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Abstract: This paper considers the use of a simplified dynamic window (DW) algorithm to
handle actuator magnitude constraints for a 3 degrees-of-freedom dynamic positioning controller
for ships. To accomplish this, we use the simplified DW algorithm to design a dynamic window-
based controller (DWC) which guarantees that the velocities remain within a feasible set, while
simultaneously respecting the actuator magnitude constraints. The DWC is compared with a
benchmark motion controller which uses nonlinear position and velocity feedback terms. The
comparison is made using performance metrics which consider both control accuracy and energy
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1. INTRODUCTION

Numerous ship motion controllers and autopilots have
been proposed over the years. However, many control
algorithms found in the literature do not explicitly con-
sider saturation constraints for the actuators. Examples of
traditional motion control designs for ships are given in
(Fossen, 2011). Not considering actuator constraints may
lead to unsatisfying performance or stability issues.

In (Fox et al., 1997), the dynamic window (DW) algorithm
is suggested as a method to achieve collision avoidance
and deal with actuator constraints imposed by limited
velocities and accelerations for mobile robots. The DW
algorithm is modified for AUVs in (Eriksen et al., 2016),
and shows promising results for handling actuator mag-
nitude and rate constraints. In (Sørensen et al., 2017), a
simplification of this algorithm is proposed for a 2 degrees-
of-freedom (DOF) heading and speed controller, by re-
moving the collision avoidance part of the algorithm. This
DW-based controller (DWC) is combined with a motion
controller based on the design in (Sørensen and Breivik,
2016).

The contribution of this paper is the extension of the 2
DOF DWC presented in (Sørensen et al., 2017) to a 3
DOF DWC suitable for dynamic positioning (DP). The 3
DOF DWC is compared with a benchmark controller (BC)
from (Sørensen and Breivik, 2016), where the comparison
is made using performance metrics which consider both
control accuracy and energy efficiency.

The rest of the paper is organized as follows: A mathe-
matical ship model is presented in Section 2; Section 3
describes the assumptions and control objective; Section

4 presents the design of a benchmark controller inspired
by backstepping and constant-bearing guidance; Section 5
presents the proposed DWC concept; Section 6 presents
simulation results, while Section 7 concludes the paper.

2. SHIP MODEL

The motion of a ship can be represented by the pose

vector η = [x, y, ψ]
� ∈ R2 × S and the velocity vector

ν = [u, v, r]
� ∈ R3. Here, (x, y) represents the Cartesian

position in a local earth-fixed reference frame, while ψ
is the yaw angle. The body-fixed linear velocities are
represented by (u, v), and the yaw rate is given by r. The
3 DOF dynamics of a ship can then be stated as (Fossen,
2011):

η̇ = R(ψ)ν (1)

Mν̇ +C(ν)ν +D(ν)ν = τ , (2)

where M ∈ R3×3, C(ν) ∈ R3×3, D(ν) ∈ R3×3 and
τ = [τ1, τ2, τ3]

� represent the inertia matrix, Coriolis
and centripetal matrix, damping matrix and control input
vector, respectively. The rotation matrix R(ψ) ∈ SO(3) is
given as

R(ψ) =

[
cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

]
. (3)

The system matrices are assumed to satisfy the properties
M = M� > 0, C(ν) = −C(ν)� and D(ν) > 0. In this
paper, we use the model and parameters of the model-scale
ship CyberShip Inocean CAT I Arctic Drillship (CSAD)
(Bjørnø et al., 2017) for control design and evaluation
through numerical simulations. CSAD is a 1:90 scale
replica of the full-scale Statoil CAT I Arctic Drillship, with
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a length of L = 2.578 m, and is shown in Fig 1. The inertia

Fig. 1. CyberShip Inocean CAT I Arctic Drillship in the
Marine Cybernetics Laboratory at NTNU.

matrix is given as

M = MRB +MA, (4)

where

MRB =

[
m 0 0
0 m mxg

0 mxg Iz

]
(5)

MA =

[−Xu̇ 0 0
0 −Yv̇ −Yṙ

0 −Nv̇ −Nṙ

]
. (6)

The mass of CSAD is m = 127.92 kg, while xg =
0.00375 m is the distance along the x-axis in the body
frame from the center of gravity. The moment of inertia
about the z-axis in the body frame is Iz = 61.987 kgm2.
Other parameter values are listed in Table 1. Note thatNr,
which is marked in bold, has been changed to correspond
better with the actual physical behavior of CSAD. The
Coriolis and centripetal matrix is

C(ν) = CRB(ν) +CA(ν), (7)

with

CRB(ν) =

[
0 0 −m(xgr + v)
0 0 mu

m(xgr + v) −mu 0

]
(8)

CA(ν) =

[
0 0 −cA,13(ν)
0 0 cA,23(ν)

cA,13(ν) −cA,23(ν) 0

]
, (9)

where

cA,13(ν) = −Yv̇v −
1

2
(Nv̇ + Yṙ)r (10)

cA,23(ν) = −Xu̇u. (11)

Finally, the damping matrix D(ν) is given as

D(ν) = DL +DNL(ν), (12)

where

DL =

[−Xu 0 0
0 −Yv 0
0 0 −Nr

]
(13)

DNL(ν) =

[
dNL,11(ν) 0 0

0 dNL,22(ν) 0
0 0 dNL,33(ν)

]
, (14)

and

dNL,11(ν) = −X|u|u|u| −Xuuuu
2 (15)

dNL,22(ν) = −Y|v|v|v| − Y|r|v|r| (16)

dNL,33(ν) = −N|v|r|v| −N|r|r|r|. (17)

Table 1. Parameters for CSAD (Bjørnø et al.,
2017).

Parameter Value

Xu̇ −3.262
Yv̇ −28.89

Yṙ −0.525

Nv̇ −0.157
Nṙ −13.98

Xu −2.332

X|u|u 0

Parameter Value

Xuuu −8.557

Yv −4.673
Y|v|v 0.398

Y|r|v −0.805

N|v|r 0.080

Nr -6.900
N|r|r −0.0115

The considered model describes a fully actuated ship,
where the actuator forces and moments are modeled using
the six mounted thrusters u = [u1, u2, u3, u4, u5, u6]

� ∈ R6

(Bjørnø et al., 2017). These are related to the input vector
τ through the actuator model

τ (u) = TKTu, (18)

where T ∈ R3×6 is an actuator configuration matrix, while
KT ∈ R6×6 is an actuator force matrix. The actuator
configuration matrix is

T =

[
c(δ1) c(δ2) c(δ3) c(δ4) c(δ5) c(δ6)
s(δ1) s(δ2) s(δ3) s(δ4) s(δ5) s(δ6)
φ1 φ2 φ3 φ4 φ5 φ6

]
, (19)

where c(δi) = cos(δi), s(δi) = sin(δi). The constant φi =

Li cos(βi) sin(δi) with Li =
√
L2
x,i + L2

y,i, where Lx,i and

Ly,i represent the physical placements of the ith actuator
and βi = atan(Ly,i/Lx,i) for i ∈ [1, 6]. The actuator force
matrix is given as

KT = diag([KT,1,KT,2,KT,3,KT,4,KT,5,KT,6]), (20)

whereKT,i > 0 is the thrust force from the ith propeller. In
(Bjørnø et al., 2017), the actuator magnitude constraints
are stated as

ui ∈ [−0.5, 0.5]. (21)

In this work, we fix the actuators to the following angles
δ = [π, π/4,−π/4, 0, 5π/4, 3π/4].

The considered ship has to move at low speeds in order to
be fully actuated for DP operations. Assuming low-speed
maneuvers, the kinetic model in (2) can be simplified to

M ν̇ +DLν = τ , (22)

since for low-speed maneuvers the linear damping will
dominate over both the nonlinear damping and the Cori-
olis and centripetal forces (Fossen, 2011). The model (22)
will be used in the control designs in the following sections.

3. ASSUMPTIONS AND CONTROL OBJECTIVE

It is assumed that both the pose vector η(t) and velocity
vector ν(t) can be measured, and that no disturbances and
uncertainties affect the system.

The control objective is to make η̃(t)
�
= η(t)−ηt(t) → 0 as

t → ∞, where ηt(t) ∈ R2×S represents the pose associated
with a virtual target ship. The motion of the target ship is
typically defined by a human or generated by a guidance
system.

For notational simplicity, the time t is omitted in the rest
of this paper.
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a length of L = 2.578 m, and is shown in Fig 1. The inertia

Fig. 1. CyberShip Inocean CAT I Arctic Drillship in the
Marine Cybernetics Laboratory at NTNU.
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and βi = atan(Ly,i/Lx,i) for i ∈ [1, 6]. The actuator force
matrix is given as

KT = diag([KT,1,KT,2,KT,3,KT,4,KT,5,KT,6]), (20)

whereKT,i > 0 is the thrust force from the ith propeller. In
(Bjørnø et al., 2017), the actuator magnitude constraints
are stated as

ui ∈ [−0.5, 0.5]. (21)

In this work, we fix the actuators to the following angles
δ = [π, π/4,−π/4, 0, 5π/4, 3π/4].

The considered ship has to move at low speeds in order to
be fully actuated for DP operations. Assuming low-speed
maneuvers, the kinetic model in (2) can be simplified to

M ν̇ +DLν = τ , (22)

since for low-speed maneuvers the linear damping will
dominate over both the nonlinear damping and the Cori-
olis and centripetal forces (Fossen, 2011). The model (22)
will be used in the control designs in the following sections.

3. ASSUMPTIONS AND CONTROL OBJECTIVE

It is assumed that both the pose vector η(t) and velocity
vector ν(t) can be measured, and that no disturbances and
uncertainties affect the system.

The control objective is to make η̃(t)
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= η(t)−ηt(t) → 0 as

t → ∞, where ηt(t) ∈ R2×S represents the pose associated
with a virtual target ship. The motion of the target ship is
typically defined by a human or generated by a guidance
system.

For notational simplicity, the time t is omitted in the rest
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4. BENCHMARK CONTROLLER

In (Sørensen and Breivik, 2016), a cascaded motion con-
troller with nonlinear pose and velocity feedback is sug-
gested. Through its nonlinear feedback terms, this con-
troller can partly handle actuator magnitude constraints.
In this paper, this controller is modified to a low-speed DP
version where the control input can be chosen as

τ = Mα̇+DLα−K2(z2)z2. (23)

The error variables z1 = [z1,x, z1,y, z1,ψ]
� and z2 =

[z2,u, z2,v, z2,r]
� are defined as

z1
�
= R�(ψ)(η − ηt) (24)

z2
�
= ν −α, (25)

where α = [αu, αv, αr] ∈ R3 is a vector of stabilising
functions that can be interpreted as a desired velocity

α = R�η̇t −K1(z1)z1, (26)

where

K1(z1)
�
= Γ1




1√
z�
1,p̃

z1,p̃+∆2
p̃

I2×2 02×1

01×2
1√

z2

1,ψ̃
+∆2

ψ̃


 , (27)

represents a nonlinear control gain with Γ1 > 0, z1,p̃
�
=

[z1,x, z1,y]
�, ∆p̃ > 0 and ∆ψ̃ > 0. The nonlinear feedback

term in (23) is given as

K2(z2)
�
= Γ2




1√
z�
2,ṽ

z2,ṽ+∆2
ṽ

I2×2 02×1

01×2
1√

z2
2,r̃

+∆2
r̃


 , (28)

with the control gain Γ2 > 0, where z2,ṽ
�
= [z2,u, z2,v]

�,
∆ṽ > 0 and ∆r̃ > 0. The time derivative of α is

α̇ =R�η̈t + S�R�η̇t − K̇1(z1)z1 −K1(z1)ż1, (29)

where

K̇1(z1) =− Γ1




z�
1,p̃ż1,p̃

(z�
1,p̃

z1,p̃+∆2
p̃
)
3
2
I2×2 02×1

01×2
z1,ψ̃ ż1,ψ̃

(z2

1,ψ̃
+∆2

ψ̃
)
3
2


 , (30)

with

ż1 = S�z1 −K1(z1)z1 + z2, (31)

where

S(r) =

[
0 −r 0
r 0 0
0 0 0

]
(32)

is a skew-symmetric matrix satisfying z�1 S(r)
�z1 = 0.

5. DYNAMIC WINDOW-BASED CONTROL DESIGN

5.1 Simplified Dynamic Window Algorithm

Here, we present a 3 DOF extension to the 2 DOF DWC
controller suggested in (Sørensen et al., 2017).

Based on the ship model and its actuator magnitude
constraints, a set of possible velocities can be found.
This set contains all the velocities the ship can achieve
with respect to the actuator magnitude constraints. The
possible velocities can be found by computing the steady-
state solutions of the kinetics of (22) for all possible control
inputs:

τ (u) = DLνss, (33)

within the actuator magnitude constraints shown in (21).
The steady-state solutions of (33) for a uniformly dis-
tributed set of control inputs are shown in Fig. 2. The
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Fig. 2. Possible combinations of surge speed, sway speed
and yaw rate, with respect to the actuator magnitude
saturation limits.

set of possible velocities can be defined as

Vp = {(u, v, r) ∈ R× R× R | g(u, v, r) ≥ 0} , (34)

where g(u, v, r) is a positive semidefinite function for fea-
sible velocities with respect to the actuator constraints.
An approximation of the 3 DOF set is done by projecting
the set into three 2 DOF sets to simplify calculations.
We justify this approximation by noting that each of the
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steady-state solution boundary faces are almost parallel
with one axis, see Fig. 2. Following this, faces that are par-
allel with one axis can be parameterized by the remaining
two variables. Notice, however, that we lose information
where all three variables are correlated, and can therefore
not model faces which are not parallel with one of the axes.
The result of the approximation is the following three sets
of possible velocities:

Vp,(u,r) = {(u, r) ∈ R× R | g(u,r)(u, r) ≥ 0} (35)

Vp,(v,r) = {(v, r) ∈ R× R | g(v,r)(v, r) ≥ 0} (36)

Vp,(u,v) = {(u, v) ∈ R× R | g(u,v)(u, v) ≥ 0}, (37)

where g(u,r)(u, r), g(v,r)(v, r) and g(u,v)(u, v) are greater
than or equal to zero for velocities inside the corresponding
boundaries. Given m, n and k approximated boundaries,
defined by the functions ha,(u,r)(u, r) = hb,(v,r)(v, r) =
hc,(u,v)(u, v) = 0, a ∈ {1, 2, ...,m}, b ∈ {1, 2, ..., n} and
c ∈ {1, 2, ..., k}, the approximated functions are given as:

g(u,r)(u, r) = min(h1,(u,r)(u, r),h2,(u,r)(u, r),

..., hm,(u,r)(u, r)) (38)

g(v,r)(v, r) = min(h1,(v,r)(v, r),h2,(v,r)(v, r),

..., hn,(v,r)(v, r)) (39)

g(u,v)(u, v) = min(h1,(u,v)(u, v),h2,(u,v)(u, v),

, ..., hk,(u,v)(u, v)). (40)

Here, the functions ha,(u,r)(u, r) = hb,(v,r)(v, r) =
hc,(u,v)(u, v) = 0 are defined by using regression on the
boundary of the sets Vp(u,r)

, Vp(v,r)
and Vp(u,v)

, where

∇ha,(u,r)(u, r), ∇hb,(v,r)(v, r) and ∇hc,(u,v)(u, v) are re-
quired to be pointing inwards to the valid solutions.

Next, the space of reachable points within one time step
T needs to be defined. Using

ν̇min = [u̇min, v̇min, ṙmin] = M−1(τmin(u)−DLν
∗)
(41)

ν̇max = [u̇max, v̇max, ṙmax] = M−1(τmax(u)−DLν
∗),
(42)

where ν∗ is the current velocity of ν(t), we find the accel-
eration limits and the reachable velocities for the current
time step, resulting in the dynamic velocity window

Vw = {(u, v, r) ∈ R× R× R |
u ∈ [u∗ + u̇minT, u

∗ + u̇maxT ]

∧ v ∈ [v∗ + v̇minT, v
∗ + v̇maxT ]

∧ r ∈ [r∗ + ṙminT, r
∗ + ṙmaxT ]}, (43)

which we project into the three cases

Vw,(u,r) ={(u, r) ∈ R× R | u ∈ [u∗ + u̇minT, u
∗ + u̇maxT ]

∧ r ∈ [r∗ + ṙminT, r
∗ + ṙmaxT ]} (44)

Vw,(v,r) ={(v, r) ∈ R× R | v ∈ [v∗ + v̇minT, v
∗ + v̇maxT ]

∧ r ∈ [r∗ + ṙminT, r
∗ + ṙmaxT ]} (45)

Vw,(u,v) ={(u, v) ∈ R× R | u ∈ [u∗ + u̇minT, u
∗ + u̇maxT ]

∧ v ∈ [v∗ + v̇minT, v
∗ + v̇maxT ]}. (46)

This defines the sets of dynamically feasible velocities as

Vf,(u,r) � Vp,(u,r) ∩ Vw,(u,r) (47)

Vf,(v,r) � Vp,(v,r) ∩ Vw,(v,r) (48)

Vf,(u,v) � Vp,(u,v) ∩ Vw,(u,v). (49)

Next, the sets of dynamically feasible velocities are dis-
cretised uniformly to obtain discrete sets of dynamically

feasible velocities.

For the 3 DOF case, the desired velocity is defined as

νd � [ud, vd, rd]
�. (50)

Given νd, the optimal dynamically feasible velocity νf
�
=

[uf , vf , rf ]
� can be selected as

νf = argmax
(u,v,r)∈Vf

G(ν,νd), (51)

where Vf is the general 3 DOF set and G(ν,νd) is an
objective function which is defined as

G(ν,νd)
�
= surge(u, ud) + sway(v, vd)

+ yawrate(r, rd), (52)

with

surge(u, ud) = 1− |ud − u|
max
u′∈Vf

(|ud − u′|)
∈ [0, 1] (53)

sway(v, vd) = 1− |vd − v|
max
v′∈Vf

(|vd − v′|)
∈ [0, 1] (54)

yawrate(r, rd) = 1− |rd − r|
max
r′∈Vf

(|rd − r′|)
∈ [0, 1]. (55)

Notice that by using this objective function, we minimise
the scaled 1-norm of the entire discrete set of dynamically
feasible velocity.

For the three 2 DOF cases, this algorithm is modified to fit
2 DOF and run once for each velocity pair scenario; surge
speed and yaw rate, sway speed and yaw rate, and surge
and sway speed. Hence, it results in the three components
of dynamically feasible velocities

νf,(u,r) = [νf,u, 0, νf,r]
� (56)

νf,(v,r) = [0, νf,v, νf,r]
� (57)

νf,(u,v) = [νf,u, νf,v, 0]
�, (58)

which combines into

νf =
νf,(u,r) + νf,(v,r) + νf,(u,v)

2
(59)

for the full 3 DOF case. Fig. 3 illustrates Vp, Vw, Vf and
νd = [0.15 m/s,−0.07 m/s,−1.4324 deg /s] given a current
velocity ν∗ = [0.2 m/s, −0.05 m/s −1.1459 deg /s].

5.2 Dynamic Window-based Controller

We now combine elements from the benchmark controller
with the simplified DW algorithm in order to develop a
dynamic window-based controller (DWC). In this setup,
the simplified DW algorithm will use α = [αu, αv, αr]

� as
an input such that νd = α. In the case where α is an in-
feasible velocity, the simplified DW algorithm will modify
α to a feasible velocity αf = [αf,u, αf,v, αf,r]

�, otherwise
αf = α. Per definition, the ship will be able to achieve αf

after time step T , hence the desired acceleration is chosen
to be

α̇DWC =
αf − ν

T
, (60)

and

αDWC =

∫ t

0

α̇DWC(σ)dσ +αDWC(0). (61)
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For the 3 DOF case, the desired velocity is defined as
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=
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� can be selected as
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where Vf is the general 3 DOF set and G(ν,νd) is an
objective function which is defined as
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For the three 2 DOF cases, this algorithm is modified to fit
2 DOF and run once for each velocity pair scenario; surge
speed and yaw rate, sway speed and yaw rate, and surge
and sway speed. Hence, it results in the three components
of dynamically feasible velocities

νf,(u,r) = [νf,u, 0, νf,r]
� (56)

νf,(v,r) = [0, νf,v, νf,r]
� (57)

νf,(u,v) = [νf,u, νf,v, 0]
�, (58)

which combines into

νf =
νf,(u,r) + νf,(v,r) + νf,(u,v)

2
(59)

for the full 3 DOF case. Fig. 3 illustrates Vp, Vw, Vf and
νd = [0.15 m/s,−0.07 m/s,−1.4324 deg /s] given a current
velocity ν∗ = [0.2 m/s, −0.05 m/s −1.1459 deg /s].

5.2 Dynamic Window-based Controller

We now combine elements from the benchmark controller
with the simplified DW algorithm in order to develop a
dynamic window-based controller (DWC). In this setup,
the simplified DW algorithm will use α = [αu, αv, αr]

� as
an input such that νd = α. In the case where α is an in-
feasible velocity, the simplified DW algorithm will modify
α to a feasible velocity αf = [αf,u, αf,v, αf,r]

�, otherwise
αf = α. Per definition, the ship will be able to achieve αf

after time step T , hence the desired acceleration is chosen
to be

α̇DWC =
αf − ν

T
, (60)

and

αDWC =

∫ t

0

α̇DWC(σ)dσ +αDWC(0). (61)
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Fig. 3. The dynamically feasible velocity sets, surrounded
by the boundaries of the dynamic velocity window
and the set of possible velocities.

Both αDWC and α̇DWC are used in the kinetic controller
(23) which is modified to

τ = Mα̇DWC +DLαDWC . (62)

When comparing the control law (62) against (23), it can
be seen that the explicit feedback term −K2(z2)z2 in
(23) is not included in (62) since the DWC makes the
feasible velocity track the derired velocity by using (60)-
(61). Hence, (62) shows that the DWC is a feedforward-
based control algorithm with implicity velocity feedback
through αDWC . However, augmenting the controller with
explicit feedback terms and adaptive terms to robustify it

against modeling uncertainties and unknown disturbances
will not be done in this paper, but is considered future
work.

6. SIMULATION RESULTS

In this section, we present numerical simulation results
comparing the performance of the DWC against the bench-
mark controller using the full nonlinear ship model and
actuator constraints of CSAD presented in Section 2. In
particular, the performance is evaluated using two specific
performance metrics which consider both control accuracy
and energy efficiency.

The target to be tracked is defined as a changing setpoint
in a 4-corner test(Skjetne et al., 2017). This test first tests
the surge, sway and yaw motion individually and then
increase the complexity of the task until the ship needs
to do a combined surge, sway and yaw motion. In this test
we use set-point tracking. Since the 4-corner test involves
setpoint tracking, η̇t = 0 and η̈t = 0 in (26) and (29).
The initial ship states are chosen to be η(0) = [5, 1, 0] and
ν(0) = 0. The control gains are listed in Table 2, which are
chosen such that the benchmark controller (BC) does not
exceed the magnitude saturation constraints and follow
the tuning rules suggested in (Sørensen et al., 2018).

Table 2. Control gains.

BC DWC

Γ1 diag([0.03, 0.03, 0.0349]) −||−
Γ2 diag([0.2, 0.12, 0.1745])M N/A
∆p̃,ψ̃ [0.5, 0.5] −||−
∆ṽ,r̃ [0.7, 1] N/A

6.1 Performance Metrics

To evaluate and compare the performance of the con-
trollers, two performance metrics are used. We define

e(t)
�
=

√
η̄(t)�η̄(t), (63)

as the error input for the performance metrics, with η̄ be-

ing the normalized signal of η̃ = [x̃, ỹ, ψ̃]�
�
= η−ηt, where

x̄, ȳ and ψ̄ are in the intervals [−0.5, 0.5] in the expected
operational space of the ship (Eriksen and Breivik, 2017).
These signals represent the instantaneous control errors,
while we would like to consider the accumulated errors over
time. Therefore, we use the performance metric integral of
the absolute error (IAE)

IAE(t)
�
=

∫ t

0

|e(σ)|dσ, (64)

which integrates the temporal evolution of the absolute
error. We also consider the integral of the absolute er-
ror multiplied by the energy consumption (IAEW) as
(Sørensen and Breivik, 2015)

IAEW (t)
�
=

∫ t

0

|e(σ)|dσ
∫ t

0

P (σ)dσ, (65)

where

P (t) = |ν(t)�τ (t)| (66)

represents the mechanical power. IAEW thus indicates
which controller has the best combined control accuracy
and energy use in one single metric.
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6.2 Simulation Results

In Fig. 4, the outline of the ship pose is plotted to show
the transient motion behavior associated with performing
the 4-corner test using the two controllers.
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Fig. 4. The 4-corner test, where the dashed blue outline
represents the DWC-controlled ship, the dash-dotted
black outline represents the BC-controlled ship, while
the green outline represents the setpoints of the 4-
corner box.

Fig. 5 shows the pose of the ship together with the target
pose. It can be seen that both control laws are able to
track the target pose setpoints even though the DWC does
not have a traditional velocity feedback term as in (23).
Additionally, iit can be seen that the DWC is slightly faster
than the BC controller to track the target pose setpoints.

Fig. 6 shows that the DWC commands the control inputs
to stay just below the maximum magnitude constraints
of the actuators, while BC is tuned such that it does not
exceed the magnitude constraints. The DWC keeps the
control inputs high longer than the BC, since the DWC
tracks the feasible velocity αf which is on the boundaries
of the windows unless the desired velocity α is inside the
velocity window, while the control inputs from BC have a
more conservative behavior.
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Fig. 6. The commanded control inputs with magnitude
saturation limits.

Fig. 7 illustrates how the surge speed, sway speed and yaw
rate moves in the velocity space in order to track α through
the 4-corner test. The velocities of the ship are small in
magnitude while performing the 4-corner test, constituting
low-speed DP maneuvers satisfying the assumptions for
using a linear ship model.

In Fig. 8, the performance metrics IAE and IAEW are
shown. In particular, the IAE trajectory in the left of Fig.
8 confirms that the DWC has a slightly faster transient
response since it converges faster to a stationary value.
The IAEW trajectory in the right of Fig. 8 shows that the
DWC has a slightly better overall performance than the
benchmark controller when taking both control accuracy
and energy use into account.

7. CONCLUSION

This paper has proposed an extension of a simplified
dynamic window algorithm from 2 DOF to 3 DOF, as
a way to ensure that the actuator magnitude constraints
of a fully actuated ship are satisfied. This algorithm has
been used in a dynamic window-based controller (DWC)
to guarantee that ship velocities remain within a feasible
set. TThe controllers are compared through numerical
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Fig. 7 illustrates how the surge speed, sway speed and yaw
rate moves in the velocity space in order to track α through
the 4-corner test. The velocities of the ship are small in
magnitude while performing the 4-corner test, constituting
low-speed DP maneuvers satisfying the assumptions for
using a linear ship model.

In Fig. 8, the performance metrics IAE and IAEW are
shown. In particular, the IAE trajectory in the left of Fig.
8 confirms that the DWC has a slightly faster transient
response since it converges faster to a stationary value.
The IAEW trajectory in the right of Fig. 8 shows that the
DWC has a slightly better overall performance than the
benchmark controller when taking both control accuracy
and energy use into account.

7. CONCLUSION

This paper has proposed an extension of a simplified
dynamic window algorithm from 2 DOF to 3 DOF, as
a way to ensure that the actuator magnitude constraints
of a fully actuated ship are satisfied. This algorithm has
been used in a dynamic window-based controller (DWC)
to guarantee that ship velocities remain within a feasible
set. TThe controllers are compared through numerical
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Fig. 7. Velocity trajectories in the set of possible velocities
Vp.
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Fig. 8. IAE and IAEW performance metrics.

simulations with a fully actuated drillship performing a
low-speed 4-corner dynamic positioning test, using two

performance metrics to quantify the motion control behav-
ior. The simulation results show that the proposed 3-DOF
DWC controller has good tracking performance and is able
to handle actuator magnitude constraints.

Future work includes exploring the robustness of the DWC
controller to modeling uncertainties and unknown distur-
bances affecting the system. It is also relevant to consider
the stability properties of the DWC controller. In addition,
it is desirable to consider actuator rate constraints in
addition to magnitude constraints. Finally, it is desirable
to experimentally verify the results by testing the methods
on a model-scale ship in an ocean basin.

ACKNOWLEDGEMENTS

This work was supported by the Research Council of
Norway through the Centres of Excellence funding scheme,
project number 223254.

REFERENCES

Bjørnø, J., Heyn, H.M., Skjetne, R., Dahl, A.R., and Frederich, P.

(2017). Modeling, parameter identification and thruster-assisted

position mooring of C/S Inocean CAT I Drillship. in Proceedings of

the 36th International Conference on Ocean, Offshore and Arctic

Engineering, Trondheim, Norway.

Eriksen, B.-O. H., Breivik, M., Pettersen, K.Y., and Wiig, M.S. (2016). A

modified dynamic window algorithm for horizontal collision avoidance

for AUVs. in Proceedings of the IEEE Multi-Conference on Systems

and Control, Buenos Aires, Argentina.

Eriksen, B.-O. H. and Breivik, M. (2017). Modeling, Identification and

Control of High-Speed ASVs: Theory and Experiments, 407–431.

Sensing and Control for Autonomous Vehicles: Applications to Land,

Water and Air Vehicles, Springer International Publishing.

Fossen, T.I. (2011). Handbook of Marine Craft Hydrodynamics and

Motion Control. Wiley.

Fox, D., Burgard, W., and Thrun, S. (1997). The dynamic window

approach to collision avoidance. IEEE Robotics & Automation

Magazine, 4(1), 23–33.

Skjetne, R., Sørensen, M.E.N., Breivik, M., Værnø, S.A.T., Brodtkorb,

A.H., Sørensen, A.J., Kjerstad, Ø.K., Calabrò, V., and Vinje, B.O.
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