
A Deep Network Model for Paraphrase Detection in Short Text Messages

Basant Agarwala,b,∗, Heri Ramampiaroa, Helge Langsetha, Massimiliano Ruoccoa,c

aDept. of Computer Science, Norwegian University of Science and Technology, Norway
bDept. of Computer Science and Engineering, Swami Keshvanand Institute of Technology, India

cTelenor Research, Trondheim, Norway

Abstract

This paper is concerned with paraphrase detection, i.e., identifying sentences that are semantically iden-
tical. The ability to detect similar sentences written in natural language is crucial for several applications,
such as text mining, text summarization, plagiarism detection, authorship authentication and question an-
swering. Recognizing this importance, we study in particular how to address the challenges with detecting
paraphrases in user generated short texts, such as Twitter, which often contain language irregularity and
noise, and do not necessarily contain as much semantic information as longer clean texts. We propose a novel
deep neural network-based approach that relies on coarse-grained sentence modelling using a convolutional
neural network (CNN) and a recurrent neural network (RNN) model, combined with a specific fine-grained
word-level similarity matching model. More specifically, we develop a new architecture, called DeepPara-
phrase, which enables to create an informative semantic representation of each sentence by (1) using CNN
to extract the local region information in form of important n-grams from the sentence, and (2) applying
RNN to capture the long-term dependency information. In addition, we perform a comparative study on
existing (state-of-the-art) approaches within paraphrase detection. An important insight from this study is
that existing paraphrase approaches perform well when applied on clean texts, but they do not necessarily
deliver good performance against noisy texts, and vice versa. In contrast, our evaluation has shown that the
proposed DeepParaphrase-based approach achieves good results in both types of text, thus making it more
robust and generic than the existing approaches.

Keywords: Paraphrase detection, Sentence Similarity, Deep learning, RNN, CNN.

1. Introduction

Twitter has for some time been a popular means for expressing opinions about a variety of subjects.
Paraphrase detection in user-generated noisy texts, such as Twitter texts1, is an important task for various
Natural Language Processing (NLP), information retrieval and text mining tasks, including query ranking,
plagiarism detection, question answering, and document summarization. Recently, the paraphrase detection
task has gained significant interest in applied NLP because of the need to deal with the pervasive problem
of linguistic variation.

Paraphrase detection is an NLP classification problem. Given a pair of sentences, the system determines
the semantic similarity between the two sentences. If the two sentences convey the same meaning, then it is
labelled as paraphrase; otherwise, it is labeled as non-paraphrase. Most of the existing paraphrase systems
have performed quite well on clean text corpora, such as the Microsoft Paraphrase Corpus (MSRP) [1].
However, detecting paraphrases in user-generated noisy tweets is more challenging due to issues like mis-
spelling, acronyms, style and structure [2]. In addition, measuring the semantic similarity between two

∗Corresponding author
Email addresses: basant.agarwal@ntnu.no (Basant Agarwal), heri@ntnu.no (Heri Ramampiaro), helgel@ntnu.no (Helge

Langseth), massimiliano.ruocco@ntnu.no (Massimiliano Ruocco)
1From now on referred to as Tweets.

Preprint submitted to Information Processing and Management May 10, 2018



short sentences is very difficult due to the lack of common lexical features [3]. Although little attention has
been given to paraphrase detection in noisy short-texts thus far, some initial work has been reported on the
SemEval 2015 benchmark Twitter dataset [2, 4, 5]. Unfortunately, the best performing approaches on one
dataset perform poorly when evaluated against another. As we discuss later in this paper, the state-of-the-
art approach for the SemEval dataset proposed by Dey et al. [5] does not have good performance (in form
of F1-score) when evaluated on the MSRP dataset. Similarly, Ji and Eisenstein [6] is the best performing
approach on the MSRP dataset, but does not perform well on the SemEval dataset. In conclusion, existing
approaches are not very generic; but instead, they are highly dependant on the data used for training.

Focusing on the problem discussed above, the main goal of this work is to develop a robust paraphrase
detection model based on deep learning techniques that is able to successfully detect paraphrasing in both
noisy and clean texts. More specifically, we propose a hybrid deep neural architecture composed by a
convolutional neural network (CNN) and a recurrent neural network (RNN) model, further enhanced by
a novel word-pair similarity module. The proposed paraphrase detection model is composed of two main
components: (1) sentence modeling and (2) pair-wise word similarity matching. First, sentence modeling
concerns building an effective model to represent the text. To do this, we build joint CNN and RNN
architecture that takes the local features extracted by CNN as input to the RNN. We take word embeddings
as input to the CNN model. Then, after convolutions and pooling operations, the encoded feature maps are
taken in sequence as input to the RNN model. The last hidden state learned by the RNN model is considered
as the sentence level representation. The main rationale behind using both CNN and RNN here is that CNN
is able to learn the local features in form of important n-grams of the texts; whereas RNN takes words in a
sequential order and is able to learn the long-term dependencies of texts rather than local features. Second,
the pair-wise similarity matching model is used to extract fine-grained similarity information between pairs
of sentences. Initially, a pair-wise similarity matrix is constructed by computing the similarity of each word
in a given sentence to all the words in another sentence. We then apply CNN onto this similarity matrix to
analyze the patterns in the semantic correspondence between each pair of words in the two sentences that
are intuitively useful for paraphrase identification. The idea to apply convolutions over similarity matrix
to extract the important word-word similarity pairs is motivated by how convolutions over text can extract
the most important parts of a sentence.

In this paper, we show how the proposed model for paraphrase detection can be enhanced by employing
an extra set of statistical features extracted from the input text. To demonstrate its robustness, we evaluate
the proposed approach and compare it with the state-of-the-art models, using two different datasets, covering
both noisy user-generated texts – i.e., the SemEval 2015 benchmark Twitter dataset, and clean texts – i.e.,
the Microsoft Paraphrase Corpus (MSRP).

The main contributions of this work can be summarized as follows:

1. We propose a novel deep neural network architecture leveraging coarse-grained sentence-level features
and fine-grained word-level features for detecting paraphrases on noisy short text from Twitter. The
model combines sentence-level and word-level semantic similarity information such that it can capture
semantic information at each level. When the text is grammatically irregular or very short, the word-
level similarity model can provide useful information; while the semantic representation of the sentence
provide useful information otherwise. In this way both model-components compliment each other and
provide an efficient overall performance.

2. We show how the proposed pair-wise similarity model can used to extract word-level semantic infor-
mation, and demonstrate its usefulness in the paraphrase detection task.

3. We propose a method combining statistical textual features and features learned from the deep archi-
tecture.

4. We present an extensive comparative study for the paraphrase detection problem.

The rest of the paper is organized as follows: In Section 2, we formally define the problem. In Section 3,
we discuss related work concerning paraphrase detection. In Section 4, we motivate our work and present
our proposed solution in detail. In Section 5, we describe the experimental setup. In Section 6, we evaluate
the approach and discuss the results. Finally, in Section 7, we conclude the paper and outline plans for
future research.

2



2. Problem statement and goals

Let S1 and S2 be two sentences, such that S1 6= S2. S1 and S2 are said to be paraphrased if they convey
the same meaning and are semantically equivalent. Now, assume that we have a collection of N annotated
sentence pairs (Si

1, Si
2), having annotations ki, for i = 1, 2, . . . N . For a given i, ki indicates whether the

i-th sentence pair is paraphrased or non-paraphrased. The problem addressed in this paper is to develop a
model, which can reliably annotate a previously unseen sentence pair as paraphrased or non-paraphrased.
In particular, we aim at answering the following main research question:

How to develop a robust and generic method for paraphrase detection?

To address the above question, this work has the following main goals:

• Study of existing approaches: To get full insight about the current status, one of the main goals
of this work is to perform a thorough analysis of existing approaches. This includes doing an extensive
comparative study about the performance of these approaches, with respect to both robustness and
generality.

• Development of robust and generic neural network-based architecture: Based on the insight
from studying previous work, we aim at developing a neural network-based architecture that can ad-
vance the state-of-the-art in terms of both robustness and generality, as well as performance/effectiveness.

Note that as discussed later in this paper, there are several methods that have been proposed, and work
well for clean texts, but most of them have failed to provide good results when applied on noisy texts like
Tweets. Recently, other approaches have been developed for paraphrase detection on noisy texts, e.g., the
work by Xu et al. [2] and Dey et al. [5], but these approaches do not work well on clean texts. In conclusion,
there is still a strong need for a robust and reliable method, which can perform well for both clean texts
and user-generated noisy short texts.

3. Related work

The use of deep neural network for natural language processing (NLP) has increased considerably over
the recent years. Most of the previous work on paraphrase detection have focused on features like n-gram
overlap features [7], syntax features [8], linguistic features [9, 10] wikipedia-based semantic networks [11],
knowledge graph [12] and machine translation based features [7]. Recently, deep learning-based methods
have shifted researchers’ attention towards semantically distributed representations [13, 14, 15]. It has been
shown that CNN has been used for learning representation of the text that improved the results in sentence
classification task [16]. Recurrent neural networks (RNNs) is able to learn the long-term dependencies in
sequential data and that has also been used in the literature for representing the text [17]. Kim et al. [18]
proposed a model that uses CNN, a highway network over characters, whose output is send to the RNN
network. Their combined CNN-RNN model provides better results. Wang et al. [19] proposed combination
of convolution and recurrent neural network to learn the sentence representation for sentiment analysis task.
A variety of deep neural network-based architectures have been proposed for sentence similarity, which is a
strategy we also focus on in this paper.

3.1. Work on clean text

Substantial work has been carried out on paraphrase detection for the clean-text Microsoft Paraphrase
corpus. Das and Smith [8] present a probabilistic model for paraphrase detection based on syntactic simi-
larity, semantics, and hidden loose alignment between syntactic trees of the two given sentences. Heilman
and Smith [20] propose a tree edit model for paraphrase identification based on syntactic relations among
words. They develop a logistic regression model that uses 33 syntactic features of edit sequences to classify
a sentence pair. Socher et al. [21] present an approach based on recursive autoencoders for paraphrase
detection. Their approach learns feature vectors for phrases in syntactic trees and employs a dynamic pool-
ing layer mechanism, which converts a variable sized matrix into a fixed-sized representation. Parsing is a

3



powerful tool for identifying the important syntactic structure in the text, but relying on the parsing makes
the approach less flexible. Our approach does not use such resources to develop the model. Oliva et al.
[22] propose SyMSS based on the syntactic structure of the sentences. They represent the sentences as a
syntactic dependence tree, use WordNet to extract meaning of individual words, and further use syntactic
connections among them to assess information similarity. Ji and Eisenstein [6] use several hand-crafted
features with latent representation from matrix factorization as features to train a support vector machine.
The ARC model proposed by Hu et al. [23] is a convolutional Siamese architecture, in which two shared-
weight convolutional sentence models are trained. El-Alfy et al. [24] propose a model considering a set of
weak textual similarity metrics. They boost the performance of individual metrics using abductive learning.
Further, they aim to select an optimal subset of similarity measures and construct a composite score that
is used for classification. Filice and Moschitti [25] proposed an approach for paraphrase identification based
on whether a text fragment only appearing in one of the sentence is important or ancillary. They represent
text with syntactic structures and then apply tree kernels with SVM on them to determine the paraphrases.
AL-Smadi et al. [26] proposed a paraphrase detection approach for arabic tweets, which employs a set of
extracted features based on lexical, syntactic, word alignment, and semantic computation. Wang et al.
[27] decompose the sentence similarity matrix into a similar component matrix and a dissimilar component
matrix, and train a two-channel convolutional neural network to compose these components into feature
vectors. Lopez-Gazpio et al. [28] proposed an interpretable semantic textual similarity approach based on
alignment between pairs of segments across two sentences. Yin et al. [29] proposed an attention-based con-
volutional neural network for paraphrase identification task that integrates the mutual influence between
sentences into CNNs. Wang et al. [30] proposed deep learning based model in which they first match the
BiLSTM encoded two sentences in two direction. In each matching direction, each timestep of one sentence
is matched with other sentence from multiple perspectives. Finally, another BiLSTM layer aggregate the
matching results which is used for final decision. Ferreira et al. [31] propose a supervised machine learning
learning approach. They extract various features based on lexical, syntactic and semantic similarity mea-
sures, and use various machine learning algorithms such as Bayesian Network, RBF Network, C4.5 decision
tree, and support vector machines. Severyn and Moschitti [32] presented CNN based neural network archi-
tecture to rank short text pairs for question answering task. They used CNN to learn the representation
of the query and document, and construct similarity matrix using intermediate sentence representations.
Further, they compute a single similarity score using the query, documents and similarity matrix. Finally,
they use semantic representation of both the sentences, similarity score and additional features to the soft-
max classifier. As compared to the proposed approach, they used a similarity score as one feature which
is extracted using sentence representations and similarity matrix, whereas, in the proposed approach, we
extract important similarity scores by applying the CNN over similarity matrix followed by max-pooling
operation. Kenter and de Rijke [33] extract various word-level to text-level semantic features from word
alignment and saliency weighted semantic graph, which they further use to build support vector classifier
to predict the semantic similarity score for a given pair of sentences. As compared to our approach, they
used the similarities among words in a different way. They transformed the similarity values into bins based
on the maximum similarity for the words, and further used those bins as features along with different word
embeddings to create the final feature vector to train a supervised learning algorithm

3.2. Work on short text

A number of contributions have also been reported for detecting paraphrases on noisy short-text like
Tweets. Xu et al. [2] propose a latent variable model that jointly infer the correspondence between words and
sentences. Eyecioglu and Keller [34] use a support vector machine with simple lexical word overlap and char-
acter n-grams features for paraphrase detection. Zhao and Lan [35] use various machine learning classifiers,
and employ a variety of features like string-based, corpus-based, syntactic features, and word distributional
representations. Zarrella et al. [36] present an ensemble approach based on various features such as mix-
tures of string matching metrics, distance measurements, tweet-specific distributed word representations,
and recurrent neural networks for modeling similarity. Karan et al. [37] present a supervised approach that
combines semantic overlap and word alignment features. Wieting and Gimpela [38] propose an approach
named as Gated Recurrent Averaging Network for sentence similarity task on noisy text pairs that is based

4



on the combination of averaging word embeddings and LSTM neural network. Vo et al. [39] experiment
with various sets of features with different classifiers and show that the combination of word/n-gram, word
alignment by METEOR (Metric for Evaluation of Translation with Explicit ORdering), BLEU (Bilingual
Evaluation Understudy) and EditDistance is the best feature set for Twitter paraphrase detection; and that
VotedPerceptron proved to be the best machine learning algorithm. Huang et al. [40] proposed a deep learn-
ing approach for paraphrase detection for short text using Twitter dataset, their approach extracts features
at multiple granularity levels from character-level to sentence-level. They extract the subword information
for fine-grained features with character-level CNN, the n-gram features with word-level CNN and sentence
representation using LSTM. Dey et al. [5] use a set of lexical, syntactic, semantic and pragmatic features
for detecting paraphrases on noisy user-generated short-text data such as Twitter.

3.3. Summary

As the above discussion illustrates, there are many methods that have been proposed for paraphrase
detection, but existing methods have issues that have to be addressed. In this paper, we focus on using deep
learning algorithms to develop a robust and reliable paraphrase detection system, which can work well on
both clean-text and noisy short text such as tweets. To the best of our knowledge, this is the first work to
fully explore this area, while also including a comprehensive comparative study of exiting approaches.

Table 1 summarizes the approaches discussed in section.

Table 1: Comparison among related approaches.

Work Description Resources used Classification dataset

[34] ASOBEK: Word overlap and
character n-grams features

POS tagger Support vector ma-
chine (SVM)

Twitter,
MSRP

[36] MITRE: mixtures of string
matching metrics

– – L1-regularized
logistic regression

Twitter
dataset

[35] ECNU: Various string based,
corpus based, syntactic, and
distributed word representation
based features

POS tagger, WordNet,
various pre-trained word
embeddings

SVM, Random For-
est (RF), Gradient
Boosting (GB)

Twitter
dataset

[39] Various features such as
Machine translation, EDIT
distance, sentiment features

POS Tagger Decision Stump,
OneR, J48, Baysian
Logistic Regression,
VotedPerceptron,
MLP

Twitter
dataset

[40] Combination of Char-CNN,
word-CNN, and LSTM

Pre-trained word
embeddings

multi-layer percep-
tron

Twitter
dataset

[37] Semantic Overlap Features and
Word Alignment Features

POS tagger SVM Twitter
dataset

[2] Multi-instance Learning
Paraphrase Model (MULTIP)

POS tagger Similarity score Twitter
dataset

[5] A set of lexical, syntactic,
semantic and pragmatic
features

WordNet, POS Tagger,
NE Tags

SVM Twitter,
MSRP

[41] Combination of several word
similarity measures

POS tagger Similarity score
threshold

MSRP

[42] Weighted Textual Matrix
Factorization (WTMF) with
handling missing words

WordNet Matrix factoriza-
tion

MSRP

Continue on the next page.

5



Table 1: Comparison among related works (cont.).

Work Description Resources used Classification dataset

[25] Tree kernels applied to
syntactic representations of
text fragments

POS Tagger, Parser SVM MSRP

[33] Word alignment method and a
saliency weighted semantic
graph

Pre-trained word
embeddings

Support vector clas-
sifier with radial ba-
sis function kernel

MSRP

[8] Probabilistic model with
syntactic and n-gram overlap
features

WordNet, Dependency
parser

Logistic regression,
SVM

MSRP

[20] Syntactic features of edit
sequences

POS Tagger, Parser,
WordNet

Logistic regression MSRP

[22] Similarity features based in
syntactic dependency tree

WordNet, dependency
parser

Similarity score
threshold

MSRP

[21] Representation of feature
vectors for phrases in syntactic
trees

Dependency Parser Recursive autoen-
coder with dynamic
pooling

MSRP

[29] Attention Based Convolutional
Neural Network (ABCNN)

Word2vec based
embeddings

logistic regression MSRP

[6] Matrix factorization with
supervised reweighting

– – SVM with a linear
kernel

MSRP

[23] Hierarchical structures of
sentences with their
layer-by-layer composition

Pre-trained word
embeddings

Convolutional Neu-
ral Network

MSRP

[7] Combination of eight machine
translation metrics

WordNet SVM MSRP

[24] Boosting through textual
similarity metrics

– – SVM MSRP

[27] Sentence Similarity Learning
by Lexical Decomposition and
Composition

Pre-trained word
Embeddings

CNN MSRP

[31] Represent pair of sentence as
combination of similarity
measures

Dependency Parser SVM, RBF Net-
work, Bayesian
Network

MSRP

This
work

Hybrid of deep learning and
statistical features

POS Tagger &
pre-trained word
Embeddings

Multi-layer neural
network

MSRP,
Twitter
dataset

4. DeepParaphrase Architecture

We propose a deep learning-based approach for detecting paraphrase sentences for tweets. We first
convert each sentence in a pair into a semantic representative vector, using a CNN and an RNN. Then, a
semantic pair-level vector is computed by taking the element-wise difference of each vector in the sentence
representations. The resulting difference is the discriminating representative vector of the pair of sentences,
which is used as feature vector for learning the similarity between the two sentences. In addition to this
coarse-level semantic information, we extract more fine-grained important information using a similarity

6



matrix which contains word-to-word similarity quantification. Further convolutions are applied over the
pair-wise similarity matrix to learn the similarity patterns between the words in the pair of sentences. The
aim of the convolution function is to extract more fine-grained similarity features. Finally a third set of
features are extracted using statistical analysis of the text, and concatenated with the rest of the learned
features. A fully connected neural network is used to produce the classification from this concatenated
feature vector. The first layers are activated by the ReLU [43] function, while we use the sigmoid link-
function to transfer the latent representation into a two-class decision rule. We train the model to optimize
binary cross-entropy. The proposed architecture is depicted in Figure 1.

Figure 1: The proposed DeepParaphrase architecture

At a high level of abstraction the proposed model therefore consists of two main components, that will
be discussed next.

4.1. Sentence modelling with CNN and RNN

In this component, we represent every sentence using joint CNN and RNN architecture. The CNN is
able to learn the local features from words to phrases from the text, while the RNN learns the long-term
dependencies of the text [19]. More specifically, we firstly take the word embedding as input to the CNN
model. Then, we apply convolutions of different filter lengths and widths; next max-pooling operation is
applied to capture the maximum information from the text. The obtained encoded feature maps in sequence
are taken as input the RNN network. Finally, the long term dependencies learned by the RNN becomes the
semantic sentence representation.

The architecture of the proposed model for mapping the sentences into a feature vector is shown in
Figure 1. The main goal of this step is to learn good intermediate semantic representations of the sentences,
which are further used for the semantic similarity task. The input to the sentence model is a pair of sentences
S1 and S2, which we transform into matrices of their words’ embeddings. Here each word is represented by
a vector w ∈ Rd, where d is the size of the word embedding. We used pre-trained word embeddings (see
Section 6.3 for details). The sentence embedding matrices are then fed into the CNN. We apply convolution
operation with different filters widths and filters. To obtain sufficient important features (feature maps), we
experiment with different number of filters and filter length. We empirically decided filter width to be (3, 4)
and 200 filters in our experiments. Next, we apply max pooling operation onto the output of convolutions
to keep only important features. Next, we apply concatenation operator ⊕ on the output of max-pooled
feature map matrices generated using filter width of 3 and 4. Next, the output is used as input to the RNN
network. The features learned from CNN can be considered as n-grams, and are fed in sequence into RNN.

7



The last hidden state of the RNN layer is considered as the best semantic encoding of the sentence that
includes information of the local region as well as long-term distance in the sentence. A RNN composed of
Long Short-Term Memory (LSTM) units is often called an LSTM network[44]. The LSTM is a variation of
RNN, which processes sequential data and can learn long-term dependencies due to its ability to deal with
the exploding and vanishing gradient problem. We use LSTM network in our experiments.

The aim of the convolutional layer is therefore to extract patterns, i.e., important word sequences from
the input sentences. The motivation for using convolutions comes from the fact that convolutional filters can
learn n-gram discriminating features, which is useful for sentence similarity analysis. The pooling operation
in CNN allow to retain only important n-grams as it would omit unimportant features. The important
features generated by the convolutional layer are fed in sequence into the RNN. This model component is
able to process sequential input with the aim to learn the long-term dependencies and positional relations
of the features in the sentences. The CNN-RNN combined model is able to retain local features and their
relation along with long-term dependency based global features of the sentence. Eventually, the last hidden
state of the RNN is taken as the semantic representation of the sentence, and the element-wise difference
between these representations is used as a semantic discrepancy measure at the level of the sentence pair.

4.2. Pair-wise word similarity matching

A pair-wise similarity matrix is construed by computing the similarity of each word in S1 to another
word in S2. Convolutions are applied onto this similarity matrix to analyze patterns in the pair-wise word
to word similarities. Figure 2 illustrates this process.

It is intuitive that given two sentences, semantic correspondence between words provide important se-
mantic information for detecting similar sentences, and the pair-wise word similarity matching model learns
the word-level similarity patterns between the two sentences. Because important n-grams are extracted
by applying convolutional neural network over text, we obtain the important word-word similarity pairs
from the similarity matrix. This similarity matrix is further used as features for the classification of the
paraphrase detection problem. The goal of the pair-wise word similarity matching model is to compare the
semantic embedding of each word in one sentence against all the semantic embeddings of the words from
the other sentences. This means that we compute the dot product as a similarity measure between all the
word embeddings of the two sentences. Finally, we match the two sentences and generate a similarity matrix
S of size m × n, where m and n denote the lengths of sentence S1 and S2, respectively. Next, we apply
the CNN onto the similarity matrix to learn the patterns in the semantic correspondence between the two
sentences. We convolve over S in two directions; both from left to right and from top to bottom. This gives
two separate results, F1 and F2. After the convolution layer, global max-pooling is applied to obtain the
most informative feature vectors from F1 and F2, and finally these are concatenated to produce the output
from this module. We experiment with different number of filters and filter width to extract the maximum
information, and we empirically decided to use 200 filters and 3 filter width.

Se
nt

en
ce

 −
 S

2

Sentence − S1

n − �lters

n − �lters

Convolutions

max pooling

max pooling

Similarity Feature
Vector 

Concatenation1−max pooling

Similarity Matrix

Figure 2: Pair-wise word similarity matching model

8



4.3. Statistical features

We extracted a third set of features to enhance the discriminating representation of the sentences. These
features consist of the following:

1. TF-IDF -based similarity between sentences S1 and S2.
2. Cosine similarity between the vectors of sentences S1 and S2.
3. The average Wordnet-based similarity between the verbs2 in sentence S1 and those in S2.
4. The average Wordnet-based similarity between the nouns2 in sentence S1 and S2.
5. The average Wordnet-based similarity between the adjectives2 in sentence S1 and S2.
6. The cosine similarity between the semantic representation of each sentence pair.
7. Six n-gram overlap features computed by the number of unigrams, bigrams, and trigrams that are

common to the given sentence pair, divided by the total n-grams in S1 and S2 respectively.

We use all these additional features for the experiments performed on the Microsoft Paraphrase corpus,
while only the two latter features were used for the experiments on Twitter corpus.

5. Experimental Setup

Before evaluating our proposed method for paraphrase identification, and compare it against the state-
of-the-art approaches, we first describe how our experiments have been set up, including the datasets, and
performance measures that we have used. We reported the baseline results from the previous work, and did
not re-run them again. By doing so, we assumed that by using exactly the same dataset, we would get the
same results. Also, in order to get fair comparisons, we made sure that the experimental settings are same
in all these baseline methods which are compared.

5.1. Datasets

We consider two widely-used benchmark datasets, which we briefly describe in the following:

1. Twitter Paraphrase SemEval 2015 dataset: The dataset provided by SemEval 2015 [4] has been
used by all the recent works for paraphrase detection in Tweets. It consists of noisy and short text,
containing 3996 paraphrase and 7534 non-paraphrase pairs in the training dataset, 1470 paraphrase
and 2672 non-paraphrase sentence pairs in development set, and 838 tweets in the test set. We have
ignored the “debatable” entries, that were marked in [4]. All the existing models that use this dataset
also ignored these debatable samples while reporting the results.
The statistics of the dataset are shown in Table 2.

Table 2: Statistics of the SemEval-2015 Twitter paraphrase corpus

Unique sent. Sent. pair Paraphrase Non-paraphrase Debatable

Train 13231 13063 3996 7534 1533
Dev 4772 4727 1470 2672 585
Test 1295 972 175 663 134

2. Microsoft Paraphrase dataset: We also investigate the empirical performance of the proposed
model on a clean text corpus. More specifically, we use the Microsoft Paraphrase dataset [1], which
is considered the evaluation standard for paraphrase detection algorithms. This dataset comprises
candidate paraphrase sentence pairs, obtained from Web news sources. In this corpus, the length of
each sentence varied from 7 to 35 words with an average 21 words in a sentence. Furthermore, the
data is split into training and test sets, containing 4076 and 1725 samples respectively. This same
train/test partitioning has been applied on all the approaches evaluated in this paper.

2 In our implementation we use nltk’s part of speech tagger to extracts the verbs, nouns and adjectives from each sentence.

9



Table 3: Statistics of the MSRP corpus

Sent. pair Paraphrase Non-paraphrase

Train 4076 2753 1323
Test 1725 1147 578

Despite being the most widely-used datasets for evaluating paraphrase detection models, their sizes are
too small to reliably train a deep learning architecture. We have therefore applied a simple augmentation
scheme to double the number of sentence pairs in the corpus: For every pair of sentences (S1, S2) we simply
exchange the order of sentences to obtain the new pair (S2, S1), and add this new pair to the corpus [45].

5.2. Performance measures

We adopted the standard performance measure that are widely used in the literature for paraphrase
detection. These measures are precision, recall, F1-score and accuracy. Precision is defined as number of
correctly classified paraphrase pairs out of total paraphrase sentence pairs extracted. Recall is the ratio
between predicted sentence pairs that are actual paraphrases, and total true paraphrase pairs. The F1-score
combines the precision and recall. Finally, accuracy is the fraction of the paraphrase sentence pairs that are
classified correctly.

6. Results and Discussion

In this section we present the results from using both datasets that we presented in Section 5.1.

6.1. Results and Discussion on Twitter Corpus

We train our model using the training dataset with development set for tuning the parameters, and then
we test the system with the provided testing dataset of 838 test entries, ignoring the “debatable” entries.
These results are provided in Table 4.

Recall that there are mainly two components in the proposed approach: (i) Sentence modelling using
CNN and LSTM, and (ii) Pair-wise word similarity matching. Our intuition for using the two models
is that both coarse-grained sentence-level and fine-grained word-level information should be important for
the paraphrase detection task. In our experiments, we firstly use only sentence modelling architecture to
develop the paraphrase detection model. We call this experiment the SentMod Architecture for paraphrase
detection. It can be seen from the results in Table 4 that the SentMod Architecture performs quite well,
giving an F1-score of 0.692. Next, we use the pair-wise word similarity matching model to extract the
word-level similarity information-based features. When we use only these features to train the paraphrase
model, the model provides an F1-score of 0.702. We call these features the pair-wise features.

Further, we augment these word-level pair-wise features with the sentence-level features extracted using
the SentMod Architecture, and feed it to train the proposed deep learning model for paraphrase detection
task. We call the architecture for this model DeepParaphrase Architecture. The experimental results show
the significant improvement in the performance of the paraphrase detection task. Specifically, it gives an
F1-score of 0.742 (an improvement of 7.2 percentage points). It also shows that the pair-wise word similarity
information in fusion with sentence-level similarity information provides good performance for paraphrase
detection task. Finally, we add two features, namely the overlap features and similarity features (items 6 and
7 in the description in Section 4.3). This gives an additional improvement in the performance of the model,
resulting in an F1-score of 0.751, which is significantly better than other existing methods for paraphrase
detection on the Twitter dataset. We refer to this final model as the AugDeepParaphrase model.

The comparison between the proposed method and existing state-of-the-art methods is provided in Ta-
ble 4. Firstly, we compare the results of the proposed approach with the methods which perform best
on clean text Microsoft Paraphrase dataset, and then with the state-of-the-art methods on noisy Twitter

10



Table 4: Results of the proposed approach along with comparison with state-of-the-art results on SemEval 2015 Twitter
dataset.

Model Precision Recall F1-score
SentMod Architecture 0.725 0.663 0.692
Pair-wise Features 0.708 0.697 0.702
DeepParaphrase Architecture 0.753 0.731 0.742
AugDeepParaphrase 0.760 0.742 0.751

Random 0.208 0.500 0.294
Guo and Diab [42] 0.583 0.525 0.655
Das and Smith [8] 0.629 0.632 0.630
Ji and Eisenstein [6] 0.664 0.628 0.645
Eyecioglu and Keller [34] 0.680 0.669 0.674
Zarrella et al. [36] 0.569 0.806 0.667
Zhao and Lan [35] 0.767 0.583 0.662
Vo et al. [39] 0.685 0.634 0.659
Karan et al. [37] 0.645 0.674 0.659
Huang et al. [40] 0.643 0.657 0.650
Xu et al. [2] 0.722 0.726 0.724
Dey et al. [5] 0.756 0.726 0.741

dataset. Guo and Diab [42] proposed a weighted textual matrix factorization method for paraphrase detec-
tion based on modeling the semantic space of the words that are present or absent in the sentences. Their
model uses WordNet, OntoNotes, Wiktionary, and the Brown corpus.Their approach performed quite well
on MSRP dataset, but provide worse results on Twitter dataset. Das and Smith [8] used logistic regression
based classifier based on simple n-gram features and overlapping features which shows competitive results
on MSRP dataset. Ji and Eisenstein [6] presented a state-of-the-art model for paraphrase detection on
MSRP dataset which is still the best known performance on clean text. However, it can be seen from the
results presented in Table 4 that their method performed worse than other methods on the Twitter data.
We further compare the proposed approach with existing state-of-the-art methods on twitter dataset. The
ensemble-based method proposed by Zarrella et al. [36] obtained higher recall as compared to our results,
but our model gave higher overall F1-score. While the method suggested by Zhao and Lan [35] got slightly
higher precision as compared to proposed approach, our approach is superior with respect to the F1-score.
As can be observed, the results from this comparison, our approach outperforms all related methods with
respect to the F1-score. The main reason for this is that our approach leverages the semantic information
at both coarse-grained sentence-level features and fine-grained word-level features for detecting paraphrases
on tweets.

In conclusion, the state-of-the-art algorithms, that perform well when trained on clean texts, do not
necessarily work very well for noisy short texts, and vice versa. In contrast to this, our approach is robust in
the sense that it performs well on both types of datasets. More specifically, it outperformed all the existing
methods when applied on noisy texts, and produced very competitive results against the state-of-the-art
methods on clean texts.

Next, we analyze the misclassifications on test data using the proposed approach. Some example tweets
pairs including both correct and incorrect detection by our model are reported in Table 5. We show some
examples from the test data which cases our method could correctly classify. For example, our proposed
approach could correctly identify the tweet pair, “Terrible things happening in Turkey” and “Children are
dying in Turkey” as “paraphrase”. It could understand the semantic meaning, despite the fact that the
pair only has one common word. Similarly, the proposed approach could determine correct label as “non-
paraphrase” for the sentence pairs on row 2 and 3 in Table 5, although the sentence-pairs have several words

11



Table 5: Examples of tweet pairs from the Twitter Paraphrase Corpus.

S. No. Tweet 1 Tweet 2 Gold
annotation

Prediction Remark

1 Terrible things
happening in Turkey

Children are dying in
Turkey

paraphrase paraphrase correct

2 Anyone trying to see
After Earth sometime
soon

Me and my son went to
see After Earth last
night

non-
paraphrase

non-
paraphrase

correct

3 hahaha that sounds like
me

That sounds totally
reasonable to me

non-
paraphrase

non-
paraphrase

correct

4 I dont understand the
hatred for Rafa Benitez

Top 4 and a trophy and
still they dont give any
respect for Benitez

paraphrase non-
paraphrase

incorrect

5 Shonda is a freaking
genius

Dang Shonda knows she
can write

paraphrase non-
paraphrase

incorrect

6 Terrible things
happening in Turkey

Be with us to stop the
violence in Turkey

paraphrase non-
paraphrase

incorrect

7 I must confess I love
Star Wars

Somebody watch Star
Wars with me please

paraphrase non-
paraphrase

incorrect

8 Family guy is really a
reality show

Family guy is such a
funny show

non-
paraphrase

paraphrase incorrect

9 I see everybody
watching family guy
tonight

I havent watched Family
Guy in forever

non-
paraphrase

paraphrase incorrect

in common.
Nevertheless, there are several examples where it has been difficult to provide correct classifications. Con-

sider, for example, the tweet pair no. 4 in Table 5. Our approach determines this pair as “non-paraphrase”,
which is incorrect according to the gold-standard annotation. The two tweets do not share many words, and
common-sense knowledge is required to understand that a person who has won lots of trophies and prizes
should be respected rather than hated. Another similar example is the tweet pair no. 5 The gold-standard
annotation for this pair is that it is a paraphrase. To correctly classify this pair, the system needs to know
that if a person is genius, then it is obvious that he/she would be able to write well.

Finally, consider the pair “Family guy is really a reality show” and “Family guy is such a funny show”.
Our approach identifies this pair as “paraphrase”, which is wrong according to the gold-standard annotation.
The possible reason for this error is the misleading lexical overlap information between the sentences in the
pair, that are overshadowed by the few different words.

To summarize, after looking at the misclassified examples in Table 5, there are several cases that could
cause our system to fail to correctly classify pairs of tweets. This includes cases where common-sense
knowledge is required. What could be learned from the examples is, however, that our proposed approach
is able to capture the semantic information from short, noisy texts, which can, in turn, help in correctly
classifying pairs that would otherwise be difficult by only looking at the syntactic contents.

6.2. Results and discussions on MSRP dataset

The results of our experiments with the Microsoft Paraphrase dataset are summarized in Table 6. Firstly,
we extract the coarse-grained sentence-level features with the SentMod Architecture and further feed to train

12



paraphrase detection model. As can be observed in Table 6, this architecture gives an accuracy of 74.5%
and F1-score of 81.5%. Next, we evaluate the pair-wise features to train the paraphrase detection model,
these features individually provide 81.9% F1-score. Further, we fuse these pair-wise features with the
sentence-level features extracted using the SentMod Architecture to train the paraphrase detection model.
This DeepParaphrase Architecture provides a significant improvement in the performance. With this deep
learning model we obtain the accuracy of 77.0% and F1-score of 84.0%. The final paraphrase model,
AugDeepParaphrase model, is built by including the additional features described in Section 4.3. Here, we
see an improvement of 0.5% in F1-score. Overall, the experimental results show that both sentence-level
semantic information and word-level similarity information are important for paraphrase detection task.

Table 6: Results of the proposed approach along with comparison with state-of-the-art methods on MSRP dataset.

Model Accuracy F1
SentMod Architecture 74.5 81.5
Pair-wise Features 74.8 81.9
DeepParaphrase Architecture 77.0 84.0
AugDeepParaphrase 77.7 84.5

All positive (Baseline) 66.5 79.9
Socher et al. [21] 76.8 83.6
Ji and Eisenstein [6] 77.8 84.3
(Inductive setup)
Hu et al. [23] ARC- I 69.6 80.3
Hu et al. [23] ARC-II 69.9 80.9
Madnani et al. [7] 77.4 84.1
Eyecioglu and Keller [34] 74.4 82.8
Kenter and de Rijke [33] 76.6 83.9
El-Alfy et al. [24] 73.9 81.2
Wang et al. [27] 78.4 84.7
Dey et al. [5] - 82.5
Pagliardini et al. [15] 76.4 83.4
Ferreira et al. [31] 74.08 83.1

As with the Twitter dataset, we also compared our approach with several related methods. We present
the results of the experiments in Table 6, in which we report the measured accuracy and the F1-scores. The
experimental results show that the proposed approach outperforms all the related methods, except quite
recent method by Wang et al. [27]. As discussed in Section 3, they also employ a neural network-based
approach. Nevertheless, the large number of options introduced in the final model, such as: the semantic
matching functions {max, global, local-l}, decomposition operations {rigid, linear, orthogonal} and filter
types {unigrams, bigrams, trigrams}, makes it less applicable to re-implement or scale for other datasets or
other similar problems. In contrast, we have developed our approach to be more robust and generic, such
that it can easily be applied for other datasets.

In [6], the authors reported the best results as 80.4% accuracy and 85.9% F1-score on this dataset.
However, to achieve these results, they seemed to have relied on using testing data with training dataset to
build the model. They called it a form of transductive learning, in which they assumed that they have access
to a test set. In contrast, in our approach, the test data is kept totally disjoint from the training process.
Using the same experimental setup – i.e., applying “Inductive” setup without using test data in training the
model – the approach by Ji and Eisenstein [6] gives an accuracy of 77.8% and F1-score of 84.3%, which is
very close to the results of our approach.

Focusing on the performance of our approach in relation to the existing methods, our experimental
results show that our approach produces competitive results, achieving accuracy of 77.7% and F1 score of

13



84.5%. More importantly, we achieved these with less extra annotated resources and no special training
strategy, compared to the current state-of-the-art methods.

Table 7: Example sentence pairs from MSRP Paraphrase Corpus.

S. No. Sentence 1 Sentence 2 Gold
annotation

Prediction Remark

1 Ricky Clemons’ brief,
troubled Missouri
basketball career is over.

Missouri kicked Ricky
Clemons off its team,
ending his troubled career
there.

paraphrase paraphrase correct

2 But 13 people have been
killed since 1900 and
hundreds injured.

Runners are often injured
by bulls and 13 have been
killed since 1900.

non-
paraphrase

non-
paraphrase

correct

3 I would rather be
talking about positive
numbers than negative.

But I would rather be
talking about high
standards rather than low
standards.

paraphrase paraphrase correct

4 The tech-heavy Nasdaq
composite index shot up
5.7 percent for the week.

The Nasdaq composite
index advanced 20.59, or
1.3 percent, to 1,616.50,
after gaining 5.7 percent
last week.

non-
paraphrase

paraphrase incorrect

5 The respected medical
journal Lancet has
called for a complete
ban on tobacco in the
United Kingdom.

A leading U.K. medical
journal called Friday for a
complete ban on tobacco
prompting outrage from
smokers groups.

non-
paraphrase

paraphrase incorrect

6 Mrs. Clinton said she
was incredulous that he
would endanger their
marriage and family.

She hadn’t believed he
would jeopardize their
marriage and family.

paraphrase non-
paraphrase

incorrect

Table 7 shows some examples of sentence pairs that our approach has classified both correctly and
incorrectly. Sentence pair no. 1 was correctly classified as “paraphrase”, even though the sentences do not
have many words in common. Sentence pair no. 2 was correctly classified as “non-paraphrase”, even though
the two sentences have four words in common words and share the context. Conversely, sentence pair no. 5
was incorrectly predicted as “paraphrase”. This pair is difficult to classify correctly for humans. Sentence
pair no. 6 was incorrectly classified as “non-paraphrase”. The main reason for this misclassification is the
presence of possibly rare words, such as incredulous, jeopardize, endanger, which seemed to have made this
sentence pair hard to classify.

In summary, it seems that our proposed approach is able to capture the semantic information from clean
texts, just as it was when analyzing tweets. This can, in turn, help in correctly classifying pairs that would
otherwise be difficult by only looking at the syntactic contents. There are, however, cases that are hard to
classify due to both the lack a complete vocabulary and common-sense knowledge.

6.3. Hyperparameter Setting

Hyperparameters were chose by rough investigations into the training data to choose optimization al-
gorithm, learning rates, regularization, and size of training dataset. We empirically optimized the hyper-
parameters using grid-search, where each model was evaluated on a separate validation-set. We chose the

14



parameters with which the model performed best. In Figure 3, we demonstrate the network architecture of
the proposed model. It is important to note that the convolutions over sentence matrices for S1 and S2 are
the same, and their weights are identical.

Figure 3: Network architecture

The optimal settings for these hyperparameters vary between datasets, hence we choose separately for
the Twitter and MSRP datasets.

6.3.1. Hyperparameter settings on the Twitter dataset

We empirically experiment with various optimizers, see Figure 4a, and chose Adadelta to optimize the
learning process. We further tune the learning rate for this optimizer, see Figure 4b, with learning rate 0.70
appearing to be optimal. Dropout is used for regularization of the proposed model. This prevents feature
co-adaptation by randomly setting a portion of the hidden units to zero during training. We applied dropout
to every layer, and set the dropout ratio to 0.2, cf. Figure 4c. Finally, we investigate the sensitivity of the
approach with respect to the amount of training data supplied. Figure 4d shows the learning curve, i.e., the
learning quality as a function of the amount of the training data used. We clearly see an increasing trend
in the learning curve, which indicates that more training data may further improve the performance of the
proposed model.

In the absence of a large supervised training set, it is common to initialize word embeddings with
pretraining values that have been obtained from an unsupervised neural language model [46]. We follow this
strategy, and used the popular glove embeddings3 during our experiments on Twitter dataset. We chose
the embeddings pretrained on 2 billion tweets, and use the 200-dimensional version.

6.3.2. Hyperparameter settings for MSRP dataset

The parameter selection process for the MSRP dataset is similar to what was discussed for the Twitter
data above, see Figure 5 for results. For this dataset we chose the Adadelta optimizer with learning rate set

3The embeddings are available at https://nlp.stanford.edu/projects/glove/.

15

https://nlp.stanford.edu/projects/glove/


(a) Performance of optimization algorithms (b) Performance vs. learning rate

(c) Performance vs. dropout rate (d) Learning curve

Figure 4: Evaluation of different hyperparameters for the SemEval Twitter dataset

to 0.9. The dropout-rate was chosen to be 0.5. When examining the effect of the size of the training data,
we can again see an increasing trend both with respect to accuracy, and (somewhat less pronounced) with
respect to F1-score. Further increase in the training dataset would therefore provide slight improvements in
the final performance of the model also on this dataset. We used the 300-dimensional version of the publicly
available4 Google word2vec vectors [47] to initialize the word embeddings. These vectors are trained on 100
billion words from Google News using the continuous bag-of-words architecture. There is a reason to use
different word embeddings both the datasets. As Google’s pre-trained word embeddings generally do not
work well for twitter dataset as google’s embeddings are generated by training on clean text, such as news
corpus. When used on twitter data, most of the words in tweets would not be matched in the Google’s
embeddings, thus causing out-of-vocabulary issues. On the other hand, Stanford provides pre-trained word
embeddings (GloVe) which were trained on 2 Billion tweets. Therefore, it works better on twitter corpus
than the Google’s pre-trained word embeddings. Similar to our approach, the best performing results of
paraphrase detection by Dey et al. [5] also used Stanford’s GloVe for Twitter dataset.

7. Conclusions

In this paper, we introduced a robust and generic paraphrase detection model based on deep neural
network model, which is able to perform well on both user-generated noisy short texts such as tweets,

4https://code.google.com/archive/p/word2vec/

16

https://code.google.com/archive/p/word2vec/


(a) Performance of optimization algorithms (b) Performance vs. learning rate

(c) Performance vs. dropout rate (d) Learning curve

Figure 5: Evaluation of different hyperparameters for the MSRP dataset

and high-quality clean texts. We proposed a pair-wise word similarity model, which can capture fine-
grained semantic corresponding information between each pair of words in given sentences. In addition, we
used a hybrid deep neural network that extracts coarse-grained information by developing best semantic
representation of the given sentences based on CNN and RNN. The model that we developed consisted of both
sentence modelling and pair-wise word similarity-matching model. As discussed in this paper, this model
proved to be useful for paraphrase detection. In our evaluation, we included a comprehensive comparison
against state-of-the-art approaches. This showed that our approach produced better results than all the
existing approaches, in terms of F1-score, when applied on noisy short-text Twitter Paraphrase corpus;
and provided very competitive results when applied on clean texts from the Microsoft Paraphrase corpus.
Overall, our experimental results have shown the robustness and effectiveness of the proposed method for
paraphrase detection.

For future work, we plan to investigate how our method works on related tasks such as question answering,
sentence matching and information retrieval. Further, we will study the impacts of applying FastText as
word embeddings on the overall paraphrase detection performance. FastText is trained on character n-
grams, which could make it more robust against misspellings and noisy text, in general. Finally, we will
study the robustness of the proposed approach under various noise degrees that are artificially inserted.

17



References

[1] B. Dolan, C. Quirk, C. Brockett, Unsupervised Construction of Large Paraphrase Corpora: Exploiting Massively Parallel
News Sources, in: Proceedings of the 20th International Conference on Computational Linguistics (COLING 2004),
Association for Computational Linguistics, 350, 2004.

[2] W. Xu, A. Ritter, C. Callison-Burch, W. Dolan, Y. Ji, Extracting Lexically Divergent Paraphrases from Twitter, Trans-
actions of the Association for Computational Linguistics 2 (2014) 435–448, ISSN 2307-387X.

[3] T. Kajiwara, D. Bollegala, Y. Yoshida, K.-i. Kawarabayashi, An iterative approach for the global estimation of sentence
similarity, PloS one 12 (9) (2017) 1–15.

[4] W. Xu, C. Callison-Burch, B. Dolan, SemEval-2015 Task 1: Paraphrase and Semantic Similarity in Twitter (PIT), in:
Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval@NAACL-HLT 2015), Association for
Computational Linguistics, 1–11, 2015.

[5] K. Dey, R. Shrivastava, S. Kaushik, A Paraphrase and Semantic Similarity Detection System for User Generated Short-
Text Content on Microblogs, in: Proceedings of the 26th International Conference on Computational Linguistics (COLING
2016), Association for Computational Linguistics, 2880–2890, 2016.

[6] Y. Ji, J. Eisenstein, Discriminative Improvements to Distributional Sentence Similarity, in: Proceedings of the 2013 Con-
ference on Empirical Methods in Natural Language Processing (EMNLP 2013), Association for Computational Linguistics,
891–896, 2013.

[7] N. Madnani, J. Tetreault, M. Chodorow, Re-examining Machine Translation Metrics for Paraphrase Identification, in:
Proceedings of the 2012 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (NAACL HLT 2012), Association for Computational Linguistics, 182–190, 2012.

[8] D. Das, N. A. Smith, Paraphrase Identification As Probabilistic Quasi-synchronous Recognition, in: Proceedings of the
Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language
Processing of the AFNLP (ACL 2009), Association for Computational Linguistics, 468–476, 2009.

[9] M. Sahi, V. Gupta, A Novel Technique for Detecting Plagiarism in Documents Exploiting Information Sources, Cognitive
Computation 9 (6) (2017) 852–867.

[10] V. K., D. Gupta, Unmasking text plagiarism using syntactic-semantic based natural language processing techniques:
Comparisons, analysis and challenges, Information Processing and Management 54 (3) (2018) 408–432.

[11] Y. Jiang, W. Bai, X. Zhang, J. Hu, Wikipedia-based information content and semantic similarity computation, Information
Processing and Management 53 (1) (2017) 248–265.

[12] M. Franco-Salvador, P. Rosso, M. Montes-y Gómez, A systematic study of knowledge graph analysis for cross-language
plagiarism detection, Information Processing and Management 52 (4) (2016) 550–570.

[13] S. Arora, Y. Liang, T. Ma, A Simple but Tough-to-beat Baseline for Sentence Embeddings, in: Proceedings of the 5th
International Conference for Learning Representations (ICLR 2017), URL http://arxiv.org/abs/1703.02507, 2017.

[14] P. Bojanowski, E. Grave, A. Joulin, T. Mikolov, Enriching Word Vectors with Subword Information, Transactions of the
Association for Computational Linguistics 5 (2017) 135–146, ISSN 2307-387X.

[15] M. Pagliardini, P. Gupta, M. Jaggi, Unsupervised Learning of Sentence Embeddings using Compositional n-Gram Features,
CoRR abs/1703.02507, URL http://arxiv.org/abs/1703.02507.

[16] Y. Kim, Convolutional Neural Networks for Sentence Classification, in: Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP 2014), Association for Computational Linguistics, 1746–1751, 2014.

[17] R. Kiros, Y. Zhu, R. Salakhutdinov, R. S. Zemel, A. Torralba, R. Urtasun, S. Fidler, Skip-thought Vectors, in: Proceedings
of the 28th International Conference on Neural Information Processing Systems - Volume 2, NIPS’15, MIT Press, 3294–
3302, 2015.

[18] Y. Kim, Y. Jernite, D. Sontag, A. M. Rush, Character-Aware Neural Language Models, in: Proceedings of the Thirtieth
AAAI Conference on Artificial Intelligence (AAAI 2016), AAAI Press, 2741–2749, 2016.

[19] X. Wang, W. Jiang, Z. Luo, Combination of Convolutional and Recurrent Neural Network for Sentiment Analysis of Short
Texts, in: Proceedings of the 26th International Conference on Computational Linguistics (COLING 2016), Association
for Computational Linguistics, 2428–2437, 2016.

[20] M. Heilman, N. A. Smith, Tree edit models for recognizing textual entailments, paraphrases, and answers to questions,
in: Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for
Computational Linguistics (HLT 2010), Association for Computational Linguistics, 1011–1019, 2010.

[21] R. Socher, E. H. Huang, J. Pennington, A. Y. Ng, C. D. Manning, Dynamic Pooling and Unfolding Recursive Autoencoders
for Paraphrase Detection, in: Proceedings of the 24th International Conference on Neural Information Processing Systems
(NIPS 2011), Curran Associates Inc., 801–809, 2011.

[22] J. Oliva, J. I. Serrano, M. D. del Castillo, Á. Iglesias, SyMSS: A syntax-based measure for short-text semantic similarity,
Data and Knowledge Engineering 70 (4) (2011) 390–405, ISSN 0169-023X.

[23] B. Hu, Z. Lu, H. Li, Q. Chen, Convolutional Neural Network Architectures for Matching Natural Language Sentences,
in: Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, K. Q. Weinberger (Eds.), Advances in Neural Information
Processing Systems 27, MIT Press, 2042–2050, 2014.

[24] E.-S. M. El-Alfy, R. E. Abdel-Aal, W. G. Al-Khatib, F. Alvi, Boosting paraphrase detection through textual similarity
metrics with abductive networks, Applied Soft Computing 26 (2015) 444–453.

[25] S. Filice, A. Moschitti, Learning to Recognize Ancillary Information for Automatic Paraphrase Identification, in: Proceed-
ings of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
(NAACL-HLT 2016), Association for Computational Linguistics, 1109–1114, 2016.

[26] M. AL-Smadi, Z. Jaradat, M. AL-Ayyoub, Y. Jararweh, Paraphrase Identification and Semantic Text Similarity Analysis

18

http://arxiv.org/abs/1703.02507
http://arxiv.org/abs/1703.02507


in Arabic News Tweets Using Lexical, Syntactic, and Semantic Features, Information Processing and Management 53 (3)
(2017) 640–652.

[27] Z. Wang, H. Mi, A. Ittycheriah, Sentence Similarity Learning by Lexical Decomposition and Composition, in: Proceed-
ings of the 26th International Conference on Computational Linguistics (COLING 2016), Association for Computational
Linguistics, 1340–1349, 2016.

[28] I. Lopez-Gazpio, M. Maritxalar, A. Gonzalez-Agirre, G. Rigau, L. Uria, E. Agirre, Interpretable semantic textual similarity:
Finding and explaining differences between sentences, Knowledge-Based Systems 119 (2017) 186–199.

[29] W. Yin, H. Schütze, B. Xiang, B. Zhou, ABCNN: Attention-Based Convolutional Neural Network for Modeling Sentence
Pairs, Transactions of the Association for Computational Linguistics 4 (2016) 259–272.

[30] Z. Wang, W. Hamza, R. Florian, Bilateral Multi-Perspective Matching for Natural Language Sentences, in: Proceedings
of the 26th International Joint Conference on Artificial Intelligence (IJCAI 2017), ijcai.org, 4144–4150, 2017.

[31] R. Ferreira, G. D. Cavalcanti, F. Freitas, R. D. Lins, S. J. Simske, M. Riss, Combining sentence similarities measures to
identify paraphrases, Computer Speech and Language 47 (2018) 59–73.

[32] A. Severyn, A. Moschitti, Learning to Rank Short Text Pairs with Convolutional Deep Neural Networks, in: Proceedings
of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR’15,
373–382, 2015.

[33] T. Kenter, M. de Rijke, Short Text Similarity with Word Embeddings, in: Proceedings of the 24th ACM International on
Conference on Information and Knowledge Management, CIKM’15, ACM, 1411–1420, 2015.

[34] A. Eyecioglu, B. Keller, Twitter Paraphrase Identification with Simple Overlap Features and SVMs, in: Proceedings of
the 9th International Workshop on Semantic Evaluation (SemEval@NAACL-HLT 2015), Association for Computational
Linguistics, 64–69, 2015.

[35] J. Zhao, M. Lan, ECNU: Leveraging Word Embeddings to Boost Performance for Paraphrase in Twitter, in: Proceedings
of the 9th International Workshop on Semantic Evaluation (SemEval@NAACL-HLT 2015), Association for Computational
Linguistics, 34–39, 2015.

[36] G. Zarrella, J. C. Henderson, E. M. Merkhofer, L. Strickhart, MITRE: Seven Systems for Semantic Similarity in Tweets,
in: Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval@NAACL-HLT 2015), Association
for Computational Linguistics, 12–17, 2015.

[37] M. Karan, G. Glavas, J. Snajder, B. D. Basic, I. Vulic, M. Moens, TKLBLIIR: Detecting Twitter Paraphrases with
TweetingJay, in: Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval@NAACL-HLT 2015),
Association for Computational Linguistics, 70–74, 2015.

[38] J. Wieting, K. Gimpela, Revisiting Recurrent Networks for Paraphrastic Sentence Embeddings, in: Proceedings of the 55th
Annual Meeting of the Association for Computational Linguistics (ACL 2017), Association for Computational Linguistics,
2078–2088, 2017.

[39] N. P. A. Vo, S. Magnolini, O. Popescu, Paraphrase Identification and Semantic Similarity in Twitter with Simple Fea-
tures, in: Proceedings of the 3rd International Workshop on Natural Language Processing for Social Media (SocialNLP
2015@NAACL-HLT), Association for Computational Linguistics, 10–19, 2015.

[40] J. Huang, S. Yao, C. Lyu, D. Ji, Multi-Granularity Neural Sentence Model for Measuring Short Text Similarity, in:
Proceedings of the 22nd International Conference on Database Systems for Advanced Applications (DASFAA 2017),
Springer, 439–455, 2017.

[41] R. Mihalcea, C. Corley, C. Strapparava, Corpus-based and Knowledge-based Measures of Text Semantic Similarity, in:
Proceedings of the 21st National Conference on Artificial Intelligence (AAAI 2006), AAAI Press, 775–780, 2006.

[42] W. Guo, M. Diab, Modeling Sentences in the Latent Space, in: Proceedings of the 50th Annual Meeting of the Association
for Computational Linguistics (ACL 2012), Association for Computational Linguistics, 864–872, 2012.

[43] V. Nair, G. E. Hinton, Rectified linear units improve restricted boltzmann machines, in: Proceedings of the 27th interna-
tional conference on machine learning (ICML 2010), Omnipress, 807–814, 2010.

[44] S. Hochreiter, J. Schmidhuber, Long Short-Term Memory, Neural Comput. 9 (8) (1997) 1735–1780.
[45] G. S. Tomar, T. Duque, O. Täckström, J. Uszkoreit, D. Das, Neural Paraphrase Identification of Questions with Noisy

Pretraining, in: Proceedings of the 1st Workshop on Subword and Character Level Models in NLP, Association for
Computational Linguistics, 142–147, 2017.

[46] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, P. Kuksa, Natural Language Processing (Almost) from
Scratch, Journal of Machine Learning Research 12 (2011) 2493–2537, ISSN 1533-7928.

[47] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, J. Dean, Distributed representations of words and phrases and their
compositionality, in: Proceedings of the 26th International Conference on Neural Information Processing Systems (NIPS
2013), Curran Associates Inc., 3111–3119, 2013.

19


	1 Introduction
	2 Problem statement and goals
	3 Related work
	3.1 Work on clean text
	3.2 Work on short text
	3.3 Summary

	4 DeepParaphrase Architecture
	4.1 Sentence modelling with CNN and RNN
	4.2 Pair-wise word similarity matching
	4.3 Statistical features

	5 Experimental Setup
	5.1 Datasets
	5.2 Performance measures

	6 Results and Discussion
	6.1 Results and Discussion on Twitter Corpus
	6.2 Results and discussions on MSRP dataset 
	6.3 Hyperparameter Setting
	6.3.1 Hyperparameter settings on the Twitter dataset
	6.3.2 Hyperparameter settings for MSRP dataset


	7 Conclusions

