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Abstract— This paper addresses the source localization prob-
lem of an acoustic fish-tag using the Time-of-Arrival mea-
surement of an acoustic signal, transmitted by the fish-tag.
The Time-of-Arrival measurements denote the pseudo-range
information between the acoustic receiver and the fish-tag,
except that the Time-of-Transmission of the acoustic signal
is unknown. Starting with the pseudo-range measurement
equation, a globally valid quasi-linear time-varying measure-
ment model is presented that is independent of the Time-of-
Transmission of the acoustic signal. Using this measurement
model, an Uniformly Globally Asymptotically Stable (UGAS),
three stage estimation strategy (eXogenous Kalman Filter) is
designed to estimate the position of an acoustic fish-tag and
evaluated against a benchmark Extended Kalman Filter based
estimator. The efficacy of the developed estimation method
is demonstrated experimentally, in presence of intermittent
observations using an array of receivers mounted on three
Unmanned Surface Vessels (USVs).

I. INTRODUCTION

A. Motivation

Acoustic fish-tags have been used traditionally to monitor
the migratory pattern of a certain species of fishes and aquatic
animals in studies related to marine biology [1], [2]. These
fish-tags are basically acoustic transmitters that transmit an
acoustic signal periodically, containing information such as
ID, temperature, depth, conductivity, etc., depending on the
type of transmitter. The transmitted acoustic signals are then
picked up by an array of acoustic receivers that are fixed
in a region of interest. The collected data are later used to
reconstruct and analyze the migratory patterns of the aquatic
animals. Recently, with the advent of enabling technologies
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Fig. 1: Mobile acquatic telemetry system

such as low cost Unmanned Surface Vessels (USVs), efforts
have been made to use acoustic receivers mounted on the
USVs [3], [4], [5] that track and follow the fish-tag thereby
allowing operations in a larger area when compared to the
traditional moored receiver systems. The acoustic communi-
cation means are prone to measurement losses and delays.
Hence, robust estimation of the position of the acoustic fish-
tag in the presence of intermittent observations naturally
assumes importance for the successful operation of such an
mobile aquatic telemetry system.

The methods to solve the source localization problem
in the literature can be roughly classified into approaches
that aim at design of optimal action strategies to achieve
improved localization [6], [7] and approaches that improve
localization accuracy through the design of efficient estima-
tion strategies [8], [9], [10], [11]. This paper addresses the
latter problem and presents a practical solution to the source
localization problem of an acoustic fish-tag using only the
Time-of-Arrival (ToA) of the acoustic signal, as measured
by the mobile acoustic receivers (shown in Figure 1) using
an eXogenous Kalman Filter (XKF) [12] based estimation
strategy. The ToA measurement usually denotes a pseudo-
range measurement between a receiver and the transmitter.
The term pseudo refers to the fact that the measured range
is not the actual range and is inclusive of measurement
errors due to clock synchronization, delay, uncertain speed of
sound, etc. Since the fish-tag is submerged in the water, the
ToT of the acoustic signal is in general not known. Therefore,
the source localization problem can be posed as a position
estimation problem using pseudo-range measurements, that
is known to be a highly nonlinear estimation problem further
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complicated by the unavailability of the ToT information.

B. Related Work

Range based positioning systems have been widely investi-
gated and finds applications in search and rescue, mobile po-
sitioning in wireless networks, aquatic telemetry, navigation
of marine vehicles, warehouses etc. A comprehensive review
of range based positioning algorithms and methods can be
found in [13], [8] and the references therein. A class of
methods use the first order Taylor series approximation of the
nonlinear measurement equations, and transform the position
estimation problem into a nonlinear least squares problem
or used in an Extended Kalman Filter (EKF) formulation
[13], [14]. While these methods have been successfully used
in practice, they suffer from the lack of convergence and
stability guarantees. Another class of methods [13], [10]
derive a quasi-linear time-varying models using a globally
valid nonlinear algebraic transformations of the pseudo-
range equations. In a noise free case, these equations are
solved algebraically to obtain the position estimates of the
source. However, in the presence of measurement noise,
these methods usually yield sub-optimal position estimates.
In order to recover performance, weighted least squares
methods have been used in [11], [10].

In the context of acoustic localization, [15] presents a
method to localize an Autonomous Underwater Vehicle
(AUV) using range and depth measurements to a set of sta-
tionary beacons using Minimum Energy estimation method
where Linear Time-Varying (LTV) models were obtained
by augmenting the state vector with auxiliary variables that
replace the quadratic relations arising in range measurement
equations. References [6], [4] presents a robotic telemetry
system for localizing a radio-tagged fish using coarse bearing
measurements. The approach however, is to select the sensing
locations that minimize localization uncertainty and employs
an EKF for estimation. Particle filter based approaches to
estimate and track a leopard shark using single AUV [5] and
multiple-AUVs [16], [9] have been reported. The Particle
Filters ability to handle ambiguous sensor measurements is
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Fig. 4: Source localization scenario with receivers R1 to R4

leveraged to deal with a stereo hydrophone and receiver
system that cannot determine the sign of the relative angle to
a detected fish tag. A three stage estimation strategy recently
introduced in [8] was used in [17] to localize an AUV
using pseudo-range and pseudo-range-rate measurements in
presence of unknown wave speed and in [18] using a single
transponder. The three stage filter proposed in [8], provides
convergence and stability guarantees for the source localiza-
tion problem using pseudo-range measurements. A globally
valid nonlinear algebraic transformation [13], [19] is applied
in stage one to obtain a set of quasi-linear time-varying
equations. These equations are then used as the measurement
model in the second stage Linear Time-Varying Kalman Filter
(LTV-KF) based estimator to obtain sub-optimal position
estimates. Additionally, the clock bias was estimated to ac-
count for the synchronization error between the receiver and
transmitter clocks. Further, a third stage linearized Kalman
Filter was designed using the locally linearized models of
the nonlinear pseudo-range measurement equations in order
to improve the accuracy of the estimates. The linearization
was performed about the estimates of the stage two LTV-
KF, thereby deviating from the EKF formulations where the
linearization is performed about the filter’s own estimates.
Figure 2 and 3 illustrate the difference between the EKF and
the three stage estimation strategy. The three stage filter can
be seen as a variant of a more generic eXogenous Kalman
Filter (XKF) [12] framework, where the output of stage two
filter form the exogenous input to the third stage Kalman
Filter and hence referred to as XKF in the remainder of the
paper.

C. Contributions

The main contributions of this paper are the design and
experimental validation of an Uniformly Globally Asymptot-
ically Stable (UGAS) XKF based estimator to localize the
fish-tag using mobile acoustic receivers. A globally valid,
algebraic nonlinear transformation [10] is applied to the
nonlinear pseudo-range measurement equations to obtain a
quasi-linear time-varying model that is independent of ToT
of the acoustic signal, thereby deviating from the method
presented in [8]. The designed XKF is validated against
a benchmark EKF through experiments using acoustic re-
ceivers mounted on the USVs. Furthermore, experiment
results illustrate the efficacy of the proposed approach in
the presence of intermittent observations.

The remainder of the paper is organized as follows.



Section II describes the measurement models necessary for
the design of the estimator. The globally valid, algebraic
nonlinear transformation used in order to obtain the quasi-
linear time varying model is discussed in Section III. The
design of the XKF based estimator is presented in Section
IV. The performance of the XKF is validated against a
benchmark EKF experimentally in Section V, followed by
conclusions in Section VI.

II. MEASUREMENT MODEL

Let qt ∈ R3 denote the location of the acoustic fish-tag,
expressed in a fixed frame of reference, that needs to be
estimated. Consider i = {1, 2, · · · ,m} acoustic receivers
with known positions pi ∈ R3 as shown in Figure 4.
The data received by the acoustic receiver i consist of the
Time-of-Arrival (ToA) of the acoustic signal transmitted
by the fish-tag, denoted by tToA,i. It is assumed that the
clocks on the acoustic receivers are synchronized. Such an
assumption is satisfied in practice by synchronizing the time
at the receivers with the GPS clocks. The pseudo-range
measurement available with each receiver i is given as

ri = c(tToA,i − tToT) + cτc + ei (1)

where c is speed of sound in water [m/s] that is assumed to
be known, tToT is the Time-of-Transmission of the acoustic
signal, the term cτc denotes the error in range measure-
ment due to clock bias, τc is clock synchronization error
between transmitter and receiver (constant for every pseudo
range measurement since receivers are synchronized) and
ei ∼ N (0, σ2

ri) is the Zero-Mean Gaussian Noise (ZMGN)
acting on the pseudo-range measurement. In general, the
ToT of the acoustic signal may not be known. If known,
it could be possible that the transmitter and receiver clocks
are not synchronized. Hence, the uncertainties in the range
measurement can be combined into an unknown variable
β = −ctToT+cτc that could be estimated [8] or eliminated as
discussed in the next section. The pseudo-range measurement
is then given as

ri = ctToA,i + β + ei (2)

In order to design an estimator for the localization of the
fish-tag, a mathematical model for the sensing system is
developed. Since the pseudo-range measurement (2) essen-
tially captures the geometric distance between the fish-
tag and the receiver combined with the uncertainty due to
clock synchronization errors, it follows that the pseudo-range
measurement can be described as

ri = ‖qt − pi‖+ β + ei (3)

The pseudo-range measurement equation (3) forms the basis
for the design of estimators for localization of the fish-tag
in the remainder of the paper.

III. QUASI-LINEAR TIME-VARYING MODEL

The pseudo-range measurement equations of (3) are non-
linear in nature. However, it is shown in [13], [10] that
a globally valid quasi-linear time-varying model can be

obtained starting from (3). Two possible transformations
exist to obtain a quasi-linear time-varying model. First,
Squared-range difference of the pseudo-range equations with
respect to the measurement obtained from a reference re-
ceiver leads to elimination of the quadratic nonlinear term
from the resulting set of equations. This approach leads
to four unknowns - [qT

t β]T that needs to be estimated.
This model forms the basis for estimator design presented
in [8]. Such an approach is suitable when the ToT of the
acoustic signal is known and β represents the slowly-varying
clock bias signal. However, when the ToT is unknown as
considered in this paper, this approach can be sensitive to
the initialization of the parameter β. Therefore, a quasi-linear
model is obtained by taking squared range-difference of the
pseudo-range equations, that is independent of the parameter
β and hence the unknown ToT, leading to three unknowns -
qt that needs to be estimated.

Given m acoustic receivers, let the mth receiver be the
reference receiver without loss of generality. The square of
the pseudo-range measurement equation (3) can be written
for all i ∈ {1, 2, · · · ,m− 1} as

r2
i = (ri − rm + rm)2 = r2

im + 2rimrm + r2
m (4)

where rim = ri − rm. From (3) with di = ‖qt − pi‖, r2
i =

d2
i + β2 + 2diβ and r2

m = d2
m + β2 + 2dmβ, where the

gaussian noise term ei is excluded for the sake of brevity.
Substituting for r2

i and r2
m in (4), we have

r2
im + 2rimrm = d2

i − d2
m + 2(di − dm)β (5)

Since the geometric distance between the ith receiver and
the fish-tag is unknown, (5) needs to be rewritten in terms
of the available measurements ri. Through simple algebraic
manipulation, the term 2rimrm on the left hand side of (5)
can be written as

2rimrm = 2rim(dm + β)

= 2rimdm + 2(di − dm)β (6)

and the term d2
i − d2

m on the right hand side of (5) satisfies

d2
i − d2

m = ‖qt‖2 + ‖pi‖2 − 2pT
i qt

−
[
‖qt‖2 + ‖pm‖2 − 2pT

mqt

]
= −2(pi − pm)Tqt + ‖pi‖2 − ‖pm‖2 (7)

Using (6) and (7) in (5)

r2
im − ‖pi‖2 + ‖pm‖2 = −2(pi − pm)Tqt − 2rimdm (8)

Stacking the instances of (8) for all i ∈ {1, 2, · · · ,m − 1}
into vectors and matrices results in the globally valid quasi-
linear time varying model

y = 2Cyqqt − 2dmη (9)

where the vectors y ∈ Rm−1, η ∈ Rm−1 and matrix Cyq ∈
R(m−1×3) are defined as

y :=

 r2
1m − ‖p1‖2 + ‖pm‖2

...
r2
(m−1)m − ‖pm−1‖2 + ‖pm‖2





Cyq :=

 −(p1 − pm)T

...
−(pm−1 − pm)T

 η :=

 r1m

...
r(m−1)m


The following lemma presents the algebraic solution to the
quasi-linear time-varying measurement model (9) for the
estimate of the position of the fish-tag qt.

Lemma 1. The two candidate algebraic solutions qt and
dm given by

qt = ȳ + dmη̄, ȳ =
1

2
C+

yqy, η̄ = C+
yqη (10)

dm =

{
−b±

√
b2−4ac

2a if a 6= 0
− c

b otherwise
(11)

where a = (1− η̄T η̄), b = 2(pT
mη̄− ȳT η̄), c = −(pm− ȳ)2

and C+
yq = (CT

yqCyq)−1CT
yq is the Moore-Penrose pseudo-

inverse, under the assumption rank(Cyq) = 3, solves the
quasi-linear measurement model (9). Furthermore, at least
one of the solutions is the true position of the source in the
absence of measurement noise, provided the condition

ε =
(
CyqC

+
yq − Im−1

)(1

2
y + dmη

)
= 0 (12)

is satisfied.

Proof. See Lemma 1 of [8] for outline.

The above mentioned results are stated considering the
absence of measurement noise. In practice, application of
Lemma 1 to obtain the source position in presence of the
measurement noise leads to sub-optimal estimates. There-
fore, a Linear Time-Varying Kalman Filter (LTV-KF) based
on the quasi-linear time varying model (9) is designed as
stage 2 estimator (illustrated in Figure 3) with a new mea-
surement vector z = 1

2y+dmη to filter out the measurement
noise. Consequently, the algebraic position estimate (10) is
not used. However, (11) is used to compute the estimated
geometric distance between the reference receiver and the
fish-tag in order to construct the measurement vector z for
the stage 2 LTV-KF of the XKF framework.
Remark 1. Equation (11) suggest that there are two possible
solutions to the estimate of the geometric distance between
the reference receiver and the fish-tag, except in cases where
a = 0 or equivalently η̄T η̄ = 1. This leads to ambiguity in
the estimate of dm as the correct estimate needs to be chosen
to construct the measurement vector z for the stage 2 filter.
The ambiguity can be resolved by selecting dm that satisfies
(12). When m = 4 and rank(Cyq) = 3, (12) is always
satisfied since CyqC

+
yq = Im−1. In such cases, the physical

interpretation of dm can be useful to resolve ambiguity.

IV. EXOGENOUS KALMAN FILTER

This section describes the design of an XKF that consists
of three filtering sub-systems connected in a cascade. The
result of the previous section is used as a first stage prepro-
cessing of the measurements leading to a LTV model (9) and
new measurement vector z. A LTV-KF based on the quasi-
linear time-varying model and measurements obtained from

stage one forms the stage two of the XKF that produces sub-
optimal estimates since the prior information about nonlinear
relationship is lost due to application of algebraic nonlinear
transformation. Therefore, a third stage Linearized KF, that
takes the data from stage two LTV-KF as an exogenous input
in order to obtain locally linearized model of the original
nonlinear measurement equations is designed to recover
performance. Assuming lack of any information regarding
the motion of the fish-tag, a random walk model is used to
describe its motion, i.e.,

q̇t = uq (13)

where uq ∼ N (0,Σ2
u) and Σ2

u ∈ R3×3. The discretized
motion model is therefore given as

qt,k = Aqt,k−1 +Duq,k−1 (14)

where A = I3, D = ∆tI3 with ∆t being the sampling time,
for the random walk model and k is the discrete time index.

Remark 2. Other motion models that would more accurately
represent the fish motion could be used. Further, the type
of motion model used would depend on the type of the fish
that is being tracked. For example, in [9], a hybrid Brownian
and Levy Flight motion model is used that is better able to
account for multiple hypothesis of the motion of a leopard
shark.

A. Stage 1: Algebraic Nonlinear Transformation

The globally valid algebraic nonlinear transformation pre-
sented in Section III is applied to obtain a quasi-linear time
varying measurement model

zk = Cyq,kqt,k (15)

that is equivalent to (9) with new measurement vector zk =
1
2yk + dm,kηk. Note that the construction of measurement
vector zk requires knowledge of dm,k. Hence results of
Lemma 1 are applied to estimate dm,k and it is assumed
that the ambiguities are resolved through the application of
(12) or Remark 1.

B. Stage 2: LTV Kalman Filter

Based on the discrete time motion and measurement model
(14) and (15) respectively, a Linear-Time Varying Kalman
Filter in predictor-corrector form is developed to estimate
the position of the fish q̄t,k ∼ N (qt,k, P̄k), where P̄k is the
covariance associated with the estimates. The filter equations
are given as

q̄−t,k = Aq̄t,k−1 (16a)

P̄−k = AP̄k−1A
T +DQ̄kD

T (16b)

K̄k = P̄−k C
T
yq,k(Cyq,kP̄

−
k C

T
yq,k + R̄k)−1 (16c)

q̄t,k = q̄−t,k + K̄k(zk − Cyq,kq̄
−
t,k) (16d)

P̄k = (I − K̄kCyq,k)P̄−k (16e)

where Q̄k = Σ2
u and R̄k is computed using the

covariance terms, Cov(zi, zi) = 0.5(σ2
ri + σ2

rm)2 +
(rim + dm)2(σ2

ri + σ2
rm) and Cov(zi, zj) = 0.5σ4

rm +



[
rimrjm + dm(rim + rjm) + d2

m

]
σ2
rm (see Appendix of [8]

for outline of derivation). The LTV-KF is Uniformly Globally
Asymptotically Stable (UGAS) following the arguments in
Proposition 1 and 2 of [8].

Remark 3 (Observability conditions). Efficient operation of
the LTV-KF requires that the acoustic receivers are posi-
tioned such that there exists σ∗ > 0 such that CT

yq,kCyq,k ≥
σ∗I3 holds, at all times k and m ≥ 4.

C. Stage 3: Linearized Kalman Filter

The globally stable, sub-optimal estimates obtained in the
stage two LTV-KF are used as auxiliary estimates that pro-
vide a linearization point for a third stage linearized Kalman
Filter, where the measurement model is based on the local
linear approximation of the original nonlinear measurement
equation given by

r(qt) :=

 ‖qt − p1‖ − ‖qt − pm‖
...

‖qt − pm−1‖ − ‖qt − pm‖

 (17)

Note that the pseudo-range-difference equations are consid-
ered that eliminates the term β from the nonlinear mea-
surement model. Furthermore, the linearization is performed
using the position estimate q̄t,k from the second stage LTV-
KF, thereby digressing from the Extended Kalman Filter
architecture. The local linearization of the nonlinear model
(17) satisfies

rk ≈ r̂k + Ck (qt − q̄t,k) (18)

where rk :=
[
r1m,k · · · r(m−1)m,k

]T
, r̂k = r(q̄t,k)

and Ck has the form

Ck :=
∂r(qt)

∂qt

∣∣∣∣
qt=q̄t,k

=


(pm−q̄t,k)T

dm
− (p1−q̄t,k)T

d1

...
(pm−q̄t,k)T

dm
− (pm−1−q̄t,k)T

dm−1


(19)

Note that the matrix Ck is the not the same as Cyq,k used in
the second stage LTV-KF. The equations for the third stage,
Linearized KF in predictor-corrector form, with estimates of
the position of the fish-tag q̂t,k ∼ N (qt,k, P̂k) are given by

q̂−t,k = Aq̂t,k−1 (20a)

P̂−k = AP̂k−1A
T +DQ̂kD

T (20b)

K̂k = P̂−k C
T
k (CkP̂

−
k C

T
k + R̂k)−1 (20c)

q̂t,k = q̂−t,k + K̂k

[
rk − r̂k − Ck

(
q̂−t,k − q̄t,k

)]
(20d)

P̂k = (I − K̂kCk)P̂−k (20e)

Since the motion model remains unchanged, Q̂k = Σ2
u is

the same as in the second stage, while R̂k is computed
using the covariance terms, Cov(rim, rim) =

(
σ2
ri + σ2

rm

)
and Cov(rim, rjm) = σ2

rm . The UGAS property of the filter
is retained as the linearization is performed using stage two
LTV-KF estimates that are UGAS. The UGAS of the XKF
then follows from the cascade of UGAS subsystems [12].

(a) (b)

Fig. 5: (a) Representative image of the Themla Biotel fish-
tag of 18 mm diameter and 104 mm length with a mass of
43 gram. (b) Thelma Biotel TBR-700 acoustic receivers of
75 mm diameter and 230 mm length with a mass of 1140
gram.

D. Practical Issues

As mentioned before, the ToA of the acoustic signal
is a function of the geometric range between the receiver
and the fish-tag. Therefore, the measurements are obtained
asynchronously. The effects such as multi-path, error due to
density/temperature variations in the water or even the loss
of acoustic signal is possible in a challenging underwater
environment. Since the ToT is unknown, it is often not
possible to differentiate between a correct and an erroneous
measurement. Therefore, additional care must be taken while
taking the difference between two measurements to construct
the measurement vector zk and rk for the stage two and stage
three filter design respectively. Since the operational range
of the fish-tag is known, it is possible to reject measurements
when the difference between ToA of two receivers exceed a
certain value i.e, ri− rm > cτmax, where τmax is maximum
allowable time difference between two ToA measurements.
Since it is also possible that one or more measurements
are lost, the filter must be able to handle such intermittent
observations. In order to deal with such situations, the stage
one pre-processing and stage two LTV-KF are executed only
when sufficient measurements (at least three in order to
estimate 3D position of the fish-tag) are available to compute
the algebraic estimate dm using (11) of Lemma 1, that is also
required to compute the measurement vector zk for stage two
LTV-KF. This prevents inaccurate dm estimate to be used in
the stage two LTV-KF that may lead to inaccurate position
estimates, thereby severely affecting the performance of the
third stage Linearized KF. The third stage linearized KF
however can incorporate any number of measurements when
they are available, since the locally linearized models are
obtained using stable, stage two LTV-KF estimates.

V. EXPERIMENT RESULTS

A. Experiment setup

The proposed source localization method was tested on an
experimental testbed that consist of four Maribot Duckling1

USVs (Figure 1), three TBR-700 Thelma Biotel acoustic
receivers (Figure 5b) mounted on three USVs and a Thelma
Biotel acoustic fish-tag (Figure 5a) attached to the fourth
USV. The fish-tag, designed for long duration missions has

1The Maribot Duckling USVs are developed at the Maritime Robotics
Laboratory, Royal Institute of Technology, Stockholm, Sweden.



a range of approximately 800 [m] and nominally transmits
an acoustic signal once every 8 seconds. Depth measurement
is obtained from the fish-tag, which enables the use of XKF
with only three receivers. The depth measurement equation
given by

rz = [0 0 1]Tqt + ez (21)

where ez ∼ N (0, σ2
z), is used to augment the matrices Cyq,k

and Ck in LTV-KF and Linearized KF respectively. The
receivers on-board the USVs provides the ToA (in UNIX
time since epoch, synchronized with GPS clocks), and uses
GPS to record the receiver position. The receiver data is
transmitted from three Ducklings over wireless communica-
tion link to the fourth Duckling that caries the fish-tag and
also performs the position estimation. The GPS data of the
USV carrying the fish-tag is used as the ground truth for
performance comparison. The position estimation algorithms
are implemented using C++ in DUNE and the entire system
is monitored using Neptus through a mission center. DUNE
and Neptus are a part of LSTS toolchains [20] that provide an
integrated framework for guidance, navigation, control, and
monitoring tasks for marine and aerial vehicles. In order to
satisfy the observability conditions outlined in Remark 3, a
distance based formation controller [21] for target-tracking is
executed on three Ducklings carrying the acoustic receivers.

B. Results

The performance of the XKF is validated through experi-
mental data gathered over field tests conducted for a duration
of approximately 90 minutes. An EKF based estimator is also
designed using the nonlinear measurement model (17) and
forms a benchmark estimator for performance comparison.
Since the fish-tag data nominally arrives every 8 seconds,
both XKF and EKF were executed at a low sampling
frequency of 1 Hz with identical initial conditions and
covariance matrices. The process noise covariance matrix
was chosen as Σ2

u = diag(1, 1, 0.1) and the measurement
noise covariance of σ2

ri = 0.9 for all i ∈ {1, · · · ,m}
and σ2

z = 0.2 was used. The initial condition was set to
qt,0 = [100, 100, 7]T in [m] with respect to a fixed reference
point (lat-lon coordinates) and the initial covariance matrix
P0 was set as diag(100, 100, 10). Note that the position
estimation is performed in a local coordinate frame expressed
with respect to the fixed reference frame. The estimated
position of the fish-tag output by the EKF and the XKF
were then transformed into global lat-lon coordinates. The
speed of sound in water was set as c = 1485 [m/s].

Estimator Performance – Figure 6a and 6b shows the
plot of estimated latitude and longitude of the fish-tag over
time. The 2D latitude-longitude plot is shown in Figure 6c.
The plots illustrate the known GPS data of the USV that
carries the fish-tag - considered as ground truth, solutions
of the EKF, stage one Least Squares Solution (LSS), stage
two LTV-KF and the stage three Linearized KF (also the
output of XKF). The estimated depth is shown in Figure
6d. From the plots, it can be observed that both the EKF
and XKF are able to estimate the position of the fish-tag,

however, the performance of the XKF is superior compared
to the EKF on the following accounts. From Figure 6a and
6b it can be noticed that XKF achieves faster convergence
when compared to the EKF. This is due to the UGAS
three stage estimation strategy adopted by the XKF. Given
three measurements and a valid computation of dm with
no ambiguity (Lemma 1), and its subsequent use in the
stage-two LTV-KF (to construct the measurement vector zk),
results in a sub-optimal, correct solution to the position
estimation problem. The estimated position of stage two is
used as a linearization point by the stage three linearized
KF to further enhance the accuracy, thereby providing faster
convergence to the correct solution. This is also reflected in
the estimates of the depth, where XKF estimates are more
accurate than the EKF. Note that the fish-tag was immersed
at a constant depth of 2 [m] from the USV. The initial
estimation errors with the XKF are due to that fact that
the application of Lemma 1 would lead to an invalid com-
putation of dm possibly due to the geometric configuration
of the receivers and/or erroneous ToA measurements at the
initialization phase of the experiments. As mentioned before,
convergence is achieved once a valid dm is obtained. Figures
6e and 6f show the norm of innovation vector and the trace
of covariance matrix respectively. It can be noticed that the
uncertainty associated with the EKF (red peak in Figure 6f)
is higher until it converges to the true position of the fish-
tag while the uncertainty associated with XKF is lower. The
initial peak in the norm of the innovation vector for the XKF
is due to unavailability of a valid dm during the initialization
phase of the experiments. It is clear from the plots, that the
XKF exhibits better performance when compared to the EKF
in the terms of faster convergence and UGAS property, which
are the most important advantages.

Initial Conditions – It is known that the convergence
with EKF cannot be guaranteed and is true especially when
sufficiently accurate initialization of the estimator states
cannot be made. Therefore, the initial position of the fish-
tag was arbitrarily changed to qt,0 = [1000, 1000, 70]T [m]
and the performance of the estimators were assessed using
a part of measurements starting from approximately 14:43
[HH:MM], where the receivers were in a favorable position
that satisfies the observability condition (Remark 3). Figures
7a and 7b show the estimated latitude and longitude of
the fish-tag and the superior performance of the XKF is
evident. While the EKF tracks the true position only after 5-7
minutes at 14:50 [HH:MM], XKF exhibits a fast convergence
to the true position within seconds even with an arbitrary
initialization of the estimator states.

Intermittent Observations – It can be noted that the XKF
based estimator is able to handle the case of intermittent
observations. Specifically, at around 14:10, 14:20 and 14:50
[HH:MM] of the Figure 6a and 6b, it can be noticed that the
stage one Least Squares Solution (LSS) and stage two LTV-
KF solution remains constant as sufficient measurements
(3 in this case) are not available to apply the result of
Lemma 1. The third stage Linearized KF however, uses
the measurements when available in order to estimate the
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Fig. 6: Results for estimation of the fish-tag using XKF and EKF with m = 3 receivers and depth measurement.

position of the fish-tag. Another important observation where
the XKF deviates from the ground truth is at 14:50 of Figure
6b. This is the instance when sufficient measurements are
not available for a long duration that prevents measurement
update of stage two LTV-KF. Consequently, the stage three
linearized KF relies on the linearized model that remains
constant until the LTV-KF is updated and leads to error in the
estimates of the position. This indicates that a formal analysis
of allowable duration for which the intermittent observations
can be tolerated and its implication on the performance of
the XKF is needed. The effect of intermittent observations

on the variance of the estimated states can be seen in the
Figure 6f where the uncertainty associated with the LTV-KF,
Linearized KF are higher (blue peaks). The performance is
recovered once the new measurements are available.

VI. CONCLUSION

This paper addressed the problem of design of an XKF
based estimator that is UGAS, for localization of an acoustic
fish-tag using ToA measurements. The proposed filter design
was validated experimentally using three receivers mounted
on USVs and a depth measurement obtained from the fish-
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Fig. 7: Position estimates of the fish-tag for an arbitrary initialization of the estimator states

tag attached to a fourth USV. The performance of the XKF
was compared against a benchmark EKF based estimator.
It was observed that the performance of XKF is superior
when compared to the EKF. The performance of the XKF
was further validated with poor initialization of the estimator
states and it was found that XKF achieves significantly
faster convergence to the true position while EKF outputs
incorrect position estimates. Additionally, it was shown that
the designed XKF perform adequately in the presence of
intermittent observations. However, a formal analysis of the
performance of the XKF in the presence of intermittent
observations is left as a future work.
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Institute of Technology, Sweden in conducting the experi-
ments.

REFERENCES

[1] N. E. Hussey, S. T. Kessel, K. Aarestrup, S. J. Cooke, P. D. Cowley,
A. T. Fisk, R. G. Harcourt, K. N. Holland, S. J. Iverson, J. F. Kocik,
J. E. Mills Flemming, and F. G. Whoriskey, “Aquatic animal telemetry:
A panoramic window into the underwater world,” Science, vol. 348,
no. 6240, 2015.

[2] S. J. Cooke, J. D. Midwood, J. D. Thiem, P. Klimley, M. C. Lucas,
E. B. Thorstad, J. Eiler, C. Holbrook, and B. C. Ebner, “Tracking
animals in freshwater with electronic tags: past, present and future,”
Animal Biotelemetry, vol. 1, no. 1, p. 5, May 2013.

[3] A. Zolich, T. A. Johansen, J. A. Alfredsen, J. Kuttenkeuler, and
E. Erstorp, “A formation of unmanned vehicles for tracking of an
acoustic fish-tag,” in OCEANS 2017; Anchorage, Sept 2017, pp. 1–6.

[4] P. Tokekar, D. Bhadauria, A. Studenski, and V. Isler, “A robotic system
for monitoring carp in minnesota lakes,” Journal of Field Robotics,
vol. 27, no. 6, pp. 779–789, 2010.

[5] C. Forney, E. Manii, M. Farris, M. A. Moline, C. G. Lowe, and
C. M. Clark, “Tracking of a tagged leopard shark with an AUV:
Sensor calibration and state estimation,” in 2012 IEEE International
Conference on Robotics and Automation, May 2012, pp. 5315–5321.

[6] P. Tokekar, J. Vander Hook, and V. Isler, “Active target localization
for bearing based robotic telemetry,” in 2011 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2011,
pp. 488–493.

[7] R. P. Jain, A. Alessandretti, A. P. Aguiar, and J. B. de Sousa, “A
nonlinear model predictive control for an AUV to track and estimate
a moving target using range measurements,” in Iberian Robotics
Conference. Springer, 2017, pp. 161–170.

[8] T. A. Johansen, T. I. Fossen, and G. C. Goodwin, “Three-stage
filter for position estimation using pseudorange measurements,” IEEE
Transactions on Aerospace and Electronic Systems, vol. 52, no. 4, pp.
1631–1643, August 2016.

[9] Y. Lin, H. Kastein, T. Peterson, C. White, C. G. Lowe, and C. M.
Clark, “A multi-AUV state estimator for determining the 3d position of
tagged fish,” in 2014 IEEE/RSJ International Conference on Intelligent
Robots and Systems, Sept 2014, pp. 3469–3475.

[10] Y. T. Chan and K. C. Ho, “A simple and efficient estimator for
hyperbolic location,” IEEE Transactions on Signal Processing, vol. 42,
no. 8, pp. 1905–1915, Aug 1994.

[11] K. C. Ho and W. Xu, “An accurate algebraic solution for moving
source location using TDOA and FDOA measurements,” IEEE Trans-
actions on Signal Processing, vol. 52, no. 9, pp. 2453–2463, Sept
2004.

[12] T. A. Johansen and T. I. Fossen, “The eXogenous Kalman filter
(XKF),” International Journal of Control, vol. 90, no. 2, pp. 161–167,
2017.

[13] J. Yan, C. C. J. M. Tiberius, G. J. M. Janssen, P. J. G. Teunissen, and
G. Bellusci, “Review of range-based positioning algorithms,” IEEE
Aerospace and Electronic Systems Magazine, vol. 28, no. 8, pp. 2–27,
Aug 2013.

[14] F. Gustafsson and F. Gunnarsson, “Mobile positioning using wireless
networks: possibilities and fundamental limitations based on available
wireless network measurements,” IEEE Signal Processing Magazine,
vol. 22, no. 4, pp. 41–53, July 2005.

[15] M. Bayat, N. Crasta, A. P. Aguiar, and A. M. Pascoal, “Range-based
underwater vehicle localization in the presence of unknown ocean
currents: Theory and experiments,” IEEE Transactions on Control
Systems Technology, vol. 24, no. 1, pp. 122–139, Jan 2016.

[16] D. Shinzaki, C. Gage, S. Tang, M. Moline, B. Wolfe, C. G. Lowe, and
C. Clark, “A multi-AUV system for cooperative tracking and following
of leopard sharks,” in 2013 IEEE International Conference on Robotics
and Automation, May 2013, pp. 4153–4158.

[17] B. B. Stovner, T. A. Johansen, T. I. Fossen, and I. Schjølberg, “Three-
stage filter for position and velocity estimation from long baseline
measurements with unknown wave speed,” in 2016 American Control
Conference (ACC), July 2016, pp. 4532–4538.

[18] B. B. Stovner, T. A. Johansen, and I. Schjølberg, “Globally exponen-
tially stable aided inertial navigation with hydroacoustic measurements
from a single transponder,” in 2017 American Control Conference
(ACC), May 2017, pp. 1219–1226.

[19] J. J. Caffery, “A new approach to the geometry of TOA location,” in
Vehicular Technology Conference Fall 2000. IEEE VTS Fall VTC2000.
52nd Vehicular Technology Conference (Cat. No.00CH37152), vol. 4,
2000, pp. 1943–1949 vol.4.

[20] J. Pinto, P. S. Dias, R. Martins, J. Fortuna, E. Marques, and
J. Sousa, “The LSTS toolchain for networked vehicle systems,” in
2013 MTS/IEEE OCEANS - Bergen, June 2013, pp. 1–9.
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