) (0.080)

mEUpYOY °0.674

§§§
0.083

§ °0.028

§

(0.064) (0.049) (0.017)

vST50BCt 64.943

§§§
15.886

§§§
2.026

§

(4.421) (3.391) (1.166)

Constant °113.159

§§§ °23.284

§§§ °1.773

(6.840) (5.246) (1.804)

R

2

0.800 0.114 0.294

Adjusted R

2

0.797 0.098 0.281

Residual Std. Error 4.163 3.193 1.098

F Statistic 218.402

§§§
7.019

§§§
22.723

§§§

Note: §
p<0.1;

§§
p<0.05;

§§§
p<0.01
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Figure 5.4: In-sample fitted quantiles vs. actual quantiles for qOLS, qVAR and qPCA (actuals in

turquoise). Bottom right: in-sample fitted values from qOLS vs qPCA.

51



Chapter 5. Distribution of Valuation Multiples

Table 5.3: Root Mean Square Deviations measuring complete in-sample accuracy between given

models for each quantile

10% 20% 30% 40% 50% 60% 70% 80% 90%

qOLS vs actuals 0.199 0.218 0.246 0.281 0.305 0.356 0.519 1.249 4.561

qVAR vs actuals 0.287 0.294 0.300 0.304 0.302 0.306 0.348 0.506 1.365

qPCA vs actuals 0.199 0.218 0.246 0.281 0.305 0.356 0.520 1.252 4.563

qOLS vs qPCA 0.000 0.000 0.001 0.000 0.000 0.000 0.001 0.002 0.002

to be a known distribution parameterized by the vector Ωt which is dependent on the underlying

macroeconomic variables through a linear relationship:

31

Ωt = Rx

t

(5.13)

where R is a matrix of coefficients, each row mapping x t to Ωi . The parameters of R will be

estimated to maximize resemblance between fΩt
and development of the empirical distribution of

multiples ≠t .

Resemblance may be measured by constructing a loss function §(R) = A(D
1:T ), where Dt =

D( ft ,≠t ) represents a distance metric measuring the distance between individual distributions and

A(D
1:T ) is an aggregation function computing the total distance between two series of distributions

based on the individual distances. From this,

ˆR = argminR § gives the parameters resulting in the

best fit according to the loss function. The adequate estimation technique depends on the choice of

A and D.

32

We propose a likelihood formulation of the optimization problem:

33

L(R; x

1:T ) =
TmaxY

t=1

P (≠t | fΩt
) =

TmaxY

t=1

Y

!2≠t

P (!| fΩt
) (5.14)

L (R; x

1:T ) =
TmaxX

t=1

X

!2≠t

logP (!| fΩt
) (5.15)

From visual inspection of historical data we observe that some fundamental characteristics are

identified with a lognormal distribution: bell-shape, positive skewness and positive domain. Because

the lognormal distribution is conventional and is associated with many naturally occurring sampling

processes in business (Gibrat 1931), it is instructive to assume that Mt is lognormally distributed

and parameterized in the following way: log Mt ª N (r

T
µ x t ,er

T
æx t

),

34

where R = (rµ,ræ)

T
. The

Likelihood function becomes:

L (R; x

1:T ) =
TmaxX

t=1

X

!2≠t

log

∑
1

!er

T
æx t

p
2º

exp

Ω
°

(log!° r

T
µ x t )

2

2e2r

T
æx t

æ∏
(5.16)

31

The linearity constraint reduces the model flexibility, but is assumed to capture most of the variance and

reduces risk of overfitting. Some distribution parameters have domain constraints, and in order to preserve the

linearity condition, we will assume a logarithmic transformation. E.g., see definitions of æ for the lognormal

distribution proposed later in the chapter.

32

See Appendix C.XI for a proposal of estimation for squared distance D and logarithmic sum A.

33

Assuming that the priors P (R) are equal, and hence: P (R|x) =ÆP (x|R)P (R) / P (x|R), and that each obser-

vation ! 2≠ is a random and independent draw from the underlying distribution fΩt .

34

Here, Ωt is defined by Ωt = (Ωµ,Ωæ)

T = Rx

t

= (r

T
µ x t ,r

T
æx t )

T
and the lognormal distribution is defined by

logYt ª N (Ωµ,eΩæ ). This ensures that æ is positive in the normal distribution: æ= er

T
æ x t

.

52



5.2 Parametric Distribution Regression

Table 5.4: Lognormal distribution parameters (

ˆR) obtained by maximization of likelihood function

in Equation 5.16 and descriptive statistics from resulting parameters

ˆR In sample statistics

x t Constant Term Spread Inflation Growth Volatility Median Max Min

ˆ

r µ 4.078 -0.054 -0.065 0.013 -1.154

ˆµ
1:T 2.072 2.386 1.654

ˆ

ræ -1.528 -0.017 -0.010 -0.002 0.580

ˆæ
1:T 0.584 0.734 0.457

This function is a multivariate, nonlinear, non-concave

35

function with possibilities of local

optima. In order to find

ˆR = argmaxR L (R; x), the gradient was computed:

@L

@ræ
=

TX

t=1

x t
X

!2≠t

((log!° r

T
µ x t )

2e°2r

T
æx t °1)

@L

@rµ
=

TX

t=1

x t
X

!2≠t

(log!° r

T
µ x t )e°2r

T
æx t

Several gradient descent and Newton’s method based algorithms were explored, along with non-

derivative search algorithms, as proposed by Nelder & Mead (1965), Corana et al. (1987) and Hooke

& Jeeves (1961). Despite some issues with time complexity, local minimas and convergence, we

achieved satisfying results using the Newton-based method and Hooke & Jeeves.

36

The value of

ˆL

does not provide much intuition, but

ˆR is presented in Table 5.4. The signs of the

ˆ

rµ parameters

are consistent with the impact in Ap, and the median

ˆµ value is 2.1 = log7.9, similar to the historical

median multiple. Volatility has a relatively weak contraction effect compared to other variables,

consistent with the findings in the preceding section. Using

ˆR, the median

ˆµt and standard deviation

ˆæ2

t are calculated for each in-sample time step t in the following manner:

ˆµt = er

T
µ x t

(5.17)

ˆæ2

t = (exp(e2

ˆ

r

T
æx t

)°1)exp(2

ˆµt +e2

ˆ

r

T
æx t

) (5.18)

Figure 5.5 shows the in-sample development of

ˆæt and

ˆµt , both fairly consistent with the em-

pirical in-sample standard deviation and median. Knowing that the empirical in-sample statistics are

exogenous to

ˆR, their fit gives confidence in descriptive value of the model. It is clear, however,

that there is some misspecification, as the standard deviation parameter deviate substantially from

the sample standard deviation on several occasions. It is natural to hypothesize that the lognormal

distribution is too restrictive and unable to account for the significant leptokurticity in the sample.

In the introduction of this chapter, Mt was proposed to be log Student-t distributed, as we were

unsuccessful in rejecting the hypothesis that the error terms, ≤t from the cross-sectional Equation

5.2, are Student-t distributed. In fact, lognormality on each cross-section ≠t is confidently rejected

with a JB-test, while we are unable to reject log Student-t distribution using a Kolmogorov-Smirnov

35

Set ræ = (ræ,0) and rµ = (rµ,0), and compute

@2L
@rærµ

=°PT
t=1

P
!2≠t 2x2

(log!° rµx)e°2ræx
correspond-

ing to the off-diagonal element in the Hessian of the bivariate Lb . An a,c,c,b-matrix is negative semi-definite

if Æ2a +2ÆØc +Ø2b ∑ 0 for some vector (ÆØ). rµ may be set such that ÆØc is arbitrarily big, making the Hes-

sian non-negative semi-definite. A non-negative semi-definite Hessian implies a non-concave function (Kreyszig

2010).

36

The Newton-based method used is the R nlm function implementation of Dennis (1983) in the stats package.
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Figure 5.5: In-sample estimated standard deviation and median from lognormal distribution model

against empirical sample median and sample standard deviation

test for the same samples. Consequently, we assume that log Mt ª T (rµx t ,er

T
æx t

,er

T
∫ x t

), where

R = (rµ,ræ,r ∫)

T
. We enforce non-negativity for the dispersion coefficient er

T
æx t

and degrees of

freedom er

T
∫ x t

in the familiar way. The new likelihood function becomes:

L (R; x

1:T ) =
TmaxX

t=1

X

!2≠t

log

∑
°(

er

T
∫ x t +1

2

)

°(

er

T
∫ x t
2

)!er

T
æx t

q
er

T
∫ x tº

µ
(log!° r

T
µ x t )

2

e2r

T
æx t er

T
∫ x t

∂° er

T
∫ x t +1

2

∏
(5.19)

The maximization problem for this likelihood function is intimidating but has many of the same

characteristics as the likelihood maximization for the lognormal distribution. We use the same

Newton-based algorithm and find the optimal parameters

ˆR seen in Table 5.5. Profound interpre-

tation of

ˆR has to be done with caution because the actual distributional moments relate to the

parameters in nonlinear ways, but we note that the

ˆ

rµ have promising signs and magnitudes and that

ˆ∫
1:T << 1 indicating excess kurtosis. The moments of the fitted log Student-t distributions were

computed numerically by using conventional sample moment estimators on 10,000 samples. Figure

5.6 present the historical in-sample moments against the fitted log Student-t median, standard devi-

ation, skewness and kurtosis.

37

The log Student-t distribution performs significantly better than the

lognormal distribution in capturing the median and standard deviation and is able to capture the gen-

eral movements in skew and kurtosis, although with some periodical deviations, particularly during

the dot-com bubble burst for standard deviation.

Figure 5.7 displays in-sample fits of the two methods for four selected cross-sections. Both dis-

tributions, based solely on one input vector x t , fit well with the observed values, but the parametric

flexibility of the log Student-t distribution gives it more accuracy, particularly in the tails. At the

t = 100 intersection, the restrictiveness of the lognormal distribution is evident as it overestimates

the mid region from ª 12x to ª 25x, but underestimates the mode and the upper tail. The responsive-

ness of log Student-t distribution is illustrated in the difference between the leptokurtic distribution

at t = 1 and the more lognormal distribution at t = 200. Figure 5.8 shows in-sample estimated log

37

For consistency sampled multiples above 50x were excluded.
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5.2 Parametric Distribution Regression

Table 5.5: Log Student-t distribution parameters (

ˆR) obtained by maximization of likelihood func-

tion in Equation 5.19 and descriptive statistics from resulting parameters

ˆR In sample statistics

x t Constant Term Spread Inflation Growth Volatility Median Max Min

ˆ

r µ 4.086 -0.056 -0.071 0.012 -1.151

ˆµ
1:T 2.106 2.354 1.699

ˆ

ræ 1.056 -0.034 -0.018 0.000 0.150

ˆæ
1:T 0.408 0.440 0.390

ˆ

r ∫ 4.582 -0.047 -0.029 0.005 -1.816

ˆ∫
1:T 5.128 6.806 3.410
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Figure 5.6: In-sample estimated median, standard deviation, skewness and kurtosis from log

Student-t distribution model against empirical sample values
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Figure 5.7: In-sample estimated parametric distributions and empirical distribution

Student-t distribution over time, illustrating the adaptiveness of the method. A distribution with

additional parameters, such as the skewed generalized t distribution (Theodossiou 1998) or general-

ized hyperbolic distribution (introduced by Barndorff-Nielsen (1977)), could potentially yield even

better fits, but the general optimization problem is O(en
) in number of parameters, and overfitting

could become a significant issue. Accordingly, we consider the generalized log-t distribution to be

satisfactory for our purpose, and it has a profound foundation in the quotient distribution of EV and

EBITDA.

5.3 Frequency Regression
The parametric distribution regression is an elegant approach to estimation of H , but it is inherently

restricted by the number of parameters and is dependent on computationally demanding optimization

problems. Hence, we have developed a flexible frequency-based method for approximating H .

In this model, the pricing data range is mapped into B non-overlapping and exhaustive intervals

(buckets),

38

and the pdf of Mt is assumed to be described by frequencies ∫bt 2 (0,1) for the buckets

b at time t , such that the probability density function of the multiple ! is:

P (Mt = m) =
BX

b=1

∫bt 1lb∑m<ub
(5.20)

where lb and ub denote the lower and upper limits of the bucket. ∫bt is assumed to be dependent on

the underlying variables x t through a logistic function and an i.i.d. residual process with diagonal

covariance matrix ≤bt . ∞t is a normalization constant:

∫bt =
∞t

1+eÆb+Øb ·x t+≤bt
,

BX

b=1

∫bt = 1 (5.21)

38

In the implementation below, the intervals are equal and trailing, but there are many potential approaches

bucket allocation, e.g., buckets based on a fixed number of observations or an OLS F-test requirement. See

Appendix E.I for discussion.
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5.3 Frequency Regression

Figure 5.8: In-sample estimated log Student-t distributions over time

Now, for B(|Øt |+1) parameters a likelihood function is defined based on the complete training

data set:

L(Ø
1:B ,Æ

1:B ; x

1:T ) =
TY

t=1

Y

!2≠t

P (Mt =!) (5.22)

Letting ≠bt be the set of observations in bucket b at time t , the log likelihood function be-

comes:

39

L (Ø
1:B ,Æ

1:B ; x

1:T ) =
TX

t=1

|≠t | log∞t °
TX

t=1

BX

b=1

|≠bt | log(1+eÆ+Øb ·x t
) (5.23)

(

ˆØ
1:B ,

ˆÆ
1:B ) = argmax

(Ø
1:B ,Æ

1:B )

L are the optimal coefficients for this model given the sample≠
1:T .

The optimization problem has 250 parameters for Ap, and we have not been successful in developing

an algorithm to compute it. The core of this part of the modeling is the heuristic approaches, which

has proven very successful in giving practically viable distribution estimates. A natural approxi-

mation of ∫bt is by the empirical frequencies

¯∫bt = |≠tb |
|≠t | , and if ≤bt is assumed to be i.i.d. with

diagonal covariance matrix, the following logistic regression model may be obtained:

40

¯∫bt =
∞t

1+eÆb

+Ø
b

·x
t

+≤bt
(5.24)

For estimation purposes, a perturbation, ±b = 1

2

mint {

ˆ∫bt }, is added to each empirical frequency

because the finite-sample bias renders some frequencies zero, giving infeasible results. The value of

±b is set large enough not to distort the regression significantly, and small enough to represent a low-

value instance. 19.5% of the frequencies observed are empty, mostly b > 30-buckets.

41

Equation

5.24 is reformulated and estimated using OLS:

39

See Appendix C.XII for derivation of Equation 5.23 using Equation 5.20, 5.21 and 5.22.

40

The assumption that ≤bt is i.i.d. and has diagonal covariance matrix is almost certain not to hold, but we are

seeking practical heuristics, and will ignore the issue in parts of the discussion.

41

See overview of magnitude of problem in Appendix C.XIII.
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Figure 5.9: F-statistic p-value from the frequency approach regressions for each bucket

log(

1

¯∫bt +±b
°1) =Æb +Ø

b

·x

t

+≤bt (5.25)

Because the perturbation makes the logistic regression slightly biased, we have developed a

linear model, liFreq (Equation 5.26), that tolerates 0 frequencies, but has an invalid domain (› [0,1]).

The domain constraint turns out to be violated only for a diminishing fraction of the frequencies,

mainly high-multiple buckets with few observations.

¯∫bt =Æb +ª
b

·x

t

+≤bt (5.26)

Because the frequencies are likely to be autocorrelated, we propose an autoregressive extension of

the preceding model (auFreq):

¯∫bt =Æi +√∫b,t°1

+ª
b

· x

t

+≤bt (5.27)

Using the fitted values from the model

ˆ∫bt , a complete estimation of the distribution is obtained

through normalization

˜∫bt = ˆ∫bt (

PB
b=1

ˆ∫bt )

°1

, letting:

ˆH
x t (m) =

BX

b=1

˜∫bt 1lb∑m<ub
(5.28)

The three approximations were estimated using OLS, although with significant issues in com-

pliance: discreteness, censoring, autocorrelation, and others, so the output must be interpreted with

care. Figure 5.9 displays reported F-test significance for the different buckets for the three mod-

els described, and unsurprisingly, the higher multiple buckets are the ones most pressing issues, as

they have smaller sample sizes and are affected by the discrete nature of the sampling and the non-

linearity issues. 1.0% of in-sample predictions in liFreq are invalid due to domain issues, and 1.5%

of the auFreq-values, which gives confidence in the assumption that the frequencies are sufficiently

linear within its domain to be estimated adequately using a linear model. Henceforth, liFreq will

be the primary frequency based approach, based on its simplicity, low frequency of domain issues,

ability to provide distributional estimates based solely on x t , and coefficient stability, which will be

elaborated shortly.
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Figure 5.10: 10%, 50% and 90% quantiles against in-sample nonparametric and in-sample OLS

Figure 5.10 displays quantiles computed from the in-sample distribution predictions by liFreq,

against actual quantiles and qOLS quantiles.

42

It is clear that the quantiles obtained from the fre-

quency model have close resemblance to the qOLS quantiles, although the quantiles are unseen to

liFreq. This indicates that some underlying relationship is captured in both models and gives con-

fidence in the overall estimate of the distribution from the frequency model. Figure 5.11 depicts

selected in-sample distributions of liFreq against empirical distributions, illustrating the flexibility

and accuracy of liFreq. The distributions estimated are less smooth than the parametric distributions,

but are able to capture irregularities, such as the flatness of t = 200. Nevertheless, the overall trends

of the frequency approach and parametric approach are similar, see Figure 5.12.

The coefficients reveal that the liFreq regressions are capable of capturing some fundamental

properties of the distribution. The coefficient function

ˆªi (b) for exogenous variable i is expected to

be continuous and smooth and represents the sensitivity of all parts of the distribution to changes in

the exogenous variables. Taking the expectation as |≠t |!1 of the coefficient integral from 0 to 1
and applying the Fundamental Theorem of Calculus:

E≤
t

[

Z1

0

ˆªi (m)dm] =
Z1

0

E≤
t

[

ˆªi (m)]dm =
Z1

0

E≤
t

[d ¯∫(m)t ]

d xi
dm

=
Z1

0

d∫(m)t

d xi
dm = d

d xi

Z1

0

∫(m)t dm = d
d xi

[1]

= 0

(5.29)

It is evident that the coefficient integral will converge towards 0 as |≠t | increases.

43

Compliance

with this property is an indication of stability in the coefficients, and turns out to be superior for

liFreq, as seen in Figure 5.13 versus corresponding figures for the logistic and the lagged models in

Appendix C.XIV.

The fixed point intersection of each variable marks the bucket that is unaffected by movements

in the exogenous variable, and the two sides are affected oppositely by a change in the underlying.

42

The q’th quantile was defined by

ˆyq,t = m|
Rm

0

ˆH
x t (m0

)dm0 = q , using

ˆH
x t (m) from Equation 5.28.

43

For this calculation, the coefficients from Equation 5.26 were used. If coefficients from Equations 5.27 or

5.24 are used, corresponding results are obtained.
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Figure 5.11: In-sample estimated liFreq distributions and empirical distributions

Figure 5.12: In-sample frequency model distribution of EV/EBITDA over time
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Figure 5.13: Coefficients of four exogenous Ap variables from 50 regressions using Equation 5.26

Moreover, if a variable changes in a way that increases the frequency of the lower buckets, the buck-

ets of higher multiples than the x-intercept will see a decrease, and the flux through the distribution

at the intercept value will be negative. This indicates that the variable affects the multiple negatively.

The difference in the intercept points and shapes between the variables coefficients gives informa-

tion about the behavior of the multiple, and the hypotheses of variable effects from Section 5.1 and

5.2 are supported and elaborated: while the frequency of 10x valued firms is unchanged by term

structure spread movements, the same part of the distribution is the one most severely affected by

volatility hikes.

5.4 Summary
A wide range of methods to model the dynamics of the distribution of multiples have been developed

(i.e., approximations of H from Equation 5.1). The quantile methods (qOLS, qVAR, and qPCA) use

quantiles or constructs from quantiles as the dependent variable, while the parametric distribution

method use observed multiples as realizations of underlying stochastic variables. The frequency

method (liFreq) is a very general method with few assumptions on the nature of the distribution

dynamics and provides elaborations on the effects of individual exogenous variables. The results are

highly consistent with the index analyses and across the different distribution modeling methods. All

variables affect the whole distribution, but term structure spread is more important for high-valued

companies, volatility is more important for medium- and low valued companies and inflation is

important for the center of the distribution. Industrial production growth has a relatively even effect

on the whole distribution of multiples.

44

The significance of the explanatory variables proposed in

Ap is not as strong for the tails of the distribution, and it may be beneficial to utilize other variables

in their description.

44

As a supplement to the discussion, a simplistic analysis of how the exogenous variables impact low versus

high valued companies is provided in Appendix C.XV. The results of the analysis are largely consistent with our

findings here.
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Chapter 6

Forecasting

After analyzing and understanding underlying macroeconomic drivers of multiples historically by

examining indices and the complete distribution, we wish to establish a view on the prospects going

forward. However, any forecast undertaking is subject to some notable pitfalls, and even the overall

viability of scientific forecasting is debated (van Vught 1987). Hume’s problem of induction may

be used dogmatically to object any prediction - deterministic or probabilistic. Practically, however,

forecasts serve as decision support and discussion material, and most mortals tolerate the assump-

tion that the laws governing the past will govern the future. Of course, fully uncovering these laws

is impossible, but the endeavor of science is to propose theories describing aspects of the laws. For

econometric forecast models, empirical support is key, and models with causal backing in unrefuted

economic theories are strengthened versus a stand-alone econometric model. Occams’ razor is also

core for developing and choosing plausible and transparent models (Popper & Bartley 1982). Nev-

ertheless, Hume’s objection remains, and an epistemological disclaimer is included in the sentiment

of the models: We have to be modest.
We start by ignoring the macroeconomic environment and forecast yt solely based on its history.

In Section 6.2 the focus is shifted to the underlying environment, and we use publicly available fore-

casts and scenarios of the key variables along with our models to assess consequences for valuation

multiples. In the last part, Section 6.3, we use vector models and Monte Carlo simulations to quan-

tify uncertainty in the development of the underlying variables and propagate this into uncertainty

concerning valuation multiples development.

6.1 Endogenous Forecasting
Some information that may be useful for forecasting of a time series can be apparent in the series’

historical development: autocorrelation, trends, mean reverting tendencies and stationarity, and any

forecasting based on underlying variables introduce an additional layer of uncertainty in the regres-

sion model (Ashley 1983). It is instructive to use models capturing these endogenous properties to

gain an initial view on what development prospects we might expect. The models using no external

information will be referred to as naïve models. Two trivial benchmark models can be constructed

immediately. The Naive Martingale (NM): The forecast is the last observed value (Ville 1939). The

Naive Gauss (NG): The forecast is the average of all previous forecasts. A natural extension of NM
is the AR(n) model, in which forecast preserve the Markov property (Russell & Norvig 2003), but
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depend on parameters reflecting the complete process:

1

yt =Æ+∞
1

yt°1

+ ...+∞n yt°n +≤t (6.1)

MA(m) models also preserve the Markov property, but residuals are used to smooth out a fixed part

of the process - a natural extension of the NG model:

yt =Æ+≤t +a
1

¥t°1

+ ...+am¥t°m (6.2)

Combining these two models, we obtain the ARMA(n,m)-model:

yt =Æ+∞
1

yt°1

+ ...+∞n yt°n +¥t +a
1

¥t°1

+ ...+am¥t°m (6.3)

and by using dt instead of yt , an ARIMA(n,1,m) is obtianed.

The model parameters were estimated by maximizing the associated likelihood function using

the algorithm proposed by Nelder & Mead (1965) implemented in the arima-method from stats in

R. A range of n and m values for the models were tested in an out-of-sample prediction test for six

horizons,

2

but no lag performed significantly better than m,n = 1, see Table 6.1. NM and models

forecasting something similar to the current do well on short horizons, while NG and models with

a mean reverting tendency do better on long horizons. The AR(n) and ARMA(n,m) seem to adopt

features from both strategies. No model is superior, but ARMA(1,1) and AR(1) perform well on all

horizons and are pruned by Occam’s razor.

Table 6.1: Root Mean Square Errors for out-of-sample prediction test for a selection of models on

six horizons

Forecast horizon
1 month 2 months 6 months 1 year 2 years 5 years

AR(1) 0.053 0.119 0.394 0.839 1.678 2.598

AR(2) 0.054 0.125 0.429 0.922 1.699 2.258

AR(5) 0.055 0.129 0.497 1.122 1.897 2.303

MA(1) 0.525 1.758 1.827 1.917 2.037 2.260

MA(2) 0.272 1.090 1.817 1.908 2.031 2.254

MA(5) 0.109 0.386 1.801 1.895 2.024 2.249

ARMA(1,1) 0.053 0.122 0.414 0.888 1.671 2.270

ARMA(2,2) 0.055 0.127 0.469 0.972 1.576 2.341

ARIMA(1,1) 0.053 0.121 0.394 0.804 2.061 3.526

ARIMA(2,2) 0.053 0.121 0.394 0.806 2.038 3.510

Naïve Martingale 0.052 0.115 0.375 0.810 1.927 3.514

Naïve Gauss 1.749 1.767 1.835 1.924 2.042 2.264

1

The ARIMA(n,d,m) models and their assumptions will only briefly be presented here. See Tsay (2010) or

Alexander (2008a) for elaboration.

2

The data was separated into test- and training data according to the following indexing: D
test

=
y

(T°h°N+i ):T and D
training

= y
1:(T°h°N+i°1)

for T = 223, horizons h 2 {1,2,6,12,24,60}, sample size N = 50

and i 2 [1, N ]. This test is biased towards testing on later parts of the sample, based on early parts, but random

sampling would alter the autocorrelation, and correlated sampling processes would be biased towards prediction

models resembling the generative model.
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Figure 6.1: Monte Carlo simulations for four different models using the pricing index solely

Figure 6.1 displays the results from a Monte Carlo simulation of AR(1), MA(1), ARMA(1,1)
and ARIMA(1,1).3 The first three models predict a mean reversion of the multiples over the next

five years, while ARIMA(1,1) predicts a slight increase from current valuation levels, continuing the

increasing trend observed towards current levels. The results are entangled with the model assump-

tions, and the question of which model to believe in must be answered with caution. Nevertheless,

the predictions provide an initial understanding of the kinds of development that might be expected

for yt , and looking at the prediction tests in Table 6.1 for selection guidance, a future multiple

decline arises as a supposition.

6.2 Scenario-based Forecasting
In the preceding analysis, the macroeconomic environment was ignored, although the models from

Chapter 4, particularly Ap (see Figure 4.2), were shown to be suitable for long-term predictions

when the development of the macroeconomic variables is known. This development is of course

not known, but may be forecasted. In Chapter 3, exogenous variables were chosen based on criteria

of predictability, and we hold these variables to be easier to predict than the multiple indices by

themselves, but more importantly: the variables are meaningful for investors and represent state-

ments they may agree or disagree with. The forecasts inherently introduce new uncertainties and

complications but provide transparency and intuition into the multiple development forecast.

Modeling macroeconomic environment dynamics may be done using vector autoregressions,

system dynamics, equilibrium theories, or a range of other methods. Instead of implementing this

from scratch, we rely on scenarios based on estimates from a range of models created by analysts and

institutions. The base case scenario is based on median consensus estimates for the macroeconomic

variables obtainable from Factset.

4

No volatility forecasts were available, and the base case was set

to be at a conservative increase from the current remarkably low levels. The accuracy of consensus

3

The forecasts are obtained by 1,000 Monte Carlo simulations drawing residuals randomly with substitution

from the model residuals. For ARMA(1,1): yt ,s =Æ+∞
1

yt°1,s +ust +a
1

us,t°1

, where yt s is simulation s at time

t , and ut s a randomly drawn residual. The residuals are not alarmingly autocorrelated, except for MA(1), see

Appendix D.I.

4

See Section 3.3 for elaboration on how the base case scenario is constructed.
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Figure 6.2: Multiple development scenarios using Ap (top) and Dp (botttom)

estimates is often questionable (Dreman & Berry 1995), and the estimates are likely to have less

internal consistency than individual forecasts, but are convenient, transparent and fairly consistent

with the beliefs in the industry. The base case scenario is used to derive other scenarios

5

with varying

volatility and growth:

• No-change Scenario: All variables remain at the current level.

• Base Case Scenario: Volatility increases from the current level to the median level the last

five years. Other variables are based on consensus estimates.

• Low Volatility Scenario: Volatility remains at the current level. All other variables are based

on consensus estimates.

• Increasing Volatility Scenario: Volatility increases to the overall median last twenty years,

which is still fairly conservative. All other variables remain as in the base case scenario.

• High Growth Scenario: Industrial production growth increases to the 90% quantile histori-

cally, i.e., 5.4 % growth. All other variables remain as in the base case scenario.

• Stagflation Scenario: This is a worst-case scenario, in which growth halts, inflation, volatil-

ity and term structure spread increase dramatically.

Figure 6.2 displays the resulting yt from projections of the scenarios using the path independent

predictable models, Ap and Dp. None of the scenarios result in an increase of multiples from current

level because the prevailing macroeconomic conditions are strong, in particular the low volatility.

Predictions of Ap result in larger dispersion than Dp, and while Ap predictions reflect the multiple

justified by the macroeconomic variables, Dp predictions reflect short term dynamics in the macroe-

conomic variables. Evidently, Ap is accurate long-term and Dp is accurate short-term, and their

performance intersection is at ª 6 months.

6 Ap may be adjusted to account for the current envi-

ronment by employing the autocorrelated residuals forecasting, Equation 4.10 from Section 4.4, but

in order to capture both the current environment and the short-term dynamics modeled by Dp, we

5

See Appendix D.II for numerical values of the scenarios.

6

I.e., the predicative performance of Ap and Dp are the same on a six month horizon. See Figure 4.2 in

Chapter 4.
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6.2 Scenario-based Forecasting

Table 6.2: Test RMSE results from in-sample prediction for Ap, Dp and Combined prediction model

Model 1 month 6 months 1 year 2 years 5 years

Ap-model 0.552 0.553 0.541 0.549 0.543

Dp-model 0.215 0.644 1.025 1.387 1.727

Combined model 0.213 0.470 0.526 0.529 0.544

propose a Combined forecast model:

7

yc
h = y a

h (1°e°c(h°i )

)+ yd
h e°c(h°i )

(6.4)

where yc
h is the Combined model prediction in horizon h based on Ap (y a

h ) and Dp (yd
h ), with param-

eters i and c. Now i = 0 such that y
0

= yd
0

, and c = log2

6

such that yc
6

= 1

2

y a
6

+ 1

2

yd
6

.

8

This forecast

model takes the current macroeconomic environment into account, models short-term fluctuations

and converges towards the level justified by Ap long-term. In fact, reversion from the current level

to Ap levels mirrors the solution to an Ornstein-Uhlenbeck process

9

with µt = y a
t given by the Ap

prediction. Table 6.2 displays accuracy numbers from the usual in-sample prediction test.

10

The

Combined model performs as good as the best of Ap and Dp on all horizons, except for h = 6, in

which information from Ad and Dp are synthesized to create superior accuracy. Figure 6.3 shows

the development forecasted by Ap, Dp and the Combined model applied to the no-change scenario.

The prediction of the Combined model is an exponential decay from the current level to the level

currently justified by macroeconomic conditions. Figure 6.4 shows predictions using the Combined

model for all scenarios. The low volatility scenario is the only scenario remaining approximately

at the current multiple level, while all others yield significant downturns in median multiple. Even

the unchanged scenario predict a decrease in median multiple because it reverts to the current Ap
prediction. The base case prediction is a significant multiple contraction, stabilizing at ª 8.7x, down

from the current 9.8x multiple. The high volatility scenario predicts a downturn to ª 8.3x, while the

bearish stagflation scenario gives a ª 6.2x multiple in 2021.

In order to understand the full multiple valuation impact of the scenarios, they are applied to the

distribution prediction models developed in Chapter 5. Figure 6.5 displays the predicted multiple

distribution at the beginning of 2021 for each scenario using the log Student-t distribution and the

frequency method, respectively. All scenarios except the low volatility scenario entail a shift of the

distribution towards lower multiples, but also non-trivial information about dynamics are revealed,

such as dispersion and fatness of tails. As discovered in Chapter 5, the high multiple tail is less

affected by increases in volatility than other parts of the distribution. Hence, in the low volatility

scenario, parts of the high multiple tail (40x-50x) have lower densities than for the high growth

7

An exponentially decaying weighting is used to get a smooth transition between the two models. Other func-

tions, such as linear and Sigmoid functions, were considered but yielded inadequate prediction test results. Also,

the exponential decay mirrors Equation 4.10 and is inspired by an Ornstein-Uhlenbeck process. See footnote 9.

8

The parameters and the weighting functions may be subject to more sophisticated methods of estimation,

such as likelihood maximation for the whole system, but it is probable that this would eliminate explanatory

power from exogenous variables, as seen in Section 4.4. See Appendix E.I for a note on further research of this

subject.

9

See Uhlenbeck & Ornstein (1930) for elaboration on process. The Ornstein-Uhlenbeck process is defined by

d yt = c(µ° yt )d t +ædWt , and the solution is yt = y
0

e°ct +µ(1°e°ct
)+æ

Rt
0

e°c(t°s)dWs , where the expected

value of the Wiener Process dWs is 0.

10

The same test was used here as in Figure 4.2, i.e., given the current and future macroeconomic variables,

and complete training data, predict the h horizon value.
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Figure 6.3: Median EV/EBITDA multiple development forecasted by Ap, Dp and the Combined

model with unchanged macroeconomic environment
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Figure 6.5: Multiple distribution development forecasted by the log Student-t parametric distribu-

tion model and the frequency distribution model for the six specific scenarios in beginning of 2021

scenario, although the low volatility scenario implies a significantly stronger median multiple. The

multiple distribution predicted in the base case scenario at the beginning of 2021 is relatively consis-

tent across models, as seen in Figure 6.6, but the log Student-t distribution is somewhat shifted to the

right, and the frequency model has a dent in the top. The full dimensionality of the base case distribu-

tional predictions using the frequency model is presented in Figure 6.7, and the cross-distributional

impact of the hypothesized multiple decline is evident.

6.3 Vector Model Forecasting
Although scenario modeling is transparent and easy to interpret, a severe disadvantage is that nothing

can be said about uncertainty in the predictions. The future can never be predicted exactly, and

probabilities can never describe the future completely, as discussed in the introduction to this chapter.

Nevertheless, if some fundamental assumptions on the underlying process are made, a model can be

created representing one view on the future, conditional on the assumptions. Instead of postulating

scenarios, we will in this section postulate models of the behavior of the exogenous variables, and

use Monte Carlo simulations and the models from Chapter 4 and Chapter 5 to establish a view on

the development of multiple indices and distributions.

If the exogenous variables were independent, they could have been modeled with individual

ARMA-models, and if they were serially independent, they could have been modeled as vector

white noise drawing from an estimate of their joint distribution,

11

but in our case, the variables are

both serially and cross-correlated. A VARIMA model

12

is versatile and handles serial correlation,

interdependencies, and nonstationarity. However, because the exogenous variables are cointegrated

a VARMA model is more appropriate.

13

Despite the arguments presented by Athanasopoulos &

11

E.g., by assuming multinormality, and to use a Cholesky decomposed covariance matrix estimate along with

the mean-vector to obtain simulations through drawing of standard normal variables.

12

The terminology is assumed to be known. See Tsay (2010) for an explanation.

13

See Appendix D.III for Johansen test results indicating cointegration. Toda & Yamamoto (1995) argue that

VAR models are appropriate for cointegrated variables. Furthermore, the problem of Section 6.1 is repeated with

predictions from a VARIMA-model: Differentiated models yield trivial flat predictions.
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Figure 6.6: Multiple distribution prediction in beginning of 2021 in the base case scenario for

models developed in Chapter 5. Log Student-t distribution are plotted in all charts for comparison

(black line)

Figure 6.7: In-sample multiple distribution over time for the frequency model including base case

scenario predictions
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Spread Inflation Growth Volatility EV/EBITDA

Current value 1.10% 2.10% 1.24% 12.6% 9.77x

Historical median 1.27% 2.00% 1.80% 24.0% 8.04x

Historical mean 1.24% 1.74% 1.00 % 22.1% 8.14x

Steady state solution 1.18% 1.72% 0.93% 21.5% 8.22x

Table 6.3: Steady state solution without fixed variables for VAR-Ap model

Vahid (2008), we ignore the MA terms as these complicate estimation and simulation adding little

explanatory power. A Structural VAR(1) model captures both current and 1-lag interactions of the

variables (Tsay 2010):

x t =Æ+B0

x t +B1

x t°1

+≤t (6.5)

where x t are the exogenous variables, Æ is a vector of constants, ≤t is an i.i.d. error process vector

with 8(i 6= j )Cov(≤i ,≤ j ) = 0, and Bi
are the autoregressive coefficient matrices. B0

is such that

elements bi i = 0. The SVAR model may be reformulated into a normal VAR model:

x t = (I °B0

)

°1Æ+ (I °B0

)

°1B1

x t°1

+ (I °B0

)

°1≤
t

= a +V x t°1

+e t
(6.6)

The reformulation renders identification of the original coefficients impossible, and the covari-

ance matrix of the error process e t becomes nonzero, but neither of these effects is problematic

because the forecast simulations will be unaffected. The coefficients can be estimated using OLS,

and the results for the underlying variables in Ap are attached in Table 22 in Appendix D.IV. The

main predictor of each of the variables is naturally the previous realization of itself, but there are

also significant cross-variable effects. The residuals from the VAR model are largely serially un-

correlated,

14

allowing for independent random drawings of residual vectors in the Monte Carlo

simulation.

In the long-run, the exogenous variables in the VAR will converge to a steady state x such that

x t = x t°1

= x when t ! 1. If det(I ° ˆV ) 6= 0, we can take the expectation value of the set of

equations 6.6 to obtain:

x = (I ° ˆV )

°1Æ̂ (6.7)

The steady state solution for the VAR model based on Ap is displayed in Table 6.3. The current value

of the term structure spread at 1.1% is close to the steady state, while inflation is somewhat lower at

2.1% and industrial production growth is higher at 1.24 %. The variable furthest away from steady

state is volatility, currently among the 2%-quantile lowest values, at 12.6%. From Section 4.1.2,

volatility is known to have large impact on multiple levels and thus, a volatility driven multiple

mean reversion may be hypothesized. The steady state solution is a relatively optimistic scenario

compared to median and mean scenarios.

The Monte Carlo simulation for each model is conducted by providing the initial value xT
and then propagating the simulation vectors by drawing cross-correlated, but not serially correlated

residuals, based on the historical distribution.

15

For a simulation s at horizon h, the vector of

underlying variables is:

x

s
h = ˆÆ+ ˆV x

s
h°1

+u

s
h (6.8)

14

See ACFs for the VAR model residuals in Figure 29 in Appendix D.IV.

15

Two methods were tested: 1) Drawing directly from the observed vectors of

ˆ

e t . 2) Fitting a multivariate

kernel to

ˆ

e t , (Panaretos & Konis 2012) and drawing from this. No significant differences between the methods

were discovered.
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where

ˆÆ and

ˆV are the estimators of coefficients from Equation 6.6 and u

s
t is a randomly drawn

residual vector. Figure 6.8 displays the historical development and the simulated probability fans

for underlying variables in Ap based on 1,000 simulations. As expected from a VAR model, there

is a clear mean reversion in all underlying variables. Furthermore, the variables are affected by

the development of each other, creating feedback motion resembling a damped harmonic oscillator,

particularly for industrial production growth. One consequence of this is that the median of the

growth variable simulations is expected to hit 0 in 2021, before reverting towards the steady state at

ª 1%. In general, the overall trend of the variables is similar to the trends in the base case scenario,

except that the latter is more bullish on growth and volatility. The model could have been calibrated

to fit better with the base case scenario, but this would affect the integrity and simplicity of the

model. The point of mean reversion for the growth variable is 0.93%, close to the historical mean of

1.00% and far away from the historical median at 1.80%, indicating that the model is influenced by

the outliers of the 2007/2008 financial crisis.

The individual simulations x

s
h are projected through to y s

t using the relationships from Chapter

4 and drawing regression model residuals from the historical distribution. For Ap, the following

projection was conducted:

y s
T+1:H = ˆÆ+ ˆØ · x

s
T+1:H +≤s

T+1:H (6.9)

where

ˆÆ and

ˆØ are estimated coefficients and ≤s
t is a residual from Equation 4.1. As discussed in

Section 4.4, the residuals in Ap are autocorrelated, and this was managed by modelling the residual

process explicitly using Equation 4.9. For each s, a vector of random residuals

ˆus
T+1:H is drawn

from the residuals of Equation 4.9, and this residual vector is used to propagate correlated error pro-

cesses from the initial value

ˆ≤T , resulting in

ˆ≤s
T+1:H . Corresponding Monte Carlo simulations were

conducted for the Dp and Rp models.

16

The projection of individual simulations before aggregation

is done to preserve the full dynamic of the models, allowing correct estimation of the time-varying

distribution of developments. One essential difference between this way of forecasting compared

to scenario forecasting is that we preserve the probability distributions and effectively convolute

the VAR process residuals with the regression model residuals in order to create the final forecasts,

allowing us to quantify uncertainty and the complete distribution of outcomes.

The probability fan in Figure 6.9 displays the quantiles of the projected development using Ap
and the VAR. Accounting for autocorrelation in the residuals resolves the issue of the deviation be-

tween the actual and the Ap estimate because the autocorrelation between the final observed residual

and the consecutive simulated residuals is taken into account explicitly in the initial value of the

residual process. The fan median yields a mean reversion resembling the base case scenario but is

slightly more pessimistic. The upside from the current multiple level is associated with the 90%

quantile of developments, while the 10% worst-case prediction is a sub 7.0x multiple by early 2020.

The outputs must be interpreted with caution, but give an indication of the distribution of outcomes

given the underlying VAR model and Ap.

The Combined model introduced in Section 6.2 performed well in the prediction tests, and

projecting the Monte Carlo simulation of the underlying variables using Equation 6.4, the results in

Figure 6.10 are obtained.

17

The fan resembles the Ap fan but is less radical in initial variance because

Dp yields smaller deviations and governs the process initially. Furthermore, the rate of decrease of

the median is smaller because Dp predicts an integrated process, but the two distributions converge

16Dp: y s
t s = y s

t°1

eØd¢x

s

t

+≤t ,s
. Rp: y s

t = ˆÆr + ˆ∞y s
t°1

+ ˆØr · x

s
t +≤

s
t . None of these models have the same issues

with autocorrelation in the residuals as Ap.

17

The simulations are projected into Ap and Dp, drawing correlated residuals for Ap:y s
h = ˆÆ+ ˆØ · x

s
t + us

t ,

where us
t is generated in the explained way, and Dp: y s

t = y s
t e

ˆØd (log xs
t °log xs

t°1

)+us
t
, where the residuals are

drawn from the ones observed historically. These are combined using Equation 6.4 to form individual Combined

model simulations. The resulting error process is a convolution of three error processes, VAR residuals, Dp
residuals and Ap residuals.
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Figure 6.8: VAR model forecasting of underlying variables in Ap
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nous variables and Ap to project.
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Figure 6.10: Probability fan for development of Median EV/EBITDA using VAR model for under-

lying variables and Combined Ap and Dp-models for projection.

long-term. The forecasts produced by the Combined model are proven to be accurate in-sample, and

the predicted multiple decline is slightly less pessimistic but still severe.

The underlying simulations also provide an opportunity to form a view on uncertainty in devel-

opment of distinct quantiles of the multiple distribution. In Figure 6.11 probability fans for develop-

ment of 10% and 90% multiple quantiles using VAR model for exogenous variables and qOLS for

projection are depicted. As for Ap, autocorrelations in residuals are mitigated by adopting an AR(1)

model. The uncertainty for high valued companies is larger than for low valued companies, but not

in relative terms. In Chapter 5, we emphasized that the current median multiple is lower than in 2007

but higher than in 2000, while the 90% quantile opposite: higher than 2007 but lower than in 2009.

The probability fans do not forecast the development of expensive companies to be as dramatic as

in these crises, possibly because OLS mitigates the impact of extreme events, necessitating the use

of more complete distributional models in the forecasting. Nevertheless, the forecasted downturn of

the quantiles is severe and give an indication of the shift that might be expected.

Each model from Chapter 5 is an instance of the function F (h, s,m), mapping from horizon and

simulation to a multiple distribution.

18

It is natural to enumerate the distributions according to a

notion of optimism and pessimism, but the enumeration method is dubious. Unlike numbers, dis-

tributions do not have an inherent transitive ordering. A naïve way to produce output is to divide

the Monte Carlo simulations into quantiles and propagate this ordering through to the distributions,

but this does not account for cross-relationships between the series of underlying variables, and the

scenarios will be unrealistic. The µ parameter of the log Student-t distribution from Section 5.2 is

a location parameter and may be used to construct a transitive ordering of the simulation distribu-

tions. Since the variance in the other parameters is large, it is natural to perform smoothing of the

parameters, e.g., when naming a quantile of the simulation distribution of the multiple distributions.

Figure 6.12 depicts the 10%, 50% and 90% simulation distribution quantiles of the log Student-t dis-

tribution prediction at the beginning of 2021.

19

We can observe that current in-sample distribution

18

In order to fully propagate the error process of the distribution, an autocorrelated continuous distributional

residual process,

ˆ≤(m)

s
h has to be defined. This is elaborated in Appendix E.I.

19

The smoothing operation for the q% quantile parameters is calculated as the mean of parameter values

between (q °2.5)% and (q +2.5)%.
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Figure 6.11: Probability fans for the development of the 10% and 90% quantiles of EV/EBITDA

using VAR model for the exogenous variables and qOLS for projection.

of multiples is close to the predicted two year 90% quantile distribution, which is consistent with

our forecasted probability fan using Monte Carlo simulations. Based on the same ordering of µ at

the same point of time, Figure 6.13 illustrates the full range of distributional outcomes for all 1,000

simulations, and cross-sectional medians are consistent with the range of median EV/EBITDAs at

the same instance in Figure 6.9.

As well as being instances of F (h, s,m), the models are instances of the function F (x t ,m), and

this dimensionality allows for analyses of sensitivity of the distribution towards individual exogenous

variables. In particular, volatility is an important factor, and Figure 6.14 displays the distributional

sensitivity towards volatility varying from minimum to maximum level historically. All other exoge-

nous variables are kept at the current level. Volatility has significant impact on the full distribution

manifested by the shift in Figure 6.14. The resulting median multiple ranges from 6.6x and 9.5x

illustrating the potentially severe effects of volatility increases.

The mean reversion produced by the models is not surprising, knowing that the current European

median multiple is within the top 10% quantile of values since 2000. The only time in our sample to

match this level is the months before the financial crisis in 2007. Proposed models struggle to justify

the multiple levels in the current macroeconomic conditions, but as emphasized by Hume we cannot

know that underlying relationships going forward will resemble the past. Nevertheless, we modestly

conclude that a future multiple decline is likely.
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Figure 6.12: Log Student-t distribution model’s 2021 prediction of distribution of multiples for

quantiles of parameters derived from 1,000 Monte Carlo simulations

Figure 6.13: Multiple distribution in 2021 for all 1,000 Monte Carlo simulations of underlying

variables using log Student-t distribution model
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Figure 6.14: Distribution of multiples when varying volatility and keeping the other exogenous

variables at current level
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Chapter 7

Conclusion

Value, ethical or material, is a fundamental concept in ethics and philosophy, and definition and

observance of the material part is a cornerstone in economics. Most econometric research on firm

valuation focus on analysis of stock price return variables, while we have employed a Copernican

Turn to understand aggregate firm valuation levels relative to profits:

mc = Vc

ºc
(2.7)

The cointegrated Ap model (Equation 4.1) was used to identify implied volatility, inflation, term

structure spread and industrial production growth as key drivers of the European median listed firm

LTM EV/EBITDA multiple, and the response was as expected from economic theory introduced in

Chapter 2.

yt =Æ+Ø ·x

t

+≤t (4.1)

Building on Ap, distributional dynamics of multiples were modeled from the quantile, paramet-

ric and frequency perspectives, obtaining consistent results regarding the distributional dynamics in

response to changes of underlying variables: implied volatility disproportionally impacts low mul-

tiples, while term structure spread affect high multiples. Inflation primarily affects the center of

the distribution, and industrial production growth has a balanced impact. The models produce a

complete cross-sectional distribution based on four exogenous variable data points at one instance t .

Forecasting the distribution and the aggregates is essentially an attempt to predict changes in

perceptions of future conditions. Triangulated by endogenous forecasting models, scenario analysis

and simulations of underlying variables, we are unable to justify prevailing multiple levels in the

current macroeconomic environment. This gives us reason to believe that we are at the verge of a

turning point in the business cycle.

Our research builds a platform from which further research that expands domain, accounts for

new assumptions or aims to improve accuracy may depart, see Appendix E.I for a non-exhaustive

list of ideas.

Other datasets and granularities may be used to enhance model performance. Our research

was exclusively concerned with rational factors, and a natural extension is to include irrational,

behavioral indicators in the exogenous variables, e.g., obtained through semantic analyses of social

media data. By segmenting the data into industries, geographies and other classes, hypotheses on
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class-specific drivers and multiples

1

can be tested. A firm size independent Ø multiple was proposed

in Chapter 5, and it would be interesting to investigate implications of its implementation and to do

corresponding analyses for other multiple types.

There is a vast range of econometric models that may capture additional features of the multiple

index processes, leading to more accurate descriptions of causality and predictions. Heteroskedastic-

ity is significant and may be dealt with using a GARCH-model. Autocorrelation in Ap is dealt with

using the exponential ARMA-family of models, but Long memory models may be more adequate in

explaining the slow decay in the ACF from Figure 4.9 (Mandelbrot & Van Ness 1968). Further ad-

vancements can likewise be made to the multiple distribution models. Solving

ˆØ
1:B = argmaxØ

1:B
L

in Equation 5.23 would yield the mathematically optimal parameters for the frequency model, but

the issue of overfitting may become pressing. These issues may be depressed by imposed constraints

on frequencies, e.g., by dividing buckets into monotonous sections, or correspondingly for differen-

tiated buckets. In principle, the inclusion of B and individual bucket ranges as parameters of L may

yield an optimal solution to the bucket allocation problem. Increased parametric flexibility may also

be a natural next step for the parametric method, e.g., by fitting a five-parametric generalized skewed
t distribution, using a spline composition strategy or by modeling the tails using extreme value anal-

ysis (Fisher & Tippett 1928). In Appendix E.I, an approach inspired by Quantum mechanics is also

proposed.

Cylicality and timing effects are not modeled in a sophisticated way in our models, but Hamilton

(1989) introduces Markov Switching Models (MSM) for describing regime nonstationarity, and we

propose describing the macroeconomic factors with a two-state MSM with switching probabilities

dependent on the absolute level of the macroeconomic variables (Diebold et al. 1993):

2

i 2 {1,2},¢x t =Æi +≤t i (7.1)

P (st = 1) = P (st°1

= 1)

1+eØ1x t°1

+ eØ2x t°1 P (st°1

= 2)

1+eØ2x t°1

(7.2)

This model outputs macroeconomic environment dependent probabilities of a regime change which

can be used to model the probability of a financial crisis or recession, but we were unable to esti-

mate the parameters using MLE.

3

The underlying variable modelling may be extended further by

modelling causal relationships explicitly through a system dynamic model including nonlinear feed-

back loops, decision variables, irrational responses and policy effects. Inclusion of panel data and

panel analysis in the system dynamic model allows contemporaneous modelling of individual firm

development, industry-specific dynamics and interaction patterns. Panel analyses by itself may be

useful for idiosyncratic risk modelling, and for obtaining a bottom-up perspective on the distribution

of corporations (Matyas & Sevestre 1996).

4

Combining the above-mentioned model extensions, a sophisticated and comprehensive, but

complex and potentially unintelligible, model will be obtained. Overfitting, data quality, and in-

terpretability become problematic, and Hume’s problem of induction remains: We do not know

that the future will resemble the past. Our approach to modeling has been pragmatic, exploratory,

1

Industry-specific multiples include EV/Reserves for upstream O&G, EV/# of users for technology and

Price/Book Value for the financial industry.

2

x t are exogenous variables, ≤i is an i.i.d. error process and Æi , Øi , P (s
0

= 1), the joint residual distribution

parameters (assuming multinormality) ß and µ are model parameters.

3

Explicit maximization of L =PT
t=1

log

P
2

i=1

f≤t i (log

x t
x t°1

°Æi )(

P (st°1

=1)

1+eØ1

x t
+ eØ2

x t P (st°1

=2)

1+eØ2

x t
) is O(2

T
) and

intractable, so we developed an EM-based algorithm for estimation but were unable to get satisfactory results

(Dempster et al. 1977). See Appendix E.I

4

Panel analysis is concerned with the regression yct = Æc +Øc

· x

t

+ ≤ct , and in particular the description of

≤ct . See Appendix E.I.
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transparent and focused on practical consequences rather than theoretical deviations. Occams’ razor

has been used diligently to uncover consequences of the Copernican turn from Chapter 2, and the

forecasts are unambiguous: the current multiple level of 9.8x is unsustainable. Our mean reverting

vector model predicts a 90% confidence range of 6.4x to 9.6x by early 2020. A decline is likely to

be catalyzed by increased volatility, as the current index is close to an all-time low at 12.6%. We

consider this a paradox given the prevailing high level of global geopolitical risk.

5

We can do noth-

ing but present a troubling question: Will geopolitical risk trigger investor fear and push the world
into a prolonged period of lower multiples?

5

CBOE Volatility Index (VIX) and Global Economic Policy Uncertainty Index have followed each other

closely historically. However, in recent years VIX has been decreasing, while global economic policy uncer-

tainty has moved in the opposite direction. See Appendix E.II for indexed plot and calculation of correlation

coefficients.
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A Appendix - Chapter 3
A.I Overview of Initially Selected Macroeconomic Variables

Category Description Unit Source Assigned name

Interest Rates

Long term government bond yield (average), NSA - Euro Zone Percent Eurostat iEULT

Euro Benchmark Bond - 10 Year - Yield Yield Tullet Prebon Information iEU10

Euro Benchmark Bond - 5 Year - Yield Yield Tullet Prebon Information iEU5

Euro Benchmark Bond - 1 Year - Yield Yield Tullet Prebon Information iEU1

3-Month Euribor (% per annum, last) - Euro Zone Percent ECB - European Central Bank iEURIBOR3MTH

EURIBOR (ACT/360) - 3 Month - Yield Yield European Money Markets Institute iEURIBOR3MTHY

EURIBOR (ACT/360) - 1 Month - Yield Yield European Money Markets Institute

10 Year, Government Bond Yield, Real Return, Percent - Europe Percent ECB - European Central Bank iEU10R

Government Bond, 10 Year - Euro Zone Percent ECB - European Central Bank

10 Years, ECB, Spot Rate, AAA-Rated Government Bond Yield, Percent - Euro Zone Percent ECB - European Central Bank

MFI interest rates on euro-denominated deposits, Repos, New business (% per annum) - Euro Zone Percent ECB - European Central Bank

MFI interest rates on euro-denominated deposits, Repos, Outstanding amounts (% per annum) - Euro Zone Percent ECB - European Central Bank

Up to 1 Year, Lending Rates, Households, New Business, For House Purchase, AAR/NDER, Percent - Euro Zone Percent ECB - European Central Bank

Exchange Rates (Spot)

ECB Reference Exchange Rate, UK Pound Sterling/Euro, 2:15 pm (C.E.T.), Against ECU up to December 1998 - United Kingdom GBP/EUR ECB - European Central Bank fxGBPEUR

ECB Reference Exchange Rate, US Dollar/Euro, 2:15 pm (C.E.T.), Against ECU up to December 1998 - United States USD/EUR ECB - European Central Bank fxUSDEUR

ECB Reference Exchange Rate, Japanese Yen/Euro, 2:15 pm (C.E.T.), Against ECU up to December 1998 - Japan JPY/EUR ECB - European Central Bank

ECB Reference Exchange Rate, Chinese Yuan Renminbi/Euro, 2:15 pm (C.E.T.), Against ECU up to December 1998 - China CNY/EUR ECB - European Central Bank

Economic (EU)

MFI Loans, Households, Consumer Credit, Outstanding Amount (EA Changing Composition), SA, Bil EUR - Euro Zone Billions of EUR ECB - European Central Bank

Citi Inflation Surprise Index, Euro-Zone - Euro Zone Index Citigroup

Aggregated Balance Sheet of Eurosystem, Total Assets/Liabilities, Levels (EA Changing Composition), EOP, NSA, Bil EUR - Euro Zone Billions of EUR ECB - European Central Bank mEUA

Aggregated Balance Sheet of Eurosystem, Assets, Levels, External Assets (EA Changing Composition), EOP, NSA, Bil EUR - Euro Zone Billions of EUR ECB - European Central Bank mEUEXTA

Aggregated Balance Sheet of Eurosystem, Liabilities, Levels, External Liabilities (EA Changing Composition), EOP, NSA, Bil EUR - Euro Zone Billions of EUR ECB - European Central Bank mEUEXTL

Aggregated Balance Sheet of Eurosystem, Assets, Levels, Fixed Assets (EA Changing Composition), EOP, NSA, Bil EUR - Euro Zone Billions of EUR ECB - European Central Bank mEUFA

Standardized Unemployment Rate (Euro Area 17 fixed, SA, percent of civilian labor force) - Euro Zone Percent ECB - European Central Bank mEUSUR

Unemployment Rate, Euro Area 19, SA, Percent - Euro Zone Percent Eurostat mEUUR

Harmonized Consumer Prices (HICP), Overall, (Annual rate of change, NSA) - Euro Zone Percent ECB - European Central Bank mEUCPI

PPI, Industry, Euro 19, 2015=100, NSA, Index - Euro Zone Index Eurostat mEUPPI

Retail Sales, Turnover and Volume of Sales, Except of Motor Vehicles and Motorcycles, Euro Area (19 Countries), Y/Y % Change, CA, Percent - Euro Zone Percent Eurostat

Retail Sales, Turnover and Volume of Sales, Except of Motor Vehicles and Motorcycles, Euro Area 19 Countries, M/M% Change, SCA, Percent - Euro Zone Percent Eurostat

Consumer Survey, Consumer confidence indicator, Balance, Nace R2, SA, Index - Euro Zone Index Eurostat sEUCC

Business Survey, Industrial confidence indicator, Balance, Nace R2, SA, EA19 - Euro Zone Index Eurostat sEUIC

Business Survey, Economic Sentiment Indicator, Euro Area (19 Countries), SA, Index - Euro Zone Index Eurostat sEUES

Business Survey, ZEW, Economic Expectations, Balance, Percent - Euro Zone Percent ZEW - Center for European Economic Research sEUEE

Business Survey, ZEW, Short-Term Interest Rates, Balance, Percent - Euro Zone Percent ZEW - Center for European Economic Research sEUSTI

Business Survey, ZEW, Inflation Rate, Balance, Percent - Euro Zone Percent ZEW - Center for European Economic Research sEUINFL

Business Survey, Industrial Confidence Indicator, SA, Index - Euro Zone Index Eurostat

PMI Composite Sector, Output Index, SA - Euro Zone Index Markit Economics (NTC)

PMI Construction Sector, Total Activity Index, SA - Euro Zone Index Markit Economics (NTC)

PMI Manufacturing Sector, PMI Index, SA - Euro Zone Index Markit Economics (NTC)

PMI Services Sector, Business Activity Index, SA - Euro Zone Index Markit Economics (NTC)

Retail PMI, SA - Euro Zone Index Markit Economics (NTC)

Economic (US)

Leading Index, 10 Year, Interest Rate Spread, Treasury Bonds Less Federal Funds, Percent - United States Percent Conference Board mUSi10

US Future Inflation Gauge, Index - United States Index ECRI - Economic Cycle Research Institute

Leading Index, Leading Credit Index - United States Percent Conference Board mUSCRED

H.8, Assets of Commercial Banks, Total assets, SA, Bil USD - United States Billions of USD Federal Reserve System mUSCBA

H.8, Assets of Large Domestically Chartered Commercial Banks, Total assets, SA, Bil USD - United States Billions of USD Federal Reserve System mUSDCBA

Monthly Treasury Statement, Federal Debt, Amount Outstanding, Total, NSA, Mil USD - United States Millions of USD U.S. Department of Treasury mUSFD

Civilian Unemployment Rate, SA, Percent - United States Percent Conference Board mUSUR

Employment, Population Ratio, SA, Percent - United States Percent U.S. Department of Labor mUSER

Retail and Food Service Sales, NAICS, (Incl. in Advance Release), SA/WDA, Mil USD - United States Millions of USD U.S. Census Bureau mUSRET

Retail Trade, Chained 2009, SA, Mil USD - United States Millions of USD BEA - US Bureau of Economic Analysis mUSRETCH

Chicago PMI, Business Barometer Index, SA, Index - United States Index MNI/Deutsche Borse Group mUSPMI

PMI Manufacturing Sector, PMI Index (Markit), SA - United States Index Markit Economics (NTC)

PMI Manufacturing Sector, PMI Index (Markit), NSA - United States Index Markit Economics (NTC)

PMI Services Sector-Business Activity Index, NSA - United States Index Markit Economics (NTC)

PMI Composite Sector-Output Index, SA, USD - United States Index Markit Economics (NTC)

PMI Services Sector-Business Activity Index, SA - United States Index Markit Economics (NTC)

Industrial Production
Euro Zone - Industrial Production Mth End FactSet Standardized Economics mEUp

United States - Industrial Production Mth End FactSet Standardized Economics mUSp

China - Industrial Production Mth End FactSet Standardized Economics

Volatility CBOE Market Volatility Index - Index Price Level Index FactSet Prices vVIX

Euro STOXX 50 Volatility - Index Price Level Index STOXX vST50

EPUI
Economic Policy Uncertainty, News Based, Index - United States Index Economic Policy Uncertainty sUSEPU

Economic Policy Uncertainty, News Based, Index - China Index Economic Policy Uncertainty sCHEPUI

Economic Policy Uncertainty, News-Based, Index - Europe Index Economic Policy Uncertainty sEUEPUI

Table 1: Complete list of 65 initial macroeconomic variables
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A.II Correlation Matrices for Independent Variables

Correlations based on monthly values from Januar 2000 to January 2018.

Interest Rates
Exchange 

Rates 
(Spot)

Economic (EU) Economic (US) Industrial Production Volatility EPUI

iEULTiEU10 iEU5 iEU1iEURIBOR3MTHiEURIBOR3MTHYiEU10RiEUspd105iEUspd101fxGBPEURfxUSDEURmEUAmEUEXTAmEUEXTLmEUFAmEUSURmEUURmEUCPImEUPPIsEUCCsEUICsEUESsEUEEsEUSTIsEUINFLmEUAYOYmEUEXTAYOYmEUEXTLYOYmEUFAYOYmUSi10mUSCREDmUSCBAmUSDCBAmUSFDmUSURmUSERmUSRETmUSRETCHmUSPMImUSCBAYOYmUSDCBAYOYmUSFDYOYmUSRETYOYmUSRETCHYOYmEUpmUSpmEUpYOYmUSpYOYvVIX vST50vVIXtvST50tsUSEPUIsCHEPUIsEUEPUI
iEULT 1.00
iEU10 0.91 1.00
iEU5 0.87 0.99 1.00
iEU1 0.79 0.92 0.96 1.00
iEURIBOR3MTH 0.80 0.89 0.93 0.97 1.00
iEURIBOR3MTHY 0.80 0.89 0.93 0.98 1.00 1.00
iEU10R 0.61 0.65 0.61 0.48 0.43 0.43 1.00
iEUspd105 -0.21 -0.42 -0.55 -0.70 -0.66 -0.67 -0.11 1.00
iEUspd101 0.10 -0.02 -0.16 -0.41 -0.41 -0.42 0.28 0.82 1.00
fxGBPEUR -0.49 -0.67 -0.71 -0.76 -0.68 -0.68 -0.33 0.58 0.40 1.00
fxUSDEUR -0.08 -0.19 -0.21 -0.24 -0.18 -0.18 -0.15 0.21 0.17 0.61 1.00
mEUA -0.77 -0.92 -0.91 -0.85 -0.80 -0.80 -0.65 0.42 0.05 0.74 0.18 1.00
mEUEXTA -0.69 -0.88 -0.88 -0.83 -0.78 -0.78 -0.55 0.44 0.07 0.72 0.12 0.95 1.00
mEUEXTL -0.59 -0.76 -0.76 -0.73 -0.62 -0.63 -0.51 0.39 0.10 0.79 0.25 0.90 0.85 1.00
mEUFA 0.39 0.57 0.57 0.53 0.44 0.44 0.18 -0.28 -0.03 -0.69 -0.34 -0.68 -0.77 -0.74 1.00
mEUSUR -0.49 -0.69 -0.75 -0.78 -0.81 -0.81 -0.20 0.69 0.38 0.51 0.17 0.59 0.67 0.46 -0.44 1.00
mEUUR -0.50 -0.70 -0.76 -0.79 -0.82 -0.82 -0.20 0.69 0.39 0.52 0.18 0.60 0.68 0.47 -0.44 1.00 1.00
mEUCPI 0.68 0.59 0.58 0.60 0.65 0.65 -0.13 -0.21 -0.15 -0.31 0.05 -0.42 -0.41 -0.31 0.35 -0.51 -0.52 1.00
mEUPPI -0.59 -0.80 -0.79 -0.73 -0.65 -0.65 -0.55 0.37 0.00 0.81 0.61 0.82 0.81 0.79 -0.73 0.61 0.62 -0.27 1.00
sEUCC -0.13 0.06 0.15 0.27 0.18 0.20 -0.03 -0.56 -0.56 -0.43 -0.49 -0.04 -0.02 -0.23 0.08 -0.28 -0.29 -0.08 -0.26 1.00
sEUIC -0.10 -0.02 0.06 0.20 0.12 0.14 -0.31 -0.45 -0.55 -0.25 -0.10 0.05 0.04 -0.18 0.06 -0.19 -0.19 0.20 0.00 0.79 1.00
sEUES -0.07 0.07 0.16 0.28 0.18 0.21 -0.14 -0.54 -0.56 -0.37 -0.29 -0.04 -0.04 -0.26 0.12 -0.27 -0.28 0.09 -0.18 0.92 0.95 1.00
sEUEE -0.08 0.06 0.04 -0.07 -0.25 -0.24 0.33 0.12 0.32 -0.25 -0.35 -0.15 -0.16 -0.28 0.29 0.24 0.24 -0.40 -0.35 0.26 0.06 0.18 1.00
sEUSTI 0.10 0.14 0.19 0.19 0.04 0.07 0.11 -0.35 -0.15 -0.10 0.16 -0.13 -0.14 -0.25 0.16 -0.07 -0.07 0.03 -0.04 0.38 0.55 0.54 0.38 1.00
sEUINFL -0.39 -0.31 -0.26 -0.25 -0.36 -0.34 -0.11 -0.11 -0.08 0.18 0.20 0.27 0.26 0.09 -0.21 0.19 0.20 -0.37 0.25 0.41 0.50 0.50 0.37 0.68 1.00
mEUAYOY -0.14 -0.28 -0.27 -0.26 -0.13 -0.14 -0.41 0.08 0.01 0.31 0.23 0.38 0.29 0.45 -0.19 -0.09 -0.07 0.14 0.33 -0.36 -0.21 -0.30 -0.51 -0.21 -0.11 1.00
mEUEXTAYOY -0.08 -0.17 -0.13 -0.09 -0.01 -0.01 -0.23 -0.18 -0.16 0.33 0.33 0.22 0.30 0.31 -0.38 -0.12 -0.11 0.11 0.39 -0.10 0.04 -0.02 -0.47 0.13 0.19 0.59 1.00
mEUEXTLYOY 0.03 0.01 0.06 0.14 0.29 0.29 -0.30 -0.31 -0.35 0.17 0.40 0.11 0.03 0.36 -0.26 -0.39 -0.38 0.34 0.30 -0.24 -0.07 -0.19 -0.61 -0.15 -0.15 0.58 0.53 1.00
mEUFAYOY 0.06 0.04 0.00 -0.07 -0.09 -0.09 0.02 0.25 0.27 -0.11 -0.37 -0.06 -0.02 -0.08 0.42 0.16 0.16 0.05 -0.24 -0.05 -0.16 -0.09 0.21 -0.23 -0.23 -0.09 -0.22 -0.38 1.00
mUSi10 -0.06 -0.14 -0.24 -0.44 -0.42 -0.43 0.14 0.70 0.81 0.39 0.17 0.09 0.15 0.15 -0.13 0.38 0.39 -0.19 0.11 -0.52 -0.54 -0.57 0.25 -0.27 -0.09 -0.01 -0.09 -0.16 0.28 1.00
mUSCRED 0.31 0.33 0.36 0.42 0.59 0.57 0.12 -0.37 -0.32 -0.08 0.04 -0.20 -0.20 0.12 -0.12 -0.52 -0.52 0.32 -0.08 -0.11 -0.21 -0.17 -0.55 -0.32 -0.34 0.29 0.33 0.69 -0.10 -0.21 1.00
mUSCBA -0.85 -0.94 -0.92 -0.85 -0.79 -0.79 -0.58 0.33 -0.01 0.78 0.39 0.92 0.88 0.83 -0.72 0.58 0.59 -0.55 0.90 -0.07 0.03 -0.07 -0.18 -0.09 0.37 0.30 0.31 0.19 -0.19 0.13 -0.15 1.00
mUSDCBA -0.83 -0.92 -0.91 -0.85 -0.79 -0.79 -0.56 0.35 0.02 0.81 0.41 0.91 0.88 0.85 -0.74 0.57 0.58 -0.54 0.91 -0.11 0.00 -0.11 -0.20 -0.09 0.36 0.33 0.35 0.21 -0.20 0.16 -0.12 1.00 1.00
mUSFD -0.84 -0.96 -0.96 -0.90 -0.86 -0.86 -0.59 0.42 0.05 0.75 0.27 0.95 0.94 0.82 -0.71 0.69 0.70 -0.55 0.88 -0.03 0.07 -0.03 -0.09 -0.08 0.37 0.23 0.22 0.04 -0.10 0.16 -0.27 0.97 0.97 1.00
mUSUR 0.11 -0.16 -0.26 -0.43 -0.38 -0.38 0.18 0.69 0.73 0.65 0.52 0.19 0.30 0.28 -0.41 0.48 0.49 -0.08 0.42 -0.68 -0.52 -0.62 -0.11 -0.08 -0.06 0.17 0.27 -0.07 0.00 0.64 -0.14 0.23 0.28 0.24 1.00
mUSER 0.54 0.77 0.83 0.89 0.84 0.84 0.31 -0.71 -0.47 -0.86 -0.47 -0.75 -0.81 -0.69 0.69 -0.80 -0.81 0.45 -0.83 0.40 0.24 0.37 0.07 0.11 -0.23 -0.21 -0.24 0.07 0.04 -0.52 0.33 -0.80 -0.81 -0.83 -0.72 1.00
mUSRET -0.87 -0.93 -0.89 -0.78 -0.75 -0.75 -0.71 0.22 -0.16 0.66 0.34 0.90 0.83 0.75 -0.60 0.53 0.53 -0.46 0.86 0.06 0.22 0.09 -0.15 0.00 0.41 0.27 0.24 0.19 -0.21 -0.01 -0.23 0.96 0.94 0.95 0.04 -0.68 1.00
mUSRETCH -0.92 -0.89 -0.83 -0.72 -0.71 -0.70 -0.73 0.11 -0.23 0.52 0.20 0.84 0.73 0.66 -0.45 0.38 0.39 -0.48 0.71 0.19 0.29 0.20 -0.07 0.02 0.43 0.25 0.17 0.16 -0.19 -0.07 -0.25 0.89 0.87 0.87 -0.16 -0.52 0.96 1.00
mUSPMI -0.17 -0.20 -0.22 -0.25 -0.35 -0.33 -0.29 0.20 0.18 0.17 0.29 0.16 0.12 -0.06 0.08 0.25 0.26 0.07 0.19 0.16 0.50 0.37 0.31 0.54 0.46 -0.12 -0.04 -0.25 -0.04 0.14 -0.58 0.15 0.14 0.21 0.10 -0.24 0.27 0.27 1.00
mUSCBAYOY 0.31 0.42 0.47 0.56 0.59 0.58 0.17 -0.47 -0.44 -0.47 0.01 -0.50 -0.57 -0.35 0.38 -0.40 -0.41 0.26 -0.33 0.00 0.05 0.03 -0.15 -0.09 -0.31 -0.08 -0.23 0.30 -0.12 -0.45 0.38 -0.41 -0.43 -0.49 -0.48 0.61 -0.33 -0.28 -0.27 1.00
mUSDCBAYOY 0.25 0.41 0.46 0.55 0.60 0.59 0.21 -0.53 -0.45 -0.43 0.00 -0.46 -0.54 -0.26 0.29 -0.51 -0.52 0.16 -0.32 -0.03 -0.08 -0.05 -0.21 -0.16 -0.30 0.05 -0.07 0.45 -0.16 -0.40 0.52 -0.34 -0.35 -0.46 -0.47 0.61 -0.31 -0.23 -0.45 0.90 1.00
mUSFDYOY 0.11 0.01 -0.07 -0.25 -0.19 -0.20 0.22 0.43 0.65 0.50 0.56 -0.02 -0.04 0.14 -0.11 0.09 0.10 -0.07 0.18 -0.74 -0.59 -0.66 -0.13 -0.02 -0.03 0.39 0.34 0.17 -0.09 0.54 0.05 0.08 0.14 0.00 0.77 -0.41 -0.09 -0.18 0.02 -0.20 -0.09 1.00
mUSRETYOY 0.03 0.00 0.00 0.05 -0.06 -0.03 -0.31 -0.02 -0.12 -0.25 -0.12 -0.04 0.01 -0.31 0.25 0.12 0.12 0.31 -0.09 0.43 0.68 0.61 0.22 0.44 0.31 -0.27 -0.11 -0.36 0.10 -0.18 -0.51 -0.14 -0.18 -0.02 -0.21 0.09 0.04 0.07 0.68 -0.14 -0.37 -0.42 1.00
mUSRETCHYOY -0.31 -0.28 -0.27 -0.22 -0.35 -0.33 -0.30 0.07 -0.09 -0.22 -0.34 0.17 0.21 -0.16 0.16 0.34 0.34 -0.14 -0.03 0.48 0.54 0.53 0.43 0.28 0.32 -0.32 -0.25 -0.51 0.15 -0.07 -0.68 0.07 0.03 0.22 -0.27 -0.06 0.23 0.30 0.53 -0.24 -0.39 -0.49 0.81 1.00
mEUp -0.26 -0.18 -0.08 0.11 0.14 0.15 -0.59 -0.51 -0.68 -0.01 0.26 0.21 0.10 0.11 -0.09 -0.36 -0.35 0.26 0.30 0.42 0.69 0.56 -0.40 0.25 0.29 0.23 0.31 0.52 -0.41 -0.53 0.17 0.29 0.27 0.20 -0.48 0.15 0.46 0.52 0.25 0.17 0.18 -0.34 0.27 0.13 1.00
mUSp -0.60 -0.58 -0.49 -0.29 -0.29 -0.28 -0.66 -0.22 -0.60 0.16 0.29 0.50 0.41 0.32 -0.27 0.23 0.23 -0.15 0.59 0.32 0.56 0.42 -0.16 0.20 0.38 0.07 0.13 0.28 -0.34 -0.44 -0.12 0.60 0.56 0.57 -0.39 -0.19 0.76 0.76 0.33 0.13 0.07 -0.44 0.30 0.35 0.75 1.00
mEUpYOY -0.04 0.03 0.07 0.17 0.08 0.10 -0.25 -0.26 -0.36 -0.29 -0.16 -0.05 -0.01 -0.29 0.13 -0.09 -0.09 0.22 -0.09 0.67 0.88 0.83 0.13 0.48 0.42 -0.28 0.04 -0.23 -0.06 -0.35 -0.28 -0.08 -0.11 -0.01 -0.36 0.18 0.07 0.13 0.52 -0.12 -0.24 -0.49 0.77 0.63 0.51 0.39 1.00
mUSpYOY 0.04 -0.01 -0.02 0.04 -0.05 -0.03 -0.27 0.02 -0.14 -0.18 0.01 -0.01 0.02 -0.25 0.13 0.16 0.16 0.29 0.02 0.36 0.70 0.58 0.17 0.47 0.31 -0.24 -0.05 -0.28 -0.09 -0.22 -0.45 -0.09 -0.12 0.01 -0.13 0.03 0.06 0.06 0.70 -0.08 -0.31 -0.32 0.85 0.66 0.31 0.39 0.81 1.00
vVIX 0.42 0.33 0.29 0.21 0.37 0.35 0.41 0.10 0.23 0.02 -0.04 -0.26 -0.16 0.05 -0.14 -0.24 -0.24 0.16 -0.18 -0.38 -0.53 -0.48 -0.33 -0.42 -0.48 0.19 0.22 0.31 0.03 0.22 0.66 -0.24 -0.20 -0.30 0.31 0.07 -0.42 -0.49 -0.54 0.08 0.20 0.35 -0.53 -0.61 -0.36 -0.55 -0.42 -0.45 1.00
vST50 0.31 0.21 0.16 0.08 0.21 0.19 0.32 0.20 0.28 -0.01 -0.14 -0.18 -0.06 0.04 -0.12 -0.11 -0.11 0.08 -0.17 -0.37 -0.50 -0.48 -0.21 -0.43 -0.41 0.19 0.13 0.19 0.06 0.31 0.46 -0.20 -0.16 -0.21 0.30 0.00 -0.35 -0.40 -0.45 -0.01 0.09 0.31 -0.42 -0.42 -0.38 -0.52 -0.36 -0.35 0.90 1.00
vVIXt -0.51 -0.41 -0.36 -0.27 -0.40 -0.38 -0.50 -0.10 -0.25 0.06 0.07 0.34 0.19 0.08 0.14 0.20 0.20 -0.18 0.24 0.34 0.49 0.43 0.27 0.40 0.42 -0.10 -0.19 -0.18 -0.05 -0.25 -0.56 0.33 0.29 0.36 -0.36 -0.08 0.51 0.59 0.51 -0.03 -0.14 -0.31 0.43 0.52 0.41 0.61 0.34 0.37 -0.94 -0.86 1.00
vST50t -0.34 -0.21 -0.16 -0.08 -0.19 -0.18 -0.38 -0.21 -0.29 0.00 0.15 0.17 0.01 -0.03 0.21 0.05 0.05 -0.04 0.15 0.34 0.49 0.45 0.20 0.41 0.35 -0.16 -0.18 -0.13 -0.08 -0.33 -0.41 0.18 0.15 0.19 -0.37 0.06 0.35 0.43 0.47 0.08 -0.04 -0.30 0.40 0.39 0.42 0.54 0.33 0.36 -0.85 -0.95 0.90 1.00
sUSEPUI -0.06 -0.23 -0.28 -0.30 -0.17 -0.19 -0.19 0.42 0.24 0.32 -0.08 0.32 0.40 0.43 -0.33 0.18 0.18 0.07 0.24 -0.29 -0.30 -0.34 -0.34 -0.46 -0.31 0.22 0.11 0.13 0.14 0.25 0.21 0.21 0.23 0.25 0.32 -0.33 0.12 0.05 -0.22 -0.25 -0.20 0.12 -0.19 -0.16 -0.16 -0.19 -0.19 -0.19 0.47 0.52 -0.43 -0.50 1.00
sCHEPUI -0.53 -0.60 -0.59 -0.53 -0.44 -0.45 -0.57 0.21 -0.05 0.42 -0.10 0.69 0.64 0.64 -0.39 0.17 0.18 -0.17 0.42 -0.02 -0.04 -0.07 -0.31 -0.32 0.03 0.47 0.23 0.24 0.03 0.05 0.06 0.57 0.57 0.58 -0.04 -0.36 0.57 0.59 -0.07 -0.32 -0.21 -0.07 -0.11 0.04 0.20 0.25 -0.14 -0.19 -0.02 0.07 0.09 -0.05 0.50 1.00
sEUEPUI -0.55 -0.69 -0.72 -0.69 -0.60 -0.61 -0.53 0.48 0.15 0.55 0.00 0.73 0.75 0.64 -0.48 0.46 0.46 -0.23 0.54 -0.17 -0.09 -0.18 -0.26 -0.34 0.05 0.33 0.18 0.05 0.05 0.21 -0.10 0.63 0.63 0.68 0.23 -0.60 0.59 0.55 0.05 -0.43 -0.40 0.05 -0.01 0.14 0.05 0.21 -0.06 -0.02 0.04 0.20 0.02 -0.19 0.68 0.76 1.00

EPUI

Interest Rates
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Figure 1: Correlation matrix for absolute variables
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iEULTdiEU10diEU5diEU1diEURIBOR3MTHdiEURIBOR3MTHYdiEU10RdiEUspd105diEUspd101dfxGBPEURlrfxUSDEURlrmEUAlrmEUEXTAlrmEUEXTLlrmEUFAlrmEUSURdmEUURdmEUCPIlrmEUCPIdmEUPPIlrmEUPPIlrdsEUCCdsEUICdsEUESdsEUEEdsEUSTIdsEUINFLdmUSi10dmUSCREDdmUSCBAlrmUSDCBAlrmUSFDlrmUSURdmUSERdmUSRETlrmUSRETCHlrmUSPMIdmEUpYOYlrdmUSpYOYlrdvVIXlr vST50lrsUSEPUlrsCHEPUlrsEUEPUlr
iEULTd 1.00
iEU10d 0.57 1.00
iEU5d 0.49 0.89 1.00
iEU1d 0.33 0.49 0.72 1.00
iEURIBOR3MTHd 0.23 0.19 0.24 0.45 1.00
iEURIBOR3MTHYd 0.24 0.23 0.33 0.54 0.87 1.00
iEU10Rd 0.39 0.11 0.09 -0.05 -0.11 -0.14 1.00
iEUspd105d 0.06 0.04 -0.41 -0.59 -0.15 -0.25 0.02 1.00
iEUspd101d 0.24 0.52 0.20 -0.49 -0.25 -0.29 0.15 0.62 1.00
fxGBPEURlr -0.16 0.00 0.01 -0.03 -0.21 -0.20 0.02 -0.02 0.04 1.00
fxUSDEURlr -0.07 0.11 0.12 0.11 -0.05 -0.01 -0.01 -0.04 0.00 0.48 1.00
mEUAlr -0.01 -0.13 -0.16 -0.20 0.06 -0.04 -0.08 0.09 0.07 -0.06 -0.21 1.00
mEUEXTAlr 0.05 -0.20 -0.20 -0.17 -0.04 -0.04 -0.01 0.05 -0.03 -0.21 -0.33 0.34 1.00
mEUEXTLlr 0.05 -0.03 -0.02 -0.09 0.10 0.10 0.04 -0.01 0.06 -0.06 -0.08 0.48 0.40 1.00
mEUFAlr -0.06 -0.15 -0.16 -0.09 -0.03 -0.01 -0.02 0.06 -0.06 -0.02 -0.05 -0.04 -0.03 -0.13 1.00
mEUSURd -0.10 -0.13 -0.21 -0.39 -0.56 -0.54 0.17 0.20 0.25 0.08 -0.03 0.06 0.04 -0.09 0.05 1.00
mEUURd -0.08 -0.09 -0.15 -0.30 -0.50 -0.47 0.18 0.16 0.20 0.11 0.03 0.03 0.00 -0.08 0.04 0.86 1.00
mEUCPIlr 0.11 0.00 -0.02 -0.02 0.11 0.08 -0.07 0.06 0.03 0.05 0.03 0.12 -0.03 0.13 0.01 0.19 0.17 1.00
mEUCPId 0.18 0.20 0.18 0.23 0.27 0.30 -0.79 0.01 -0.02 -0.12 -0.01 0.05 0.04 0.00 -0.04 -0.25 -0.23 0.13 1.00
mEUPPIlr 0.28 0.20 0.20 0.32 0.41 0.42 -0.34 -0.04 -0.12 -0.13 0.05 0.00 0.09 -0.02 0.07 -0.25 -0.20 0.36 0.56 1.00
mEUPPIlrd 0.11 0.12 0.11 0.09 -0.07 -0.01 -0.17 0.01 0.04 -0.04 0.08 -0.04 0.10 -0.04 0.12 -0.02 -0.02 -0.07 0.29 0.49 1.00
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Figure 2: Correlation matrix for differentiated variables
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Figure 3: Final correlation matrix for absolute variables
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Figure 4: Final correlation matrix for differentiated variables

A.III Selection of Variables based on Subset Regressions

For Ap, the R2

gain from four independent variables to five independents is diminishing. All coef-

ficients are significant with p < 0.001. The variables included in the optimal models are fairly con-

sistent, from inflation, production growth and volatility for n = 3, to inflation, production growth,

volatility and spread for n = 4 and inflation, production growth, volatility, spread and long interest

rates for n = 5. n = 4 does not yield optimal RSS and BIC, as seen in Figure 11 and 12 respectively,

but this is evaluated against the cost of adding more variables for prediction.

For Ad, Dd, Dp, Rp and Rd the selection is done based on similar rationale, and the algorithm

outputs are displayed in Figure 6 to 10.
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Figure 5: Adj. R2

for Ap depending on chosen independent variables
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Figure 6: Adj. R2

for Ad depending on chosen independent variables
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Figure 7: Adj. R2

for Dd depending on chosen independent variables
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Figure 8: Adj. R2

for Dp depending on chosen independent variables

98



ad
jr2

(In
te
rc
ep
t)

M
ed
ia
nE
V
EB
IT
D
A
n1

iE
U
10
d

iE
U
sp
d1
05
d

fx
U
SD
EU
Rl
r

m
EU
A
lr

m
EU
EX
TA
lr

m
EU
EX
TL
lr

m
EU
FA
lr

m
EU
U
Rd

m
EU
CP
Id

m
EU
PP
Ilr
d

sE
U
CC
d

sE
U
EE
d

sE
U
ST
Id

m
U
Si
10
d

m
U
SC
RE
D
d

m
U
SC
BA
lr

m
U
SF
D
lr

m
U
SE
Rd

m
U
SR
ET
CH
lr

m
U
SP
M
Id

m
EU
pY
OY
lrd

m
U
Sp
Y
OY
lrd

vS
T5
0l
r

sE
U
EP
U
lr

iE
U
sp
d1
05
dB
Ct

fx
U
SD
EU
Rl
rB
Ct

m
EU
A
lrB
Ct

m
EU
EX
TA
lrB
Ct

m
EU
EX
TL
lrB
Ct

m
EU
FA
lrB
Ct

m
EU
U
Rd
BC
t

m
EU
PP
Ilr
dB
Ct

m
U
Si
10
dB
Ct

m
U
SC
BA
lrB
Ct

m
U
SF
D
lrB
Ct

m
U
SE
Rd
BC
t

m
U
SR
ET
CH
lrB
Ct

m
EU
pY
OY
lrd
BC
t

m
U
Sp
Y
OY
lrd
BC
t

vS
T5
0l
rB
Ct

sE
U
EP
U
lrB
Ct

iE
U
10

iE
U
sp
d1
01

fx
U
SD
EU
R

m
EU
FA

m
EU
CP
I

sE
U
CC

sE
U
EE

sE
U
ST
I

sE
U
IN
FL

m
EU
AY
OY

m
EU
EX
TA
Y
OY

m
EU
FA
Y
OY

m
U
SP
M
I

m
U
SC
BA
Y
OY

m
EU
pY
OY

vS
T5
0

vS
T5
0t

sE
U
EP
U
I

fx
U
SD
EU
RB
Ct

m
EU
FA
BC
t

m
EU
CP
IB
Ct

sE
U
CC
BC
t

m
U
SP
M
IB
Ct

m
EU
pY
OY
BC
t

sE
U
EP
U
IB
Ct

vS
T5
0B
Ct

0.95

0.97

0.98

0.98

0.98

0.98

0.98

0.98

0.98

0.98

0.98

Figure 9: Adj. R2

for Rd depending on chosen independent variables
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Figure 10: Adj. R2

for Rp depending on chosen independent variables
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Figure 11: RSS against number of variables in the six models from the subset regressions
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Figure 12: BIC against number of variables in the six models from the subset regressions
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B Appendix - Chapter 4

B.I Out-of-Sample Testing for Models
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Figure 13: In- and out-of-sample predictions for Ad
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Figure 14: In- and out-of-sample predictions for Dd
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Figure 15: In- and out-of-sample predictions for Dp
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Figure 16: Sorted in-sample predictions for Dd
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Figure 17: Sorted in-sample predictions for Dp

B.II Proof by Induction of Formula for Rx Model Predictions

Given that E(≤t ) = 0, the linear estimator of yt in the Rx models is specified by the following:

ˆyt = ˆÆr + ˆ∞yt°1

+ ˆØr · x t (3)

Now, the following is assumed to hold for k:

ˆyt+k = ˆÆr
1° ˆ∞k

1° ˆ∞
+ ˆ∞k yt +

kX

i=1

ˆØr · x t+i ˆ∞k°i
(4)

Inserting (4) into (3) we obtain:

ˆyt+1+k = ˆÆr + ˆ∞ ˆÆr
1° ˆ∞k

1° ˆ∞
+ ˆ∞k+1 yt +

kX

i=1

ˆØr · x t+i ˆ∞k+1°i + ˆØr ·x t+1+k

= ˆÆr
1° ˆ∞k+1

1° ˆ∞
+ ˆ∞k+1 yt +

k+1X

i=1

ˆØr ·x t+i ˆ∞k+1°i

Hence, if (4) is true for k, it is true for k +1. Now, looking at (3) for t
0

= t +1:

ˆyt+1

= ˆÆr + ˆ∞yt + ˆØr · x t+1

= ˆÆr
1° ˆ∞1

1° ˆ∞
+ ˆ∞1 yt +

1X

i=1

ˆØr ·x t+i ˆ∞1°i

Which is (4) for k = 1. By induction, this entails that that (4) is true for all k 2N. Q.E.D.
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B.III Mean Absolute Deviation Prediction Test
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Figure 18: In-sample prediction MAD values given independent variables in horizon period

B.IV Johansen Test Results for Ad

Table 2: Results from Johansen test on Ad

Johansen Statistic

Test 10% 5% 1%

r ∑ 4 0.52 6.50 8.18 11.65

r ∑ 3 9.00 15.66 17.95 23.52

r ∑ 2 25.14 28.71 31.52 37.22

r ∑ 1 48.91 45.23 48.28 55.43

r = 0 77.49 66.49 70.60 78.87

Eigenvalues

MedianEVEBITDA iEU10 sEUCC vST50 mEUFAYOY

0.12 0.10 0.07 0.038 0.002

B.V Small vs. Large Company Index Analysis
The following indices are define to test if large EV and large EBITDA companies are affected less

by changes in volatility:

• Small EV Index: Companies with EV ∑ 30% quantile at time t

• Large EV Index: Companies with EV ∏ 70% quantile at time t

• Small EBITDA Index: Companies with EBITDA ∑ 30% quantile at time t

• Large EBITDA Index: Companies with EBITDA ∏ 70% quantile at time t

• Small EV & EBITDA Index: Companies with EV ∑ 30% quantile and EBITDA ∑ 30% quan-

tile at time t
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• Large EV & EBITDA Index: Companies with EV ∏ 70% quantile and EBITDA ∏ 70% quan-

tile at time t

The median of the company multiples at time t is taken in each intersection to create pricing

indices.

Table 3: Regression results for small and large company indices

Dependent variable:

Small EV Large EV Small EBITDA Large EBITDA Small EV & EBITDA Large EV & EBITDA

iEUspd101 °0.142

§§§ °0.379

§§§ °0.252

§§§ °0.361

§§§ °0.145

§§§ °0.364

§§§

(0.035) (0.036) (0.034) (0.036) (0.036) (0.036)

mEUCPI °0.417

§§§ °0.483

§§§ °0.454

§§§ °0.458

§§§ °0.433

§§§ °0.492

§§§

(0.033) (0.034) (0.032) (0.034) (0.034) (0.034)

mEUpYOY 0.239

§§§
0.397

§§§
0.352

§§§
0.402

§§§
0.242

§§§
0.397

§§§

(0.036) (0.037) (0.035) (0.037) (0.037) (0.037)

vST50BCt °0.623

§§§ °0.312

§§§ °0.486

§§§ °0.341

§§§ °0.608

§§§ °0.326

§§§

(0.035) (0.036) (0.034) (0.036) (0.036) (0.035)

Constant °0.000 0.000 °0.000 °0.000 °0.000 0.000

(0.032) (0.033) (0.031) (0.033) (0.033) (0.032)

Observations 223 223 223 223 223 223

R

2

0.776 0.764 0.791 0.767 0.768 0.769

Adjusted R

2

0.772 0.760 0.788 0.763 0.764 0.765

Residual Std. Error (df = 218) 0.478 0.490 0.461 0.487 0.486 0.485

F Statistic (df = 4; 218) 188.672

§§§
176.663

§§§
206.688

§§§
179.321

§§§
180.409

§§§
181.864

§§§

Note: §
p<0.1;

§§
p<0.05;

§§§
p<0.01

The coefficients for the Small EV & EBITDA index resemble coefficients of the Small EV

index suggesting that small EV corresponds to small EBITDA. On the contrary, the coefficients for

the Large EV & EBITDA index resemble coefficients of the Large EBITDA index and equivalently

for the large indices suggesting that large EV corresponds to large EBITDA. In short, this reflects

the size independency of multiples.

For changes in volatility, we observe that large companies by both EV and EBITDA are rela-

tively less sensitive to volatility compared to small companies by both EV and EBITDA. Thus, the

hypothesis that large companies are less affected by changes in volatility has been verified.

For changes in inflation, we observe that large companies are somewhat more affected compared

to small companies. Growth and interest rate spread impacts larger companies more severely.
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B.VI Ramsey Regression Equation Specification Error Test (RESET)
Results

The R Imtest package was used for conducting a Ramsey RESET test for each of the linear models.

Nonlinear relationships are conspicuous in Ad and Dx, but not in Ap.

Table 4: Ramsey RESET test results

RESET statistic df1 df2 p-value

Ad 5.582 2 216 0.004

Ap 0.953 2 216 0.387

Dd 5.425 2 219 0.005

Dp 2.930 2 220 0.056

Rp 0.208 2 217 0.812

Rd 2.050 2 216 0.131

B.VII Results from Taylor Regressions

A subset regression was conducted using third degree perturbation of the Taylor series. Table 5

displays R2

and BIC values for the best regression for each # of variables. The R2

are generally

low, though with a substantial increase from n = 1 to n = 2. n = 2 also represents a strong BIC,

compared to n = 1, n = 3 and n = 4. Table 6 displays the variable selections, where a = iEUspd101,

b = mEUCPI, c = mEUpYOYlr and d = vSt50BCt, and concatenations represent product variables

of the mentioned. The most significant explanatory variables in n = 2 are aa and aaa, indicating that

the Taylor expansion perturbations of the term structure spread have an explanatory value. Table

7 displays the resulting coefficients for n = 1 and n = 2, and the F-test is significant at 90% and

99% respectively, keeping the potential errors of the residuals in mind. The n = 2 coefficients are

consistent with magnitude and sign expected from a Taylor expansion of an inverse relationship.

Table 5: R2

and BIC-values for best subset-regression for each # of variables

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10

R2

0.008 0.041 0.041 0.058 0.084 0.120 0.150 0.165 0.178 0.201

BIC 8.023 4.760 9.240 9.758 7.758 3.290 °0.119 0.184 1.118 °0.761
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Table 6: Subset regression variable selection results for 1-10 variables

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10

a

* *

b

* *

c

d

* * *

aa

* * * * * *

ab

*

ac

*

ad

* * * *

bb

* * * * * *

bc

bd

* * * * * *

cc

cd

dd

aaa

* * *

aab

aac

aad

* * *

abb

abc

abd

*

acc

*

acd

add

*

bbb

* * *

bbc

bbd

* * * * * *

bcc

bcd

bdd

* * * * * *

ccc

ccd

cdd

ddd
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Table 7: Resulting coefficients for regressions on subset regression-selected variables for n = 1 and

n = 2

Dependent variable:

residuals

n = 1-regression n = 2-regression

acc 0.0004

§

(0.0003)

aaa 0.128

§§§

(0.039)

aa °0.299

§§§

(0.098)

Constant °0.020 0.131

§

(0.039) (0.074)

Observations 223 223

R

2

0.012 0.050

Adjusted R

2

0.008 0.041

Res. Std. Error 0.553 0.542

F Statistic 2.784

§
5.802

§§§

Note: §
p<0.1;

§§
p<0.05;

§§§
p<0.01
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C Appendix - Chapter 5

C.I Bivariate Plots of log EV and log EBITDA
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Figure 19: Bivariate plots of log EV versus log EBITDA for t = {1,100,200,223}

C.II Regression Results for log EV versus log EBITDA
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Figure 20: Øt -coefficients from the estimation of Equation 5.2. Corresponding p-values are <0.01

at each intersection
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C.III Normality Test on Residuals
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Figure 21: Log of JB test statistic at each intersection. Corresponding p-values are <0.01 for all t

C.IV KS Test on Residuals for Student-t Distribution
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Figure 22: Plots of KS test p-value and historically fitted mean, standard deviation and degrees of

freedom for student t distribution of residuals
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C.V Regression EV/EBITDA vs. EV and vs. EBITDA
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Figure 23: Øt -coefficients and corresponding p-values for regression of log EV/EBITDA vs. log

EV (top two plots) and log EV/EBITDA vs. log EBITDA (bottom two plots)
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C.VI Johansen Test for Regression on Quantiles

Table 8: Johanesen test statistics for compositions of individual quantiles and exogenous variables

for Ap

Critical value Quantiles

H
0

10% 5% 1% 10% 20% 30% 40% 50% 60% 70% 80% 90%

r <= 4 6.5 8.2 11.7 6.7 6.1 5.3 4.9 4.3 4.2 4.0 3.9 4.7

r <= 3 15.7 17.9 23.5 15.8 16.7 16.2 15.9 15.9 17.0 16.4 16.2 17.0

r <= 2 28.7 31.5 37.2 36.7 40.1 41.0 42.4 43.9 46.5 43.2 39.2 41.9

r <= 1 45.2 48.3 55.4 77.4 80.1 79.8 80.6 82.1 85.9 81.9 80.2 82.9

r = 0 66.5 70.6 78.9 123.2 123.3 121.3 125.0 125.8 132.1 129.5 126.4 138.0

C.VII Regression on Quantiles

Table 9: Normalized regression coefficients for 9 quantiles of EV/EBITDA for Ap model

Dependent variable:

Normalized EV/EBITDA Quantiles

10% 20% 30% 40% Median 60% 70% 80% 90%

iEUspd101 °0.159

§§§ °0.192

§§§ °0.213

§§§ °0.246

§§§ °0.268

§§§ °0.291

§§§ °0.313

§§§ °0.336

§§§ °0.350

§§§

(0.041) (0.038) (0.036) (0.034) (0.032) (0.032) (0.034) (0.042) (0.053)

mEUCPI °0.269

§§§ °0.379

§§§ °0.431

§§§ °0.455

§§§ °0.475

§§§ °0.480

§§§ °0.472

§§§ °0.424

§§§ °0.323

§§§

(0.039) (0.036) (0.034) (0.032) (0.031) (0.031) (0.032) (0.040) (0.050)

mEUpYOY 0.304

§§§
0.310

§§§
0.319

§§§
0.324

§§§
0.335

§§§
0.347

§§§
0.355

§§§
0.377

§§§
0.365

§§§

(0.043) (0.039) (0.037) (0.035) (0.034) (0.033) (0.035) (0.043) (0.055)

vST50BCt °0.576

§§§ °0.551

§§§ °0.528

§§§ °0.508

§§§ °0.489

§§§ °0.464

§§§ °0.429

§§§ °0.329

§§§ °0.188

§§§

(0.041) (0.038) (0.035) (0.034) (0.032) (0.032) (0.034) (0.042) (0.053)

Constant °0.000 °0.000 0.000 °0.000 °0.000 °0.000 0.000 0.000 0.000

(0.038) (0.034) (0.032) (0.031) (0.030) (0.029) (0.031) (0.038) (0.048)

Observations 223 223 223 223 223 223 223 223 223

R

2

0.689 0.742 0.769 0.790 0.809 0.812 0.788 0.680 0.490

Adjusted R

2

0.684 0.737 0.765 0.786 0.806 0.808 0.784 0.674 0.481

Residual Std. Error (df = 218) 0.562 0.513 0.485 0.463 0.441 0.438 0.465 0.571 0.721

F Statistic (df = 4; 218) 120.976

§§§
156.597

§§§
181.675

§§§
204.451

§§§
231.099

§§§
235.272

§§§
202.598

§§§
115.625

§§§
52.366

§§§

Note: Variables were normalized in advance of regression for comparability §
p<0.1;

§§
p<0.05;

§§§
p<0.01
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Table 10: Regression coefficients for all 6 models on all 9 quantiles. Normalized dependent vari-

ables variables for comparison across quantiles

Quantiles

10% 20% 30% 40% 50% 60% 70% 80% 90%

Intercept 2.17 2.29 2.36 2.41 2.45 2.46 2.42 2.19 1.68

iEU10 °0.08 °0.15 °0.19 °0.20 °0.21 °0.20 °0.19 °0.14 °0.02

Ad sEUCC 0.03 0.05 0.05 0.06 0.07 0.07 0.08 0.10 0.10

vST50 °0.06 °0.06 °0.05 °0.05 °0.05 °0.04 °0.04 °0.03 °0.02

mEUFAYOY °0.03 °0.03 °0.03 °0.02 °0.02 °0.02 °0.01 °0.01 0.001

Intercept 13.85 13.54 13.15 12.78 12.43 11.90 11.13 8.80 5.42

iEUspd101 °0.23 °0.28 °0.31 °0.35 °0.38 °0.42 °0.45 °0.48 °0.50

Ap mEUCPI °0.28 °0.39 °0.45 °0.47 °0.49 °0.50 °0.49 °0.44 °0.34

mEUpYOY 0.06 0.06 0.06 0.07 0.07 0.07 0.07 0.08 0.07

vST50BCt °8.35 °7.99 °7.66 °7.37 °7.10 °6.73 °6.23 °4.77 °2.72

Dd vST50lr °3.16 °3.37 °3.48 °3.40 °3.52 °3.50 °3.44 °3.27 °3.12

sEUCCd 0.22 0.22 0.21 0.22 0.22 0.21 0.20 0.18 0.14

Dp vST50lr °3.19 °3.40 °3.50 °3.43 °3.54 °3.53 °3.47 °3.30 °3.14

Rd

Intercept °0.01 °0.01 °0.02 °0.02 °0.02 °0.02 °0.02 °0.01 °0.01

yt°1

°0.11 °0.10 °0.09 °0.09 °0.08 °0.08 °0.09 °0.09 °0.11

vST50lr °3.08 °3.30 °3.42 °3.35 °3.46 °3.45 °3.40 °3.23 °3.08

sEUCCd 0.23 0.23 0.22 0.23 0.23 0.22 0.21 0.19 0.15

Intercept 1.61 1.81 1.84 1.96 1.92 1.87 1.66 1.33 1.05

yt°1

°0.41 °0.46 °0.47 °0.50 °0.49 °0.47 °0.42 °0.32 °0.23

Rp vST50lr °2.13 °2.24 °2.34 °2.21 °2.34 °2.39 °2.48 °2.55 °2.58

vST50 °0.05 °0.05 °0.05 °0.06 °0.06 °0.05 °0.05 °0.04 °0.03

mEUCPIBCt °0.17 °0.20 °0.21 °0.23 °0.22 °0.23 °0.21 °0.18 °0.15

Table 11: Ad regression results for all quantiles

Dependent variable:

EV/EBITDA Quantiles

10% 20% 30% 40% Median 60% 70% 80% 90%

iEU10 °0.067

§§§ °0.137

§§§ °0.191

§§§ °0.235

§§§ °0.269

§§§ °0.282

§§§ °0.299

§§§ °0.273

§§§ °0.072

(0.016) (0.017) (0.018) (0.018) (0.019) (0.019) (0.021) (0.032) (0.063)

sEUCC 0.027

§§§
0.042

§§§
0.055

§§§
0.069

§§§
0.083

§§§
0.102

§§§
0.130

§§§
0.191

§§§
0.309

§§§

(0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.005) (0.007) (0.015)

vST50 °0.052

§§§ °0.051

§§§ °0.053

§§§ °0.055

§§§ °0.058

§§§ °0.059

§§§ °0.060

§§§ °0.056

§§§ °0.053

§§§

(0.003) (0.003) (0.004) (0.004) (0.004) (0.004) (0.004) (0.006) (0.013)

mEUFAYOY °0.025

§§§ °0.027

§§§ °0.027

§§§ °0.027

§§§ °0.025

§§§ °0.022

§§§ °0.019

§§§ °0.010

§§
0.003

(0.002) (0.002) (0.002) (0.003) (0.003) (0.003) (0.003) (0.004) (0.009)

Constant 6.285

§§§
7.731

§§§
8.903

§§§
10.087

§§§
11.256

§§§
12.477

§§§
14.042

§§§
16.263

§§§
20.340

§§§

(0.082) (0.085) (0.090) (0.092) (0.094) (0.095) (0.104) (0.159) (0.318)

Observations 223 223 223 223 223 223 223 223 223

R

2

0.766 0.809 0.830 0.857 0.876 0.893 0.901 0.855 0.747

Adjusted R

2

0.761 0.805 0.827 0.854 0.874 0.891 0.899 0.853 0.742

Residual Std. Error (df = 218) 0.392 0.406 0.430 0.442 0.450 0.454 0.499 0.759 1.521

F Statistic (df = 4; 218) 178.066

§§§
230.387

§§§
266.906

§§§
326.253

§§§
385.690

§§§
456.593

§§§
494.318

§§§
322.585

§§§
160.861

§§§

Note: §
p<0.1;

§§
p<0.05;

§§§
p<0.01

115



Table 12: Dd regression results for all quantiles

Dependent variable:

Log return EV/EBITDA Quantiles

10% 20% 30% 40% Median 60% 70% 80% 90%

vST50lr °0.160

§§§ °0.144

§§§ °0.138

§§§ °0.127

§§§ °0.132

§§§ °0.126

§§§ °0.130

§§§ °0.127

§§§ °0.137

§§§

(0.014) (0.011) (0.010) (0.010) (0.009) (0.009) (0.010) (0.011) (0.013)

sEUCCd 0.011

§§§
0.009

§§§
0.008

§§§
0.008

§§§
0.008

§§§
0.008

§§§
0.007

§§§
0.007

§§§
0.006

§§§

(0.002) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.002)

Observations 223 223 223 223 223 223 223 223 223

R

2

0.452 0.500 0.516 0.506 0.530 0.521 0.494 0.441 0.377

Adjusted R

2

0.447 0.496 0.511 0.501 0.526 0.517 0.489 0.436 0.372

Residual Std. Error (df = 221) 0.038 0.030 0.028 0.026 0.026 0.025 0.027 0.029 0.035

F Statistic (df = 2; 221) 91.111

§§§
110.574

§§§
117.635

§§§
113.110

§§§
124.821

§§§
120.184

§§§
107.904

§§§
87.031

§§§
66.944

§§§

Note: §
p<0.1;

§§
p<0.05;

§§§
p<0.01

Table 13: Dp regression results for all quantiles

Dependent variable:

Log return EV/EBITDA Quantiles

10% 20% 30% 40% Median 60% 70% 80% 90%

vST50lr °0.162

§§§ °0.146

§§§ °0.139

§§§ °0.128

§§§ °0.133

§§§ °0.127

§§§ °0.131

§§§ °0.128

§§§ °0.138

§§§

(0.015) (0.012) (0.011) (0.011) (0.010) (0.010) (0.011) (0.011) (0.013)

Observations 223 223 223 223 223 223 223 223 223

R

2

0.344 0.390 0.415 0.398 0.425 0.421 0.407 0.368 0.332

Adjusted R

2

0.341 0.387 0.413 0.395 0.422 0.419 0.405 0.365 0.329

Residual Std. Error (df = 222) 0.041 0.033 0.030 0.029 0.029 0.027 0.029 0.031 0.036

F Statistic (df = 1; 222) 116.212

§§§
142.072

§§§
157.709

§§§
146.729

§§§
163.910

§§§
161.514

§§§
152.582

§§§
129.026

§§§
110.285

§§§

Note: §
p<0.1;

§§
p<0.05;

§§§
p<0.01

Table 14: Rd regression results for all quantiles

Dependent variable:

EV/EBITDA Quantiles

10% 20% 30% 40% Median 60% 70% 80% 90%

yt°1,q 0.972

§§§
0.978

§§§
0.981

§§§
0.983

§§§
0.983

§§§
0.983

§§§
0.981

§§§
0.980

§§§
0.975

§§§

(0.013) (0.011) (0.011) (0.010) (0.010) (0.010) (0.011) (0.012) (0.012)

vST50lr °0.634

§§§ °0.720

§§§ °0.806

§§§ °0.842

§§§ °0.982

§§§ °1.045

§§§ °1.217

§§§ °1.397

§§§ °1.894

§§§

(0.055) (0.056) (0.059) (0.064) (0.070) (0.077) (0.096) (0.125) (0.195)

sEUCCd 0.045

§§§
0.048

§§§
0.049

§§§
0.054

§§§
0.060

§§§
0.064

§§§
0.071

§§§
0.078

§§§
0.090

§§§

(0.007) (0.007) (0.007) (0.008) (0.009) (0.010) (0.012) (0.015) (0.024)

Constant 0.128

§§
0.126

§
0.124

§
0.129

§
0.141 0.157 0.198

§
0.240

§
0.365

§

(0.059) (0.065) (0.070) (0.077) (0.086) (0.096) (0.118) (0.142) (0.187)

Observations 223 223 223 223 223 223 223 223 223

R

2

0.965 0.973 0.976 0.978 0.978 0.977 0.973 0.971 0.969

Adjusted R

2

0.965 0.973 0.976 0.977 0.977 0.977 0.972 0.970 0.968

Residual Std. Error (df = 219) 0.151 0.152 0.161 0.174 0.191 0.209 0.260 0.340 0.533

F Statistic (df = 3; 219) 2,032.603

§§§
2,654.535

§§§
2,974.166

§§§
3,189.823

§§§
3,174.165

§§§
3,153.289

§§§
2,614.874

§§§
2,430.799

§§§
2,270.458

§§§

Note: §
p<0.1;

§§
p<0.05;

§§§
p<0.01
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Table 15: Rp regression results for all quantiles

Dependent variable:

EV/EBITDA Quantiles

10% 20% 30% 40% Median 60% 70% 80% 90%

yt°1,q 0.899

§§§
0.897

§§§
0.900

§§§
0.900

§§§
0.899

§§§
0.903

§§§
0.910

§§§
0.935

§§§
0.951

§§§

(0.019) (0.016) (0.015) (0.015) (0.015) (0.015) (0.016) (0.015) (0.013)

vST50lr °0.450

§§§ °0.502

§§§ °0.569

§§§ °0.577

§§§ °0.688

§§§ °0.748

§§§ °0.913

§§§ °1.130

§§§ °1.613

§§§

(0.063) (0.062) (0.065) (0.069) (0.077) (0.083) (0.104) (0.133) (0.203)

vST50 °0.010

§§§ °0.011

§§§ °0.012

§§§ °0.014

§§§ °0.015

§§§ °0.015

§§§ °0.016

§§§ °0.014

§§§ °0.016

§§§

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.003) (0.003) (0.005)

mEUCPIBCt °0.033

§§§ °0.042

§§§ °0.047

§§§ °0.054

§§§ °0.060

§§§ °0.066

§§§ °0.071

§§§ °0.075

§§§ °0.094

§§§

(0.007) (0.007) (0.007) (0.008) (0.009) (0.010) (0.012) (0.015) (0.023)

Constant 0.775

§§§
0.952

§§§
1.053

§§§
1.195

§§§
1.334

§§§
1.408

§§§
1.476

§§§
1.310

§§§
1.345

§§§

(0.121) (0.129) (0.139) (0.151) (0.171) (0.188) (0.225) (0.244) (0.284)

Observations 223 223 223 223 223 223 223 223 223

R

2

0.967 0.975 0.979 0.980 0.980 0.980 0.975 0.972 0.971

Adjusted R

2

0.966 0.975 0.978 0.980 0.979 0.979 0.974 0.972 0.970

Residual Std. Error (df = 218) 0.148 0.146 0.153 0.164 0.181 0.198 0.251 0.332 0.518

F Statistic (df = 4; 218) 1,579.876

§§§
2,157.560

§§§
2,484.210

§§§
2,708.025

§§§
2,651.599

§§§
2,633.116

§§§
2,116.586

§§§
1,919.259

§§§
1,804.542

§§§

Note: §
p<0.1;

§§
p<0.05;

§§§
p<0.01

Table 16: Hosking test statistics for Residuals from VAR model in Equation 5.12

Lags Statistic Degrees of Freedom p-value

5 302.083 320 0.757

10 643.778 640 0.451

15 1,015.347 960 0.105

20 1,394.331 1,280 0.014

25 1,770.809 1,600 0.002

30 2,091.937 1,920 0.003
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C.VIII Johansen test for Quantiles

Table 17: Results from Johansen test on the system of nine quantiles.

Johansen Statistic

Test 10% 5% 1%

r ∑ 8 0.86 6.5 8.18 11.65

r ∑ 7 10.76 15.66 17.95 23.52

r ∑ 6 34.86 28.71 31.52 37.22

r ∑ 5 69.41 45.23 48.28 55.43

r ∑ 4 119.96 66.49 70.6 78.87

r ∑ 3 182.77 85.18 90.39 104.2

r ∑ 2 254.76 118.99 124.25 136.06

r ∑ 1 335.24 151.38 157.11 168.92

r = 0 424.38 186.54 192.84 204.79
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C.IX Moments of EV/EBITDA Distribution
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Figure 24: EV/EBITDA distribution median, standard deviation, skewness and kurtosis develop-

ment
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C.X Principal Component Analysis on Quantiles

Table 18: Coefficients for resulting models from subset regression on principal components

Dependent variable:

¢pc2 pc2 ¢pc3 pc3 ¢pc4 pc4

fxUSDEURlr °3.584

§§

(1.482)

fxUSDEUR °13.092

§§§

(0.987)

iEU10d °0.334

§§§

(0.122)

iEU10 °0.542

§§§

(0.037)

mEUCPId 0.016

(0.110)

mEUCPI 0.175

§§§

(0.034)

Constant °0.028 15.910

§§§
0.008 1.537

§§§
0.002 °0.306

§§§

(0.035) (1.212) (0.023) (0.123) (0.028) (0.068)

Observations 222 223 222 223 222 223

R

2

0.026 0.443 0.033 0.489 0.0001 0.107

Adjusted R

2

0.021 0.440 0.028 0.487 °0.004 0.103

Residual Std. Error 0.523 2.515 0.339 0.928 0.420 0.487

F Statistic 5.849

§§
175.774

§§§
7.478

§§§
211.549

§§§
0.022 26.605

§§§

Note: §
p<0.1;

§§
p<0.05;

§§§
p<0.01

C.XI Parametric Distribution Parameter Estimation using Squared
Distance and Logarithmic Sum

D and A from Section 5.2 may be defined in multiple ways. It is natural to fit a kernel kt (m) to

the empirical data ≠t , and to use a squared distance measure D and a logarithmic sum aggregation

function, from which the following loss function is obtained:

§=
TmaxX

t=1

log
Z1

m=0

( fRxt (m)°kt (m))

2dm (5)

The loss function may be minimized by setting r§ = 0, assuming that fRxt has a particular

parametric form and solving the resulting set of equations:

@H
@r

=
TX

t=1

R1
m=0

2( fRxt (m)°kt (m))dm
R1

m=0

( fRxt (m)°kt (m))

2dm

@ fRxt

@r

= 0 (6)
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C.XII Derivation of Equation 5.23
We start with the likelihood function:

L(Ø
1:B ,Æ

1:B ; x

1:T ) =
TY

t=1

Y

!2≠t

P (Mt =!) =
TY

t=1

Y

!2≠t

BX

b=1

∫bt 1lb∑m<ub
(7)

1. Take the logarithm on both sides

2. Sum ≠t over 1lb∑!<ub

3. Use Equation 5.20 to expand ∫bt

4. Separate the logarithm

5. Sum from b = 1 to B in first expression

L (Ø
1:B ,Æ

1:B ; x

1:T ) =
TX

t=1

X

!2≠t

log

BX

b=1

∫bt 1lb∑!<ub

=
TX

t=1

BX

b=1

|≠bt | log∫bt

=
TX

t=1

BX

b=1

|≠bt | log

∞t

1+eÆb+Øb ·x t

=
TX

t=1

BX

b=1

|≠bt | log∞t °
TX

t=1

BX

b=1

|≠bt | log(1+eÆb+Øb ·x t
)

=
TX

t=1

|≠t | log∞t °
TX

t=1

BX

b=1

|≠bt | log(1+eÆb+Øb ·x t
)

Q.E.D.

C.XIII Overview of 0-value Empirical Frequencies
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Figure 25: # of 0-buckets in-sample
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C.XIV Non-Parametric Distribution Model Coefficients
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Figure 26: Coefficients for bucket model with logistic regression variables
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Figure 27: Coefficients for bucket model with lagged bucket variables
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C.XV An Analysis on Low vs. High Value Companies
We defined the following indices in order to test how low and high valued companies are affected by

the exogenous variables from Ap:

• Low value company index: Companies with median EV/EBITDA less than or equal to the

median 30% EV/EBITDA quantile over the whole time period under consideration

• High value company index: Companies with median EV/EBITDA greater than or equal to

the median 70% EV/EBITDA quantile over the whole time period under consideration

After finding these sets of companies, the median of the companies’ multiples were taken to

create a pricing index.

Table 19: Regression results for low and high value company multiple indices

Dependent variable:

Low value High value

iEUspd101 °0.205

§§§ °0.289

§§§

(0.041) (0.032)

mEUCPI °0.256

§§§ °0.468

§§§

(0.039) (0.030)

mEUpYOY 0.355

§§§
0.356

§§§

(0.043) (0.033)

vST50BCt °0.516

§§§ °0.469

§§§

(0.041) (0.032)

Constant 0.000 °0.000

(0.038) (0.029)

Observations 223 223

R

2

0.690 0.817

Adjusted R

2

0.684 0.814

Residual Std. Error (df = 218) 0.562 0.432

F Statistic (df = 4; 218) 121.125

§§§
243.341

§§§

Note: §
p<0.1;

§§
p<0.05;

§§§
p<0.01

We observe that term structure spread is more important for high-valued companies, volatility is

more important for low valued companies. Industrial production growth has similar impact on both

low and high valued companies. However, inflation seems to impact higher valued companies more.
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D Appendix - Chapter 6
D.I ACF Functions for Residuals in Naïve Models
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Figure 28: ACF values for the Naïve Forecasting models

124



D.II Exogenous Variables’ Values for Specific Scenarios

Table 20: Underlying variable scenarios

Unit 2018YE 2019YE 2020YE 2021YE 2022YE

No Change
vST50 Index 12.60 12.60 12.60 12.60 12.60

iEUspd101 % 1.10 1.10 1.10 1.10 1.10

mEUCPI % 2.10 2.10 2.10 2.10 2.10

mEUpYOY % 1.24 1.24 1.24 1.24 1.24

Base Case
vST50 Index 14.00 17.00 18.00 18.00 18.00

iEUspd101 % 1.06 1.50 1.11 1.25 1.23

mEUCPI % 1.70 1.60 1.70 1.60 1.65

mEUpYOY % 1.80 1.45 2.40 2.40 2.40

Low Volatility
vST50 Index 12.60 12.60 12.60 12.60 12.60

iEUspd101 % 1.06 1.50 1.11 1.25 1.23

mEUCPI % 1.70 1.60 1.70 1.60 1.65

mEUpYOY % 1.80 1.45 2.40 2.40 2.40

Increasing Volatility
vST50 Index 16.00 20.00 22.10 22.10 22.10

iEUspd101 % 1.06 1.50 1.11 1.25 1.23

mEUCPI % 1.70 1.60 1.70 1.60 1.65

mEUpYOY % 1.80 1.45 2.40 2.40 2.40

High Growth
vST50 Index 14.00 17.00 18.00 18.00 18.00

iEUspd101 % 1.06 1.50 1.11 1.25 1.23

mEUCPI % 1.70 1.60 1.70 1.60 1.65

mEUpYOY % 4.00 5.00 5.40 5.40 5.40

Stagflation
vST50 Index 20.00 30.00 35.50 35.50 35.50

iEUspd101 % 1.06 1.80 2.00 2.00 2.00

mEUCPI % 1.90 2.50 3.00 3.00 3.00

mEUpYOY % 3.50 2.50 2.00 2.00 1.00
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D.III Johansen Test on Exogenous Variables of Ap

Table 21: Results from Johansen test on exogenous variables of Ap

Johansen Statistic

Test 10% 5% 1%

r ∑ 3 6.556 6.500 8.180 11.650

r ∑ 2 20.598 15.660 17.950 23.520

r ∑ 1 55.764 28.710 31.520 37.220

r = 0 93.233 45.230 48.280 55.430

D.IV VAR Model for Exogenous Variables in Ap

Table 22: VAR model for the independent variables in Ap

Dependent variable:

y

iEUspd101 mEUCPI mEUpYOY vST50BCt

Lagged iEUspd101 0.930

§§§
0.018 0.385

§§ °0.002

(0.019) (0.026) (0.164) (0.004)

Lagged mEUCPI 0.010 0.950

§§§ °0.238

§§
0.003

(0.013) (0.018) (0.113) (0.003)

Lagged mEUpYOY °0.011

§§§
0.015

§§§
0.960

§§§ °0.001

(0.003) (0.004) (0.024) (0.001)

Lagged vST50BCt 0.349

§ °0.005 °4.298

§§
0.845

§§§

(0.195) (0.271) (1.704) (0.040)

Constant °0.474 0.057 6.763

§§
0.242

§§§

(0.302) (0.420) (2.641) (0.061)

Observations 215 215 215 215

R

2

0.938 0.937 0.905 0.726

Adjusted R

2

0.937 0.936 0.903 0.721

Residual Std. Error (df = 210) 0.178 0.247 1.555 0.036

F Statistic (df = 4; 210) 800.605

§§§
781.271

§§§
499.760

§§§
139.117

§§§

Note: §
p<0.1;

§§
p<0.05;

§§§
p<0.01
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Figure 29: ACFs for VAR model residuals. Similar plots were constructed preliminarily for some

residuals on other residuals, without uncovering any significant issues.
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E Appendix - Chapter 7
E.I Non-exhaustive List of Further Research Proposals
Markov Swiching Models

Heteroskedasticity and regime switching are likely to be present in the processes we have looked at,

and a natural extension of our research would be to create a Markov Switching Model as introduced

by Hamilton (1989). We propose a time-varying MSM (see (Diebold et al. 1993)) for the underlying

macroeconomic variables in which there are two states, bear and bull market

6

, and the probability

of switching is dependent on the absolute level. This model will output the probability of entering a

bear market at any point in time. The change is governed by the following set of equations:

i 2 {1,2},¢x t =Æi +≤t i (8)

In which x t are the underlying variables, Æi is the drift constant and ≤t i is a i.d.d. distributed

error vector. The transition probabilities are thus specified by:

P (st = 1) = P (st°1

= 1)

1+eØ1x t°1

+ eØ2x t°1 P (st°1

= 2)

1+eØ2x t°1

(9)

An expression for the model parameters, i.e., the initial probability (P (s
0

= 1)), the parameters

of f≤t i , the joint residual distribution (µ), the drift parameters(Æ(i )), and the transition probability

parameters (Ø1,Ø2) may be obtained by formulating the MLE expression:

L (P (s
0

= 1),µ,Æ,Ø1,Ø2) =
TX

t=1

log

2X

i=1

f≤t i (log

x t

x t°1

°Æi )

(

1

1+eØ1

x t
P (st°1

= 1)+ (1° 1

1+eØ2

x t
)P (st°1

= 2)) (10)

The explicit maximization of this is O(2

T
) and intractable, but an EM algorithm may be used.

In the E-step, the current iteration of parameters are used to compute the probability of the states

throughout the process, and in the M-step, the most probable states assumed to occur, and the con-

ditionally optimal parameters are computed from L . Simpler Markov Switching Models were suc-

cessfully estimated but without notable findings. MSM models may be applicable in various forms

to describe the underlying environment and the dependency relationship or both simulatenously.

Panel Data Regressions

Our focus has been indices generated from the distribution of multiples, and the distribution by

itself. However, individual firms may be identified in each cross section, motivating the definition of

a general panel regression problem:

mct =Æc +Øc ·x t +≤ct (11)

for firm c at time t , where ≤ct has a non-diagonal conditional covariance matrix and is (potentially)

serially dependent. Firm specific variables zc may be used to define time independent coefficients

Æc and Øc using linear models:

Æc =ÆÆ+ØÆ · zc +≤c
Æ

Øc
i =ÆØi

+ØØi
· zc +≤c

Øi

(12)

6

The model is not constrained to distinguish between these two markets, but our hypothesis has been that

these are the states that will emerge from the model.
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This model is one out of a range of possible panel regression formulations that may be ap-

plicable for our case. The panel regression provides a bottom-up approach for understanding the

multiple distribution and may be used to enhance predictions, and to gain a better understanding of

distributional shifts. Furthermore, the panel perspective may be used in association with machine

learning methods and system dynamic approaches. We have only provided a superficial brainstorm

of the applications, and implementation would require a careful analysis of challenges associated

with firms moving in and out of sample, stationarity, estimation tractability, etc., see Baltagi (2008)

for elaboration on the methods.

Size-adjusted Multiple

In the introduction of Chapter 5, a size-adjusted Øt -multiple was introduced. Specifically, the form

of the multiple was proposed to be:

M§
t = Vt

º
Øt
t

(5.8)

using Øt from Equation 5.2. This multiple is by definition linearly independent of the distributions of

ºt and Vt , a property almost captured by the regular Vt /ºt multiple. The multiple might be used to

render discussion concerning firm size as a factor by itself superflous, and analyses corresponding to

the ones we conducted in Chapter 5 could be done, possibly with better accuracy because size-effects

are completely mitigated.

Corresponding Øt s may be computed for other kinds of multiples (e.g., EV/EBIT, P/E or industry-

specific multiples) in order to adjust them, but also to compare usefulness and explore and contrast

properties of the multiples. The Æt values also contain information about the nature of the multiple

in relation to the error term, with potential applications.

System Dynamics Approach

The relationship between the macroeconomic environment and pricing levels in capital markets is

a complex system with distinct variables interacting through feedback loops - a change in one vari-

able impacts other variables over time, which in turn impacts the original variable and so on. The

VAR model of underlying variables developed in Chapter 6 resembles this kind of thinking, but

do not necessarily incorporate all relevant effects. Forrester introduced a system dynamic method

in the fifties (see Forrester (1997)), allowing for more intricate, non-linear relationships and better

understanding of causality between multiples and macroeconomic factors. In particular, investment

opportunity supply and demand might be modeled explicitly, allowing for a broader understanding

of the complete system, and a granular description of individual factors and agents in the market.

Quantum Mechanical Approach

In Chapter 5, the underlying concern is to estimate the nature of propagation for a probability distri-

bution. In fact, Quantum Mechanics are concerned with a similar problem of uncertainty propagation

(Townsend 2000). Inspired by this, we propose a complex valued wave function ™(m) describing

the continuously valued multiple-state for a particular firm, in which |™(m)|2 2 R is the probability

distribution of observing it at a multiple m, which would lead to a collapse of the wave function

into a dirac delta function: |™(m0
)|2 = ±(m °m0

). In Quantum Mechanics, the time dependence of

a position-state r is given by the Schrödinger (1926)-equation:

i~ @

@t
™(r , t ) = (

°~2

2µ
r2 +V (r , t ))™(r , t ) (13)

where i is the imaginary unit and ~ is the reduced Planck constant.
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Similarly, our quantum mechanical approach would require a definition of translational opera-

tors

ˆO j for each of the j exogenous variables, working on the underlying variable-dependent wave

function ™(m, x t ), possibly based on Hermitian operators related to observables. The boundary

conditions of the system resemble the classical particle in a box problem. Hopefully, an adequate

formulation would yield a mathematical framework that would facilitate statistical inference based

on the empirical evidence obtained.

Analysis on Industries and Geographies

A reasonable hypothesis is that distinct industries and geographies are driven by distinct macroeco-

nomic factors. Thus, we consider a bottom-up approach for understanding aggregate multiples based

on the drivers of individual industries and geographies an interesting extension of our analyses. From

an industry perspective, one could also explore the possibility of operating with sector-specific mul-

tiples that are more suitable and reflect underlying value creation, as business models and capital

structures vary significantly across industries. Concerning geographies, country specific macroeco-

nomic factors could be applied and thus, more accurate relationships may be derived. Expanding the

dataset by incorporating all listed firms in the world would also be a possibility.

Leading Irrational Indicators

The data used for our analyses is structured data, available to most professional investors. Within this

data, we were unable to find any significant leading indicators providing predictions of the multiple,

as expected from an Efficient Market Hypothesis perspective. However, there is a vast landscape

of semantic sentiment data in social media and other online services that may contain information

not accounted for by the financial markets, but with latent effects on valuation - Keynes (1936)s

"animal spirits". The problem is to synthesize the data to obtain accurate predictions. Big Data and

machine learning provide tools that may be applicable: natural language processing algorithms is a

cornerstone, clustering analyses and other unsupervised learning algorithms can be used to segment

consumers, and regression tools would be used to obtain predictions with the resulting indicators.

This is a vast field of study within Computer Science, and was regarded out of scope early in the

process. See Pang et al. (2008) and Russell & Norvig (2003) for elaboration.

Advanced Parametric Distribution Methods

More flexible parametric models may be developed for describing the distribution of multiples. In

Chapter 5, the possibilities of implementing a skewed generalized t distribution (Theodossiou 1998)

or a generalized hyperbolic distribution (Barndorff-Nielsen 1977) were discussed, in order to better

capture the dynamics of multiples distributions over time. With five parameters, the optimization

problem becomes less tractable, and the risk of overfitting becomes prominent. The distribution

may also be modeled using a composition of distributions, e.g., using extreme value theory or a

generalized Pareto distribution for the m > 30x-tails and a bell-shaped parametric distribution for

companies with multiples < 30x. It is natural to set boundary restrictions, e.g., by requiring a con-

tinuous or continuous and smooth transition. Moreover, spline or kernel based approaches, convo-

lution formulations and methods involving transformations into new spaces are all imaginable, but

tractability of the likelihood maximization becomes a pressing issue.

Long-memory Models

Tsay (2010) describes a long memory model with the following properties:

(1°B)

d xt = wt (14)
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Long-memory models are capable of capturing non-exponential decay of autocorrelation, which

turns out to be present in many time series models, both economic and physical. Usage of long-

memory models is prevalent when time-series are near-integrated, as may be hypothesized to be

the case for median EV/EBITDA. For our analyses, we deemed AR modeling of residuals to be

sufficient, but long-memory models may be appropriate for a more profound understanding of the

autocorrelation.

GARCH Volatility Modeling

Heteroskedasticity is often prevalent in time series, and has been shown for several of the models

we are considering. Aiming to model this explicitly, it is natural to use a Generalized AutoRe-

gressive Conditional Heteroskedasticity model (Alexander 2008a). We propose an ARMA(n,m)-

GARCH(p,q) description, with the ARMA model:

yt =Æ+
nX

i=1

∞i yt°i +Øt ·x t +¥t +
mX

j=1

b j¥t°i (15)

in which the error process ¥t is normally distributed with conditional variance æ2

t given by the

GARCH model:

æ2

t = ¯æ2 +
pX

i=1

ciµ
2

t°i +
qX

j=1

d jæ
2

t° j (16)

The estimation of these models is usually relatively straight-forward based on MLE.

However, GARCH models are primarily used for high-frequecy financial data, because volatility

clustering effects tend to be mitigated for long term series (Alexander 2008a), and the implementa-

tion would be most relevant in relation to other multiple time granularities.

Modeling Tail Distributions with New Independent Variables

In section 5.1, we conducted a subset regression on the principal components in qPCA, from which

some new variables emerged. In Chapter 5, the underlying variables based on a subset regression

associated with Ap were used to model the distribution tails and moments, ignoring other factors

that might have more explanatory power. If the model is extended in this way, the complexity would

increase, but it might pay of e.g., giving increased R2

for the other principal components from qPCA
or better accuracy for the ∫-parameter in the generalized log Student-t distribution.

Estimation of Frequency Approach Likelihood Function

In Section 5.3, a likelihood function was derivated, whose maximization would yield the optimal set

of Æb and Øb-parameters:

L (Ø
1:B ,Æ

1:B ; x

1:T ) =
TX

t=1

|≠t | log∞t °
TX

t=1

BX

b=1

|≠bt | log(1+eÆ+Øb ·x t
) (5.23)

For our version of the optimization, the problem comprised 250 individual parameters, and

we were unable to obtain optimized coefficients. However, the expression may be formulated into

something with fewer parameters by applying appropriate constraints, e.g., by setting the parameters

Ø(b) to be a fixed continuous function. With suited optimization algorithms, the problem might

become tractable even in its raw form, either exactly or by a heuristic.
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Aiming to gain an a better approximation to the function, it is natural to include the bucket

allocation problem in the likelihood optimization:

L(Ø
1:B ,Æ

1:B ,B , l
1:B ,u

1:B ; x

1:T ) =
TY

t=1

Y

!2≠t

P (Mt =!) (17)

but this would dramatically increase the search space of solutions. As with Equation 5.23, also this

optimazion problem may become more tractable by applying constraints and powerful algorithms.

Regression based on Stationarity

The Johansen test eigenvalues define a cointegrating equation rendering the residuals maximally

stationary. This corresponds to OLS, in which the RSS is minimized, and may be used to define

a new type of regression, and may be interpreted the regression most able to capture cointegration

effects. However, this is speculative, and merely an idea for further analyses.

Machine Learning

Some preliminary testing of machine learning models was conducted in Section 4.4, without notable

findings. However, it was shown that the machine leaning models may be tuned to be at least as good

as linear regression, and possibly significantly better on the index regression problem, by appropri-

ately adjusting the model parameters and adopting the training data. Nevertheless, it is unlikely that

the index regression problem is the area in which the applications are most relevant because the

sample size is limited. Looking at the full sample distribution, ≠
1:T , a substantial training data set

emerges in the cross-section. A machine learning model, e.g., an ANN could perform well in pre-

dicting individual company development or other distributional aspects, related to the discussions

in Chapter 5 and 6, in particular in the presence of additional data, such as classification data or

unstructured data.

The Autocorrelated Continuous Distributional Residual Process, ˆ≤(m)

s
h

For an actual distribution ≠t and a fitted log Student-t distribution f (m)t , there are multiple ways of

defining the distribution-residuals

ˆ≤(m)t . One approach may be to fit the MLE-Student-t distribution

f (m)

§
t to the observed values ≠t , and to use the arithmetic differences to obtain a residual distribu-

tion:

ˆ≤(m)t = f (m)t ° f (m)

§
t . This approach might be criticized of putting too much emphasis on

the Student-t distribution assumption, and in response to that critique, other approaches include us-

ing a bucket-based distribution f (m)

b
t a fitted spline, definitions based on distributional parameters,

distributional moments or quantiles. Independently of how the residual distribution is defined, it will

adhere to the following property:

Z1

0

ˆ≤(m)t dm =
Z1

0

f (m)t ° f (m)

§
t dm =

Z1

0

f (m)t dm °
Z1

0

f (m)

§
t dm = 0 (18)

The historical distribution residuals

ˆ≤(m)t will be used to generate new distribution residual pro-

cesses for convolution with the VAR-residuals, but it is unlikely that the distribution residual process

is a continuous white-noise process. This consideration will entail some definition of independence

for these kinds of processes. Furthermore, some dynamic in the process must be postulated, obtain-

ing a new set of independent continuous distribution residuals, from which individual simulation

residuals can be drawn, generating a correlated residual process,

ˆ≤(m)

1:S
T+1:H , that may be applied to

the individual simulations, estimating the error of the distribution in a proper way.
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Conjugate Pairs of AR(n) Characteristic Equation

Huerta & West (1999) and Tsay (2010) describe a method for identifying inherent cyclicalities in

time series involving the conjugate pairs a ± i b of roots for the AR(n) characteristic equation. The

conjugate pairs give rise to a stochastic period, by the following equation:

k = 2º

cos

°1

(a/

p
a2 +b2

)

(19)

k may be used to identify cyclic trends in the variables. The conjugate pairs and the corresponding

period lengths k were found for the roots from Section 6.1, but were of no practical interest.

E.II CBOE Volatility Index vs. Global Economic Policy Uncertainty
Index
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Figure 31: Indexed values for CBOE Volatility Index vs. Global Economic Policy Uncertainty

Index

Explanation of Economic Policy Uncertainty Index developed by Baker et al. (2016):

"The Economic Policy Uncertainty Index (EPUI) reflects the relative frequency of own-country news-
paper articles that contain a trio of terms pertaining to the economy (E), policy (P) and uncertainty
(U). In other words, each monthly national EPU index value is proportional to the share of own-
country newspaper articles that discuss economic policy uncertainty in that month."

Table 23: Correlation coefficients for relevant time intervals

Time interval

2000-2012 2012-2018

Pearson Correlation 0.73 °0.08

Spearman Correlation 0.76 °0.04

Kendall Correlation 0.57 °0.02
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The common Pearson correlation coefficient evaluates linear relationships, and Spearman eval-

uates monotonic relationship, while Kendall evaluates non-linear dependencies between variables.

In Table 23 the results are shown for two time periods: 2000-2012 and 2012-2018. In conclusion,

volatility and economic policy uncertainty have been correlated historically, while in recent years

there is almost no correlation (slightly negative).
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