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Abstract: In order to acquire multispectral images precisely and quickly, a four-band multispectral capturing system with one imaging 

sensor is designed and evaluated in this paper. Firstly, four imaging bands are arranged in a 2×2 multispectral filter array(MSFA), and 

their filter spectral transmittances within the visual wavelength are designed uniformly. Then, the mosaicked four-band image is 

generated on the single-sensor according to the designed MSFA. In order to recover the mosaicked images, a demosaicking algorithm 

based on constant hue assumption is employed to highly maintain the image edges. At last, the four-band spectral capturing system is 

characterized by using the calibration target Macbeth Colorchecker,, and a linear relationship between the band values and spectrum are 

calculated based on polynomial regression method, afterwards the demosaicked four-band pixels can be converted into the multispectral 

reflectance with that obtained relationship. In the experiment, the four-band multispectral imaging system with the proposed 

demosaicking algorithm is evaluated, and the experiment result demonstrates the proposed algorithm outperform the other methods in 

PSNR and RRMS. 
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1 INTRODUCTION 

Multispectral image is a composition of several monochrome images normally captured with different sensors. Each 

monochrome image and sensor corresponds to specific wavelength which is usually referred to as a band or channel. 

Compared to classical RGB images, multispectral images contain much more information in the visible or invisible 

wavelength. Now multispectral images have been widely used in the area of aerospace, biomedical, agriculture, cultural 

heritage, and so on, thus it’s significant to develop precise and fast multispectral capturing systems.  

In the past few decades, many types of multispectral acquisition systems have been developed which normally employ 

the prism or diffraction grating to split the light and thereby several imaging sensors are installed[1]. As traditional 

multispectral cameras could not precisely capture the moving objects or reflect disadvantages in the case of product size 

or cost, new multispectral imaging techniques with filters array and single sensor have been proposed in the recent years. 

Single-sensor multispectral imaging is actually the extension from the CFA(color filter arrays) to the MSFA (multispectral 

filter array). Similar to the CFAs involved in most digital cameras, the MSFA is designed for down-sampling which is 

mainly determined by the amount and the spatial distribution of spectral bands [2-4]. Multispectral capturing system with 

single-sensor can acquire the spectral images in one shot, and possess the advantage of accurate image registration, low 

cost and small size. However, because single sensor is applied during multispectral imaging, only one band of spectral 

information is sampled at each pixel which means the information of other bands is neglected. In order to get the integrated 

spectral data of each pixel, the lost information of the other bands must be recovered with demosaicking algorithms. 

Multispectral demosaicking is always a challenging problem because of the sparse sampling, and undesired artifact effects 

are usually involved in the restored images, such as zipper effect, false color, aliasing, or blurring problems. Besides, 

several other procedures should be considered during the design of single-sensor multispectral imaging systems, such as 
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filter design, MSFA tessellation(or mosaicking), spectrum restoration, spectral image processing, etc[5]. The quality of the 

captured multispectral images highly depends on the precision of these procedures.  

The number of bands or the amount of filters in the MSFA largely determines the sampling rate of each pixel. For 

instance, RGB digital cameras usually apply three filters in a 2×2 Bayer CFA[6-8], and only one third of the color 

information is sampled on the single sensor which means two thirds of data is lost. In single-sensor multispectral systems, 

four, five, six, eight, and even more filters have been employed[2, 9-12], thus more color/spectrum data is lost than RGB 

cameras with Bayer CFA. The much lower sampling rate greatly challenges the design of snapshot multispectral cameras, 

especially the process of demosaicking and spectrum restoration[2, 9, 13]. In this paper, the basic procedures of a four-

band multispectral imaging system are designed and evaluated. Firstly, the visible spectrum from 400nm to 700nm is 

sampled with four band-pass filters in a 2×2 array, and then a mosaicked multispectral image is projected on the sensor 

with only 1/4 information is captured. In order to recover the other three bands from the sample data of each pixel, an 

effective demosaicking algorithm is proposed which well preserves the image edges. At last the spectrum data is restored 

from the demosaicked four-band image based on several coefficients calculated by spectral characterization. 

The remainder of this paper is organized as follows. In Section 2, the frame of the multispectral capturing system is 

described, and diverse multispectral filter arrays are introduced. Section 3 describes the demosaicking process which 

interpolates the missing bands along the image edge directions, and the demosaicked image is further corrected by using 

wavelet transform method. In section4, the multispectral imaging system is characterized where a relationship between 

four-band imaging values and spectral values is generated, and the spectrum of each pixel is estimated from the 

demosaicked image. In Section 5, the designed multispectral imaging system is simulated and evaluated with the metrics 

of PSNR and spectrum difference RRMS. At last Section 6 draws the conclusions.  

 

2 WORKFLOW OF SINGLE-SENSOR MULTISPECTRAL IMAGING SYSTEM  

2.1 CAPTURING THE MULTISPECTRAL IMAGE WITH SINGLE-SENSOR 

Different from the prevalent RGB digital cameras, the single-sensor multispectral capturing system does not export RGB 

images but the spectral images. Generally, multispectral imaging process can be described as follows[2]. Firstly, the light 

of an illuminant is reflected from the surface of objects and goes through the camera lens, and then the incident light is 

separated by different filters in front of the imaging sensor. As one pixel corresponds to only one specific filter, the response 

of the monochrome sensor is actually a mosaicked image which is heavily dependent on the filter transmittance curves and 

the MSFA. At the end, the mosaicked image will be demosaicked for spectrum reconstruction. In this section, the 

multispectral imaging principle on the single-sensor is presented, and various filter transmittance designs and filter arrays 

are listed.  

The multispectral imaging process can be regarded as a linear mapping from the incident light radiance to the sensor 

responses. When the sensor’s spectral response is expressed using a function Ls(λ), and the spatial response function is 

denoted as hS(x,y) which describes the optical blur and spatial integration at each sensor site, the discrete imaging process 

can be defined as: 

, ∆ , ∆ ∆ , ∆ , ,
∆ ,∆

 

       (1) 

where S(x, y) represents the intensity at spatial location (x, y), r(Δx, Δy, λ) denotes the incident radiance, and NS(x, y) stands 
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for the additive noise which is a result of thermal/quantum effects and quantization. Since the single-sensor is applied, a 

mosaic indictor for location (x, y) should be defined as: 

,
1, 	 , ∈ Λ
0, otherwise

 

                                       (2) 

where ΛS is the set of pixels locations for band S. Finally an N-band single-sensor spectral imaging process raw data is 

expressed as below: 

, , ,
, ,…,

 

                               (3) 

 

2.2 FILTER TRANSMITTANCE DESIGN AND FILTER ARRAYS WITHIN SPECTRAL IMAGING SYSTEMS 

Filters control the amount of incident light reaching the sensors by setting specific transmittance of the wavelength. In 

Bayer’s color filter array, the filter transmittance is designed according to Gaussian distribution which shows great success, 

and most of the multispectral imaging systems follow this similar filter design principle. If the spectrum λ is sampled from 

wavelength λ1 to λ2 ( ), the filter transmittance can be expressed as: 

1

√2
 

                                            (4) 

Where μ is the mean or expectation of the transmittance distribution, and σ is the standard deviation of wavelength. By 

adjusting these two parameters, filters can be designed in the forms of narrow band-pass, wide band-pass, ultrawide band-

pass, or the band-reject forms[14, 15]. In the multispectral imaging systems, the wide band-pass filters are usually applied. 

Because the amount of filters and the corresponding transmittance distribution can be freely set, many forms of filters are 

designed for multispectral imaging systems. Fig.1(a)~(d) lists the filter designs with four, six, and eight wide band-pass 

filters. 

 

(a)                      (b)                     (c)                     (d) 

                         

(e)                    (f)                     (g)                       (h) 

Fig.1 Different filter transmittance curves and arrays within multispectral capture systems: (a)three-band filter design; (b) four-band 

filter design; (c)six-band filter design; (d)eight-band filter design; (e)Bayer color filter array; (f): 2×2 filter array; (g) 2×3 filter array; 
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(h) 2×4 filter array. 

The number of filters usually determines the quantity of image bands on the monochrome sensor, and the flexibility of 

those filters’ spatial distribution has great influence on the demosaicking process. An example of the filter array for those 

filter designs is shown in Fig.1(e)~(h). As mentioned before, the filter arrays are not constant even for the same numbers 

of bands, for instance, the filter array of an eight-band multispectral imaging system can be designed into several forms. In 

Fig.2(a), eight filters simply arrange in a 1×8 array, and (b) is the 2×4 array similar to Fig.1(h), (c) is another form of (b), 

while (d) is a 3×3 array with one copy of band 4. Actually there are still many other different designs for eight-band filter, 

many factors should be considered to find the optimal spectral filter array solution, especially the spectral sampling rate, 

demosaicking process, spectrum reconstruction, etc. In this paper, four filters in front of the single-sensor are employed to 

form a 2×2 array, and we focus on its demosaicking process which is analyzed in Section3. 

 

(a)  

(b)   

(c)   

(d)  

Fig.2 Examples of 8-band filter array 

 

3 MULTISPECTRAL IMAGE DEMOSAICKING FOR THE 2×2 MOSAICKED IMAGES 

Within the multispectral imaging process, the multispectral demosaicking for the MSFA is one of the most challenging 

problems. Large quantities of demosaicking algorithms have been developed for Bayer CFA or MSFA, and several CFA 

demosaicking methods can be extended to MSFA demosaicking. As shown in Fig.1(a) and (e), three color bands in the 

Bayer CFA form a 2×2 array which consist of two Green bands, one Red band, and one Blue band. The initial demosaicking 

algorithms for Bayer CFA recover three bands separately with simple linear interpolations, such as nearest neighbor 

replacement, bilinear interpolation and bi-cubic interpolation[16-18]. Although those algorithms perform very fast, the 

demosaicked images usually lost edge details with excessive aliasing or blurring effects. Considering the importance of 

image edges, the right interpolation direction is computed and applied to several demosaicking algorithms, so that the 

interpolation is performed along image edges but not across them[19-21]. In addition, there are obvious correlations among 

different bands for RGB image, many demosaicking models interpolate the image according to constant color ratio or color 

difference assumption[22-24]. For the multispectral images, the correlation between neighbor bands also maintains.  
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Now many demosaicking methods have been developed for MSFA, such as bilinear interpolation[25], generic 

algorithm[10], interpolation with learned weights[11], etc. However, those algorithms’ performance is insufficient 

especially for recovering the image edge details. Thus, in this paper the constant-hue assumption is employed during 

interpolating the four-band mosaicked image, and the interpolation directions are determined by calculating the gradients 

of each pixel. Firstly, the image edges are calculated from the mosaicked image, and they are used to define the direction 

of interpolation with the neighbors. Secondly, the other three bands are recovered from the existed bands for each pixel, by 

considering the features of filter arrays, image edges and constant-hue features. Thirdly, the wavelet transformation is 

applied to separate the image into low frequency and high frequency components, and the high frequency images are 

modified using the luminance information. At last, two metrics are used to evaluate the demosaicking algorithm, one is the 

modified peak signal-to-noise ratio(PSNR) for the four-band images, and another is the reflectance root mean square 

(RRMS) which calculates the spectrum errors of the original and reconstructed reflectance values. 

 

3.1 DETERMINING THE INTERPOLATION DIRECTIONS ALONG THE IMAGE EDGES 

Some demosaicking algorithms perform well and run quickly in smooth image regions, such as nearest neighbor 

replication, bilinear interpolation, bi-cubic interpolation, and so on. However, the demosaiced images frequently lose edge 

details in the texture or structure areas. Edge-detected interpolations can solve those problems by allocating the 

interpolation directions along the image edges. There are many potential directions involved in the image edges, while the 

horizontal and vertical directions are mostly utilized for the consideration of the computational efficiency, and sometimes 

even the diagonal direction is used. In the paper only the horizontal as well as vertical directions are considered. 

The gradients are often applied to define the edge directions. Many forms of gradients can be defined according to the 

spectral filter array, and the simplest gradient-based interpolation with four neighbors is expressed as below. 

∆ , , ,

∆ , , ,
 

                              (5) 

where ΔHi,j is the horizontal gradient for position (i, j), and ΔVi,j represents the vertical gradient. In most cases, the 

demosaicking interpolation is performed along the smaller-gradient directions. That is to say, if ΔHi,j >ΔVi,j, , ,

, /2 , otherwise , , , / 2. In reference[26], another expression of gradient is developed for large 

regions during Bayer CFA demosaicking as below. 

∆ , , , 2 ,

∆ , , , 2 ,
 

                         (6) 

In this paper four bands of X, Y, Z, W form a 2×2 filter array as shown in Fig.3, and the gradients of the image edges are 

determined by considering the structure of filter array.  
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(a)  (b)   (c)    (d)  

Fig.3 Filter array with four bands: (a) the 2×2 filter array for the four bands; (b) interpolate Y position in horizontal direction; (c) 

interpolate Z position in vertical direction; (d) interpolate Z position 

 

3.2 INTERPOLATING THE MISSING POSITIONS 

As shown in Fig.3, there are one given and three unknown band values for each position. Take the demosaicking process 

on X band for example, for the 2×2 array the missing X band values in position Y, Z, W are required to be interpolated.  

It is relatively simple to recover the X band values in position position Y and Z, since there are two nearby X band samples. 

As shown in Fig.3(b), the Y position can be interpolated along horizontal direction with two X neighbors on both sides. In 

order to reduce the aliasing effect, the sampled band values of Y are employed based on constant hue assumption which 

means the hue of an object is constant even for different bands. The hue is sometimes formulated as the color differences 

or logarithm of color ratios for RGB images, and utilization of constant hue assumption effectively prevent abrupt changes 

in color intensities. For the four-band mosaic image in this paper, a FIR filter with three coefficients [0.5 1 0.5] and another 

FIR filter with five coefficients [-0.25 0 0.5 0 -0.25] are used during interpolating the middle point as described in 

reference[27]. So if position (i, j) is a Y position, its X band value can be expressed as: 

,
1
2 , ,

1
4
2 , , ,  

(7) 

Similarly, if (i, j) is a Z position, its X band values can be estimated by vertical interpolation: 

,
1
2 , ,

1
4
2 , , ,  

                  (8) 

At last, the X band value of W position should be interpolated. Because no close X neighbors locate around W position, 

the new generated X values in Y and Z positions are utilized. As shown in fig.3(d), there are four X neighbors around 

position W, and the X band values can be interpolated in horizontal or vertical direction. In order to reduce aliasing effect 

caused by the simple averaging filter, the interpolation is carried out along the image edge directions. The second-order 

gradients developed by Hamilton and Adams[26] successfully represent the edge directions, so the gradients for position 

W (i, j) are expressed as: 

∆ , , , 2 , , ,

∆ , , , 2 , , ,
 

                 (9) 

Finally the estimated X band value for W position is determined with the gradient as below. 

j

i

X Y

Z W

X Y

Z W

X Y

Z W

X Y

Z W
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4
	 	 	 	 if	 ∆ , ∆ ,

	 ,
, ,

2
2 , , ,

4
	 else

 

            (10) 

According to Eq.7~10, the unsampled X band values of three positions Y, Z, W within the 2×2 array are interpolated along 

the lower gradient directions. Similarly, the other band values can be recovered with that method above.  

 

3.3 MODIFY THE HIGH FREQUENCY IMAGE IN WAVELET DOMAIN 

Similar to RGB color images, the four-band multispectral image can be separated into luminance and chrominance 

components. According to the description of imaging process in reference[28,29], the four-band MSFA mosaic data can be 

written as: 

, , ,
, , ,

	

                         (11) 

where ms(x,y), (S=X, Y, Z, W) are the modulation functions at position (x, y)[16]: 

, 1 cos	 1 cos	 /4
, 1 cos	 1 cos	 /4
, 1 cos	 1 cos	 /4
, 1 cos	 1 cos	 /4

 

                     (12) 

 Based on Eq.11 and Eq.12, the single-sensor image data can be separated into two parts: 

,
1
4

, , , ,
1
4

cos cos

1
4

cos cos
1
4

cos cos 	  

1
4

, , , , , ,
, , ,

 

       (13) 

The first term of Eq.13 represents the luminance component and the rest with modulation functions can be seen as 

chrominance term. The luminance is usually estimated by low-pass filtering, and the chrominance can be estimated by 

high-pass filtering. Because correlations exist in different bands of spectral image, the image edges within the synthetic 

luminance component usually well match with four separated bands. In this paper, all the bands of the spectral image are 

firstly transformed from spatial domain to wavelet domain, and then four separated bands’ high frequency components are 

substituted by the luminance band. The modified image obviously enhances the correlations among different bands and 

presents fine image edges visually.  

From Section 3.2, the demosaicked image consists of four bands of full resolution images, while for each pixel’s four 

band values, only one comes from the initial raw data and the other three are interpolated. When the interpolated band 

values are optimized, the spectral image will be enhanced. Because wavelet transform has an advantage of processing 

images in different resolutions, it is applied to separate each image band into four different frequency components. If the 

decomposition of one band is expressed as {LL, LH, HL, HH} in frequency domain, the high frequency information mainly 
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exists in the set of {LH, HL, HH}, and they basically represent the edges of image. Since inter-band correlation is involved 

in the high-frequency, the high frequency coefficients are modified to refine the demosaicked image. The decompositions 

of four spectral image bands combined with the synthetic luminance band are processed with discrete wavelet transform 

as below. 

, , , 2
, , , 2
, , , 2
, , , 2
, , , 2

 

                    (14) 

Where DWT is the discrete wavelet transform, iimage (i=L, X,Y,Z,W) represent the luminance and other four spectral image 

bands. Because the high frequency component of those image bands are highly correlated and have constant variation along 

the edges[30], four bands’ high frequency component can be updated based on this correlation. One common method is to 

correct them with the luminance band. Driesen and Scheunders[31] proposed two merging rules, in this paper the 

replacement rule is used, so the high frequency coefficients modification is described as below. 

                                                (15) 

where the subscript i =LH, HL, HH represent the replaced band component for wavelet domain. Finally the inverse wavelet 

transform is applied to convert the frequency image to spatial domain: 

2 , , ,
2 , , ,
2 , , ,
2 , , ,

 

                      (16) 

where the iDWT2 is the inverse wavelet transform.  

In fact, some pixel values maybe changed abruptly as the result of wavelet coefficients replacement, so further 

refinement is usually need after the inverse wavelet transform. In this paper the DWT processed image is further compared 

with the original demosaicked image, and the band values will be converted into their original values when large difference 

occurred. Finally, those four recovered bands are combined to form the four-band multispectral image. 

 

3.4 METRICS FOR EVALUATING DEMOSAICKING METHODS  

In order to evaluate the demosaicking algorithm, the PSNR metric is firstly employed to compare the original and 

reconstructed spectral images. For each band of the image, the PSNR is defined as: 

10
255 ∗

∑ ∑ , ,
 

                    (17) 

Where H and W represent the height and width of the image,  and  are the original and demosaicked images for band 

K. It should be noted that the band values must be normalized to 0~255 before PSNR calculation. Similar to reference[32]，

a modified PSNR expression M-PSNR for multispectral image is utilized to evaluate the demosaicking method for the four-



Post‐print version of: B. Sun et al. / Future Generation Computer Systems 86 (2018) 670–679, https://doi.org/10.1016/j.future.2018.04.056   

 

band multispectral image.  

_ 10
255

1
4 ∗

, ,
, , ,

 

        (18) 

In addition, as the final output of the multispectral imaging system is the spectrum data of each pixel, the reflectance 

root mean square (RRMS) error is employed to evaluate the imaging system[33], which is the difference of the original 

and reconstructed reflectance data expressed as below. 

1
∗

∑ , ,
 

                   (19) 

where  and  are the original and estimated reflectance values respectively, and they are scaled to 0~1, while N 
is the sampled dimensionality of reflectance.  
 

4 SPECTRUM RECONSTRUCTIONS FROM DEMOSAICKED IMAGE 

According to the multispectral imaging workflow, the demosaicked image should be finally converted into the original 

spectrum values. The conversion from multi-band image to spectrum is dependent on a linear relationship which is 

frequently estimated by using polynomial regression and least square method.  

Polynomial regression is a form of linear regression in which the relationship between the independent variable x and 

the dependent variable y is modeled as an nth degree polynomial. Meanwhile polynomial regression fits a nonlinear 

relationship between the value of x and the corresponding conditional mean of y values denoted E(y|x), and also has been 

applied to describe nonlinear phenomena[34]. The multispectral imaging process from spectrum to sensor response can be 

seen as a liner projection, thus when the reflectance spectrum is sampled as y1, y2…yn and the band values are x1, x2..xm, 

the relation between these two variables can be described as: 

⋯  

                (20) 

where i denotes the sequence of discrete reflectance spectrum, so if the spectrum is sampled from 400nm to 700nm with 

10nm interval, i =0, 1, 2…, 30. The coefficients βi0, βi1, …βiM are the undetermined coefficients for ith spectrum.  

  In this paper, the color calibration target Macbeth ColorChecker is used to characterize the imaging system. For those 

24 groups of color samples, the simulation of spectrum and sensor response is represented in the matrix: 

 

                                         (21) 

where Y is the 24 color patches’ discrete reflectance values from λ1 to λ2, X is the matrix of sensor response. If b0, b1,..., bM 

are the estimated values by least squares methods for parameter β, the regression equation can be expressed as: 

⋯^  

                         (22) 

From the principle of least squares, the coefficients of b0, b1,..., bM should obtain the minimal residuals square sum for 
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all the measured value yt and regression value : 

 

                               (23) 

Finally, the coefficients b can be resolved as below: 

 

                                 (24) 

By using the coefficients above, the spectral values of ColorChecker’s 24 patches are reconstructed and compared with 

the original values. The comparison is shown in Fig.4 and demonstrates that two groups of spectrum match well, so the 

coefficients estimated in this section can be employed to reconstruction the multispectral images in experiment of Section5. 
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Fig.4 The original and predicted spectrum of Macbeth ColorChecker’s 24 patches 

 

5 EXPERIMENTS AND ANALYSIS 

In this section the multispectral imaging system is simulated and the proposed demaicking algorithm is evaluated. Firstly, 

four wide-band Gaussian filters are set in front of the imaging sensors, and they are designed according to Eq.4 with the 

same bandwidth σ=20 and four distribution factors are μ=455nm, 520nm, 575nm, 640nm respectively. These four filters 

are arranged in a 2×2 array as shown in Figure.1. The illuminant D65 is assumed and the object’s response of on the sensor 

can be seen as the linear transform of the illuminant spectral power. Based on the four-band MSFA the mosaicked image 

is generated on the single-sensor. By using the demosaicking method proposed in this paper, the other three band values of 

each pixel are recovered, and the corresponding spectrum information is also reconstructed by imaging system 

characterization. In experiment, CAVE’s hyper spectral images are employed which are treated as the capturing objects in 

reality, and 15 images are chosen with different objects. These images are spectrally captured from 400nm to 700nm and 

digitized at the resolution of 512×512 as shown in Fig.5.  

 

 

 

 

Fig.5 Fifteen hyper spectral images of CAVE 

 

In order to evaluate the performance of the proposed multispectral demosaicking algorithm, the metrics of PSNR 

and RRMS are calculated from the original and demosaicked images[32,33,35]. Besides, four other demosaicking 
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methods are selected for comparison, they are the intra-band bilinear interpolation(defined as method-1), inter-band 

bilinear(method-2), binary tree-based generic method(method-3), and the demosaicking algorithm using learned 

interpolation weights(method-4). With different demosaicking algorithms, the recovered four-band images are 

compared with the original ones in PSNR values according to Eq.18, and all those fifteen testing images’ PSNR 

values are listed in Table.1. 

 

Table.1 PSNR values of fifteen testing images with different demosaicking algorithms 

PSNR Method-1: 

Intra-band 

bilinear 

Method-2: 

Inter-band 

bilinear 

Method-3: 

Binary tree 

generic 

Method-4: 

Weighted 

interpolation 

Method-5: 

Proposed 

Beads 31.3962 32.3073 30.7458  26.4825 33.2131 

Balloons 44.6728 45.6692 42.0289 38.0699 46.9371 

Pompoms 40.3475 41.4020 38.4598 35.0488 41.2875 

Cloth 29.2961 30.8613 28.5308 24.9912 31.3640 

Statue 41.8380 42.7512 40.6305 37.8052 44.1420 

Face 40.0793 41.2846 38.2092 36.0451 40.2888 

Food 41.7225 42.7331 40.0772 37.3722 43.2572 

Feathers 35.9736 37.4261 35.1460 33.1946 39.4372 

Flowers 42.1955 42.8740 39.1085 36.0687 38.4263 

Beans 33.3089 35.0393 32.6284 30.6807 36.9307 

Painting 31.0720 31.9940 30.8851 31.0167 34.8590 

Thread 36.9233 38.6150 36.3351 37.7671 41.3007 

Watercolors 32.9048 34.4912 32.2509 27.0492 36.1485 

Superballs 42.5264 43.5976 41.7985 39.4690 44.9294 

Toys 43.5175 43.9038 42.7080 34.5403 43.4266 

Average 37.8516 38.9966 36.6361 33.7067 39.7298 

 Besides, the spectrum error is also calculated and compared with different demosaicking algorithms. Those fifteen 

images’ RRMS are listed in Table.2. The illustration of PSNR and RRMS for those images with five demosaicked 

algorithms is depicted in Fig.6. 

 

Table.2 RRMS errors of fifteen testing images with different demosaicking algorithms 

RRMS Method-1: 

Intra-band 

bilinear 

Method-2: 

Inter-band 

bilinear 

Method-3: 

Binary tree 

generic 

Method-4: 

Weighted 

interpolation 

Method-5: 

Proposed 

Beads 0.0403 0.0399 0.0407 0.0474 0.0398 

Balloons 0.0160 0.0160 0.0164 0.0174 0.0160 

Pompoms 0.0276 0.0273 0.0279 0.0302 0.0273 

Cloth 0.0335 0.0321 0.0342 0.0408 0.0315 
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Statue 0.0120 0.0118 0.0121 0.0126 0.0118 

Face 0.0115 0.0114 0.0118 0.0125 0.0114 

Food 0.0134 0.0133 0.0137 0.0160 0.0134 

Feathers 0.0224 0.0220 0.0227 0.0245 0.0218 

Flowers 0.0172 0.0169 0.0176 0.0192 0.0189 

Beans 0.0241 0.0233 0.0245 0.0298 0.0232 

Painting 0.0208 0.0195 0.0207 0.0192 0.0163 

Thread 0.0198 0.0192 0.0199 0.0194 0.0186 

Watercolors 0.0229 0.0219 0.0233 0.0293 0.0212 

Superballs 0.0217 0.0216 0.0217 0.0226 0.0214 

Toys 0.0179 0.0178 0.0181 0.0208 0.0180 

Average 0.0214 0.0209 0.0216 0.0241 0.0207 

 

(a)  (b)  

Fig.6 Comparison of different demosaicking algorithms with 15 testing images: (a)PSNR; (b)RRMS 

 

As shown in Fig.6, our proposed method achieves the highest PSNR values and lowest RRMS errors for most of the 

testing images. If evaluating these five methods by the average PSNR value of the testing images, the sequence is below: 

PSNRmethod5>PSNRmethod2>PSNRmethod1>PSNRmethod3>PSNRmethod4; similarly, the order of average RRMS is: 

RRMSmethod5<RRMSmethod2> RRMSmethod1> RRMSmethod3> RRMSmethod4. Thus, our algorithm outperforms other models for 

the majority of the images. Meanwhile, because it is difficult to evaluate the demosaicking algorithms just from the 

objective metrics, PSNR and RRMS, the visual judgment of the reconstructed images is given for detailed evaluation. In 

Fig. 7, a sample of the image feather interpolated with different techniques is illustrated. It can be seen that less aliasing 

artifacts are involved in the proposed algorithm compared with other methods. 
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(a) original                  (b) method-1                     (c) method-2 

   

(d) method-3                 (e) method-4                     (f)method-5 

Fig.7 The original and demosaicked results of a cropped region from the image “Feathers” 

 

6 CONCLUSIONS 

The multispectral image is widely applied in the field of medicine science, environmental observation, defense and 

security, and other earth observation applications. For the purpose of obtaining multispectral images accurately and quickly, 

many solutions of multispectral cameras with single-sensor are developed in recent years. In this work, four Gaussian 

distributed filters are designed and arranged in a 2×2 array to create the mosaicked four-band images, and a novel 

demosaicking algorithm based on directional filtering and wavelet transform are proposed for the 2×2 MSFA. Within the 

simulation experiment, fifteen testing images are employed to evaluate different demosaicking algorithms, and the 

subjective assessment experiment result demonstrates less visible artifacts are involved in our proposed algorithm. 

Meanwhile, two objective evaluating metrics, PSNR value and RRMS error, both show the new algorithm performs better 

than the other four methods with most of those testing images. Thus, the experiment results indicate that the simulated 

four-band multispectral imaging system, especially the proposed demosaicking algorithm for 2×2 MSFA, can be applied 

to capture the multispectral images. 
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