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Abstract— We design an adaptive controller for a 2×2 linear
hyperbolic PDE with uncertain boundary parameters where
measurements are taken at both boundaries, while only one
boundary is actuated. The uncertainty, which appears in the
un-actuated boundary, is in a bilinear form, which allows us
to use bilinear adaptive laws for which parameter estimate
convergence is guaranteed under a simple, a priori verifiable,
persistence of excitation criterion. The control objective is
boundary set-point regulation where the set-point is dependent
on one of the unknown parameters. Stability is proved in the
L2-sense and all signals in the closed loop are shown to be
bounded.

I . I N T R O D U C T I O N

Linear 2× 2 hyperbolic PDEs can be used to describe a
wide range of physical systems ranging from road traffic
to transmission lines [1], [2]. Particularly important for the
problem studied in this paper is an application in offshore oil
drilling [3], [4] where the goal is to control the bottom-hole
pressure to a set-point by actuating the top-side flow only.
The problem is complicated by the fact that the pressure in the
surrounding oil reservoir and the production index governing
the reservoir flow as a function of down-hole pressure are
unknown. To avoid any sudden in- or out-flow, the bottom-
hole pressure must match the uncertain reservoir pressure.
In this paper, we solve this problem by first estimating the
unknown parameters and then designing a tracking controller
that achieves set-point regulation to a set-point specified by
the parameter estimates. Parameter estimate convergence then
guarantees that the control objective is achieved.

We use the backstepping approach to derive a controller
and prove closed loop stability. Backstepping for PDEs, in its
current form using invertible Volterra integral transformations,
was first introduced for parabolic PDEs [5], [6] and extended
to a 2×2 system of first order hyperbolic PDEs in [7]. The
first result on adaptive control for hyperbolic PDEs was in [8]
with extension to the 2×2 case in [9]. Particularly important
to the work in this paper is [10], where a reference model
was used to design a closed loop controller tracking a time-
varying signal in a 2× 2 hyperbolic system with unknown
harmonic disturbances. The method in the present paper
uses a similar reference model together with the state and
parameter scheme from [11] to design a closed loop controller.
The main contribution of the paper is the stability analysis
proving closed loop stability in the L2-sense, parameter
convergence and boundary set-point regulation. This analysis
is novel and non-trivial due to the fact that the set-point is
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unknown a priori. While two parameters are uncertain, only
one parameter needs to converge to achieve the regulation
objective. Therefore, the bilinear form of the uncertainty
in the un-actuated boundary is exploited, setting the stage
for applying adaptive laws based on the bilinear parametric
model.

A. Notation

For a signal z : [0,1]× [0,∞)→R , the L2-norm is denoted

||z|| :=
√∫ 1

0 z2(x, t)dx. For f : [0,∞)→R, we use the vector

spaces f ∈ Lp ↔ (
∫

∞

0 | f (t)|pdt)
1
p < ∞ for p ≥ 1 with the

particular case f ∈L∞↔ supt≥0 | f (t)|< ∞. Let B([0,1]) =
{ f (x) : supx∈[0,1] f (x) < ∞}. The projection operator Proja
is defined to be Proja(τ,ω) = 0 for ω = a and τ ≤ 0, and
Proja(τ,ω) = τ otherwise.

B. Problem statement

Consider the linear 2×2 hyperbolic system

ut(x, t)+λux(x, t) = c1(x)v(x, t) (1a)
vt(x, t)−µvx(x, t) = c2(x)u(x, t) (1b)

u(0, t) = rv(0, t)+ k(θ − y0(t)) (1c)
v(1, t) =U(t) (1d)

where u,v : [0,1]× [0,∞) → R are the system states, the
parameters λ ,µ > 0, r ∈ R and c1(x),c2(x) ∈ C([0,1]) are
known, while k ∈ [

¯
k,∞) and θ ∈ R are unknown boundary

parameters where
¯
k = max(0,−1/a0)+ k0 for some k0 > 0

which is needed to ensure well-possessedness of (1c) and
identifiability of θ .

Measurements are taken at both boundaries. At the actuated
boundary, we have y1(t) = u(1, t), while the measurement at
the un-actuated boundary is given as the linear combination
y0(t) = a0u(0, t) + b0v(0, t) where a0 and b0 are known
constants with a0 6= 0 and a0r+b0 6= 0. The objective is to
design a control input U(t) so that system (1) is adaptively
stabilized (all signals are bounded) in the L2-sense and such
that the objective

lim
t→∞

∫ t+tδ

t
|θ − y0(τ)|dτ = 0 (2)

is achieved for any tδ > 0. Furthermore, the parameter
estimate θ̂(t) should converge to θ asymptotically. It is
assumed that the initial conditions u(x,0) = u0(x), v(x,0) =
v0(x) satisfy u0, v0 ∈B([0,1]), in which case it can be shown
(for U(t) in the form used here) that (1) has a unique solution
in B([0,1]) for all t ≥ 0.



C. Backstepping operators

Two sets of operators will be used to derive the adaptive
law and control law. First, the operators P1,P2 : B([0,1])×
B([0,1])→B([0,1]) are given by

P1[a,b](x) :=a(x)+
∫ 1

x
Puu(x,ξ )a(ξ )dξ

+
∫ 1

x
Puv(x,ξ )b(ξ )dξ (3a)

P2[a,b](x) :=b(x)+
∫ 1

x
Pvu(x,ξ )a(ξ )dξ

+
∫ 1

x
Pvv(x,ξ )b(ξ )dξ (3b)

where the kernel (Puu,Puv,Pvu,Pvv), defined over T1 =
{(x,ξ ) |0≤ x≤ ξ ≤ 1}, is the unique, bounded and continuous
solution to a set of 4×4 hyperbolic equations stated in [7, Eq.
67-74] and proven in [12, Appendix A]. Next, the operators
K1,K2 : B([0,1])×B([0,1])→B([0,1]) are given by

K1[a,b](x) :=a(x)−
∫ x

0
Kuu(x,ξ )a(ξ )dξ

−
∫ x

0
Kuv(x,ξ )b(ξ )dξ (4a)

K2[a,b](x) :=b(x)−
∫ x

0
Kvu(x,ξ )a(ξ )dξ

−
∫ x

0
Kvv(x,ξ )b(ξ )dξ (4b)

where the kernel (Kuu,Kuv,Kvu,Kvv), defined over T2 =
{(x,ξ ) |0≤ ξ ≤ x≤ 1}, is the unique, bounded and continuous
solution to a set of 4×4 hyperbolic equations stated in [12, Eq.
3.30-3.37] and also proven in [12, Appendix A]. Furthermore,
it is shown in [12] that the operators (3) and (4) are invertible.

I I . S TAT E A N D PA R A M E T E R E S T I M AT I O N

To generate state and parameter estimates, we will use
a swapping-based design where a set of filters are used to
find a parametric model relating the measured signals to
the unknown parameters. The filters, parametric model and
adaptive law are the same as in [11] and are only included
here for completeness. The following parametric model is
used

u(x, t) =a(x, t)+ k (θm(x, t)+w(x, t))+ e(x, t) (5a)
v(x, t) =b(x, t)+ k (θn(x, t)+ z(x, t))+ ε(x, t) (5b)

where (a,b), (m,n) and (w,z) are filters given by

at(x, t)+λax(x, t) =c1(x)b(x, t)

+P1(x)(y1(t)−a(1, t)) (6a)
bt(x, t)−µbx(x, t) =c2(x)a(x, t)

+P2(x)(y1(t)−a(1, t)) (6b)
a(0, t) =rb(0, t) (6c)
b(1, t) =U(t), (6d)

mt(x, t)+λmx(x, t) =c1(x)n(x, t)−P1(x)m(1, t) (7a)

nt(x, t)−µnx(x, t) =c2(x)m(x, t)−P2(x)m(1, t) (7b)
m(0, t) =rn(0, t)+1 (7c)
n(1, t) =0 (7d)

and

wt(x, t)+λwx(x, t) =c1(x)z(x, t)−P1(x)w(1, t) (8a)
zt(x, t)−µzx(x, t) =c2(x)w(x, t)−P2(x)w(1, t) (8b)

w(0, t) =rz(0, t)− y0(t) (8c)
z(1, t) =0 (8d)

with initial conditions in B([0,1]). It can be shown, using
the backstepping transformation α(x, t) = P1[e,ε](x, t) and
β (x, t) = P2[e,ε](x, t) and selecting the injection terms as
P1(x) = λPuu(x,1) and P2(x) = λPvu(x,1), that the dynamics
of (α,β ) is given by simple cascaded transport equations
with a zero boundary condition. From the invertibility of
the backstepping operator, it follows that e(x, t) = ε(x, t) = 0
for all t ≥ tF = λ−1 +µ−1. Replacing θ ,k in (5) with their
respective estimates θ̂ , k̂ gives the adaptive state estimates

û(x, t) =a(x, t)+ k̂(t)
(
θ̂(t)m(x, t)+w(x, t)

)
(9a)

v̂(x, t) =b(x, t)+ k̂(t)
(
θ̂(t)n(x, t)+ z(x, t)

)
(9b)

where the errors between the true states and the state estimates
are denoted

ê(x, t) =u(x, t)− û(x, t) (10a)
ε̂(x, t) =v(x, t)− v̂(x, t). (10b)

Since the uncertain parameters appear at x = 0, we would
like to exploit the measurement y0(t) for parameter estimation.
Towards that end, we define

ă(t) :=a0a(0, t)+b0b(0, t) (11a)
m̆(t) :=a0m(0, t)+b0n(0, t) (11b)
w̆(t) :=a0w(0, t)+b0z(0, t) (11c)
ĕ(t) :=a0ê(0, t)+b0ε̂(0, t) (11d)

and substitute (9) evaluated at x = 0 into y0(t) = a0u(0, t)+
b0v(0, t) to obtain the relationship

ĕ(t) = y0(t)− ă(t)− k̂(t)
(
θ̂(t)m̆(t)+ w̆(t)

)
. (12)

In order to estimate the parameter θ , we will need a persistent
excitation condition on m̆. It turns out that such a condition
can be derived in terms of known system parameters, which
is important since it can then be checked a priori.

Lemma 1: If

(a0r+b0)
∫ 1

0
Pvu(0,ξ )dξ +a0 6= 0, (13)

then m̆(t) converges to a nonzero constant in finite time tF .
Proof: Using the backstepping transformations m =

P1[m̄, n̄](x, t), n=P2[m̄, n̄](x, t) with injection terms P1(x)=
λPuu(x,1) and P2(x) = λPvu(x,1), system (7) is transformed
into a simple cascaded transport equation with boundary
conditions m̄(0, t) = rn̄(0, t)+1 and n̄(1, t) = 0. Thus, for t ≥
tF , n̄(x, t)≡ 0 and m̄(x, t)≡ 1, so the backstepping transform



gives n(0, t) =
∫ 1

0 Pvu(0,ξ )dξ . Using (7c) and inserting into
(11b) gives

m̆(t) = (a0r+b0)
∫ 1

0
Pvu(0,ξ )dξ +a0, (14)

which by assumption is nonzero.
The gradient method for bilinear parametric models in [13,

Theorem 4.52] can be used to minimize a cost function based
on the square error ĕ2(t) and thereby forming an adaptive law
for the parameter estimates θ̂ , k̂. Although a lower bound

¯
k

for k is known and the parametric model could be written in
a linear form, keeping the bilinear form has some desirable
properties regarding parameter convergence.

Lemma 2: Consider the adaptive laws ˙̂
θ = ˙̂k = 0 for t < tF

and

˙̂
θ(t) =γ1

ĕ(t)
1+ w̆2(t)

m̆(t) (15a)

˙̂k(t) =Proj
¯
k

(
γ2
[
θ̂(t)m̆(t)+ w̆(t)

] ĕ(t)
1+ w̆2(t)

, k̂
)

(15b)

for t ≥ tF , where γ1,γ2 > 0 are the adaptation gains, m̆(t) and
w̆(t) are given in (11), and ĕ(t) is the adaptive estimation
error (11d). Suppose system (1) has a unique solution u,v
for all t ≥ 0, and that the initial estimate satisfies k̂(0) ≥

¯
k.

Then, the adaptive laws (15) have the following properties:
1) θ̂ , k̂ ∈L∞.
2) k̂(t)≥

¯
k for all t ≥ 0

3) ˙̂
θ , ˙̂k ∈L2∩L∞.

4) ĕ√
1+w̆2

∈L∞∩L2

5) If w̆ is bounded for almost all t ≥ 0, (13) holds and
θ̂ m̆+ w̆ ∈L2, then θ̂ converges to θ and k̂ converges
to some constant.

Proof: The proof of Properties 1 and 3 for the adap-
tive laws without projection is given in [11, Theorem 3].
Since k̂(0)≥

¯
k, Property 2 follows trivially from projection.

Inserting (5), (9) and (11d) into the adaptive law (15a) yields
˙̃
θ(t) =− f (t)

(
m2

θ̃(t)+mk̃(t)
(
θ̂(t)m̆(t)+ w̆(t)

))
(16)

where f (t) = γ1/(1+ w̆2(t)) > 0 and m = m̆(t) 6= 0 for all
t > tF . The nonzero constant m exists by Lemma 1. Forming
V0(t) = 1

2 θ̃ 2(t), time differentiating and applying Young’s
inequality to the cross term, we get

V̇0 =−m2k f (t)θ̃ 2(t)−mθ̃(t) f (t)k̃(t)
(
θ̂(t)m̆(t)+ w̆(t)

)
≤−

(
m2k−ρm/2

)
f (t)θ̃ 2(t)

+
f (t)m2k̃2(t)

2ρ

(
θ̂(t)m̆(t)+ w̆(t)

)2
(17)

for some ρ > 0. Selecting ρ = |m|k > 0 yields

V̇0(t)≤−
k
2

f (t)θ̃ 2(t)+
|m|
2k

f (t)k̃2(t)
(
θ̂ m̆(t)+ w̆(t)

)2
. (18)

Since by assumption w̆ is bounded for almost all t ≥ 0, it
follows that ess inft≥0 f (t)> 0, which along with Property 1
and boundedness of f (t), provide the existence of constants
b and c > 0 such that

V̇0(t)≤− cθ̃
2(t)+g(t)θ̃ 2(t)+b

(
θ̂ m̆(t)+ w̆(t)

)2
, (19)

where g(t) = 0 almost everywhere and therefore g ∈ L1.
Since (θ̂ m̆+ w̆)2 ∈L1 by assumption, it follows from [14,
Lemma D.6] that V0 ∈ L1 ∩L∞ which together with [15,
Lemma 2.7] imply V0, θ̃ → 0. Convergence in k̂ to some
constant can be shown similarly by inserting (5), (9) and (11d)
into (15b).

I I I . C L O S E D L O O P C O N T R O L

To motivate our choice of control law, assume for a moment
that the states (u,v) and parameters (k,θ) are known. It is
possible to show, through a suitable backstepping transfor-
mation, that system (1) is equivalent to a set of cascaded
transport equations with boundary conditions

ω(0, t) =rζ (0, t)+ k (θ − y0(t)) (20a)

ζ (1, t) =U(t)−
∫ 1

0
Kvu(1,ξ )u(ξ )dξ

−
∫ 1

0
Kvv(1,ξ )v(ξ )dξ , (20b)

and y0(t) = a0ω(0, t) + b0ζ (0, t). Therefore, if ζ (0, t) =
θ/(a0r+b0), we obtain θ − y0(t) = 0. Selecting

U(t) =
∫ 1

0
Kvu(1,ξ )u(ξ , t)dξ +

∫ 1

0
Kvv(1,ξ )v(ξ , t)dξ

+
1

a0r+b0
θ , (21)

we have ζ (1, t) = θ/(a0r+b0). Since ζ (x, t) is the solution
to a simple transport equation, ζ (0, t) = θ/(a0r+b0) in finite
time and the control objective (2) is achieved. Going back
to the case with unknown states and parameters, we now
propose a control law by applying a certainty equivalence
principle.

Theorem 1: Suppose (13) holds. Then the control law

U(t) =
∫ 1

0
Kvu(1,ξ )û(ξ , t)dξ +

∫ 1

0
Kvv(1,ξ )v̂(ξ , t)dξ

+
1

a0r+b0
θ̂(t). (22)

in closed loop with system (1), state estimates (9) and adaptive
law (15), guarantees (2). Moreover, all signals in the closed
loop are bounded, θ̂ converges to θ , and k̂ converges to some
constant.

The proof of Theorem 1 is the main contribution of this
paper, with the formal stability analysis given in Section IV.
The remainder of this section is used to further motivate our
selection of the control law (22).

Since the states are unknown, we start with the state
estimates (9), differentiate with respect to time and space,
respectively, and insert the filter dynamics (6)–(8) to arrive
at the state estimation dynamics

ût(x, t)+λ ûx(x, t) =c1(x)v̂(x, t)+
˙̂k(t)

(
θ̂(t)m(x, t)+w(x, t)

)
+ k̂(t) ˙̂

θ(t)m(x, t)+P1(x)ê(1, t) (23a)

v̂t(x, t)−µ v̂x(x, t) =c2(x)û(x, t)+
˙̂k(t)

(
θ̂(t)n(x, t)+ z(x, t)

)
+ k̂(t) ˙̂

θ(t)n(x, t)+P2(x)ê(1, t) (23b)

û(0, t) =rv̂(0, t)+ k̂(t)
(
θ̂(t)− y0(t)

)
(23c)



v̂(1, t) =U(t). (23d)

Using the backstepping transformations ω(x, t) =
K1[û, v̂](x, t) and ζ (x, t) = K2[û, v̂](x, t), we transform
the system (23) into the equivalent target system

ωt(x, t)+λωx(x, t) =θ̂(t)H1(x, t)
˙̂k(t)+G1(x, t)

˙̂k(t)

+ k̂(t)H1(x, t)
˙̂
θ(t)+Ω1(x)ê(1, t)

+Ψ1(x)k̂(t)
(
θ̂(t)− y0(t)

)
(24a)

ζt(x, t)−µζx(x, t) =θ̂(t)H2(x, t)
˙̂k(t)+G2(x, t)

˙̂k(t)

+ k̂(t)H2(x, t)
˙̂
θ(t)+Ω2(x)ê(1, t)

+Ψ2(x)k̂(t)
(
θ̂(t)− y0(t)

)
(24b)

ω(0, t) =rζ (0, t)+ k̂(t)
(
θ̂(t)− y0(t)

)
(24c)

ζ (1, t) =U(t)−
∫ 1

0
Kvu(1,ξ )û(ξ )dξ

−
∫ 1

0
Kvv(1,ξ )v̂(ξ )dξ (24d)

where

G1(x, t) =K1[w,z](x, t), H1(x, t) = K1[m,n](x, t) (25a)
G2(x, t) =K2[w,z](x, t), H2(x, t) = K2[m,n](x, t) (25b)

Ω1(x) =K1[P1,P2](x), Ψ1(x) =−Kuu(x,0)λ (25c)
Ω2(x) =K2[P1,P2](x), Ψ2(x) =−Kvu(x,0)λ . (25d)

At this point, it is more convenient to use a linear form of
the boundary condition. Defining

q̂ =
r−b0k̂
1+a0k̂

, d̂ =
k̂θ̂

1+a0k̂
, κ̂ =

−k̂
1+a0k̂

, (26)

gives the boundary condition

ω(0, t) = ζ (0, t)q̂(t)+ d̂(t)+ κ̂(t)ĕ(t). (27)

We select the reference model

ϕt(x, t)+λϕx(x, t) =Ψ1(x)k̂(t)
(
θ̂(t)− y0(t)

)
(28a)

φt(x, t)−µφx(x, t) =Ψ2(x)k̂(t)
(
θ̂(t)− y0(t)

)
(28b)

ϕ(0, t) =q̂(t)φ(0, t)+ d̂(t) (28c)
φ(1, t) =ζ

∗(t). (28d)

To achieve ϕ(0, t) = rφ(0, t), we must have φ(0, t) =
d̂(t)/(r− q̂(t)), we therefore select the reference signal

ζ
∗(t) = d̂(t)/(r− q̂(t)) = θ̂(t)/(a0r+b0). (29)

Notice that if θ̂(t)→ y0(t), the source terms on the right
hand side of (28a) and (28b) will converge to zero, and the
reference model is reduced to a set of cascaded transport
equations with the solution φ(0, t) = ζ ∗(t−µ−1). The idea
is now to select a control law U(t) such that the tracking
error ν(x, t) = ω(x, t)−ϕ(x, t) and η(x, t) = ζ (x, t)−φ(x, t)
converge to zero. Direct substitution of (22), (24) and (28)
shows that the tracking errors have the dynamics

νt(x, t)+λνx(x, t) =θ̂(t)H1(x, t)
˙̂k(t)+G1(x, t)

˙̂k(t)

+k̂(t)H1(x, t)
˙̂
θ(t)+Ω1(x)ê(1, t) (30a)

ηt(x, t)−µηx(x, t) =θ̂(t)H2(x, t)
˙̂k(t)+G2(x, t)

˙̂k(t)

+k̂(t)H2(x, t)
˙̂
θ(t)+Ω2(x)ê(1, t) (30b)

ν(0, t) =η(0, t)q̂(t)+ κ̂(t)ĕ(t) (30c)
η(1, t) =0. (30d)

Notice in particular the zero boundary condition achieved
when using the control law (22).

I V. S TA B I L I T Y A N A LY S I S

Our strategy in proving Theorem 1 is to study both the
stability of the state tracking error (ν ,η) and the state
estimation error (ê, ε̂) in (10). The dynamics of the state
tracking error have already been derived in (30). The state
estimation error dynamics will be derived in Section IV-
A together with a backstepping transformation easing the
stability analysis. Since the overall goal is stabilization of
system (1), we need a relation between the (ω,ζ ) dynamics
in (24) and the state tracking error (ν ,η). Such a relation
is found in Section IV-B. Once this relation is found, the
system state (u,v) is trivially related to (ν ,η) through the
invertible backstepping transformation ω(x, t)=K1[û, v̂](x, t),
ζ (x, t) = K2[û, v̂](x, t) and the state estimation error (ê, ε̂).
Finally, the proof of Theorem 1 is given in Section IV-C.

A. Backstepping of error dynamics and filters

Differentiating (10) with respect to time and space, respec-
tively, inserting the dynamics (1) and (23) and using (11d) for
the boundary condition, gives the estimation error dynamics

êt(x, t)+λ êx(x, t) = c1(x)ε̂(x, t)− k̂(t) ˙̂
θ(t)m(x, t)

− ˙̂k(t)
(
θ̂(t)m(x, t)−w(x, t)

)
−P1(x)ê(1, t) (31a)

ε̂t(x, t)−µε̂x(x, t) = c2(x)ê(x, t)− k̂(t) ˙̂
θ(t)n(x, t)

− ˙̂k(t)
(
θ̂(t)n(x, t)− z(x, t)

)
−P2(x)ê(1, t) (31b)

ê(0, t) =− b0

a0
ε̂(0, t)+

1
a0

ĕ(t) (31c)

ε̂(1, t) =0 (31d)

Using the backstepping transformations ê = P1[α̂, β̂ ](x, t)
and ε̂ = P2[α̂, β̂ ](x, t) with injection terms P1(x) =
λPuu(x,1) and P2(x) = λPvu(x,1) and a suitable kernel
boundary conditions, maps system (31) into the target system

α̂t(x, t)+λα̂x(x, t) =B1(x, t) (32a)

β̂t(x, t)−µβ̂x(x, t) =B2(x, t) (32b)

α̂(0, t) =− b0

a0
β̂ (0, t)+

1
a0

ĕ(t) (32c)

β̂ (1, t) =0, (32d)

where (B1,B2) is given as the solution to the 2×2 Volterra
equation

B1(x, t) =
∫ 1

x
Puu(x,ξ )B1(ξ , t)dξ +

∫ 1

x
Puv(x,ξ )B2(ξ , t)dξ

+ ˙̂k
(
θ̂(t)m(x, t)−w(x, t)

)
+ k̂ ˙̂

θm(x, t) (33a)



B2(x, t) =
∫ 1

x
Pvu(x,ξ )B1(ξ , t)dξ +

∫ 1

x
Pvv(x,ξ )B2(ξ , t)dξ

+ ˙̂k
(
θ̂(t)n(x, t)− z(x, t)

)
+ k̂ ˙̂

θn(x, t). (33b)

B. Relationship between state estimates and tracking error

Lemma 3: Let ϖ be given by the auxiliary filter

ϖt(x, t)−µϖx(x, t) =0 (34a)
ϖ(1, t) =ν(0, t)− rη(0, t) =: ϖ1(t) (34b)

with initial condition ϖ(·,0) ∈B(0,1). The signal ρ(t) =
ω(0, t)− rζ (0, t) is related to ϖ1(t) by

ϖ1(t) = ρ(t)−
∫ t

t−1/µ

M(τ, t)ρ(τ)dτ +R(t) (35)

for all t > µ−1 where

M(s, t) =(q̂(t)− r)Ψ2((t− s)µ) (36)

R(t) =κ̂(t)
(
θ̂(t−1/µ)− θ̂(t)

)
. (37)

Furthermore, the relation (35) is invertible with inverse

ρ(t) = ϖ1(t)+
∫ t

t−µ−1
N(τ, t)ϖ1(τ)dτ +S(t) (38)

for all t > µ−1 where N is related to M by the integral
equation

N(τ, t) = M(τ, t)+
∫

τ+µ−1

τ

M(s, t)N(τ,s)ds (39)

and S given by

S(t) =−R(t)−
∫ t

t−µ−1
N(τ, t)R(τ)dτ. (40)

Proof: The reference model (28) can be solved explicitly
as

ϕ(x, t) =
∫ t

t−x/λ

Ψ1(x+λ (τ− t))k̂(τ)
(
θ̂(τ)− y0(τ)

)
dτ

+ϕ(0, t− x
λ
) (41a)

φ(x, t) =
∫ t

t−(1−x)/µ

Ψ2(x−µ(τ− t))k̂(τ)
(
θ̂(τ)− y0(τ)

)
dτ

+φ(1, t− 1− x
µ

). (41b)

Evaluating (41) at x = 0 and using boundary conditions (28c)
and (28d) yield

φ(0, t) =ζ
∗(t− 1

µ
)+Q(t) (42a)

ϕ(0, t) =d̂(t)+ q̂(t)
(

ζ
∗(t− 1

µ
)+Q(t)

)
(42b)

where

Q(t) =
∫ t

t−1/µ

Ψ2(µ(t− τ))k̂(τ)
(
θ̂(τ)− y0(τ)

)
dτ. (43)

We have ϖ1(t) = ρ(t)−ϕ(0, t)+ rφ(0, t). Direct substitution
and using (42) then gives the relation

ϖ1(t) =ρ(t)−
(
d̂(t)+ q̂(t)(ζ ∗(t−1/µ)+Q(t))

)
+ r (ζ ∗(t−1/µ)+Q(t)) (44)

and after some lengthy but straightforward algebraic manip-
ulation, we obtain (35). For the inverse relation, let

a(t) = b(t)−
∫ t

t−µ−1
M(τ, t)b(τ)dτ =: M [b](t) (45)

for some signals a,b : [0,∞)→ R, and assume the transfor-
mation has an inverse in the form

M−1[a](t) = a(t)+
∫ t

t−d
N(s, t)a(s)ds = b(t). (46)

Since the lower integration limit t−µ−1 is bounded below by
zero, the above integral equation can be written as a Volterra
equation by defining

M0(τ, t) :=M(τ, t)χ[τ > t−µ
−1] (47a)

N0(τ, t) :=N(τ, t)χ[τ > t−µ
−1], (47b)

where χ[condition] is the indicator function where χ = 1
whenever condition is satisfied and 0 else, yielding

a(t) =b(t)−
∫ t

0
M0(τ, t)b(τ)dτ (48)

b(t) =a(t)+
∫ t

0
N0(τ, t)a(τ)dτ. (49)

M0 and N0 are then related by

N0(τ, t) = M0(τ, t)+
∫ t

τ

M0(s, t)N0(τ,s)ds (50)

Since M0 is bounded, there exist a unique solution N0 to (50)
(see [16, Lemma 9]). Using (47) this can be written

N0(τ, t) =M(τ, t)χ[τ > t−µ
−1]

+
∫ t

τ

M(s, t)χ[s > t−µ
−1]N0(τ,s)ds

=

{
M+

∫ t
τ

M(s, t)N0(τ,s)ds, for τ > t−µ−1∫ t
t−µ−1 M(τ, t)N0(τ,τ)ds, for t−µ−1 ≥ τ ≥ 0

Since this should hold for all t > µ−1, the only solution to
N0 when t−µ−1 ≥ τ ≥ 0 is the trivial solution N0(τ, t) = 0,
and we are left with

N0(τ, t) =

{
M(τ, t)+

∫ t
τ

M(τ, t)N0(τ,s)ds, τ > t−µ−1

0, otherwise

and (39) follows. Using the M operator on (35) gives ϖ1(t)=
M [ρ](t)+R(t), and since M is invertible

ρ(t) = M−1[ϖ1](t)−M−1[R](t), (51)

which shows that (35) is invertible with inverse (38) and S(t)
given by (40).

C. Proof of Theorem 1

Proof: Consider the Lyapunov function candidates

V1(t) =λ
−1
∫ 1

0
e−δ1x

ν
2(x, t)dx (52a)

V2(t) =µ
−1
∫ 1

0
eσ1x

η
2(x, t)dx (52b)

V3(t) =λ
−1
∫ 1

0
e−δ2x

α̂
2(x, t)dx (52c)



V4(t) =µ
−1
∫ 1

0
eσ2x

β̂
2(x, t)dx, (52d)

V5(t) =λ
−1
∫ 1

0
e−δ3xw̄2(x, t)dx (52e)

V6(t) =µ
−1
∫ 1

0
eσ3x

ϖ
2(x, t)dx, (52f)

where (ν ,η) is given by (30), (α̂, β̂ ) by (32) and ϖ by (34).
The signal w̄ is obtained from the backstepping transforma-
tions w=P1[w̄, z̄](x, t), z=P2[w̄, z̄](x, t) with injection terms
P1(x) = λPuu(x,1) and P2(x) = λPvu(x,1), mapping the filter
system (8) into

w̄t(x, t)+λ w̄x(x, t) =0 (53a)
z̄t(x, t)−µ z̄x(x, t) =0 (53b)

w̄(0, t) =rz̄(0, t)− y0(t) (53c)
z̄(1, t) =0. (53d)

It is possible to show that the time derivatives satisfy (see
Section VI-B)

V̇1 ≤−V1 + l1(t)+ l2(t)V5(t)+ l3(t)V6

+2q̄2
η

2(0, t)+
Ω̄1

λδ1

(
1− e−δ1

)
|α̂(1, t)|2 (54a)

V̇2 ≤−V2 + l4(t)+ l5(t)V5

−η
2(0, t)+

Ω̄2

µσ
(eσ1 −1) |α̂(1, t)|2 (54b)

V̇3 ≤−V3 + l6(t)+ l7(t)V5 + l8(t)V6

− e−δ2 α̂
2(1, t)+2

b2
0

a2
0

β̂
2(0, t) (54c)

V̇4 ≤−V4 + l9(t)+ l10(t)V5− β̂
2(0, t) (54d)

V̇5 ≤−δ3λV5 + l11(t)+ l12(t)V5 + l13(t)V6

+
4

¯
k2 S̄2 +4θ̄

2 +
4

¯
k2 N̄2V6 +

4

¯
k2 q̄rη

2(0, t) (54e)

V̇6 ≤−σ3µV6 + l14(t)+ l15(t)V5 + l16(t)V6

+ q̄rη
2(0, t) (54f)

Forming V7(t) = ∑
6
i=1 aiVi where

σ3 =µ
−1
(

4

¯
k2 N̄2 +1

)
(55a)

a1 =a5 = a6 = 1 (55b)

a2 =2q̄2 +
4

¯
k2 q̄r + q̄r (55c)

a3 =eδ2
Ω̄1

λδ1

(
1− e−δ1

)
+a2eδ2

Ω̄2

µσ
(eσ1 −1) (55d)

a4 =a32
b2

0

a2
0
, (55e)

yields V̇7 ≤ −V7 + l17(t) + l18(t)V7 + 4

¯
k2 S̄2 + 4θ̄ 2 for

some integrable functions l17 and l18. This shows that
V7 ∈ L∞ and in turn ||ν ||, ||η ||, ||α̂||, ||β̂ ||, ||w̄||, ||ϖ || ∈
L∞. Since ||w̄|| and ||ϖ || are bounded, we have that
the products (l2(t)+ l5(t)+ l7(t)+ l10 + l12 + l15)V5 and
(l3(t)+ l8(t)+ l13 + l16)V6 are integrable. Forming V8(t) =

∑
4
i=1 aiVi +a6V6 then yields V̇8 ≤ −V8 + l19(t)+ l20(t)V8 for

some integrable functions l19 and l20. It follows from [14,
Lemma B.6] that V8 ∈L1, and hence

||ν ||, ||η ||, ||α̂||, ||β̂ ||, ||ϖ || ∈L2∩L∞. (56)

And from [15, Lemma 2.17] that V8→ 0 and hence

||ν ||, ||η ||, ||α̂||, ||β̂ ||, ||ϖ || → 0. (57)

The prove parameter convergence and the control objective
(2), we first prove that

(
θ̂ − y0

)
∈L2. We have ||ϖ || ∈L2.

I.e.
lim

T→∞

∫ T

0

∫ 1

0
ϖ

2(x, t)dxdt < ∞. (58)

Inserting the explicit solution of (34) for t > µ−1 yields

lim
T→∞

∫ T

µ−1

∫ 1

0
ϖ

2
1 (t−µ

−1(1− x))dxdt < ∞. (59)

Substituting τ = t − µ−1(1− x) and changing the order of
integration yields

lim
T→∞

[∫
µ−1

0

∫
τ+µ−1

µ−1
+
∫ T−µ−1

µ−1

∫
τ+µ−1

τ

+
∫ T

T−µ−1

∫ T

τ

]
×dtµϖ

2
1 (τ)dτ < ∞. (60)

All the inner integrals evaluate to µ−1 or less, and we have

lim
T→∞

∫ T

0
ϖ

2
1 (τ)dτ < ∞. (61)

That is (ν(0, ·)− rη(0, ·)) ∈L2.
Using Cauchy-Schwarz’ inequality and changing the order

of integration similarly, we have∫ T

t0

∣∣θ̂(t)− θ̂(t− t0)
∣∣2 dt ≤

∫ T

t0
t0
∫ t

t−t0

∣∣∣ ˙̂
θ(τ)

∣∣∣2 dτdt

≤t2
0

∫ T

0

∣∣∣ ˙̂
θ(τ)

∣∣∣2 dτ, (62)

for some t0 ≤ t. From the definition of R in (37), we have∫ T

µ−1
R2(t)dt ≤ k̄2

µ2

∫ T

0

∣∣∣ ˙̂
θ(τ)

∣∣∣2 dτ. (63)

Taking the limit as T → ∞ and from ˙̂
θ ∈L2, it follows that

R ∈ L2. And from the invertible transformation (40) that
S ∈ L2. Now, since ϖ1, ||ϖ ||,S ∈ L2, we have from (38)
that ρ = (ω(0, ·)− rζ (0, ·)) ∈ L2. Finally, using boundary
condition (24c) gives

(
θ̂ − y0

)
∈L2.

From the definition (11) and the backstepping transforma-
tion leading to the target systems (w̄, z̄) in (53) and (m̄, n̄) in
the proof of Lemma 1, we have for t ≥ tF

θ̂(t)m̆(t)+ w̆(t) = a0
[
θ̂(t)− y0(t)

]
+(a0r+b0)

∫ 1

0
Pvu(0,ξ )

[
θ̂(t)− y0(t−ξ λ

−1)
]

dξ , (64)

where we have used that z̄(x, t) = n̄(x, t) = 0 for all t ≥
µ−1, and m̄(x, t) = 1 and w̄(x, t) = −y0(t − xλ−1) for all
t ≥ λ−1. Changing the variable of integration and adding
and subtracting θ̂(τ) inside the integral yields

θ̂(t)m̆(t)+ w̆(t)≤ a0
[
θ̂(t)− y0(t)

]
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Fig. 1. Control objective (left) and control signal (right).

+(a0r+b0)λ
∫ t

t−λ−1
Pvu(0,λ (t− τ))

[
θ̂(τ)− y0(τ)

]
dτ

+(a0r+b0)λ
∫ t

t−λ−1
Pvu(0,λ (t− τ))

[
θ̂(t)− θ̂(τ)

]
dτ.

(65)

Squaring both sides, applying Cauchy-Schwarz’ inequality
and integrating from t = λ−1 to T yields after changing the
order of integration∫ T

λ−1

(
θ̂(t)m̆(t)+ w̆(t)

)2
dt ≤

∫ T

λ−1
2a2

0
[
θ̂(t)− y0(t)

]2
dt

+4(a0r+b0)
2P̄2

λ
−1
∫ T

0

[
θ̂(τ)− y0(τ)

]2
dτ

+4(a0r+b0)
2P̄2

λ
−3
∫ T

0

∣∣∣ ˙̂
θ(τ)

∣∣∣2 dτ. (66)

Since ˙̂
θ ∈L2 and (θ̂ −y0) ∈L2, it follows that

(
θ̂ m̆+ w̆

)
∈

L2. From Property 5 in Lemma 2 and ||w̄|| ∈L∞, implying
w̆ bounded for almost all t ≥ 0, we then have θ̂ → θ and
k̂→ k∞ for some constant k∞. Furthermore,∫ t+tδ

t
|θ − y0(τ)|dτ ≤

∫ t+tδ

t

∣∣θ̂(t)− y0(τ)
∣∣dτ

+
∫ t+tδ

t

∣∣θ − θ̂(t)
∣∣dτ (67)

and by the squeeze theorem, since the right hand side
converges, the control objective (2) follows. Lastly, since
||ϖ ||,ζ ∗, q̂, d̂ ∈L∞, we have from the explicit solution (41)
that ||ϕ||, ||φ || ∈ L∞. From the tracking errors ω(x, t) =
ν(x, t) + ϕ(x, t) and ζ (x, t) = η(x, t) + φ(x, t) and the in-
vertibility of the transformations ω(x, t) = K1[û, v̂](x, t) and
ζ (x, t) = K2[û, v̂](x, t), we then have ||u||, ||v|| ∈L∞.

V. S I M U L AT I O N A N D C O N C L U D I N G R E M A R K S

The swapping-based estimation scheme consisting of the
swapping filters (6)-(8), state estimates (9) and the adaptive
law of Lemma 2, and the control law (22) with reference
signal (29) was implemented in MATLAB using a 2nd order
upwind scheme for the spatial discretization and MATLAB’s
ode(45) solver for the temporal discretization. The system
parameters were chosen as λ = µ = 3, c1(x) = 3e−2x, c2(x) =
3e2x, θ = 1, k = 0.5 and r =−1 with initial estimates k̂(0) =
0.1 and θ̂(0) = 0.5, and initial condition u0(x) = 1/3 and
v0(x) = x. The adaptation gain was chosen as γ1 = γ2 = 10.
The system is open loop (U(t)≡ 0) unstable.

Figure 1 shows that the control objective (2) is achieved
and that the control input converges to some non-zero value.
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Fig. 2. Parameter estimates (dashed red) and actual parameters (solid black).

Furthermore, Figure 2 shows that θ̂ correctly estimates
the unknown parameter θ and that k̂ converges to some
constant k∞ 6= k. This was achieved with no other requirement
than the a priori verifiable PE condition (13). Moreover,
exploiting the measurement at the non-actuated boundary y0
in the filter systems (6)–(8) and relationship (12) yields fast
parameter adaptation with no propagation delay. This can
be seen from Figure 2 where, after an initial tF = 2/3s, the
parameter estimates are directly updated without any artificial
propagation delay through the filters.
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V I . A P P E N D I X

A. Additional properties

Lemma 4: Consider G1, G2, H1, H2, Ω1 and Ω2 given in
(25), w̄ by (53), Bi in (33). The following properties hold for
all t ≥ t f

1) H1(x, ·), H2(x, ·), Ω1(x, ·), Ω2(x, ·) ∈L∞.
2) ||Gi(t)||2 ≤ hi||w̄(t)||2 for i ∈ {1,2}.
3) ||Bi(t)||2 ≤ h3

∣∣∣ ˙̂k(t)∣∣∣2 +h4

∣∣∣ ˙̂
θ(t)

∣∣∣2 +h5

∣∣∣ ˙̂k(t)∣∣∣2 ||w̄||2.

4) y2
0(t)≤

4

¯
k2 |ϖ1(t)|2 + 4

¯
k2 S̄2 +4θ̄ 2 + 4

¯
k2 N̄2||ϖ ||2

5) ϖ2
1 (t)≤ q̄r |η(0, t)|2 +2κ̄2ε2(t)(1+ ||ϖ ||2 + ||w̄||2)

6) ε2 := ĕ2

1+||w̄||2+||ϖ ||2 ∈L2

for some constants hi > 0, i = 1...5, and where we have
defined S̄ = supt≥0 S(t), θ̄ = supt≥0 θ̂(t), k̄ = supt≥0 k̂(t) and
q̄r = supt≥0 2(q̂(t)− r)2 = supt≥0 2(a0r+b0)

2κ̂(t).
Proof: The details of the proof are technical and omitted

due to page limitation. Property 1 follow from boundedness
of the backstepping operator. The bound in Property 3 can be
found by successive approximations. Properties 4 and 5 are
trivial. Lastly, Property 6 follow from Property 4 in Lemma 2
and applying the upper bounds for y2

0 and ϖ2
1 .

B. Details in proof of Theorem 1

1) Bounds on V1 and V2: From (52a) and (52b) and
inserting the dynamics (30a) and (30b), we get

V̇1 =2λ
−1
∫ 1

0
e−δ1x

ν(x, t)
(
−λνx(x, t)+G1(x, t)

˙̂k(t)

+θ̂(t)H1(x, t)
˙̂k(t)+ k̂(t)H1(x, t)

˙̂
θ(t)

+Ω1(x)α̂(1, t)
)

dx, (68)

V̇2 =2µ
−1
∫ 1

0
eσ1x

η(x, t)
(

µηx(x, t)+G2(x, t)
˙̂k(t)

+θ̂(t)H2(x, t)
˙̂k(t)+ k̂(t)H2(x, t)

˙̂
θ(t)

+Ω2(x)α̂(1, t)
)

dx (69)

respectively, where the relation ê(1, t) = α̂(1, t) has been
used. Integration by parts, separating the cross terms using
Young’s inequality, using Properties 1, 2 and 6 of Lemma 4
and boundedness of θ̂ , k̂, ˙̂

θ , ˙̂k from Lemma 2, defining the
integrable functions

l1(t) :=2κ̄
2
ε

2(t)+
H̄1

λδ1
(1− e−δ1)(θ̄ | ˙̂k|2 + k̄| ˙̂θ |2) (70a)

l2(t) :=h1eδ3 | ˙̂k(t)|2 +2κ̄
2
ε

2(t)λeδ3 (70b)

l3(t) :=2κ̄
2
ε

2(t)µ (70c)

l4(t) :=
H̄2

µσ
(eσ1 −1)(θ̄ | ˙̂k(t)|2 + k̄| ˙̂θ(t)|2) (70d)

l5(t) :=h2eδ3 | ˙̂k(t)|2, (70e)

and selecting δ1 = λ−1
(
H̄1θ̄ + H̄1k̄+ Ω̄1 +2

)
and σ1 =

µ−1
(
H̄2θ̄ + H̄2k̄+ Ω̄2 +2

)
yield

V̇1 ≤−V1 + l1(t)+ l2(t)V5(t)+ l3(t)V6

+2q̄2
η

2(0, t)+
Ω̄1

λδ1

(
1− e−δ1

)
|α̂(1, t)|2 , (71)

V̇2 ≤−V2 + l4(t)+ l5(t)V5

−η
2(0, t)+

Ω̄2

µσ
(eσ1 −1) |α̂(1, t)|2 . (72)

2) Bounds on V3 and V4: From (52c) and (52d) and
inserting the dynamics (32a) and (32b), we get

V̇3 =−2
∫ 1

0
e−δ2x

α̂(x, t)α̂x(x, t)dx

+2λ
−1
∫ 1

0
e−δ2x

α̂(x, t)B1(x, t)dx, (73)

V̇4 =2
∫ 1

0
eσ2x

β̂ (x, t)β̂x(x, t)dx

+2µ
−1
∫ 1

0
eσ2x

β̂ (x, t)B2(x, t)dx (74)

respectively. Integration by parts, separating the cross terms
using Young’s inequality, using Properties 3 and 6 of
Lemma 4, defining

l6(t) :=(2/a2
0)ε(t)

2 +λ
−1h3| ˙̂k(t)|2 +λ

−1h4| ˙̂θ(t)|2 (75a)

l7(t) :=eδ3 | ˙̂k(t)|2 +(2/a2
0)λeδ3ε(t)2 (75b)

l8(t) :=(2/a2
0)µε(t)2 (75c)

l9(t) :=µ
−1eσ2h3| ˙̂k(t)|2 +µ

−1eσ2h4| ˙̂θ(t)|2 (75d)

l10(t) :=eδ3 | ˙̂k(t)|2, (75e)

and selecting δ1 = 2λ−1 and σ2 = 2µ−1 yield

V̇3 ≤−V3 + l6(t)+ l7(t)V5 + l8(t)V6

− e−δ2 α̂
2(1, t)+2(b2

0/a2
0)β̂

2(0, t), (76)

V̇4 ≤−V4 + l9(t)+ l10(t)V5− β̂
2(0, t). (77)

3) Bounds on V5 and V6: Define

l11(t) :=
8

¯
k2 κ̄

2
ε

2(t) =: (
¯
k2/4)l14(t) (78a)

l12(t) :=
8

¯
k2 κ̄

2
ε

2(t)eδ3 λ =: (
¯
k2/4)l15(t) (78b)

l13(t) :=
8

¯
k2 κ̄

2
ε

2(t)µ =: (
¯
k2/4)l16(t). (78c)

Differentiating (52e), inserting the dynamics (53), integrating
by parts, and using Properties 4 and 6 in Lemma 4 yield

V̇4 ≤−δ3λV5 + l11(t)+ l12(t)V5 + l13(t)V6

+
4

¯
k2 S̄2 +4θ̄

2 +
4

¯
k2 N̄2V6 +

4

¯
k2 q̄rη

2(0, t). (79)

From (52f), inserting the dynamics (34) and using Properties 5
and 6 in Lemma 4, we get

V̇6 ≤−σ3µV6 + l14(t)+ l15(t)V5 + l16(t)V6

+ q̄rη
2(0, t). (80)


