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Abstract. We give conditions for when continuous orbit equivalence of one-sided
shift spaces implies flow equivalence of the associated two-sided shift spaces. Using
groupoid techniques, we prove that this is always the case for shifts of finite type. This
generalises a result of Matsumoto and Matui from the irreducible to the general case.
We also prove that a pair of one-sided shift spaces of finite type are continuously orbit
equivalent if and only if their groupoids are isomorphic, and that the corresponding
two-sided shifts are flow equivalent if and only if the groupoids are stably isomorphic.

As applications we show that two finite directed graphs with no sinks and no sources
are move equivalent if and only if the corresponding graph C∗-algebras are stably
isomorphic by a diagonal-preserving isomorphism (if and only if the corresponding
Leavitt path algebras are stably isomorphic by a diagonal-preserving isomorphism), and
that two topological Markov chains are flow equivalent if and only if there is a diagonal-
preserving isomorphism between the stabilisations of the corresponding Cuntz–Krieger
algebras (the latter generalises a result of Matsumoto and Matui about irreducible
topological Markov chains with no isolated points to a result about general topological
Markov chains).

We also show that for general shift spaces, strongly continuous orbit equivalence
implies two-sided conjugacy.

1. Introduction

In their beautiful recent paper [20], Matsumoto and Matui proved that a simple Cuntz–
Krieger algebra remembers the flow equivalence class of the irreducible shift of finite type
defining it, provided that the canonical diagonal subalgebra is considered as a part of
the data. A key tool for obtaining this groundbreaking result was the realisation that
diagonal-preserving isomorphism translates directly to isomorphism of the groupoids as-
sociated to the shift spaces, reducing the problem to establishing that when two one-sided
irreducible shifts of finite type are continuously orbit equivalent in the sense developed
by Matsumoto, then the corresponding two-sided shift spaces are flow equivalent.

Having such rigidity results for C∗-algebras associated to general shift spaces of finite
type would provide a better understanding of the classification problem for general
Cuntz–Krieger algebras recently solved in [14] and [15]. From the point of view of
symbolic dynamics, it is also of interest to determine the class of shift spaces for which
continuous orbit equivalence implies flow equivalence.
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The groupoid component of the proof in [20] has in [6] and [9] been generalised to
a much more general setting, but the argument leading from diagonal-preserving iso-
morphism to flow equivalence in [20] goes through a deep result about the ordered
cohomology of irreducible shifts of finite type by Boyle and Handelman ([4]) which does
not readily extend to the reducible case. In addition, several of the arguments used
in [20] rely on the assumption that the shifts of finite type in question do not contain
isolated periodic points.

In the present paper we give a direct proof that continuously orbit equivalent shifts of
finite type are also flow equivalent (Theorem 4.1) and thereby generalising [20, Theorem
3.5] from irreducible one-sided Markov shifts to general (possible reducible) shifts of finite
type. We do that by producing a concrete flow equivalence from a given orbit equivalence
between general shift spaces with continuous cocycles under added hypotheses on the
given orbit equivalence and cocycles (Proposition 3.2), and then proving by methods
related to the original proof in [20] that when the shift spaces are of finite type, then
these hypotheses may always be arranged (Proposition 4.5 and Proposition 4.8).

As a corollary to Proposition 3.2, we generalise in Corollary 3.12 [19, Theorem 5.5]
from irreducible topological Markov chains with no isolated points to general shift spaces
by showing that for general shift spaces, strongly continuous orbit equivalence implies
two-sided conjugacy.

We also prove that the groupoids of two one-sided shifts of finite type are isomorphic
if and only if the shift spaces are continuously orbit equivalent (Theorem 5.1), and by
combining this with a result of Matui [22] and results in [9] and [14], we obtain that
these groupoids are stably isomorphic if and only if the corresponding two-sided shift
spaces are flow equivalent (Theorem 5.3).

As applications, we show in Corollary 6.1 that the one-sided edge shifts of two finite
directed graphs with no sinks and no sources are continuous orbit equivalent if and
only if the corresponding graph C∗-algebras are isomorphic by a diagonal-preserving
isomorphism (if and only if the corresponding Leavitt path algebras are isomorphic by
a diagonal-preserving isomorphism), and we show in Corollary 6.3 that the graphs are
move equivalent, as defined in [26], if and only if the corresponding graph C∗-algebras are
stably isomorphic by a diagonal-preserving isomorphism (if and only if the corresponding
Leavitt path algebras are stably isomorphic by a diagonal-preserving isomorphism).

We also apply our results to Cuntz–Krieger algebras and topological Markov chains
and directed graphs of {0, 1}-matrices and thereby generalise [20, Theorem 2.3] and [20,
Corollary 3.8] from the irreducible to the general case (Corollary 7.1 and Corollary 7.2).
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2. Definitions and notation

In this section we briefly recall the definitions of shift spaces, shifts of finite type,
continuous orbit equivalence of shift spaces, and flow equivalence of shift spaces, and
introduce notation.

We let N denote the set of positive integers, and N0 the set of non-negative integers.

2.1. One-sided shift spaces. A one-sided shift space (or one-sided subshift) is a closed,
and hence compact, subset X of aN0 , where a is a finite set equipped with the discrete
topology and aN0 is equipped with the product topology, such that X is invariant by
the shift transformation

σ : aN0 → aN0 ,

(i.e., σ(X) = X) given by (σ((xi)i∈N0))j = xj+1 for j ∈ N0. When X is a one-sided
shift space, then we let σX : X → X denote the restriction of σ to X. For n ∈ N0 we
denote by σnX the n-fold composition of σX with itself (when n = 0, then σnX denotes
the identity map on X).

Two one-sided shift spaces X and Y are conjugate if there is a conjugacy between
them, i.e., a homeomorphism h : X → Y such that σY ◦ h = h ◦ σX .

Let X be a one-sided shift space. We say that x ∈ X is periodic if σpX(x) = x for some
p ∈ N, and that x is eventually periodic if σnX(x) is periodic for some n ∈ N0. When
x ∈ X is eventually periodic, then we call the number

lp(x) := min{p ∈ N : ∃n,m ∈ N0 : p = n−m and σnX(x) = σmX (x)}

the least period of x.
When X is a shift space, we write L(X) for the language of X (i.e., the set of finite

words, included the empty word ∅, that appear in elements of X). Given a word v in
L(X), we denote by |v| the length of v, and for m ∈ N, we let Lm(X) be the set of
words in L(X) of length m. Given x ∈ X and n,m ∈ N0 with n ≤ m, we define the
word x[n,m] := (xn, . . . , xm) ∈ Lm−n+1(X). For v ∈ L(X) \ {∅}, we write Z(v) for the
cylinder set {x ∈ X : x[0,|v|) = v} where x[0,|v|) := x[0,|v|−1].

2.2. Shifts of finite type. A one-sided shift of finite type is a one-sided shift space
X such that there is an m ∈ N with the property that if v ∈ L(X) has length m and
uv, vw ∈ L(X), then uvw ∈ L(X). The shift map σX is a local homeomorphism if and
only if X is a shift of finite type, in which case σnX is a local homeomorphism for all
n ∈ N0.

2.3. Continuous orbit equivalence. Let X and Y be two one-sided shift spaces. Fol-
lowing [18], we say that a homeomorphism h : X → Y is a continuous orbit equivalence
if there exist continuous maps k, l : X → N0 and k′, l′ : Y → N0 such that

(1) σ
k(x)
Y (h(σX(x))) = σ

l(x)
Y (h(x))

for x ∈ X, and

(2) σ
k′(y)
X (h−1(σY (y))) = σ

l′(y)
X (h−1(y))

for y ∈ Y . Observe that in this case h−1 : Y → X is also a continuous orbit equiva-
lence. We say that X and Y are continuously orbit equivalent if there exists a continuous
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orbit equivalence h : X → Y (it is routine to check that the composition of two continu-
ous orbit equivalences is a continuous orbit equivalence, and thus that continuous orbit
equivalence indeed is an equivalence relation of one-sided shift spaces, cf. [19, Lemma
2.3]). If h : X → Y is a continuous orbit equivalence, then we say that a pair (k, l) of
continuous maps k, l : X → N0 satisfying (1) is a h-cocycle pair.

2.4. Flow equivalence. Let X be a one-sided shift space. Given x = (xn)n∈Z ∈ aZ

and m ∈ Z, we define
x[m,∞) := (xm, xm+1, . . .) ∈ aN0 .

The two-sided shift space associated to X is defined to be

X := {x ∈ aZ : x[m,∞) ∈ X for all m ∈ Z} .
The set X is a closed and compact subset of aZ with the induced product topology of
aZ, and invariant by the shift transformation

σX : X→ X

given by (σX((xi)i∈Z)j = xj+1 for j ∈ Z. Notice that X ↔ X is a bijective correspon-
dence between the class of one-sided shift spaces and the class of two-sided shift spaces
(i.e., the class of closed subsets X of aZ satisfying that σX(X) = X). Two two-sided
shift spaces X and Y are conjugate if there is a conjugacy between them, i.e., a homeo-
morphism ϕ : X→ Y such that σY ◦ϕ = ϕ◦σX. If X and Y are conjugate, then X and
Y are conjugate (but X and Y can be conjugate without X and Y being conjugate).

We say that x ∈ X is periodic if σpX(x) = x for some p ∈ N. When x ∈ X is periodic,
then we call the number

lp(x) := min{p ∈ N : σpX(x) = x}
the least period of x.

Let ∼ be the smallest equivalence relation on X×R such that (σnX(x), t) ∼ (x, t+ n)
for x ∈ X, t ∈ R and n ∈ Z, and let [(x, t)] denote the equivalence class of (x, t). The
suspension SX of X is the quotient X × R/ ∼ equipped with the quotient topology of
the product topology on X× R.

A flow equivalence between the suspensions of two two-sided shift spaces X and Y is
a homeomorphism ψ : SX→ SY that maps flow lines onto flow lines in an orientation
preserving way: so if x ∈ X, y ∈ Y, r, s, t, u ∈ R, s, u > 0 and ψ([(x, t)]) = [(y, r)],
then there is an v > 0 such that ψ([(x, t + s)]) = [(y, r + v)], and a w > 0 such that
ψ−1([(y, r+ u)]) = [(x, t+w)]. Two two-sided shift spaces X and Y are flow equivalent
if there exists a flow equivalence between SX and SY. It is routine to check that the
composition of two flow equivalences is a flow equivalence, and thus that flow equivalence
is an equivalence relation of two-sided shift spaces. If X and Y are conjugate, then X
and Y are flow equivalent, but X and Y can be flow equivalent without being conjugate.

2.5. The cohomology of a shift space. Let X be a one-sided shift space. Following
[20], we let HX be the group

HX := C(X,Z)/{f − f ◦ σX : f ∈ C(X,Z)}
with addition defined by [f ] + [g] = [f + g], and we let

HX
+ := {[f ] ∈ HX : f(x) ≥ 0 for all x ∈ X}.
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It follows from [20, Lemma 3.1] that the preordered group (HX , HX
+ ) is isomorphic to

the ordered cohomology group (GσX , GσX
+ ) of (X, σX) defined in [4] ([20, Lemma 3.1] is

only stated for irreducible shifts associated with {0, 1} matrices, but it is easy to see
that its proof holds for general shift spaces).

2.6. The groupoid of a one-sided shift space of finite type. The groupoid GX of
a one-sided shift of finite type X has unit space G(0) := X and morphisms

GX := {(x, n, x′) ∈ X × Z×X : ∃i, j ∈ N0 : n = i− j and σiX(x) = σjX(x′)}.
The range and source maps r, s : GX → G(0) are defined by r((x, n, x′)) = x and
s((x, n, x′)) = x′, and the product and inverse operators by (x, n, x′)(x′, n′, x′′) = (x, n+
n′, x′′) and (x, n, x′)−1 = (x′,−n, x). We let c : GX → Z be the map defined by
c((x, n, x′)) = n. There is a topology on GX that has a basis consisting of sets of
the form

{(x, i− j, x′) : x ∈ U, x′ ∈ U ′, σiX(x) = σjX(x′)}
where i, j ∈ N0 and U and U ′ are open subsets such that σiX restricted to U is injective,
σjX restricted to U ′ is injective, and σiX(U) = σjX(U ′). If we identify X with the subspace
{(x, 0, x) : x ∈ X} of GX , then the topology of X coincides with the subspace topology.

With the topology described above, GX is an ample Hausdorff groupoid, i.e., the
product and inverse operators are continuous and the topology is Hausdorff and has a
basis of compact open bisections (a subset A of a groupoid G is a bisection if both the
restriction of the range map and the restriction of the source map to A are injective).
In particular, GX is étale (i.e., the range and source maps are local homeomorphisms).

As in [20], we let Hom(GX ,Z) be the set of continuous maps ω : GX → Z such that
ω(η−1) = −ω(η) for η ∈ GX and ω(η1η2) = ω(η1) + ω(η2) for η1, η2 ∈ GX with s(η1) =
r(η2). For f ∈ C(X,Z), the map ∂(f) : GX → Z defined by ∂(f)(η) = f(r(η))− f(s(η))
belongs to Hom(GX ,Z). As in [20], we denote by H1(GX) the group

H1(GX) := Hom(GX ,Z)/{∂(f) : f ∈ C(X,Z)}
with addition defined by [f ] + [g] = [f + g]. We shall in Proposition 4.7 see that there is
an isomorphism Φ : H1(GX) → HX such that Φ([f ]) = [g], where g ∈ C(X,Z) is given
by g(x) = f((x, 1, σX(x))), and Φ([f ]) ∈ HX

+ if and only if f((x, lp(x), x)) ≥ 0 for every
eventually periodic point x ∈ X, cf. [20, Proposition 3.4].

A homomorphism between two topological groupoids G1 and G2 is a continuous map
φ : G1 → G2 such that φ(η−1) = φ(η)−1 for every η ∈ G1, and φ(η1)φ(η2) is defined and
equal to φ(η1η2) for all η1, η2 ∈ G1 for which η1η2 is defined. An isomorphism between
two topological groupoids G1 and G2 is a bijective homomorphism φ : G1 → G2 such that
φ−1 : G2 → G1 is also a homomorphism.

3. Orbit equivalence and flow equivalence for general shift spaces

One of the goals of this paper is to show that continuous orbit equivalence implies
flow equivalence for shifts of finite type, and thereby generalise [20, Theorem 3.5] from
irreducible one-sided Markov shifts to general (possible reducible) shifts of finite type. In
this section we prove Proposition 3.2, which gives sufficient conditions for when continu-
ous orbit equivalence implies flow equivalence for general shift spaces. These conditions
are related to the preordered cohomology groups of one-sided shift spaces introduced in
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Section 2.5 (see the discussion right after Remark 4.2). As a corollary (Corollary 3.12),
we generalise [19, Theorem 5.5] and show that for general shift spaces, strongly contin-
uous orbit equivalence implies two-sided conjugacy.

In this paper, we only apply Proposition 3.2 to shifts of finite type, but we hope that
it also can be used to prove that orbit equivalence implies flow equivalence for other
classes of shift spaces. Our strategy for proving Proposition 3.2 is to use techniques and
ideas related to those used in [20] and [21] to construct a discrete flow equivalence from
a continuous orbit equivalence satisfying the conditions of Proposition 3.2, and then
construct a flow equivalence from the discrete flow equivalence. Since we work with
shift spaces that might not be irreducible and might contain isolated points, we have to
modify the approach of [20] and [21] a bit.

3.1. A sufficient condition for flow equivalence. Let X and Y be two one-sided
shift spaces and let h : X → Y be a continuous orbit equivalence. We say that h maps
eventually periodic points to eventually periodic points if h(x) is eventually periodic
exactly when x is eventually periodic.

Remark 3.1. Matsumoto and Matui prove in [21, Proposition 3.5] that if X and Y are
the one-sided shift spaces associated with two irreducible {0, 1} square matrices that
satisfy the Condition (I) introduced by Cuntz and Krieger in [12], then any continuous
orbit equivalence between X and Y maps eventually periodic points to eventually pe-
riodic points. By inspecting the proof, one sees that it actually holds for any pair of
one-sided shifts spaces X and Y that have the property that the complement of the set
of eventually periodic points is dense. We prove in Proposition 4.5 that any continuous
orbit equivalence between shifts of finite type maps eventually periodic points to eventu-
ally periodic points. We do not know if there are continuous orbit equivalences between
one-sided shift spaces that do not map eventually periodic points to eventually periodic
points.

Let X and Y be two one-sided shift spaces and let h : X → Y be a continuous orbit
equivalence that maps eventually periodic points to eventually periodic points. We say
that an h-cocycle pair (k, l) is least period preserving if

lp(h(x)) =

lp(x)−1∑
i=0

(
l(σiX(x))− k(σiX(x))

)
for every eventually periodic point x ∈ X (this terminology is justified by Proposi-
tion 4.8).

Proposition 3.2. Let X and Y be two one-sided shift spaces and suppose that h : X →
Y is a continuous orbit equivalence that maps eventually periodic points to eventually
periodic points, that (k, l) is a least period preserving h-cocycle pair, that (k′, l′) is a least
period preserving h−1-cocycle pair, and that b : X → Z, n : X → N0, b

′ : Y → Z and
n′ : Y → N0 are continuous maps such that l(x) − k(x) = n(x) + b(x) − b(σX(x)) and
l′(y)− k′(y) = n′(y) + b′(y)− b′(σY (y)) for x ∈ X and y ∈ Y . Then X and Y are flow
equivalent.

The rest of this section contains the proof of Proposition 3.2. We assume in the rest
of this section that X, Y , h, k, l, k′, l′, b, b′, n, and n′ are as specified in the proposition.
We shall construct an explicit flow equivalence ψ : SX→ SY from this data.
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We begin by constructing a continuous map ϕ : X → Y and establish some properties
of it in Claim 3.3 and Claim 3.4. In Claim 3.5 we show that the map n satisfies a condition
which we need in order to construct a continuous map ϕ : X → Y in Claim 3.6. We
then prove some properties of ϕ in Claim 3.7, Claim 3.8 and Claim 3.9, before we for
each x ∈ X construct an increasing piecewise linear homeomorphism rx : R → R. In
Claim 3.10 we show a relationship between rx and rσpX(x), before we in Claim 3.11 finally

show that there is a flow equivalence ψ : SX→ SY given by ψ([(x, t)]) = [(ϕ(x), rx(t))].
Since l and b are bounded, we can by adding a constant to b if necessary, assume that

b(x) ≥ l(x) for every x ∈ X. Similarly, we can assume that b′(y) ≥ l′(y) for every y ∈ Y .
We let ϕ : X → Y be the continuous map defined by

(3) ϕ(x) = σ
b(x)
Y (h(x))

for x ∈ X.

Claim 3.3. The function ϕ defined in (3) is finite-to-one, i.e., |ϕ−1(y)| <∞ for every
y ∈ Y .

Proof. Recall that h is a homeomorphism and b is bounded. Let j ∈ N0 be such that
0 ≤ b(x) ≤ j for every x ∈ X. For y ∈ Y we have that

ϕ−1(y) ⊆
j⋃
i=0

h−1(σ−iY (y)) .

Since σiY is finite-to-one, so is σiY ◦ h. It follows that ϕ is finite-to-one. �

Claim 3.4. For x ∈ X we have that

(4) ϕ(σX(x)) = σ
n(x)
Y (ϕ(x)) .

Proof. Since b(σX(x)) = n(x)− l(x) + k(x) + b(x), n(x)− l(x) + b(x) ≥ b(x)− l(x) ≥ 0,

and σ
k(x)
Y (h(σX(x))) = σ

l(x)
Y (h(x)), it follows that

ϕ(σX(x)) = σ
b(σX(x))
Y (h(σX(x))) = σ

n(x)−l(x)+k(x)+b(x)
Y (h(σX(x)))

= σ
n(x)−l(x)+b(x)
Y (σ

k(x)
Y (h(σX(x)))) = σ

n(x)−l(x)+b(x)
Y (σ

l(x)
Y (h(x)))

= σ
n(x)+b(x)
Y (h(x)) = σ

n(x)
Y (ϕ(x)) . �

For j ∈ N and x ∈ X, we set nj(x) :=
∑j

i=1 n(σi−1X (x)) and n0(x) := 0. Observe that
then

(5) ϕ(σjX(x)) = ϕ(σX(σj−1X (x))) = σ
n(σj−1

X (x))

Y (ϕ(σj−1X (x))) = · · · = σ
nj(x)
Y (ϕ(x)) ,

by an iteration of (4).

Claim 3.5. Given x ∈ X and i0 ∈ Z, there exist i, j ∈ Z such that i < i0 and n(x[i,∞)) 6=
0 and j > i0 and n(x[j,∞)) 6= 0.

Proof. We first show that n(x[j,∞)) 6= 0 for some j > i0. Assume, for contradiction, that

n(x[j,∞)) = 0 for every j > i0. Then nj−i0(x[i0,∞)) =
∑j−1

i=i0
n(x[i,∞)) = 0 for every j > i0.

An application of (5) gives us that

ϕ(x[j,∞)) = ϕ(σj−i0X (x[i0,∞)])) = σ
nj−i0 (x[i0,∞))

Y (ϕ(x[i0,∞))) = ϕ(x[i0,∞))
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for every j > i0, and since ϕ is finite-to-one (Claim 3.3), it follows that {x[j,∞) : j > i0}
is finite, and thus that x[j,∞) is periodic for some j > i0. But then

lp(h(x[j,∞))) =

lp(x[j,∞))−1∑
i=0

(
l(x[i+j,∞))− k(x[i+j,∞))

)
=

lp(x[j,∞))−1∑
i=0

n(x[i+j,∞)) = 0 ,

which cannot be the case.
Similarly, if n(x[i,∞)) = 0 for every i < i0, then

ϕ(x[i0,∞)) = ϕ(σi0−iX (x[i,∞)])) = σ
ni0−i(x[i,∞))

Y (ϕ(x[i,∞))) = ϕ(x[i,∞))

for every i < i0, and since ϕ is finite-to-one, it follows that {x[i,∞) : i < i0} is finite, and
thus that x is periodic. It follows from the first part of the proof that there is an i ∈ N0

such that n(x[i,∞)) 6= 0, but since x is periodic, there is a j ∈ N such that x[−j,∞) = x[i,∞)

from which it follows that n(x[−j,∞)) = n(x[i,∞)) 6= 0. �

For x ∈ X and j ∈ Z, we set

mx(j) :=


−
∑−j

i=1 n(x[−i,∞)) if j < 0,

0 if j = 0,∑j−1
i=0 n(x[i,∞)) if j > 0.

Then mx : Z → Z is a weakly increasing function (i.e., mx(i) ≤ mx(j) if i < j), and it
follows from Claim 3.5 that mx(j)→ ±∞ for j → ±∞.

It is straightforward to check that if x ∈ X and i, j ∈ Z, then

(6) mx(i+ j) = mx(i) +mσiX(x)(j).

Claim 3.6. There is a continuous map ϕ : X→ Y such that ϕ(x)[mx(−i),∞) = ϕ(x[−i,∞))
for i ∈ N0.

Proof. Let x ∈ X. Since mx(−i)→ −∞ for i→∞, it follows that there is at most one
y ∈ Y such that y[mx(−i),∞) = ϕ(x[−i,∞)) for i ∈ N0. That there is such a y ∈ Y follows
from the fact that

σ
n(x[−i−1,∞))

Y (ϕ(x[−i−1,∞))) = ϕ(σX(x[−i−1,∞))) = ϕ(x[−i,∞))

for i ∈ N0.
Since, for fixed i ∈ N0, the function x 7→ mx(−i) is a continuous and thus locally

constant function from X to Z, and ϕ is continuous, it follows that ϕ is continuous. �

Claim 3.7. σ
mx(j)
Y (ϕ(x)) = ϕ(σjX(x)) for x ∈ X and j ∈ Z.

Proof. Let x′ ∈ X and i, j′ ∈ N0. It follows from (6) that

(σ
−mx′ (j

′)
Y (ϕ(σj

′

X(x′))))[mx′ (−i),∞) = (ϕ(σj
′

X(x′)))[mx′ (−i)−mx′ (j
′),∞)

= (ϕ(σj
′

X(x′)))[m
σ
j′
X

(x′)
(−i−j′),∞)

= ϕ((σj
′

X(x′)[−i−j′,∞)))

= ϕ(x′[−i,∞))

= ϕ(x′)[mx′ (−i),∞).
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Thus,

(7) σ
−mx′ (j

′)
Y (ϕ(σj

′

X(x′))) = ϕ(x′).

If j ≥ 0, then an application of (7) with x′ = x and j′ = j gives us that σ
mx(j)
Y (ϕ(x)) =

ϕ(σjX(x)), and if j < 0, then an application of (7) with x′ = σjX(x) and j′ = −j gives
us together with (6) that

ϕ(σjX(x)) = σ
−m

σ
j
X

(x)
(−j)

Y (ϕ(σ−jX (σjX(x)))) = σ
−m

σ
j
X

(x)
(−j)

Y (ϕ(x)) = σ
mx(j)
Y (ϕ(x)).

�

Similarly to how we constructed ϕ, mx and ϕ, we can for each y ∈ Y construct a
weakly increasing function m′y : Z → Z and continuous functions ϕ′ : Y → X and
ϕ′ : Y → X such that

m′y(j) =


−
∑−j

i=1 n
′(y[−i,∞)) if j < 0,

0 if j = 0,∑j−1
i=0 n

′(y[i,∞)) if j > 0,

ϕ′(y) = σ
b′(y)
X (h−1(y)), and ϕ′(y)[m′y(−i),∞) = ϕ′(y[−i,∞)) for y ∈ Y , y ∈ Y, i ∈ N0, and

j ∈ Z.
For j ∈ N and y ∈ Y , we set (n′)j(y) :=

∑j
i=1 n

′(σi−1Y (y)) and (n′)0(y) := 0.

Claim 3.8. Given x ∈ X and y ∈ Y, there exist d, d′ ∈ Z such that ϕ′(ϕ(x)) = σdX(x)
and ϕ(ϕ′(y)) = σd

′
Y(y).

Proof. Let x ∈ X. Then we have for j ∈ N0 that

ϕ′(ϕ(x))[m′
ϕ(x)

(mx(−j)),∞) = ϕ′(ϕ(x)[mx(−j),∞))

= ϕ′(ϕ(x[−j,∞)))

= ϕ′(σ
b(x[−j,∞))

Y (h(x[−j,∞))))

= σ
(n′)

b(x[−j,∞))(h(x[−j,∞)))

X (ϕ′(h(x[−j,∞))))

= σ
(n′)

b(x[−j,∞))(h(x[−j,∞)))+b
′(h(x[−j,∞)))

X (x[−j,∞))

= x
[−j+(n′)

b(x[−j,∞))(h(x[−j,∞)))+b
′(h(x[−j,∞))),∞)

.

Let us first set d = (n′)b(x[0,∞))(h(x[0,∞))) + b′(h(x[0,∞))). By letting j = 0 we see that
ϕ′(ϕ(x))[0,∞) = x[d,∞). Since mx(−j)→ −∞ as j →∞, it follows that

m′ϕ(x)(mx(−j))→ −∞ as j →∞,

and since b and b′ are bounded functions, and (n′)i is bounded for each i ∈ N0, we get
that

−j + (n′)b(x[−j,∞))(h(x[−j,∞))) + b′(h(x[−j,∞)))→ −∞ as j →∞.
It follows that if x is periodic, then ϕ′(ϕ(x)) is also periodic, and ϕ′(ϕ(x)) = σdX(x).

Suppose then that x is not periodic. Then there is a j ∈ N0 such that

ϕ′(ϕ(x))[m′
ϕ(x)

(mx(−j)),∞) = x
[−j+(n′)

b(x[−j,∞))(h(x[−j,∞)))+b
′(h(x[−j,∞))),∞)

,
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is not periodic. It follows that if we now set

d = −m′ϕ(x)(mx(−j))− j + (n′)b(x[−j,∞))(h(x[−j,∞))) + b′(h(x[−j,∞))),

then ϕ′(ϕ(x)) = σdX(x).
That there for y ∈ Y is a d′ ∈ Z such that ϕ(ϕ′(y)) = σd

′
Y(y), can be proved in a

similar way. �

Claim 3.9. Let x ∈ X. Then ϕ(x) is periodic if and only if x is, in which case
lp(ϕ(x)) = mx(lp(x)).

Proof. Suppose x is periodic with period p. Since mx(j) goes monotonically to ∞ as
j → ∞, it follows from (6) that mx(p) 6= 0. It thus follows from Claim 3.7 that ϕ(x)
is periodic with period mx(p). Analogously, if ϕ(x) is periodic with period q, then x is
periodic with period m′ϕ(x)(q).

Suppose again that x is periodic. Then x[0,∞) is also periodic. Since h maps eventu-
ally periodic points to eventually periodic points, it follows that h(x[0,∞)) is eventually
periodic. It is clear that lp(x[0,∞)) = lp(x) and lp(h(x[0,∞))) = lp(ϕ(x)). Since the
h-cocycle pair (k, l) is least period preserving, it follows that

lp(ϕ(x)) = lp(h(x[0,∞))) =

lp(x[0,∞))−1∑
i=0

(l(σiX(x[0,∞)))− k(σiX(x[0,∞))))

=

lp(x)−1∑
i=0

n(x[i,∞)) = mx(lp(x)). �

Let x ∈ X. Let functions ix, jx : R → Z be given by ix(t) := max{i ≤ t : n(x[i,∞)) 6=
0} and jx(t) := min{j > t : n(x[j,∞)) 6= 0} (it follows from Claim 3.5 that ix(t) and jx(t)
are well-defined), and let

rx(t) := mx(ix(t)) +
t− ix(t)

jx(t)− ix(t)
n(x[ix(t),∞)).

Then rx : R → R is an increasing piecewise linear homeomorphism such that rx(i) =
mx(i) for those i ∈ Z for which n(x[i,∞)) 6= 0.

Claim 3.10. rx(t+ p) = rσpX(x)(t) +mx(p) for x ∈ X, t ∈ R and p ∈ Z.

Proof. Since ix(t + p) = iσpX(x)(t) + p and jx(t + p) = jσpX(x)(t) + p, it follows from (6)
that

rx(t+ p) = rσpX(x)(t) +mx(iσpX(x)(t) + p)−mσpX(x)(iσpX(x)(t)) = rσpX(x)(t) +mx(p). �

It is now routine to construct a flow equivalence ψ : SX→ SY from ϕ and rx (cf. [3]
and [24]).

Claim 3.11. There is a flow equivalence ψ : SX→ SY such that

ψ([(x, t)]) = [(ϕ(x), rx(t))]

for x ∈ X and t ∈ R.
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Proof. It follows from Claim 3.7 and Claim 3.10 that

[(ϕ(σpX(x)), rσpX(x)(t))] = [(σ
mx(p)
Y (ϕ(x)), rσpX(x)(t))]

= [(ϕ(x), rσpX(x)(t) +mx(p))]

= [(ϕ(x), rx(t+ p))].

It follows that there is a map ψ : SX → SY such that ψ([(x, t)]) = [(ϕ(x), rx(t))] for
x ∈ X and t ∈ R.

We check that ψ is injective. Suppose ψ([(x, t)]) = ψ([(x′, t′)]). Then there is a p ∈ Z
such that ϕ(x) = σpY(ϕ(x′)) and rx(t) + p = rx′(t

′). It then follows from Claim 3.7 and
Claim 3.8 that there is a q ∈ Z such that x′ = σqX(x). So [(x′, t′)] = [(x, s)] for some
s ∈ R. If x is not periodic, then ϕ(x) is not periodic either, so ψ([(x, s)]) = ψ([(x, t)])
implies that rx(s) = rx(t), and since rx is injective, it follows that s = t and thus that
[(x′, t′)] = [(x, s)] = [(x, t)]. Suppose that x is periodic. Then it follows from Claim 3.9
that ϕ(x) is periodic and that lp(ϕ(x)) = mx(lp(x)). So ψ([(x, s)]) = ψ([(x, t)]) implies
that rx(s) = rx(t) + i mx(lp(x)) for some i ∈ Z. It follows from Claim 3.10 that
rx(t)+i mx(lp(x)) = rx(t+i lp(x)), and since rx is injective, it follows that s = t+i lp(x)
and thus that [(x′, t′)] = [(x, s)] = [(x, t+ i lp(x))] = [(x, t)].

Next, we show that ψ is surjective. Let [(y, s)] ∈ SY. It follows from Claim 3.8 that
[(y, s)] = [(ϕ(ϕ′(y)), r)] for some r ∈ R. Since rϕ′(y) is surjective, it follows that there
is a t ∈ R such that ψ([(ϕ′(y), t)]) = [(ϕ(ϕ′(y)), r)] = [(y, s)].

Let us then show that ψ is continuous. It suffices to show that the map (x, t) 7→
(ϕ(x), rx(t)) is a continuous map from X×R to Y ×R. Let (xi, ti) be a sequence that
converges to (x, t) in X× R. Then xi → x in X. Since ϕ is continuous, it follows that
ϕ(xi) → ϕ(x). Since the map n is continuous, it follows that there is an M ∈ N such
that ixi(s) = ix(s) and jxi(s) = jx(s) for i ≥ M and s ∈ (t − 1, t + 1), and thus that
there is an N ∈ N such that rxi(s) = rx(s) for i ≥ N and s ∈ (t− 1, t + 1). Since rx is
continuous, it follows that rxi(ti)→ rx(t). Thus, (ϕ(xi), rxi(ti))→ (ϕ(x), rx(t)).

We have now shown that ψ is bijective and continuous. Since SX is compact and
SY is Hausdorff, it follows that ψ is a homeomorphism. Since rx is an increasing
homeomorphism from R to R, it follows that ψ maps flow lines onto flow lines in an
orientation preserving way. So ψ is a flow equivalence. �

3.2. Strongly continuous orbit equivalence. Following [19], we say that two one-
sided shift spacesX and Y are strongly continuous orbit equivalent if there is a continuous
orbit equivalence h : X → Y , an h-cocycle pair (k, l), and a continuous map b : X → Z
such that

l(x)− k(x) = 1 + b(x)− b(σX(x))

for all x ∈ X.
Matsumoto proved in [19, Theorem 5.5] that if two irreducible topological Markov

chains X and Y with no isolated points are strongly continuous orbit equivalent, then
the corresponding two-sided shift spaces X and Y are conjugate. We now generalise this
results to arbitrary shift spaces.

Corollary 3.12. If two shift spaces X and Y are strongly continuous orbit equivalent,
then the corresponding two-sided shift spaces X and Y are conjugate.
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Proof. If X and Y are strongly continuous orbit equivalent, then we can choose the
function n : X → N in Proposition 3.2 to be constantly equal to 1. Then mx(j) = j,
ix(j) = j, jx(j) = j + 1, and rx(j) = j for all x ∈ X and all j ∈ Z. Consequently,
ϕ : X→ Y is a conjugacy. �

4. Orbit equivalence and flow equivalence for shifts of finite type

In this section we use Proposition 3.2 to prove the following theorem.

Theorem 4.1. Suppose X and Y are one-sided shifts of finite type and that they are
continuously orbit equivalent. Then X and Y are flow equivalent.

If X and Y are irreducible, then the result of Theorem 4.1 easily follows from [20,
Theorem 3.5] and the fact that every one-sided shift of finite type is conjugate to a
one-sided topological Markov shift.

Remark 4.2. It follows from [4, Theorem 1.5] and [20, Lemma 3.1] that if X and Y
are flow equivalent, then there is an isomorphism from HX to HY that maps HX

+ onto
HY

+ . Theorem 4.1 can therefore be seen as a generalisation of [20, Theorem 3.5] (it
will also follow directly from Proposition 4.5 and Proposition 4.7 that if X and Y are
continuously orbit equivalent, then there is an isomorphism from HX to HY that maps
HX

+ onto HY
+ ).

To prove Theorem 4.1 we will prove that if X and Y are one-sided shifts of finite
type and h : X → Y is a continuous orbit equivalence, then there exist functions k,
l, k′, l′, b, b′, n, and n′ with the property specified in Proposition 3.2. We do this by
closely following [20] and use the groupoid of a one-sided shift of finite type. However,
since we are working with general shifts of finite type and not just irreducible shifts
of finite type with no isolated periodic points as in [20], we cannot just simply follow
the approach of [20]. In particular, the possibility that our shift spaces contain isolated
periodic points implies that we need to make adjustments to the approach used in [20]
(see Proposition 4.5 and Remark 4.6).

The conditions in Proposition 3.2 are equivalent to the condition that there is an
isomorphism φ : GX → GY such that r(φ(η)) = h(r(η)) and s(φ(η)) = h(s(η)) for η ∈ GX
and φ((x, lp(x), x)) = (h(x), lp(h(x)), h(x)) for every eventually periodic point x ∈ X,
and such that φ induces an isomorphism from HY to HX that maps the class of the
constant function 1 into HX

+ . We show in Proposition 4.5 that h maps eventually periodic
points to eventually periodic points and that there is an isomorphism φ : GX → GY
such that r(φ(η)) = h(r(η)) and s(φ(η)) = h(s(η)) for η ∈ GX and φ((x, lp(x), x)) =
(h(x), lp(h(x)), h(x)) for every eventually periodic point x ∈ X, and then we generalise
[20, Proposition 3.4] in Proposition 4.7 and show that there is an isomorphism from
H1(GX) to HX that maps the class of a function f ∈ Hom(GX ,Z) into HX

+ if and only
if f((x, lp(x), x)) ≥ 0 for every eventually periodic point x ∈ X. From this we deduce
in Proposition 4.8 that if φ : GX → GY is an isomorphism with the above mentioned
properties, then there exist functions k, l, k′, l′, b, b′, n, and n′ with the property specified
in Proposition 3.2. We end the section by putting it all together and give the proof of
Theorem 4.1.

We begin with two lemmas which we need for the proof of Proposition 4.5.
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Lemma 4.3. Let X be a one-sided shift of finite type.

(1) If x is an isolated point in X, then x is eventually periodic.
(2) If x is not an isolated point in X, U is an open neighbourhood of x, W is an open

subset of X, α : U → W is a homeomorphism, k, l : U → N0 are continuous, and

σ
k(x′)
X (α(x′)) = σ

l(x′)
X (x′) for every x′ ∈ U , then there is a unique n ∈ Z with the

property that there exist k0, l0 ∈ N0 and an open subset V such that n = l0 − k0,
x ∈ V ⊆ U and σk0X (α(x′)) = σl0X(x′) for every x′ ∈ V .

Proof. (1): Suppose x is an isolated point in X. Because X is a shift of finite type, there
is an m ∈ N such that if v ∈ L(X) has length m and uv, vw ∈ L(X), then uvw ∈ L(X).
Choose n such that Z(x[0,n−1]) = {x}. Since there are only finitely many words of length
m in L(X), it follows that there are p, q ∈ N such that p ≥ n, q−p ≥ m and x[p,p+m−1] =
x[q,q+m−1]. Since q − p ≥ m, the infinite sequence x[0,p−1]x[p,q−1]x[p,q−1]x[p,q−1] . . . belongs
to X and thus to Z(x[0,n−1]), so it must be equal to x. This shows that x is eventually
periodic.

(2): Let x, U,W, k, l, α be given as specified. We first show the existence of an n ∈ Z,
k0, l0 ∈ N0 and an open subset V such that n = l0 − k0, x ∈ V ⊆ U and σk0X (α(x′)) =

σl0X(x′) for every x′ ∈ V . Let k0 := k(x), l0 := l(x) and n := l0 − k0. Since k, l : U → N0

are continuous, there is an open subset V such that x ∈ V ⊆ U and σk0X (α(x′)) = σl0X(x′)
for every x′ ∈ V .

Suppose then that n′ ∈ Z, k′0, l
′
0 ∈ N0 and V ′ is an open subset such that n 6= n′ =

l′0 − k′0, x ∈ V ′ ⊆ U and σ
k′0
X (α(x′)) = σ

l′0
X(x′) for every x′ ∈ V ′. Let U ′ := V ∩ V ′,

k′′0 := max{k0, k′0}, h := l0 + k′′0 − k0 and j := l′0 + k′′0 − k′0. Then U ′ is open, x ∈ U ′ ⊆ U ,

h 6= j and σhX(x′) = σ
k′′0
X (α(x′)) = σjX(x′) for every x′ ∈ U ′. Let p = max{h, j} and

q = min{h, j}. Then p > q because h 6= j. Choose r ≥ p such that Z(x[0,r−1]) ⊆ U ′.
Then x′ = x[0,p−1]x[q,p−1]x[q,p−1] . . . for every x′ ∈ Z(x[0,r−1]), but this contradicts the
assumption that x is not an isolated point in X. �

Lemma 4.4. Let X and Y be two one-sided shifts of finite type. Suppose φ : GX → GY
is an isomorphism and h : X → Y is a homeomorphism such that φ((x′, 0, x′)) =
(h(x′), 0, h(x′)) for all x′ ∈ X.

If x ∈ X is eventually periodic, then h(x) is eventually periodic and φ((x, lp(x), x)) is
either equal to (h(x), lp(h(x)), h(x)) or to (h(x),− lp(h(x)), h(x)). If x is not isolated in
X, then φ((x, lp(x), x)) = (h(x), lp(h(x)), h(x)).

Proof. The proof uses ideas from [20, Lemma 3.3]. Suppose x ∈ X is eventually periodic.
Since φ is an isomorphism and φ((x′, 0, x′)) = (h(x′), 0, h(x′)) for all x′ ∈ X, it follows
that φ((x, lp(x), x)) = (h(x), n, h(x)) for some n ∈ Z different from 0. It follows that
h(x) is eventually periodic.

Since φ is an isomorphism, it follows that either n = lp(h(x)) or n = − lp(h(x)).
Suppose n = − lp(h(x)). We will show that x is then isolated in X.

Choose m ∈ N such that if v ∈ L(X) has length m and uv, vw ∈ L(X), then uvw ∈
L(X), and choose r, s ∈ N0 such that r − s = lp(x) and σrX(x) = σsX(x). Then

A := {(x′′, lp(x), x′) : x′′ ∈ Z(x[0,r+m−1]), x
′ ∈ Z(x[0,s+m−1]), σ

r
X(x′′) = σsX(x′)}

is an open bisection containing (x, lp(x), x). It follows that s(A) = Z(x[0,s+m−1]) and
r(A) = Z(x[0,r+m−1]) and the map αA : s(A) → r(A) defined by αA(s(ξ)) = r(ξ) for
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ξ ∈ A is a homeomorphism (cf. [6, Proposition 3.3]) such that

(8) αA(x′) = x[0,r+m−1]σ
s+m
X (x′)

for x′ ∈ s(A). Notice that r(A) ⊆ s(A). It follows from (8) that limi→∞ α
i
A(x′) = x for

all x′ ∈ s(A).
Choose m′ ∈ N such that if v ∈ L(Y ) has length m′ and uv, vw ∈ L(Y ), then

uvw ∈ L(y). Since φ((x, lp(x), x)) = (h(x),− lp(h(x)), h(x)), there is an j ∈ N such

that σjY (h(x)) = σ
j+lp(h(x))
Y (h(x)), and such that the open bisection

{(y′′,− lp(h(x)), y′) : y′′ ∈ Z(h(x)[0,j+m′−1]),

y′ ∈ Z(h(x)[0,j+lp(h(x))+m′−1]), σ
j
Y (y′′) = σ

j+lp(h(x))
Y (y′)}

is contained in φ(A).
Let y ∈ h(s(A)). Then limi→∞ α

i
A(h−1(y)) = x. It follows that there is an I ∈ N

such that h(αiA(h−1(y))) ∈ Z(h(x)[0,j+lp(h(x))+m′−1]) for i ≥ I. Let y′ := h(αIA(h−1(y)))

and y′′ := h(x)[0,j−1]σ
j+lp(h(x))
Y (y′). Then (y′′,− lp(h(x)), y′) ∈ φ(A). It follows that y′′ =

h(αA(h−1(y′))) ∈ Z(h(x)[0,j+lp(h(x))+m′−1]), and thus that y′ ∈ Z(h(x)[0,j+2 lp(h(x))+m′−1]).
By repeating this argument, we see that y′ ∈ Z(h(x)[0,j+i lp(h(x))+m′−1]) for all i ∈ N. It
follows that y′ = h(x) and thus that y = h(x). This shows that h(x) is isolated in Y .
Since h is a homeomorphism, it follows that x is isolated in X. �

Proposition 4.5. Let X and Y be two one-sided shifts of finite type and let h : X → Y
be a continuous orbit equivalence. Then h maps eventually periodic points to eventually
periodic points, and there is an isomorphism φ : GX → GY such that r(φ(η)) = h(r(η))
and s(φ(η)) = h(s(η)) for η ∈ GX and such that φ((x, lp(x), x)) = (h(x), lp(h(x)), h(x))
for every eventually periodic point x ∈ X.

Proof. We begin by constructing the isomorphism φ : GX → GY . We first define what
φ(η) is when s(η) is an isolated point in X, and then what φ(η) is when s(η) is not an
isolated point in X.

For x ∈ X, let [x] := {x′ ∈ X : ∃η ∈ GX such that r(η) = x and s(η) = x′}. Notice
that if x′ ∈ [x], then x is isolated in X if and only if x′ is. It follows from Lemma 4.3(1)
that if x is an isolated point in X, then [x] contains a periodic point. Choose for
each A ∈ {[x] : x is an isolated point in X}, a periodic point xA ∈ A. For x ∈ A, let
jx := min{j ∈ N0 : σjX(x) = xA}. If the source of η ∈ GX is an isolated point, then r(η)
is also an isolated point, [r(η)] = [s(η)], and jr(η) − js(η) − c(η) = n lp(x[r(η)]) for some
n ∈ Z. We write nη for this n.

We similarly let [y] := {y′ ∈ y : ∃η ∈ GY such that r(η) = y and s(η) = y′} for y ∈ Y ,
choose for each A ∈ {[y] : y is an isolated point in Y } a periodic point yA ∈ A, let
jy := min{j ∈ N0 : σjY (y) = yA} for y ∈ A, and let nη be the unique integer such that
jr(η) − js(η) − c(η) = nη lp(y[r(η)]) for η ∈ GY with s(η) an isolated point in Y .

Let η ∈ GX and suppose s(η) is an isolated point in X. Then r(η) is also an isolated
point in X, h(r(η)) and h(s(η)) are isolated points in Y , and

(h(r(η)), jh(r(η)) − jh(s(η)) − nη lp(y[h(r(η))]), h(s(η))) ∈ GY .
We let

φ(η) := (h(r(η)), jh(r(η)) − jh(s(η)) − nη lp(y[h(r(η))]), h(s(η))).



FLOW EQUIVALENCE AND ORBIT EQUIVALENCE FOR SHIFTS OF FINITE TYPE 15

Suppose then that s(η) is not an isolated point in X. Choose an open bisection A such
that η ∈ A. Then s(A) and r(A) are open in X and the map αA : s(A)→ r(A) defined
by αA(s(ξ)) = r(ξ) for ξ ∈ A is a homeomorphism with the property that there are

continuous maps k, l : s(A) → N0 such that σ
k(x)
X (αA(x)) = σ

l(x)
X (x) for every x ∈ s(A)

(cf. [6, Proposition 3.3]). Since h : X → Y is a continuous orbit equivalence, it follows
that there are a homeomorphism α′A : h(s(A))→ h(r(A)) such that α′A(h(x)) = h(α(x))

for x ∈ s(A), and continuous maps k′, l′ : h(s(A)) → N0 such that σ
k′(y)
Y (α′A(y)) =

σ
l′(y)
Y (y) for every y ∈ h(s(A)) (cf. the proof of [6, Proposition 3.4]). Since h(s(η)) is

not an isolated point in Y , it follows from Lemma 4.3(2) that there is a unique n ∈ Z
such that σk0Y (α′A(y)) = σl0Y (y) for all y in some open neighbourhood V ⊆ h(s(A)) of
h(s(η)) and some k0, l0 ∈ N0 satisfying l0 − k0 = n. Then (h(r(η)), n, h(s(η))) ∈ GY .
Notice that n does not depend on the particular choice of A because if B is another
open bisection containing η, then A ∩ B is also an open bisection containing η and
αA(x) = αA∩B(x) = αB(x) for every x ∈ s(A ∩ B), so if n′ and n′′ are integers such

that σ
k′0
Y (α′B(y)) = σ

l′0
Y (y) for all y in some open neighbourhood V ′ ⊆ h(s(B)) of h(s(η))

and some k′0, l
′
0 ∈ N0 satisfying l′0 − k′0 = n′, and σ

k′′0
Y (α′B(y)) = σ

l′′0
Y (y) for all y in

some open neighbourhood V ′′ ⊆ h(s(A ∩ B)) of h(s(η)) and some k′′0 , l
′′
0 ∈ N0 satisfying

l′′0 − k′′0 = n′′, then it follows from the uniqueness of n, n′ and n′′ that n = n′′ = n′. We
let φ(η) := (h(r(η)), n, h(s(η))).

We have now defined a map φ : GX → GY such that r(φ(η)) = h(r(η)) and s(φ(η)) =
h(s(η)) for η ∈ GX and such that φ((x, lp(x), x)) = (h(x), lp(h(x)), h(x)) for every
isolated point in X. It is straightforward to check that φ is a bijection, that φ(η)−1 =
φ(η−1) for every η ∈ GX , and that φ(η1η2) = φ(η1)φ(η2) for η1, η2 ∈ GX with s(η1) =
r(η2).

Since x ∈ X is eventually periodic if and only if {η ∈ GX : s(η) = r(η) = x} is infinite,
and h(x) is eventually periodic if and only if {η ∈ GY : s(η) = r(η) = h(x)} is infinite,
it follows that h maps eventually periodic points to eventually periodic points.

We will now show that φ is continuous. We will do that by, for η ∈ GX and an open
subset neighbourhood V of φ(η), constructing an open neighbourhood U of η such that
φ(U) ⊆ V . If s(η) is an isolated point in X, then η is an isolated point in GX , so we can
just take U to be equal to {η} in that case. Suppose that s(η) is not an isolated point
in X. Choose m′ ∈ N such that if v ∈ L(Y ) has length m′ and uv, vw ∈ L(Y ), then
uvw ∈ L(Y ), and choose k′, l′ ∈ N such that σk

′
Y (r(φ(η))) = σl

′
Y (s(φ(η))) and

φ(η) ∈ {(r(φ(η))[0,k′−1]y, k
′ − l′, s(φ(η))[0,l′−1]y) : y ∈ Z(r(φ(η))[k′,k′+m′−1])} ⊆ V.

Then choose m ∈ N such that if v ∈ L(X) has length m and uv, vw ∈ L(X), then
uvw ∈ L(X), and choose k, l ∈ N such that σkX(r(η)) = σlX(s(η)), k − l = c(η),
h(Z(r(η)[0,k−1])) ⊆ Z(r(φ(η))[0,k′+m′−1]), and h(Z(s(η)[0,l−1])) ⊆ Z(s(φ(η))[0,l′+m′−1]).
Then

A := {(r(η)[0,k−1]x, k − l, s(η)[0,l−1]x) : x ∈ Z(r(η)[k,k+m−1])}
is a bisection that contains η. Choose an open neighbourhood V ′ ⊆ h(s(A)) of h(s(η))

and n′ ∈ N0 such that σk
′+n′

Y (h(αA(h−1(y))) = σl
′+n′

Y (y) for all y ∈ V ′, and n ∈ N0 such
that h(Z(s(η)[0,l+n−1])) ⊆ V ′, and let

U := {(r(η)[0,k+n−1]x, k − l, s(η)[0,l+n−1]x) : x ∈ Z(r(η)[k+n,k+n+m−1])}.
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Then U is an open neighbourhood of η such that

φ(ξ) ∈ {(r(φ(η))[0,k′−1]y, k
′ − l′, s(φ(η))[0,l′−1]y) : y ∈ Z(r(φ(η))[k′,k′+m′−1])} ⊆ V

if ξ ∈ U and s(ξ) is not an isolated point in X. We claim that φ(ξ) ∈ V if ξ ∈ U ,
also if s(ξ) is an isolated point in X. Suppose ξ ∈ U and that s(ξ) is an isolated
point in X. If x is an isolated point in X and periodic, then Z(x[0,m−1]) = {x}. It

follows that σiX(s(ξ)) 6= x[s(ξ)] for i ∈ {0, 1, . . . , l + n − 1} and that σjX(r(ξ)) 6= x[s(ξ)]
for j ∈ {0, 1, . . . , k + n − 1} because if σiX(s(ξ)) = x[s(ξ)] and i ∈ {0, 1, . . . , l + n − 1},
then σiX(s(η)) ∈ Z((x[s(ξ)])[0,m−1]), and if σjX(r(ξ)) = x[s(ξ)] and j ∈ {0, 1, . . . , k+ n− 1},
then σjX(r(η)) ∈ Z((x[s(ξ)])[0,m−1]). Thus, jr(ξ) − js(ξ) = k − l and nξ = 0. Similarly,
jh(r(ξ)) − jh(s(ξ)) = k′ − l′, so

φ(ξ) = (h(r(ξ)), k′ − l′, h(s(ξ)))

∈ {(r(φ(η))[0,k′−1]y, k
′ − l′, s(φ(η))[0,l′−1]y) : y ∈ Z(r(φ(η))[k′,k′+m′−1])} ⊆ V.

This shows that φ is continuous. That φ−1 is continuous can be proved in a similar way.
Thus, φ is an isomorphism such that r(φ(η)) = h(r(η)) and s(φ(η)) = h(s(η)) for

η ∈ GX and such that φ((x, lp(x), x)) = (h(x), lp(h(x)), h(x)) for every isolated point in
X. Finally, it follows from Lemma 4.4 that φ((x, lp(x), x)) = (h(x), lp(h(x)), h(x)) for
every eventually periodic point that is not an isolated point in X. �

Remark 4.6. Let X and Y be two one-sided shifts of finite type and let φ : GX → GY
be an isomorphism. Then the map h : X → Y given by φ((x, 0, x)) = (h(x), 0, h(x)) is a
continuous orbit equivalence (see Proposition 4.8), and it follows from Lemma 4.4 that
φ((x, lp(x), x)) = (h(x), lp(h(x)), h(x)) for every eventually periodic point x ∈ X that is
not isolated in X, but it might be the case that φ((x, lp(x), x)) = (h(x),− lp(h(x)), h(x))
if x is isolated in X.

We have shown in Proposition 4.5 that if two one-sided shifts of finite type X and Y
are continuously orbit equivalent by an orbit equivalence h : X → Y , then there is an
isomorphism φ : GX → GY such that r(φ(η)) = h(r(η)) and s(φ(η)) = h(s(η)) for η ∈ GX
and such that φ((x, lp(x), x)) = (h(x), lp(h(x)), h(x)) for every eventually periodic point
x ∈ X. From this, it is not difficult to construct the least period preserving cocycle
pairs for h and h−1 we need to apply Proposition 3.2 (see the proof of Proposition 4.8).
To construct the continuous maps b : X → Z, n : X → N0, b

′ : Y → Z and n′ :
Y → N0 required to apply Proposition 3.2, we need the following proposition which is
a generalisation of [20, Proposition 3.4] to general shifts of finite type. The proof of
Proposition 4.7 is essentially identical to the proof of [20, Proposition 3.4], but we have
included it for completeness.

Proposition 4.7. Let X be a shift of finite type. Then there is an isomorphism
Φ : H1(GX) → HX such that Φ([f ]) = [g] where g ∈ C(X,Z) is given by g(x) =
f((x, 1, σX(x))). Moreover, Φ([f ]) ∈ HX

+ if and only if f((x, lp(x), x)) ≥ 0 for every
eventually periodic point x ∈ X.

Proof. It is straightforward to check that [f ] 7→ [g] where g ∈ C(X,Z) is given by g(x) =
f((x, 1, σX(x))), defines an isomorphism Φ : H1(GX)→ HX , with inverse Φ−1([g])((x, r−
s, y)) =

∑r−1
i=0 g(σiX(x)) −

∑s−1
j=0 g(σjX(y)) for every (x, r − s, y) ∈ GX . It is also easy to
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check that if Φ([f ]) ∈ HX
+ , then f((x, lp(x), x)) ≥ 0 for every eventually periodic point

x ∈ X.
Suppose f ∈ Hom(G,Z) and that f((x, lp(x), x)) ≥ 0 for every eventually periodic

point x ∈ X. We shall prove that Φ([f ]) ∈ HX
+ by constructing h ∈ C(X,Z) such that

f((x, 1, σX(x))) + h(x) − h(σX(x)) ≥ 0 for all x ∈ X. Since X is a shift of finite type
and f is continuous, there is an m ≥ 2 such that if v ∈ L(X) has length m and uv, vw ∈
L(X), then uvw ∈ L(X), and such that if x[0,m] = x′[0,m], then f((x, 1, σX(x))) =

f((x′, 1, σX(x′))). Let E = (E0, E1, r, s) be the finite directed graph with E0 = {v ∈
L(X) : v has length m}, E1 = {w ∈ L(X) : w has length m + 1}, s(w) = w[0,m−1] and
r(w) = w[1,m] for v ∈ E1. Let ω : E1 → Z be defined by ω(w) = f((x, 1, σX(x))) for
some x ∈ X with x[0,m] = w. Let w1w2 . . . wn be a cycle on E (so w1, w2, . . . , wn ∈ E1,
r(wi) = s(wi+1) for i = 1, 2, . . . , n − 1, and r(wn) = s(w1)). Then there is a periodic
x ∈ X such that xi+kn = wi+1

1 (wi+1
1 is the first letter of wi+1) for i = 0, 1, . . . , n− 1 and

k ∈ N0. It follows that there is j ∈ N such that n = j lp(x) and that

n∑
i=1

ω(wi) =
n∑
i=1

f((σi−1X (x), 1, σiX(x))) = jf((x, lp(x), x)) ≥ 0.

It therefore follows from [4, Proposition 3.3(2)] that there is a function κ : E0 → Z such
that ω(w) +κ(s(w))−κ(r(w)) ≥ 0 for w ∈ E1. Define h : X → Z by h(x) = κ(x[0,m−1]).
Then h ∈ C(X,Z) and

f((x, 1, σX(x))) + h(x)− h(σX(x)) = ω(x[0,m]) + κ(s(x[0,m]))− κ(r(x[0,m])) ≥ 0

for x ∈ X. �

Proposition 4.8. Let X and Y be two one-sided shifts of finite type and suppose that
φ : GX → GY is an isomorphism. Then there is a continuous orbit equivalence h : X →
Y , a h-cocycle pair (k, l) such that

φ
(
(x, r − s, x′)

)
=

(
h(x),

r−1∑
i=0

[l(σiX(x))− k(σiX(x))]−
s−1∑
j=0

[l(σjX(x′))− k(σjX(x′))], h(x′)

)
(9)

for (x, r − s, x′) ∈ GX with σrX(x) = σsX(x′), and a h−1-cocycle pair (k′, l′) such that

φ−1
(
(y, r′ − s′, y′)

)
=

(
h−1(y),

r′−1∑
i=0

[l′(σiY (y))− k′(σiY (y))]−
s′−1∑
j=0

[l′(σjY (y′))− k′(σjY (y′))], h−1(y′)

)
(10)

for (y, r′ − s′, y′) ∈ GY with σr
′
Y (y) = σs

′
Y (y′).

The h-cocycle pair (k, l) and the h−1-cocycle pair (k′, l′) are least period preserving if
and only if φ((x, lp(x), x)) = (h(x), lp(h(x)), h(x)) for every eventually periodic x ∈ X,
in which case there exist continuous maps b, n : X → N0 and b′, n′ : Y → N0 such that
l(x) − k(x) = n(x) + b(x) − b(σX(x)) and l′(y) − k′(y) = n′(y) + b′(y) − b′(σY (y)) for
x ∈ X and y ∈ Y .
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Proof. The restriction of φ to G(0) = X is a homeomorphism h : X → Y such that
r(φ(η)) = h(r(η)) and s(φ(η)) = h(s(η)) for η ∈ GX . We shall prove that h is a
continuous orbit equivalence by constructing an h-cocycle pair (k, l) satisfying (9) and
an h−1-cocycle pair (k′, l′) satisfying (10).

Let x ∈ X be a point that is not isolated in X, and let A be an open bisection
containing (σ(x),−1, x). Then φ(A) is an open bisection containing φ((σ(x),−1, x)),
so the map αφ(A) : s(φ(A)) → r(φ(A)) defined by αφ(A)(s(ξ)) = r(ξ) for ξ ∈ φ(A) is a
homeomorphism with the property that there are continuous maps k, l : s(φ(A)) → N0

such that σ
k(y)
Y (αφ(A)(y)) = σ

l(y)
Y (y) for every y ∈ s(φ(A)) (cf. [6, Proposition 3.3]). It

follows from Lemma 4.3 and the fact that Y is a locally compact and totally discon-
nected Hausdorff space that there is an clopen neighbourhood V of h(x) and kx, lx ∈ N0

such that σkxY (αφ(A)(y)) = σlxY (y) for y ∈ V . Let Ux = h−1(V ). Then Ux is a clopen
neighbourhood of x and

σkxY (h(σX(x′))) = σkxY (αφ(A)(h(x′))) = σlxY (h(x′))

for all x′ ∈ Ux. If x ∈ X is isolated in X, then we let Ux = {x} and choose kx, lx ∈ N0

such that σkxY (h(σX(x))) = σlxY (h(x)) (we can do that because φ((σX(x),−1, x)) ∈ GY ).
Since X is compact, it follows that there is a finite F ⊆ X and mutually disjoint

clopen sets {U ′x : x ∈ F} such that x ∈ U ′x ⊆ Ux for x ∈ F and
⋃
x∈F = X. If we

define k, l : X → N0 by setting k(x) = kx′ and l(x) = lx′ for x ∈ U ′x′ , then (k, l) is
an h-cocycle pair satisfying (9). We can in a similar way construct an h−1-cocycle pair
(k′, l′) satisfying (10).

It follows from (9) that if x ∈ X is eventually periodic, then

φ((x, lp(x), x)) =

h(x),

lp(x)−1∑
i=0

(l(σiX(x))− k(σiX(x))), h(x)

 ,

and it follows from (10) that if y ∈ Y is eventually periodic, then

φ−1((y, lp(y), y)) =

h−1(y),

lp(y)−1∑
i=0

(l′(σiY (y))− k′(σiY (y))), h−1(y)

 .

It follows that (k, l) and (k′, l′) are least period preserving if and only if φ((x, lp(x), x)) =
(h(x), lp(h(x)), h(x)) for every eventually periodic x ∈ X.

It follows from Proposition 4.7 and (9) that there is an isomorphism Ψ : HY → HX

such that Ψ([f ]) = [g] where g ∈ C(X,Z) is given by

g(x) =

l(x)−1∑
i=0

f(σiY (h(x)))−
k(x)−1∑
j=0

f(σjY (h(σX(x)))).

Suppose φ((x, lp(x), x)) = (h(x), lp(h(x)), h(x)) for every eventually periodic x ∈ X.
It then follows from Proposition 4.7 that Ψ(HY

+ ) = HX
+ . Let 1Y be the function that

sends every y ∈ Y to 1. Then [1Y ] ∈ HY
+ , so Ψ([1Y ]) ∈ HX

+ . Since Ψ([1Y ]) = [l − k],
it follows that there are continuous maps b, n : X → N0 such that l(x) − k(x) =
n(x) + b(x) − b(σX(x)) for x ∈ X. The existence of continuous maps b′, n′ : Y → N0

such that l′(y)− k′(y) = n′(y) + b′(y)− b′(σY (y)) for y ∈ Y , can be proved in a similar
way. �
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Proof of Theorem 4.1. Let h : X → Y be a continuous orbit equivalence. It follows from
Proposition 4.5 that h maps eventually periodic points to eventually periodic points,
and that there is an isomorphism φ : GX → GY such that r(φ(η)) = h(r(η)) and
s(φ(η)) = h(s(η)) for η ∈ GX and such that φ((x, lp(x), x)) = (h(x), lp(h(x)), h(x)) for
every eventually periodic point x ∈ X. It follows from Proposition 4.8 that there are a
least period preserving h-cocycle pair (k, l), a least period preserving h−1-cocycle pair
(k′, l′), and continuous maps b, n : X → N0 and b′, n′ : Y → N0 such that l(x)− k(x) =
n(x) + b(x)− b(σX(x)) and l′(y)−k′(y) = n′(y) + b′(y)− b′(σY (y)) for x ∈ X and y ∈ Y .
It therefore follows from Proposition 3.2 that X and Y are flow equivalent. �

5. Flow equivalence and orbit equivalence for shifts of finite type and
isomorphisms of their groupoids

The following theorem follows directly from Proposition 4.5 and Proposition 4.8 (it
also follows from [10, Corollary 4.6] and the fact that a shift of finite type can be
represented by a finite graph that has no sinks).

Theorem 5.1. Let X and Y be two one-sided shifts of finite type. Then X and Y are
continuously orbit equivalent if and only if the groupoids GX and GY are isomorphic.

If X and Y are irreducible, then the result of Theorem 5.1 easily follows from [20,
Theorem 2.3] and the fact that every one-sided shift of finite type is conjugate to a
one-sided topological Markov shift. If X and Y have no isolated periodic points, then
the result of Theorem 5.1 follows from [25, Proposition 3.2].

In the rest of this section we prove an analogue of Theorem 5.1 (Theorem 5.3), which,
among other things, says that the groupoids of two one-sided shifts of finite type are
stably isomorphic if and only if the corresponding two-sided shift spaces are flow equiv-
alence. We will use results of [9], [14], and [22] for this.

Before we state and prove Theorem 5.3, we need to introduce some notation and a
lemma.

Suppose X is a one-sided shift space and f ∈ C(X,N). Let

Xf := {(x, i) ∈ X × N0 : i < f(x) },
and equip Xf with the subspace topology of X × N0, where the latter is equipped with
the product topology of the topology of X and the discrete topology on N0. Then Xf is
compact. Define σXf : Xf → Xf by

σXf (x, 0) = (σX(x), f(σX(x))− 1 )

and σXf (x, i) = (x, i− 1) for x ∈ X and i ∈ {1, 2, . . . , f(x)− 1}. Then σXf is continuous
and surjective.

Let a be the alphabet of X and N := {0, 1, . . . ,max{f(x) : x ∈ X} − 1}. Define
ιXf : Xf → (a×N )N0 by

ιXf (x, i) = (a0, i)(a0, i− 1) . . . (a0, 0)(a1, f(σX(x))− 1)(a1, f(σX(x))− 2)

. . . (a1, 0)(a2, f(σ2
X(x))− 1) . . .

where x = a0a1a2 . . . . Then ιXf is continuous and injective and ιXf ◦ σXf = σ ◦ ιXf ,
where σ is the shift map on (a × N )N0 . It follows that Xf := ιXf (Xf ) is a subshift of

(a×N )N0 , and that (Xf , σXf ) and (Xf , σXf ) are conjugate.
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Let X0 := ιXf (X × {0}) and define ιX : X → X0 by ιX(x) = ιXf (x, 0). Then X0 is

a cross section of Xf (i.e., X0 is a compact and open subset of Xf , Xf = {σk
Xf (x) :

x ∈ X0, k ∈ N0}, there exists for all x ∈ X0 a k ∈ N such that σk
Xf (x) ∈ X0, and

frtX0 : X0 → N defined by frtX0(x) = min{k ∈ N : σk
Xf (x) ∈ X0} is continuous), and ιX

is a conjugacy between (X, σX) and (X0, σX0) where σX0 is the first return map defined

by σX0(x) = σ
frtX0

(x)

Xf (x). It follows that the two-sided shift spaces X and Xf are flow

equivalent. So Xf is of finite type if and only if X is.
If X is of finite type, then we let (GX)f denote the groupoid

{(η, i, j) ∈ GX × N0 × N0 : 0 ≤ i < f(r(η)), 0 ≤ j < f(s(η)) },
introduced in [22].

Lemma 5.2. Let X be a one-sided shift space and f ∈ C(X,N). Then (GX)f and GXf

are isomorphic.

Proof. It is routine to check that the map

((x, l − k, y), i, j) 7→

(
ιXf (x, i), i− j +

l∑
h=1

f(σhX(x))−
k∑

h=1

f(σhX(y)), ιXf (y, j)

)
where x, y ∈ X, i, j, k, l ∈ N0, i < f(x), j < f(y), and σlX(x) = σkX(y), is an isomorphism
between (GX)f and GXf . �

Suppose G is a groupoid with unit space G(0) and range and source maps r, s : G → G(0),
and that Z is a subset of G(0). We let G|Z := s−1(Z) ∩ r−1(Z), and say that Z is G-full
or just full if r(s−1(Z)) = G(0). Suppose G1 and G2 are two ample groupoids (see for
example [9]). As in [9] and [22], we say that G1 and G2 are Kakutani equivalent if there

for i = 1, 2 is a Gi-full clopen subset Zi ⊆ G(0)i such that G1|Z1 and G2|Z2 are isomorphic
as topological groupoids, and we say that G1 and G2 are groupoid equivalent if there is a
G1–G2 equivalence in the sense of [23, Definition 2.1].

As in [9], we write R for the full countable equivalence relation N0 × N0 regarded as
a discrete principal groupoid with unit space N0.

Theorem 5.3. Let X and Y be one-sided shifts of finite type. The following are equiv-
alent.

(1) GX and GY are Kakutani equivalent.
(2) GX and GY are groupoid equivalent.
(3) GX ×R and GY ×R are isomorphic as topological groupoids.
(4) There exist full open sets X ′ ⊆ X and Y ′ ⊆ Y such that GX |X′ and GY |Y ′ are

isomorphic as topological groupoids.
(5) There exist f ∈ C(X,N) and g ∈ C(Y,N) such that Xf and Y g are continuous

orbit equivalent.
(6) X and Y are flow equivalent.

Proof. The equivalence of (1)–(4) follows from [9, Theorem 3.2].
(1) =⇒ (5): It follows from [22, Lemma 4.6] that there are f ∈ C(X,N) and g ∈

C(Y,N) such that (GX)f and (GY )g are isomorphic. Since (GX)f is isomorphic to GXf ,
and (GY )g is isomorphic to GY g , it follows that GXf and GY g are isomorphic, so an
application of Theorem 5.1 gives us that Xf and Y g are continuous orbit equivalent.
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(5) =⇒ (6): It follows from Theorem 4.1 that Xf and Yg are flow equivalent. Since
X and Xf are flow equivalent, and Y and Yg are flow equivalent, it follows that X and
Y are flow equivalent.

(6) =⇒ (3): This is probably well-known to the experts, but we have not been able
to find a proof in the literature, so we give one here for completeness. Let E1 and E2

be finite directed graphs with no sinks and no sources such that the one-sided edge shift
of E1 is conjugate to X and the one-sided edge shift of E2 is conjugate to Y . Then the
two-sided edge shifts of E1 and E2 are flow equivalent, so it follows from [14, Lemma
5.1] that E1 and E2 are move equivalent. Since the groupoid of E1 is isomorphic to GX
and the groupoid of E2 is isomorphic to GY , an application of [9, Corollary 4.9] gives
that GX ×R and GY ×R are isomorphic as topological groupoids. �

6. Graph C∗-algebras and Leavitt path algebras

We now apply the results of the previous section to strengthen some of the results of
[1, 5, 6, 9] in the special case of finite directed graphs with no sinks and no sources.

Suppose E is a directed graph and R is a unital ring. We write GE for the groupoid
of E (see for example [2, 6, 7, 10, 13]), C∗(E) for the C∗-algebra of E (see for example
[2, 6, 7, 14, 26, 27]), D(E) for the C∗-subalgebra span{sµs∗µ : µ ∈ E∗} of C∗(E), LR(E)
for the Leavitt path R-algebra of E (see for example [7, 28]), DR(E) for the ∗-subalgebra
spanR{µµ∗ : µ ∈ E∗} of LR(E), and XE for the one-sided edge shift of E.

The next result depends on the equivalence of orbit equivalence as defined in [6] and
isomorphisms of the associated groupoids. This was established in [6] in the presence
of the so-called Condition (L), and generalised to the given setting in the independent
articles [2] and [10]. We will follow [10] since it is much better aligned with the approach
in the paper at hand. Combining Theorem 5.1 further with results of [6] and [8], we
obtain the following corollary:

Corollary 6.1. Let E and F be finite directed graphs with no sinks and no sources and
let R be a unital commutative integral domain. The following are equivalent.

(1) XE and XF are continuous orbit equivalent.
(2) GE and GF are isomorphic.
(3) There is a ∗-isomorphism φ : C∗(E)→ C∗(F ) such that φ(D(E)) = D(F ).
(4) There is a ring isomorphism β : LR(E)→ LR(F ) such that β(DR(E)) = DR(F ).
(5) There is a ∗-algebra isomorphism γ : LR(E) → LR(F ) such that γ(DR(E)) =

DR(F ).
(6) E and F are orbit equivalent as defined in [6].

Proof. The equivalence of (1) and (2) is proved in Theorem 5.1. The equivalence of (2)
and (3) follows from [6, Theorem 5.1], and the equivalence of (2), (4), and (5) follows
from [8, Corollary 4.2]. Finally, the equivalence of (2) and (6) follows from [10, Corollary
4.6]. �

Remark 6.2. It follows from [7, Corollary 6] that if R = Z (or more generally, if R
is a kind ∗-subring of C, see [7, Section 3]), then the condition “LR(E) and LR(F ) are
isomorphic ∗-rings” can be added to the list of equivalent conditions in Corollary 6.1.

Suppose E is a directed graph. We write XE for the two-sided edge shift of E, and
as in [9] and [10], we write SE for the directed graph obtained by attaching a head to
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each vertex of E (see [27, Definition 4.2]). We write K for the C∗-algebra of compact
operators on l2(N0) and C for the maximal abelian subalgebra of K consisting of diagonal
operators.

Suppose R is a unital ring. We write M∞(R) for the ring of finitely supported,
countable infinite square matrices over R, and D∞(R) for the abelian subring of M∞(R)
consisting of diagonal matrices.

By combining Theorem 5.3 with results of [8, 9, 10, 14], we obtain the following
corollary.

Corollary 6.3. Let E and F be finite directed graphs with no sinks and no sources and
let R be a unital commutative integral domain. The following are equivalent.

(1) E and F are move equivalent as defined in [26].
(2) XE and XF are flow equivalent.
(3) GE and GF are Kakutani equivalent.
(4) GE and GF are groupoid equivalent.
(5) GE ×R and GE ×R are isomorphic as topological groupoids.
(6) GSE and GSF are isomorphic as topological groupoids.
(7) SE and SF are orbit equivalent as defined in [6].
(8) There is a ∗-isomorphism φ : C∗(E)⊗K → C∗(F )⊗K such that φ(D(E)⊗C) =

D(F )⊗ C.
(9) There is a ring isomorphism β : LR(E)⊗M∞(R)→ LR(F )⊗M∞(R) such that

β(DR(E)⊗D∞(R)) = DR(F )⊗D∞(R).
(10) There is a ∗-algebra isomorphism γ : LR(E)⊗M∞(R)→ LR(F )⊗M∞(R) such

that γ(DR(E)⊗D∞(R)) = DR(F )⊗D∞(R).
(11) There is a ∗-isomorphism ψ : C∗(SE)→ C∗(SF ) such that ψ(D(SE)) = D(SF ).
(12) There is a ring isomorphism ρ : LR(SE) → LR(SF ) such that ρ(DR(SE)) =

DR(SF ).
(13) There is a ∗-algebra isomorphism τ : LR(SE)→ LR(SF ) such that τ(DR(SE)) =

DR(SF ).
(14) There exist projections pE ∈ D(E) and pF ∈ D(F ) and a ∗-isomorphism ω :

pEC
∗(E)pE → pFC

∗(F )pF such that pE is full in C∗(E), pF is full in C∗(F ),
and ω(pED(E)) = pFD(F ).

(15) There exist idempotents pE ∈ DR(E) and pF ∈ DR(F ) and a ring isomorphism
ζ : pELR(E)pE → pFLR(F )pF such that pE is full in LR(E), pF is full in LR(F ),
and ζ(pEDR(E)) = pFDR(F ).

(16) There exist projections pE ∈ DR(E) and pF ∈ DR(F ) and a ∗-algebra isomor-
phism κ : pELR(E)pE → pFLR(F )pF such that pE is full in LR(E), pF is full in
LR(F ), and κ(pEDR(E)) = pFDR(F ).

The implication (2) =⇒ (8) of Corollary 6.3 was originally proved for irreducible
graphs satisfying condition (L) by Cuntz and Krieger in [12, Theorem 4.1] (in the setting
of Cuntz–Krieger graphs), and for reducible graphs satisfying condition (L) by Cuntz in
[11, Theorem 2.4] (also in the setting of Cuntz–Krieger graphs). If the graphs E and F
both satisfy condition (L), then the equivalence of (3) and (14) of Corollary 6.3 follows
from [22, Theorem 5.4].
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Proof of Corollary 6.3. The equivalence of (1) and (2) is proved in [14, Lemma 5.1].
Since GE = GXE and GF = GXF , the equivalence of (2)–(5) follows from Theorem 5.3.
The equivalence of (5), (6), (8), and (11) follows from [9, Theorem 4.2], the equivalence
of (3) and (14) follows from [9, Corollary 4.5], and the equivalence of (6) and (7) follows
from [10, Corollary 4.6]. Finally, the equivalence of (9)–(16) is proved in [8, Corollary
4.8]. �

Remark 6.4. It follows from [7, Proposition 5] and an argument similar to the one
used in the proof of [17, Proposition 6.1] that if R = Z (or more generally, if R is a kind
∗-subring of C, see [7, Section 3]), then the following 3 conditions can be added to the
list of equivalent conditions in Corollary 6.3.

(17) LR(E)⊗M∞(R) and LR(F )⊗M∞(R) are isomorphic ∗-rings.
(18) LR(SE) and LR(SF ) are isomorphic ∗-rings.
(19) There are projections pE ∈ DR(E) and pF ∈ DR(F ) such that pE is full in LR(E),

pF is full in LR(F ), and pELR(SE)pE and pFLR(SF )pF are isomorphic ∗-rings.

7. Cuntz–Krieger algebras

In this final section, we apply the results of Section 5 and Section 6 to Cuntz–Krieger
algebras and topological Markov chains and directed graphs of {0, 1}-matrix in order to
generalise [20, Theorem 2.3] and [20, Corollary 3.8] from the irreducible to the general
case.

Let A be an N × N -matrix with entries in {0, 1}, and assume that every row and
every column of A is nonzero. As in [12, 20], we denote by OA the Cuntz–Krieger
algebra of A with canonical abelian subalgebra DA, by XA the one-sided shift space
{(xi)i∈N0 ∈ {1, 2, . . . , N}N0 : A(xi, xi+1) = 1 for all i ∈ N0} associated with A, and by
XA the two-sided subshift of XA (if A does not satisfy Condition (I), then we let OA
denote the universal Cuntz–Krieger algebra AOA introduced in [16]). Notice that the
groupoid GXA is equal to the groupoid GA considered in [20].

We get from Theorem 5.1 and [6, Theorem 5.1] (or Corollary 6.1) the following gen-
eralisation of [20, Theorem 2.3].

Corollary 7.1. Let A and B be finite square matrices with entries in {0, 1}, and assume
that every row and every column of A and B is nonzero. The following conditions are
equivalent.

(1) XA and XB are continuously orbit equivalent.
(2) The groupoids GXA and GXB are isomorphic.
(3) There is a ∗-isomorphism Ψ : OA → OB such that Ψ(DA) = DB.

Proof. The equivalence of (1) and (2) follows from Theorem 5.1.
Let EA be the graph of A, i.e., E0

A is the index set of A, E1
A = {(i, j) ∈ E0

A × E0
A :

A(i, j) = 1}, and r((i, j)) = j and s((i, j)) = i for (i, j) ∈ E1
A. Then GXA is isomorphic

to the groupoid GEA of EA defined in [6]. It is well-known that there is an isomorphism
Ψ : OA → C∗(EA) satisfying Ψ(DA) = D(EA). The equivalence of (2) and (3) therefore
follows from [6, Theorem 5.1] (or Corollary 6.1). �

Similarly, we get from Corollary 6.3 the following strengthening of [20, Corollary 3.8].
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Corollary 7.2. Let A and B be finite square matrices with entries in {0, 1}, and assume
that every row and every column of A and B is nonzero. The following are equivalent.

(1) There is a ∗-isomorphism Ψ : OA⊗K → OB⊗K such that Ψ(DA⊗C) = DB⊗C.
(2) There are projections pA ∈ DA and pB ∈ DB and an isomorphism φ : pAOApA →

pBOBpB such that pA is full in OA, pB is full in OB, and φ(pADA) = pBDB.
(3) XA and XB are flow equivalent.
(4) GXA and GXB are Kakutani equivalent.
(5) GXA and GXB are groupoid equivalent.
(6) GXA ×R and GXB ×R are isomorphic.

Proof. Let EA be as in the proof of Corollary 7.1. Then the two-sided shift spaces XA

and XEA are conjugate, the groupoids GEA and GXA are isomorphic, and there is a ∗-
isomorphism Ψ : OA → C∗(EA) satisfying Ψ(DA) = D(EA). The result therefore follows
from Corollary 6.3. �
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