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Problem Description

RovNav is Poseidon Innovation's program for visualization of subsea operations. This program
shows static objects like manifolds and pipelines in addition to dynamic objects like ROVs and
AUVs. It is important that the position of these vessels are accurate in order to have agreement
between the visualization of the position of these vessels and their actual position.
The challenge is to determine the position based on several sensors with different properties with
regard to noise, accuracy and update frequenzy. This problem may be solved developing a sensor
integrator that processes data from the different sensors and provides a stable estimate of the
position for the RovNav program.

1. Modify the nonlinear observer presented in B. Vik's PhD thesis: Nonlinear Design and Analysis
of Integrated GPS and Inertial Navigation Systems, 2000:4-W, to include HiPAP bias estimates.

2. Implement this modified nonlinear observer and run extensive robustness tests

3. Implement an unscented Kalman filter and run extensive robustness tests

4. Implement filter with time indexing to take into account that measurements will be available
some time after being valid. (This issue is most relevant for the HiPAP)

5. Based on the theoretical properties and the simulation results above, do a comparison between
the performance of the modified nonlinear filter, the unscented Kalman filter and the extended
Kalman filter (developed in the pre-project)

6. Based on 5, make a recommendation for the preferred filter for RovNav, and perform an
experimental verification of this filter.

Assignment given: 08. January 2007
Supervisor: Kristin Ytterstad Pettersen, ITK





"Developing a good Kalman filter model is part art and
part science."

Robert Grover Brown and Patrick Y.C. Hwang





Abstract

This thesis deals with three methods for integrating measurements from different sensors
for an underwater vehicle. The sensors that were used are inertial measurement unit (IMU),
Doppler velocity log (DVL), Hydro- acoustic position reference system (HPR) and tilt and
heading measurements. The external measurements (DVL, HPR and attitude) are used to aid
the inertial navigation system (INS) which uses the measurements from the IMU to calculate
position, velocity and attitude.

The different methods presented are extended Kalman filter (EKF), unscented Kalman filter
(UKF) and a nonlinear observer. The two Kalman filters were implemented as indirect
filters, while the nonlinear observer was implemented as a direct filter. The main difference
between the EKF and UKF is that UKF does not make any linarizations such that it captures
the covariance of the system more accurate than EKF.

To compare the different approaches a navigation system was implemented using Matlab
and simulations were carried out to test accuracy and robustness. The nonlinear observer
has the most accurate position estimate when all measurements are available. It performed
slightly better than UKF which again was more accurate than EKF. A greater difference
was seen between UKF and EKF when the noise characteristics in the filters were wrong.
For velocity and attitude all estimates were unbiased, but the nonlinear observer produced
estimates with far more noise than what the Kalman filters did.

All filters handled losing the HPR well. The nonlinear observer did not manage to limit the
error in the case of DVL loss as opposed to both Kalman filter which have limited error. They
performed with the same grade of degradation of the estimates during the loss. When the
measurement returned both Kalman filters immediately regained accuracy but the nonlinear
observer did not manage to recover.

When losing the IMU measurements both Kalman filters had problems estimating changes
in the attitude which again led to error in the position estimate. The position error is however
much larger in EKF than UKF. The nonlinear observer has a structure with a separate attitude
observer and therefore had a much better attitude estimate during the loss.

From these results UKF is considered the best choice for implementation in a real system.
It performs accurate estimates during noisy conditions, and suffers only from limited degra-
dation when measurements are lost, both external and inertial.
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Chapter 1

Introduction

The purpose of this thesis is to design, implement and test the performance of differ-
ent methods for sensor integration for an ROV/AUV system. Sensor integration is a
well known issue in the field of navigation and seeks to combine the best features of
each senor to give the best estimate possible. The sensors to be integrated are inertial
measurement unit(IMU), Doppler velocity log(DVL), tilt sensor, fluxgate compass,
pressure sensor and a hydro-acoustic position reference system(HPR) supported by
a Global positioning system(GPS). The system should produce accurate and robust
estimates of position, velocity and attitude.

The system designed is to be used in Poseidon’s tool for visualization of sub sea
operations, RovNav. This program shows static objects like manifolds and pipelines
in addition to dynamic objects like ROVs and AUVs. In order to have agreement be-
tween the visualization and the actual system state, it is important that the estimated
position is accurate.

The problem is that the IMU has biases on it’s measurements. This causes the
Inertial Navigation System(INS) to have increasing error in time, hence these errors
needs to be compensated for in order to achieve correct estimates. This is solved
by using supporting measurements like GPS and DVL. These have lower update
frequencies and higher noise level than the IMU, but does not drift in time and can
be used to limit the error in the INS.

1.1 Design Plan

When designing the different filters a systematic approach is chosen. First the sys-
tem equations are derived. They are then implemented in Matlab. Then simulators
of the different measurements will be designed and implemented. The next step is
to test the simulators to see if all measurements are simulated correctly, both with
and without generated noise. To test if the structure of the integrator is correct it will

1



1.2. OUTLINE OF THESIS

first be tested with clean data, all noise characteristics set to zero. When this is done
and the observer produces perfect "estimates" of all states, noisy measurements will
be introduced.

If the filter in this case produces satisfactory results, the next step is to test the
robustness of the filter with respect to different disturbances such as uncertainty in
measurement noise characteristics and measurements losses and delay. If the filter
performs satisfactory during these conditions it will be tested with data from real
measurement sensors. This is done by gathering data from a real IMU and GPS
mounted in a car. These data will then be used as input to the filter instead of data
from the simulators. At last a performance evaluation of the real data test will decide
if the filter is suited for implementation in RovNav.

1.2 Outline of thesis

The first chapters of this thesis are based on the work done in Foss & Meland (2006).
They are included here to give complete background information of the work.

Chapter 2 gives an introduction to the different reference frames used. It also gives
an introduction to most of mathematics needed to read this thesis.

Chapter 3 shows the derivation of the navigation equations used in the INS.

Chapter 4 gives error models for the navigation equations and the measurements.

Chapters 5 and 6 deals with the different integration techniques used. Here de-
tails about extended Kalman filter, unscented Kalman filter and the derivation of a
nonlinear observer for sensor integration will be presented.

Chapter 7 deals with filter initialization.

Chapters 8 and 9 presents the criteria for evaluating the integrators. Here the reader
will also find most simulation results and the evaluation discussion. Results from a
real data test is found in chapter 9.

Chapter 10 gives conclusions with recommendations for Poseidon and suggested
future work.

Appendix A gives a list og abbreviations used in the report.

Appendix B presents some tables and figures with simulation results.

Appendix C gives data sheets of the sensors used in this thesis.

Appendix D gives an overview of the attached simulation files.

2



Part I

System modelling
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Chapter 2

Reference frames and mathematics

2.1 Reference frames

When dealing with navigation we have to define positions and velocities of one
system relative to another. For global navigation it is natural to give position and
velocity with respect to the earth. When making measurements with different sen-
sors these are made in different reference frames, therefore we have to define the
different reference frames used in this project. These are given in Fossen (2002) as

• Earth-centered inertial (ECI) frame. The ECI frame has it’s center in the center
of the earth with it’s z-axis pointing towards the north pole, and it’s x-axis
pointing towards some fixed point i space. This frame is considered to be
inertial, i.e. a non accelerating reference frame in which Newton’s laws apply.

• Earth-centered Earth-fixed (ECEF) frame. The ECEF has, as ECI, it’s center
in the earth’s center and it’s z-axis pointing towards the north pole. Unlike
ECI the ECEF is earth-fixed which means that it rotates with the earth relative
to the ECI.

• North-East-Down (NED) frame. The NED-frame is defined as the tangent
plane on the earth’s surface at the location of the vessel. The x-axis pointing
north, the y-axis pointing east and the z-axis pointing down.

• BODY-fixed frame. The body-fixed frame is fixed to the vessel with the x-, y-
and z-axis most often chosen to coincide with the principal axes of inertia(x-
axis pointing forward, y-axis pointing to starboard and z-axis pointing down).

Figure 2.1 shows how the reference frames are related to each other. To represent
the different positions and velocities in the different frames we use the following
superscripts for the different reference frames:

• i for ECI

5



2.2. KINEMATICS

Figure 2.1: ECEF rotates with angular rate we w.r.t. ECI. NED is located on the earth’s
tangent plane, and the BODY-frame is fixed to the vessel

• e for ECEF

• n for NED

• b for BODY

2.2 Kinematics

This section will give a brief introduction to concepts of rigid body kinematics used
in this report. Starting with the concept of rotational matrices to describe a rotation
of one reference frame with respect to another. Further also the angle-axis parame-
terization and the concept of unit quaternions will be presented. A large part of this
chapter is based on the work presented by Egeland & Gravdahl (2002) and Sciavicco
& Sicilano (2000).

2.2.1 Rotation matrix

Given two coordinate frames a and b. A vector −→v decomposed in coordinate frame
a is then written va. That a vector is decomposed in coordinate frame a means that
it is expressed by the unity vectors of that coordinate frame:

va =

va1va2
va3

 (2.1)

6



CHAPTER 2. REFERENCE FRAMES AND MATHEMATICS

and when it is decomposed in frame b

vb =

vb1vb2
vb3

 (2.2)

What we want next is to find a relationship between the vectors va and vb. This
relationship can be expressed as

va = Ra
b · vb (2.3)

where Ra
b is called the rotation matrix from b to a. This means that if you pre

multiply the vector vb by Ra
b the resulting vector is the vector v decomposed in

a⇒ va. The rotation matrix is orthogonal and satisfies

Ra
b = (Rb

a)
−1 = (Rb

a)
T (2.4)

If we introduce a third coordinate frame c the rotation from c to a can be performed
as first a rotation from c to b, and then from b to a:

Ra
c = Ra

bR
b
c (2.5)

The elements of the rotation matrix for a simple rotation in three dimensions are:

Rb
a =

−→xb · −→xa −→xb · −→ya −→xb · −→za−→yb · −→xa −→yb · −→ya −→yb · −→za−→zb · −→xa −→zb · −→ya −→zb · −→za

 (2.6)

If we perform a rotation ψ about the z-axis as in figure 2.2 the rotation matrix of
equation 2.6 becomes

Rz(ψ) =

cosψ − sinψ 0
sinψ cosψ 0

0 0 1

 (2.7)

Equivalent the rotations about the x- and y-axes become

Rx(φ) =

1 0 0
0 cosφ − sinφ
0 sinφ cosφ


Ry(θ) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 (2.8)

where the angles φ, θ, ψ are called the Euler angles.

7



2.2. KINEMATICS

Figure 2.2: Rotation of an angle ψ about the z-axis

2.2.2 Angle-axis parameters

Since the rotation matrix Rb
a is orthogonal it can be shown that one of the eigenval-

ues is equal to one (Egeland & Gravdahl 2002), and the corresponding unit eigen-
vector k satisfies

Rb
a · k = k (2.9)

Let ka be the coordinate vector of
−→
k in reference frame a, then

ka = Ra
b · kb ⇒ ka = kb = k (2.10)

This shows that the vector k has the same coordinates in both a and b coordinate
frames (Egeland & Gravdahl 2002), hence we can describe the rotation from a to b
as a simple rotation θ about k. The parameters (θ,k) are referred to as the angle-axis
parameters and the rotation matrix can now be written as

Ra
b = Rk,θ = cos θI + S(k) sin θ + kkT (1− cos θ) (2.11)

where S(k) is the skew-symmetric matrix of k and is defined as the cross product
operator.

S(k) = k× =

 0 −k3 k2

k3 0 −k1

−k2 k1 0

 (2.12)

8



CHAPTER 2. REFERENCE FRAMES AND MATHEMATICS

2.2.3 Quaternions

A weakness with the Euler-angle representation of the rotation matrix is that for
θ = ±π

2
the matrix Ra

b becomes singular (Fossen 2002), we also encounter a singu-
larity problem with the angle-axis representation for θ = 0◦ and θ = π (Sciavicco &
Sicilano 2000). To deal with this problem we have to use an alternative representa-
tion of the rotation called quaternions which is defined by the angle-axis parameters
as

η = cos
θ

2

ε = k sin
θ

2

(2.13)

η and ε are called the Euler parameters and are constrained by the condition

η2 + ε21 + ε22 + ε23 = 1 (2.14)

These Euler parameters may be put in a vector called the unit quaternion vector:

q =

[
η
ε

]
(2.15)

The rotation matrix given by the corresponding quaternion is (Egeland & Gravdahl
2002)

Re(η, ε) = I + 2ηS(ε) + 2S2(ε) (2.16)

The quaternion extracted from RT = R−1 is the inverse quaternion defined as

q−1 =

[
η
−ε

]
(2.17)

The product of two quaternions is defined as (Egeland & Gravdahl 2002)

q = q1 ⊗ q2 =

[
η1 · η2 − εT1 ε2

η1 · ε2 + η2 · ε1 + S(ε1) · ε2

]
(2.18)

The quaternion product of an inverse quaternion and another quaternion (Egeland &
Gravdahl 2002)

q̃ = q−1
1 ⊗ q2 (2.19)

is defined as the error quaternion.

2.2.4 Useful relations

• The given vector cross product s = p × v can be expressed in terms of coor-
dinate frames a and b as

sa = S(pa)va

sb = S(pb)vb
(2.20)

9



2.2. KINEMATICS

which can be written as
sa = Ra

bS(pb)Rb
av

a (2.21)
from where it can be seen (from 2.20) that

S(pa) = Ra
bS(pb)Rb

a

S(pb) = Rb
aS(pa)Ra

b

(2.22)

This relationship is know as the similarity transform.

• An expression for Ṙb
a will be derived here. As stated in section 2.2.1 the

rotation matrix is orthogonal and satisfies

Ra
b (R

a
b )
T = I (2.23)

The time derivative of this product is
d

dt

[
Ra
b (R

a
b )
T
]

= Ṙa
b (R

a
b )
T + Ra

b (Ṙ
a
b )
T = 0 (2.24)

According to Egeland & Gravdahl (2002) this shows that Ṙa
b (R

a
b )
T is a skew

symmetric matrix defined as

S(wa
ab) = Ṙa

b (R
a
b )
T (2.25)

where wa
ab is said to be the angular velocity of frame b relative to a. From this

relation it can be seen that the kinematic differential equation of the rotation
matrix is

Ṙa
b = S(wa

ab)R
a
b

Ṙa
b = Ra

bS(wb
ab)

(2.26)

• The rotation matrix is dependent on the angles or quaternion between the two
reference frames. This orientation is subject to errors such that the rotation
matrix also will become erroneous. According to Egeland & Gravdahl (2002)
the rotation matrix can be written

R̂ = RR̃ (2.27)

where R̂ is the "measured" matrix and R̃ is the error in the rotation matrix.
When the rotation matrix is a function of quaternions this can be written as:

R̂ = RR̃ = R(I + 2η̃S(ε̃) + S2(ε̃)) (2.28)
= R + δR (2.29)

where δR = R(2η̃S(ε̃) + S2(ε̃))

• Egeland & Gravdahl (2002) has shown that the time derivative of the deviation
quaternion is:

˙̃q = q−1 ⊗ ˙̂q + q̇−1 ⊗ q̂ (2.30)

q̇−1 = −q−1 ⊗ q̇⊗ q−1 (2.31)

10
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2.2.5 Cholesky Decomposition

Given a symmetric positive definite matrix A. The Cholesky decomposition pro-
duces a matrix L such that A = LLT or A = LTL (Nocedal & Wright 1999) where
L is either a lower or upper diagonal matrix. L is regarded the square root of A.

a11 a12 · · · a1n

a21 a22 · · · a2n
... . . . ...
an1 an2 · · · ann

 =


l11 0 · · · 0
l21 l22 · · · 0
... . . . ...
ln1 ln2 · · · lnn



l11 l12 · · · l1n
0 l22 · · · l2n
... . . . ...
0 0 · · · lnn


T

(2.32)

The elements of L can be found by (Nocedal & Wright 1999)

lii =
√
aii −

∑i−1
k=1 l

2
ik (2.33)

lji =
aji−
Pi−1

k=1 ljklik
lii

(2.34)

for i = 1, · · · , n and j = i+ 1, · · · , n.

2.2.6 Lie Derivative

Given the nonlinear system

ẋ = f(x) + g(x)u (2.35)
y = h(x) (2.36)

Taking the derivative of h along the trajectories of the system ẋ = f(x) is known as
the Lie derivative (Khalil 2002). The notation used for the Lie derivative is

L0
fh(x) = h(x) (2.37)

L2
fh(x) = LfLfh(x) =

∂(Lfh)

∂x
f(x) (2.38)

Lkfh(x) = LfL
k−1
f h(x) =

∂(Lk−1
f h)

∂x
f(x) (2.39)

2.2.7 Vector notation

The following table (table 2.1) gives the vector notation that will be used in this
report.
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2.2. KINEMATICS

Vector Description
pab Vector pointing from origin in a to origin in b.

vbab The linear velocity of origin in b w.r.t.
origin in a decomposed in b (seen from b’s perspective).

abab The linear acceleration of origin in b w.r.t.
origin in a decomposed in b (seen from b’s perspective).

qab Orientation of a relative to b.
Attitude represented by quaternions q =

[
η ε1 ε2 ε3

]T
ωbab The angular rate of b w.r.t.

to a decomposed in b (seen from b’s perspective).

rab The distance from origin in a to origin in b. ren = |pen|

Rb
a The rotation matrix which rotates a vector from a to b

Table 2.1: The labeling of vectors and rotation matrices
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Chapter 3

Navigation equations

3.1 Inertial navigation system

The inertial navigation system (INS) is used to calculate the wanted states based
on the inertial measurement unit (IMU) output. For further details on the IMU see
section 4.1. When the IMU/INS system is strapped to the body of the ROV/AUV the
measurements that are supplied from the IMU are f bIMU and ωbIMU . These describe
the specific force and the angular velocity of the body frame in reference to an
inertial frame. The goal of the INS is to use these vectors to calculate three different
states:

• The attitude of the body in reference to the NED-frame, denoted qnb

• The velocity of the body in reference to the earth given in the NED-frame,
denoted vneb

• The position given in longitude, latitude and height, denoted pe

This section will describe the derivation of the equations used to calculate these
states. The choice of using Euler parameters (quaternion) to describe the attitude
is done to ensure a non-singular representation of the attitude. This is important
for an ROV that has the possibility of moving in all directions and attitudes. It is
further more assumed that the velocity can be described in the NED frame. The
NED frame is subject to singularity close to the north and south poles. By using the
NED frame the system is limited to working in a certain distance from the poles to
ensure non-singularity.

The derivation of these equations are described in Farrell & Barth (1999).
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3.1.1 Attitude

The goal of this section is to derive a kinematic equation for the attitude quater-
nion qnb =

[
η ε1 ε2 ε3

]T . In Egeland & Gravdahl (2002) it is shown that the
kinematic differential equation for the quaternion vector is:

q̇nb =
1

2
qnb ⊗

[
o
ωbnb

]
(3.1)

The angular velocity between to frames of reference can be described as the dif-
ference between the angular velocity of both frames in reference to a third initial
frame. Hence:

ωbnb = ωbib − ωbin (3.2)

From Egeland & Gravdahl (2002) a rotation represented by a unit quaternion prod-
uct is

qnb ⊗
[

0
ωbin

]
⊗ q−1

nb =

[
0

Rn
bω

b
in

]
=

[
o
ωnin

]
(3.3)

Combining the equations 3.1-3.3 gives:

q̇nb =
1

2
qnb ⊗

[
o
ωbib

]
− 1

2

[
0
ωnin

]
⊗ qnb (3.4)

In subsequent chapters it will be used that ωnin = ωnie + ωnen where wnie is the earth’s
angular velocity.

3.1.2 Velocity

This section describes the derivation of the kinematic equation of the velocity of the
vessel in reference to the earth given in the NED-frame. The relationship between
the vessel velocity in the ECEF frame and its velocity in the NED-frame is described
in Farrell & Barth (1999) as:

vneb = Rn
e ṗ

e
eb (3.5)

Where vneb is the velocity in the NED-frame and ṗeeb is the time derivative of the
position in ECEF coordinates. The derivative of 3.5 yields by using equation 2.26:

v̇neb = Rn
eS(ωene)ṗ

e
eb + Rn

e p̈
e
eb (3.6)
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By using 3.5 and changing the direction of the angular velocity, the rotational matrix
from BODY to NED cancel and the expression can be written:

v̇neb = −S(ωnen)v
n
eb + Rn

e p̈
e
eb (3.7)

To find an expression for p̈eeb Idsø (1999) showed that this equality holds:

p̈eeb = Re
i p̈

i
eb − 2S(ωeie)ṗ

e
eb − S(ωeie)S(ωeie)p

e
eb (3.8)

Using this and some further steps, it can be showed that v̇neb can be written as:

v̇neb = Rn
b f
b
ib + ḡneb − (2S(ωnie) + S(ωnie))v

n
eb (3.9)

The term ḡneb is referred to as plum bob gravity and is the sum of the gravity and the
centripetal acceleration. Some mathematical steps where skipped in this derivation.
For the complete derivation of the equations the reader is referred to Farrell & Barth
(1999).

3.1.3 Position

To describe the geodetic position it has been showed in Farrell & Barth (1999) that
one can use the vn = [vN , vE, vD]T in the relation:

vNvE
vD

 =

rλ + h 0 0
0 (rφ + h)cos(λ) 0
0 0 −1

λ̇φ̇
ḣ

 (3.10)

Where
[
λ φ h

]T is the position in longitude, latitude and height. By inversion:λ̇φ̇
ḣ

 =

 1
rλ+h

0 0

0 1
(rφ+h)cos(λ)

0

0 0 −1

vNvE
vD

 (3.11)

By not assuming the earth to be circular the rλ and rφ is not equal, and can be
described as:

rλ =
a(1− e2)

[1− e2sin2(λ)]1.5
(3.12)

rφ =
a

[1− e2sin2(λ)]0.5
(3.13)

Where a is the equatorial radius of the earth and e is the eccentricity of the earth.
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Chapter 4

Error modelling

This chapter is based on work done by Gade (1997) and Farrell & Barth (1999).

The relationship between the measured variable x̂ and the real variable x is often
described by a linear function. To describe this function you need to know the scale
factor (k1) and the offset (k2) . The offset is the measurement when the real variable
is equal to zero. The scale factor is the slope of the measured variable in relation to
the real variable. The measurement can then be written in the following form:

x̂ = k1x+ k2 (4.1)

If this function is known and accurate the variable is easily found by inverting the
function. However, all sensors are subject to a certain error caused by time, temper-
ature, past variable values1 etc. Included in the error is also a contribution from the
stochastic variation in the output of any system, called noise.

Figure 4.1 illustrates the difference between an actual relationship between x and x̂
and the linear estimate.

To describe the error in the measurement it is also possible to write the equation 4.1
as the real value x plus an error δx:

x̂ = x+ δx (4.2)

Farrell & Barth (1999) shows that equation 4.2 can be expressed as following:

x̂ = δxsf ∗ x+ δxbias + ξ (4.3)

The offset is often represented as a slowly varying bias, δxbias. The scale factor
error is represented by δxsf and ξ is the white measurement noise. Not all the
measurements have the same properties and are therefore subject to different errors.
A summery of the instrument properties is given in table 4.1.

1When the measurement is dependent of its past values it is known as hysteresis
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4.1. INERTIAL MEASUREMENT UNIT

Figure 4.1: Linear measurement function

Sensor Colored part White-noise part
HiPAP + DGPS X X

IMU X X
DVL X

Tilt X
Compass X

Table 4.1: Noise properties of measurement instruments

4.1 Inertial measurement unit

An inertial measurement unit is a device for measuring accelerations and angular
velocities of an object. The IMU consists of three gyroscopes and three accelerom-
eters.

Accelerometer

The accelerometer is a device that measures the specific force on an object in one
dimension. By using three accelerometers mounted orthogonal to each other, it
is possible to calculate the acceleration in three dimensions. There are numerous
implementations of accelerometers, which all have different characteristics.

By using equation 4.3 to describe the error in the accelerometer, Farrell & Barth
(1999) presents the following equation for each of the three accelerometers:
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CHAPTER 4. ERROR MODELLING

f̂ bib,i = f bib,i + δf bib,i ∗ f bib,i + δf bib,bias,i + ξf,i (4.4)

Where f̂ bib,i represents the measurement and f bib,i is the real value. The index i repre-
sents the 3 mounting axes (x′, y′, z′). The mounting axes will never be concurrent
with the real axes in the body frame, and are therefore marked.

δf bib,i =

δf bib,scalefactor,x δφxy δφxz
δφyx δf bib,scalefactor,y δφyz
δφzx δφzy δf bib,scalefactor,z

 (4.5)

δf bib,scalefactor,x is the error coefficient caused by the error in scale factor, while the
of diagonal elements δφij is the error caused by the fact that the mounting axes are
not exactly concurrent with the frame axes. For this purpose the goal is to estimate
the order of magnitude of the error. To do this the error is described as a stochastic
variable. Errors that change over time can be modeled as stochastic processes. By
representing the errors in this way it is possible to describe the error by statistical
variables, such as standard deviation and variance.

Gyro A gyro measures the angular velocity of a object about a given axis. Gyros
can be implemented in several different ways, each using a physical effect caused
by rotation. The most known is probably the mechanical gyro that uses conservation
of spin to find the rotational acceleration. Other implementations uses conservation
of orientation (liquid ball gyro), Coriolis effect (tuning fork gyro) and Sagnac effect
(fiberoptic gyro) to measure the rotation (Lawrence 1993).

As for acceleration the error in the gyro can be described with:

ω̂bib = ωbib + δωbib (4.6)

Where the error term δωbib is:

δωbib =

∆ωbib,scalefactor,x 0 0
0 ∆ωbib,scalefactor,y 0
0 0 ∆ωbib,scalefactor,z

ωbib
+ ∆ωbib,bias + ∆ωbib,skew + ξω

(4.7)

The error in different directions are independent of each other and must therefor be
represented as vectors. This gives:

∆ωbib,bias =

∆ωbib,bias,x
∆ωbib,bias,y
∆ωbib,bias,z

 and ξω =

ξω,xξω,y
ξω,z

 (4.8)
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IMU errors

The error in both gyro and accelerometer measurements can be modeled as slowly
varying bias with added white noise. The bias can be modeled as a 1st order Markov
process:

ḃfIMU
= −T−1

fIMU
bfIMU

+ γfIMU
(4.9)

β̇ωIMU
= −T−1

ωIMU
βωIMU

+ γωIMU
(4.10)

where γ
IMU

is the white noise that drives the bias. The expression for the accelera-
tion measurement can then be written as

f bIMU = f bib + bfIMU
+ ξf (4.11)

and the expression for the angular velocity as

ωbIMU = ωbib + βωIMU
+ ξω (4.12)

where ξf and ξω are the measurement white noise.

4.2 Inertial navigation system

This section will describe the error in navigation states based on the navigational
equations given in chapter 3. The error development is based on work done by
Farrell & Barth (1999) and Idsø (1999).

v̇neb = Rn
b f
b
ib + ḡneb − (2S(ωnie) + S(ωnen))v

n
eb (4.13)

q̇nb =
1

2
qnb ⊗

[
0
ωbib

]
− 1

2

[
0

ωnie + ωnen

]
⊗ qnb (4.14)λ̇φ̇

ḣ

 =

 vN

rλ+h
vE

(rφ+h) cosλ

−vD

 (4.15)

4.2.1 Velocity

From the IMU there is a measurement of the specific force, f bib which inserted in the
velocity equation from 4.13 gives:

˙̂vneb = R̂n
b f
b
IMU + ˆ̄gneb − (2S(ω̂nie) + S(ω̂nen))v̂

n
eb (4.16)
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In order to find an expression in the velocity error δv̇neb, the real velocity, v̇neb, is
subtracted from the INS velocity, ˙̂vneb.

δv̇neb = ˙̂vneb − v̇neb

δv̇neb = R̂n
b f
b
IMU + ˆ̄gneb − (2S(ω̂nie) + S(ω̂nen))v̂

n
eb

−Rn
b f
b
ib − ḡneb + (2S(ωnie) + S(ωnen))v

n
eb

(4.17)

By introducing expressions:

δgneb = ˆ̄gneb − ḡneb
vneb = v̂neb − δvneb

(4.18)

Equation 4.17 can then be written as:

δv̇neb = δgneb + R̂n
b f
b
IMU −Rn

b f
b
ib − (2S(ω̂nie) + S(ω̂nen))v̂

n
eb

+ (2S(ωnie) + S(ωnen))v̂
n
eb − (2S(ωnie) + S(ωnen))δv

n
eb (4.19)

The v̂neb can be rewritten using the following expressions:

δωie = ω̂ie − ωie (4.20)
δωen = ω̂en − ωen (4.21)

Using 4.20 and 4.21 in 4.19 yields:

δv̇neb = δgneb + R̂n
b f
b
IMU −Rn

b f
b
ib − (2S(δωnie) + S(δωnen))v̂

n
eb

− (2S(ωnie) + S(ωnen))δv
n
eb (4.22)

Further more it can be used from equation 2.29 and 4.11 that:

Rn
b = R̂n

b − δRn
b (4.23)

f bib = f bIMU − δf bib (4.24)

which gives

R̂n
b f
b
IMU −Rn

b f
b
ib = R̂n

b f
b
IMU − (R̂n

b − δRn
b )(f

b
IMU − δf bib)

= δRn
b f
b
IMU + Rn

b δf
b
ib

(4.25)
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Using 4.25 in 4.22:

δv̇neb = δgneb + δRn
b f
b
IMU + Rn

b δf
b
ib − (2S(δωnie) + S(δωnen))v̂

n
eb

− (2S(ωnie) + S(ωnen))δv
n
eb (4.26)

By assuming that the error in the rotation matrix R̂n
b,INS is only in the body frame,

the rotation deviation can be written as

δRn
b = Rn

b (2η̃S(ε̃) + 2S2(ε̃) (4.27)

This inserted in 4.26 yields:

δv̇neb = δgneb + Rn
b (2η̃S(ε̃) + 2S2(ε̃))f bIMU + Rn

b δf
b
ib − (2S(δωnie)

+ S(δωnen))v̂
n
eb − (2S(ωnie) + S(ωnen))δv

n
eb (4.28)

4.2.2 Attitude

To ensure that the filter works for all attitudes, the attitude is represented by a quater-
nion. The quaternion is guaranteed to be continuous also around pitch angles (θ)
close to ±90◦(π

2
), which is not the case for Euler angle representation.

The deviation in the attitude quaternion is in equation 2.19 defined as:

q̃ = q−1 ⊗ q̂ (4.29)

Where q̃ represents the deviation between q and q̂. If the to quaternions coincide
the deviation quaternion q̃ is equal to the unit quaternion given as q̃ = (1, (0)). By
using the definition of the time derivative of a quaternion from equations 2.31 and
2.30 we can write:

˙̃q = q−1 ⊗ ˙̂q− q−1 ⊗ q̇⊗ q−1 ⊗ q̂ (4.30)

Further more the kinematic differential equation for the quaternion q̂ can be de-
scribed by:

˙̂q =
1

2

[
0

ωaIMU − ω̂ain

]
⊗ q̂ =

1

2
q̂⊗

[
0

ωbIMU − ω̂bin

]
(4.31)

Using this and q̂ = q⊗ q̃, 4.30 can be written as:
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˙̃q =
1

2

[
0

ωbIMU − ω̂bin

]
⊗ q−1 ⊗ q× q̃− 1

2
q−1 ⊗

[
0
ωbnb

]
⊗ q−1 ⊗ q⊗ q̃

=
1

2

[
0

ωbib + δωbib − ωbin − δωbin

]
⊗ q̃− 1

2

[
0

ωbib − ωbin

]
⊗ q̃

=
1

2

[
0

δωbib − δωbin

]
⊗ q̃

(4.32)

Using the definition of the quaternion product, 4.32 can be written as:

˙̃q =
1

2

[
0 −(δωbib − δωbin)

T

δωbib − δωbin S(δωbib − δωbin)

]
q̃ (4.33)

4.2.3 Position

Chapter 3 gave the description of how to model the geodetic position. Based on the
relationship between geodetic position and navigation-frame velocity it is possible
to describe the first order linear error dynamics. The geodetic position is given as:

λ̇φ̇
ḣ

 =

 1
rλ+h

0 0

0 1
(rφ+h)cos(λ)

0

0 0 −1

vNvE
vD

 (4.34)

The radii in the equation above is described by:

rλ =
a(1− e2)

[1− e2sin2(λ)]1.5
(4.35)

rφ =
a

[1− e2sin2(λ)]0.5
(4.36)

Where a is the equatorial radius of the earth and e is the eccentricity of the earth.
By differentiation of equation 4.34 the position error can be determined as:

δλ̇δφ̇
δḣ

 =

 0 0 −vN

(rλ+h)2

vEsin(λ)
(rφ+h)cos(λ)2

0 −vE

(rφ+h)2cos(λ)

0 0 0


δλδφ
δh


+

 1
rλ+h

0 0

0 1
(rφ+h)cos(λ)

0

0 0 −1

δvNδvE
δvD


(4.37)
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4.3 External measurements

In this section we will find a model of the errors we encounter in the measurements
of position, velocity and attitude from external measurements. The position de-
fined in 3.11 consists of the horizontal position λ and φ and by the depth h of the
ROV/AUV. In equation 3.11 the position vector is defined as

p =
[
λ φ h

]T (4.38)

The velocity is defined in 3.9 as

vn =
[
vN vE vD

]T (4.39)

and the attitude is defined in 3.1.1 as

qnb =
[
η ε1 ε2 ε3

]T (4.40)

To get the complete position and velocity measurements we have to use many dif-
ferent measurement instruments, each with different characteristics and errors.

4.3.1 GPS

To get a reliable global position measurement most marine applications rely on GPS
(Global Positioning System). GPS consists of three major segments: space, control
and user (Farrell & Barth 1999). The space segments consists of the GPS satellites,
the control segment is a system of tracking stations located around the world which
keep track of the correction parameters for each satellite. The user segment is the
antennas and receivers which process the satellite signals to get the position, velocity
and the belonging time stamp. Although GPS is highly accurate it is not accurate
enough for many applications due to errors and noise. The error may be divided into
two groups: common-mode errors and non common-mode errors.

1. The common-mode errors are errors that are the same for every receiver in a
given area such as atmospheric disturbances.

2. Non common-mode errors are errors that depend on the receiver, and is often
larger in cheap receivers. E.g. measurement noise.

When looking at the magnitude of the errors it is clear that the common-mode errors
deteriorates the signal the most (Farrell & Barth 1999). So if one could estimate
these errors in a receiver at a known location and broadcast them to all the receivers
in that local area, the accuracy of the GPS could be significantly improved. This
problem has been solved and is the principle of DGPS, which is a version of GPS
which is much more accurate. When most of the common-mode errors have been
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removed the largest contributor to DGPS error is known as multi path (Farrell &
Barth 1999). Multi path is due to signal reflection from surfaces near the receiver
that corrupts the satellite signal. This corruption leads to errors in calculating the
time from a satellite signal was sent until it was received. This time is very important
in the calculation of the position, hence multi path will result in position error. The
magnitude of this error has a standard deviation of σDGPS = 0.1 − 3m (Farrell &
Barth 1999). Since the multi path is such a complex phenomenon we model the
resulting noise as white noise ξDGPS ∼ N(0,WDGPS,kδk,j) with standard deviation
σWDGPS

. The matrix W is

WDGPS =

σ2
WDGPS ,λ

0 0
0 σ2

WDGPS ,φ
0

0 0 0

 (4.41)

This gives the following model for the DGPS measurement:

p̂
DGPS

= p + ξ
DGPS

(4.42)

where

ξ
DGPS

=

ξDGPS,λ

ξ
DGPS,φ

0

 (4.43)

4.3.2 HPR/ HiPAP

In order to get position measurements of a submerged vehicle DGPS may no longer
be used. Instead we have to rely on a hydro acoustic positioning reference system
(HPR). The HPR consists of a transmitter and a receiver. The transmitter is lo-
cated in some known location and sends a signal towards the receiver located on the
ROV/AUV. When the pulse hits the receiver it is activated and immediately sends
a signal back to the transmitter. The transmitter side then calculates the position of
the receiver relative to the transmitter. Depending on the application the transmitter
can be located either at a ship at surface level, or in a network of transmitters at the
sea-bed, often referred to as a LBL network. If the HPR is located on a ship which
determines it’s position by DGPS the resulting position measurement will include
both DGPS error and HPR error:

p̂
DGPS/HPR

= p + δp
HiPAP

+ ξHiPAP + ξDGPS (4.44)

If a network of transmitters is chosen, a potentially higher accuracy may be achieved,
in addition the white noise from DGPS is eliminated:

p̂
HPRLBL

= p + δp
HPRLBL

+ ξ
HPRLBL

(4.45)

Kongsberg Maritime has a HPR system called HiPAP (High Precision Acoustic Po-
sitioning), see figure 4.2. This system offers accurate positioning in a wide range
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Figure 4.2: Kongsberg Maritime HiPAP illustration

excess 3000 meters (Jensen 2006).

The HPR error consists of three main parts:

1. Measurement noise

2. The velocity of sound is wrongly estimated such that the measured distance
from the transmitter to the receiver is wrong.

3. Ray bending due to different temperatures and salt content at different depths.

Measurement noise may be modeled as white noise. While the other two will be
slowly varying, and may be modeled as colored noise by a 1st order Markov process:

˙δp
HiPAP

= − 1

T
HiPAP

δp
HiPAP

+ γ
HiPAP

(4.46)

where

1

T
HiPAP

=


1

T
HiPAP,λ

0 0

0 1
T

HiPAP,φ
0

0 0 0

 (4.47)
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T
HiPAP,λ

= T
HiPAP,φ

= 60s
The bias driving white noise is

γ
HiPAP

=

γHiPAP,λ

γ
HiPAP,φ

0

 (4.48)

is modeled as γ
HiPAP

∼ N(0,QHiPAP (t)δ(τ)). The standard deviation of γ
HiPAP

is σQHiPAP
. To find QHiPAP one need to determine if the elements of γ

HiPAP
are

correlated. A hydro acoustic positioning system bases it’s positioning on measuring
the vertical and horizontal angles and the distance to the receiver. It may be assumed
that the distance measurement and the angle measurements are uncorrelated since
the distance measurement is calculated by d = vsound · t and the angles are measured
by the phase shift of the returned signal. It may also be assumed that the noise in
angles is uncorrelated since the measurement is made in two orthogonal planes(x
and y), hence the noise in one plane will not affect the other. The matrix may be
written as

Q =

σ2
QHiPAP,λ

0 0

0 σ2
QHiPAP,φ

0

0 0 0

 (4.49)

To find the magnitude of σ2
QHiPAP

we need information of the standard deviation of
the noise. From the specifications it is given that the magnitude of the error in the
angle measurements are 0.2◦ for HiPAP. This gives the following position error:

0.2◦ · π

180
· rnb
reb

≈ 5.48 · 10−10rad/m · rnb (4.50)

rnb is the depth and reb is the distance from earth’s center to the AUV, but is approx-
imated by

reb ≈ |ren| = 6371 · 103m (4.51)

From this we find the standard deviation of γ
HiPAP

as

σHiPAP (t) =

√
2(5.48 · 10−10r2

nb)

T
HiPAP

= 1.00 · 10−10 · rnb (4.52)

We now have a complete model of the noise in HiPAP.

4.3.3 Depth

To complete the discussion on position measurement the noise in the depth mea-
surement also has to be modeled. Depth is often measured by a pressure gauge
located on the ROV/AUV. If the sensor is calibrated the error in a pressure gauge
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can be modeled as white noise ξh ∼ N(0,Wh,kδk,j) with standard deviation σh and
Wh = σ2

Wh
. The error model for the pressure gauge is then

ĥ = rnb + ξh (4.53)

where rnb is the real depth of the AUV.

4.3.4 Complete position model

All the position measurements can now be combined in one complete model where
the position is the vector given 4.38:

p̂
DGPS,HPR,h

= p + δp
HiPAP

+ ξ
HiPAP

+ ξ
DGPS

+ ξh (4.54)

The white noise vector can then be combined into the resulting

ξDGPS/HPR/h =

 ξDGPS,l + ξHPR,λ
ξDGPS,L + ξHPR,φ

ξh

 (4.55)

This gives the following model

p̂DGPS,HPR,h = p + δp
HiPAP

+ ξDGPS,HPR,h (4.56)

where δp
HiPAP

is given in equation 4.47. Since ξDGPS and ξHPR are normally dis-
tributed the sum ξDGPS+ξHPR will also be normally distributed, hence ξDGPS,HPR,h ∼
N(0,WDGPS,HPR,h,kδk,j) where

WDGPS,HPR,depth,k =

σ2
WDGPS,HiPAP,λ

0 0

0 σ2
WDGPS,HiPAP,φ

0

0 0 σ2
Wdepth

 (4.57)

4.3.5 DVL

As a secondary velocity measurement the ROV/AUV use a Doppler velocity log(DVL).
This is a sensor which sends beams of a known frequency towards the sea-bed.
By measuring the frequency shift of the returned waves, a measurement of the
ROV/AUVs velocity with respect to the sea bed is achieved. By sending out four
beams in a Janus configuration a measurement in three dimensions is provided
(Teledyne-Instruments 2005). The DVL works best when it’s close to the sea bed
and the error increases with increasing elevation with respect to the seabed. Ac-
cording to the ROV/AUVs operational elevation a proper frequency of the beams is
chosen with increasing frequency with decreasing operational elevation.
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By testing of the DVL it is found that the noise may be considered as pure white
noise. A model of the DVL measurement will then become

ṽbeb,dvl,k = veb,dvl,k + ξdvl,k (4.58)

Since the surge and sway velocities are computed separately we may assume that
these noises are uncorrelated. The noise in heave will be slightly correlated with the
velocities in surge and sway, but to simplify the model this is not accounted for. The
resulting model for the white noise is ξdvl,k ∼ N(0,Wdvl,kδk) where

Wdvl,k =

σ2
ξdvl,x,k

0 0

0 σ2
ξdvl,y,k

0

0 0 σ2
ξdvl,z,k

 (4.59)

According to specifications (Teledyne-Instruments 2005) the magnitude of the noise
is

σ2
ξdvl,x,k

=σ2
ξdvl,y,k

≈ 0.003m/s

σ2
ξdvl,z,k

≈0.006m/s
(4.60)

4.3.6 Attitude measurement

It can be seen from the specifications of the DVL (Teledyne-Instruments 2005) that
it is also equipped with a tilt sensor. This gives the possibility of measuring the tilt in
roll and pitch. These measurements are however restricted to a limited range. This
tilt measurement can be combined with a compass to give a secondary measurement
of the full attitude state.

A flux gate compass is an instrument to measure the intensity of the magnetic field
along 3 axis. This is done by mounting three independent sensors along three or-
thogonal axis. The instrument has several error sources including sensor offset, scale
factor min-match, sensor non-orthogonality, sensor tilt and compass deviation. All
of them, except the last, are instrumentation errors.

Most of the disturbances that the compass is subject to can be removed by calibrating
the compass prior use. But the compass will be influenced by a certain white noise,
and the absolute error is in many systems limited around 2− 3◦ (Olsond 2006).

From the data presented in the data sheet of the DVL, the measurements of the tilt
and velocity are only valid for tilt angles between ±15◦. It is therefore assumed
that the DVL measurements are not available when the ROV/AUV is in so called
helicopter mode2.

The readings of tilt in 2-axes and a compass reading will describe the roll, pitch and
yaw angels given in the body frame. By converting the rotation these angles describe

2The vehicle pitch angle is around ±90 degrees
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to a unit quaternion it is possible to compare this rotation to the INS estimate of the
attitude. The urement can be written as

q̂nbdvl,k =

[
ε̂nbdvl,k

η̂nbdvl,k

]
= qnb,k ⊗ ξqdvl,k (4.61)

This gives the following resulting model for the white noise ξεdvl,k ∼ N(0,Wεdvl,kδk)
where

Wεdvl,kδk =

σ
2
ξε1dvl,k

0 0

0 σ2
ξε2dvl,k

0

0 0 σ2
ξε3dvl,k

 (4.62)

Reasoning for not including ηnbdvl,k can be found in chapter 6.1.
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Integrator design
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Chapter 5

Sensor integration

5.1 Integration techniques

This section is based on work done in Farrell & Barth (1999) and Parkinson &
Spilker (1996). As described in previous chapters, the GPS/HiPAP and the INS sys-
tems have different characteristics that complement each other. By taking advantage
of the differences of the two systems, it is possible to get a navigation system that
can utilize the desirable characteristics from both systems. The pros and cons for
some of the measuring techniques are summarized in table 5.1.

If the system is set up with a stationary HiPAP in the area that the vehicle is op-
erating, the system is not dependent on the GPS. This makes the problem with the
possible jamming issues of the GPS irrelevant. The literature refers to two main
approaches to filtering the GPS and INS signals.

5.1.1 Direct filtering

In the direct filtering approach for integrating GPS/HiPAP measurement and INS,
the states in the filter is the absolute position, velocity and attitude. The implemen-
tation of the direct filter have a broad span in implementation complexity. The least
complex being a switch that changes to GPS measurement when this is available,
and a more complex implementation is using a Kalman filter.

Farrell & Barth (1999) points to three major drawbacks when using Kalman filter
for the direct filtering approach:

• The Kalman filter covariance propagating equations would have to be iterated
at the high rate of the inertial measurements. The covariance propagation
equations are very computationally intensive. This would severely limit the
rate at which the inertial measurements could be incorporated.
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GPS / HiPAP INS
Pros • Bounded error in position

• No need for calibration on
startup

• High update rate, bounded
by computational ap-
proach and equipment

• Integration of mea-
surements reduce high
frequency measurement
noise

Cons • GPS can be jammed

• Low update rate

• HiPAP gives delayed mea-
surements

• Can lose measurements in
time periods

• Unbounded error in posi-
tion and attitude

• Integration amplify low
frequency noise

Table 5.1: Pros and cons with INS and GPS/HIPAP

• The measurements driving the filter and the filter states have significant deter-
ministic components that have to be represented by ad hoc models in the filter
design.

• The filter must have high bandwidth, since it is estimating the total navigation
state, which may change rapidly.

In section 5.3 a nonlinear observer for direct filtering is presented. This observer
omits some of the drawbacks encountered when using a Kalman filter since there
is no covariance calculations involved. The observer equations are not considerably
more complex than the INS navigation equations. This means that the drawback of
high bandwidth does not apply to this nonlinear observer.

5.1.2 Indirect filter

Instead of using the total navigation state as the state in the filter, it is possible to
implement the filter indirectly. By using the error dynamics of the INS as a state
space model and the error as the state. The measurement for the filter is then the
difference between the INS and the GPS readings. This means that there will only
be a measurement for the filter at the time steps when the GPS has measurements.

According to Farrell & Barth (1999) there are a few major advantages with the
indirect approach compared with the direct, even if the setup is not as intuitive.

• The covariance update equations need be implemented at only the lower rate
of the GPS update.
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• Since the filter is designed based on an error model, all model parameters can
be properly defined in a stochastic sense.

• The responsiveness of the navigation system is determined primarily by the
update rate of the INS system and the bandwidth of the inertial sensors.

• The Kalman filter, since it is estimating slowly varying error quantities, can
be a low-bandwidth system to attenuate any high frequency error on the GPS
aiding signal.

In sections 5.2.1 and 5.2.3 the extended Kalman filter and the unscented Kalman
filter for indirect integration will be presented.

There is also an other dimension to the level of integration which is important to
mention. This is often called tight vs loose integration, and includes several levels
of integration and complexity.

5.1.3 Loosely coupled

In the loosely coupled approach the states that are calculated from the measurements
used for integration (Farrell & Barth 1999). This can be position, attitude, velocity
etc. The advantage of this approach is the simplicity and flexibility of the system.
By using the states from the navigation the filter computations will also be less
computationally intensive. The simplicity of the approach is paid for by reduced
system performance.

5.1.4 Tightly coupled

In the tightly coupled system integration of the raw accelerometer, gyro, pseudo
range and delta range measurements are used in the integration filter. Tightly cou-
pled systems is also considered as more accurate than loosely coupled implementa-
tions, but this come at the cost of simplicity. The requirements to computer through-
put are also increased since both GPS and INS software must be implemented in the
navigation system. In the tightly coupled approach, data from the integrated navi-
gation solutions are fed back to the GPS receiver to aid the carrier tracking loops.

In this section the integration of measurements have mainly been referenced to GPS
and INS, but it is possible to analyze the integration between other measurements in
the same way. This being DVL, compass and depth sensors.
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5.2 Kalman filters

5.2.1 Kalman filter

This chapter will present the first observer that will be tested. The Kalman filter is
presented in Brown & Hwang (1997).

By combining what is known about the sensor errors and their characteristics a best
possible estimate is computed by a Kalman filer. The filter requires a mathematical
state-space model (Balchen et al. 2004) of the system information.

xk+1 =Φkxk + ∆kuk + Ωkγk

yk =Dkxk + ξk
(5.1)

Where γk and ξk is process and measurement noise. Both are white noise processes
and uncorrelated. The literature shows how the Kalman algorithm finds a unbiased
and minimum variance state estimate. The filter algorithm is given by:

The filter is first initialized at k=0.

x̄0 =E(x0)

X̄0 =E[(x0 − x̄0)(x0 − x̄0)
T ]

(5.2)

Kalman gain matrix:

Kk = X̄kD
T
k (DkX̄kD

T
k + Rk)

−1 (5.3)

Using measurements to update state estimate:

x̂k = x̄k + Kk(yk −Dkx̄k) (5.4)

Covariance matrix update given in Joseph form:

X̂k = (I−KkDk)X̄k(I−KkDk)
T + KkRkK

T
k (5.5)

Prediction of state estimate and covariance:

x̄k+1 = Φkx̂k + ∆kuk

X̄k+1 = ΦkX̂kΦ
T
k + ΩkQkΩ

T
k

(5.6)

The matrices Φk,Ωk,∆k and Dk is given in the state space representation of the
system.
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Joseph form
The covariance matrix in equation 5.5 can be calculated in a simpler form, which is
given as:

X̂k = (I−KkDk)X̄k (5.7)

This formula does not guarantee that X̂k is symmetric and positive semidefinite. For
that reason the Joseph form of the covariance update has been established (Minkler
& Minkler 1993). The Joseph form guarantees positive semi defint and symmetric
X̂k also on implementations when the computer has a limited number of decimals.

5.2.2 Extended Kalman Filter

One way of dealing with a nonlinear system in a Kalman filter setting, is to do some
kind of linearization. This can either be done about some nominal trajectory, or
by updating the linearization every time step based on the measurements. The first
method is called linearized Kalman filter the latter is called extended Kalman filter.
The derivation of these filters are described in Brown & Hwang (1997).

The extended Kalman filter has a statistical advantage over the regular linearized
filter, because it uses a trajectory that has been updated instead of using the "old
trajectory". This is only valid in a statistical view. There might be a chance that the
trajectory computed as the nominal trajectory is a better estimate for a given time
step. Because of the interconnection between the linearized trajectory, the estimate
and back to the trajectory, one might risk for the filter to diverge in special situations.
The extended Kalman filter will in general not give an minimum variance estimate
of the state vector since it is based on the local linearization around the estimated
process states.

The equations for extended Kalman filter can be summarized as (Henriksen 1998):

Filtering

x̂k = x̄k + Kk[yk − gk(x̄k)] (5.8)

X̂k = (I−KkDk)X̄k(I−KkDk)
T + KkRkK

T
k (5.9)

Where
Dk =

δgk
δxTk

(x̄k) Kk = X̄kD
T
k (DkX̄kD

T
k + Rk)

−1 (5.10)

Prediction

x̄k+1 = fk(x̂k,uk) (5.11)

X̄k+1 = ΦkX̂kΦ
T
k + ΩkQkΩ

T
k (5.12)

And
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Φk =
δfk
δxTk

(x̂k,uk) (5.13)

From the filter equations it can be seen that the difference in extended versus regular
linearized Kalman filter is in the calculation of the measurement matrix Dk and the
system matrix Φk.

Since the extended Kalman filter may diverge if the linearization is performed at
a bad state, there are two things that should be thought of when starting the filter.
First the extended Kalman filter should always use the Joseph form of the covariance
matrix update. Second it is important that the filter is started with a good estimate
of the initial state. This can be done by using an accurate reference to start with, this
way the error state in the filter can be set to zero.

5.2.3 Unscented Kalman Filter

A part of this paper is to test the performance of the unscented Kalman filter (UKF)
for integration of IMU measurements and external measurements (DVL and HiPAP).
The main motivation for using the UKF instead of the EKF is that the EKF has some
flaws. According to Wan & v. d. Merwe (2000) these are due the linearization the
EKF uses in covariance estimation, and that the predictions are merely the nonlinear
function applied to the prior estimate ( eqs. 5.34 and 5.35). This linearization can
lead to large errors in the posterior state estimate and it’s covariance. According to
LaViola (2003) the calculation of the Jacobians, which are linear approximations of
the nonlinear function, can be very complex and cause implementation difficulties.
These flaws lead to sub-optimal performance and sometimes divergence of the filter.

The main idea behind the UKF is an alternative way to determine the covariance
matrix for the reasons mentioned above. The UKF was first proposed by Julier &
Uhlmann (1997) where it was shown that the UKF yields the same performance
as the Kalman filter for linear systems. Later it will be shown that the expected
performance of the UKF is superior to that of the EKF for nonlinear systems.

UKF is based on the unscented Transform. The idea behind this transformation is
presented in Uhlmann (1994) where it was stated that it is easier to approximate a
probability distribution than it is to approximate an arbitrary nonlinear function or
transformation. The transform is best represented in an algorithmic manner
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The unscented transform

1. Of the L-dimensional random variable x create 2L+ 1 weighted sigma points
given by

χ0 = x̂(k|k) (5.14)

χi = x̂(k|k) + (
√

(L+ λ)X(k|k))i, i = 1...L (5.15)

χi = x̂(k|k)− (
√

(L+ λ)X(k|k))i−L, i = L+ 1...2L (5.16)

where (
√

(L+ λ)X(k|k))i is the ith row or column of the matrix square root
of (L + λ)X(k|k). These points are distributed so that the sample mean and
sample covariance corresponds to the real mean and covariance, x̂(k|k) and
X(k|k). The weights associated with each point is given by

W 0
s = λ

L+λ
(5.17)

W 0
c = λ

L+λ
+ (1− α2 + β) (5.18)

W i
s = W i

c = 1
2(L+λ)

, i = 1...2L (5.19)

λ = α2(L+ κ)− L (5.20)

α is a scaling factor that determines the spread of the sigma points, β is a
parameter used to incorporate prior knowledge of about the distribution of x
and κ is a secondary scaling factor.

2. Create the transformed sigma points by propagating them trough the nonlinear
function

κi = f(χi), i = 0...2L (5.21)

3. The mean of the transformed variable is given by the weighted average of the
transformed sigma points

x̄ =
2L∑
i=0

W i
sκi (5.22)

4. The covariance of the transformed variable is given by the weighted outer
product of the transformed sigma points

X̄k =
2L∑
i=0

W i
c

[
κi − x̄k

] [
κi − x̄k

]T (5.23)

Properties of the unscented transform

The unscented transform selects the sigma points such that the statistics of the trans-
formed variable are captured accurately up to the second order. This is due to the

39



5.2. KALMAN FILTERS

dimension of χ which is (2L + 1) that ensures that the central moment of x is cap-
tured correctly up the second order (Angrisani et al. 2005). Equation 5.22 may be
written as

x̄ = W 0
s f(x̄) +

L∑
i=1

W i
sf(x̄ + si) +

2L∑
i=L+1

W i
sf(x̄− si−L) (5.24)

where si is the ith column of
√

(L+ λ)X.

Julier & Uhlmann (1997) describes the problem of developing a consistent, efficient
and unbiased transformation of a nonlinear function y = f(x). To describe the
problem a Taylor series expansion of the equation is done about the mean of the
random variable x, noted x.

f(x) = f(x + δx)

= f(x) + Dδxf +
D2
δxf

2!
+

D3
δxf

3!
+

D4
δxf

4!
+ · · · (5.25)

where the Dδxf operator evaluates the total differential of the function f(·) when
pertubated around a nominal value x by δx. δx is a zero mean Gaussian variable
with covariance X. Julier et al. (2000) shows that taking the mean of y, noted y,
yields:

y = E[f(x + δx)]

= f(x) + E

[
D2
δxf

2!
+

D4
δxf

4!
+

D6
δxf

6!
+ · · ·

]
(5.26)

Where it has been exploited that δx is symmetric, and the odd terms evaluate to
zero.1 The mth element of the Taylor series can be written as (Julier et al. 2000)

E

[
Dm
δxf

m!

]
= E

[
1

m!

(
L∑
n=1

δxn
∂

∂xn

)m

f(x)

∣∣∣∣∣
x=x̄

]
=

1

m!

(
L∑
n=1

µn
∂

∂xn

)m

f(x̄)

(5.27)
where µmn is the mth order central moment of δxn. From this 5.26 can be written as

y = f(x) +
1

2!

(
L∑
n=1

µn
∂

∂xn

)2

f(x̄) +
1

4!

(
L∑
n=1

µn
∂

∂xn

)4

f(x̄) + · · · (5.28)

1In Maybeck (1979) it is shown that E[δxk] = 0 is valid for any odd k if δx is a zero-mean Gaussian random
variable
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Using Taylor expansion on 5.24 yields (Angrisani et al. 2005)

x̄ = W 0
s f(x̄) +

L∑
i=1

W i
s

(
f(x̄) + si

∂f(x̄)

∂xi
+
s2
i

2!

∂2f(x̄)

∂x2
i

+ · · ·
)

+

2L∑
i=L+1

W i
s

(
f(x̄)− si−L

∂f(x̄)

∂xi
− s2

i

2!

∂2f(x̄)

∂x2
i

+ · · ·
) (5.29)

which by exploiting how the sigma points and corresponding weights are cho-
sen(Angrisani et al. 2005), equation 5.29 can be written as

x̄ = f(x̄) +
1

2!

L∑
i=1

µ2
i

∂2f(x̄)

∂x2
i

+ · · ·+ 1

k!

L∑
i=1

µki
∂kf(x̄)

∂xki
+ · · · (5.30)

where k is all even numbers. By comparing 5.28 with 5.30 it can be seen that the
unscented transform capture the properties of x̄ correctly up to the second order.
One condition for this to be true is that the unscented transform need to calculate
the correct value of the second order central moment µ2. This is ensured by choosing
the α parameter such that L+λ = 3 (for Gaussian distributions) (Julier et al. 2000).
The higher order terms of µk is not calculated correct with this value of L+λ. These
higer order terms are assumed to have less impact, and therefore the error in these
terms are neglectable.

The covariance of y is Y = E[(y−y)(y−y)T ]. Using 5.25 and 5.26 the covariance
is:

Y =∆fxX∆fTx + E

[
Dδxf(D

3
δxf)

T

3!
+

D2
δxf(D

2
δxf)

T

2! ∗ 2!
+

D3
δxf(Dδxf)

T

3!

]
− E

[
D2
δxf

2

]
E

[
D2
δxf

2

]T
+ · · ·

(5.31)

where E[D2
δxf(D

2
δxf)

T ] = ∆fxX∆fTx is used. Julier & Uhlmann (1997) argues that

since each term in the series is scaled by a progressively smaller and
smaller term, the lowest order terms in the series are likely to have the
greatest impact.

By applying the same analysis as above, Julier et al. (2000) shows that the unscented
filter captures the properties of the covariance correct up to the second order.

Recall that in EKF the a posteriori estimate of the state x̂k and covariance matrix
X̂k are found from

x̂k = x̄k + K(yk − g(x̄k)) (5.32)

X̂k = (I−KkDk)X̄k (5.33)
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And the a priori estimate of the state x̂k and covariance matrix X̄k from

x̄k+1 = f(x̂k) (5.34)

X̄k+1 = ΦkX̂kΦ
T
k + ΩkQkΩ

T
k (5.35)

where

Φk =
δfk
δxTk

(x̂k,uk) (5.36)

Dk =
δgk
δxTk

(x̄k) (5.37)

where fk is the nonlinear system and gk is the nonlinear measurement function.

By comparing 5.31 with 5.35 and 5.26 with 5.28 it can be seen that the EKF ap-
proximations are accurate only if the second and higher order terms in the mean and
fourth and higher order terms in the covariance are negligible(Julier et al. 2000).
This linearization can in many practical situations inflict significant errors. Julier &
Uhlmann (1997) shows that this is significant in problems where one must transform
information between polar and Cartesian coordinate systems.

The uncertainty the linearization introduces can be compensated for by introducing
what Julier & Uhlmann (1997) calls stabilizing noise. This means that the process
noise matrix is increased, this in turn increase the transformed covariance. This
is not a desirable solution since the estimate remains biased. There is no general
guarantee that the transformed estimate remains consistent or efficient.

To illustrate the improved performance by the UKF compared to the EKF Wan &
v. d. Merwe (2000) shows a simple example for 2-dimensional system given in
figure 5.1.

UKF algorithm

As with the ordinary KF also the UKF utilize a prediction -correction manner. The
algorithm for the UKF is as follows (LaViola 2003):

Prediction

• Calculate sigma points and weights as in eqs 5.14-5.20
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Figure 5.1: Example of the mean and covariance in EKF and UKF (Wan & v. d. Merwe
2000)

• Predict the state and covariance as

χik = f(χik−1), i = 0...2L (5.38)

x̄k =
2L∑
i=0

W i
sχ

i
k−1 (5.39)

X̄k =
2L∑
i=0

W i
c

[
χik − x̄k

] [
χik − x̄k

]T
+ Qk (5.40)

• Predict the measurement as

γik = g(χik), i = 0...2L (5.41)

z̄k =
2L∑
i=0

W i
sγ

i
k (5.42)

Correction
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• Make corrections to state and covariance estimate

X−1
z̄kz̄k

=
2L∑
i=0

W i
c

[
γik − z̄k

] [
γik − z̄k

]T
+ Rk (5.43)

Xx̂kz̄k
=

2L∑
i=0

W i
c

[
χik − x̄k

] [
γik − z̄k

]T (5.44)

Kk = Xx̂kz̄k
X−1

z̄kz̄k
(5.45)

x̂k = x̄k + Kk(zk − z̄k) (5.46)

X̂k = X̄k −KkXz̄kz̄k
KT
k (5.47)

Kk is the Kalman gain matrix. Rk and Qk are respectively the measurement noise
covariance matrix and the process noise covariance matrix. This algorithm only
uses standard vector and matrix calculations. Assuming that X̂k is always real and
positive definite the well known and numerically efficient Cholesky decomposition
(section 2.2.5) can and should be used to find the matrix square root (Julier et al.
2000).

5.3 Nonlinear integration

As stated in section 5.1 creating reliable measurements from different sensors and
measurements may be done either by estimating the states of the system directly(direct
method) or by estimating the error development in the states (indirect method). Here
a nonlinear observer for direct integration will be presented.

The traditional way of implementing an observer is to make a model of the dy-
namics of the real system, in this case an ROV/AUV, and use this model to estimate
the states of the system. As may be seen from the equations of motion for an Au-
tonomous Underwater Vehicle(AUV) given in Healey & Lienard (1993), an AUV is
a highly nonlinear system with complex dynamics. I order to obtain a good mathe-
matical model of the vessel an extensive series of tests is required to determine the
hydrodynamic coefficients needed in the model. This is very time consuming and
it is difficult to get accurate results. In addition it often introduces a lower level of
accuracy because of model uncertainties (Gade & Jalving 1998). Another disadvan-
tage of this method is that the model is vessel specific, which means that the model
obtained for one vessel can not be used for a different type of vessel.

Instead of modeling the vessel dynamics an alternative is to model the dynamics
of the INS, and estimate the states of the INS directly. These states are in every
essence the same as the states of the vessel, i.e. position, velocity and attitude since
the INS is exposed to the same motions as the real vessel. When modeling the INS
dynamics the same configuration of measurement apparatus may be used in many
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different types of vessels and the characteristics of the INS will be the same. There-
fore the same mathematical model may be re-used. From equations 3.4, 3.9 and
3.11 it can be seen that the dynamics of the INS is nonlinear. One option is to use a
Kalman Filter (EKF or UKF), as presented in sections 5.2.2 and 5.2.3, or to make a
nonlinear observer.

5.3.1 Nonlinear observer

Given the real system on the form

ẋ =Ax+ g(y, u)

y =Cx
(5.48)

an observer such as

˙̂x =Ax̂+ g(y, u) +H(y − Cx̂) (5.49)

may be designed. From this it may been seen that the error between the real and
estimated states is

˙̃x =(A−HC)x̃ (5.50)

It can be seen that the error dynamics are a pure linear system, hence designing the
matrix H such that A−HC is Hurwitz will result in asymptotic convergence of the
error x̃ (Khalil 2002). However, in order for this to work we need to assume that
g(y, u) is perfectly known. If this is not the case the error will become

˙̃x =(A−HC)x̃+ g(y, u)− g0(y, u) (5.51)

where g0 is a model of g. Because of the added error term g − g0 it is not obvious
that a Hurwitz A−HC will guarantee convergence of the error. There exists many
design techniques for designing nonlinear observers, one well known way to ensure
convergence of the error dynamics is to design the observer such that a Lyapunov
analysis (Khalil 2002) may be used to prove stability of the error dynamics.

5.3.2 Nonlinear observer for GPS and INS integration

Vik & Fossen (2001) suggested a nonlinear observer for direct GPS and INS inte-
gration. In Vik & Fossen (2001) globally exponentially stability(GES) of the error
dynamics of the observer was proven by using Lyapunov theory. Given the strap
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down navigation equations from chapter 3 for attitude, velocity and position:

q̇nb =
1

2
qnb ⊗

[
o
ωbib

]
− 1

2

[
0
ωnin

]
⊗ qnb (5.52)

=
1

2

[
−εT

ηI + S(ε)

]
ωbib −

1

2

[
−εT

ηI + S(ε)

]
ωnin (5.53)

v̇neb = Rn
b f
b
ib + ḡneb − (2S(ωnie) + S(ωnen))v

n
eb (5.54)

ṗen = Re
nv

n
eb (5.55)

where pen are the Cartesian ECEF coordinates and represent position. Longitude,
latitude and height can easily be calculated from pen. The IMU error models are
given in equations 4.9- 4.12 as

f bIMU = f bib − bfIMU
+ ξf (5.56)

ḃfIMU
= −T−1

fIMU
bfIMU

+ γfIMU
(5.57)

ωb
IMU

= ωbib − βω
IMU

+ ξω (5.58)

β̇ω
IMU

= −T−1
ω

IMU
βω

IMU
+ γω

IMU
(5.59)

Vik (2000) proposes the following attitude observer:

˙̂q =
1

2

[
−ε̂T

η̂I + S(ε̂)

] [
ω

IMU
+ β̂ω

IMU
+ K1ε̃sgn(η̃)

]
(5.60)

−1

2

[
−ε̂T

η̂I + S(ε̂)

]
ωnin

˙̂
βω

IMU
= −T−1

ω
IMU

β̂ω
IMU

+
1

2
K2ε̃sgn(η̃) (5.61)

and the following velocity and position observer

˙̂vneb = R̂n
b

[
f bimu + b̂fIMU

]
+ ĝneb − [2S(ωnie) + S(ωnen)] v̂

n
eb (5.62)

+K3ṽ
n
eb + (R̂n

e )
T p̃en

˙̂pen = Re
nv̂

n
eb + K4p̃en (5.63)

˙̂
bfIMU

= −T−1
fIMU

b̂fIMU
+ K5(R̂

n
b )
T ṽneb (5.64)

where K1...K5 are positive definite gain matrices. This is a simplified version not
including IMU misalignment terms and GPS clock errors. Since we are dealing
with a submerged vehicle GPS alone can not be used. It must be combined with a
HiPAP (see section 4.3.2). For this reason a term to include the HiPAP bias error
is needed. Since the magnitude of the HPR error is much larger than the GPS error
(see chapter 4) this is the dominating error term, and we only include the estimate
of HiPAP error. This is modeled as

penHiPAP
= pen − bpHiPAP

+ ξ
HiPAP

(5.65)

ḃpHiPAP
= −T−1

bHiPAP
bpHiPAP

+ γ
HiPAP

(5.66)
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The HiPAP bias enters the system through the HiPAP position measurement:

penHiPAP
= penreal

+ bpHiPAP
(5.67)

The resulting velocity and position observer which includes a HiPAP bias error term
is somewhat different from the one proposed by Vik & Fossen (2001). The new
observer is designed by means of Lyapunov stability. The proposed observer is

˙̂vneb = R̂n
b

[
f bimu + b̂fIMU

]
+ ḡneb − [2S(ωnie) + S(ωnen)] v̂

n
eb (5.68)

+K3ṽ
n
eb + (R̂n

e )
T (p̃enHiPAP

− b̂pHiPAP
)

˙̂pen = Re
n(v̂

n
eb + ṽneb) + K4(p̃enHiPAP

− b̂pHiPAP
) (5.69)

˙̂
bfIMU

= −T−1
fIMU

b̂fIMU
+ K5(R̂

n
b )
T ṽneb (5.70)

˙̂
bpHiPAP

= −T−1
bHiPAP

b̂pHiPAP
−K6(R

n
e ṽ

n
eb (5.71)

+KT
4 (p̃enHiPAP

− b̂pHiPAP
))

5.3.3 Stability Analysis

Theorem 4.2 in Khalil (2002) states:
Let x = 0 be an equilibrium point for ẋ = f(x). Let V : Rn → R be a continously
differentiable function such that

V (0) = 0 and V (x) > 0,∀x 6= 0 (5.72)
||x|| → ∞ ⇒ V (x) →∞ (5.73)

V̇ (x) < 0,∀x 6= 0 (5.74)

then x = 0 is globally asymptotically stable.

Attitude observer

The proposed attitude observer gives the following error dynamics for the attitude
(Vik & Fossen 2001):[

˙̃η
˙̃ε

]
=

1

2

[
−ε̃T

η̃I + S(ε̃)

] [
β̃ω

IMU
−K1ε̃sgn(η̃)

]
(5.75)

˙̃βω
IMU

= −T−1
ω
IMU

β̃ω
IMU

− 1

2
K2ε̃sgn(η̃) (5.76)

To prove stability of eqs 5.76-5.75 Vik & Fossen (2001) proposes the following
Lyapunov function candidate:

V1 = β̃Tω
IMU

K2β̃ω
IMU

+

{
(η̃ − 1)2 + ε̃T ε̃, η̃ ≥ 0

(η̃ + 1)2 + ε̃T ε̃, η̃ < 0
(5.77)

47



5.3. NONLINEAR INTEGRATION

Taking the derivative of V1 along the trajectories of the system yields

V̇1 = 2β̃Tω
IMU

K2
˙̃βω

IMU
+

{
−2 ˙̃η, η̃ ≥ 0

2 ˙̃η, η̃ < 0
(5.78)

= −2β̃T
ω
IMU

T−1
ω
IMU

K2β̃ω
IMU

− ε̃TK1ε̃ ≤ 0 (5.79)

It has been used that η̃ ˙̃η+ε̃T ˙̃ε = 0. With the constraint of unity quaternion η̃2+ε̃T ε̃ =
1, V̇1 becomes strictly negative (Vik 2000).

Position and velocity observer

The proposed observer gives the following error dynamics:

˙̃vneb = R̂n
b b̃fIMU

+ (Rn
b − R̂n

b )f − [2S(ωnie) + S(ωnen)] ṽ
n
eb (5.80)

−K3ṽ
n
eb − (Rn

e )
T (p̃en + b̃pHiPAP

)

˙̃pen = −K4(p̃en + b̃pHiPAP
) (5.81)

˙̃bfIMU
= −T−1

fIMU
b̃fIMU

−K5(R̂
n
b )
T ṽneb (5.82)

˙̃bpHiPAP
= −T−1

bHiPAP
b̃pHiPAP

+ K6(R
n
e ṽ

n
eb + KT

4 (p̃en + b̃pHiPAP
)) (5.83)

where f = fIMU + bfIMU
.

From equation 2.29 we have

R̃n
b = I + 2η̃S(ε̃) + 2S2(ε̃) (5.84)

We can then rewrite (Rn
b − R̂n

b )f as

(Rn
b − R̂n

b )f =R̂n
b (R̃

n
b − I)f

=− 2R̂n
b [η̃I + S(ε̃)]S(f)ε̃

=− E(q̂, q̃, f)ε̃

(5.85)

To prove global asymptotic stability of the error dynamics (eqs 5.80-5.83) the fol-
lowing Lypaunov function is chosen:

V2 =
1

2
(ṽneb)

T ṽneb +
1

2
p̃Tenp̃en +

1

2
b̃TfIMU

K−1
5 b̃fIMU

+
1

2
b̃TpHiPAP

K−1
6 b̃pHiPAP

> 0,∀x 6= 0
(5.86)
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The derivative of V2 along the trajectories of the system is:

V̇2 =(ṽneb)
T ˙̃vneb + p̃Ten ˙̃pen + b̃TfIMU

K−1
5

˙̃bfIMU
+ b̃TpHiPAP

K−1
6

˙̃bpHiPAP

=(ṽneb)
T
[
R̂n
b b̃fIMU

− [2S(ωnie) + S(ωnen)] ṽ
n
eb

]
− (ṽneb)

T [K3ṽ
n
eb + E(q̂, q̃, f)ε̃]− (ṽneb)

T (Re
n)
T
[
p̃en + b̃pHiPAP

]
− p̃Ten

[
−K4(p̃en + b̃pHiPAP

)
]
− b̃TfIMU

[
K−1

5 T−1
fIMU

b̃fIMU
+ (R̂n

b )
T ṽneb

]
− b̃TpHiPAP

[
K−1

6 T−1
bHiPAP

b̃pHiPAP
−Re

nṽ
n
eb −KT

4 (p̃en + b̃pHiPAP
)
]

=− (ṽneb)
TK3ṽ

n
eb − (ṽneb)

TE(q̂, q̃, f)ε̃− p̃TenK6p̃en − b̃TfIMU
K−1

5 T−1
fIMU

b̃fIMU

− b̃TpHiPAP
(K−1

6 T−1
bHiPAP

−KT
4 )b̃pHiPAP

− (ṽneb)
T (Re

n)
T p̃en

=− β(x) < 0,∀x 6= 0
(5.87)

where x =
[
ṽneb p̃en b̃fIMU

b̃pHiPAP
ε̃
]T

. To investigate the stability of the
total system we use V = V1 + V2 which is GAS if the following conditions are
satisfied:

1. ṽneb
ε̃

p̃en

T  K3
1
2
E(q̂, q̃, f) 1

2
(Re

n)
T

1
2
ET (q̂, q̃, f) K1 0

1
2
Re
n 0 K6

ṽneb
ε̃

p̃en

 > 0 (5.88)

Which gives the following criteria:

K3 > 0 (5.89)

K3K1 −
1

4
ET (q̂, q̃, f)E(q̂, q̃, f) > 0 (5.90)

K3K1K6 −
1

4
ET (q̂, q̃, f)E(q̂, q̃, f)K6 −

1

4
Re
nK1(R

e
n)
T > 0 (5.91)

Vik (2000) showed that since 5.90 must be valid for all ε̃ it can be written as:

K3K1 − ST (fmax)S(fmax) > 0 (5.92)

Using this 5.91 can writen as:

(K3K1 − ST (fmax)S(fmax))K6 −
1

4
Re
nK1(R

e
n)
T > 0 (5.93)

and is satisfied by choosing K3 positive definite and large so that the last term
of 5.93 is dominated. 5.93 is also satisfied if K6 is positive definite and large,
but K6 is also limited by the second condition in 5.94.

2. A second condition to ensure that the observer is GES is

K−1
6 > KT

4 TbHiPAP
(5.94)
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Chapter 6

Kalman Filter design

The goal of the integrating observers is to provide an estimate of the total state
(position, velocity and attitude) for a submerged vehicle (ROV or AUV). This is
achieved by having a set of supporting instruments that measures the same states
as the inertial navigation system (INS), this gives redundancy in the measurements
which are combined to make one consistent estimate of the states.

In an ROV/AUV system there will be a position reference given by a HiPAP system
with either reference to a ship with a DGPS, or to a fixed transponder network at
the seabed. This position measurement is given at a slower data rate then the IMU
measurement and is limited by the hydro acoustic link and the speed of sound in
water.

The ROV/AUV will also have a Doppler velocity log, which gives the velocity of the
vessel in reference to the seabed. The DVL can also give a measure of the velocity
of the vessel in reference to the surrounding water. This would be useful if there
existed an accurate estimate of the sea current velocity and heading surrounding the
vessel, but it is assumed that such an estimate does not exist. Another feature of the
DVL is that it contains a tilt sensor for measuring roll (φ) and pitch (θ), combined
with a compass this gives a measurement of the full attitude state.

The depth is accurately measured with a pressure sensor on the vessel. By knowing
the density of sea water and the atmospheric pressure at the surface, the depth is
calculated.

The manufacturers of each instrument provide some specifications on how the error
in the measurements behave. This allows us to model the errors in the different
sensors as done in chapter 4. By combining the error models of the sensors with
error equations of the INS (section 4.2) we can make an error state Kalman filter
to estimate the error in the INS. This is done by using the error in the absolute
states (position, velocity and attitude) as the state vector in the filter. The filter
measurement will then be the difference in the measurements from the INS and the
supporting instruments. This chapter will derive and present the model needed for
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implementing a Kalman filter for indirect integration. A schematic diagram of the
filter structure is showed in figure 6.1.

Figure 6.1: Schematic diagram of the filter structure

6.1 Simplification of error dynamics

In chapter 4 a model of the error dynamics was derived. Because of different noise
ratios these equations can be significantly simplified. In this section a simplified
model of the error dynamics for implementation in the Kalman filter will derived.

Velocity In equation 4.28 the error of the velocity was derived as

δv̇neb = δgneb + Rη,ε(2η̃S(ε̃) + 2S2(ε̃))f bIMU + Rn
b δf

b
ib − (2S(δωnie)

+ S(δωnen))v̂
n
eb − (2S(ωnie) + S(ωnen))δv

n
eb

(6.1)

δgneb is the error in gravity. We can assume that the gravity at any given point can
be estimated with high accuracy such that δgneb can be neglected. It can be showed
that the acceleration on the vessel due to coriolis forces can be upper bounded by
2
√

6 ‖v‖ (‖v‖
Re

+ ωie) (Farrell & Barth 1999). For a vessel traveling at 2 m/s this
would be in the vicinity of 0.7mm/s2, the error of this acceleration will be even
smaller and can be neglected. The angular velocity due to velocity in NED, ωen, is
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derived from by dividing the velocity in NED by the earth’s radius. This becomes
very small (10−7 rad

s
) and can therefore be neglected. δωen is even smaller and can

also be removed from the expression. From this discussion we get the following for
the error in velocity:

δv̇neb = Rη,ε(2η̃S(ε̃) + 2S2(ε̃))f bIMU + Rn
b δf

b
ib (6.2)

Attitude In equation 5.75 the attitude error dynamics were derived as

˙̃q =
1

2

[
0 −(δωbib − δωbin)

T

δωbib − δωbin S(δωbib − δωbin)

]
q̃ (6.3)

Since we are dealing with error dynamics which are assumed small we approximate
η̃ ≈ 1. δωin is defined as the sum of δωie and δωen. Since we know the accurate
value of ωie we neglect δωie, and for the same reason as for the velocity we also
neglect δωen. The resulting error equation for the attitude is

˙̃ε =
1

2
δωbib +

1

2
S(δωbib)ε̃ (6.4)

Position The error dynamics for the position was given in equation 4.37 asδλ̇δφ̇
δḣ

 =

 0 0 −vn

(rλ+h)2

vesin(λ)
(rφ+h)cos2(λ)

0 −ve

(rφ+h)2cos(λ)

0 0 0


δλδφ
δh


+

 1
rλ+h

0 0

0 1
(rφ+h)cos(λ)

0

0 0 −1

δvnδve
δvd


(6.5)

Since the earth radius is much larger than the depth of the vessel we may assume
rφ + h ≈ rφ and rλ + h ≈ rλ. To make the calculations more efficient we can also
assume circular earth, i.e. rφ = rλ = re, where re = |ren| = 6371 · 103m This
results in the following position error dynamics:δλ̇δφ̇

δḣ

 =

 0 0 −vn

r2e
vesin(λ)
recos2(λ)

0 −ve

r2ecos(λ)

0 0 0

δλδφ
δh


+

 1
re

0 0

0 1
recos(λ)

0

0 0 −1

δvnδve
δvd

 (6.6)

For use in further use we write the model as δṗ = Ψ(p,v)δp + Υ(p)δv.
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6.2 Error state space model

To write the system on a state space model, a state vector is introduced. This consists
of the main errors in the system, and are used to compensate for the error in the INS
measurements.

x =
[
δpT δvT ε̃T bT βT bTHiPAP

]T
(6.7)

Each of the states in the state vector represents a three dimensional error vector.

The nonlinear state space model can be written in the following form:

ẋ = f(x,u) + Ωξ(t) (6.8)

By using the equations 6.2, 6.4, 6.6, 4.10, 4.9 and 4.46 the model can be written as:

ẋ =


Ψ(p,v)δp + Υ(p)δv

Rη,ε(b + 2(S(ε̃)) + S2(ε̃))fb
ib

1
2
β + 1

2
S(β)ε̃

−T−1
b b

−T−1
β β

−TbHiPAP
b

HiPAP

+


0 0 0 0 0
I 0 0 0 0
0 I 0 0 0
0 0 I 0 0
0 0 0 I 0
0 0 0 0 I




Rη,εξv
1
2
(I− S(ε̃))ξε

ξb
ξβ

ξbHiPAP


(6.9)

Where the T matrices are diagonal matrices with the Markov process time constants
on the diagonal. This is the continuous representation of the nonlinear system. For
use in a computer realization the model must be a discrete representation. This can
be done in several different realizations. The forward Euler method is one option
(Egeland & Gravdahl 2002). Forward Euler method with time step length h, is given
as:

yn+1 = yn + hf(yn, tn) (6.10)

The position measurement for the Kalman filter is

z1 =p
INS

− p
GPS,HiPAP,h

=p + δp
INS

− (p + δpHiPAP + ξ
GPS,HiPAP,h

)

=δp
INS

− δp
HiPAP

− ξ
GPS,HiPAP,h

(6.11)

and the velocity measurement is

z2 =vn
INS

−Rn
bv

b
DV L

=vn + δvn
INS

− (Rn
b + δRn

b )(v
b + ξbdvl,k)

=δvn
INS

− δRn
bv

b −Rn
b ξ

b
dvl,k

(6.12)
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using equation 2.29, equation 6.12 can be written

z2 = δvn
INS

−Rn
b ξ

b
dvl,k −Rn

b

[
2η̃S(ε̃) + 2S2(ε̃)

]
vb (6.13)

The attitude error measurement from the DVL tilt and compass measurement, is
written as z3.

z3 =q−1
dvl
⊗ q̂

INS

=(qnb ⊗ ξqdvl
)−1 ⊗ q̂

INS

(6.14)

For simplicity this will be modeled as

z3 =

[
η̃nb − ξηdvl

ε̃nb − ξεdvl

]
(6.15)

Since only the ε̃ part of the quaternion is represented in the Kalman- filter the z3

sent to the filter is

z3 = ε̃nb − ξεdvl
(6.16)

This yields

zk =

 δp
INS

− δp
HiPAP

− ξ
GPS,HiPAP,h

δvn
INS

−Rn
b [2η̃S(ε̃) + 2S2(ε̃)]vb −Rn

b ξ
b
dvl,k

ε̃nb − ξεdvl


=

 δp
INS

− δp
HiPAP

δvn
INS

−Rn
b [2η̃S(ε̃) + 2S2(ε̃)]vb

ε̃nb

−
ξGPS,HiPAP,h

Rn
b ξ

b
dvl,k

ξεdvl

 (6.17)

In the Kalman filter we need the covariance matrix of the process noise. This is
found by taking the covariance of the noise vector of equation 6.22.The covariance
matrix is found to be

Qk =


Rη,εσ

2
ξf

RT
η,ε 0 0 0 0

0 1
2
(I− S(ε̃))σ2

ξω
1
2
(I− S(ε̃))T 0 0 0

0 0 σ2
γf
· I 0 0

0 0 0 σ2
γω
· I 0

0 0 0 0 σ2
γHiPAP

· I



=


σ2
ξf
· I 0 0 0 0

0 1
4
(I− S2(ε̃))σ2

ξω
0 0 0

0 0 σ2
γf
· I 0 0

0 0 0 σ2
γω
· I 0

0 0 0 0 σ2
γHiPAP

· I


(6.18)
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The covariance matrix of the measurement noise is found by taking the covariance
of the noise vector of equation 6.17. The covariance matrix is

Rk =

σ2
ξDGPS,HiPAP,h

0 0

0 σ2
ξDV L

0
0 0 σ2

ξDV L

 (6.19)

6.3 Linearizations for use in EKF

The discretization requires that the derivatives of the system matrix is defined. The
discrete representation of fk is noted as Φk. For all the linear terms the differential
only cause an element on the diagonal, where the state is differentiated with refer-
ence to the corresponding state variable, the nonlinear terms are therefore treated
alone. Starting with the expression corresponding to ˙̃ε:

∂f7−9

∂ε̃
=

∂

∂ε̃

(
1

2
β +

1

2
S(β)ε̃

)
=

1

2
S(β)

∂f7−9

∂β
=

∂

∂β

(
1

2
β +

1

2
S(β)ε̃

)
=

1

2
I +

1

2
S(ε̃)

(6.20)

Further more, derivation of the expression corresponding to δv̇:

∂f4−6

∂b
=

∂

∂b
Rη,ε(b + 2(S(ε̃)) + S2(ε̃))fb

ib = Rη,ε

∂f4−6

∂ε̃
=

∂

∂ε̃
Rη,ε(b + 2(S(ε̃)) + S2(ε̃))fb

ib

= 2Rη,ε(−S(fb
ib) + S(S(ε̃)fb

ib) + S(ε̃)S(fb
ib))

(6.21)

The derivation of S2(ε̃)fb
ib with respect to ε̃ is showed in Idsø (1999). Combining

the equations derived over, result in a system matrix Φ as follows:

Φ =


I + hΨ̂k hΥ̂k 0

0 I h2R̂n
bk

(−S(f̂k) + S(S(ˆ̃εk)f̂k) + S(ˆ̃εk)S(f̂k))

0 0 I− h
2
S(B̂ωIMU

)
0 0 0
0 0 0
0 0 0

0 0 0

hR̂b
n 0 0

0 h
2
I− h

2
S(ε̃k) 0

I− hT−1
fIMU

0 0
0 I− hT−1

ωIMU
0

0 0 I− hT−1
HiPAP



(6.22)
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Taking the derivative of zk w.r.t. x, ∂zk

∂xT
k
(xk) gives

Dk =

I 0 0 0 0 −I

0 I −2R̂n
b

[
−S(v̂beb) + S(S(ε̃k)ṽ

b
eb) + S(ε̃k)S(v̂beb)

]
0 0 0

0 0 I 0 0 0


(6.23)

6.4 Representation

The attitude in the system is represented by a quaternion. The three measurements
of tilt in 2D and compass produce a set of Euler angles. These Euler angles are
transformed to a quaternion by using the transformation presented in Diebel (2006).
The transformation is called the Euler angle sequence (1,2,3), and is given by

q123(ψ, θ, φ) =


cos ψ

2
cos θ

2
cos φ

2
+ sin ψ

2
sin θ

2
sin φ

2

− cos ψ
2

sin θ
2
sin φ

2
+ sin ψ

2
cos θ

2
cos φ

2

cos ψ
2

sin θ
2
cos φ

2
+ sin ψ

2
cos θ

2
sin φ

2

cos ψ
2

cos θ
2
sin φ

2
− sin ψ

2
sin θ

2
cos φ

2

 (6.24)

This transformation has a singularity in θ = π
2

+ nπ, for n = 1, 2, 3, . . .. Since it is
assumed that the tilt sensor is only available up to a limited tilt angle, the measured
angel that inflicts the singularity will not be reached.

6.5 Filter feedback

If the filter is implemented without any form of feedback the error states can diverge
towards infinity. This will also be the case for the INS estimates of position, velocity
and attitude. Since the linearization in the extended Kalman filter only is valid for
small errors, there need to be implemented some kind of reset of the INS navigation
equations. The higher order elements in the Taylor series in the unscented Kalman
filter is also neglected as described in section 5.2.3, and the reset is also necessary in
this filter. The feedback reset is done by subtracting the Kalman filter error estimates
from the INS states. This must be done with the updated states after a measurement.
By subtracting the estimated error, the error states must also be reset to zero before
the Kalman filter establishes the apriori estimate (prediction). The reset can be
implemented at any time step, but it is not optimal to reset to often. If the filter
is reset infrequently the error might grow large and the accuracy of the model is
reduced. If the filter is reset too often the filter is not given a chance to find the a
good estimate of the error. The filter need some steps of correction before it is reset.
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6.6 Robustness

In control theory robustness is used as a term describing a systems sensitivity to
uncertainty. In the Kalman filter approach the noise and bias error has to be modeled.
The white measurement noise is modeled by its variance defined on the diagonal of
the noise covariance matrices (R and Q). The biases, both on the IMU and HiPAP,
are modeled as 1st order Markov processes. The model is defined by the variance
of the white noise that drives the process and the process time constant.

The uncertainty of the process and measurement noise has different influence on
the filter. If the measurement noise is modeled with a noise variance larger than
the actual measurement noise, it can be seen from the Kalman filter equations (5.8
- 5.13 ) that this will cause the Kalman gain to be lower than optimal. The effect
on the Kalman gain is opposite if the process noise is modeled with larger variance.
This means that if the bias drift is considered to be large, more emphasis is put on
the measurement.

The noise properties are seen as the only tuning factor in a linear Kalman filter. This
is also valid for the extended Kalman filter. In addition to the covariance matrices
the unscented Kalman filter also have three constants describing the spread of the
sigma points (α, β and κ). One of the requirements for the Kalman filter to be a
minimum variance filter, is thatRk andQk are correct (Brown & Hwang 1997). This
means that the actual implemented filter will not be optimal if these matrices are
estimated wrongly. The tuning of the Kalman filter will be dependent on what the
filter output will be used for. If the filter estimates are feedback to a controller, the
estimate should be as accurate as possible. But in the RovNav application where
the output are input to a visualization tool, one might wish very smooth estimates.
This can be achieved by increasing the elements of the measurement noise variance
matrix, but will be a trade off with respect to accuracy and filter response.

6.7 Observability

From control theory observability studies the possibility of estimating the internal
states from the external output (Chen 1999). A linear discrete system is said to be
observable if and only if the observability matrix O defined by

O =


D

DΦ
...

DΦn−1

 (6.25)

has rank n. D and Φ are the measurement and system matrices of the discrete
linear system. If the rank of O is n the matrix may still be close to singular. A
measure of how close a matrix is to being singular is the condition number defined
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as the ratio between the largest and smallest singular value of a matrix (Skogestad
& Postlethwaite 2005)

κ(A) =
σmax(A)

σmin(A)
(6.26)

If A has a large condition number it is said to be ill conditioned. If this is the case
for the observability matrix O then it is said that the system described by D and Φ
has a low grade of observability.

For a nonlinear system it is not equally straight forward to investigate observability.
Given the nonlinear system

ẋ = f(x, u) (6.27)
z = h(x) (6.28)

Taking the Lie derivatives (section 2.2.6) of h w.r.t. f yields

l(x, u) =

 L0
f (h)
...

Ln−1
f (h)

 (6.29)

Expanding this in a series about x = x0 for u = u0 gives

l(x, u0) ≈ l(x0, u0) +
∂l(x, u0)

∂x
|x=x0∆x+ h.o.t (6.30)

then dG = O = ∂l(x,u0)
∂x

|x=x0 must have rank n for the system to be locally ob-
servable in a vicinity around x0 (Hedrick 2007). As for the linear case if O is ill
conditioned the grade of local observability will be low.

The observability studies in this thesis are performed in Matlab. By investigating
the observability properties of the navigation system (equations 3.4, 3.9 and 3.11)
in this thesis it is found that O has full rank without attitude measurement. The
condition number is however relatively high, which indicates that the observability
is low. With a secondary attitude measurement the condition number is significantly
reduced, hence observability is increased. For accuracy and robustness it is therefore
recommended that a secondary attitude measurement is used.

6.8 Sensor latency

When fusing the measurements from the ROV with the current best prediction of
the vehicle state, considerable care must be taken to incorporate the measurement
in the optimal fashion. The inertial sensors has a high update rate and short time
delay, where as the HiPAP is limited by the speed of sound in water. This delay is
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Figure 6.2: Measurement delayed, from Larsen et al. (1998)

dependent of the distance from the point of reference. Figure 6.2 illustrates the issue
graphically. A system is given as:

xk+1 = Akxk +Bkuk + vk

yk = Ckxk + nk
(6.31)

where nk and vk is measurement and process noise. A measurement that corre-
sponds to the system state at t = l, arrives N samples later at t = k. This means that
the filter receives some measurements valid for xk and some valid at xl at the same
time. The delayed measurements y∗k can be mathematically described as:

y∗k = Clxl + nk (6.32)

There are several different ways of dealing with the sensor latency in a filter de-
scribed in the literature (van der Merwe et al. 2004), (Larsen et al. 1998) and (Mandt
et al. n.d.). The following will briefly describe some of the possible approaches.

The simplest way of dealing with the latency is to ignore it. This means that the
filter assumes that the measurement is valid at the time it is available. For an error
state filter this would only be valid if the error was much larger than the possible
state change in the delay time period. If the ROV travels at 2m/s and the HiPAP
measurement is 5 sec delayed this would introduce a 10 meter error, which is much
larger than the possible INS drift in the same period. Because of the possible large
error between the current state and the state at the time when the delayed measure-
ment was valid, this approach is not used.

Another solution is to recalculate the complete trajectory for the delay period, when
the lagged measurement is received. This approach requires all measurements and
all filter estimates being saved in the delay period. The computational burden in this
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solution is significant, as well as the need for storage capacity. Dependent on the
real time requirements of the estimates and the available CPU capacity, meeting the
deadlines might not be possible.

Running the filter and navigation equation on a fixed delay is possible. This means
that all measurements (including IMU) are stored until all data is avaliable. The
filter delay can be set to the worst-case expected HiPAP latency. This would give
optimal Kalman filter estimates, but all estimates would be delayed corresponding
to the HiPAP delay. If the estimate is used in any real time application, for example
in a control and guidance algorithm, this is not good solution.

Larsen et al. (1998) described a method that provides optimally fused estimates not
only at the instance when the delayed measurements arrive, but also in the interim
period between these updates. Larsen achieves this by running a second Kalman
filter in parallel to the main filter. The second filter produces optimal estimates in
the interim between measurements. The downside of having optimal estimates at all
time, is that it will double the computational complexity.

Mandt et al. (n.d.) described an approach for the HUGIN project that meant running
the inertial navigation and Kalman filter in real-time and make delayed measure-
ments. This is based on the assumption that the error does not change significantly
during the delay, and that the filter is designed as an error state filter. This solution
requires the inertial data to be saved for the delay period. The filter measurements
are made using inertial data with the correct time step together with the delayed sec-
ondary measurement (HiPAP, DVL, etc.). The measurements are evaluated using
current covariance matrices and estimates in the Kalman filter. The feedback resets
are done on the current inertial data. This solution is not CPU intensive and does
not require memory to store matrices, this is why the HUGIN team implemented
this solution on the HUGIN 3000 AUV.

Determine the delay

The sensor delay of an hydro acoustic positioning is highly dependent of the distance
from the transponder to the measurement unit. In other words the distance from the
underwater vehicle to its point of reference.1 The speed of sound in water2 limits
both the rate at which the position is updated as well as the minimum delay possible
to achieve. Some hydroacoustic positioning systems can estimate the delay, and
therefore time stamp the measurement with the time the transponder replied.

1The point of reference is either a surface ship or receivers fixed to the seabed.
2The speed of sound in water is estimated to about 1500m/s, but is highly dependent on both water temper-

ature and salinity.
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Reset with sensor latency

The challenge of reset of the INS equation in an error state Kalman filter for the
HUGIN project is described in Mandt et al. (n.d.). If the filter is reset between the
time a delayed measurement was valid and real time. An error that has already been
estimated and reset is again measured and might be reset twice. This is solved by
storing the changes in the error estimates and change the measurement equation to:

zm = Dm(xm −
rt∑
i=m

δx̂i)− ym (6.33)

Stability

Time delay in measurement is a stability issue in observer design and in control
theory in general. In this design it is assumed that the time delay is relatively small
compared to the time constants of the error. This means that the error does not
change considerably in the latency period.

The measurement will be most evident in the position update from the hydro acous-
tic positioning. If we assume that the velocity has a bounded error when the sec-
ondary velocity measurement is available, the position error growth rate is bounded.
The theoretical proof of stability for the sensor integration techniques with measure-
ment delays presented in this report, is out of the scope of this work.

Nonlinear Observer

The nonlinear observer does not distinguish between changes in the state caused by
the actual movement of the vessel and changes made as error correction. This means
that it is not possible to remove changes done in the error estimate over the delay
period. For this reason the delayed measurement is incorporated as it is, with out
any compensation for the time passed. The observers input is the error state, so only
changes in the error over the delay period is of any concern to this solution. Since
there is no form of reset, this simple solution is valid if the error or drift is slower
than the delay period.

6.9 Convergence rates of KF

When initializing the filter there will always be a certain degree of error in the initial
state. The rate of convergence towards the true state, is for the Kalman filter imple-
mentations dependent on the values of the covariance matrix. The magnitude of the
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initial covariance matrix elements should indicate the degree of uncertainty in the
initial states.

The Kalman covariance matrix gives an indication on how certain the last filter
estimate is. If the covariance has large elements there is large uncertainty in the
estimate, and vice versa for small covariance elements. When the filter calculates
(or is initiated with) a large covariance matrix the Kalman gain calculated will also
be large. This will in turn weight the new measurements more relative to the last
predicted state.

The main difference of the extended and unscented Kalman filter is how the co-
variance matrix is calculated. This will influence the behavior of the filter response
to disturbances. This is significant if the two covariance matrixes do not converge
towards the same values, and thereby give the filters different behavior.
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Part III

Simulation & Discussion
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Chapter 7

Initialization and Implementation

7.1 General Implementation

The mathematical filters that were presented in sections 5.2.2, 5.2.3 and 5.3.2 can be
tested by implementing them in a mathematical simulator. By using this approach it
is possible to investigate the properties( e.g. robustness and accuracy) of the filters.

The filters in this work have been implemented in Matlab. Both the filters and the
simulation structure is based solely on Matlab basis functions.1 This is done to make
the transition to implementation in other languages easy. Matlab is equipped with
several ready made toolboxes including a toolbox for implementing Kalman filter
design. This toolbox has not been used in this work. By not using standard imple-
mentations the filters also allows for the user to look at the internal filter variables.
The simulation structure consists of a trajectory simulator, signal generators and the
filters. This setup is chosen to test the performance of the different filters without
real measurement data, but with characteristics similar to that of real instruments.

The modules/functions are merged in a simulation loop, where the functions are
called in sequence with different input parameters. By implementing the different
modules as functions, the user has a good overview over which variables and param-
eters are used where. This is important since the simulation operates with several
versions of the same parameter2.

The goal of the simulation phase is to show that the filters presented in previous
chapters are useful in estimating position, attitude and velocity for an ROV/AUV.
This means that the filters’ output should be a better estimate than any of the measur-
ing instruments could produce alone. Since most of the measurements are received
at a lower frequency the goal is also to produce a "more continuous" state estimate.
Also the robustness of the algorithm will be tested both for errors in model param-

1Some of the functions used are from the Marine GNC Matlab toolbox (Fossen 2005). The code for these
functions are included in the files described in appendix D

2For example the filter has a real position, two measured positions (INS and HiPAP) and a filtered position
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eters and in loss of measurements. The fact that some signals may arrive some
time after they are valid will also be tested. When the filters are tested we will be
able to compare the different filters and determine which one has the best overall
performance based on the criteria presented in chapter 8.

Figure 7.1: Reference trajectory (with HiPAP measurements and UKF estimate from simu-
lation 2. See chapter 8.3.2).

To test the accuracy of the filters a reference trajectory was developed. The trajectory
should test both position, velocity and attitude accuracy, and is therefore developed
without taking into account the physical limitations of an ROV/AUV. It is assumed
that the ROV/AUV can move in any direction with any rotation around its own axes.
Further more the filters will be tested with different parameters in signal generation
and filter model. This will point out sensitivity to model errors in the filters. Tests
will also be run to see how well the filters work when the external measurements
(HiPAP and DVL) are lost for a period of time, and how well they recover from a
sensor outage. How the filters handles IMU drop out is also tested.

The simulations are run at 10Hz. It is assumed that the HiPAP is available every
5 second. This should be a conservative estimate, since the manufacturer estimates
an update rate of 0.5 Hz when the ROV is at a depth of 1500 meter. The DVL is
available at each time step, except when the tilt angles (roll and pitch) are greater
than ±15◦ where the DVL does not give readings (Teledyne-Instruments 2005).

All the instrument data used is based on data from the manufacturers specification
for a selected instrument, see appendix C.
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Latitude (λ) 4◦west
Longitude (φ) 56◦north
Depth 1500 m
North velocity 0 m/s
East velocity 0 m/s
Down velocity 0 m/s
Attitude, η 1
ε1 0
ε2 0
ε3 0

Table 7.1: Initial states for all simulations

The trajectory is based on a series of input accelerations and angular velocities.
From these inputs the real position, velocity and attitude are determined. Based
on this information the measurements are created with the given noise and bias
characteristics. All simulations start from the same position with the same initial
states. The initial states for the system are given in table 7.1.

7.2 Filter Initialization

An issue that needs to be addressed is initialization of both INS and Kalman filters.
The INS calculates the position, velocity and attitude from a given initial state by
integrating the signals from the IMU . To ensure that the total estimate is as cor-
rect as possible as soon as possible, these initial values also needs to be correct.
The initial INS state should be the best available state estimate at the given time.
Measurements from the external measurements (HiPAP, DVL and tilt sensor) has
satisfactory accuracy, and can be used for initialization. In addition to the INS the
filter also has to be initialized. The Kalman filters need an initial state and an ini-
tial state covariance matrix (X0). The initial state is the assumed initial error in the
INS. Since this error is the best estimate at the time, the assumed initial error will
be zero. The initial state x0 covariance matrix (X0) should be chosen to reflect the
uncertainty of the INS initialization. If the uncertainty is large the covariance should
also be chosen large. This helps ensure a more rapid convergence of the filter, such
that it achieves a satisfactory accuracy level within a few reset intervals (see chapter
6.5). If the initial INS error is very large (e.g. 1000m in position) the filter requires
a longer period to converge to the correct value. In theory a limit initial error may
exist that which exceeded leads to divergence of the filter, no such limit has been
found.

In the case of the nonlinear observer the observer is integrated with the navigation
equations, and therefore does not need a separate initialization. In this case there is
no information in the observer about the initial error (no state covariance matrix),
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hence it is more important that the initial states are correct than is the case for the
Kalman filters. In the case of constant observer gains, the recovery from the initial
error may take considerably longer than for the Kalman filters.

7.3 Tuning of UKF

The UKF will be implemented as an indirect filter. The error state space model was
derived in chapter 6.2, and the same model will be used when implementing the
UKF. In EKF the only tuning parameters are the covariance matrices Rk,Qk and
X̂0. In UKF there are additional tuning parameters; α, β ans κ. α is a small positive
value that determines the spread of the sigma points around x̄. From the conditions
on the value of α from chapter 5.2.3, α = 0.4082. β is used to incorporate prior
knowledge of the distribution of x. Wan & v. d. Merwe (2000) states that β = 2 is
optimal if x Gaussian. κ is typically set equal to zero. The dimension of our system
is 18, hence L = 18 and χ is a 18× 37 matrix (2L+ 1).

7.4 Implementation and tuning of Nonlinear Observer

When implementing the nonlinear observer in Matlab it needs to be discretisized.
For this purpose we used the forward Euler method from equation 6.10.

xk+1 = xk + hf(xk) (7.1)

This gives the following discrete attitude observer:

q̂,k+1 = q̂,k + h

(
1

2

[
−ε̂,kT

η̂,kI + S(ε̂,k)

] [
ω

IMU
, k + β̂ω

IMU
,k (7.2)

+K1ε̃,ksgn(η̃,k)]−
1

2

[
−ε̂,kT

η̂,kI + S(ε̂,k)

]
ωnin,k

)
β̂ω

IMU
,k+1 = (I− hT−1

ω
IMU

)β̂ω
IMU

,k + h
1

2
K2ε̃ksgn(η̃,k) (7.3)

Since q̂ must be of unit length, the quaternion is normalized each time step using

q̂k =
q̂k

||q̂k||2
=

q̂k√
q̂Tk q̂k

(7.4)
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The discrete velocity/ position observer is

v̂neb,k+1 = v̂neb,k + h
[
R̂n
b,k(f

b
imu,k + b̂fIMU ,k) + ĝneb,k − (2S(ωnie) (7.5)

+S(ωnen,k))v̂
n
eb,k + K3ṽ

n
eb,k + (R̂n

e,k)
T (p̃enHiPAP
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The gain matrices K1...K6 needs tuning. To help the tuning we made some sim-
plifications to the system to make it linear and then implemented the observer as a
linear Kalman filter (KF). This way a Kalman gain matrix K was calculated. Since
the correction term in the KF is

x̂k = x̄k + K(y −Dx) (7.9)

it has a different structure than that of the nonlinear observer and the gains calcu-
lated by KF can not be used directly in the observer. Some of the sub matrices in
K may however be used as an indication of the magnitude of some of the observer
gain matrices K1...K6. The tuning must be performed such that the criteria from
equations 5.88 and 5.94 are satisfied. To satisfy 5.88 K1 and K3 are chosen rela-
tively large. K4 is chosen small since it is used in a velocity correction and K6 is
chosen to satisfy 5.94. The stability proof for the observer is only valid for a con-
tinuous system, hence stability is not proven for the discrete observer(which is the
one that will be implemented). Of this reason the time-steps of the discrete observer
must be small. The Matlab- code for implementation can be found on attached CD-
ROM. The structure of the nonlinear observer, being a direct filter, is more intuitive
than that of the Kalman filters, but it demands a more time-consuming tuning pro-
cess since there is no direct link between the noise characteristics and the observer
gains.
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Figure 7.2: Schematic diagram of nonlinear observer structure
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Chapter 8

Discussion of Filter Performance

8.1 Criteria for filter selection

To distinguish between the three different filters, a set of criteria for filter perfor-
mance is selected. The purpose of the integrator algorithm is to use it in a real time
application for visualizing the vehicle in operations. This put strict requirements
on the robustness of the system. In this section several criteria of performance are
described.

Standard deviation

In Walpole et al. (2002) standard deviation (STD) is described as the root mean
square (RMS) deviation of the values from their arithmetic mean. Standard devia-
tion is the most common measure of statistical dispersion, measuring how widely
spread the values in a data set are. If the data points are all close to the mean, then
the standard deviation is close to zero.

The mathematical definition of the STD is given by:

σ =

√√√√ 1

N

N∑
i=1

(xi − x)2 (8.1)

where x is the mean value, and xi is the value of the measured variable.

To classify the performance of the sensor integration filter, the standard deviation
of the estimation error is calculated. This gives a measure of the dispersion of the
estimation error of the filter. The STD is only valid if it is reasonable to assume that
the expected value (mean) of the error is constant.
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Mean error

The mean is the expected value of a random variable. The mean is the sum of all the
observations divided by the number of observations. Mathematically described the
arithmetic mean is:

x =
1

n

n∑
i=1

xi (8.2)

The mean is used to make sure that the estimation error is not biased. If the mean
of the error over the simulated time series is very different from zero, this is an
indication that the filter is biased.

Max error

The maximum error in the estimated state over the simulated time series gives an
indication of the filter performance. The magnitude of the maximum error must be
analyzed with a little caution. A larger error at one point in time does not necessarily
mean that the filter performance is worse. This is because the signal errors are
random signals, and the ”worst case” error might cause the best filter to give a larger
error for one time step. For this reason the magnitude of the error is divided into
sections and the average error over one of these time sections is analyzed.

Run time

The different filter all have slightly different structures, with different calculation
taking place. This means that they will require different computer power. Since the
vehicle will run as an AUV without power supply part of the time it is desired that
the filter algorithm is as power efficient as possible. How much computer power is
needed for each of the three filters can be determined from how long it takes for a
specific filter to run a given simulation. A filter that takes longer to run a simulation
of a given time series will require more calculations and more computer power.

Graceful degradation

A property of the sensor integrator is also how well it performs on a sensor dropout.
This property can be described as graceful degradation (or fail soft) (Burns & Wellings
2001). It is essential that the estimates are reliable even if some of the sensors fall
out for a period of time. This implies that the estimated error should not grow faster
than the actual error in the remaining measurements in the system, which practically
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means that if all measurements except the IMU are lost, the total system error should
be limited by the INS drift.

8.2 Simulations

To evaluate the filters we ran five separate simulations to test robustness and accu-
racy.

Simulation 1

Simulation 1 is run with noise characteristics from the instrument specifications.
It is assumed that the real noise has characteristics close to that specified by the
manufacturer.

Simulation 2

In simulation 2 the filters’ robustness to noise is tested. In this simulation it is
assumed that the actual noise characteristics are different from those specified in the
data sheet. This is done by changing (increasing) the magnitude of all generated
white noise, including that which drives the colored noise processes. The noise
characteristics in the filter remain the same as in specifications. All measurements
are available throughout the simulation.

Simulation 3

The third simulation is performed to test robustness to dropout of external measure-
ments, and how well the filters recover once the measurements are returned. First
HiPAP was lost for 600 seconds before the filter recovered for 200 seconds. Then
the DVL was lost for 600 seconds. The filter once again got a 200 second recovery
before all external measurements were lost for 400 seconds followed by a recovery
period.

Simulation 4

The fourth simulation is performed to test robustness to dropout of inertial measure-
ments (IMU), and how well the filters recover once the measurements are returned.
A 200 second IMU loss was tested.
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Simulation 5

The last simulation test the performance when HiPAP and DVL measurements arrive
some time after they are valid. The HiPAP was tested with a 5 second delay while
the DVL had a 0.5 second delay.

8.3 Performance Evaluation

To decide which filter is best suited for implementation in RovNav the simulation
results will be evaluatied using the criteria presented in section 8.1. In the plots of
error estimates each state has a bar plot related to it which gives the average error
over one hundredth of the simulation time.

8.3.1 Accuracy

The accuracy of the filters is determined by how close the estimated trajectory is to
the real trajectory. From figure 8.1 it can be seen that the EKF estimates the error
to a accuracy in north- east position to less than 40cm. The depth estimate is very
accurate since it is based on a pressure-depth sensor and not on the HiPAP depth
measurement. The velocity accuracy in figure 8.4 is very good with errors less than
5mm/s. The error seen in the plot results from some zero mean white noise that
passes through the filter. The attitude estimate for the EKF is also accurate, see
figure 8.6. In the attitude estimate the oscillations in the start of the simulations
are caused by the initialization of the state covariance matrix. When the elements
corresponding to the attitude error has converged to the right magnitude region, the
estimate is smooth and the error is less than 0.1◦ for all three dimensions. It can
also be seen that the error in yaw(ψ) is larger than that of roll(φ) and pitch(θ), this
is because there is more noise in the heading fluxgate compass than in the tilt sensor
which introduces more uncertainty in this estimate.

Figure 8.2 shows the position error when using the unscented Kalman filter. The
position error for the UKF is considerably lower than for the EKF. The error in
north- east position to less than 6cm, and the depth error is less than 4cm. The
velocity estimate for the EKF and the UKF does not differ at all, see figure 8.4 and
8.5. Both the accuracy and noise levels are the same. The attitude estimates for the
UKF also show the influence of the converging state covariance matrix as with the
EKF. The errors for the UKF are of the same magnitude as for the EKF.

The position accuracy of the nonlinear observer can be seen in figure 8.3. The po-
sition error is on average about the same as the unscented Kalman filter for this
simulation, but it should be noted that there are impulses in the error every 5 sec.
These spikes are induced by the position measurements from the HiPAP, and can
also be seen in the velocity estimate. These spikes are a result of the low frequency
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Figure 8.1: Position error with EKF in simulation 1

Figure 8.2: Position error with UKF in simulation 1
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Figure 8.3: Position error with Nonlinear observer in simulation 1

Figure 8.4: Velocity error with EKF in simulation 1
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Figure 8.5: Velocity error with UKF in simulation 1

of the HiPAP measurement which leads to every time a position measurement is
received the HiPAP bias has changed and an error is introduced in the position es-
timate. This error is feed back to velocity estimate (equation 5.68), and are seen as
spikes since the velocity observer quickly reduces this error. From figure 8.8 it can
be seen that the estimate of attitude is very noisy. This is caused by the fact that
the nonlinear observer, as opposed to the Kalman filters, has no information of the
noise of the measurements to remove measurement noise. The overall attitude and
velocity error is limited and quite small, despite of the white noise in the estimate.

Simulation 1 shows that the position accuracy of the nonlinear observer and the
UKF is slightly better than the performance experienced with the EKF. This can
also be seen by looking at the position mean and maximum errors for simulation 1
(appendix B.1) where it can be seen that the nonlinear observer and UKF has about
the same values while EKF has much larger values. The Kalman filters perform very
much the same for velocity and attitude estimation. The nonlinear observer gives
an attitude and velocity estimate with more noise than the KFs. This can be seen
by investigating the standard deviation of the velocity and attitude errors (appendix
B.1) which are much higher than for the KFs. For more details about the statistical
properties of the filters for simulation 1, see appendix B.1.
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Figure 8.6: Attitude error with EKF in simulation 1

Figure 8.7: Attitude error with UKF in simulation 1
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Figure 8.8: Attitude error with Nonlinear observer in simulation 1

8.3.2 Robustness

Robustness to noise

In simulation 2 the noise characteristics of the filters are different than that of the
generated noise. The magnitude of the white noise driving the Markov processes
modeling the IMU drift is increased, and the filter must track faster changes in the
error. Figure 8.9 shows that the north-east position error is around 2m for the EKF.
Even though the error in the INS grows faster, the filter still manage to track the error
development, and the total error experienced by the user is still relatively small. The
velocity error in figure 8.10 is larger than in simulation 1 to about a factor of ten.
This is mostly caused by the increased white noise for the DVL passing trough the
estimates without being filtered. In attitude it is once again seen oscillations due to
the initial error in the state covariance matrix. These oscillations settles quickly, and
the estimate of roll(φ) and pitch(θ) are accurate within 0.2◦. The yaw(ψ) estimate
again has a larger error of the same reason mentioned for simulation 1.

The UKF has a slightly more accurate position estimate than the EKF in simulation
2. From figure 8.11 it can be seen that the north-east position error is limited to just
over 1m. This difference can be argued to the randomness of the noise, but running
the simulations numerous times show that on average the accuracy is slightly better
with the UKF. A reason why the UKF seemingly performs better during more noisy
conditions is that the nonlinearities of the system become more dominant. In section
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Figure 8.9: Position error with EKF in simulation 2

Figure 8.10: Velocity error with EKF in simulation 2
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5.2.3 it is argued why the UKF is better suited for estimation of highly nonlinear
systems. The accuracy of the velocity and attitude for the UKF in simulation 2 was,
as in simulation 1, the same as with the EKF.

Figure 8.11: Position error with UKF in simulation 2

What should be noted in simulation 2 is that the magnitude of the white noise on all
estimates is larger than in simulation 1. The reason for this is that the KFs believe
that the magnitude of the measurement noises still are as specified in the data sheets,
while they in fact are ten times larger. In section 6.6 it is argued that this gives a more
noisy estimate because too much emphasis is put on the noisy measurement. This
is especially apparent in the velocity measurement because the DVL measurement
noise variance defined in the R matrix is relatively low(compared to the HiPAP).
The Kalman-gain for the DVL measurement is therefore relatively higher than for
the HiPAP measurement, which gives higher noise sensitivity. Although the noise
is more apparent on the velocity estimate it is introduced in all estimates. The per-
formance of the two KFs are equally good in the velocity estimate.

As in simulation 1 the estimates in simulation 2 are very noisy for the nonlinear
observer. The error in position is increased by a factor of ten from simulation 1
(see figure 8.12). This is the same factor that all noise parameters where multiplied
by in simulation 2. The spikes in the position estimate are larger in simulation 2.
This is caused by more noise on the HiPAP measurements and that the HiPAP bias
changes more between two consecutive measurements. It can be seen from figure
8.12 that the largest spike in north position is almost 1 meter. The largest position
error, when not taking the spikes into account, is around 50cm in east position. The
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noise is also evident in attitude estimate in figure 8.13. The depth estimate of the
nonlinear observer is worse than that of the KFs, this is caused by the fact that the
nonlinear observer does not distinguish between the good depth measurement end
the not so good HiPAP position measurement. The Kalman filter takes into account
that the depth measurement is in fact very accurate. The larger error in depth can
be reduced by tuning the observer gains. The nonlinear observer is still stable when
the measurements are degraded, and all errors are bounded in the simulation.

Simulation 2 shows that the nonlinear observer achieves the best grade of position
accuracy when the noise is increased. Slightly better than the UKF which again
is better than the EKF even though the UKF has a higher mean in east direction
(see appendix B.1). From the standard deviations it can be seen that in the veloc-
ity estimate the UKF and the EKF performs with about the same noise and level
of accuracy. The nonlinear observers suffers from severely increased spikes in the
velocity. The attitude estimate is best in the Kalman filters while much noise de-
grades the attitude in the nonlinear observer. For more details about the statistical
properties of the filters for simulation 2, see appendix B.1.

Figure 8.12: Position error with Nonlinear observer in simulation 2

Robustness to loss of external measurements

In simulation 3 robustness to loss of external measurements was tested. First the loss
of HiPAP was tested (from 200− 800s). This resulted in very little influence on the
estimates in any of the sensor integrators. Although there is no position correction to
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Figure 8.13: Attitude error with Nonlinear observer in simulation 2

limit the position error there seems to be very little drift in the position. This is due
to the good velocity estimate which significantly reduces the position drift. If figures
8.14 and 8.15 are examined a random walk in the position can be seen. If a longer
HiPAP loss was tested a larger position drift could be seen in all observers. The error
growth in position is a result of the noise in the velocity estimate which is integrated
to give position error. In the other states (velocity and attitude) no degradation of
the estimates due to HiPAP loss is observed. For the nonlinear observer it is worth
noticing that when the hydro acoustic position measurement is lost, the spikes are no
longer evident in the position and velocity estimate. For the nonlinear observer the
attitude is not influenced by the HiPAP loss since the attitude and position/ velocity
observers are decoupled.

The next test was loss of DVL for 600s(from 1000 − 1600s). As can be seen from
figures 8.16-8.21 this has much greater influence on the estimates than the HiPAP
loss. Since there is no longer a secondary velocity measurement the velocity es-
timate must rely on the position for correction. Noise in the position estimate is
magnified due to derivation, which makes the velocity estimate more noisy. It is
also more difficult to estimate the accelerometer bias, such that more of bfIMU

is
integrated to give velocity and position error.

For the two Kalman filters the position error however is bounded since the HiPAP
is still available, which again results in bounded velocity error. To estimate the
HiPAP bias correctly the filters are however dependent on the velocity measure-
ment, since this is no longer available the position error may grow large. During
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Figure 8.14: Position error with EKF in the first 1000s of simulation 3

Figure 8.15: Position error with Nonlinear observer in the first 1000s of simulation 3
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Figure 8.16: Position error with EKF in the first 1800s of simulation 3

Figure 8.17: Position error with UKF in the first 1800s of simulation 3
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Figure 8.18: Position error with nonlinear observer in the first 1800s of simulation 3

Figure 8.19: Velocity error with EKF in the first 1800s of simulation 3
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Figure 8.20: Velocity error with UKF in simulation 3

Figure 8.21: Velocity error with nonlinear observer in the first 1800s of simulation 3
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normal operation the HiPAP measurements are used to make sure that large errors
in the position estimate are corrected. The position estimate therefore rely mostly
on the DVL measurement for small corrections in velocity to limit the position error
growth. The reason why the DVL is so important to the position estimate is that it
helps give a good estimate of the HiPAP bias. This fact leads to a trade-off between
robustness and accuracy in the case of DVL loss for both Kalman filters. If the mea-
surement covariance of the HiPAP is chosen large much emphasis is put on the DVL
measurement and good accuracy is achieved when all measurements are available.
If DVL is lost the filter’s most important measurement is lost, and the performance
is significantly degraded by an even greater position and velocity error. The error
during the DVL loss would be smaller if the HiPAP was emphasized more. The atti-
tude estimate is also significantly effected by the DVL dropout. From the navigation
equations (in chapter 3) the connection between attitude and velocity can be seen.
When there is an error in velocity it will be seen as an error in the rotation matrix
Rn
b . Changes will be made to correct this and uncertainty in the attitude estimate is

introduced. When comparing the performance of the two Kalman filters it can be
seen that the errors in the estimates due to DVL loss are about the same for the two.

The DVL loss has an even greater impact on the nonlinear observer. Figure 8.21
shows that the velocity estimate in the nonlinear observer is not corrected with only
position measurements. The velocity error quickly induces a position error. The
position error is not corrected by the HiPAP measurements, and the error grows
until the DVL returns. During the 600s DVL drop out the position error grows to
between 500 − 1000 meters in all three directions. The nonlinear observer needs
the velocity estimate to be correct in order to estimate the HiPAP bias, and when
the DVL is lost the estimated HiPAP bias goes to zero. The HiPAP is not used for
correcting the velocity during DVL loss, this is to ensure that the observer does not
become unstable during the loss. It should also be noted that in contrast to the KF,
the nonlinear observer does not recover fast when the DVL returns. This is the case
for both position and velocity. The position error stabilizes when the DVL returns,
but is not reduced towards zero. The reason for this is that the observer does not
manage to distinguish between HiPAP bias and position error. All position error is
regarded HiPAP bias such that the term p̃enHiPAP

− b̂pHiPAP
from equation 5.69 still

evaluates to zero. This is clearly a great disadvantage of this observer. The attitude
is not influenced by the DVL dropout. The nonlinear position and velocity observer
does not handle a DVL dropout in this implementation.

The last part of simulation 3 is to test how the filters handle losing all other sec-
ondary measurement except the pressure based depth meter, and how well the es-
timates recovers when the measurements are returned. The nonlinear observer will
be treated separately.

When all measurements are lost the estimates go to zero, hence the integrated states
are the same as the uncorrected INS-states. Since there is no bias correction the
errors begin to grow unbounded, except the depth and down velocity that still has
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the depth meter for correction.

When measurements are returned the estimates in the KFs recovers quickly (uses
only a few time steps to recover). The reason why this recovery is so fast is that
during the outage the estimates are zero. This gives a large difference between the
measured and estimated states when the measurements are returned. The parameters
of the state covariance matrix X̄ become large, hence much weight is put on the
measurements in the time steps following the measurement recovery and the large
error is quickly reduced. This can also be seen directly by investigating the values
of the Kalman gain matrix K when the measurements are returned.

When all measurements are lost the nonlinear velocity and position drifts uncon-
trollably. The position error grows exponentially and as for the case when the DVL
was lost, the position correction is very slow when the measurements return of the
same reason as for the DVL loss. This is however with the chosen gains. If the gains
are increased when the error is large, the recovery could be significantly faster. In-
creasing the gains is a trade-off between accuracy and the recovery rate after large
errors. A way to solve this problem could be to make an adaptive observer such that
the gains are of the proper magnitude according to the magnitude of the measured
error. This task is outside the scope of this report, and has not been solved. When
the measurements return the velocity error makes a leap (this can be seen in figure
B.1 in appendix B.2). The reason for this is the position error element in the velocity
observer equation. Since the position error has grown large in the dropout period,
the position error term gets a very large value when the HiPAP returns. This error is
transferred to the velocity. The attitude observer drifts according to the error in the
gyro measurement. When the compass and tilt sensors returns the attitude observer
recovers quickly.

In simulation 3 the UKF and EKF had about the same performance with limited
error for both HiPAP and DVL loss followed by a fast recovery in the estimates
when measurements returned. The nonlinear observer only handled the HiPAP loss.
When the DVL was lost both position and velocity grew very large and did not
recover upon measurement return.

Robustness to IMU loss

In simulation 4 the filters were tested with respect to robustness to an IMU loss for
200 seconds (from 200 − 400s). It was in this simulation the greatest difference in
performance between the two KFs was seen. When looking at the position estimates
in figures 8.22 and 8.23 it can be seen that the error in the EKF is about 10 times
larger than in the UKF. For the other states (velocity and attitude) the two filters
again has very similar performance. The problem in the EKF is that it estimates the
position error as a HiPAP bias (same problem as for the nonlinear observer when
experiencing DVL loss), which leads to an error in the resulting position estimate.
The filter is then unable to separate between what is position error and what is HiPAP
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Figure 8.22: Position error with EKF in simulation 4

Figure 8.23: Position error with UKF in simulation 4
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bias. This problem is not so evident in the UKF. The reason for this difference is
found in the covariance calculation. In chapter 5.2.3 it is argued that the unscented
transform more accurately captures the real covariance of the system, hence the
Kalman gain matrixK from the UKF utilizes the available measurements in a better
way.

What needs to be noticed in simulation 4 is that the filters do not recover right away
when the IMU measurements are returned. This gives an indication of how much
the external measurements are weighted when they are all available, since there are
no inertial measurements. The greatest error is found in the attitude. From the
measurement specifications (see appendix C) it can be seen that the measurement
noise in yaw(ψ) is larger than that for roll and pitch, hence the yaw measurement
is weighted less than the other two Euler angles. When the gyro measurement is
lost the filter only has the noisy compass for heading correction. The filter does not
however put much emphasis on this measurement due to the large noise and does not
manage to track the changes in heading. From figure 8.24 and 8.25 it can be seen
that when the heading is held constant for a longer period, the estimate gradually
converges towards the correct value. The position error observed in simulation 4 is

Figure 8.24: Attitude error with EKF in simulation 4

caused by the error in the yaw estimate. The position error of simulation 4 would be
significantly less if the vehicle was not rotating in yaw during the IMU dropout. The
position errors has to be corrected by the HiPAP measurement which is not weighted
much, and is only received every 5th second. Since it takes long before the yaw error
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Figure 8.25: Attitude error with UKF in simulation 4

is corrected it also takes long before the position becomes correct. If the external
attitude and position estimates were weighted more (had smaller elements in the R
matrix) the filter would converge more rapidly, but this would lead to more noise on
the attitude estimates. Since the velocity estimate is less influenced by IMU loss it
can be argued that the DVL is the external measurement which is emphasized the
most.

The results from the above discussion are in good accordance with the results from
simulation 3 where it could be seen that the quality of the estimates were mostly
influenced by a DVL loss.

The nonlinear observer performs very well during IMU dropout. The loss of a mea-
surement seems to have little influence on the error, which is not increased during
the 200 seconds dropout. The errors in simulation 4 are actually comparable to the
errors of the nonlinear observer in simulation 1. The largest change in error is visible
in the yaw angle, figure 8.26, where the error grows to about 1◦. This is a result of
that the nonlinear observer utilizes a decoupled attitude observer, such that the sec-
ondary attitude measurement is much more emphasized in the nonlinear observer
than it is in the Kalman filters.

Simulation 4 showed that the EKF was most influenced by the IMU drop out by
great errors in position and attitude. UKF also had problems estimating the atti-
tude but had a much smaller position error than the EKF. The nonlinear observer
performed very good during this simulation with accuracy comparable to that of all
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Figure 8.26: Attitude error with nonlinear observer in simulation 4

measurements available.

8.3.3 Sensor latency

The time indexing of measurements was implemented and tested on both Kalman
filters. The filters where run with the same noise specifications as in simulation 1,
with a 5s delay in position and 0.5s delay in velocity measurements. The statistics
of the tests are presented in appendix B. The tests showed that the delayed mea-
surements was able to limit the errors as in the previous simulations. The accuracy
was slightly degraded, a fact that can be explained by the change in the INS error
over the latency period. The mean of the error stayed low, which is an indication
that the estimate is still only influenced by a small bias. In delaying the velocity
measurement from the DVL, the filter performed satisfactory up to a certain limit
of delay. The difference in impact of the delays is due to the fact that the velocity
error dynamics are faster than the position error dynamics, and that the DVL mea-
surement has a greater influence on the estimate of the reasons mentioned in section
8.3.2.

The implementation of the nonlinear observer in this work was not stable with a
delay in velocity measurement. Delay in the position measurement had, as in the
KFs, little effect on accuracy compared to simulation 1.
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8.3.4 Runtime

For all simulations the nonlinear observer gain distinction in the runtime evalua-
tion. The nonlinear observer performs about the same number of calculations as
the INS navigation equations. In contrast the Kalman filters requires the navigation
equations must be run in parallel with the filtering algorithms. This is also evident
in the run time, which is greatly increased for both Kalman filter implementations.
LaViola (2003) experienced a great difference in runtime between EKF and UKF
when estimating quaternion motion. This is in accordance with our results, where
the UKF used on average 9ms for each filter iteration while the EKF used 1ms. 1

8.3.5 Graceful degradation

The Kalman filters use a separate calculation of the inertial navigation equations and
correct the error in these by the factor calculated in the filter. If there is no measure-
ment input to the filter all the error states in the filter are estimated to zero. This
means that the Kalman filter has no influence over the inertial navigation equations
if there is no measurements. The INS error is then limited to the integral or double
integral, for velocity and position respectively, of the IMU error. By examine the
observer equations for the nonlinear observer in section 5.3 it is evident that when all
measurements are lost, the resulting equations are equal to the regular INS equations
from chapter 3.1. This means that the nonlinear observer should also have an error
limited by the IMU error when all measurements are lost. The difference between
the KFs and the nonlinear observer is seen when measurements are returned.

1Runtime is dependent on the computer hardware. These simulations where run on a Pentium D CPU
2.8Ghz with 2GB of RAM.
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8.4 Pros and Cons

A summary of the pros and cons of the different filter methods are presented in table
8.1.

EKF UKF Nonlinear observer
Pros Well known method Very robust Intuitiv implementation

Robust Accuracy Computational efficient
Fast runtime Easy to account for delays Globally stable (continous)
Graceful degredation Graceful degredation Accuracy
Easy to account for delays No linearization No linearization

Cons Not globally stable Not intuitive implementation Sensitive to measurement loss
Not intuitive implementation Not globally stable Static gains
Lower accuracy Computationally intensive Difficult to get good tuning
Calculation of Jacobian Unstable with DVL delay

Table 8.1: Pros and cons for the different sensor integrator methods
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Chapter 9

Experimental verification of filter

In order to test the sensor integrator on real measurement data a data series is col-
lected. This is done with the use of an IMU and a GPS receiver installed in a
car. The filters are designed with 3 supporting measurements (velocity, position and
attitude), with the possibility of neglecting either one in the case of absent or signif-
icantly degraded measurements. The IMU used is a MTi IMU from Xsens Motion
Technologies (Xsens-Technologies n.d.) This measures acceleration in 3 DOF, an-
gular velocity in 3D as well as earth-magnetic field sensor in 3D. As a secondary
position measurement a Garmin 16A GPS receiver was used.

With this setup the position from the GPS and attitude measurement from the earth-
magnetic field sensor in Euler angles (no velocity measurement available) were used
to support the acceleration and gyro measurements of the IMU to give position,
velocity and attitude estimates. Since a GPS was used and not an HPR, there is
no HPR bias to account for in the estimates. The goal of this test was to use the
measurements to aid the IMU to give estimates with limited error.

The IMU used in these tests is not of navigation quality, as opposed to the data used
in the simulations in chapter 8. The drift in both velocity and attitude is therefore
considerably worse than what can be assumed in a IMU of navigation quality.

Based on the simulations done in chapter 8 the real data test is performed merely on
the Kalman filter observers. This is because the nonlinear observer stability proof
in section 5.3 is only valid with all measurements available. From the real data test
there was no velocity measurement, which simulation 3 from section 8.3.2 showed
is crucial for the nonlinear observer. The filters where not run in real time, but
the data was gathered and post processed. The same data series was used for both
Kalman filters.
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9.1. EVALUATION

9.1 Evaluation

Since these data series are based on real data, it is not possible to compare the
estimates with real states or errors. The trajectories can only be compared with the
GPS samples. Therefore the filters can only be evaluated trough comparing between
the different filter solutions.

The IMU data was sampled by Matlab at 50Hz (real IMU frequency was 100Hz).
The GPS updates at 1Hz, this means that there is only a GPS measurement at every
50th iteration of the INS.

9.2 Results

It is evident that the IMU is not of the grade that is useful for navigation. But even
with this IMU the filter structure can estimate and compensate for the bias drift
in the IMU. The problem with using an IMU of this quality is the robustness. As
mentioned in chapter 8.3.2 the filter can not estimate the errors if the supporting
measurements are lost (in this case the GPS). Hence the robustness of both position
and velocity estimates in the case of GPS dropout is directly dependant of the IMU
quality.

The trajectory tested was one where the IMU traveled almost the same trajectory
two times (figure 9.1). As can be seen the estimates are far more noisy with this
IMU. A GPS measurement is received once every second, and it can be seen clearly
that the drift caused by the IMU bias is significant (up to 2 meters). When it comes
to performance the two filters once again has similar performance for all state es-
timates. From figures 9.2 and 9.3 it is not possible to distinguish between the two
filters for north and east velocity and attitude estimates. For the down velocity the
UKF has more deflections than the EKF, these are also transmitted to the elevation
estimate.

The main result from this experiment was to verify that the filters tested handles
real data satisfactory. By this we mean that the errors were kept limited during very
noisy conditions with only position and attitude measurement.
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CHAPTER 9. EXPERIMENTAL VERIFICATION OF FILTER

Figure 9.1: Position estimate from real data test
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9.2. RESULTS

Figure 9.2: Velocity estimate from real data test

Figure 9.3: Attitude estimate from real data test
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Chapter 10

Conclusions and suggested future
work

10.1 Conclusion

In this work three different solutions has been presented to solve the integration
between measurements for an underwater vehicle. The goal was to determine the
position, velocity and attitude of the vehicle.

Simulations have shown that for the position estimate the nonlinear observer is
slightly more accurate than that of the unscented Kalman filter both with correct
and wrong estimates of noise characteristics. The extended Kalman filter provided
the poorest degree of accuracy. The reason for this is that neither the UKF nor the
nonlinear observer perform any kind of linearization as opposed to the EKF. This
linearization lead to a loss of information about the dynamics of the system, hence
the poorer estimate. For attitude and velocity all filters have good accuracy, but the
nonlinear observer has no information about noise magnitude and can therefore not
filter the white noise accurately such that more noise is visible on the estimates.

When it comes to loss of external measurements the two Kalman filters have proven
more robust. All three observers handles HiPAP loss very well. In the case of
DVL loss the Kalman filters suffers from degraded performance followed by fast
recovery, the nonlinear observer does not manage to recover from the induced error
because it estimates the position error as HiPAP bias. This is a great weakness
of the nonlinear observer structure. The simulations performed showed that the
robustness to sensor dropout (especially DVL) is greatly influenced by the quality
of the IMU. For all the three observers tested, it is important that the IMU is of good
quality if the risk of drop out of supporting measurements are considered high. Both
Kalman filter solutions perform consistent estimates with only velocity and position
measurements. But to increase observability and robustness it is recommended to
also include a secondary attitude measurement.
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10.2. SUGGESTED FUTURE WORK

The IMU is a very robust measurement unit. In the unlikely case of IMU dropout the
nonlinear observer performed very well. Both Kalman filter had great problems with
estimating the attitude. Because of the integrated structure of the Kalman filter the
attitude measurement is not much emphasized in the Kalman filter. The nonlinear
observer gains from having a decoupled attitude observer, this gives more emphasis
on the attitude measurement, hence a better attitude estimate is achieved without
IMU. The attitude error in the KFs also gives position error. This error is however
ten times larger in EKF than in UKF.

It has been shown that the DVL is the most important of the secondary sensors since
it has a high update frequency and relatively low measurement noise. It is also
important to have a good velocity estimate since the attitude error, in the Kalman
filters, is observable through the velocity. A good velocity estimate can not limit
the position error, but decreases the position error drift rate considerably. A good
velocity estimate is also essential for achieving a good estimate of the HiPAP bias.

The nonlinear observer is tuned trough the observer gains. This tuning needs to be
changed depending on the measurement noise characteristics. Since the HiPAP bias
error characteristics changes in different depths, the tuning also needs to change as
the vessel descents. The observer gains are not directly proportional to the noise
so this adaptive tuning is complicated. The Kalman filters are more easily tuned
through the noise covariance matrices. The noise covariance elements can be mod-
eled dependent on the depth, and therefore the tuning can change as a function of
depth.

The Kalman filters was shown to work with a low grade IMU and no velocity mea-
surements trough the use of real data series collected from an IMU and a GPS re-
ceiver. The real data test did not show any big difference in the UKF and EKF
performance.

From these results the recommended method for sensor integration is the unscented
Kalman filter. It has proven good accuracy and is also very robust to both measure-
ment noise and loss of measurements.

10.2 Suggested future work

During the development of this work some issues that needs to be addressed further
have arisen.

• Stability proof of EKF and UKF for sensor integration

• Develop conditions for stability of filter with delayed measurements.

• Designing a update law for the observer gains.

• Implementing the filters in the RovNav application.
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Appendix A

List of Abbreviations

Abbreviation Explaination
INS Inertial Navigation System
IMU Inertial Measurement Unit
GPS Global Positioning System
DGPS Differntial Global Positioning System
HiPAP High Precision Acoustic Positioning
KF Kalman Filter
EKF Extended Kalman Filter
UKF Unscented Kalman Filter
ECI Earth-centered inertial frame
ECEF Earth-centered Earth-fixed frame
NED North-East-Down frame
ROV Remotely Operated Vehicle
AUV Autonomous Underwater Vehicle
DVL Doppler Velocity Log
HPR Hydro-acoustic Position Reference System
LBL Long Base Line
GES Globally Exponential Stable
RovNav Poseidon’s visualization tool for sub-sea operations
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Appendix B

Results

B.1 Results

For simulation 1 and 2 the standard deviation, mean and max error was calculated.
The values have been calculated for the error in position, velocity and attitude. The
Max error value presented is the max avarage error over a time section which is one
hundredth of the total simulation time. 1

Simulation 1

Velocity error (m/s) Position error (m) Attitude error (degrees)
Standard deviation 0.0042 0.0043 0.0043 0.0292 0.0963 0.0044 0.0126 0.0158 0.0935
Mean error 0.0000 0.0001 0.0000 -0.0017 -0.0978 0.0002 -0.0001 0.0025 -0.0308
Max error 0.0041 0.0047 0.0044 0.0940 0.3475 0.0092 0.0778 0.0798 0.3713

Table B.1: Simulation 1 with EKF.

Velocity error (m/s) Position error (m) Attitude error (degrees)
Standard deviation 0.0043 0.0044 0.0043 0.0250 0.0104 0.0113 0.0138 0.0098 0.0979
Mean error 0.0000 -0.0001 -0.0001 0.0102 -0.0137 0.0057 0.0010 0.001 0.0348
Max error 0.0044 0.0042 0.0043 0.0554 0.0340 0.0338 0.0802 0.0495 0.6614

Table B.2: Simulation 1 with UKF.

Velocity error (m/s) Position error (m) Attitude error (degrees)
Standard deviation 0.0722 0.0497 0.0109 0.0193 0.0135 0.0213 0.0799 0.0766 0.3143
Mean error -0.0009 0.0005 -0.0000 0.0069 -0.0241 0.0204 0.0024 0.0065 0.0152
Max error 0.0689 0.0570 0.0121 0.0450 0.0494 0.0694 0.1353 0.1250 0.4948

Table B.3: Simulation 1 with Nonlinear observer.
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B.2. SIMULATION FIGURES

Velocity error (m/s) Position error (m) Attitude error (degrees)
Standard deviation 0.0437 0.0437 0.0428 0.4169 0.6963 0.0491 0.1443 0.2503 1.3571
Mean error -0.0020 0.0008 -0.0003 -0.4024 -0.7096 -0.0029 0.0517 -0.0420 0.0684
Max error 0.0424 0.0469 0.0448 1.2399 1.9339 0.1059 0.5652 1.1165 7.2013

Table B.4: Simulation 2 with EKF.

Velocity error (m/s) Position error (m) Attitude error (degrees)
Standard deviation 0.0433 0.0438 0.0427 0.0824 0.3369 0.1815 0.1247 0.1720 1.2471
Mean error -0.0000 0.0019 -0.0008 -0.0491 0.9110 0.0442 -0.0152 0.0107 -0.4706
Max error 0.0426 0.0466 0.0420 0.2226 1.3175 0.4483 0.7411 0.9766 7.9551

Table B.5: Simulation 2 with UKF.

Simulation 2

Sensor latency

These results are from simulations where sensor latency was modelled. The position
measurment was delayed 5s and the velocity 0.5s. The noise characteristics used
was the same as for simulation 1.

B.2 Simulation figures

Here the simulation figures that were not presented in chapter 8.3 will be found.

1The max hight of the bar plots presented in the simulation results section

Velocity error (m/s) Position error (m) Attitude error (degrees)
Standard deviation 0.7999 0.5112 0.1205 0.1522 0.2064 0.2817 0.7792 0.7317 3.0984
Mean error 0.0072 0.0131 -0.0012 -0.0359 0.1723 0.1898 0.0026 -0.0636 0.0185
Max error 0.8104 0.5114 0.1195 0.4382 0.5639 0.7990 1.4051 1.3032 6.9500

Table B.6: Simulation 2 with Nonlinear observer.
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Velocity error (m/s) Position error (m) Attitude error (degrees)
Standard deviation 0.0126 0.0113 0.0090 0.1425 0.0797 0.0067 0.0188 0.0179 0.0912
Mean error 0.0003 0.0000 -0.0001 -0.1018 -0.0569 -0.0002 -0.0019 -0.0102 0.0127
Max error 0.0292 0.0257 0.0164 0.2878 0.2975 0.0205 0.0832 0.0955 0.6120

Table B.7: Simulation with sensor latency in EKF.

Velocity error (m/s) Position error (m) Attitude error (degrees)
Standard deviation 0.0110 0.0108 0.0090 0.1227 0.0686 0.0189 0.0226 0.0194 0.1379
Mean error -0.0001 0.0001 0.0000 0.2086 0.1166 -0.0039 0.0048 -0.0037 -0.0264
Max error 0.0242 0.0221 0.0147 0.1116 0.2748 0.0455 0.1439 0.1299 0.7537

Table B.8: Simulation with sensor latency in UKF.

Figure B.1: Velocity error with nonlinear observer for simulation 3
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B.2. SIMULATION FIGURES

Figure B.2: Attitude error with nonlinear observer for simulation 3

Figure B.3: Attitude error with UKF for simulation 3
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Figure B.4: Position error with UKF for simulation 3

Figure B.5: Attitude error with EKF for simulation 3
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B.2. SIMULATION FIGURES

Figure B.6: Velocity error with EKF for simulation 3

Figure B.7: Position error with EKF for simulation 3
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Appendix C

Instrument data

In the simulation done in this work some instrument data is assumed. This informa-
tion is gathered from the data sheets from the selected instrument. This appendix
will summarize the instrument specifications.

C.1 Inertial measurement unit

The LN-200 fiber optic inertial measurement unit from Northrop Grumman Cor-
poration was used in the simulations. This unit consists of 3 solid-state fiber optic
gyros and 3 solid-state silicon accelerometers. In this work the IMU is assumed
strapped down in the body frame. This meaning that the axes of the IMU is con-
current with the axes in the body frame. The statistical properties given in the data
sheet is represented in table C.1.Where applicable, 1µ applies.

Performance specification for the LN-200
Gyro Accelerometer
Bias 1◦/hr to10◦/hr Bias 300µg − 3.0mg
Repeatability Repeatability
Scale factor 100-500 ppm Scale factor 300-5000 ppm
Accuracy Accuracy
Random walk 0.07− 0.15◦/

√
h, White noise 50µ

√
HzPSD

PSD level
Bias variation 0.35◦/h, 100s Bias variation 50µg, 60s

correlation time correlation time

Table C.1: LN-200 IMU characteristic
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C.2. DOPPLER VELOCITY LOG

Performance specification for the WHN 300
Bottom Velocity
STD at 1m/s ±0.3cm/s
STD at 3m/s ±0.6cm/s
Ping rate 7Hzmax
Max tilt ±15◦

Tilt measurement ±0.5◦

accuracy
Compass accuracy ±2◦@60◦ dip

Table C.2: WHN-300 DVL characteristic

C.2 Doppler velocity log

Teledyne’s WHN-300 Doppler velocity log (DVL) is selected for the simulations.
This section is based on both the data sheet and communication with Teledyne cus-
tomer services. The DVL uses a 4-beam Janus array convex transducer with 30◦

beam angle. As well as bottom velocity the instrument can also give a tilt mea-
surement as well as a compass reading. The water reference velocity that is also
available in this instrument is not used in the setup in this work. Table C.2 shows
the most important quantitative specifications on the instrument.

It has in this work been made some simplifications regarding the DVL. The instru-
ments data rate will be reduced when the vessel is at a greater altitude above the
seabed. The second characteristic that is not regarded in this work, is that the stan-
dard deviation increase when operating close to the bottom.

C.3 Hydro acoustic positioning

Kongsberg Maritime has a wide selection of High Precision Acoustic Positioning
systems (HiPAP). The simulations in this work is based on the data for the HiPAP
500. For the simulations it is assumed that the system is based on one transducer
mounted on a vessel. It is also possible to introduce redundancy and increase the
accuracy by using a so called Long Base Line positioning principle.

The simulation data used is summarized in table C.3.
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Operating range 1− 4000 m
Angle Accuracy 0dBS/N : 0.30◦

10dBS/N : 0.18◦

20dBS/N : 0.12◦

Range detection accuracy < 20cm

Table C.3: HiPAP 500 characteristic

Pressure Range 700m
Accuracy 0.01% of full scale
Resolution 1× 10−8

Table C.4: Digiquartz 8DP700 characteristic

C.4 Depth sensor

To measure the depth beneath the ocean surface, all that is needed is a pressure
sensor. The Norwegian Defense Research Establishments (FFI) Hugin AUV uses a
Digiquartz pressure sensor from Paroscientific Inc. The instruments for the Hugin is
described in (Jalving & Gade 1998). It has therefore been used data for this sensor
also in this work. It is important to note that the depth measurement should be
compensated for tidal water, or else this will be a great factor of error. One solution
is to have a depth sensor on a known depth/point, and use this as reference.
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Appendix D

CD-ROM contents

The enclosed CD-ROM contains files for running simulations of all filter solutions.
It is organized as follows.

• ExtendedKalman contains all files necessary for running simulations of the
extended Kalman filter.

• UnscentedKalman contains all files necessary for running simulations of the
unscented Kalman filter.

• NonlinObserver contains all files necessary for running simulations of the non-
linear observer.

• RealDataTest contains two folders:

– extended contains files for running the real data test for extended Kalman
filter.

– unscented contains files for running the real data test for unscented Kalman
filter.
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