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An algorithm to calculate the best global mapping from

colour to greyscale is presented. We assert that the best

mapping minimises the difference between the multi-

channel local tensor and the tensor resultant mono-

chromatic image. To minimise the objective function,

we represent the grayscale image as a weighted sum of

the RGB channels, three channels and their second or-

der polynomial and three channels and their root poly-

nomial. The optimisation searches for the best weights

to combine the linear, polynomial and root polynomial

functions. Our result show that the optimal weights

can half the root mean square difference between the

colour gradients and those achieved by the conven-

tional lumiance transformation. Further improvement

are achieved by adding the squared and root squared

channels to the solution. The improvements are also

visually evident.
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1. INTRODUCTION

In a well lit environment, people with normal, trichromatic,
colour vision perceive the world around them as being colour-
ful. The advantage of colour over mono-chromatic vision is the
added dimensions which allows us to discern a red apple from
green leaves even when they share the same luminance or av-
erage reflected spectral intensity. One of the challenging prob-
lems in colour science, is that of converting a colour image to
grey-scale in a manner that preserves the distinctions between
the various colour regions and objects.

The conversion of higher dimensional images to grey-scale is
important in a wide range of applications such as: When print-
ing a colour image on a mono-chromatic printer, when viewing
multi-spectral images on colour monitors and when we wish to
create a pleasing wedding photo. While the exact definition of
a successful conversion might be defined by the actual problem
such as detecting environmental changes from satellite images

or converting a modern child’s photo to resemble an old photo-
graph there is almost always a general aim that is to preserve
the visual information which allow us to make sense of infor-
mation.

A very general definition of visible contrast is difference be-
tween various parts of the scene or image. A high contrast gray-
scale image has a maximum value that represents white and a
minimum that represents black while a low contrast image has
a maximum and minimum that are visually close such as two
levels of mid grey. In the colour space, on the other hand, con-
trast is encoded along red-green, blue-yellow and white-black
thus the problem of converting colour images to an optimised
grey-scale representation might be stated as the problem of en-
coding, blue-yellow, red-green contrast in the single available
dimension namely: white to black.

Today, there is a vast literature addressing colour to grey
conversion and image fusion with the shared focus of preserv-
ing colour contrast and the discernibility of different image re-
gions. Generally speaking, the literature can be divided into
two main classes: in the first, there are global methods [1] [2]
and in the second, there are local spatial algorithms [3] [4], [5]
[6] that assign a grey-value to each pixel based on its difference
from neighbouring pixels.

The algorithm presented in this article addresses a mathe-
matical question, namely: If, in a trichromatic vision system,
only scaling of the channels was allowed, what would the best
luminance direction be?

Although many studies show that human colour perception
is influenced by many non-physical factors including a person’s
natural language [7, 8], it is practically assumed that a global
conversion from colour to gray is a weighted linear sum of the
colour channels where the weight assigned to green is greater
than that assigned to red and blue.

In this paper we adhere to the approach of the weighted lin-
ear sum and ask: what are the optimal image specific weights
that combine the red, green and blue channels? We would like
to underline the difference between an image dependent lumi-
nance direction and that derived from vision experiments as
in the latter the weights are experimentally estimated using
patches of colours and observers who indicate which patch is
lighter, i.e. the approach does not include the scene’s spatial
variations.

In today’s, image processing packages such as photoshop
and lightroom, the user is allowed to adjust the weights used
in the conversion until a subjective pleasing result is achieved.
From this perspective, the objective of this work is to mathemat-
ically estimate the optimal weights where our optimality crite-
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rion is that the structure tensor of the resultant grey-scale image
is as close as possible to that of the original colour version.

We choose the structure tensor because it encodes the colour
gradients of the image. Thus the algorithm is designed to search
for weights that minimize the difference between the gradients
of the colour image represented by the local tensor and those of
the gray image.

2. THEORY

A color image may be represented in some trichromatic colour
space such as RGB by I = (R, G, B). A linear luminance repre-
sentation of the image is the weighted sum L = w1R + w2G +
w3B, where w1, w2, and w3 are positive constant weights. These
weights are chosen so that the grey scale image is as close as pos-
sible to the perceived average luminance of the original colour
image. Since the human vision is more sensitive to green light
than red and blue, w2 is greater than w1 and w3. The values
(w1, w2, w3) = (0.29, 0.59, 0.12) are typical values.

Colours that have different hues and identical luminance are
known as iso-luminant and they are common in art and nature
and the use of global, fixed weights to convert three channel
images to grey-scale can and does, in the worst case scenario,
lead to converting adjacent colours that are noticeably different
in hue to the same gray value.

Instead of defining the gray-scale image as a linear com-
bination of the three colour channels, we can write a more
general global luminance using a second degree polynomial:
L = w1R + w2G + w3B + w4GB + w5RB + w6RG + w7R2 +
w8G2 + w9B2.

We also consider a root polynomial luminance representa-

tion. That is L = w1R + w2G + w3B + w4

√
GB + w5

√
RB +

w6

√
RG. Root polynomials have recently been used to model

non linear relations in color science. See Finlayson, [9].
When we adapt the experimental weights used to con-

vert colour to luminance, we can write the structure tensor
of the color image as: MC = 0.29∇R∇RT + 0.59∇G∇GT +
0.12∇B∇BT.

The corresponding luminance image L has structure tensor
ML = ∇L∇LT. By using the matrix norm we have ‖ML −
MC‖2 = tr(ML − MC)

2.
In the following mathematical derivation, we describe the

linear case with three weights. The polynomial and root poly-
nomial cases are equivalent. We will find weights w1, w2, and
w3 that minimizes the function W(w1, w2, w3) =

∫

Ω
‖ML −

MC‖2 dω.
We use the fact that tr(AB) = tr(BA) and get

‖ML − MC‖2 = tr(∇L∇L
T − MC)

2

= tr(∇L∇L
T∇L∇L

T)− tr(∇L∇L
T

MC)

− tr(MC∇L∇L
T) + tr M

2
C

= tr(∇L
T∇L∇L

T∇L)− tr(∇L
T

MC∇L)

− tr(∇L
T

MC∇L) + tr M
2
C

= ∇L
T(∇L∇L

T − 2MC)∇L + tr M
2
C

.

The derivative of ∇L with respect to w1 is ∇R. Therefore, the
derivative of ‖ML − MC‖2 with respect to w1 is

(‖ML − MC‖2)1 = ∇R
T(∇L∇L

T − 2MC)∇L

+∇L
T∇R∇L

T∇L +∇L
T∇L∇R

T∇L

+∇L
T(∇L∇L

T − 2MC)∇R.

Reorganising by using ∇RT∇L = ∇LT∇R ∈ R and MT
C
=

MC gives (‖ML − MC‖2)1 = 4∇RT(ML − MC)∇L. Therefore,
the derivatives of W are

W1(w1, w2, w3) = 4
∫

Ω

∇R
T(ML − MC)∇L dω,

W2(w1, w2, w3) = 4
∫

Ω

∇G
T(ML − MC)∇L dω,

and

W3(w1, w2, w3) = 4
∫

Ω

∇B
T(ML − MC)∇L dω.

These functions are polynomials in w1, w2, and w3. E.g.,
W1(w1, w2, w3) = c300w3

1 + c030w3
2 + c003w3

3 + c210w2
1w2 +

c201w2
1w3 + c120w2

2w1 + c021w2
2w3 + c102w2

3w1 + c012w2
3w2 +

c100w1 + c010w2 + c001w3, where c300 = 4
∫

Ω
(∇RT∇R)2 dω,

and so on.
We solve F = (W1, W2, W3) = 0 by using the multivariate

Newton method. The Jacobian DF is symmetric and has coeffi-
cients

W11(w1, w2, w3) =

4
∫

Ω

∇R
T(∇R∇L

T +∇L∇R
T)∇L+∇R

T(ML − MC)∇R dω,

W12(w1, w2, w3) =

4
∫

Ω

∇R
T(∇G∇L

T +∇L∇G
T)∇L+∇R

T(ML − MC)∇G dω,

W13(w1, w2, w3) =

4
∫

Ω

∇R
T(∇B∇L

T +∇L∇B
T)∇L+∇R

T(ML − MC)∇B dω,

W22(w1, w2, w3) =

4
∫

Ω

∇G
T(∇G∇L

T +∇L∇G
T)∇L+∇G

T(ML − MC)∇G dω,

W23(w1, w2, w3) =

4
∫

Ω

∇G
T(∇B∇L

T +∇L∇B
T)∇L+∇G

T(ML − MC)∇B dω,

and

W33(w1, w2, w3) =

4
∫

Ω

∇B
T(∇B∇L

T +∇L∇B
T)∇L +∇B

T(ML − MC)∇B dω.

The code is available by request.

3. RESULTS

Five images are chosen to present the performance of the
method: a colourful graphic image 1a, a painting by Monet 2a,
an image of 5 different colour caps 3a, a photo of a baboon 4a,
and a picture of two parrots 5a. Prior to running the algorithm,
a Gaussian blur filter with σ = 3 was applied to the the caps im-
age and sunset image. Table 1 shows the root mean square error

RMSE =
√

W

N
of the greyscale structure tensor relative to the

colour structure tensor. Where, N is the number of pixels. We
observe that the RMSE improves to approximately one half in



Letter Journal of the Optical Society of America A 3

(a) (b)

(c) (d)

(e) (f)

Fig. 1. The figure displays the original colour image 1a, the
standard luminance image 1b, the best linear greyscale im-
age 1c, the best second degree root polynomial greyscale im-
age 1d, the best third degree root polynomial image 1e, and
the best polynomial greyscale image 1f,

our method compared to the RMSE of the standard luminance
image.

This improvement is also evident in the visual inspection of
the sample images. As an example, the blue sheet in Figure 1a
is more visible in Figure 1c to Figure 1f than it is in the standard
luminance image in Figure 1b. The improvement is gentle and
does not reduce the contrast in other part of the image. The or-
ange sun in Monets painting in Figure 2a almost disappears in
the luminance image in Figure 2b. The sun is, however, clearly
visible in Figures 2c-2f as well as many other details such as the
reflection in the sea. Similar improvements are visible in the im-
age series of caps in Figure 3. There are minor improvements in
the image series in Figure 4 and Figure 5.

Numerically, the algorithm converged to the coefficients
shown in table 2, 3, 4, and 5. Although, some the the coeffi-
cients in table 5 are relatively large and some are negative, the
range of the resulting greyscale images was between 0 and 1.
No contrast reducing renormalizing was therefore performed
or necessary.

4. DISCUSSION

In this article, we presented an algorithm to map colour images
to greyscale with the condition that the mapping should pre-
serve as much as possible of the gradients between the various
image parts represented by the tensor matrix.

The algorithm is global, i.e. any two pixels with the same

(a) (b)

(c) (d)

(e) (f)

Fig. 2. The figure displays the original colour image 2a, the
standard luminance image 2b, the best linear greyscale im-
age 2c, the best second degree root polynomial greyscale im-
age 2d, the best third degree root polynomial image 2e, and
the best polynomial greyscale image 2f,

RGB value will map to the same greyscale independent of their
location in the image or the colours that surround them.

To find the best luminance mapping we represent the prob-
lem as a system of n cubic polynomial equations where the
number of solutions is at most 3n . One solution is the trivial
solution (0, 0, 0, . . .) and for any solution, its negative is also a
solution. The solutions of the system are critical points and not
automatically local minima. A critical point is a local minimum
when all n eigenvalues of the Hessian H = DF are positive.
That limits the number of local minima to a few.

Although the method is fast and can easily be used in prac-
tical image processing, our interest in this work is theoretical
where we wanted to demonstrate that a mathematical opti-
mality condition pertaining to preserving the gradients of the
colour can be used to result in an improved global colour to
greyscale conversion.

Our result show that even when we constrain the mapping
to be a linear combination of the colour channels, it is possible
to improve upon the root mean square of luminance conversion
by a factor of two. Such an improvement is interesting as it can
easily be performed to optimise the image contrast by a simple
scaling.
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Colour sheets Caps Sunset
Luminance 1.21e-03 1.33e-04 4.95e-05
Linear 8.78e-04 1.01e-04 3.66e-05
Root Poly 2. deg. 6.15e-04 8.16e-05 3.18e-05
Root Poly 3. deg. 4.80e-04 8.02e-05 2.94e-05
Poly 2. deg. 5.53e-04 8.30e-05 2.92e-05

Table 1. Root mean square error of the greyscale structure ten-
sor relative to the color structure tensor.

Sample Caps Sunset
R 0.324 0.483 0.508
G 0.569 0.472 0.420
B 0.185 0.0522 0.0251

Table 2. The coefficients for best linear greyscale. The initial
vector was (1, 1, 1).

Sample Caps Sunset
R 0.275 0.474 0.638
G 0.615 0.462 0.418
B 0.186 0.0657 -0.104

GB -0.188 -0.714 0.667
RB -0.025 0.698 -0.0811
RG -0.178 -0.560 -0.981
R2 0.110 0.0213 0.387
G2 0.118 0.533 0.208
B2 0.0857 0.0285 -0.156

Table 3. The coefficients for best second degree polynomial
greyscale. The initial vector was the best linear greyscale from
table 2.

Sample Caps Sunset
R 0.399 0.694 0.844
G 0.760 1.73 0.469
B 0.248 0.0604 0.152√
GB -0.172 -1.13 0.214√
RB 0.0388 1.15 -0.400√
RG -0.181 -1.51 -0.301

Table 4. The coefficients for best second degree root polyno-
mial greyscale. The initial vector was the best linear greyscale
from table 2.

Sample Caps Sunset
R 0.118 0.462 6.12
G 0.374 -1.97 0.549
B -0.0049 0.0625 -2.80√
GB -2.77 -13.7 -11.2√
RB -0.539 13.7 -6.10√
RG -4.27 -13.8 36.4

3
√

GB2 1.59 9.72 9.40
3
√

BR2 0.495 -2.79 2.70
3
√

RG2 2.39 12.0 -12.9
3
√

G2B 1.49 7.90 4.37
3
√

B2R 0.366 -9.67 4.94
3
√

R2G 2.25 4.21 -29.3
3
√

RGB -0.419 -5.11 -1.22

Table 5. The coefficients for best third degree root polyno-
mial greyscale. The initial vector for ’Sample’ and ’Sunset’
was the coefficients of the best second degree root polynomial
greyscale from table 4. The initial vector for ’caps’ was (1,1,1)

.

(a) (b)

(c) (d)

(e) (f)

Fig. 3. The figure displays the original colour image 3a, the
standard luminance image 3b, the best linear greyscale im-
age 3c, the best second degree root polynomial greyscale im-
age 3d, the best third degree root polynomial image 3e, and
the best polynomial greyscale image 3f,
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(a) (b)

(c) (d)

(e) (f)

Fig. 4. The figure displays the original colour image 4a, the
standard luminance image 4b, the best linear greyscale im-
age 4c, the best second degree root polynomial greyscale im-
age 4d, the best third degree root polynomial image 4e, and
the best polynomial greyscale image 4f,

1460–1470 (2015).

(a) (b)

(c) (d)

(e) (f)

Fig. 5. The figure displays the original colour image 5a, the
standard luminance image 5b, the best linear greyscale im-
age 5c, the best second degree root polynomial greyscale im-
age 5d, the best third degree root polynomial image 5e, and
the best polynomial greyscale image 5f,
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