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This study presents findings from a first-of-its-kind measurement campaign that includes
simultaneous measurements of the full velocity and vorticity vectors in both pipe and
boundary layer flows under matched spatial resolution and Reynolds number conditions.
Comparison of canonical turbulent flows offers insight into the role(s) played by features
that are unique to one or the other. Pipe and zero pressure gradient boundary layer
flows are often compared with the goal of elucidating the roles of geometry and a free
boundary condition on turbulent wall-flows. Prior experimental efforts towards this end
have focused primarily on the streamwise component of velocity, while direct numerical
simulations are at relatively low Reynolds numbers. In contrast, this study presents
experimental measurements of all three components of both velocity and vorticity from
5000 . Reτ . 10000. Differences in the two transverse Reynolds normal stresses are
shown to exist throughout the log-layer and wake layer at Reynolds numbers that exceed
those of existing numerical data sets. The turbulence enstrophy profiles are also shown
to exhibit differences spanning from the outer edge of the log-layer to the outer flow
boundary. Skewness and kurtosis profiles of the velocity and vorticity components imply
the existence of a ‘quiescent core’ in pipe flow, as described by Kwon et al. (J. Fluid
Mech., vol. 751, 2014, pp. 228–254) for channel flow at lower Reτ, and characterise the
extent of its influence in the pipe. Observed differences between statistical profiles of
velocity and vorticity are then discussed in the context of a structural difference between
free-stream intermittency in the boundary layer and ‘quiescent core’ intermittency in the
pipe that is detectable to wall-distances as small as 5% of the layer thickness.
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1. Introduction

The degree to which turbulent zero pressure gradient (ZPG) boundary layer and
pipe flows can be treated as similar has been a subject of debate for much of the
last decade (e.g. see Monty et al. (2009), Jiménez & Hoyas (2008)). While the no-slip
condition forces similarity between boundary layers and pipes when scaled with friction
velocity (Uτ ≡

√

τw/ρ) and length (lv ≡ ν/Uτ ) scales sufficiently close to the wall,
the wall-distance at which this similarity breaks down (and which flow features begin
to deviate) remains an open question. Possible sources of dissimilarity include differing
outer boundary conditions (turbulent pipe centreline versus non-turbulent free stream
in boundary layers), geometry (outer flow boundary exists along 1D line in pipes versus
2D plane in boundary layers), and differences in contributions to the mean momentum
balance (mean pressure gradient in pipes versus mean advection in boundary layers).

Both physical experiments and numerical simulations have been conducted towards
clarifying the onset and causes of discrepancies. Experimental results, however, are
primarily limited to those pertaining to the streamwise component of velocity—largely
owing to the relative difficulty of measuring the other two components. Monty et al.
(2009) compared streamwise velocity spectra and the first four statistical moments
of the streamwise velocity collected in pipe, channel, and boundary layer flows at a
friction Reynolds number of approximately 3000, where Reτ ≡ Uτδ/ν and δ refers to the
boundary layer height and/or the pipe radius/channel half-height, where applicable. They
found that the statistical structure of the streamwise velocity fluctuations was virtually
the same in all three flows from the wall to at least 0.5δ. Despite this statistical invariance,
the authors also found that eddies with streamwise wavelength & 10δ contribute more to
the streamwise variance in the log-layer for internal (pipe/channel) flows than they do for
external (boundary layer) flows. That the streamwise statistical invariance is apparently
maintained despite the difference in spatial organization motivates an investigation into
the behaviours of other flow variables such as the cross-stream velocities and the vorticity.

While experimentally determined profile statistics of the wall-normal and span-
wise/azimuthal components of velocity are available independently for both pipes and
boundary layers, no single experimental study has presented data for both flows acquired
with the same probe and data-reduction scheme under matched probe resolution and
Reynolds number conditions. Consequently, it is difficult to differentiate between
flow-dependent features and experimental scatter based on a collection of existing
experimental results alone. This is illustrated in Jiménez & Hoyas (2008), where a
selection of existing experimental data from both internal and external flows is presented
alongside the results of a set of direct numerical simulations (DNS) of channel flow.
One way to approach the issue of experimental scatter is to compare DNS results
of internal and external flows directly, as in Jiménez et al. (2010) and Chin et al.
(2014). Such comparisons, however, have thus far been limited to friction Reynolds
numbers of Reτ ≈ 1000 or less. Since it is unclear whether wall-flows of Reτ . 1000
contain a well-developed inertial layer (Morrill-Winter et al. 2017), it remains to be
seen whether features observed in the transverse velocity variance profiles persist at
higher Reτ. Furthermore, to the authors’ knowledge, third and fourth order statistics of
the transverse velocity components have not yet been reported in a comparative study
of internal and external flows. Such statistics contain valuable information about the
probability distribution functions of turbulence quantities, as they clarify the relative
dominance of positive versus negative, or large versus small fluctuations, and the
dependence of these measures on wall-distance. Additionally, the normalised third and
fourth order moments and, in particular, how these compare to those associated with
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Gaussian processes, may be used to evaluate existing models of wall-bounded flow, and
inform new models/modifications to existing models.
Differences in wake structure between internal and external flows have been discussed in

the context of turbulent/non-turbulent intermittency since the early studies by Schubauer
(1954) and Klebanoff (1955). Both authors asserted that the distribution of velocity
fluctuations was most likely the same in the ‘turbulent’ patches of the boundary layer
as they are in the pipe. External boundary layers are bounded by irrotational potential
flow, the entrainment of which is commensurate with flow development in the streamwise
direction. Fully developed internal flows, however, have no such source of irrotational flow
and do not develop in the streamwise direction. Despite this fact, Kwon et al. (2014)
identified a large-scale region, or ‘quiescent core’, in channel flows at Reτ ≈ 1000–4000
having characteristics reminiscent of those of the boundary layer free-stream. Example
snapshots of the turbulent/non-turbulent interface (TNTI) in a boundary layer from
Chauhan et al. (2014b) and the quiescent core boundary in a channel from Kwon et al.
(2014) are shown in figures 1(a) and (b) respectively. Although the boundary of the
quiescent core is qualitatively similar to the TNTI, its influence (if any) on turbulence
statistics at Reynolds numbers higher than Reτ ≈ 4000 is presently unknown. In this
study, we show that normalised third- and fourth-order statistical moments of pipe flow
are indicative of intermittency associated with a quiescent core, and that differences in
the intermittency between pipe and boundary layer flow can explain many of the observed
differences between the two flows.
In the present experiments, we simultaneously measure all components of velocity and

vorticity in boundary layer and pipe flows for 5000 .Reτ . 10000. Thus, the present
data set allows for differentiation between ‘turbulent’ and ‘non-turbulent’ patches by
their instantaneous enstrophy rather than an analogue measure based, for example, on
the streamwise velocity. As such, another aim of this study is to compare the prevalence
and structure of quasi-‘non-turbulent’ flow in pipes and boundary layers as well as the
vortical properties of the ‘turbulent’ patches.
Throughout the rest of this text, subscripts 1, 2, and 3 refer to the streamwise,

wall-normal, and spanwise/azimuthal directions, respectively. Superscript ‘+’ indicates
normalisation by viscous scales. The position x2 = 0 refers to the wall in both the pipe
and boundary layer cases. Overbar (·) or capitalisation denotes a time-averaged quantity,

superscript prime (·)′ or lower-case denotes a fluctuating quantity, and a tilde (̃·) denotes
a total quantity. The following are examples of the notation used throughout: the total
streamwise velocity can be decomposed as ũ1 = U1+u1; the mean Reynolds shear stress
can be expressed as u1u2; and the fluctuating component of the instantaneous Reynolds
shear stress can be expressed as (u1u2)

′.

2. Experiments

2.1. Facilities

The present data were collected as part of a collaborative effort between the authors at
the Center for International Collaboration in Long Pipe Experiments (CICLoPE) and the
Flow Physics Facility (FPF)—respectively the largest-scale turbulent pipe flow and zero
pressure gradient boundary layer facilities in existence. The former is a closed-loop system
that generates a fully developed turbulent pipe flow in a 90 cm diameter test section over
a development length of 110.9 m (i.e. a length-to-diameter ratio of 123.2). The loop
includes a heat exchanger which keeps the flow temperature constant to within ±0.2◦C,
even for measurement durations in excess of 9 hours. A detailed design of CICLoPE can
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Figure 1. (a) Snapshot adapted from Chauhan et al. (2014b) showing turbulent/non-turbulent
interface in a ZPG boundary layer at Reτ ≈ 12300. Interface location in (a) based on threshold
of local turbulence kinetic energy (see Chauhan et al. (2014b)). (b) Snapshot adapted from Kwon
et al. (2014) showing boundaries of the quiescent core in channel flow at Reτ ≈ 1000. Quiescent
core boundary based on U1/Uo = 0.95 contour, where U1 is the mean streamwise velocity and
Uo is the centreline velocity for the channel, and the free-stream velocity for the boundary layer.
Coordinates x1 and x2 refer to the streamwise and wall-normal directions, respectively. Ellipse
in (b) highlights instance where the quiescent core boundary nearly reaches the wall.

be found in Talamelli et al. (2009), and initial velocity measurements are reported in Örlü
et al. (2017). The FPF, first characterized in Vincenti et al. (2013), is an open circuit
zero pressure gradient wind tunnel in which the boundary layer grows continuously over
a streamwise development length of 72 m, ultimately achieving boundary layer heights of
up to 75 cm. The spatial development of the boundary layer over this long fetch permits
the outer flow scale to be set to any value up to the maximum by establishing a fixed
measurement station at the corresponding streamwise location. The friction velocity at
any streamwise location is constant to within within 0.5% for the central 5 m of the
total 6 m test section span, while the sloped ceiling maintains the free-stream velocity
as constant to within ±1% over the range used herein (Vincenti et al. 2013).

Both facilities are ideal for high-fidelity measurements of high Reynolds number flows,
as their physical size allows for the generation of a wide range of energy-containing
scales without the smallest of those being unresolvable via conventional measurement
techniques. The two facilities are also particularly well-suited for direct flow comparisons
with one another, as the operational flow speeds and physical dimensions make it possible
to simultaneously match both inner and outer flow scales at considerable Reynolds
numbers.
It is worth noting that the open-circuit design of the FPF presents additional exper-

imental challenges relative to smaller, indoor (or closed-loop) facilities. As the inflow is
drawn from the atmosphere, compensation is needed for the calibration drift associated
with changes in atmospheric temperature over the course of each measurement. The FPF
data also show slight departures from canonical behaviour in the wake of the generated
boundary layer (e.g. see Vincenti et al. (2013)). Although we do not believe that these
factors impact the conclusions of this study, additional boundary layer measurements
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Figure 2. (a) Probe schematic with relative dimensions. (b) Front-on picture of actual probe.
Labels (a)-(d) in (a) refer to ×-array ‘sub-arrays’ as referenced throughout text. Probe centroid
is indicated by ⊕. Reference length lwp is the sensor length lw projected into the x2-x3 plane,
which for this study is fixed at 0.8mm.

collected in the High Reynolds Number Boundary Layer Wind Tunnel (HRNBLWT) at
the University of Melbourne (e.g. see Kulandaivelu (2012)) are included in Appendix
A for comparison. The HRNBLWT is an indoor open-circuit ZPG boundary layer wind
tunnel with a streamwise development length of 27 m, which allows for generation of a
boundary layer up to 35 cm thick. As such, to achieve matched spatial resolution with
the FPF and CICLoPE measurements, the HRNBLWT measurements are collected at
Reynolds numbers about 2/3 as large as those obtained at the FPF and the CICLoPE.

2.2. Measurement Probe

All of the data presented herein were acquired via a multi-element hot-wire anemom-
etry probe consisting of 8 independent sensing elements. The design of this probe and
its capacity to capture key aspects of the velocity and vorticity time-series in turbulent
boundary layers are discussed in detail in Zimmerman et al. (2017). The arrangement
of the sensing elements, shown in figure 2, is similar to the arrangement deployed by
Antonia et al. (1998) in a grid-generated turbulent flow. Several modifications were made
to this design to reduce the overall measurement volume and better-suit operation in wall-
bounded flows. These include a reduction of the relative spacing between sub-arrays (a)
and (b) to prioritize resolution of the x2 gradients, and the use of gold-plated tungsten
wire in place of platinum-core Wollaston wire.
For illustrative purposes, it is useful to describe the present probe as being composed

of four individual ×-wire sub-arrays. The probe schematic shown in figure 2 is consistent
with this description and demonstrates one way in which both the velocity and vorticity
vectors may be obtained about the centroid of the measurement volume. In contrast
to some other multi-element hot-wire probes deployed in wall-bounded flows (e.g. see
the review of Wallace & Vukoslavčević (2010)), the individual sub-array centroids of
the present probe are symmetric about the overall measurement volume centroid. The
advantage of this symmetry is that all gradient estimates (and thus vorticity component
estimates) can be obtained via central finite differences about a single common point.
Another advantage of the present design is the focus on resolving the vorticity vector
specifically rather than the entire velocity gradient tensor. Forgoing measurement of two
normal gradients (∂u2/∂x2 and ∂u3/∂x3) eliminates the practical requirement for each
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sub-array to estimate all three components of velocity simultaneously, the merits of which
are evidenced by the velocity component variances reported in Zimmerman et al. (2017).

2.3. Calibration

Data collected from a two-step in situ calibration procedure are combined to charac-
terize the response of each sensor to a range of flow angles and speeds expected to be
encountered in the profile scans. In the first procedure, the sensors are traversed to a
position where they will encounter quasi-uniform flow (x2 > δ99 in the boundary layer
and x2 = 0.93R in the pipe). Note that the mean streamwise velocity at x2 = 0.93R
(the location corresponding to the maximum extent of the traversing apparatus) differs
from the centreline velocity by less than 0.3% according to the DNS dataset of Chin
et al. (2014). The sensors are then exposed to between 9 and 11 flow speeds ranging
from roughly 1 m/s at the low end to 1.25Uo at the high end, where Uo is the velocity
in either the free-stream or at the pipe centreline. The flow speeds in both cases are
measured by pitot-static tubes. A third order polynomial is then fitted to the median
hot-wire voltage versus median flow speed data points. The median is used rather than
the mean to remove the influence of non-uniformity in the calibrating flow, (e.g. non-zero
turbulence intensity in the pipe centreline). This procedure is performed before and after
every profile scan, providing two reference points for temperature-based interpolation of
a single response curve for each profile measurement x2 position. A key advantage of
this procedure is that the flow incidence is known to be 0◦ relative to the position of the
probe during the actual profile scan.

The second step of the calibration procedure utilizes an in-house built articulating jet
first described in Morrill-Winter & Klewicki (2013) to generate uniform flow at both
yaw and pitch angles across the same range of flow speeds as the quasi-uniform tunnel
calibrations described above. Data are collected at thirteen pitch and thirteen yaw angles
at each speed. Tangential cooling coefficients k (Jorgensen 1971), and effective cooling
angles α (Bradshaw 1971), are determined for each sensor at each speed and used in the
following expression to describe the sensor response:

u2
e = (u1 sinα− ui cosα)

︸ ︷︷ ︸

uN

2
+ k2(u1 cosα+ ui sinα)

︸ ︷︷ ︸

uT

2
, (2.1)

where ue is the ‘effective’ cooling velocity and ui is either u2 or u3 (depending on the
orientation of the sensor), and the subscripts N and T refer to the directions normal and
tangential to the sensor, respectively. The original expression suggested by Jorgensen
(1971) includes another term that describes the effect of ‘bi-normal’ cooling velocity,
but this term is neglected here (Zimmerman et al. 2017). The use of (2.1) with speed-
dependent cooling coefficients collapses the jet calibration data onto a single curve
with errors typically less than 1% for speeds above 2 m/s. While the jet calibration
is theoretically sufficient to describe the entire probe response, there are two practical
difficulties associated with the jet calibration that necessitate the tunnel calibration (i.e.
the first step). First, it was shown in Zimmerman et al. (2017) that even very minor
misalignment of the jet relative to the mean flow could result in substantial errors
in reported Reynolds shear stress components. Second, the fan which generates the
calibrating jet flow can heat the air by several degrees Celsius, resulting in a shifted
speed response curve. Both of these issues are circumvented by forcing the jet calibration
surface to fall upon (at 0◦ nominal flow incidence) the tunnel calibration curve.
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2.4. Data Reduction

Raw sensor output is reduced to velocity and shear gradients about the centroid of the
measurement volume by solving two closed four-equation four-unknown systems. These
systems, obtained from (2.1), and given in (2.2) and (2.3), are first-order Taylor series
expansions of two-dimensional velocity in the direction normal to the velocity plane for
each set of four coplanar sensing elements.

u2
ej =

[(

u1 + hj
∂u1

∂x2

)

sin(αj)−
(

u3 + hj
∂u3

∂x2

)

cos(αj)

]2

+ ...

k2j

[(

u1 + hj
∂u1

∂x2

)

cos(αj) +

(

u3 + hj
∂u3

∂x2

)

sin(αj)

]2

(2.2)

u2
ej =

[(

u1 + hj
∂u1

∂x3

)

sin(αj)−
(

u2 + hj
∂u2

∂x3

)

cos(αj)

]2

+ ...

k2j

[(

u1 + hj
∂u1

∂x3

)

cos(αj) +

(

u2 + hj
∂u2

∂x3

)

sin(αj)

]2

(2.3)

Equation 2.2 is thus appropriate for the four wires oriented in sub-arrays a and b, and (2.3)
is appropriate for those in c and d. Initial guesses are produced from ×-array outputs
of sub-arrays a, b, c, and d from figure 2. These initial ×-array outputs are obtained
via lookup tables that are populated based on (2.1) and the third-order polynomial fit
relating voltage to ue mentioned above. Note that the index j in (2.2) and (2.3) indicates
an individual sensing element (1–8), and hj indicates the separation between sensor ‘j’
and the centroid in the direction of the Taylor series expansion. For example, if elements
1 and 2 are in sub-array a, then h1 = 3

4
lwp

and h2 = 1

4
lwp

(see figure 2).
At each measurement time instant, we obtain uej for each wire based on its voltage

output and kj , and αj based on the initial ×-array solution. These values are substituted
into (2.2) and (2.3) along with the initial ×-array solutions for the velocities and their
gradients, and the systems are solved via an iterative nonlinear least-squares algorithm.
The output of this solution method is the three velocity components and the four cross-
stream shear gradients ∂u1

∂x2

, ∂u3

∂x2

, ∂u1

∂x3

, and ∂u2

∂x3

. The advantage of the systems given by
(2.2) and (2.3) compared to a typical ×-array method is that the assumption of uniform
flow across ×-wire pairs is relaxed to one that allows a linear velocity gradient across the
measurement volume. This reduces the aliasing associated with non-uniform flow across
the ×-wire domain (Zimmerman et al. 2017). The remaining shear gradients not given
by (2.2) or (2.3) (i.e. those taken in the streamwise direction) are estimated via Taylor’s
frozen turbulence hypothesis, using the local mean velocity as the convection velocity.
These six shear gradients are then used to compute all three instantaneous vorticity
components.
All statistics presented herein are computed from velocity time series obtained via (2.2)

and (2.3) with the exception of the statistical moment profiles of u2 and u1u2, which are
obtained via the same lookup-table approach as is used to produce initial guesses for
(2.2) and (2.3). Although solving (2.3) produces a higher-fidelity estimate of u2 about
the probe centroid than any linear combination of outputs from sub-arrays c, and d,
there is no particular benefit associated with computing u2 statistics from a centralised
measurement. The probe-centered signal is, however, preferable for the calculation of
the ∂u2/∂x1 component of ω3 (for example), since the collocation of the ∂u2/∂x1 and
∂u1/∂x2 gradient estimates significantly improves the fidelity of the overall ω3 estimate
(Zimmerman et al. 2017).
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2.5. Measurement Parameters

The relevant measurement parameters of this study are summarized in table 1. The
friction velocity Uτ in the boundary layer case is determined by the composite fit of
Chauhan et al. (2009) with the von Kármán and intercept constants chosen as κ = 0.39
and B = 4.3, respectively (Marusic et al. 2013). An analogue of the standard δ99 is used
due to the slight non-zero curvature of the mean velocity profile in the FPF boundary
layer free-stream (cf. figure 3 in the next section). Since the inner-normalized streamwise
velocity variance profile as a function of x2/δ follows a single Re-independent curve
in the vicinity of δ99, at least over the Re-range considered herein (e.g. see Marusic
et al. (2015)), δ99 is identified in the present ZPG cases as the position where the inner-
normalized streamwise variance equals 0.257—its value at the position corresponding to
U = 0.99Uo based on the DNS results of Sillero et al. (2013). Throughout the rest of
this text, δ99 will refer to this analogue definition. The friction velocity in the pipe is
obtained from direct measurements of the pressure drop using 18 ports located along
the entire working section. Wall-position in both measurements is first determined with
a microscope to within ±0.1mm and subsequently tracked via an optical encoder on
the traversing apparatus. Integration of the measured mean velocity profiles yields the
average, or bulk velocity, from which (along with the measured mean pressure gradient)
the friction factor λ and Reynolds number ReD based on pipe diameter and bulk velocity
are obtained. The present measured values of λ (for each measured ReD) are all within
0.75% of those based on the curve suggested by McKeon et al. (2004) at the corresponding
values of ReD.
Also summarized in table 1 are the numerical data sets used for comparison. These

include the boundary layer DNS of Sillero et al. (2013), the pipe DNS of Chin et al. (2014),
and a computer simulation of our probe when exposed to the six DNS flow volumes made
available by Sillero et al. (2013). This simulation, or “synthetic experiment”, seeks to
predict the effects of physical scale, probe geometry, and data reduction method on each
measured statistic. More detail on the synthetic experiment is available in Zimmerman
et al. (2017). Statistics from the fields of Sillero et al. (2013) that are not published online,
such as velocity fluctuation kurtosis and vorticity skewness/kurtosis, are computed from
the six available fields, and so may not be fully converged. Pipe DNS statistics are limited
to only those which were published in Chin et al. (2014). Pipe synthetic experimental
“results” are not computed directly, but rather we normalize the pipe DNS statistics
with the ratio of boundary layer simulation statistics to boundary layer DNS statistics.

3. Velocity statistics

This section presents profiles of the statistical moments (up to kurtosis) of the three
velocity components and the Reynolds shear stress.

3.1. Streamwise

Figures 3(a) and (b) show the mean streamwise velocity U1 in log-law and defect form,
respectively. As noted in §2.5, Uτ is determined for the boundary layer by fitting the
measured points to the composite profile of Chauhan et al. (2009) with a von Kármán
constant κ = 0.39 and an intercept B = 4.3. Thus, agreement between the boundary
layer cases and the boundary layer DNS of Sillero et al. (2013) in the log-layer is
essentially prescribed. It is for this reason that the exact slopes of the profiles are not
compared herein. Plotting the mean velocity in defect form, as in figure 3(b), reveals
slight departures from canonical behaviour in the FPF boundary layer cases. For the
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Method Uτ

[

m

s

]

l+w l+wp
∆x+

2 ∆x+

3 δ[m] Reτ tUo/δ[−]

TBL Exp. 0.16 12 9 9 22 0.52 5600 4700
Pipe Exp. 0.18 13 9 9 23 0.45 5200 5100 (25300)
TBL Exp. 0.23 18 13 13 32 0.51 8100 5700
Pipe Exp. 0.26 19 14 14 34 0.45 7700 5000 (24800)
TBL Exp. 0.31 24 17 17 42 0.47 9900 6500
Pipe Exp. 0.34 25 18 18 44 0.45 10000 5200 (25900)

TBL DNS — — — — — — 2000 —

Pipe DNS — — — — — — 2000 —

Synth Exp. — 24 18 18 45 — 2000 —

Synth Exp.† — 24 18 18 45 — 2000 —

Table 1. Summary of present experiments and DNS comparisons. Boundary layer and pipe
DNS respectively from the datasets of Sillero et al. (2013) and Chin et al. (2014). † Pipe
synthetic experiment based on boundary layer results, see text for details. Outer scale δ refers
to pipe radius or the analogue to δ99 (defined in §2.5), where applicable. Measurement sample
times correspond to all samples for each case, with the exception of four selected x2 locations
in the pipe cases for which longer samples were collected—these longer sample times (given in
parentheses) correspond to the centremost location, and (near) the start, middle, and end of the

log layer (i.e. x+

2 = 0.93δ+, ≈ 2.6
√
δ+, ≈ 0.15δ+, and ≈ (2.6

√
δ+ × 0.15δ+)1/2).

purposes of this plot, the boundary layer free-stream velocity Uo is chosen to force the
log-law portions of each curve to lie on the expected ZPG boundary layer curve. This
reveals that the two lower-Reτ boundary layer measurements show good agreement in the
wake with the DNS of Sillero et al. (2013) out to x2/δ ≈ 0.8, at which point U1 reaches
a maximum and begins to decrease. In addition to exhibiting the same local maxima in
U1, the wake of the highest-Reτ boundary layer case is also slightly weaker than that of
a canonical ZPG boundary layer wake. In spite of these departures from the expected
U1 profile shape, the turbulence statistics shown in the figures that follow (i.e. figures
4–11) show close agreement with the boundary layer DNS as well as with the (lower-
Reτ) measurements collected at the HRNBLWT (shown in figures 15–19 in Appendix
A), even for x2/δ99 > 1. The present pipe measurements are virtually indistinguishable
from the DNS curve of Chin et al. (2014) through the log-layer and wake. Likewise, the
HRNBLWT U1 profiles shown in figure 15 in Appendix A show very close agreement
with the DNS curve of Sillero et al. (2013).
Figures 4(a), (b), and (c), respectively show the variance, skewness coefficient, and

kurtosis coefficient profiles of the fluctuating streamwise velocity u1 for all present data

and DNS. Apart from the expected difference in u2
1

+

near x2/δ ≈ 1, the u1 variance
profiles do not exhibit any systematic differences that are distinguishable with the present

dataset. The similarity between the u2
1

+

profiles of the two flows is in agreement with
Monty et al. (2009), who presented streamwise velocity statistics up to the fourth order
for pipe, channel, and boundary layer flows. The HRNBLWT u1 variance profiles, shown
in figure 16(a) in Appendix A, are also very similar in shape to the pipe profiles, although
they do indicate that the boundary layer features slightly higher u1 variance than the
pipe over the range 0.3 & x2/δ & 0.8. The difference being slight, however, means
that this conclusion is particularly sensitive to the choice of outer length scale for the
boundary layer. Still, it will be shown below that the enstrophy and the other components
of the Reynolds stress tensor are all higher in the boundary layer than the pipe over
approximately the same range.
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Figure 3. (a) Mean streamwise velocity in log-law form. Experimental profiles plotted as solid
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The streamwise velocity skewness coefficient profiles of the pipe and boundary layer
are very similar from the wall until at least x2/δ ≈ 0.5. The profiles of both flows grow
more negative at a rate that is approximately logarithmic across the sub-domain where
the mean velocity is logarithmic. Monty et al. (2009) also observed this similarity out
to x2/δ ≈ 0.5, but remarked that “it could be argued that the boundary layer skewness
exhibits a slightly different trajectory for x+

2 & 200”. Indeed, the boundary layer u1

exhibits (on average) slightly less negative skewness than the pipe in the vicinity of x2/δ ≈
0.1. The same is clearly true of the boundary layer data acquired in the HRNBLWT,
as shown in figure 17 in Appendix A. This difference is part of a general trend: the
boundary layer exhibits higher variance and probability density functions that are less
dominated by extreme events for most measured quantities near the outer edge of the
log-layer/wallward edge of the wake. It is surmised in §5 that this results (at least in part)
from the difference between intermittency associated with the turbulent/non-turbulent
interface (TNTI) in the boundary layer and that associated with the turbulent/quiescent-
core interface in the pipe.
As with the skewness coefficient profiles, the pipe and boundary layer kurtosis profiles

remain very similar moving outward from the wall until the emergence of a super-
Gaussian peak in the wake of the boundary layer that far exceeds the more modest
peak in the pipe (see figure 4(c)). The HRNBLWT measurements, shown in figure 18
in Appendix A, suggest that the boundary layer kurtosis is slightly lower than that of
the pipe in the range 0.3 & x2/δ & 0.5. Again, this is consistent with the differences
between the intermittency in the pipe and boundary layer. Both profile sets remain
sub-Gaussian from the nearest-wall measured points until approximately 0.5δ. The pipe
centreline kurtosis is higher in the lowest-Reτ case than the two higher-Reτ cases. This
higher value is observed individually by all sub-arrays, and at a position where the
time-record length exceeded 25000 radius turnover times. Thus, it is unlikely that this
observation results from spurious probe behaviour or insufficient statistical convergence.
As no two pipe measurements are collected at the same Reτ or sensor resolution, the
cause of the difference in centreline kurtosis is left unclear.

3.2. Wall-normal

Figure 5 shows the variance, skewness, and kurtosis profiles of the wall-normal velocity
component. Based on the DNS-based synthetic probe predictions for the experimental
data in figure 5(a), the wall-normal velocity variance is expected to suffer noticeable
attenuation much farther from the wall than the streamwise velocity variance. Thus,
while a slight positive slope is observed in the pipe u2 variance across the domain where
the mean velocity is logarithmic, it is unlikely that this trend would be observed in the
absence of spatial filtering. Still, if either the absolute or proportional attenuation of
the boundary layer and pipe u2 signals are equal, the present data indicate that the u2

variance differs between the two flows starting at least at the inner edge of the log-layer.
The same conclusion is reached via inspection of the HRNBLWT data, as shown in figure
16 in Appendix A. According to both the experimental and DNS data, the difference
in profiles is the most pronounced in the outer region x2/δ ≈ 0.2. At this location,
the boundary layer case exhibits an outer peak that, according to Morrill-Winter et al.
(2015), continues to grow with increasing Reτ. The present pipe data does not exhibit an
outer peak or any obvious trend with Reτ, and is of considerably lower magnitude than
the boundary layer cases, in agreement with the findings of Jiménez & Hoyas (2008),
which were observed at lower Reτ.
As with the streamwise velocity, the pipe and boundary layer skewness and kurtosis

profiles for u2 (shown in figures 5(b) and (c)) are very similar from the near-wall to
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the onset of the wake region. The synthetic probe results predict that combined probe
filtering/aliasing effects near the wall result in positive near-wall skewness, rather than the
negative values reported by the fully-resolved DNS. This effect is indeed observed in both
the pipe and boundary layer experimental results. Once this effect becomes negligible,
the DNS, pipe, and boundary layer skewness profiles show very close agreement over the
domain where the mean velocity is logarithmic. In all cases, the wall-normal fluctuations
have an approximately constant skewness coefficient on this domain, varying only between
0.1-0.15. The pipe and boundary layer cases both exhibit a positive peak in the u2

skewness in the wake region, although the magnitude of the boundary layer peak far
exceeds that of the pipe. The existence of this skewness peak in the boundary layer is
not altogether surprising given the non-zero skewness in the log-layer and the presumed
tendency of free-stream intermittency to increase the probability density of u2 ≈ 0.
Although there is no source of truly non-turbulent ‘free-stream’ in fully-developed pipe
flow, the intermittency associated with the varying boundary of the quiescent core (Kwon
et al. 2014) would also presumably increase the probability density of u2 ≈ 0 (as well as
of u3 ≈ 0), and thus produce the observed outer peak in the pipe u2 skewness profiles.
Indeed, all of the velocity fluctuation skewness and kurtosis profiles presented herein
exhibit a tendency to increase in magnitude as one moves outward from x2/δ ≈ 0.3,
further supporting the existence of a quiescent core in the pipe. As with the u1 component,
the measurements of Su2

collected in the HRNBLWT (shown in figure 17 in Appendix
A) indicate that the boundary layer skewness is slightly more Gaussian (closer to zero)
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near the outer edge of the log-layer/inner edge of the wake. Again, this is consistent with
the differences shown in §5 between the intermittency associated with the boundary layer
TNTI and with the quiescent core in the pipe.
In contrast to the streamwise velocity fluctuations, the kurtosis of the u2 fluctuations

is super-Gaussian across the entire flow domain of both the pipe and the boundary layer.
The kurtosis profiles of both flows exhibit an increase in magnitude as one moves from
x2/δ ≈ 0.3 towards the centerline, although the magnitude increase in the boundary layer
far exceeds that of the pipe. While the difference between the u2 skewness profiles of the
two flows is detectable as close to the wall as x2/δ ≈ 0.35, the kurtosis profiles do not
appear to rapidly diverge until x2/δ ≈ 0.55, which is close to the point at which the u2

variance profiles intersect. Using the ‘intermittency factor’ γ (defined as the time-fraction
of non-turbulent flow) to account for the effects of external intermittency, Schubauer
(1954) found close agreement in the kinetic energy between the pipe and the turbulent
portion of a boundary layer in the region above x2/δ ≈ 0.6. The author argued based on
this agreement that the distribution of turbulent energy in a pipe and turbulent portion
of a boundary layer are most likely the same in this region. The fact that the point at
which the boundary layer and pipe u2 variances are equal is approximately coincident
with the point at which the kurtosis profiles begin to diverge is consistent with this
hypothesis (at least for x2/δ & 0.6).

3.3. Spanwise/azimuthal

As the odd moments of the spanwise/azimuthal velocity are identically zero in both
pipes and boundary layers in theory (and to within experimental error in actuality),
figure 6 shows only the even-moment statistics of u3. Similar to u2, the u3 boundary
layer variance profiles show a sharp outer slope change, while the slope change in the
pipe profiles is less pronounced. These slope changes occur at approximately x2/δ ≈ 0.3
for both the DNS and experimental results, which is approximately coincident with the
outer ‘bump’ feature in the u2 variance profile, and is in agreement with the findings



14 S. Zimmerman and others

of Jiménez & Hoyas (2008) at lower Reτ. Further, this location is near the lower x2/δ
limit for turbulent/non-turbulent intermittency suggested by Chauhan et al. (2014a and
2014b). Thus, the ‘knee’ in the profile and subsequent rapid decay of u3 variance is caused
(at least in part) by an increasing time-fraction of signal containing quasi-irrotational
flow with near-zero spanwise velocity as one moves above x2/δ ≃ 0.3.

That the u3 variance is higher in magnitude (and features a different slope) in the
boundary layer than in the pipe and channel below 0.3δ is apparently a separate issue.
Log-lines of best fit computed from the present boundary layer and pipe u3 variance data
over the range 2.6

√
δ+ < x+

2 < 0.15δ+ have slopes of −0.34 and −0.42, respectively. The
HRNBLWT u3 variance measurements, shown in figure 16 in Appendix A, feature a log-
layer fit of u2

3/U
2
τ = 1.66−0.26 log(x2/δ). If the difference between the pipe and boundary

layer cases were predominantly related to flow geometry, one would expect the channel
flow profile to closely resemble the boundary layer profile. Instead, the channel flow profile
of Hoyas & Jiménez (2006) in figure 6 is virtually indistinguishable from the pipe flow
profile of Chin et al. (2014) at the same Reτ. The Reτ ≈ 5200 channel DNS of Lee &
Moser (2015) is also shown in figure 6(a) for comparison. Although the higher Reτ DNS
features slightly higher u3 variance in the outer region than the Reτ ≈ 2000 pipe and
channel DNS, it is still much closer to these cases than it is to the boundary layer DNS
of Sillero et al. (2013). Jiménez et al. (2010) suggested that the discrepancies between
channel and boundary layer cases in both the u2 and u3 variance profiles are caused
by higher pressure fluctuation RMS in the boundary layer, resulting in an increased
redistribution of the u1 energy to the u2 and u3 components. This explanation is also
appropriate for pipe flow as noted by Chin et al. (2014), because the RMS profiles of the
pressure fluctuations in the pipe and channel also closely resemble one another, at least
at Reτ ≈ 1000. Jiménez et al. (2010) showed for a boundary layer and channel both at
Reτ ≈ 550 that the difference in pressure RMS in this region is due almost exclusively
to the negative fluctuations, which are generally associated with the ‘cores’ of vortices.
In support of this notion, it will be shown in §4 and §5 that the boundary layer features
higher mean enstrophy (at the resolved scales) and less quasi-irrotational flow in the
same region.

Like the u2 fluctuations, the u3 fluctuations exhibit slightly super-Gaussian kurtosis
throughout the entire flow domain of both pipes and boundary layers (see figure 6(b)).
The kurtosis for all three pipe profiles in the domain where the mean velocity is
logarithmic remains constant at approximately 3.35 to within the scatter of the data. In
contrast, all three boundary layer kurtosis profiles trend toward the Gaussian value of 3
with increasing distance from the wall within the log layer, moving from ≃ 3.35 to ≃ 3.25.
The local minimum of the boundary layer kurtosis profiles corresponds approximately
to the location of the ‘knee’ in the variance profiles (see figure 6(a)). The difference
between the pipe and boundary layer u3 kurtosis is also clear when using the HRNBLWT
measurements as in figure 18(c) in Appendix A. This feature, again, is consistent with
the difference in the time fractions of ‘fully’ turbulent flow (as opposed to quiescent or
non-turbulent) near the outer edge of the log-layer that will be discussed further in §5.

As is the case with u2 fluctuations, the point at which the boundary layer and pipe
u3 variance profiles intersect is approximately coincident with the point at which the
kurtosis profiles rapidly diverge, with both features occurring near x2/δ ≈ 0.6. Again, this
is consistent with the hypothesis of Schubauer (1954) that the distribution of turbulent
energy between the pipe and the turbulent patches of the boundary layer is the same
over this region.
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Figure 7. (a, b, c, d, e) Reynolds shear stress mean, RMS, skewness coefficient, kurtosis
coefficient, and correlation coefficient, respectively.

3.4. Reynolds shear stress

Owing in part to its strong dependence on probe alignment (Zimmerman et al. 2017),
the mean Reynolds shear stress is one of the more difficult statistics to accurately
measure. The magnitude of all present kurtosis profiles of the instantaneous u1u2 signal
reveal its highly intermittent nature, and indicate that the mean value is composed of
a delicate balance of instantaneous motions that often far exceed the magnitude of the
mean in both directions. That said, the present mean Reynolds stress profiles in the
boundary layer (see figure 7(a)) do exhibit the expected outer region deviation from the

pipe cases in the same region as the observed boundary layer ‘knees’ in both the u2
2 and
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u2
3 profiles. This difference is shown more clearly in the HRNBLWT measurements (cf.

figure 16(d) in Appendix A).
The slightly higher mean Reynolds stress values in the outer region of the boundary

layer in figure 7(a) are matched by slightly higher signal RMS boundary layer profiles
compared to the pipe profiles as shown in figure 7(b). In agreement with the findings of
Morrill-Winter (2016) and the computation from the available DNS fields, the Reynolds
shear stress signal is negatively skewed across the entire flow domain with a coefficient
of Su1u2

≈ −1.6 in the region where the mean velocity is logarithmic (see figure 7(c)).
The skewness and kurtosis profiles for the pipe experiments closely resemble those of
the boundary layer out to x2/δ ≃ 0.5. As with the constituent components u1 and u2,
the HRNBLWT measurements indicate that the u1u2 skewness and kurtosis magnitudes
are slightly lower in the boundary layer than in the pipe near the outer edge of the log-
layer. This is also shown by the FPF measurements (at least in a mean sense), albeit less
convincingly. This slight discrepancy is likely related to the departures from the canonical
ZPG wake discussed in §3.1.
The (u1u2)

′ skewness reaches a negative peak in the wake regions of both the pipe and
boundary layer. As with the skewness profiles of the constituent velocity components,
the peak magnitude in the boundary layer far exceeds that of the pipe. As noted above,
the instantaneous fluctuating u1u2 signal is characterized by extreme events, resulting
in a kurtosis greater than 10 across the entire flow domain (see figure 7(d)). The pipe
and boundary layer kurtosis profiles appear to match one another everywhere except in
the wake region. Here, a substantial increase in the pipe profiles is outpaced by an even
more substantial peak in the boundary layer profiles.
The correlation coefficient ρu1u2

is shown in figure 7(e). While the present experimental
results are of lower magnitude than the synthetic experiment and DNS, a slight decrease
in magnitude is expected with increasing Reτ. This decrease in magnitude is expected
since (at least) the u1 fluctuations are known to increase in strength with increasing
Reτ (albeit slowly) in the region where the mean Reynolds shear stress remains close to
−U2

τ . The correlation coefficient in the pipe remains fairly constant over the majority
of the flow domain (in logarithmic space) before turning sharply toward zero, passing
through−0.3 at x2/δ ≃ 0.7. In contrast, the boundary layer correlation coefficient profiles
slope gently away from zero for the majority of the flow domain before turning sharply
toward zero, passing through −0.3 at x2/δ99 ≃ 0.8-1.

4. Vorticity

This section presents statistics of all three components of vorticity, as well as the
mean enstrophy 1

2
ωiωi. Where the velocity statistics elucidate the distribution of motions

contributing to the kinetic energy of the turbulence, the vorticity statistics describe (to
a close approximation) the distribution of contributions to the dissipation of turbu-
lence kinetic energy. Furthermore, the distribution of the spanwise/azimuthal vorticity
describes the motions which underlie the slope of the mean velocity profile (i.e. since
Ω3 ≈ −∂U1/∂x2).
Figures 8 through 10 show statistics of the streamwise, wall-normal, and span-

wize/azimuthal components of vorticity, respectively. Each component exhibits similar
features, including an outer ‘bump’ in the boundary layer RMS (at a location that
is coincident with ‘bumps’ in the Reynolds stresses described above) and universal
super-Gaussian kurtosis.
The fraction of boundary layer vorticity RMS that is resolved by the present measure-

ment technique may be predicted via the “synthetic” experiment described briefly in §2.5
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Figure 8. (a) Inner-normalised streamwise vorticity RMS and (b) kurtosis coefficient profiles.
Inset to (a) depicts pipe profiles as lines without symbols and boundary layer profiles as symbols
with lines for clarity.

and in detail in Zimmerman et al. (2017). The effects of physical scale, probe geometry,
and data reduction method are reproduced in a DNS volume by using the known velocity
fields and model calibration functions to generate synthetic sensor “voltages”, which are
then reduced to velocities and velocity gradients according to the process outlined in
§2.4. The ratio of ‘measured’ to ‘true’ vorticity predicted by the synthetic experiment
is reported for the three resolution cases in figure 20 in Appendix B. The effects of
spatial resolution on the vorticity RMS and kurtosis values, as predicted by the synthetic
experiment, are given herein by the dashed light-blue lines in each plot. This synthetic
case corresponds to the least-resolved physical experimental cases (see Table 1), and so all
the experimental data is expected to approximately lie between the DNS computations
and the synthetic experimental curve in the absence of effects not captured by the
synthetic experimental model.
When both spatial resolution and Reτ are matched, the streamwise vorticity RMS

profiles of the pipe and boundary layer closely resemble one another. Zimmerman et al.
(2017) argued that the variability among vorticity RMS profiles (of all three components)
for unmatched cases is primarily a function of spatial resolution, and should not be con-
fused for a Reynolds number trend. This argument was based on the observed agreement
between two physical experimental ZPG cases with matched resolution but disparate
Reynolds numbers, as well as agreement between physical and synthetic experimental
results across a range of spatial resolutions.

The outer boundary condition for all three vorticity components differs between the
pipe and boundary layer cases in that the pipe RMS profiles do not go to zero. Thus,
the change in concavity observed in the boundary layer DNS profiles (see figures 8(a),
9(a), and 10(a)) in the wake region is not expected to exist, at least to the same degree,
in the pipe profiles. Although this result is somewhat obfuscated by non-zero free stream
RMS in the boundary layer cases, it is still visible in the insets of figures 8(a), 9(a), and
10(a). The pipe profiles are shown in the insets as lines without symbols for clarity.

With the exception of the highest Reτ boundary layer case, both the pipe and boundary
layer kurtosis profiles increase across the flow domain. As the streamwise component
of vorticity is composed exclusively of cross-stream gradients of cross-stream velocity
components, any imbalance in the measurement of these sensitive velocity components
between two sub-arrays may result in signal contamination. Even a slight increase in the
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Figure 9. (a) Inner-normalised wall-normal vorticity RMS and (b) kurtosis coefficient profiles.
Inset to (a) depicts pipe profiles as lines without symbols and boundary layer profiles as symbols
with lines for clarity.

denominator of the kurtosis coefficient due to contamination may be the cause of not
only the flattening of the highest Reτ boundary layer kurtosis profile, but also the lack
of outer peaks in the two higher-Reτ boundary layer kurtosis profiles.

The boundary layer ω2 RMS profiles shown in figure 9(a) clearly exhibit the expected
change in concavity in the wake region while the pipe profiles do not. The ω2 kurtosis
profiles are very similar to the ω1 kurtosis profiles for both the pipe and boundary layer
cases, except that the predicted outer peak in the boundary layer profiles is present in the
experimental results. The ω2 kurtosis of the boundary layer cases is also less than that
of the pipe in the outer region, a feature which was also observed in at least the u2 and
u3 component kurtosis profiles over approximately the same wall-normal domain. Again,
this is related to the differing properties of intermittency associated with the TNTI in
the boundary layer and the quiescent core in the pipe.

As with the two zero-mean vorticity components (i.e. ω1 and ω2), the pipe and
boundary layer ω3 vorticity RMS profiles closely resemble each other with the exception
of the change of concavity observed in the boundary layer wake. The spanwise/azimuthal
vorticity fluctuations for both the pipe and boundary layer cases are skewed with the
same sign as the mean across the entire flow domain (see figure 10(b)). This is reflective of
the existence of spatially concentrated regions of strong ∂U1/∂x2 shear (e.g. as observed
by Meinhart & Adrian (1995)). The pipe skewness profiles in particular appear to follow
a steady logarithmic curve toward zero, but with a slope that is too shallow to intersect
zero at the centreline. An abrupt turn toward zero skewness is observed in all three pipe
profiles between the two centremost points at 0.74δ and 0.93δ that hints at the path taken
by the curve to satisfy the symmetry condition of Sω3

= 0 at the centreline. Continuing
the trend observed in a number of third and fourth-order statistics of other quantities,
the boundary layer ω3 skewness is of smaller magnitude than that of the pipe near the
outer edge of the log-layer.

The ω3 kurtosis profiles, shown in figure 10(c), exhibit qualitatively different behavior
than the two zero-mean vorticity component kurtosis profiles. Where the ω1 and ω2

signals become increasingly dominated by large fluctuations as one moves away from the
wall (kurtosis increasing gradually from 5 to 10), the ω3 kurtosis profiles exhibit no
such monotonic increase. The slight trends in kurtosis profiles observed for the different
Reτ cases are likely related to changes in spatial resolution. With the exception of the
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Figure 10. (a) Inner-normalised spanwise/azimuthal vorticity RMS, (b) skewness coefficient,
and (c) kurtosis coefficient profiles. Inset to (a) depicts pipe profiles as lines without symbols
and boundary layer profiles as symbols with lines for clarity.

highest-Reτ boundary layer case, the pipe and boundary layer kurtosis profiles track each
other closely.
Figure 11(a) shows the mean turbulence enstrophy, 1

2
ωiωi, on a logarithmic scale. Since

the enstrophy is related to the turbulence dissipation rate ǫ by ǫ ≈ νωiωi, the classical
−1 power-law slope (based on equality of production and dissipation, e.g. see Townsend
(1976)) is also included in figure 11(a) for reference. Figure 11(b) shows the ratio of the
enstrophy profiles of the boundary layer and pipe cases with matched Reτ and spatial
resolution. The outer peaks observed in the enstrophy ratio profiles coincide with the
change-of-concavity discussed above in the context of figures 8 through 10 as well as
the outer ‘bumps’ in the boundary layer u2 and u3 variance profiles relative to those
of the pipe. Figure 11 is replotted as figure 19 in Appendix A using the HRNBLWT
measurements in place of the FPF measurements. The same peak in the enstrophy ratio
is also clearly visible in figure 19(b), although the region where the ratio departs from
unity is more clearly discernible as 0.1 . x2/δ . 0.7.
As noted above in §3.3, the cross-stream velocity variances and enstrophy are linked

through the pressure RMS. Increased levels of mean enstrophy are associated with
stronger negative pressure fluctuations (which were indeed observed by Jiménez et al.
(2010)), while increased pressure RMS is linked to increased redistribution of u1 energy to
u2 and u3 through the pressure-strain redistribution term in the Reynolds stress transport
equations (e.g. see Tennekes & Lumley (1972)). The differences in mean enstrophy are
also indicative of increased levels of viscous dissipation of turbulence in the boundary
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layer wake relative to the pipe wake, in agreement with El Khoury et al. (2013) wherein
channel, pipe, and ZPG boundary layer DNS results are compared at Reτ ≈ 1000. The
following section shows that the difference in enstrophy levels observed in the pipe and
boundary layer are related to the differing time-fractions of highly-turbulent flow. These
time-fractions are themselves a product of the properties of the TNTI in the boundary
layer and the quiescent core boundary in the pipe.

5. Intermittency

Two overarching features of the RMS, skewness, and kurtosis profiles are shown in
§3 and §4 to consistently differentiate between pipe and boundary layer flow: outer
magnitude peaks in the boundary layer skewness and kurtosis cases that emerge at
x2/δ ≈ 0.5; and higher RMS/lower skewness and kurtosis magnitude of boundary layer
quantities over a domain roughly spanning 0.1 . x2/δ . 0.5. The emergence of an
outer peak in the kurtosis profiles of boundary layer statistics has long been understood
to be related to turbulent/non-turbulent intermittency in the boundary layer. Early
studies of this phenomenon even used the departure of the u1 kurtosis from the Gaussian
value as a measure of intermittency (Klebanoff 1955). Some profile features that are
typically understood to be a consequence of intermittency, however, are also observed
(albeit to a lesser degree) in the present pipe cases. Indeed, all of the third and fourth
order velocity statistics presented herein for the pipe trend away from Gaussian values
in the outer flow region. Recently, Kwon et al. (2014) have shown that channel flows
contain in their wake a region of nearly uniform momentum, or a ‘quiescent core’, which
has characteristics similar to those of the boundary layer free-stream. The role of these
quasi-‘non-turbulent’ patches is thus of interest. The aim of this section is to identify
differences in the structure and prevalence of flow having characteristics reminiscent of
the boundary layer free-stream—namely irrotationality and unidirectionality.
As the vorticity signal is not fully resolved by the present measurement technique (see

Appendix B for details), it is not possible to identify portions of the signal that are strictly
irrotational. Instead, a range of thresholds for instantaneous enstrophy, 1

2
ω̃iω̃i, are used

to identify ‘irrotational’ or ‘quasi-irrotational’ flow. The conclusions drawn from these
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data are then shown to be independent of the threshold level over the range employed. As
shown in figure 11, the enstrophy roughly decreases as x−1

2 from x+

2 & 30 to x2/δ . 0.5.
In effect, the mean turbulence enstrophy at, say, x2/δ = 0.1 for Reτ ≈ 10000 is therefore
roughly half that at the same position for Reτ ≈ 5000. Since the present intermittency
analysis is primarily focused on the outer region of the flow, it is therefore logical to
define a threshold relative to the enstrophy at some point in the outer region for each
Reτ case rather than, for example, one fixed in viscous units. For the purposes of the
present analysis, the threshold enstrophy is expressed relative to the mean enstrophy at
x∗

2, the location where the pipe and boundary layer enstrophy values are equal (x∗

2/δ ≈
0.7 according to figure 11(b)). The threshold level for each measurement may then be
represented in terms of the coefficient Ψ , defined as follows:

Ψ = Cωω

(
1

2
ωi(x∗

2)ωi(x∗

2)

)
−1

(5.1)

where Cωω is the actual threshold value in s−2.
Although the velocity measurements are less susceptible to attenuation in the outer

region than the vorticity measurements, a range of thresholds will also be used to
determine ‘unidirectionality’ to ensure independence of the conclusions from the chosen
threshold level. The criterion for ‘unidirectionality’ is defined herein as the total velocity
flow angle relative to the x1 direction, which is calculated according to (5.2) below:

θ = tan−1

(

ũ1

(ũ2
1 + ũ2

2 + ũ2
3)

1/2

)

. (5.2)

Figures 12(a) and (b) respectively show examples of the flow-angle θ and the enstrophy
time series that are used to evaluate irrotationality and unidirectionality. As both
quantities are expected to be close to zero within a patch of ‘non-turbulent’ flow, it
is expected that the two time series exhibit some degree of correspondence. Indeed, the
correlation coefficient between the two is positive everywhere for both flows (≈ 0.1),
and forms a peak in the ZPG wake (≈ 0.35). The time-fractions of signal that lie above
the unidirectional and irrotational thresholds (shown in red) are denoted as γu and γi,
respectively. These time-fractions are computed for a range of thresholds at each wall-
normal position, and are shown (as 1 − γu and 1 − γi) in figure 13. Note that darker
shades in figure 13 correspond to lower thresholds.
Figure 13 reveals several fundamental differences in the organization of pipe and

boundary layer flows. From just interior to the outer boundary of the log-layer to the
middle of the wake (i.e. x2/δ ≈ 0.05-0.5), the boundary layer can be characterized as
more ‘well-stirred’ than the pipe, as a smaller time-fraction of boundary layer flow falls
below each threshold for both the unidirectionality and irrotationality criteria. Magnitude
differences between the two Reτ cases, particularly for the lowest thresholds, are most
likely influenced by spatial resolution, and thus conclusions drawn from figure 13 should
be limited to those based on the relative magnitudes of the pipe and boundary layer, and
the dependence of these relative magnitudes on wall-distance.
The location of the discrepancy between ‘non-turbulent’ time fractions in the two

flows roughly corresponds to the outer ‘bump’ in the boundary layer enstrophy relative
to pipe enstrophy, the largest differences in Reynolds stresses between the two flows, and
the lower magnitudes of boundary layer skewness and kurtosis profiles for a number of
quantities as discussed throughout §3 and §4. Beginning at x2/δ ≈ 0.5, the boundary
layer sees a rapid rise in the portion of flow that can be characterized as ‘non-turbulent’.
The location of this abrupt change is consistent with the onset of peaks in numerous
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Figure 12. Time-series of flow angle θ and instantaneous enstrophy in the outer region of
boundary layer flow at Reτ ≈ 5600. Thresholds of 1.5◦ and 5 × 10−4 for θ and enstrophy,
respectively, are indicated by red dashed lines. Red-coloured time series segments exceed the
plotted threshold.

third and fourth order boundary layer statistics, and thus supports the notion that these
phenomena are related to the onset of ‘external’ intermittency. At x2/δ ≈ 0.55, the pipe
and boundary layer have simultaneously equal fractions of both quasi-irrotational and
quasi-unidirectional flow. Beyond this crossover point, however, the boundary layer fully
transitions to the free-stream while the pipe maintains a finite level of enstrophy and
turbulence intensity.
The statistics first shown in figure 11 are plotted again in figure 14 for the Reτ ≈ 5400

case, along with a family of curves showing the effect of removing ‘non-turbulent’ regions.
Figure 14(b) reveals that the outer ‘bump’ in the ratio of boundary layer enstrophy to
pipe enstrophy is diminished when quasi-irrotational flow is removed from consideration.
When the threshold is taken as 90% of the value at x∗

2 (i.e. Ψ = 0.9), the ratio of
boundary layer to pipe enstrophy is essentially flat. Furthermore, the enstrophy ratio is
unchanged by the removal of quasi-irrotational signal at x2/δ ≈ 0.55, which corresponds
to the intersections of 1− γi for the two flows as shown in figure 13. Thus, the observed
discrepancy in enstrophy profile shape in the wake region is due to the difference in the
time fraction of each flow in which instantaneous enstrophy is very low. The highly super-
Gaussian kurtosis of all three vorticity components suggests that the enstrophy signal is
composed of ‘bursts’ having magnitudes that far exceed the signal RMS. That the ratio
shown in figure 14(b) becomes flat and close to unity by removing ‘non-turbulent’ regions
suggests that the mean enstrophy of these ‘bursts’ is the same in pipe and boundary layer
flows of the same Reτ at any wall distance.

6. Conclusions

A multi-sensor hotwire probe capable of measuring both the velocity and vorticity
vectors has been deployed in a set of three turbulent pipe flows and three zero-pressure-
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Figure 13. (a, c) Fraction of time in which instantaneous enstrophy falls below a range of
thresholds for pipe and boundary layer flow. (b, d) Fraction of time in which instantaneous
flow-angle relative to the x1 direction (i.e. θ) falls below a range of thresholds for pipe and
boundary layer flow. γ refers to the time fraction of the flow that is ‘turbulent’, and subscripts i
and u here respectively refer to the irrotationality and unidirectionality criteria for determining
turbulent/non-turbulent status. Red curves represent pipe flow, blue curves represent ZPG
boundary layer flow. Black × symbols indicate crossover points where time fractions for pipes
and boundary layers are equal at each threshold. Black dashed lines at x2/δ ≈ 0.05 are included
for reference in each.

gradient boundary layers with nominally matched inner and outer scales. The present
results represent the first physical measurements of kinetic energy and enstrophy in
pipe and ZPG boundary layer flows with matched Reτ and spatial resolution conditions,
as well as the highest Reτ simultaneous measurements of these quantities in pipe flow.
Basic statistical results of these measurements are presented and highlight differences
between the two flows and identify the subdomain over which they occur. A number of the
observed differences in the present study match the observations of several lower-Reτ DNS
and experimental studies, including those of Jiménez & Hoyas (2008), El Khoury et al.
(2013), and Monty et al. (2009).
Differences are observed in the u2 and u3 variance profiles from at least x+

2 ≈ 2.6
√
δ+,

with the maximum difference occurring at x2/δ ≈ 0.3. The location of the maximum
difference in u2 and u3 variance profiles is also characterised by smaller boundary
layer skewness and kurtosis magnitudes (of both velocity and vorticity components),
as well as higher boundary layer turbulence enstrophy (or to a close approximation,
turbulence dissipation) relative to the pipe. It is then shown that the same region
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Figure 14. Effect of removing ‘non-turbulent’ patches on quantities plotted in figure 11. (a)
Mean enstrophy of ‘turbulent’ patches in pipe and boundary layer flow at Reτ ≈ 5400. (b) Ratio
of ‘turbulent’ patch mean enstrophy between boundary layer and pipe at Reτ ≈ 5400.

features a higher time fraction of pipe flow that can be characterized quasi-irrotational
and quasi-unidirectional. Accounting for this difference largely eliminates the discrepancy
in enstrophy between the two flows.

Aside from slight deviations near x2/δ ≈ 0.3 as noted above, third and fourth order
statistics of both velocity and vorticity components for the pipe cases closely match those
of the ZPG boundary layer from the near-wall until the emergence of intermittency-
related outer magnitude peaks in the boundary layer profiles. With the exception of the
outer peak in the boundary layer u2 skewness, which emerges at x2/δ ≈ 0.35, these peaks
generally emerge near x2/δ ≈ 0.5–0.6. The pipe and boundary layer velocity variances
also intersect at approximately x2/δ ≈ 0.6, beyond which the boundary layer variances
decay to zero while those in the pipe do not. The agreement in position between the point
at which the velocity variances intersect and the point at which the higher order statistics
rapidly increase in magnitude supports the hypothesis of Schubauer (1954)—that the
distribution of turbulent energy in a pipe is the same as in the ‘turbulent’ patches of a
boundary layer in the region above x2/δ ≈ 0.6. Despite the absence of purely irrotational
potential flow at the outer boundary, velocity fluctuations in the pipe also trend away
from Gaussian behaviour in the wake. This is consistent with the existence of a ‘quiescent
core’ in a pipe flow (Kwon et al. (2014) detected this feature in a channel flow) and the
associated intermittency between high- and low-level turbulent regions.

Cross-stream velocity component fluctuations exhibit super-Gaussian kurtosis
throughout the entire flow domain for both pipe and boundary layer flows, while
streamwise velocity fluctuations remain sub-Gaussian until the wake. The kurtosis
coefficients of the vorticity fluctuations of all three components are super-Gaussian
across the flow domain, with the kurtosis of the zero-mean components (ω1 and ω2)
tending to increase with distance from the wall. The spanwise vorticity skewness is of
the same sign as the mean vorticity across the flow domain, and trends toward zero at
an approximately logarithmic rate in the region where the mean velocity is logarithmic.
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Facility Uτ

[

m

s

]

l+w l+wp
∆x+

2 ∆x+

3 δ[m] Reτ tUo/δ[−]

HRNBLWT (BL) 0.18 12 9 9 22 0.30 3300 9900
CICLoPE (Pipe) 0.18 13 9 9 23 0.45 5200 5100 (25300)
HRNBLWT (BL) 0.25 18 12 13 31 0.30 4800 15000
CICLoPE (Pipe) 0.26 19 14 14 34 0.45 7700 5000 (24800)
HRNBLWT (BL) 0.33 23 17 17 41 0.31 6300 14000
CICLoPE (Pipe) 0.34 25 18 18 44 0.45 10000 5200 (25900)

Table 2. Summary of experiments presented in Appendix A. Measurement sample times
correspond to all samples for each case, with the exception of four selected x2 locations in
the pipe cases for which longer samples were collected—these longer sample times (given in
parentheses) correspond to the centremost location, and (near) the start, middle, and end of the

log layer (i.e. x+

2 = 0.93δ+, ≈ 2.6
√
δ+, ≈ 0.15δ+, and ≈ (2.6

√
δ+ × 0.15δ+)1/2).
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Appendix A: HRNBLWT measurements

Owing to the slight departures from the expected canonical ZPG wake behaviour of the
Flow Physics Facility (FPF) measurements (cf. figure 3), additional measurements col-
lected at the High Reynolds Number Boundary Layer Wind Tunnel (HRNBLWT)—and
adhering more strictly to the canonical wake shape—are included in this Appendix.
These measurements are not included in the main text because they correspond to lower-
Reτ cases (about 2/3 the magnitude of those collected at the FPF and in the pipe flow,
for matched spatial resolution), and to avoid overcrowding the figures. The parameters
of these measurements are given in Table 2. The parameters of the pipe measurements
are also reproduced in Table 2 (from Table 1) for reference.
Figure 15 contains the same plots of mean velocity in log-law and deficit form as shown

in figure 3, but with the HRNBLWTmeasurements in place of the FPF measurements. As
can be seen from figure 15(b) in particular, the HRNBLWT data closely match the DNS
of Sillero et al. (2013) through the log-layer and wake. Thus, the wake-region features
seen in the HRNBLWT data in the following figures are not expected to feature any
artifacts associated with departures from the canonical wake shape.
Figure 16 shows the profiles of Reynolds stress of the pipe and boundary layer cases as

measured in the CICLoPE and the HRNBLWT, respectively, along with selected results
from existing studies. The deviations in the u2 and u3 variance profiles are the same
as those identified using the FPF data in §3. The present u2

2 and u2
3 profiles exhibit

very close agreement with those of Baidya (2015), which were obtained via a ×-wire

hot-wire array. The present u2
2 profiles agree in trend with those of Morrill-Winter et al.

(2015), which were obtained with a specialised 4-wire hotwire probe, though with a
slight difference in magnitude. Such differences highlight the advantage of using the
same measurement technique under matched conditions to compare pipe and boundary
layer flow. Differences between the two flows in the wake portion of the Reynolds shear
stress profiles are more clearly visible in figure 16(d) than in figure 7(a). Although no
clear difference in the u1 variance profile shapes could be identified from the comparison
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Figure 15. (a) Mean streamwise velocity in log-law form. Experimental profiles plotted as solid
lines capped by symbols for clarity. Symbols at start/end of each line correspond to Table 2. (b)
Mean streamwise velocity in defect form. Symbols as in Table 2, thick solid lines represent DNS
(see Table 1).

of the FPF and CICLoPE data, it could be argued that the HRNBLWT u1 variance
systematically exceeds that of the pipe over the region 0.3 . x2/δ . 0.8 when δ99 is used
as the outer scale. This difference in u1 variance in the outer region is highlighted in the
inset to figure 16(a), which shows the two highest-Reτ cases along with highly resolved
single-element hotwire measurements for pipe flow at Reτ ≈ 10500 from Hultmark et al.
(2013) and for boundary layer flow at Reτ ≈ 8000 from Samie et al. (2018). When δ for
the boundary layer is chosen as δ99, this feature is reminiscent of the outer ‘bumps’ in the
u2 and u3 variance profiles. While a slight change in the definition of δ for the boundary
layer case could remove the difference between the two u1 profiles in the outer region, it
could not remove the observed differences in the u2 or u3 variance profiles.
Figure 17 shows the skewness profiles of u1, u2, and u1u2 as measured in the HRN-

BLWT and CICLoPE. These profiles clearly exhibit a trend of slightly lower boundary
layer skewness magnitude from near the outer edge of the log-layer out to x2/δ ≈ 0.5.
These features are consistent with the differences in intermittency factor γ discussed in
§5. Quasi non-turbulent flow increases the probability density of fluctuating quantities
close to 0, which in turn increases the magnitudes of skewness and kurtosis factors (if the
fully-turbulent portions of the flow remain relatively unchanged). Indeed, it was shown
in §5 that the time-fraction of quasi non-turbulent flow is higher in the pipe than the
boundary layer from near the outer edge of the log-layer out to x2/δ ≈ 0.5.
As with the skewness profiles shown in figure 17, the kurtosis profiles shown in figure

18 exhibit lower boundary layer profile magnitude near the outer edge of the log-layer
out to x2/δ ≈ 0.5. This feature is also clearly visible in the FPF u3 kurtosis shown in
figure 6(b), and to a lesser degree in the u2 kurtosis shown in figure 5(c). Again, it is
proposed that this feature is related to the difference in intermittency associated with
the TNTI in the boundary layer and the quiescent core in the pipe.
Figure 19 contains the same plots of mean turbulence enstrophy and enstrophy ratio

as figure 11, but with the HRNBLWT data plotted in place of the FPF data. The same
outer ‘bump’ feature in the boundary layer enstrophy relative to the pipe enstrophy
is visible in figure 19(b), but its onset (at x2/δ ≈ 0.1) is clearer and more consistent.
Note that the ratio shown in figure 19(b) is multiplied by the ratio of Reynolds numbers
δ+BL/δ

+

P to account for the difference in enstrophy at a fixed x2/δ location owing to the
dependence of said enstrophy on (to an approximation) x−1

2 .
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Figure 16. (a)–(c) Streamwise, wall-normal, and spanwise Reynolds normal stress, and (d)
Reynolds shear stress profiles as measured in the HRNBLWT and the CICLoPE. Shaded

regions indicate range of inner log-layer boundaries for present experimental cases. ‘ ’

Reτ ≈ 5200 channel DNS from Lee & Moser (2015); ‘ ’ Reτ ≈ 10500 pipe data from

Hultmark et al. (2013); ‘ ’ Reτ ≈ 8000 boundary layer data from Samie et al. (2018); ‘ ’

Reτ ≈ 8000 boundary layer (HRNBLWT) data from Baidya (2015); ‘ ’ Reτ ≈7900 boundary
layer (HRNBLWT) data from Morrill-Winter et al. (2015). Log-line in (a) corresponds to

u2
1/U

2
τ = 1.95 − 1.26 log (x2/δ99) + log(1.15) from Marusic et al. (2013), where the additional

log(1.15) constant accounts for a difference in definition of δ. Log lines in (c) correspond to

u2
3/U

2
τ = 1.66 − 0.26 log(x2/δ99) for the boundary layer and u2

3/U
2
τ = 1.11 − 0.42 log(x2/δ) for

the pipe. See Tables 1 and 2 for remaining symbols/lines.

Appendix B: Vorticity resolution

The synthetic experimentally predicted effects of probe size on vorticity resolution are
summarised in figure 20. Figure 20(a) shows the length of an individual wire relative to
the local Kolmogorov length scale η for the three spatial resolution cases corresponding to
the present experimental data. Figure 20(b) shows the synthetic experimental predicted
ratio of ‘measured’ (subscript m) to ‘true’ (subscript m) vorticity RMS magnitude |ω|,
defined as

|ω| =
(
ω2
1 + ω2

2 + ω2
3

)1/2
, (6.1)

a function of lw/η. The light and dark shaded regions in both figures 20(a) and (b)
correspond to the inner and outer boundaries of the log layer for the range of experimental
data presented herein. Recall from figure 2 and Table 1 that the sub-array separation
distances are related to the wire length as ∆x2 = lw/

√
2 and ∆x2 = 2.5lw/

√
2. Figure
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Figure 17. (a)–(b) Skewness coefficient profiles for the fluctuating streamwise and wall-normal
velocity signals, respectively, and (c) the fluctuating Reynolds shear stress signal. Symbols given
in Table 2.

20(b) indicates that about 85% of the vorticity is resolved at the inner edge of the log-layer
for the highest resolution cases, and about 73% for the lowest resolution (highest-Reτ ).
These percentages increase to about 90% and 85% respectively for the highest and lowest
resolution cases at the outer edge of the log-layer. The focus of most of the conclusions
surrounding vorticity in the present paper is on the region near the outer edge of the
log-layer out to the middle of the wake, where the vorticity resolution will improve even
further. Furthermore, specific conclusions regarding the vorticity are limited herein only
to comparisons of measurements at matched resolution.

Given that the synthetic experiment corresponds to a lower Reynolds number (Reτ ≈
2000) than the present measurements, an additional comment on the effects of Reτ is
warranted. As can be seen from figure 20(b), resolution of the vorticity signal is (to a close
approximation) dependent on the local value of the Kolmogorov length scale η relative
to the size of the probe (e.g. see also Zhu & Antonia (1995)). To the degree that the
dissipation rate scales with Uτ and lν from the wall through the log-layer (which is quite
well based on available DNS and ∂u1/∂x1-based experimental estimates), η is (at least
for the present purposes) independent of Reτ in the near-wall region and where the log-
layers of two disparate Reτ flows overlap. Thus, the synthetic experimental predictions
of vorticity resolution should apply even to the higher-Reτ experiments out to a viscous
wall distance that corresponds to x2/δDNS ≈ 0.15, i.e. x+

2 ≈ 300. Above this position,

the η ∼ x
1/4
2 trend can be used to predict the values of lw/η at higher Reynolds numbers.
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Figure 18. (a)–(c) Kurtosis coefficient profiles respectively for the fluctuating streamwise,
wall-normal, and spanwise velocity signals, and (d) the fluctuating Reynolds shear stress signal.
Symbols given in Table 2.
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Figure 19. (a) Inner-normalized turbulence enstrophy profiles plotted as sold lines capped
by symbols for clarity. Symbols at start/end of each line correspond to Table 2. (b) Ratio of
turbulence enstrophy between boundary layers and pipes of approximately matched spatial
resolution. Note the shorthand ω2 = ωiωi is used in (b). Each ratio is multiplied by δ+BL/δ
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to account for the apparent Reynolds number trend when ratios are computed based on x2/δ
coordinates (i.e. that associated with ωiωi ∼ x−1

2 dependence).
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Figure 20. (a) Synthetic experiment predicted magnitude of reference length lw relative to
Kolmogorov length scale η. Light and dark shaded regions respectively indicate the range of
inner and outer boundaries of the log-layer (x2i and x2o) for the physical experimental datasets
presented herein. (b) Synthetic experiment ‘measured’ (subscript m) versus ‘true’ (subscript t)
vorticity RMS magnitude captured by the present probe geometry as a function of reference
length lw relative to η. Light and dark shaded regions respectively indicate range of probe
resolutions at the start and end of the log-layer for the physical experimental cases.

The resolved fraction of vorticity magnitude may then be estimated according to figure
20(b).
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