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Abstract: Research efforts for development of agricultural robots that can effectively perform tedious field tasks have grown 
significantly in the past decade.  Agricultural robots are complex systems that require interdisciplinary collaborations between 
different research groups for effective task delivery in unstructured crops and plants environments.  With the exception of 
milking robots, the extensive research works that have been carried out in the past two decades for adaptation of robotics in 
agriculture have not yielded a commercial product to date.  To accelerate this pace, simulation approach and evaluation 
methods in virtual environments can provide an affordable and reliable framework for experimenting with different sensing and 
acting mechanisms in order to verify the performance functionality of the robot in dynamic scenarios.  This paper reviews 
several professional simulators and custom-built virtual environments that have been used for agricultural robotic applications. 
The key features and performance efficiency of three selected simulators were also compared.  A simulation case study was 
demonstrated to highlight some of the powerful functionalities of the Virtual Robot Experimentation Platform.  Details of the 
objects and scenes were presented as the proof-of-concept for using a completely simulated robotic platform and sensing 
systems in a virtual citrus orchard.  It was shown that the simulated workspace can provide a configurable and modular 
prototype robotic system that is capable of adapting to several field conditions and tasks through easy testing and debugging of 
control algorithms with zero damage risk to the real robot and to the actual equipment.  This review suggests that an 
open-source software platform for agricultural robotics will significantly accelerate effective collaborations between different 
research groups for sharing existing workspaces, algorithms, and reusing the materials. 
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1  Introduction  
Advances in simulation platforms and virtual control 
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environments along with the availability of affordable computers 
with high processing power and fast graphics cards, and the growth 
of open-source programming communities have shifted farming 
and agricultural robotics to a whole new level.  Integration of 
digital tools, sensors, and control technologies has accelerated 
design and developments of agricultural robotics, demonstrating 
significant potentials and benefits in modern farming.  These 
evolutions range from digitizing plants and fields by collecting 
accurate and detailed temporal and spatial information in a timely 
manner, to accomplishing complicated nonlinear control tasks for 
robot navigation. Modern farms are expected to produce more 
yields with higher quality at lower expenses in a sustainable way 
that is less dependent on the labor force.  Implementation of 
digital farming and site-specific precision management are some of 
the possible responses to this expectation, which depends not only 
on the sensor technology but the continuous collection of field data 
that is only feasible through proper utilization of agricultural robots.  
For example, automatic quantification of sweet pepper fruits for 
instantaneous yield monitoring and estimating the required time for 
harvesting operation is a labor intensive task that is either ignored 
in high-density Dutch greenhouses or is carried out manually by the 
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use of hand counters.  Currently, there are no reports of a 
commercial robotic platform that can simultaneously map the yield 
parameters on-the-go prior to harvesting.  The absence of an 
efficient robotic yield monitoring and environment mapping system 
is becoming a critical problem with increasing the uncertainties 
about the future availability of the labor force that is willing to 
accept tedious jobs in the harsh greenhouse condition.  Moreover, 
manual data sampling implies high costs and low accuracy and is 
significantly influenced by the interpretation of the person involved.  
The functionality of robots when combined with data processing, 
analyzing models, and artificial intelligence will assist farmers to 
manage their fields and plants more efficiently.  Improvement of 
robotics for agricultural application however requires 
experimenting with different sensors and algorithms, as well as 
evaluating different strategies for finding the optimum solution to 
perform a field task.  Experimenting with the physical robots and 
sensors in an actual field, orchard, or greenhouse is not always 
possible due to the time constraints, unavailability of equipment 
(i.e., sensors, cameras, and the robot itself), and the operation costs 
involve.  In the other hand, some hardware setups may result in 
actuator saturation, or create an unsafe situation for the operators 
and/or tree and plants system.  To accelerate this pace, simulation 
methods can provide an affordable framework for experimenting 
with different sensing and acting mechanisms in order to verify the 
performance functionality of the robot in different scenarios.  
Simulation offers a reliable approach to bridge the gap between 
innovative ideas and the laboratory trials, and therefore can 
accelerate the design of a robust agricultural robotic platform for 
efficient, cost-effective and collision-free navigation task in field 
and orchard.   

The organization of this paper is as follow: description of the 
Robot Operating System (ROS), selected professional simulators 
and custom-built virtual environments for agricultural robotics are 
covered in section 2.  In this section, we have also included a brief 
introduction about sample agricultural projects for each simulator 
when available.  Section 3 is dedicated to the evaluation and 
performance comparison between Virtual Robot Experimentation 
Platform (V-REP), Gazebo, and ARGoS. Section 4 extends our 
discussion on the functionalities and features of V-REP through a 
case study on simulation of robotic scouting in a virtual citrus 
orchard.  Results of this case study were used as a 
proof-of-concept framework for experimenting with different 
sensing and acting scenarios and verified powerful functionalities 
of the simulator. 

2  Simulation environments 

A key step toward acceleration of robotics is the choice of 
simulation software, middleware operating systems, and virtual 
environment platforms.  Simulation in general refers to the 
practice of developing and programming virtual models and objects 
that together are capable of emulating specific tasks, ideas, or a 
proposal process in the real-world.  Computer simulation and 
control of agricultural robotics require a multidisciplinary 
knowledge about different software and hardware to create an 
integrated virtual experiment environment within which the 
behavior of various objects (i.e., robot models and sensors) and 
control tasks (i.e., path planning and visual servoing) can be 
evaluated[1]. Unlike the industrial applications, an agricultural robot 
interacts with highly variable dynamic environments which 
necessitate incorporation of horticulture and agronomy science to 
successfully accomplish a task.   For example, a criterion for 

utilization of the sensors in agricultural robots lies in the 
requirements of fast response with high temporal and spatial 
resolution which is difficult to measure under unfavorable field 
conditions.  Hence, the objective of simulation and other analysis 
methods is to combine the real-world and virtual data to fuse the 
different information layers and derive new knowledge.  In the 
case of field robots for precision agriculture application, real-time 
data processing on-the-go is sometimes necessary and should be 
embedded in the sensors so that the results are directly available to 
the robot for carrying out precise management actions.  Virtual 
environments and middleware frameworks such as the Robot 
Operating System (ROS)[2] offer great opportunities for processing 
these sensor readings in the third party software such as the Open 
Source Computer Vision Library (OpenCV) and MATLAB.  It is 
also possible that the outputs and results from a simulation study be 
installed and implemented on the actual robots directly, without 
further calibration.  Other general advantageous of simulation for 
accelerating agricultural robotics include (i) reduced cost and 
shortened time for testing the hardware and software before the 
actual implementation, (ii) easier diagnosing and debugging of the 
programming codes, (iii) compatibility with different programming 
language and external control software, (iv) breaking a complex 
robotic projects into separated scenes, (v) eluding actuator 
saturation and mechanism breakdowns, and more importantly (iv) 
avoiding risks and hazards to the human and environment.  The 
main drawbacks of the simulation is that the real world may present 
more complicated situations such as unexpected disturbances to the 
actuators, or unpredicted noise to the sensors feedback as a result of 
natural field conditions.  While professional versions of many 
simulation platforms offer advanced features to create more 
realistic scenes, it is nearly impossible to completely cover every 
single detail of the actual-world scenarios into a simulation project.  
This is however not considered a burden since simulation is meant 
to be an initiative for evaluating the sketch ideas and the 
proof-of-concepts designs.  An example is shown in Figure 1 
where the concept of mass harvesting with arrays of single and dual 
axis robots have been evaluated in two different simulation 
environments, the Actin (Cambridge, MA, USA) and V-REP, 
respectively for citrus and sweet pepper fruits.  In fact, many 
experts agree that the first step in designing and developing robots 
should be the simulation because it does not depend on the actual 
physical components, and therefore modification of different parts 
and programs can be done easier and faster on the virtual models.  
In addition, offline programming using simulation eliminates the 
downtime for an operational process such as a fruit packing line.  

There is a long list of academic and professional simulation 
platforms that can be adapted and used for agricultural robots.  
Examples include Webots[3], Gazebo[4], CARMEN RNT[5], 
Coupled Layer Architecture for Robotic Autonomy (CLARAty) [6], 

[7], Microsoft Robotics Developer Studio (MRDS)[8], Orca[9], Open 
Robot Control Software (Orocos)[10], Player [11], the Autonomous 
Mobile Outdoor Robot (AMOR)[12], and Mobotware[13].  In 
addition, several efforts have been made toward creating simulation 
platforms and frameworks that are based on the professional 
simulators and are customized for agricultural robotics or farm 
machinery.  Examples include FroboMind[14] (based on Orocos 
and ROS), the Agricultural Architecture (Agriture)[15] (based on 
Gazebo, Player, and Java Agent), Agroamara[16], and the Software 
Architecture for Agricultural Robots (SAFAR)[17,18] (based on 
MRDS).  For a simulator to be practical and general purpose, it 
needs to provide support for different programming languages, a 
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wide range of models, functionalities, external controllers, and a 
user-friendly graphical interface.  Most of the mentioned 
simulators are compatible with other programming languages or 
computational software (i.e., C/C++, Perl, Python, Java, LabVIEW, 
URBI or MATLAB).  For the sake of this chapter, we introduce 
some of the most common simulation software tools that are used 
by the robotic community and can be adopted for agricultural 
robotics.  Figure 2 shows screenshots of workspace environment 
for (a) Webots[3], (b) Gazebo[4], (c) Actin[19], (d) RoboDK[20], (e) 
the Modular OpenRobots Simulation Engine (MORSE)[21], (f) the 
Open Robotics Automation Virtual Environment (OpenRAVE)[22], 
(g) the Open Architecture Human-centered Robotics Platform 
(OpenHRP3)[23], and (h) the Virtual Robot Experimentation 
Platform (V-REP)[24].  These simulators offer competing 
functionality and advanced graphical user interface, built-in models, 
controllers, and dynamic engines.  A comparison between the 
general specifications of these platforms is summarized in Table 1.  
For example, one of the significant advantageous of V-REP over 
Gazebo is that CAD models can be created directly in the V-REP 
environment.  V-REP also has multiple tools, plugins, and 
functionalities that allow connections to external software and 
interfacing  with  real-world  environment.  In  the  following  

 

a. Actin simulation for robotic harvesting with multiple manipulators,  
Source: Energid Technologies 

 
 

b. V-REP simulation for robotic harvesting with multiple manipulators[1] 
 

Figure 1  Screenshots of the simulation scenes in Actin (Top) and 
V-REP (bottom) for evaluating the concept of robotic mass 

harvesting with arrays of single and dual axis robots 
 

 

  
a. Webots b. Gazebo c. Actin d. RoboDK 

 
e. MORSE f. OpenRAVE g. OpenHRP3 h. V-REP 

Figure 2  Screenshots of workspace environment for some of the most commonly used simulation software 
 

Table 1  Comparison between general specifications of the selected simulation software for agricultural robotics 
Simulation 
software Developer Physics 

engine 
Supported operating 

systems 
Prog 

language
CAD files 

support 
API 

support 
ROS 

support

Webots[3] Cyberbotics Ltd Proprietary based  
on ODE Linux, Mac OS, Windows C++ WBT, VRML, X3D C, C++, Python, 

Java, Matlab, ROS Yes 

Gazebo[4] Open Source Robotics 
Foundation 

ODE, Bullet, 
Simbody, DART Linux C++ SDF/URDF, OBJ, STL,  

Collada C++ Yes 

Actin[19] Energid Technologies Proprietary 
Windows, Mac OS, Linux, 
VxWorks, and RTOS-32. 
(RTX and QNX Planned) 

C++ 

SLDPRT, SLDASM, STEP, 
OBJ, STL, 3DS, Collada, 
VRML, URDF, XML, ECD, 
ECP, ECW, ECX, ECZ, 

Not known Yes 

RoboDK[20] RoboDK None Linux, macOS, Windows, 
Android Python STEP, IGES, STL, WRML C/C++, Python, 

Matlab No 

Morse[21] Academic community Bullet Linux, BSD*, Mac OS Python Unknown Python Yes 

OpenRAVE[22] OpenRAVE  
Community ODE, Bullet Linux, Mac OS, Windows C++, 

Python 
XML, VRML, OBJ,  
Collada 

C/C++, Python, 
Matlab Yes 

OpenHRP3[23] AIST ODE, Internal Linux, Windows C++ VRML C/C++, Python, Java No 

ARGoS[25] Swarmanoid project Multiple-physics 
engines Linux and Mac OSX C++ Does not support C++ Yes 

V-REP[24] Coppelia Robotics ODE, Bullet, 
Vortex, Newton Linux, Mac OS, Windows LUA OBJ, STL, DXF, 3DS, 

Collada,URDF 
C/C++, Python, Java, 
Urbi, Matlab/Octave Yes 
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subsections, we provide a brief description of ROS and the selected 
simulators shown in Figure 2.  We also introduce sample projects 
when available.  Because building of complex simulation 
scenarios for agricultural robots is only possible through a 
distributed control framework, we have extended our discussion 
about V-REP as a case study in section 4.  
2.1  Robot Operating system (ROS) 

ROS[2] is an open-source flexible middleware that provides 
services, libraries, and tools for developing different robotic 
applications.  It is in fact a collection of software framework that 
was originally developed in 2007 by the Stanford Artificial 
Intelligence Laboratory, and with the support of the Stanford AI 
Robot project.  ROS is installed on Linux operating system family 
(i.e., Ubuntu) and provides a solution to specific set of problems 
encountered in the developing large-scale service robots, with 
philosophical goals summarized as: (i) peer-to-peer, (ii) tools-based, 
(iii) multi-lingual, (iv) thin, and (v) free and open-source[2].  From 
2008 until 2013, development was performed primarily at Willow 
Garage, a robotics research institute/incubator.  During that time, 
researchers at more than twenty institutions collaborated with 
Willow Garage engineers in a federated development model.  
Since 2010, ROS has released several versions, including Box 
Turtle (March, 2010), C Turtle (August, 2010), Diamondback 
(March, 2011), Electric Emys (August, 2011), Fuerte Turtle (April, 
2012), Groovy Galapagos (December, 2012), Hydro (September, 
2013), Indigo (July, 2014), Jade Turtle (May, 2015), Kinetic Kame 
(May, 2016), Lunar Loggerhead (May, 2017), and Melodic 
Morenia (May, 2018).  The open-source ROS makes it possible to 
develop code and applications that can be shared and used in other 
robotic systems with minimum effort.  Solutions to various 
robotic problems are also available on the ROS wiki community 
(http://wiki.ros.org).  This middleware has gained such a vast 
popularity that many professional robots companies have released 
ROS drivers for their products.  It also offers standard operating 
system features such as hardware abstraction, low-level device 
control, implementation of commonly used functionalities, message 
passing between processes, and package management.  The 
official programming languages supported by ROS are python and 
C++.  The implementation of the ROS is created by the file 
building system called the catkin.  It can run on one computer or 
connect multiple computers to one computer called ROS master.  
Schematic diagram of ROS file architecture and principle of nodes 
communication system are shown in Figure 3.  Fundamental 
concepts of the ROS are: Nodes, Messages, Topics, and Services.  
This structure allows creation of a modular network of nodes that 
are dedicated to subset computations with an organized 
communication between them.  In addition, robotic libraries such 
as frame transformation or motion simulation can be shared with all 
nodes to simplify the computation process.  ROS Packages are 
files and folders that are built to create minimal collections of code 
for easy reuse.  It works based on a “publish-and-subscribe” 
architecture where processes (called Nodes) publish and/or 
subscribe to specific Topics on which information is exchanged in 
the form of Messages.  For example, ROS can be used to provide 
a bi-directional communication (information exchange) between a 
simulated robot and different real-world cameras that are each 
implemented in ROS as a node.  A Node is an executable file that 
uses ROS to communicate with other Nodes.  A Message is a 
ROS data type defined in a text file as a structure of variables of 
different data types that is used when subscribing or publishing to a 

Topic.  Nodes can publish messages to a Topic as well as 
subscribe to a Topic to receive messages.  In fact, a Topic acts as a 
gateway for publishing and subscribing specific messages in the 
ROS environment.  For example, information about a joint 
position can be subscribed by the corresponding ROS node from 
the topic called JointPos where the information is published by 
ROS node on the robot (Figure 3).  Service helps Nodes find each 
other.  ROS nodes use a ROS client library to communicate with 
other nodes.  Nodes can also provide or use a Service.  With this 
architecture, each node in ROS can respond to input and activate 
other nodes, allowing participation of a sequence of nodes to 
complete complicated robot mission tasks.  Installation details and 
basic configuration of ROS environment, as well as installation and 
configuration of packages such as V-REP/ROS bridge, and the 
details of several mobile robot and manipulator package can be 
found in [26].  A good article sharing some experiences with ROS 
for development of agricultural robots is available in [27]. 

 
Figure 3  Diagram showing ROS file architecture and principle of 

nodes communicating system for a random topic 
 

2.2  Webots, Actin, and Gazebo 
Webots[3] robot simulator was developed at the Swiss Federal 

Institute of Technology (EPFL) in 1996 and can be downloaded 
from Cyberbotics company website (Lausanne, Switzerland).  
This simulation platform supports C/C++, Java, Python, URBI, and 
MATLAB language, and can be interfaced with third-party 
applications through TCP/IP.  It is widely used for academic and 
educational purposes due to the friendly and simple graphical user 
interface and the long list of models and components.   

Webots is a cross-platform software that can provide a 
complete simulation environment to model and program a wide 
range of mobile robots and sensors, including Pioneer 3DX (Figure 
4a), and KUKA youBot (Figure 4b).  In addition, Webots can be 
interfaced with other software such as SUMO (Simulation of Urban 
MObility) and OSM (Open Street Map) for the simulation of traffic 
and autonomous vehicles (Figure 4c).  The famous Robot 
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Benchmark website which holds online robot programming 
challenges to millions of users worldwide has recently provided 
free access to various robotics standards and components based on 
the Webots simulations via the website interface of Webots.  
Robot scripts are run in the cloud, and 3D views are displayed in 
the internet browsers, allowing users to program the robots in 
Python.  Moreover, Webots has open-source APIs, which makes it 
easier to use the libraries of choice with a preferred programming 
language for implementation.  For example, Webots can be used 
with OpenCV functions for efficient real-time image processing.  
Figure 4d-g show sample screenshots from simulation phase of a 
project funded by the European Union called Robot Fleets for 
Highly Effective Agriculture and Forestry Management (RHEA).  
This project used Webots for the design, development, and testing 
of a new generation of automatic and robotic systems for weed 
management and control.  It covered a wide variety of products 
including row crops and forestry woody perennials in which 
various simulations were involved (i.e., simulation of autonomous 
robot spraying herbicides, simulation of sprayer implement, and 
simulation of a treatment mission in a tree canopy with a special 
tractor implement).  The screenshots provided in Figure 4d-g are 
from the RHEA video demos for (d) adapted boomer tractor, (e) 
simulation of a complete mission in a crops field with mobile units 
and processing techniques, (f) simulation of a PWC implement for 
thermal and mechanical treatment of wheat crops developed by the 
University of Pisa, and (g) simulation of three tractors driving on 
an uneven terrain.  Perhaps Webots can be considered as one of 
the most widely used simulators for research and development in 
autonomous tractors and agricultural mobile robots. 

Actin is a robotics software toolkit simulator, developed in 
2005 by Energid Technologies (Cambridge, MA, USA), mainly for 
robot controls with related functions and features such as path 
planning, motion planning, collision avoidance, and joint controls.  
It supports various communication protocols including Modbus, 
EtherCAT, CANopen, Serial, Data Distribution Service, UDP, and 
TCP in order to create a connection between the operator and the 
physical hardware.  Using acting can significantly reduce the time 
and cost of projects that involves robotics, and also optimizes 

existing processes and workflows.  Actin is employed in different 
fields of industries and transportation with very limited examples in 
agricultural robotics.  The robotic citrus picking system in Figure 
1 uses Energid's frog tongue design and high-speed vision sensors 
and is simulated in Actin.  One of the key advantages of this 
simulator is that it is able to handle bifurcated problems and control 
kinematically redundant robotic systems.  This unique ability 
allows coordinated lifts using multiple robots.  It also supports 
constraining closed-kinematic chains for bi-handed manipulation.  
Programs in Actin are task-based and part relative, meaning that 
when the robot components move during manipulation, the motion 
is adapted in real-time to complete the task. 

Gazebo is one of the most popular multi-robot simulators which 
support a wide range of sensors and objects.  It was used as the 
standard simulator for the RoboCup2016 competition.  Gazebo 
was initially a part of ROS environment in the previous versions, 
but today it can be downloaded for free and be used as standalone 
software.  It is an open-source simulator (i.e., plug-in with model 
components can be developed and shared) with multiple physics 
engines that run on Linux (protected versions for Windows is also 
available) and is compatible with ROS, Player, and several other 
robotic platforms from the Willow Garage.  Complex robotic 
systems that involve interaction, object lifting and grasping, and 
other tasks that require simultaneous localization and mapping can 
be simulated with the Gazebo powerful physics engines using a 
much higher realistic scenarios and degree of reliability.  
According to the IEEE Spectrum magazine[28], Gazebo is 
recognized by many experts as the best robotic simulator because 
of (i) the ability for accurate simulation, (ii) extreme flexibility, (iii) 
having four different physics engines, (iv) great integration with 
ROS, and (v) a large and active community of contributors.  
Figure 5 shows screenshots of sample agricultural robotic 
simulations in Gazebo for (a) Thorvald robot[29], (b) BoniRob[30], (c) 
a weeding robot developed by Naïo Technologies (Escalquens, 
France), (d) the MARIO robot operating in a virtual typical 
vineyard[31], (e) the CROPS robot manipulator performing task and 
motion planning for apple harvesting[32], and (f) the HUSKEY 
mobile robot for fruit mapping[33]. 

 

 
a. Pioneer 3DX and LIDAR Sick b. KUKA youBot c. Webots interface with SUMO for traffic simulation and autonomous vehicle 

Source: Cyberbotics Webots 
 

 
d. Simulation of boomer e. Complete farming simulation f. simulation of thermal treatment g. driving on an uneven terrain 

Source: RHEA projects, http://www.rhea-project.eu/. 
 

Figure 4  Screenshots of the Webots simulation environment 
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a. Thorvald robot[29] b. BoniRob[30] c. Naïo weeding robot d. MARIO[31] e. CROPS robot[32] f.HUSKEY fruit mapping[33] 

Figure 5  Screenshots of sample simulation projects for agricultural robots in Gazebo 
 

2.3  RoboDK, MORSE, OpenRave,OpenHRP3, and ARGoS 
RoboDK[20] is a highly versatile offline programming and 

simulation software that is mainly used for industrial robots.  It is 
available for free download or purchase at robodk.com website.  
RoboDK has a diverse CAD model library that consists of over 
200 professional industrial robots and tools from leading 
manufacturers including ABB, KUKA, Yaskawa, and Adept.  
Some of these robots are used in agriculture industry for 
packaging and materials handling.  The 3D simulation 
environment of RoboDK offers playback feature within which 
operator can visualize every aspect of the robot behavior.  Alerts 
are generated when singularities or collisions are detected for a 
robot. 

MORSE[21] was first released in March, 2013.  It is a 
command-line simulator developed by OpenRobots community 
(www.openrobots.org).  MORSE does not come with a graphical 
user interface.  Instead, realistic 3D simulation scenes are created 
using Python scripts, and for this reason, it is most suitable for 
experienced computer scientists.  MORSE can be downloaded 
for free at https://www.openrobots.org/wiki/morse.  There are 
two different strategies in MORSE for handling the simulation 
time, (1) the best effort that keeps a real-time pace (simulation 
frames may be eliminated to achieve this), or (2) fixed steps, 
which guarantees that simulation is accurate.  Because MORSE 
is a pure Python application, it enables easy and fast modification 
of the final source codes.  It is a modular simulator in which new 
actuators or sensors can be added easily.  It should be noted that 
advanced robotic algorithms such as path planning have not been 
embedded in MORSE.  It is basically a not-for-profit academic 
project developed to operate on Linux (also known to work with 
MacOSX and Microsoft Windows) that do not offer professional 
supports, however models of several standard robot bases such as 
Pioneer3DX, generic 4 wheel vehicle, and PR2, as well as 
standard set of sensors (i.e., RGB cameras, GPS, and laser 
scanners) and actuators (i.e., joint controllers) are available in 
MORSE.   

OpenRave[22] began as a project in 2006 at the Carnegie 
Mellon University Robotics Institute and can be downloaded from 
openrave.org.  The main focus of OpenRave is on simulation and 
analysis for testing, developing, and deploying kinematic and 
geometric information that are related to algorithms for motion 
planning application.  Most of the algorithms and the 
implemented calculations are for robotic manipulators and are 
used for exploration of task configuration space.  OpenRave 
targets industrial application, it can be easily integrated into 
existing robotics systems by providing command line tools and 
interfaces.  One of the most influential technologies in 
OpenRAVE is the Robot Kinematics Compiler, known as IKFast, 
which can run as fast as 5 microseconds on recent computers, 
resulting in extremely stable solutions.  The IKFast can solve the 
kinematics equations of any complex kinematics chain analytically, 

and create language-specific files (i.e., in C++) for future use.  
Moreover, the COLLADA 1.5 file formats are supported by 
OpenRAVE for specific robots, manipulators, sensors, and 
planning-specific parameters. 

OpenHRP3[23] is an open-source distributed object system 
simulator.  It is an integrated platform that provides users with an 
integrated environment for inspecting original robot models and 
implementing control codes through various components and 
calculation libraries for a dynamic simulation.  OpenHRP3 is 
composed of a client program that manages the servers, and a 
group of server programs that offers various functions.  It 
improves the portability and maintainability in complex and 
large-scale simulation system developments.  According to the 
publisher website, “the dynamics calculation engine of OpenHRP3 
has two editions, the development of the Tokyo University, and 
the development of AIST.  The first edition applies an original 
algorithm for a forward dynamics calculation, while the second 
applies Featherstone's algorithm and performs a forward dynamics 
calculation in computational complexity to be proportional to the 
number of the joints”. 

As mentioned in Section 2.4, a swarm of robots is a promising 
approach for providing efficient solutions to autonomous scouting 
and field data collection in agriculture.  The main idea is to 
control large numbers of (i.e., 500 or 1000) small-scale robot 
agents that are affordable but have limited sensing and processing 
capabilities in a way that they accomplish a common field task.  
Some of the aspects to be considered for these type of robotic 
applications are the environment dynamics (i.e., wind and rough 
terrain), robot type (i.e., mechanism, sensors, and actuators), and 
the communication system (i.e., wifi, vision, and stigmergy).  
These factors, as well as the limitations in the modeling and 
computation, create complexity and inaccuracy for simulation of a 
swarm of robots.  Most of the existing simulators obtain 
scalability (by imposing limitations on their extensibility and on 
the accuracy of the robot models) and utilize a specific physics 
library.  As a result, their accuracy is strongly linked to the 
accuracy of their employed physics library.  Although they 
emphasize on the flexibility and give the best results in 
single-robot or small-scale multi-robot applications, their 
performance degrades fast with large numbers of robots.  In other 
words, they do not provide the necessary features to support 
large-scale heterogeneous robot swarms.  As a response to this 
limitation, an open-source multi-physics engine robot simulator 
named ARGoS[25] has been developed for efficient real-time 
simulation of a large-scale swarm of multi-robots of any kind.  
Compared to other simulators, ARGoS has the unique feature of 
assigning multiple physics engines of different types to different 
parts of the simulation.  This provides the ability for a robot to 
switch from one engine to another transparently.  In addition, the 
simulated world can also be divided into regions, and each region 
can be assigned to a different physics engine.  ARGoS peruses a 
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modular approach that allows adding custom features and 
allocating computational resources depending on the simulation 
need.  Results of evaluating ARGoS have shown that it can 
simulate 10,000 wheeled robots 40% faster real-time[25].  It 
should be noted that all of the components such as robot models, 
sensors, actuators, physics engines, and visualizations in ARGoS 
are implemented as plugins. 
2.4  Virtual robot experimentation platform (V-REP)  

V-REP[24] is a true cross-platform that can be run in Windows 
or Linux and is referred to as a Swiss knife in robotic simulation 
community due to the multiple functionalities.  It was first 
released in March 2010, and the latest version (V3.5.0) is available 
since February 6th, 2018.  This simulator offers a distributed 
control framework solution with advanced functionalities for 
testing and debugging complex robotic systems.  In other words, 
each object or model in a V-REP scene can be individually 
controlled through several ways such as child script, writing 
plugins, ROS nodes, external client applications that relies on the 
remote API, or writing an external application that communicates 
with V-REP plugin or script via pipes, sockets, or serial port.  By 
default, the V-REP distribution for Linux should be automatically 
ROS enabled based on ROS Indigo and Catkin.  V-REP possesses 
various relatively independent functions, features, or more 
elaborate APIs such as MATLAB, that can be enabled or disabled 
as desired.  The schematic architecture of the V-REP framework 
and corresponding internal states are shown in Figure 6.  It can be 
seen that simulation time in V-REP is advanced at constant time 
steps, and depending on the complexity of the scene and 
performance of the computer, the real-time of simulation is 
supported by keeping the simulation time synchronized with the 
real -time (which might not always be possible).  The distributed 
control architecture of V-REP makes it versatile and suitable for 

simultaneous use of different mobile robots, manipulators, and 
related objects in a simulation.  Controllers can be written in 
C/C++, Python, Java, Lua, Matlab, Octave, or Urbi.  The three 
main elements of V-REP simulator are scene object (i.e., joints, 
shape, sensors, path, etc), calculation modules (i.e., inverse 
kinematics, collision detection, etc), and control mechanism (i.e., 
scripts, plugin, sockets, etc as shown in Figure 6.  Control entities 
are distributed in V-REP which accelerates the simulation by 
allocating the CPU load over several cores or several machines.  
Compared to Gazebo, V-REP is more stable with easier setup and 
running.  For example, the vision sensors are reasonably well 
simulated in V-REP, and if the scene is not too complex, the run 
times of the simulations are generally good as well.  V-REP is 
also capable of importing the URDF files that are created for other 
simulators like Gazebo.  External applications can be connected to 
V-REP using Remote API which is available for MATLAB, C++, 
Python, and Java programming languages.  The remote API 
functionality relies on the remote API plugin (on the server side), 
and the remote API code on the client side.  Both 
programs/projects are open-source (i.e.  can be easily extended or 
translated for support of other languages) and can be found in the 
'programming' directory of V-REP's installation.  In addition, 
V-REP inverse kinematics supports four different dynamic engines: 
The Bullet, ODE, Newton, and the Vortex Dynamics Engine.  
Models in V-REP are flexible, portable and scalable, meaning that 
it is possible to modify them, copy from one project scene to 
another, or resize them in place.  If the project requires building a 
custom robot model which is not available in the simulator (i.e., the 
manipulators demonstrated in[1,34,35]), the setups for links, joints 
and calculation modules such as inverse kinematics necessitates 
some practice, however, that is the case in any robot simulation 
software.   
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Figure 6  Schematic view of the V-REP framework architecture, simulation state diagram, and the real-time simulation loop 

 

Simulation scene in V-REP contains several elemental objects 
that are assembled in a tree-like hierarchy and operate in 
conjunction with each other to achieve an objective.  In general, a 

V-REP scene contains the same type of elements that form a model, 
and additionally includes camera, light, views, pages, environment, 
floor, main script, and child script.  V-REP scenes support drag 
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and drop operation between the explored and the application 
window, and are saved as “.ttt” files.  Moreover, V-REP has 
several calculation modules that can directly operate on one or 
several scene objects.  Figure 7a shows screenshots of a V-REP 
scene for simulation of sweet pepper robotic harvesting using 
Fanuc LRMate 200iD 6-DoF manipulator and artificial plants and 
fruits models[1].  The visual servo control scheme associated with 

this project is shown in Figure 8.  A similar project with the same 
manipulator was carried out in ROS MoveIt (visualized in RViz) 
for the SWEEPER project (sweeper-robot.eu) as shown in Figure 
7b.  The differences between the visual details and modeling 
features of the two scenes as well as the control functionalities of 
the robots are noticeable.   

 

 
a. V-REP scene [1] visualized in Rviz using vision sensor publisher (robot control and image processing in MATLAB) b. ROS MoveIt and RViz 

Source: AdaptiveAgroTech.com Source: sweeper-robot.eu 
Figure 7  Comparison between visual features of the ROS MoveIt and the V-REP environment for a similar robot manipulator (Fanuc 

LRMate 200iD) and application 
 

 
Figure 8  Visual servo control scheme with the eye in hand 

configuration based on image moment method used with the Fanuc 
LRMate 200iD manipulator for harvesting of sweet pepper[1] 

 

2.5  Other simulators and virtual environments 
Other than the highlighted professional simulators, customized 

virtual environment solutions can be developed from scratch using 
combinations of different software, environment solutions can be 
developed from scratch using combinations of different software, 
however this will be extremely time-consuming.  Some projects 
have employed combined features of programming languages 
(i.e., visual basic), computational software (i.e., MATLAB), CAD 
models, and virtual platforms to create farming simulator 
environments.  For instance[36], used the programming language 
C++ and Borland Delphi with ARToolKit and GLSCene for 
simulating robotic harvesting of citrus with a redundant 
manipulator (Figure 9a, the image is courtesy of Hanaian and the 
University of Florida).  Another example is the simulation of 
conceptual robotic harvesting from Vision Robotics (shown in 
Figure 9b) which uses multiple manipulators for mass harvesting.  
Figure 9c shows a simulation of path planning for a tractor in 
Jaybridge simulation environment (image is courtesy of Jaybridge 
Robotics).  Simulation of a manipulator that was controlled via 
MATLAB and was used in the design and simulation process of 
two robotic systems for automatic artichoke harvesting[37] is 
shown in Figure 9d (simulation environment has not been 
mentioned in the original article).  Figure 9e shows a harvesting 

operation simulator software designed by AnyLogic for modeling 
the relationship between a grain combine, a grain cart, and a truck.  
This software also demonstrates the logistical dynamics that are 
associated with harvesting crops and provides users with 
capabilities and feature to visualize the complexities involved for 
optimizing the interaction of equipment during harvest.  A good 
example of customized simulation platform is SAFAR, the 
Software Architecture for Agricultural Robots.  This is a joint 
project of UniBots (a university spin-off company based in the 
UK) and MobotSoft (www.mobotsoft.com) for an academic 
initiative for easy-to-use by non-programmers to develop a set of 
designs, tools, and resources to simulate agricultural robots and 
promote precision agriculture and smart farming[17,18].  The 
simulation scenes are created in Microsoft Robotics Developer 
Studio (MRDS)[8].  Sample screenshot from a tractor simulation 
in SAFAR is shown in Figure 9f.  A new version of this 
platform is SAFAR2 (can be downloaded from Mobosoft website) 
that includes a desktop application interfaced with Google Earth 
and MRDS for easier use.   

In the new version of SAFAR, a random image taken from a 
field in any part of the world can be inserted into the software, 
then a route plan can be created for a selected robot in order to 
simulate a specific farming operation in MRDS without writing a 
single piece of code.  It should be noted that SAFAR supports 
Python scripting engine and is closed source.  Another example 
of using MRDS for agricultural robots is the simulation of 
Omnirota shown in Figure 9g (screenshot was captured from 
CornIsKing Youtube channel).  

Screenshots of a Farming Simulator Video Game (Giants 
Software, Zurich, Switzerland) are shown in Figure 10.  This 
virtual farming simulator is one of the biggest and the most 
famous simulation game which has sold over four million copies.  
Some of the features include the realistic environment of the 
farming, the latest models of the farming equipment, harvesting 
simulator, easy and simple controls, and realistic tractor farming 
simulator including drive simulators for tractors and combine 
harvesters.  This software is a new concept for experiencing 
modern agricultural machinery and real farm operations in a 
virtual environment.  For example, users can select a land for 
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cultivation, spread fertilizer, simulate plow jobs and seeding, use 
drill machine attached to the tractors, move crops and animals in 
and out of the farms, work with sprayers and pesticide, perform 
harvest operation, and even sell the products.  This virtual 

environment gives users the benefits of learning difficult tasks 
such as parking of tractors which requires skill to be carried out 
in the real situation.    

 
 

 
a. Citrus harvesting robot[36] b. Multiple robots for mass harvesting c. path planning of for a tractor, Jaybridge Robotics simulation environment 
Hanaian, the University of Florida Source: Vision Robotics  

 

  
d. Harvesting of artichoke[38] e. Harvesting in AnyLogic modeling software f. SAFAR tractor in MRDS g. Omnirota in MRDS 

  Source: SAFAR project Source: CornIsKing Youtube channel

Figure 9  Examples of simulation projects in custom-built or non-professional simulator software 
 

 
Figure 10  Screenshots of Farm Sim game for virtual experience 
with agricultural machinery (Courtesy of farming-simulator.com) 

3  Performance comparison: V-REP, Gazebo, 
ARGoS 

V-REP, Gazebo, and ARGos share several similarities such as 
programming in C++ and ROS support, they also demonstrate clear 
differences when analyzed for the trade-off between scene 
complexity and computational performance.  For instance, V-REP 
offers the widest range of features including, most notably, scene 
editor and visualization, importing different mesh file formats, 
in-scene mesh manipulation, built-in video recording, and several 
API supports (i.e., C/C++, Python, Java, Urbi, Matlab/Octave) for 
remotely connecting to a simulation.  The model library in V-REP 
is relatively large, flexible, and well documented, and the graphical 
interface is easy to learn.  Most importantly, compared to Gazebo 
and ARGoS, installation of V-REP is more straightforward, 
allowing users to immediately begin a project with the minimum 

experience and knowledge about simulation software.  Gazebo in 
the other hand requires some knowledge of Linux (and sometimes 
ROS) to begin with.  It has a slimmer model library, and a scene 
editor that offers mesh importing but does not support mesh editing.  
Optimization of the imported models in Gazebo should be 
performed in third-party software.  Moreover, Gazebo relies on 
ROS for remote connectivity; it has a slow user interface and has 
crashed a number of times on our computer during performance 
tests.  We also experienced that some of the example codes in 
Gazebo could not be compiled or did not run properly during our 
tests.  ARGoS does not have a scene editor, does not support 3D 
model importing, and by comparison, its robot library and 
documentation are very limited.  It has the least amount of 
features compared to the other two simulators.  One advantage of 
Gazebo and ARGoS over V-REP is the ability to define a scene in 
an XML file.  This is convenient, for example, when multiple 
experiments with varying parameter values need to be generated 
and run automatically.  V-REP does not directly support XML.  
Also, scene and model files in V-REP are not XML, but purely 
binary, in order to offer very fast loading operations.  However, it 
is possible to easily write XML importers and exporters by looking 
at the source code of the COLLADA importer/exporter, or the 
URDF importer plugins (located in the programming folder 
programming/v_repExtCollada and programming/v_repExtUrdf).  
Additionally, it is always possible to install Lua extension libraries 
to have the Lua XML functionality from an embedded script.  A 
simulation can only be specified in a V-REP scene file via the 
V-REP graphical interface and is therefore difficult to change the 
simulation parameters, especially when running V-REP from the 
command line.  While V-REP offers up to nine optional 
command-line arguments that can be supplied to a simulation, a 
more involved parameter specification would have to be handled, 
for example, by a plug-in that could parse parameter text files.  
Such a plug-in is currently not distributed with V-REP.   
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In order to analyze and compare the characteristics and 
performance of V-REP, Gazebo, and ARGoS, we conducted 
several tests in the 64-bit Ubuntu Linux 16.04 environment running 
on a computer with 4x Intel Core i7 2.2 Gz processor, 8GB RAM 
and Intel HD Graphics 6000 graphics card.  There were two types 
of benchmark test performed with each simulator, the GUI, and the 
Headless benchmark.  The GUI benchmark involved running a 
simulation of robots that moved in a straight line and avoided 
obstacles in real-time. The simulators were run along with their 
user interfaces.  Each simulation took one minute. Detailed results 
of this test are available in [39].  The headless benchmark 
involved running the same simulation as in the GUI benchmark that 
lasted five minutes.  The simulators were run from the command 
line without their user interfaces.  We also used two types of 
simulation environment, “Small Scene” (where robots were put on 
a large 2D plane), and “Large Scene” (where an industrial building 
model with approximately 416000 vertices was imported into the 
simulator).  A detailed description of the tests setup and 
methodology is available in [39].  Three performance metrics 
were used to evaluate the simulators: (i) real-time factor (denoted 
by R, defined as the simulated time divided by the real-time), (ii) 
the amount of CPU usage (denoted by C in percentage), and (iii) 
the amount of memory usage (denoted by M in Megabyte).  A 
value of R>1 indicates that a simulation could run faster than the 
real-time and vice versa.  Also, when C>100%, a simulator could 
utilize multiple processors cores.  Two values for C and M were 
noted for Gazebo GUI experiments, corresponding to the usage of 
“gzclient” (visualisation) and “gzserver” (simulation), respectively.   

Results of these tests are given in Table 2, indicating that 
ARGoS achieved the highest simulation speed in the GUI 
experiments with up to 50 robots in the Small scene and with up to 
5 robots in the Large scene, while utilizing the smallest amount of 
resources.  Gazebo outperformed ARGoS in other experiments, 
especially when the Large scene was used in the Headless.   
However, Gazebo usually required the largest amount of memory 
when it was running in the GUI mode, and a median amount in the 
Headless mode.  V-REP combined with ODE usually achieved the 
lowest simulation speed.  Using Bullet 2.78 often significantly 

increased the performance of V-REP.  Running Gazebo and 
ARGoS in the Headless mode (Table 2) increased R in 
environments where maximum CPU power was utilized by the 
GUI mode.  On the other hand, R was often smaller in the 
Headless mode of V-REP, compared to its GUI mode.  V-REP 
demonstrated the most optimal CPU utilization.  It automatically 
spawned new threads when it was necessary and it could thus fully 
utilize all available CPU cores.  Gazebo only utilized a single 
CPU core per process.  In the GUI mode, Gazebo ran two 
processes, “gzclient” and “gzserver”, that could each utilize a 
maximum of 100% of CPU power.  In the Headless mode, only a 
single core was utilized, as only the “gzserver” process was 
running.  The multi-threaded core utilization by ARGoS worked 
in general but problems were experienced in larger experiments.  
The CPU usage was notably smaller when more robots were added 
to the environment.  Furthermore, unlike V-REP, ARGoS requires 
the user to specify the desired number of threads, rather than 
automatically spawning new threads when it is necessary.  It 
should be noted that the 3D models used in ARGoS and Gazebo 
were fairly simple compared to those used in V-REP, even though 
an effort was made to simplify the V-REP robot model.  Moreover, 
the ARGoS physics engine was much simpler than those used by 
V-REP and Gazebo.  It is therefore expected that using third-party 
libraries to cope with various aspects of the simulation that are 
currently not covered in ARGoS, such as calculating more complex 
physics dynamics or working with imported 3D meshes, would 
decrease the simulator's performance.  Similarly, it is expected 
that more complex 3D models would decrease the performance of 
Gazebo compared to V-REP.  In order to confirm that the mesh 
complexity played a major role in V-REP, several experiments 
were ran[39] using robots and scenes consisting of very simple 3D 
meshes and models in the absence of sensing and controller 
capabilities.  Results showed that an increase between 66% and 
600% in R could be achieved, using only about 15% to one eighth 
of the computer's resources.  These results[39] suggest that it is 
possible to significantly increase the performance of V-REP by 
carefully setting simulation parameters and by optimizing 3D 
models used in the simulation. 

 

Table 2  Performance comparison between V-REP, Gazebo, and ARGoS simulators 

Scene 
type 

No. of 
Robots 

V-REP Bullet V-REP ODE Gazebo ODE ARGos PointMass3D 

R C/% M/MB R C/% M/MB R C/% M/MB R C/% M/MB 

Small 

1 4.1 200 165 3.12 200 160 42.85 100 107 300 6.3 18 

5 0.38 400 320 0.32 400 320 10 100 130 150 100 20 

10 0.09 400 470 0.08 400 480 5.26 100 150 21.42 144 20 

50 N.F N.F N.F N.F N.F N.F 1.06 100 356 0.52 103 25 

Large 

1 1.91 200 165 0.58 200 160 18.75 100 174 15.78 139 31 

5 0.2 400 270 0.11 400 250 5.88 100 192 5.45 157 45 

10 N.F N.F N.F N.F N.F N.F 3.09 100 211 1.59 130 47 

50 N.F N.F N.F N.F N.F N.F 0.6 100 423 0.03 105 55 

Note: The best and the worst performance are respectively highlighted in green and red.  
Source: Adapted from [39] 
 

We summarize the performance comparison evaluation by 
highlighting that V-REP offers a number of useful features, such as 
multiple physics engines, a comprehensive model library, the 
ability of a user to interact with the world during simulation and, 
most importantly, mesh manipulation and optimization, however it 
is the most complex and the most resource-hungry of the three 

simulators.  ARGoS, on the other hand, is a suitable choice for 
simulations of swarm robotics tasks, and compared to V-REP, it 
trades-off robot, environment and physics complexity for superior 
performance.  An XML-based simulation settings file is also very 
convenient in ARGoS, especially when a large variety of 
simulations need to be generated automatically.  However, there 
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are multiple important features missing from ARGoS, most notably 
the ability to import 3D meshes into the simulator.  Gazebo 
occupies the space between V-REP and ARGoS.  While it is much 
closer to V-REP in terms of features, its interface and default robot 
models are much simpler and resemble those found in ARGoS.  It 
is notable that Gazebo outperformed ARGoS in the larger 
simulation environments mentioned here, which suggests that it is a 
more suitable choice for large swarm robotics experiments.  In the 
other hand, V-REP automatically spawns new threads on multiple 
CPU cores and therefore utilizes the full amount of CPU power 
when it is necessary.  For this reason, V-REP is more suitable for 
high-precision modeling of robotic applications such as the field 
scouting mobile robot example presented in section 4, as well as of 
various robotic harvesting applications, where only a few robots are 
required to operate at the same time.   Our experiment with 
Gazebo showed that its usability is relatively poor.  While it can 
import 3D meshes, there are no editing options, making it difficult 
to alter and optimize models.  Moreover, Gazebo interface has a 
number of issues and fails to follow established conventions.  
Several difficulties were noted when installing dependencies for 
Gazebo and for many of its third-party models.  While not 
necessarily severe by themselves, these issues together could have 
a negative impact on a research project. 

4  Case study: Simulating a prototype scouting robot 
in V-REP 

V-REP library offers models of various integrated professional 

mobile robots including Pioneer P3-DX[37] (CAD model is courtesy 
of Eric Rohmer), Roller Walker (CAD model is courtesy of Lyall 
Randell), Robotnik Summit XL140701(Robotnik), Kuka YouBot 
(Kuka Laboratories GmbH), Omnidirectional Platform (Ono-Denki 
Co., LTD. Japan), dr12 (Cubictek co. Ltd), dr20 (Cubictek co. Ltd), 
Lumibot (Mey lean Kroneman, CAD model is courtesy of Philipp 
Urbanz), Khepera 3 (K-team corporation), Line follower (Cubictek 
Co. LTD), and E-puck (Ecole Polytechnique Federale Lausanne, 
Switzerlan).  Each of these robots has built-in features, 
specifications, and parameters that can be adjusted in the script 
simulation or via the model properties.  Some of the V-REP robot 
models (mobile and non-mobile) that can be adapted for 
agricultural simulation projects are shown in Figure 11.  
Additionally, V-REP supports different vision sensors 
(orthographic and perspective type), proximity sensors (Ray-type, 
pyramid-type, cylinder-type, disk-type, cone-type, and randomized 
ray-type proximity sensors), and built-in CAD models of various 
commercial sensors including Microsoft Kinect, 2D and 3D laser 
scanners, blob detection camera, Hokuyo URG 04LX UG01, SICK 
S300, SICK TiM310 fast laser measurement scanner, TimM10 
sensors, and Fast Hokuyo URG-04LX-UG01 scanning laser range 
finder.  Other sensor models (i.e., ultrasonic and infrared) can be 
built similarly based on combinations of different vision and 
proximity sensors.  For example, the Fish-eye RGB Axis 212 PTZ 
sensor, or infrared Proximity Sensor Long Range-Sharp 
GP2Y0A02YK0F can be simulated in V-REP by direct use of 
vision and ultrasonic sensors respectively. 

 

 
Pioneed p3dx Roller Walker RobotnikSummit Kuka YouBot Omnidirectional dr12 dr20 

   
ABB IRB 360 Adept Quattro 650HS Jaco arm UR (3,5, and 10) KUKA LBR Baxter   Sawyer U arm 

Figure 11  Screenshots of selected V-REP models for mobile and non-mobile robots that can be adapted for use in agricultural simulation 
 

For the purpose of this case study and to show how V-REP 
functionalities can be extended and scaled from professional 
robot models to a customized model, we simulated a prototype 
robot shown in Figure 12 that was not available in the V-REP 
model library.  The ultimate objective was to have a completely 
simulated robotic platform with different cameras and sensing 
systems that can perform (i) autonomous navigation and scouting 
in a virtual citrus orchard, (ii) 3D reconstruction of the 
environment, (iii) quantification of the fruits, and (iv) estimation 
of the instantaneous yield from real-time image data.  Only a 
summarized description of this case study is provided here.  We 
began the simulation process by importing CAD models (.STL 
file) of a prototype mobile robot and a 5-Dof manipulator.  
Necessary modifications and adjustments, including shape 
properties, objects grouping and bounding, axis and coordination 
settings, adding joints and sensors, and customizing physical 
appearances were carried out on the imported models.  
Information about preliminary setting and general modifications 
required prior to a simulation is available in the V-REP manual 

and online tutorials.  A workspace was then created in V-REP 
environment with major scene objects shown in Figure 12.  ROS 
was installed on Ubuntu 14.04.3 LTS and was used for 
exchanging data between the simulated environment and the real 
world via its publish and subscribe architecture.  This provides a 
tool for validating the simulated results with those from 
experimenting with a real robot.  V-REP and MATLAB were 
also interfaced to create two-way communication architecture for 
exchanging sensors and robot control messages.  Data from the 
simulated robot and sensors in V-REP were used as inputs of the 
control algorithms in MATLAB.  This framework provides a 
flexible platform that saves in cost and time for experimenting 
with different control strategies, sensing instrumentation, and 
algorithms in automated orchard scouting.  For example, the 
mobile robot and manipulator were externally controlled via a 
MATLAB m-file, providing a 360° scanning view for each sensor.  
Using this scheme, we were able to adjust the gains of a PID speed 
controller in MATLAB, or change the joints rotation matrices of 
the manipulator and observe the immediate effects on the behavior 
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of the simulated robot in V-REP. 
Our mobile platform was a four-wheel drive and steering field  

robot that is controlled by four independent DC motors, and a 
6-DoF manipulator controlled by six servo motors similar to the 
one used in [40].  The CAD model of this robot is publicly 
available for free download from GrabCad webpage of Hossam 
Mohamed.  A similar application of such a mobile platform can be 
found in [41].  The following main steps were involved in the 
simulation: (i) creation of workspace, including import, 
modification, and simulation of the robot CAD model in V-REP 
(including adding joints, differential drive, and IK tasks), (ii) 
design and testing of the speed control and navigation system, (iii) 

implementing path planning and line following algorithms using 
V-REP scripts of MATLAB API functions, (iv) experimenting with 
simulated sensors and camera and importing collected data into 
MATLAB for image processing, and (v) creating a bidirectional 
communication (information exchange) between the simulated 
robot, ROS, MATLAB, and the cameras with the real world.  The 
artificial citrus trees were purchased from greenview3d.com.  For 
the sake of simplicity, we did not simulate the gripper mechanism; 
hence the manipulator was simulated with five joints representing 
the five servo motors.  The drive and steering subsystem is 
comprised of four independent wheels and motor units, also known 
as a differential drive[42].      

 

 
Figure 12  Major scene objects used in the V-REP case study simulation, including CAD model of a prototype robot platform,  

artificial citrus trees, and simulated sensors 
 

The robot changes its direction and speed by varying the 
relative rate of rotation of left and right wheels.  For the purpose 
of simulating the control system in MATLAB, the same numerical 
value used in [40] was assumed for the DC motors, (that is the 
moment of inertia of the rotor J=42.6e-6 kg·m2, viscous friction 
coefficient b=47.3e-6Nms, torque constant kt=14.7e-3Nm/Amp, 
back emf ke=14.7e-3V.s/rad, terminal resistance R=4.67Ω and 
electric inductance L=170e-3H).  The objective was to control the 
angular rate of the DC motors (simulated in V-REP by independent 
joints in torque/force mode) by varying the applied input voltage 
that is assumed to be proportional to the motor speeds (this was 
carried out by implementing a PID controller for setting joint target 
velocity in V-REP).  For this objective, the design criteria were 
defined in such a way that for a step input change of 5 radians per 
second (s) in the desired joint velocity, the controller satisfies a 
transient response with settling time of less than 0.5 s, overshoot of 
less than 5%, and steady-state error of less than 1%.  For the 
inverse kinematics (IK) task of the manipulator, as well as path 
planning algorithm for the robot navigation, we used V-REP built-in 
calculation modules.  The details of IK setup in V-REP is available 
in [1].  Descriptions of the path planning algorithm and 
corresponding set-ups in V-REP are also available as a video 
demonstration on the AdaptiveAgroTech Youtube channel.  The 
simulated workspace provided a highly configurable, modular 
robotic system that is capable of adapting to several agricultural 
tasks and conditions through easy testing and debugging of control 
algorithms with zero damage risk to the real robot and to the actual 
equipment.  

The vision sensor simulates RGB and gray-scale cameras 

(filters are available in V-REP image processing for grayscale or 
specific R, G, or B band selection), and acquires images at a 512 by 
512 pixel resolution.  A similar sensor was used for visual 
servoing from our previous study[1] with inertial measurement filter.  
The V-REP model of the Microsoft Kinect sensor includes RGB 
and depth vision sensors and was used in the scene to calculate the 
time needed for the laser signal to hit an object and bounce back to 
its source, creating in this way a three-dimensional representation 
of the object.  The filters used to create the Microsoft Kinect for 
the citrus scouting scene (shown Figure 13a) are (i) depth image to 
work image, (ii) extract coordinates from work image, and (ii) 
work image to output image.  For the fast 3D laser scanner used 
for environment mapping (shown in the Figure 13b), the filters of 
the vision sensors are (i) original depth image to work image, (ii) 
extract coordinates from work image, (iii) intensity scale work 
image, and (iv) work image to output image.  For the purpose of 
obstacle avoidance, eight proximity sensors (cone type) were 
placed on the robot body in a circular shape, each covering 45° of 
the mobile surrounding.  It should be noted that vision-sensors 
based rangefinders have high calculation speed but lower precision, 
while proximity-sensors based rangefinders have higher precision 
in calculating the geometric distance with relatively lower 
calculation speed.  The laser-scanner rangefinder was considered 
in the simulation to measure the distance between an observer 
object (i.e., the robot gripper or the end-effector camera) and a 
target (i.e., fruit, trees, or obstacles).  Typical rangefinders work 
based on time of flight (TOF) and frequency phase-shift 
technologies.  The TOF method utilizes laser by sending a pulse 
in a narrow beam towards the object and measuring the time taken 
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by the pulse to be reflected off and return to the sensor.  The 
frequency-phase shift method measures the phase of multiple 
frequencies on reflection together with performing simultaneous 
math calculations to deliver the final measure.  Rangefinders are 
available in V-REP in the form of vision-sensors and proximity 

sensors.  For example, the Hokuyo URG-04LX-UG01 and the 3D 
laser scanner range finder use a ray-type laser proximity sensor.  
Finally, two color cameras were also added for tracking the scene 
and the position of the robot with respect to the fruit and trees in 
order to provide a wider view of the simulation scene.  

 

a. Simulation environment for the virtual citrus orchard and the prototype field robot with multiple sensors and obstacle avoidance 

  
b. Scanning with Kinect  c. Kinkect sensor: RGB image d. Kinect sensor, depth image e. Scanning with Hokuyo f. Point clouds 

 

Figure 13  Using a simulated mobile robot for citrus tree scouting in a virtual orchard, and creating the point clouds of the environment 
 

4.1  Dynamic considerations for realistic simulation 
V-rep dynamic modules allow simulating real-world objects 

interactions in a realistic way such as fruits falling from a tree due 
to the collision of a vehicle (Figure 14a), or bouncing off the fruits 
from a conveyor belt or after they are dropped from a harvester 
gripper (Figure 14b[1]).  Physics simulation such as inverse 
kinematic is a complex task and can be achieved only to some 
degree of speed and precision, therefore V-REP dynamics support 
four physics engines known as the bullet library, the Vortex, the 
Newton, and the Open dynamics engine.  This provides the user 
with the flexibility for selecting and switching from one engine to 
the other to satisfy the simulation needs.  The bullet library, also 
known as the video game physic engine, is an open-source engine 
that supports both soft and rigid body dynamics, as well as 
three-dimensional collision detection, which are mostly used to 
provide visual effects in computer games and movies.  The Vortex 
dynamics is a commercial closed source physics engine that 
provides physics simulation with a high reliability.  It offers 
real-world parameters for simulating various physical properties in 
a precise and realistic fashion that corresponds to the actual 

physical units.  Because of these features, Vortex can be used for 
simulation of agricultural robotics and fruit handling that requires 
high performance and precision accuracy.  An example is the 
simulation of mass and moment of inertia for sweet pepper fruits 
that fall on a conveyor belt as shown in Figure 14b.  It is notable 
that the Vortex plugin is not included in the free version of V-REP.  
It is based on the Vortex Studio Essentials and requires registration 
with the CMlabs Company (Montreal, QC, Canada) for a free 
license key.  The Newton dynamics implements a deterministic 
differential equation solver that is not based on classical iterative 
methods.  It is a cross-platform physics simulation library that 
possesses the stability and speed respectively, making it a tool that 
is suitable for games and for real-time physical simulation.  The 
Open dynamic is an open-source fully featured physics engine 
available at www.ode.org/ that is used for general simulation 
applications as well as games.  It is stable, mature, and platform 
independent and provides an easy to use C/C++ API.  It has two 
main components known as the collision detection and the rigid 
body dynamics.  This engine is especially suitable for simulation 
field vehicles and objects in the virtual reality environments. 

 

 
Figure 14  Visualization of dynamic engine in V-REP, (a) citrus fruits falling off due to the mobile robot collision with the tree,  

and (b) sweet pepper fruit bounding on conveyor belt after releasing from a harvesting gripper 
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Dynamic data and results of dynamic modules can be recorded 
and collected using graph objects.  While many other simulation 
packages rely on physics engines that are based on dynamic 
calculations and approximations and result in a relatively slow and 
imprecise output, V-REP can be considered a hybrid simulator 
software that combines both dynamics and kinematics calculations 
to achieve the most effective performance in different simulation 
scenarios.  For instance, V-REP uses kinematics for robotic 
manipulators wherever it is possible and relies only on dynamics 
calculations for the manipulator’s gripper.  In the case of 
simulating the movements and navigation for a crop scouting 
mobile robot that is operating on a flat field and is not supposed to 
have physical interaction or collide with the objects of the 
environment, using kinematics or geometric calculations will result 
in a much faster and more accurate simulation.  It should be noted 
that the environment in V-REP refers to the properties and 
parameters, including background color, fog parameters, ambient 
light, settings, and creation information.  These properties are not 
considered scene objects, but are part of a scene, and are only saved 
when a scene is saved (not when a model is saved). 
4.2  External programming of V-REP (MATLAB and ROS)  

The main simulation programming script of V-REP contains 
basic code and functions that are called by the system to runs the 
simulation.  By default, the main script has four functions known 
as the initialization (sysCall_init), actuation (sysCall_actuation), 
sensing (sysCall_sensing), and restoration (sysCall_cleanup).  

Other than the initialization function that is mandatory, all other 
functions in the main script are optional.  The initialization 
function is executed only one time right at the beginning of the 
simulation.  The actuation function is executed at each simulation 
pass and is in charge of handling simulator functionality such as 
inverse kinematics, as well as lunching threaded and non-threaded 
child scripts.  The sensing function is also executed at each 
simulation pass and is in charge of handling the sensors (i.e., 
proximity and vision sensors) or collision detection.  The 
restoration function is executed one time only, right before a 
simulation is terminated, and is responsible for cleaning and 
restoring the initial configuration of scene objects, collision, and 
sensors states.  It is notable that the main script is not supposed to 
be modified, and unless a function is not defined, the call will be 
ignored.  If the main script is modified without having necessary 
commands, then a model such as a robot manipulator or sensors 
that are copied into a scene may not perform as expected.  As an 
example of a simple V-REP programming, we illustrate the 
conventional vision-based navigation control for the prototype 
scouting robot.  Figure 15 shows the sequence of navigation, 
sensing-and-display, and actuation program for collision avoidance.  
Here the laser sensor state is read from previous sensing 
corresponding to the previous simulation pass, then it reacts to the 
tree.  If this sequence is altered, (i.e., sensing, 
actuation-and-display), the final display data will be different from 
the actual sensing.   

 

 
Figure 15  Implementation of laser sensor and Anaglyph stereo sensors in V-REP 

 

As mentioned earlier, V-REP supports seven supported 
languages: C/C++, Python, Java, Matlab, Octave, Lua and Urbi.  
For this case study, we used MATLAB as the remote API because 
it is one of the most widely used programming languages for 
control tasks and image processing problems.  This approach 
allows controlling the simulation objects (i.e., DC and servo motors) 
with almost the exact same code as those that run the physical 
models.  The remote API functionality relies on the remote API 
plugin (on the server side), and the remote API code on the client 
side.  Both programs/projects are open-source (i.e. can be easily 
extended or translated for support of other languages) and can be 
found in the 'programming' directory of V-REP's installation.  In 
order to use remote API functionality of V-REP in Matlab program, 
three files namely (i) remoteApiProto.m, (ii) remApi.m, and (iii) 
remoteApi.dll were copied from the V-REP's installation directory 
into Matlab current workspace directory.  It is notable that Matlab 
should uses the same bit-architecture as the remoteApi library.  
All V-REP remote API functions begin with a prefix "simx”.  A 
list of sample Matlab remote API functions used in the simulation 
is provided in Table 3.  Descriptions of these functions are as 
follow: (1) simxStartSimulation: requests a start of a simulation, or 
a resume of a paused simulation, (2) simxGetVisionSensorImage2: 

retrieves the image of a vision sensor as an image array, (3,4): 
simxReadProximitySensor and simxReadVisionSensor respectively 
read the state of a proximity and vision sensor (these two functions 
do not perform detection, but merely reads the result from a 
previous call to the sensor handles), (5) simxSetJointPosition: sets 
the intrinsic position of all joints type except the spherical ones (may 
have no effect depending on the joint mode), (6) 
simxSetJointTargetPosition, sets the target position of a joint if it is 
in torque/force mode (joint's motor and position control should be 
enabled for this function to work), (7) simxSetJointTargetVelocity: 
sets the intrinsic target velocity of a non-spherical joint (only 
applicable when the joint is in torque/force mode, and the dynamics 
functionality and the joint motor have been enabled, and position 
control is disabled), (8) simxSetVisionSensorImage2: sets the image 
of a vision sensor and applies any image processing filter if specified 
in the vision sensor dialog (the image is provided as an image array), 
and (9) simxStopSimulation: requests a stop of the running 
simulation.  The regular use of simxSetVisionSensorImage2 is to 
first read the data from a vision sensor with 
simxSetVisionSensorImage2, then performs custom filtering or 
image processing, and then writes the modified image to a passive 
vision sensor.  
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Table 3  MATLAB synopsis for some of the V-REP remote API functions used in the simulation 

Remote API function MATLAB synopsis 

simxStartSimulation [returnCode]=simxStartSimulation(clientID, operationMode) 

simxGetVisionSensorImage2 [returnCode,resolution, image]=simxGetVisionSensorImage2(clientID,sensorHandle,options, operationMode) 

simxReadProximitySensor [returnCode,detectionState,detectedPoint,detectedObjectHandle,detectedSurfaceNormalVector] 
=simxReadProximitySensor(clientID, sensorHandle,operationMode) 

simxReadVisionSensor [returnCode,detectionState,auxData,auxPacketInfo]=simxReadVisionSensor(clientID,sensorHandle,operationMode) 

simxSetJointPosition [returnCode]=simxSetJointPosition(clientID,jointHandle,position,operationMode) 

simxSetJointTargetPosition [returnCode]=simxSetJointTargetPosition(clientID,jointHandle,targetPosition,operationMode) 

simxSetJointTargetVelocity [returnCode]=simxSetJointTargetVelocity(clientID,jointHandle,targetVelocity,operationMode) 

simxSetVisionSensorImage2 [returnCode]=simxSetVisionSensorImage2(clientID,sensorHandle,image,operationMode) 

simxStopSimulation [returnCode]=simxStopSimulation(clientID,operationMode) 
 

V-REP implements a ROS node with a plug-in which allows 
ROS to call V-REP commands via ROS services, or stream data 
via ROS publishers/subscribers.  Publishers/subscribers can be 
enabled with a service call, and also be directly enabled within 
V-REP via an embedded script command.  The general ROS 
functionality in V-REP is supported via a generic plugin 
“libv_repExtRos.so” or “libv_repExtRos.dylib”.  It should be 
noted that plugins are loaded when V-REP is launched, and the 
ROS plugin will be successfully loaded and initialized only if 
“roscore” is running at that time.  The plugin is open-source and 
can be modified as much as needed in order to support a specific 
feature or to extend its functionality.  Three of the main ROS 
package folders in the V-REP, (located in 
programming/ros_packages) are the “vrep_common”, 
“vrep_plugin”, and “vrep_joy”.  The first package is used to 
generate the services and stream messages that are needed to 
implement the V-REP API functions, while the second is the actual 
plugin that is compiled to a “.so” file used by V-REP.  The 
“vrep_joy” package enables interaction with a joystick.  Having 
the services and stream messages in a separate package allows for 
other application to use them in order to communicate with V-REP 
via ROS in a convenient way.  A ROS package usually includes 
the followings folders and files: bin, msg, scripts, src, srv, 
CMakeLists.txt, manifest.xml.  The first package is used to 
generate the services and stream messages that are needed to 
implement the V-REP API functions, while the second is the actual 
plugin that is compiled to a “.so” file used by V-REP.  The 
“vrep_joy” package enables interaction with a joystick.  Having 
the services and stream messages in a separate package allows for 
other application to use them in order to communicate with V-REP 
via ROS in a convenient way.  These packages were copied to the 
catkin_ws/src folder.  The command “$ roscd” was then used to 
check whether ROS is aware of these packages (e.g., $ roscd 
vrep_plugin).  After navigating to the catkin_ws, the command “$ 
catkin_make” was used to build the packages and to generate the 
plugins.  The created plugins were then copied to the V-REP 
installation folder to be used for image subscription and publishing.  
A new terminal was opened in Ubuntu for staring the ROS master 
using the command “$ roscore”.  Another terminal was opened 
and was navigated to the V-REP installation folder to launch the 
V-REP simulator in Ubuntu by typing the command “$ ./vrep.sh”.  
The entire procedure is summarized as these steps: (i) installing 
ROS Indigo on Ubuntu  and setting up the workspace folder, (ii) 
copying “ros_packages” in V-REP into the “catkin_ws/src” folder, 
(iii) source “setup.bash” file, (iv) run “roscore” and “./vrep.sh”.  
The two available nodes, “/rosout” and “/vrep” and the three topics 

“/rosout”, “/rosout_agg”, “/vrep/info” were checked using “$ 
rosnode list” and “$ rostopic list” commands respectively.  In 
addition, the command “$ rosservice list” was used to advertise all 
the services.  It should be noted that the only V-REP topic that 
was advertised was “info” publisher that started as soon as the 
plugin was launched.  All other V-REP topics for publishing and 
subscribing images and sensors were individually enabled using 
Lua commands: “simExtROS_enablePublisher” and 
“simExtROS_enableSubscriber”.  Moreover, to visualize the 
vision sensor stream images and data, the “$ rosrun image_view 
image_view image:=/vrep/visionSensorData” and “$ rostopic echo 
/vrep/visionSensorData” were used respectively.  The image 
subscription and publishing was performed by having V-REP ROS 
enabled based on ROS Indigo and Catkin build.  The general ROS 
functionality in V-REP is supported via a generic plugin 
“libv_repExtRos.so” or “libv_repExtRos.dylib”.  It is notanle that 
plugins are loaded when V-REP is launched, and the ROS plugin 
will be successfully loaded and initialized only if “roscore” is 
running at that time.  The plugin is open-source and can be 
modified as much as needed in order to support a specific feature or 
to extend its functionality.  Three of the main ROS package 
folders in the V-REP, (located in programming/ros_packages) are 
the “vrep_common”, “vrep_plugin”, and “vrep_joy”.  

5  Conclusions 

Increasing the speed and accuracy of robots for farming 
applications are the main issues to be addressed for generalization 
of robotics systems, but the lack of abundant research funding and 
budgets has decelerated the process.  Simulation software and 
virtual environments are the two potential tools for accelerating the 
design and development of agricultural robots.  We provided a 
brief description of the ROS along with reviewing some of the 
most widely used robot simulators, including Webots, Gazebo, 
Actin, ARGoS, and V-REP.  The efficiency and rich modeling 
and visualization features of V-REP and the strong computational 
performance of Gazebo and ARGoS in complex scenes were 
compared and highlighted.  We concluded that V-REP offers a 
higher number of useful features, such as multiple physics engine, 
comprehensive robot model library, and the ability of a user to 
interact with the world during simulation and, most importantly, 
mesh manipulation and optimization, however it is the most CUP 
resource-hungry of the simulators.  ARGoS, on the other hand, is 
a suitable choice for simulations of swarm robotics tasks. Gazebo 
occupies the space between V-REP and ARGoS, while it is much 
closer to V-REP in terms of features; its interface and default robot 
models are much simpler and resemble those found in ARGoS.  
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Various usability issues of Gazebo were also noted.  We then 
presented a simple case study to highlight some of the detailed 
features and functionalities of V-REP as a simulator candidate for 
agricultural robotics, and provided a documented guideline for 
creating a reliable, cheap, safe, and fast experiment platform within 
which development, testing, and validating control strategies and 
algorithms can be carried out.  Object identification, task planning 
algorithms, digitalization and optimization of sensors were 
highlighted as some of the facing challenges in the context of 
digital farming.  We also mentioned that for an autonomous 
framework to successfully execute farming tasks, research focus 
should be toward developing simple manipulators and multi-robot 
systems.  We discussed that a trend and research focus in 
agricultural robotics is towards building a swarm of robots and 
drones that collaborate together to optimize farming inputs and 
reveal denied or concealed information.  
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