
July, 2018 Int J Agric & Biol Eng Open Access at https://www.ijabe.org Vol. 11 No.4 15

Simulation software and virtual environments for acceleration of

agricultural robotics: Features highlights and performance comparison

Redmond Ramin Shamshiri1,2,3*, Ibrahim A. Hameed2, Lenka Pitonakova3, Cornelia Weltzien4,
Siva K. Balasundram1, Ian J. Yule5, Tony E. Grift6, Girish Chowdhary6

(1. Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia;
2. Dept. of ICT and Natural Sciences, Faculty of Information Technology and Electrical Engineering, Norwegian University of Science and

Technology (NTNU), Larsgårdsveien 2, NO-6009 Ålesund, Norway; 3. Department of Computer Science, University of Bristol, Bristol,
United Kingdom; 4. Leibniz Institute for Agricultural Engineering and Bioeconomy, Max-Eyth-Allee 100, 14469 Potsdam-Bornim,
Germany; 5. New Zealand Centre for Precision Agriculture (NZCPA), School of Agriculture and Environment, Massey University,

Private Bag 11 222, Palmerston North 4442, New Zealand; 6. Department of Agricultural and Biological Engineering,
University of Illinois at Urbana Champaign, 1304 West Pennsylvania Avenue Urbana, IL 61801, USA)

Abstract: Research efforts for development of agricultural robots that can effectively perform tedious field tasks have grown
significantly in the past decade. Agricultural robots are complex systems that require interdisciplinary collaborations between
different research groups for effective task delivery in unstructured crops and plants environments. With the exception of
milking robots, the extensive research works that have been carried out in the past two decades for adaptation of robotics in
agriculture have not yielded a commercial product to date. To accelerate this pace, simulation approach and evaluation
methods in virtual environments can provide an affordable and reliable framework for experimenting with different sensing and
acting mechanisms in order to verify the performance functionality of the robot in dynamic scenarios. This paper reviews
several professional simulators and custom-built virtual environments that have been used for agricultural robotic applications.
The key features and performance efficiency of three selected simulators were also compared. A simulation case study was
demonstrated to highlight some of the powerful functionalities of the Virtual Robot Experimentation Platform. Details of the
objects and scenes were presented as the proof-of-concept for using a completely simulated robotic platform and sensing
systems in a virtual citrus orchard. It was shown that the simulated workspace can provide a configurable and modular
prototype robotic system that is capable of adapting to several field conditions and tasks through easy testing and debugging of
control algorithms with zero damage risk to the real robot and to the actual equipment. This review suggests that an
open-source software platform for agricultural robotics will significantly accelerate effective collaborations between different
research groups for sharing existing workspaces, algorithms, and reusing the materials.
Keywords: agricultural robotics, precision agriculture, virtual orchards, digital agriculture, simulation software, multi-robots
DOI: 10.25165/j.ijabe.20181104.4032

Citation: Shamshiri R R, Hameed I A, Pitonakova L, Weltzien C, Balasundram S K, Yule I J, et al. Simulation software and
virtual environments for acceleration of agricultural robotics: Features highlights and performance comparison. Int J Agric &
Biol Eng, 2018; 11(4): 15–31.

1 Introduction
Advances in simulation platforms and virtual control

Received date: 2018-01-12 Accepted date: 2018-06-02
Biographies: Ibrahim A. Hameed, PhD, Associate Professor, research interests:
machine learning, AI, optimization and robotics. Email: ibib@ntnu.no; Lenka
Pitonakova, PhD, research interests: swarm robotics, simulation of complex
systems, neural networks, unsupervised learning. Email: contact@lenkaspace.net;
Cornelia Weltzien, PhD, Professor, research interests: mechanical engineering,
control systems and agricultural engineering. Email: CWeltzien@atb-potsdam.de;
Siva K. Balasundram, PhD, Associate Professor, research interests: precision
agriculture, information system and technology, Email: siva@upm.edu.my; Ian
J. Yule, PhD, Professor, President of the International Society of Precision
Agriculture, research interests: digital agriculture, system modeling and
optimization, remote sensing, UAV. Email: I.J.Yule@massey.ac.nz; Tony E.
Grift, PhD, Associate Professor, research interests: agricultural robotics,
advanced machinery for biosystems applications, automation and control. Email:
grift@illinois.edu; Girish Chowdhary, PhD, Assistant Professor, research
interests: Intelligent systems, field-robotics, multiple aerial vehicles. Email:
girishc@illinois.edu.
*Corresponding Author: Redmond Ramin Shamshiri, PhD, research interests:
control systems and dynamics, simulation and modeling. Department of
Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia,
43400, Serdang, Selangor, Malaysia. Tel: +60-3894-68472, Fax: +60-
386567099, Email: raminshamshiri@upm.edu.my.

environments along with the availability of affordable computers
with high processing power and fast graphics cards, and the growth
of open-source programming communities have shifted farming
and agricultural robotics to a whole new level. Integration of
digital tools, sensors, and control technologies has accelerated
design and developments of agricultural robotics, demonstrating
significant potentials and benefits in modern farming. These
evolutions range from digitizing plants and fields by collecting
accurate and detailed temporal and spatial information in a timely
manner, to accomplishing complicated nonlinear control tasks for
robot navigation. Modern farms are expected to produce more
yields with higher quality at lower expenses in a sustainable way
that is less dependent on the labor force. Implementation of
digital farming and site-specific precision management are some of
the possible responses to this expectation, which depends not only
on the sensor technology but the continuous collection of field data
that is only feasible through proper utilization of agricultural robots.
For example, automatic quantification of sweet pepper fruits for
instantaneous yield monitoring and estimating the required time for
harvesting operation is a labor intensive task that is either ignored
in high-density Dutch greenhouses or is carried out manually by the

16 July, 2018 Int J Agric & Biol Eng Open Access at https://www.ijabe.org Vol. 11 No.4

use of hand counters. Currently, there are no reports of a
commercial robotic platform that can simultaneously map the yield
parameters on-the-go prior to harvesting. The absence of an
efficient robotic yield monitoring and environment mapping system
is becoming a critical problem with increasing the uncertainties
about the future availability of the labor force that is willing to
accept tedious jobs in the harsh greenhouse condition. Moreover,
manual data sampling implies high costs and low accuracy and is
significantly influenced by the interpretation of the person involved.
The functionality of robots when combined with data processing,
analyzing models, and artificial intelligence will assist farmers to
manage their fields and plants more efficiently. Improvement of
robotics for agricultural application however requires
experimenting with different sensors and algorithms, as well as
evaluating different strategies for finding the optimum solution to
perform a field task. Experimenting with the physical robots and
sensors in an actual field, orchard, or greenhouse is not always
possible due to the time constraints, unavailability of equipment
(i.e., sensors, cameras, and the robot itself), and the operation costs
involve. In the other hand, some hardware setups may result in
actuator saturation, or create an unsafe situation for the operators
and/or tree and plants system. To accelerate this pace, simulation
methods can provide an affordable framework for experimenting
with different sensing and acting mechanisms in order to verify the
performance functionality of the robot in different scenarios.
Simulation offers a reliable approach to bridge the gap between
innovative ideas and the laboratory trials, and therefore can
accelerate the design of a robust agricultural robotic platform for
efficient, cost-effective and collision-free navigation task in field
and orchard.

The organization of this paper is as follow: description of the
Robot Operating System (ROS), selected professional simulators
and custom-built virtual environments for agricultural robotics are
covered in section 2. In this section, we have also included a brief
introduction about sample agricultural projects for each simulator
when available. Section 3 is dedicated to the evaluation and
performance comparison between Virtual Robot Experimentation
Platform (V-REP), Gazebo, and ARGoS. Section 4 extends our
discussion on the functionalities and features of V-REP through a
case study on simulation of robotic scouting in a virtual citrus
orchard. Results of this case study were used as a
proof-of-concept framework for experimenting with different
sensing and acting scenarios and verified powerful functionalities
of the simulator.

2 Simulation environments

A key step toward acceleration of robotics is the choice of
simulation software, middleware operating systems, and virtual
environment platforms. Simulation in general refers to the
practice of developing and programming virtual models and objects
that together are capable of emulating specific tasks, ideas, or a
proposal process in the real-world. Computer simulation and
control of agricultural robotics require a multidisciplinary
knowledge about different software and hardware to create an
integrated virtual experiment environment within which the
behavior of various objects (i.e., robot models and sensors) and
control tasks (i.e., path planning and visual servoing) can be
evaluated[1]. Unlike the industrial applications, an agricultural robot
interacts with highly variable dynamic environments which
necessitate incorporation of horticulture and agronomy science to
successfully accomplish a task. For example, a criterion for

utilization of the sensors in agricultural robots lies in the
requirements of fast response with high temporal and spatial
resolution which is difficult to measure under unfavorable field
conditions. Hence, the objective of simulation and other analysis
methods is to combine the real-world and virtual data to fuse the
different information layers and derive new knowledge. In the
case of field robots for precision agriculture application, real-time
data processing on-the-go is sometimes necessary and should be
embedded in the sensors so that the results are directly available to
the robot for carrying out precise management actions. Virtual
environments and middleware frameworks such as the Robot
Operating System (ROS)[2] offer great opportunities for processing
these sensor readings in the third party software such as the Open
Source Computer Vision Library (OpenCV) and MATLAB. It is
also possible that the outputs and results from a simulation study be
installed and implemented on the actual robots directly, without
further calibration. Other general advantageous of simulation for
accelerating agricultural robotics include (i) reduced cost and
shortened time for testing the hardware and software before the
actual implementation, (ii) easier diagnosing and debugging of the
programming codes, (iii) compatibility with different programming
language and external control software, (iv) breaking a complex
robotic projects into separated scenes, (v) eluding actuator
saturation and mechanism breakdowns, and more importantly (iv)
avoiding risks and hazards to the human and environment. The
main drawbacks of the simulation is that the real world may present
more complicated situations such as unexpected disturbances to the
actuators, or unpredicted noise to the sensors feedback as a result of
natural field conditions. While professional versions of many
simulation platforms offer advanced features to create more
realistic scenes, it is nearly impossible to completely cover every
single detail of the actual-world scenarios into a simulation project.
This is however not considered a burden since simulation is meant
to be an initiative for evaluating the sketch ideas and the
proof-of-concepts designs. An example is shown in Figure 1
where the concept of mass harvesting with arrays of single and dual
axis robots have been evaluated in two different simulation
environments, the Actin (Cambridge, MA, USA) and V-REP,
respectively for citrus and sweet pepper fruits. In fact, many
experts agree that the first step in designing and developing robots
should be the simulation because it does not depend on the actual
physical components, and therefore modification of different parts
and programs can be done easier and faster on the virtual models.
In addition, offline programming using simulation eliminates the
downtime for an operational process such as a fruit packing line.

There is a long list of academic and professional simulation
platforms that can be adapted and used for agricultural robots.
Examples include Webots[3], Gazebo[4], CARMEN RNT[5],
Coupled Layer Architecture for Robotic Autonomy (CLARAty) [6],

[7], Microsoft Robotics Developer Studio (MRDS)[8], Orca[9], Open
Robot Control Software (Orocos)[10], Player [11], the Autonomous
Mobile Outdoor Robot (AMOR)[12], and Mobotware[13]. In
addition, several efforts have been made toward creating simulation
platforms and frameworks that are based on the professional
simulators and are customized for agricultural robotics or farm
machinery. Examples include FroboMind[14] (based on Orocos
and ROS), the Agricultural Architecture (Agriture)[15] (based on
Gazebo, Player, and Java Agent), Agroamara[16], and the Software
Architecture for Agricultural Robots (SAFAR)[17,18] (based on
MRDS). For a simulator to be practical and general purpose, it
needs to provide support for different programming languages, a

July, 2018 Shamshiri R R, et al. Simulation software and virtual environments for acceleration of agricultural robotics Vol. 11 No.4 17

wide range of models, functionalities, external controllers, and a
user-friendly graphical interface. Most of the mentioned
simulators are compatible with other programming languages or
computational software (i.e., C/C++, Perl, Python, Java, LabVIEW,
URBI or MATLAB). For the sake of this chapter, we introduce
some of the most common simulation software tools that are used
by the robotic community and can be adopted for agricultural
robotics. Figure 2 shows screenshots of workspace environment
for (a) Webots[3], (b) Gazebo[4], (c) Actin[19], (d) RoboDK[20], (e)
the Modular OpenRobots Simulation Engine (MORSE)[21], (f) the
Open Robotics Automation Virtual Environment (OpenRAVE)[22],
(g) the Open Architecture Human-centered Robotics Platform
(OpenHRP3)[23], and (h) the Virtual Robot Experimentation
Platform (V-REP)[24]. These simulators offer competing
functionality and advanced graphical user interface, built-in models,
controllers, and dynamic engines. A comparison between the
general specifications of these platforms is summarized in Table 1.
For example, one of the significant advantageous of V-REP over
Gazebo is that CAD models can be created directly in the V-REP
environment. V-REP also has multiple tools, plugins, and
functionalities that allow connections to external software and
interfacing with real-world environment. In the following

a. Actin simulation for robotic harvesting with multiple manipulators,
Source: Energid Technologies

b. V-REP simulation for robotic harvesting with multiple manipulators[1]

Figure 1 Screenshots of the simulation scenes in Actin (Top) and
V-REP (bottom) for evaluating the concept of robotic mass

harvesting with arrays of single and dual axis robots

a. Webots b. Gazebo c. Actin d. RoboDK

e. MORSE f. OpenRAVE g. OpenHRP3 h. V-REP

Figure 2 Screenshots of workspace environment for some of the most commonly used simulation software

Table 1 Comparison between general specifications of the selected simulation software for agricultural robotics
Simulation
software Developer Physics

engine
Supported operating

systems
Prog

language
CAD files

support
API

support
ROS

support

Webots[3] Cyberbotics Ltd Proprietary based
on ODE Linux, Mac OS, Windows C++ WBT, VRML, X3D C, C++, Python,

Java, Matlab, ROS Yes

Gazebo[4] Open Source Robotics
Foundation

ODE, Bullet,
Simbody, DART Linux C++ SDF/URDF, OBJ, STL,

Collada C++ Yes

Actin[19] Energid Technologies Proprietary
Windows, Mac OS, Linux,
VxWorks, and RTOS-32.
(RTX and QNX Planned)

C++

SLDPRT, SLDASM, STEP,
OBJ, STL, 3DS, Collada,
VRML, URDF, XML, ECD,
ECP, ECW, ECX, ECZ,

Not known Yes

RoboDK[20] RoboDK None Linux, macOS, Windows,
Android Python STEP, IGES, STL, WRML C/C++, Python,

Matlab No

Morse[21] Academic community Bullet Linux, BSD*, Mac OS Python Unknown Python Yes

OpenRAVE[22] OpenRAVE
Community ODE, Bullet Linux, Mac OS, Windows C++,

Python
XML, VRML, OBJ,
Collada

C/C++, Python,
Matlab Yes

OpenHRP3[23] AIST ODE, Internal Linux, Windows C++ VRML C/C++, Python, Java No

ARGoS[25] Swarmanoid project Multiple-physics
engines Linux and Mac OSX C++ Does not support C++ Yes

V-REP[24] Coppelia Robotics ODE, Bullet,
Vortex, Newton Linux, Mac OS, Windows LUA OBJ, STL, DXF, 3DS,

Collada,URDF
C/C++, Python, Java,
Urbi, Matlab/Octave Yes

18 July, 2018 Int J Agric & Biol Eng Open Access at https://www.ijabe.org Vol. 11 No.4

subsections, we provide a brief description of ROS and the selected
simulators shown in Figure 2. We also introduce sample projects
when available. Because building of complex simulation
scenarios for agricultural robots is only possible through a
distributed control framework, we have extended our discussion
about V-REP as a case study in section 4.
2.1 Robot Operating system (ROS)

ROS[2] is an open-source flexible middleware that provides
services, libraries, and tools for developing different robotic
applications. It is in fact a collection of software framework that
was originally developed in 2007 by the Stanford Artificial
Intelligence Laboratory, and with the support of the Stanford AI
Robot project. ROS is installed on Linux operating system family
(i.e., Ubuntu) and provides a solution to specific set of problems
encountered in the developing large-scale service robots, with
philosophical goals summarized as: (i) peer-to-peer, (ii) tools-based,
(iii) multi-lingual, (iv) thin, and (v) free and open-source[2]. From
2008 until 2013, development was performed primarily at Willow
Garage, a robotics research institute/incubator. During that time,
researchers at more than twenty institutions collaborated with
Willow Garage engineers in a federated development model.
Since 2010, ROS has released several versions, including Box
Turtle (March, 2010), C Turtle (August, 2010), Diamondback
(March, 2011), Electric Emys (August, 2011), Fuerte Turtle (April,
2012), Groovy Galapagos (December, 2012), Hydro (September,
2013), Indigo (July, 2014), Jade Turtle (May, 2015), Kinetic Kame
(May, 2016), Lunar Loggerhead (May, 2017), and Melodic
Morenia (May, 2018). The open-source ROS makes it possible to
develop code and applications that can be shared and used in other
robotic systems with minimum effort. Solutions to various
robotic problems are also available on the ROS wiki community
(http://wiki.ros.org). This middleware has gained such a vast
popularity that many professional robots companies have released
ROS drivers for their products. It also offers standard operating
system features such as hardware abstraction, low-level device
control, implementation of commonly used functionalities, message
passing between processes, and package management. The
official programming languages supported by ROS are python and
C++. The implementation of the ROS is created by the file
building system called the catkin. It can run on one computer or
connect multiple computers to one computer called ROS master.
Schematic diagram of ROS file architecture and principle of nodes
communication system are shown in Figure 3. Fundamental
concepts of the ROS are: Nodes, Messages, Topics, and Services.
This structure allows creation of a modular network of nodes that
are dedicated to subset computations with an organized
communication between them. In addition, robotic libraries such
as frame transformation or motion simulation can be shared with all
nodes to simplify the computation process. ROS Packages are
files and folders that are built to create minimal collections of code
for easy reuse. It works based on a “publish-and-subscribe”
architecture where processes (called Nodes) publish and/or
subscribe to specific Topics on which information is exchanged in
the form of Messages. For example, ROS can be used to provide
a bi-directional communication (information exchange) between a
simulated robot and different real-world cameras that are each
implemented in ROS as a node. A Node is an executable file that
uses ROS to communicate with other Nodes. A Message is a
ROS data type defined in a text file as a structure of variables of
different data types that is used when subscribing or publishing to a

Topic. Nodes can publish messages to a Topic as well as
subscribe to a Topic to receive messages. In fact, a Topic acts as a
gateway for publishing and subscribing specific messages in the
ROS environment. For example, information about a joint
position can be subscribed by the corresponding ROS node from
the topic called JointPos where the information is published by
ROS node on the robot (Figure 3). Service helps Nodes find each
other. ROS nodes use a ROS client library to communicate with
other nodes. Nodes can also provide or use a Service. With this
architecture, each node in ROS can respond to input and activate
other nodes, allowing participation of a sequence of nodes to
complete complicated robot mission tasks. Installation details and
basic configuration of ROS environment, as well as installation and
configuration of packages such as V-REP/ROS bridge, and the
details of several mobile robot and manipulator package can be
found in [26]. A good article sharing some experiences with ROS
for development of agricultural robots is available in [27].

Figure 3 Diagram showing ROS file architecture and principle of

nodes communicating system for a random topic

2.2 Webots, Actin, and Gazebo
Webots[3] robot simulator was developed at the Swiss Federal

Institute of Technology (EPFL) in 1996 and can be downloaded
from Cyberbotics company website (Lausanne, Switzerland).
This simulation platform supports C/C++, Java, Python, URBI, and
MATLAB language, and can be interfaced with third-party
applications through TCP/IP. It is widely used for academic and
educational purposes due to the friendly and simple graphical user
interface and the long list of models and components.

Webots is a cross-platform software that can provide a
complete simulation environment to model and program a wide
range of mobile robots and sensors, including Pioneer 3DX (Figure
4a), and KUKA youBot (Figure 4b). In addition, Webots can be
interfaced with other software such as SUMO (Simulation of Urban
MObility) and OSM (Open Street Map) for the simulation of traffic
and autonomous vehicles (Figure 4c). The famous Robot

July, 2018 Shamshiri R R, et al. Simulation software and virtual environments for acceleration of agricultural robotics Vol. 11 No.4 19

Benchmark website which holds online robot programming
challenges to millions of users worldwide has recently provided
free access to various robotics standards and components based on
the Webots simulations via the website interface of Webots.
Robot scripts are run in the cloud, and 3D views are displayed in
the internet browsers, allowing users to program the robots in
Python. Moreover, Webots has open-source APIs, which makes it
easier to use the libraries of choice with a preferred programming
language for implementation. For example, Webots can be used
with OpenCV functions for efficient real-time image processing.
Figure 4d-g show sample screenshots from simulation phase of a
project funded by the European Union called Robot Fleets for
Highly Effective Agriculture and Forestry Management (RHEA).
This project used Webots for the design, development, and testing
of a new generation of automatic and robotic systems for weed
management and control. It covered a wide variety of products
including row crops and forestry woody perennials in which
various simulations were involved (i.e., simulation of autonomous
robot spraying herbicides, simulation of sprayer implement, and
simulation of a treatment mission in a tree canopy with a special
tractor implement). The screenshots provided in Figure 4d-g are
from the RHEA video demos for (d) adapted boomer tractor, (e)
simulation of a complete mission in a crops field with mobile units
and processing techniques, (f) simulation of a PWC implement for
thermal and mechanical treatment of wheat crops developed by the
University of Pisa, and (g) simulation of three tractors driving on
an uneven terrain. Perhaps Webots can be considered as one of
the most widely used simulators for research and development in
autonomous tractors and agricultural mobile robots.

Actin is a robotics software toolkit simulator, developed in
2005 by Energid Technologies (Cambridge, MA, USA), mainly for
robot controls with related functions and features such as path
planning, motion planning, collision avoidance, and joint controls.
It supports various communication protocols including Modbus,
EtherCAT, CANopen, Serial, Data Distribution Service, UDP, and
TCP in order to create a connection between the operator and the
physical hardware. Using acting can significantly reduce the time
and cost of projects that involves robotics, and also optimizes

existing processes and workflows. Actin is employed in different
fields of industries and transportation with very limited examples in
agricultural robotics. The robotic citrus picking system in Figure
1 uses Energid's frog tongue design and high-speed vision sensors
and is simulated in Actin. One of the key advantages of this
simulator is that it is able to handle bifurcated problems and control
kinematically redundant robotic systems. This unique ability
allows coordinated lifts using multiple robots. It also supports
constraining closed-kinematic chains for bi-handed manipulation.
Programs in Actin are task-based and part relative, meaning that
when the robot components move during manipulation, the motion
is adapted in real-time to complete the task.

Gazebo is one of the most popular multi-robot simulators which
support a wide range of sensors and objects. It was used as the
standard simulator for the RoboCup2016 competition. Gazebo
was initially a part of ROS environment in the previous versions,
but today it can be downloaded for free and be used as standalone
software. It is an open-source simulator (i.e., plug-in with model
components can be developed and shared) with multiple physics
engines that run on Linux (protected versions for Windows is also
available) and is compatible with ROS, Player, and several other
robotic platforms from the Willow Garage. Complex robotic
systems that involve interaction, object lifting and grasping, and
other tasks that require simultaneous localization and mapping can
be simulated with the Gazebo powerful physics engines using a
much higher realistic scenarios and degree of reliability.
According to the IEEE Spectrum magazine[28], Gazebo is
recognized by many experts as the best robotic simulator because
of (i) the ability for accurate simulation, (ii) extreme flexibility, (iii)
having four different physics engines, (iv) great integration with
ROS, and (v) a large and active community of contributors.
Figure 5 shows screenshots of sample agricultural robotic
simulations in Gazebo for (a) Thorvald robot[29], (b) BoniRob[30], (c)
a weeding robot developed by Naïo Technologies (Escalquens,
France), (d) the MARIO robot operating in a virtual typical
vineyard[31], (e) the CROPS robot manipulator performing task and
motion planning for apple harvesting[32], and (f) the HUSKEY
mobile robot for fruit mapping[33].

a. Pioneer 3DX and LIDAR Sick b. KUKA youBot c. Webots interface with SUMO for traffic simulation and autonomous vehicle

Source: Cyberbotics Webots

d. Simulation of boomer e. Complete farming simulation f. simulation of thermal treatment g. driving on an uneven terrain

Source: RHEA projects, http://www.rhea-project.eu/.

Figure 4 Screenshots of the Webots simulation environment

20 July, 2018 Int J Agric & Biol Eng Open Access at https://www.ijabe.org Vol. 11 No.4

a. Thorvald robot[29] b. BoniRob[30] c. Naïo weeding robot d. MARIO[31] e. CROPS robot[32] f.HUSKEY fruit mapping[33]

Figure 5 Screenshots of sample simulation projects for agricultural robots in Gazebo

2.3 RoboDK, MORSE, OpenRave,OpenHRP3, and ARGoS
RoboDK[20] is a highly versatile offline programming and

simulation software that is mainly used for industrial robots. It is
available for free download or purchase at robodk.com website.
RoboDK has a diverse CAD model library that consists of over
200 professional industrial robots and tools from leading
manufacturers including ABB, KUKA, Yaskawa, and Adept.
Some of these robots are used in agriculture industry for
packaging and materials handling. The 3D simulation
environment of RoboDK offers playback feature within which
operator can visualize every aspect of the robot behavior. Alerts
are generated when singularities or collisions are detected for a
robot.

MORSE[21] was first released in March, 2013. It is a
command-line simulator developed by OpenRobots community
(www.openrobots.org). MORSE does not come with a graphical
user interface. Instead, realistic 3D simulation scenes are created
using Python scripts, and for this reason, it is most suitable for
experienced computer scientists. MORSE can be downloaded
for free at https://www.openrobots.org/wiki/morse. There are
two different strategies in MORSE for handling the simulation
time, (1) the best effort that keeps a real-time pace (simulation
frames may be eliminated to achieve this), or (2) fixed steps,
which guarantees that simulation is accurate. Because MORSE
is a pure Python application, it enables easy and fast modification
of the final source codes. It is a modular simulator in which new
actuators or sensors can be added easily. It should be noted that
advanced robotic algorithms such as path planning have not been
embedded in MORSE. It is basically a not-for-profit academic
project developed to operate on Linux (also known to work with
MacOSX and Microsoft Windows) that do not offer professional
supports, however models of several standard robot bases such as
Pioneer3DX, generic 4 wheel vehicle, and PR2, as well as
standard set of sensors (i.e., RGB cameras, GPS, and laser
scanners) and actuators (i.e., joint controllers) are available in
MORSE.

OpenRave[22] began as a project in 2006 at the Carnegie
Mellon University Robotics Institute and can be downloaded from
openrave.org. The main focus of OpenRave is on simulation and
analysis for testing, developing, and deploying kinematic and
geometric information that are related to algorithms for motion
planning application. Most of the algorithms and the
implemented calculations are for robotic manipulators and are
used for exploration of task configuration space. OpenRave
targets industrial application, it can be easily integrated into
existing robotics systems by providing command line tools and
interfaces. One of the most influential technologies in
OpenRAVE is the Robot Kinematics Compiler, known as IKFast,
which can run as fast as 5 microseconds on recent computers,
resulting in extremely stable solutions. The IKFast can solve the
kinematics equations of any complex kinematics chain analytically,

and create language-specific files (i.e., in C++) for future use.
Moreover, the COLLADA 1.5 file formats are supported by
OpenRAVE for specific robots, manipulators, sensors, and
planning-specific parameters.

OpenHRP3[23] is an open-source distributed object system
simulator. It is an integrated platform that provides users with an
integrated environment for inspecting original robot models and
implementing control codes through various components and
calculation libraries for a dynamic simulation. OpenHRP3 is
composed of a client program that manages the servers, and a
group of server programs that offers various functions. It
improves the portability and maintainability in complex and
large-scale simulation system developments. According to the
publisher website, “the dynamics calculation engine of OpenHRP3
has two editions, the development of the Tokyo University, and
the development of AIST. The first edition applies an original
algorithm for a forward dynamics calculation, while the second
applies Featherstone's algorithm and performs a forward dynamics
calculation in computational complexity to be proportional to the
number of the joints”.

As mentioned in Section 2.4, a swarm of robots is a promising
approach for providing efficient solutions to autonomous scouting
and field data collection in agriculture. The main idea is to
control large numbers of (i.e., 500 or 1000) small-scale robot
agents that are affordable but have limited sensing and processing
capabilities in a way that they accomplish a common field task.
Some of the aspects to be considered for these type of robotic
applications are the environment dynamics (i.e., wind and rough
terrain), robot type (i.e., mechanism, sensors, and actuators), and
the communication system (i.e., wifi, vision, and stigmergy).
These factors, as well as the limitations in the modeling and
computation, create complexity and inaccuracy for simulation of a
swarm of robots. Most of the existing simulators obtain
scalability (by imposing limitations on their extensibility and on
the accuracy of the robot models) and utilize a specific physics
library. As a result, their accuracy is strongly linked to the
accuracy of their employed physics library. Although they
emphasize on the flexibility and give the best results in
single-robot or small-scale multi-robot applications, their
performance degrades fast with large numbers of robots. In other
words, they do not provide the necessary features to support
large-scale heterogeneous robot swarms. As a response to this
limitation, an open-source multi-physics engine robot simulator
named ARGoS[25] has been developed for efficient real-time
simulation of a large-scale swarm of multi-robots of any kind.
Compared to other simulators, ARGoS has the unique feature of
assigning multiple physics engines of different types to different
parts of the simulation. This provides the ability for a robot to
switch from one engine to another transparently. In addition, the
simulated world can also be divided into regions, and each region
can be assigned to a different physics engine. ARGoS peruses a

July, 2018 Shamshiri R R, et al. Simulation software and virtual environments for acceleration of agricultural robotics Vol. 11 No.4 21

modular approach that allows adding custom features and
allocating computational resources depending on the simulation
need. Results of evaluating ARGoS have shown that it can
simulate 10,000 wheeled robots 40% faster real-time[25]. It
should be noted that all of the components such as robot models,
sensors, actuators, physics engines, and visualizations in ARGoS
are implemented as plugins.
2.4 Virtual robot experimentation platform (V-REP)

V-REP[24] is a true cross-platform that can be run in Windows
or Linux and is referred to as a Swiss knife in robotic simulation
community due to the multiple functionalities. It was first
released in March 2010, and the latest version (V3.5.0) is available
since February 6th, 2018. This simulator offers a distributed
control framework solution with advanced functionalities for
testing and debugging complex robotic systems. In other words,
each object or model in a V-REP scene can be individually
controlled through several ways such as child script, writing
plugins, ROS nodes, external client applications that relies on the
remote API, or writing an external application that communicates
with V-REP plugin or script via pipes, sockets, or serial port. By
default, the V-REP distribution for Linux should be automatically
ROS enabled based on ROS Indigo and Catkin. V-REP possesses
various relatively independent functions, features, or more
elaborate APIs such as MATLAB, that can be enabled or disabled
as desired. The schematic architecture of the V-REP framework
and corresponding internal states are shown in Figure 6. It can be
seen that simulation time in V-REP is advanced at constant time
steps, and depending on the complexity of the scene and
performance of the computer, the real-time of simulation is
supported by keeping the simulation time synchronized with the
real -time (which might not always be possible). The distributed
control architecture of V-REP makes it versatile and suitable for

simultaneous use of different mobile robots, manipulators, and
related objects in a simulation. Controllers can be written in
C/C++, Python, Java, Lua, Matlab, Octave, or Urbi. The three
main elements of V-REP simulator are scene object (i.e., joints,
shape, sensors, path, etc), calculation modules (i.e., inverse
kinematics, collision detection, etc), and control mechanism (i.e.,
scripts, plugin, sockets, etc as shown in Figure 6. Control entities
are distributed in V-REP which accelerates the simulation by
allocating the CPU load over several cores or several machines.
Compared to Gazebo, V-REP is more stable with easier setup and
running. For example, the vision sensors are reasonably well
simulated in V-REP, and if the scene is not too complex, the run
times of the simulations are generally good as well. V-REP is
also capable of importing the URDF files that are created for other
simulators like Gazebo. External applications can be connected to
V-REP using Remote API which is available for MATLAB, C++,
Python, and Java programming languages. The remote API
functionality relies on the remote API plugin (on the server side),
and the remote API code on the client side. Both
programs/projects are open-source (i.e. can be easily extended or
translated for support of other languages) and can be found in the
'programming' directory of V-REP's installation. In addition,
V-REP inverse kinematics supports four different dynamic engines:
The Bullet, ODE, Newton, and the Vortex Dynamics Engine.
Models in V-REP are flexible, portable and scalable, meaning that
it is possible to modify them, copy from one project scene to
another, or resize them in place. If the project requires building a
custom robot model which is not available in the simulator (i.e., the
manipulators demonstrated in[1,34,35]), the setups for links, joints
and calculation modules such as inverse kinematics necessitates
some practice, however, that is the case in any robot simulation
software.

Sim.simulation_advancing_ lastbeforestop sim.simulation_advancing_ firstafterstop
sim.simulation_advancing_ abouttostop

sim.simulation_advancing_ lastbeforepause sim.simulation_advancing_ firstafterpause
sim.simulation_advancing_ running

sim.simulation_stopped

sim.simulation_paused

simulationTime=0
Run main script

simulationTime < realTime?
simulationTime = simulationTime + simulationTimeStep

No
Yes

Scene	Objects	 Control	Mechanisms	 Calculation	Modules	

V‐REP	engine	

C/
C+
+	
AP
I	t
o	
V‐
RE
P	

Lua	API	to	V‐REP	

Plugins	(custom) Remote	API	plugin	(custom) ROS	Plugin	(custom)

Main	client	
application	

	(i.e. vrep.exe) (customizable)
Main	script	(customizable)

Child	script	(custom)
Child	script	(custom)

Callback	scripts	(custom)

Custom	
clients/services	(robots, etc) (custom)

Remote	API	
clients	(robots, etc) (custom)

ROS	nodes	(robots, etc) (custom)

V‐REP,	shared	library	(open	source)	

Add‐ons	(custom)

(3)	

(3)	

(3)	 (3)	

(10)	

(8)	 (6)	 (7)	

(5)	(5)	(5)	

(1)	
(9)	

(8)	 (4)	 (4)	 (4)	

(2)	

(2)	

(1)	

Figure 6 Schematic view of the V-REP framework architecture, simulation state diagram, and the real-time simulation loop

Simulation scene in V-REP contains several elemental objects
that are assembled in a tree-like hierarchy and operate in
conjunction with each other to achieve an objective. In general, a

V-REP scene contains the same type of elements that form a model,
and additionally includes camera, light, views, pages, environment,
floor, main script, and child script. V-REP scenes support drag

22 July, 2018 Int J Agric & Biol Eng Open Access at https://www.ijabe.org Vol. 11 No.4

and drop operation between the explored and the application
window, and are saved as “.ttt” files. Moreover, V-REP has
several calculation modules that can directly operate on one or
several scene objects. Figure 7a shows screenshots of a V-REP
scene for simulation of sweet pepper robotic harvesting using
Fanuc LRMate 200iD 6-DoF manipulator and artificial plants and
fruits models[1]. The visual servo control scheme associated with

this project is shown in Figure 8. A similar project with the same
manipulator was carried out in ROS MoveIt (visualized in RViz)
for the SWEEPER project (sweeper-robot.eu) as shown in Figure
7b. The differences between the visual details and modeling
features of the two scenes as well as the control functionalities of
the robots are noticeable.

a. V-REP scene [1] visualized in Rviz using vision sensor publisher (robot control and image processing in MATLAB) b. ROS MoveIt and RViz

Source: AdaptiveAgroTech.com Source: sweeper-robot.eu
Figure 7 Comparison between visual features of the ROS MoveIt and the V-REP environment for a similar robot manipulator (Fanuc

LRMate 200iD) and application

Figure 8 Visual servo control scheme with the eye in hand

configuration based on image moment method used with the Fanuc
LRMate 200iD manipulator for harvesting of sweet pepper[1]

2.5 Other simulators and virtual environments
Other than the highlighted professional simulators, customized

virtual environment solutions can be developed from scratch using
combinations of different software, environment solutions can be
developed from scratch using combinations of different software,
however this will be extremely time-consuming. Some projects
have employed combined features of programming languages
(i.e., visual basic), computational software (i.e., MATLAB), CAD
models, and virtual platforms to create farming simulator
environments. For instance[36], used the programming language
C++ and Borland Delphi with ARToolKit and GLSCene for
simulating robotic harvesting of citrus with a redundant
manipulator (Figure 9a, the image is courtesy of Hanaian and the
University of Florida). Another example is the simulation of
conceptual robotic harvesting from Vision Robotics (shown in
Figure 9b) which uses multiple manipulators for mass harvesting.
Figure 9c shows a simulation of path planning for a tractor in
Jaybridge simulation environment (image is courtesy of Jaybridge
Robotics). Simulation of a manipulator that was controlled via
MATLAB and was used in the design and simulation process of
two robotic systems for automatic artichoke harvesting[37] is
shown in Figure 9d (simulation environment has not been
mentioned in the original article). Figure 9e shows a harvesting

operation simulator software designed by AnyLogic for modeling
the relationship between a grain combine, a grain cart, and a truck.
This software also demonstrates the logistical dynamics that are
associated with harvesting crops and provides users with
capabilities and feature to visualize the complexities involved for
optimizing the interaction of equipment during harvest. A good
example of customized simulation platform is SAFAR, the
Software Architecture for Agricultural Robots. This is a joint
project of UniBots (a university spin-off company based in the
UK) and MobotSoft (www.mobotsoft.com) for an academic
initiative for easy-to-use by non-programmers to develop a set of
designs, tools, and resources to simulate agricultural robots and
promote precision agriculture and smart farming[17,18]. The
simulation scenes are created in Microsoft Robotics Developer
Studio (MRDS)[8]. Sample screenshot from a tractor simulation
in SAFAR is shown in Figure 9f. A new version of this
platform is SAFAR2 (can be downloaded from Mobosoft website)
that includes a desktop application interfaced with Google Earth
and MRDS for easier use.

In the new version of SAFAR, a random image taken from a
field in any part of the world can be inserted into the software,
then a route plan can be created for a selected robot in order to
simulate a specific farming operation in MRDS without writing a
single piece of code. It should be noted that SAFAR supports
Python scripting engine and is closed source. Another example
of using MRDS for agricultural robots is the simulation of
Omnirota shown in Figure 9g (screenshot was captured from
CornIsKing Youtube channel).

Screenshots of a Farming Simulator Video Game (Giants
Software, Zurich, Switzerland) are shown in Figure 10. This
virtual farming simulator is one of the biggest and the most
famous simulation game which has sold over four million copies.
Some of the features include the realistic environment of the
farming, the latest models of the farming equipment, harvesting
simulator, easy and simple controls, and realistic tractor farming
simulator including drive simulators for tractors and combine
harvesters. This software is a new concept for experiencing
modern agricultural machinery and real farm operations in a
virtual environment. For example, users can select a land for

July, 2018 Shamshiri R R, et al. Simulation software and virtual environments for acceleration of agricultural robotics Vol. 11 No.4 23

cultivation, spread fertilizer, simulate plow jobs and seeding, use
drill machine attached to the tractors, move crops and animals in
and out of the farms, work with sprayers and pesticide, perform
harvest operation, and even sell the products. This virtual

environment gives users the benefits of learning difficult tasks
such as parking of tractors which requires skill to be carried out
in the real situation.

a. Citrus harvesting robot[36] b. Multiple robots for mass harvesting c. path planning of for a tractor, Jaybridge Robotics simulation environment
Hanaian, the University of Florida Source: Vision Robotics

d. Harvesting of artichoke[38] e. Harvesting in AnyLogic modeling software f. SAFAR tractor in MRDS g. Omnirota in MRDS

 Source: SAFAR project Source: CornIsKing Youtube channel

Figure 9 Examples of simulation projects in custom-built or non-professional simulator software

Figure 10 Screenshots of Farm Sim game for virtual experience
with agricultural machinery (Courtesy of farming-simulator.com)

3 Performance comparison: V-REP, Gazebo,
ARGoS

V-REP, Gazebo, and ARGos share several similarities such as
programming in C++ and ROS support, they also demonstrate clear
differences when analyzed for the trade-off between scene
complexity and computational performance. For instance, V-REP
offers the widest range of features including, most notably, scene
editor and visualization, importing different mesh file formats,
in-scene mesh manipulation, built-in video recording, and several
API supports (i.e., C/C++, Python, Java, Urbi, Matlab/Octave) for
remotely connecting to a simulation. The model library in V-REP
is relatively large, flexible, and well documented, and the graphical
interface is easy to learn. Most importantly, compared to Gazebo
and ARGoS, installation of V-REP is more straightforward,
allowing users to immediately begin a project with the minimum

experience and knowledge about simulation software. Gazebo in
the other hand requires some knowledge of Linux (and sometimes
ROS) to begin with. It has a slimmer model library, and a scene
editor that offers mesh importing but does not support mesh editing.
Optimization of the imported models in Gazebo should be
performed in third-party software. Moreover, Gazebo relies on
ROS for remote connectivity; it has a slow user interface and has
crashed a number of times on our computer during performance
tests. We also experienced that some of the example codes in
Gazebo could not be compiled or did not run properly during our
tests. ARGoS does not have a scene editor, does not support 3D
model importing, and by comparison, its robot library and
documentation are very limited. It has the least amount of
features compared to the other two simulators. One advantage of
Gazebo and ARGoS over V-REP is the ability to define a scene in
an XML file. This is convenient, for example, when multiple
experiments with varying parameter values need to be generated
and run automatically. V-REP does not directly support XML.
Also, scene and model files in V-REP are not XML, but purely
binary, in order to offer very fast loading operations. However, it
is possible to easily write XML importers and exporters by looking
at the source code of the COLLADA importer/exporter, or the
URDF importer plugins (located in the programming folder
programming/v_repExtCollada and programming/v_repExtUrdf).
Additionally, it is always possible to install Lua extension libraries
to have the Lua XML functionality from an embedded script. A
simulation can only be specified in a V-REP scene file via the
V-REP graphical interface and is therefore difficult to change the
simulation parameters, especially when running V-REP from the
command line. While V-REP offers up to nine optional
command-line arguments that can be supplied to a simulation, a
more involved parameter specification would have to be handled,
for example, by a plug-in that could parse parameter text files.
Such a plug-in is currently not distributed with V-REP.

24 July, 2018 Int J Agric & Biol Eng Open Access at https://www.ijabe.org Vol. 11 No.4

In order to analyze and compare the characteristics and
performance of V-REP, Gazebo, and ARGoS, we conducted
several tests in the 64-bit Ubuntu Linux 16.04 environment running
on a computer with 4x Intel Core i7 2.2 Gz processor, 8GB RAM
and Intel HD Graphics 6000 graphics card. There were two types
of benchmark test performed with each simulator, the GUI, and the
Headless benchmark. The GUI benchmark involved running a
simulation of robots that moved in a straight line and avoided
obstacles in real-time. The simulators were run along with their
user interfaces. Each simulation took one minute. Detailed results
of this test are available in [39]. The headless benchmark
involved running the same simulation as in the GUI benchmark that
lasted five minutes. The simulators were run from the command
line without their user interfaces. We also used two types of
simulation environment, “Small Scene” (where robots were put on
a large 2D plane), and “Large Scene” (where an industrial building
model with approximately 416000 vertices was imported into the
simulator). A detailed description of the tests setup and
methodology is available in [39]. Three performance metrics
were used to evaluate the simulators: (i) real-time factor (denoted
by R, defined as the simulated time divided by the real-time), (ii)
the amount of CPU usage (denoted by C in percentage), and (iii)
the amount of memory usage (denoted by M in Megabyte). A
value of R>1 indicates that a simulation could run faster than the
real-time and vice versa. Also, when C>100%, a simulator could
utilize multiple processors cores. Two values for C and M were
noted for Gazebo GUI experiments, corresponding to the usage of
“gzclient” (visualisation) and “gzserver” (simulation), respectively.

Results of these tests are given in Table 2, indicating that
ARGoS achieved the highest simulation speed in the GUI
experiments with up to 50 robots in the Small scene and with up to
5 robots in the Large scene, while utilizing the smallest amount of
resources. Gazebo outperformed ARGoS in other experiments,
especially when the Large scene was used in the Headless.
However, Gazebo usually required the largest amount of memory
when it was running in the GUI mode, and a median amount in the
Headless mode. V-REP combined with ODE usually achieved the
lowest simulation speed. Using Bullet 2.78 often significantly

increased the performance of V-REP. Running Gazebo and
ARGoS in the Headless mode (Table 2) increased R in
environments where maximum CPU power was utilized by the
GUI mode. On the other hand, R was often smaller in the
Headless mode of V-REP, compared to its GUI mode. V-REP
demonstrated the most optimal CPU utilization. It automatically
spawned new threads when it was necessary and it could thus fully
utilize all available CPU cores. Gazebo only utilized a single
CPU core per process. In the GUI mode, Gazebo ran two
processes, “gzclient” and “gzserver”, that could each utilize a
maximum of 100% of CPU power. In the Headless mode, only a
single core was utilized, as only the “gzserver” process was
running. The multi-threaded core utilization by ARGoS worked
in general but problems were experienced in larger experiments.
The CPU usage was notably smaller when more robots were added
to the environment. Furthermore, unlike V-REP, ARGoS requires
the user to specify the desired number of threads, rather than
automatically spawning new threads when it is necessary. It
should be noted that the 3D models used in ARGoS and Gazebo
were fairly simple compared to those used in V-REP, even though
an effort was made to simplify the V-REP robot model. Moreover,
the ARGoS physics engine was much simpler than those used by
V-REP and Gazebo. It is therefore expected that using third-party
libraries to cope with various aspects of the simulation that are
currently not covered in ARGoS, such as calculating more complex
physics dynamics or working with imported 3D meshes, would
decrease the simulator's performance. Similarly, it is expected
that more complex 3D models would decrease the performance of
Gazebo compared to V-REP. In order to confirm that the mesh
complexity played a major role in V-REP, several experiments
were ran[39] using robots and scenes consisting of very simple 3D
meshes and models in the absence of sensing and controller
capabilities. Results showed that an increase between 66% and
600% in R could be achieved, using only about 15% to one eighth
of the computer's resources. These results[39] suggest that it is
possible to significantly increase the performance of V-REP by
carefully setting simulation parameters and by optimizing 3D
models used in the simulation.

Table 2 Performance comparison between V-REP, Gazebo, and ARGoS simulators

Scene
type

No. of
Robots

V-REP Bullet V-REP ODE Gazebo ODE ARGos PointMass3D

R C/% M/MB R C/% M/MB R C/% M/MB R C/% M/MB

Small

1 4.1 200 165 3.12 200 160 42.85 100 107 300 6.3 18

5 0.38 400 320 0.32 400 320 10 100 130 150 100 20

10 0.09 400 470 0.08 400 480 5.26 100 150 21.42 144 20

50 N.F N.F N.F N.F N.F N.F 1.06 100 356 0.52 103 25

Large

1 1.91 200 165 0.58 200 160 18.75 100 174 15.78 139 31

5 0.2 400 270 0.11 400 250 5.88 100 192 5.45 157 45

10 N.F N.F N.F N.F N.F N.F 3.09 100 211 1.59 130 47

50 N.F N.F N.F N.F N.F N.F 0.6 100 423 0.03 105 55

Note: The best and the worst performance are respectively highlighted in green and red.
Source: Adapted from [39]

We summarize the performance comparison evaluation by
highlighting that V-REP offers a number of useful features, such as
multiple physics engines, a comprehensive model library, the
ability of a user to interact with the world during simulation and,
most importantly, mesh manipulation and optimization, however it
is the most complex and the most resource-hungry of the three

simulators. ARGoS, on the other hand, is a suitable choice for
simulations of swarm robotics tasks, and compared to V-REP, it
trades-off robot, environment and physics complexity for superior
performance. An XML-based simulation settings file is also very
convenient in ARGoS, especially when a large variety of
simulations need to be generated automatically. However, there

July, 2018 Shamshiri R R, et al. Simulation software and virtual environments for acceleration of agricultural robotics Vol. 11 No.4 25

are multiple important features missing from ARGoS, most notably
the ability to import 3D meshes into the simulator. Gazebo
occupies the space between V-REP and ARGoS. While it is much
closer to V-REP in terms of features, its interface and default robot
models are much simpler and resemble those found in ARGoS. It
is notable that Gazebo outperformed ARGoS in the larger
simulation environments mentioned here, which suggests that it is a
more suitable choice for large swarm robotics experiments. In the
other hand, V-REP automatically spawns new threads on multiple
CPU cores and therefore utilizes the full amount of CPU power
when it is necessary. For this reason, V-REP is more suitable for
high-precision modeling of robotic applications such as the field
scouting mobile robot example presented in section 4, as well as of
various robotic harvesting applications, where only a few robots are
required to operate at the same time. Our experiment with
Gazebo showed that its usability is relatively poor. While it can
import 3D meshes, there are no editing options, making it difficult
to alter and optimize models. Moreover, Gazebo interface has a
number of issues and fails to follow established conventions.
Several difficulties were noted when installing dependencies for
Gazebo and for many of its third-party models. While not
necessarily severe by themselves, these issues together could have
a negative impact on a research project.

4 Case study: Simulating a prototype scouting robot
in V-REP

V-REP library offers models of various integrated professional

mobile robots including Pioneer P3-DX[37] (CAD model is courtesy
of Eric Rohmer), Roller Walker (CAD model is courtesy of Lyall
Randell), Robotnik Summit XL140701(Robotnik), Kuka YouBot
(Kuka Laboratories GmbH), Omnidirectional Platform (Ono-Denki
Co., LTD. Japan), dr12 (Cubictek co. Ltd), dr20 (Cubictek co. Ltd),
Lumibot (Mey lean Kroneman, CAD model is courtesy of Philipp
Urbanz), Khepera 3 (K-team corporation), Line follower (Cubictek
Co. LTD), and E-puck (Ecole Polytechnique Federale Lausanne,
Switzerlan). Each of these robots has built-in features,
specifications, and parameters that can be adjusted in the script
simulation or via the model properties. Some of the V-REP robot
models (mobile and non-mobile) that can be adapted for
agricultural simulation projects are shown in Figure 11.
Additionally, V-REP supports different vision sensors
(orthographic and perspective type), proximity sensors (Ray-type,
pyramid-type, cylinder-type, disk-type, cone-type, and randomized
ray-type proximity sensors), and built-in CAD models of various
commercial sensors including Microsoft Kinect, 2D and 3D laser
scanners, blob detection camera, Hokuyo URG 04LX UG01, SICK
S300, SICK TiM310 fast laser measurement scanner, TimM10
sensors, and Fast Hokuyo URG-04LX-UG01 scanning laser range
finder. Other sensor models (i.e., ultrasonic and infrared) can be
built similarly based on combinations of different vision and
proximity sensors. For example, the Fish-eye RGB Axis 212 PTZ
sensor, or infrared Proximity Sensor Long Range-Sharp
GP2Y0A02YK0F can be simulated in V-REP by direct use of
vision and ultrasonic sensors respectively.

Pioneed p3dx Roller Walker RobotnikSummit Kuka YouBot Omnidirectional dr12 dr20

ABB IRB 360 Adept Quattro 650HS Jaco arm UR (3,5, and 10) KUKA LBR Baxter Sawyer U arm

Figure 11 Screenshots of selected V-REP models for mobile and non-mobile robots that can be adapted for use in agricultural simulation

For the purpose of this case study and to show how V-REP
functionalities can be extended and scaled from professional
robot models to a customized model, we simulated a prototype
robot shown in Figure 12 that was not available in the V-REP
model library. The ultimate objective was to have a completely
simulated robotic platform with different cameras and sensing
systems that can perform (i) autonomous navigation and scouting
in a virtual citrus orchard, (ii) 3D reconstruction of the
environment, (iii) quantification of the fruits, and (iv) estimation
of the instantaneous yield from real-time image data. Only a
summarized description of this case study is provided here. We
began the simulation process by importing CAD models (.STL
file) of a prototype mobile robot and a 5-Dof manipulator.
Necessary modifications and adjustments, including shape
properties, objects grouping and bounding, axis and coordination
settings, adding joints and sensors, and customizing physical
appearances were carried out on the imported models.
Information about preliminary setting and general modifications
required prior to a simulation is available in the V-REP manual

and online tutorials. A workspace was then created in V-REP
environment with major scene objects shown in Figure 12. ROS
was installed on Ubuntu 14.04.3 LTS and was used for
exchanging data between the simulated environment and the real
world via its publish and subscribe architecture. This provides a
tool for validating the simulated results with those from
experimenting with a real robot. V-REP and MATLAB were
also interfaced to create two-way communication architecture for
exchanging sensors and robot control messages. Data from the
simulated robot and sensors in V-REP were used as inputs of the
control algorithms in MATLAB. This framework provides a
flexible platform that saves in cost and time for experimenting
with different control strategies, sensing instrumentation, and
algorithms in automated orchard scouting. For example, the
mobile robot and manipulator were externally controlled via a
MATLAB m-file, providing a 360° scanning view for each sensor.
Using this scheme, we were able to adjust the gains of a PID speed
controller in MATLAB, or change the joints rotation matrices of
the manipulator and observe the immediate effects on the behavior

26 July, 2018 Int J Agric & Biol Eng Open Access at https://www.ijabe.org Vol. 11 No.4

of the simulated robot in V-REP.
Our mobile platform was a four-wheel drive and steering field

robot that is controlled by four independent DC motors, and a
6-DoF manipulator controlled by six servo motors similar to the
one used in [40]. The CAD model of this robot is publicly
available for free download from GrabCad webpage of Hossam
Mohamed. A similar application of such a mobile platform can be
found in [41]. The following main steps were involved in the
simulation: (i) creation of workspace, including import,
modification, and simulation of the robot CAD model in V-REP
(including adding joints, differential drive, and IK tasks), (ii)
design and testing of the speed control and navigation system, (iii)

implementing path planning and line following algorithms using
V-REP scripts of MATLAB API functions, (iv) experimenting with
simulated sensors and camera and importing collected data into
MATLAB for image processing, and (v) creating a bidirectional
communication (information exchange) between the simulated
robot, ROS, MATLAB, and the cameras with the real world. The
artificial citrus trees were purchased from greenview3d.com. For
the sake of simplicity, we did not simulate the gripper mechanism;
hence the manipulator was simulated with five joints representing
the five servo motors. The drive and steering subsystem is
comprised of four independent wheels and motor units, also known
as a differential drive[42].

Figure 12 Major scene objects used in the V-REP case study simulation, including CAD model of a prototype robot platform,

artificial citrus trees, and simulated sensors

The robot changes its direction and speed by varying the
relative rate of rotation of left and right wheels. For the purpose
of simulating the control system in MATLAB, the same numerical
value used in [40] was assumed for the DC motors, (that is the
moment of inertia of the rotor J=42.6e-6 kg·m2, viscous friction
coefficient b=47.3e-6Nms, torque constant kt=14.7e-3Nm/Amp,
back emf ke=14.7e-3V.s/rad, terminal resistance R=4.67Ω and
electric inductance L=170e-3H). The objective was to control the
angular rate of the DC motors (simulated in V-REP by independent
joints in torque/force mode) by varying the applied input voltage
that is assumed to be proportional to the motor speeds (this was
carried out by implementing a PID controller for setting joint target
velocity in V-REP). For this objective, the design criteria were
defined in such a way that for a step input change of 5 radians per
second (s) in the desired joint velocity, the controller satisfies a
transient response with settling time of less than 0.5 s, overshoot of
less than 5%, and steady-state error of less than 1%. For the
inverse kinematics (IK) task of the manipulator, as well as path
planning algorithm for the robot navigation, we used V-REP built-in
calculation modules. The details of IK setup in V-REP is available
in [1]. Descriptions of the path planning algorithm and
corresponding set-ups in V-REP are also available as a video
demonstration on the AdaptiveAgroTech Youtube channel. The
simulated workspace provided a highly configurable, modular
robotic system that is capable of adapting to several agricultural
tasks and conditions through easy testing and debugging of control
algorithms with zero damage risk to the real robot and to the actual
equipment.

The vision sensor simulates RGB and gray-scale cameras

(filters are available in V-REP image processing for grayscale or
specific R, G, or B band selection), and acquires images at a 512 by
512 pixel resolution. A similar sensor was used for visual
servoing from our previous study[1] with inertial measurement filter.
The V-REP model of the Microsoft Kinect sensor includes RGB
and depth vision sensors and was used in the scene to calculate the
time needed for the laser signal to hit an object and bounce back to
its source, creating in this way a three-dimensional representation
of the object. The filters used to create the Microsoft Kinect for
the citrus scouting scene (shown Figure 13a) are (i) depth image to
work image, (ii) extract coordinates from work image, and (ii)
work image to output image. For the fast 3D laser scanner used
for environment mapping (shown in the Figure 13b), the filters of
the vision sensors are (i) original depth image to work image, (ii)
extract coordinates from work image, (iii) intensity scale work
image, and (iv) work image to output image. For the purpose of
obstacle avoidance, eight proximity sensors (cone type) were
placed on the robot body in a circular shape, each covering 45° of
the mobile surrounding. It should be noted that vision-sensors
based rangefinders have high calculation speed but lower precision,
while proximity-sensors based rangefinders have higher precision
in calculating the geometric distance with relatively lower
calculation speed. The laser-scanner rangefinder was considered
in the simulation to measure the distance between an observer
object (i.e., the robot gripper or the end-effector camera) and a
target (i.e., fruit, trees, or obstacles). Typical rangefinders work
based on time of flight (TOF) and frequency phase-shift
technologies. The TOF method utilizes laser by sending a pulse
in a narrow beam towards the object and measuring the time taken

July, 2018 Shamshiri R R, et al. Simulation software and virtual environments for acceleration of agricultural robotics Vol. 11 No.4 27

by the pulse to be reflected off and return to the sensor. The
frequency-phase shift method measures the phase of multiple
frequencies on reflection together with performing simultaneous
math calculations to deliver the final measure. Rangefinders are
available in V-REP in the form of vision-sensors and proximity

sensors. For example, the Hokuyo URG-04LX-UG01 and the 3D
laser scanner range finder use a ray-type laser proximity sensor.
Finally, two color cameras were also added for tracking the scene
and the position of the robot with respect to the fruit and trees in
order to provide a wider view of the simulation scene.

a. Simulation environment for the virtual citrus orchard and the prototype field robot with multiple sensors and obstacle avoidance

b. Scanning with Kinect c. Kinkect sensor: RGB image d. Kinect sensor, depth image e. Scanning with Hokuyo f. Point clouds

Figure 13 Using a simulated mobile robot for citrus tree scouting in a virtual orchard, and creating the point clouds of the environment

4.1 Dynamic considerations for realistic simulation
V-rep dynamic modules allow simulating real-world objects

interactions in a realistic way such as fruits falling from a tree due
to the collision of a vehicle (Figure 14a), or bouncing off the fruits
from a conveyor belt or after they are dropped from a harvester
gripper (Figure 14b[1]). Physics simulation such as inverse
kinematic is a complex task and can be achieved only to some
degree of speed and precision, therefore V-REP dynamics support
four physics engines known as the bullet library, the Vortex, the
Newton, and the Open dynamics engine. This provides the user
with the flexibility for selecting and switching from one engine to
the other to satisfy the simulation needs. The bullet library, also
known as the video game physic engine, is an open-source engine
that supports both soft and rigid body dynamics, as well as
three-dimensional collision detection, which are mostly used to
provide visual effects in computer games and movies. The Vortex
dynamics is a commercial closed source physics engine that
provides physics simulation with a high reliability. It offers
real-world parameters for simulating various physical properties in
a precise and realistic fashion that corresponds to the actual

physical units. Because of these features, Vortex can be used for
simulation of agricultural robotics and fruit handling that requires
high performance and precision accuracy. An example is the
simulation of mass and moment of inertia for sweet pepper fruits
that fall on a conveyor belt as shown in Figure 14b. It is notable
that the Vortex plugin is not included in the free version of V-REP.
It is based on the Vortex Studio Essentials and requires registration
with the CMlabs Company (Montreal, QC, Canada) for a free
license key. The Newton dynamics implements a deterministic
differential equation solver that is not based on classical iterative
methods. It is a cross-platform physics simulation library that
possesses the stability and speed respectively, making it a tool that
is suitable for games and for real-time physical simulation. The
Open dynamic is an open-source fully featured physics engine
available at www.ode.org/ that is used for general simulation
applications as well as games. It is stable, mature, and platform
independent and provides an easy to use C/C++ API. It has two
main components known as the collision detection and the rigid
body dynamics. This engine is especially suitable for simulation
field vehicles and objects in the virtual reality environments.

Figure 14 Visualization of dynamic engine in V-REP, (a) citrus fruits falling off due to the mobile robot collision with the tree,

and (b) sweet pepper fruit bounding on conveyor belt after releasing from a harvesting gripper

28 July, 2018 Int J Agric & Biol Eng Open Access at https://www.ijabe.org Vol. 11 No.4

Dynamic data and results of dynamic modules can be recorded
and collected using graph objects. While many other simulation
packages rely on physics engines that are based on dynamic
calculations and approximations and result in a relatively slow and
imprecise output, V-REP can be considered a hybrid simulator
software that combines both dynamics and kinematics calculations
to achieve the most effective performance in different simulation
scenarios. For instance, V-REP uses kinematics for robotic
manipulators wherever it is possible and relies only on dynamics
calculations for the manipulator’s gripper. In the case of
simulating the movements and navigation for a crop scouting
mobile robot that is operating on a flat field and is not supposed to
have physical interaction or collide with the objects of the
environment, using kinematics or geometric calculations will result
in a much faster and more accurate simulation. It should be noted
that the environment in V-REP refers to the properties and
parameters, including background color, fog parameters, ambient
light, settings, and creation information. These properties are not
considered scene objects, but are part of a scene, and are only saved
when a scene is saved (not when a model is saved).
4.2 External programming of V-REP (MATLAB and ROS)

The main simulation programming script of V-REP contains
basic code and functions that are called by the system to runs the
simulation. By default, the main script has four functions known
as the initialization (sysCall_init), actuation (sysCall_actuation),
sensing (sysCall_sensing), and restoration (sysCall_cleanup).

Other than the initialization function that is mandatory, all other
functions in the main script are optional. The initialization
function is executed only one time right at the beginning of the
simulation. The actuation function is executed at each simulation
pass and is in charge of handling simulator functionality such as
inverse kinematics, as well as lunching threaded and non-threaded
child scripts. The sensing function is also executed at each
simulation pass and is in charge of handling the sensors (i.e.,
proximity and vision sensors) or collision detection. The
restoration function is executed one time only, right before a
simulation is terminated, and is responsible for cleaning and
restoring the initial configuration of scene objects, collision, and
sensors states. It is notable that the main script is not supposed to
be modified, and unless a function is not defined, the call will be
ignored. If the main script is modified without having necessary
commands, then a model such as a robot manipulator or sensors
that are copied into a scene may not perform as expected. As an
example of a simple V-REP programming, we illustrate the
conventional vision-based navigation control for the prototype
scouting robot. Figure 15 shows the sequence of navigation,
sensing-and-display, and actuation program for collision avoidance.
Here the laser sensor state is read from previous sensing
corresponding to the previous simulation pass, then it reacts to the
tree. If this sequence is altered, (i.e., sensing,
actuation-and-display), the final display data will be different from
the actual sensing.

Figure 15 Implementation of laser sensor and Anaglyph stereo sensors in V-REP

As mentioned earlier, V-REP supports seven supported
languages: C/C++, Python, Java, Matlab, Octave, Lua and Urbi.
For this case study, we used MATLAB as the remote API because
it is one of the most widely used programming languages for
control tasks and image processing problems. This approach
allows controlling the simulation objects (i.e., DC and servo motors)
with almost the exact same code as those that run the physical
models. The remote API functionality relies on the remote API
plugin (on the server side), and the remote API code on the client
side. Both programs/projects are open-source (i.e. can be easily
extended or translated for support of other languages) and can be
found in the 'programming' directory of V-REP's installation. In
order to use remote API functionality of V-REP in Matlab program,
three files namely (i) remoteApiProto.m, (ii) remApi.m, and (iii)
remoteApi.dll were copied from the V-REP's installation directory
into Matlab current workspace directory. It is notable that Matlab
should uses the same bit-architecture as the remoteApi library.
All V-REP remote API functions begin with a prefix "simx”. A
list of sample Matlab remote API functions used in the simulation
is provided in Table 3. Descriptions of these functions are as
follow: (1) simxStartSimulation: requests a start of a simulation, or
a resume of a paused simulation, (2) simxGetVisionSensorImage2:

retrieves the image of a vision sensor as an image array, (3,4):
simxReadProximitySensor and simxReadVisionSensor respectively
read the state of a proximity and vision sensor (these two functions
do not perform detection, but merely reads the result from a
previous call to the sensor handles), (5) simxSetJointPosition: sets
the intrinsic position of all joints type except the spherical ones (may
have no effect depending on the joint mode), (6)
simxSetJointTargetPosition, sets the target position of a joint if it is
in torque/force mode (joint's motor and position control should be
enabled for this function to work), (7) simxSetJointTargetVelocity:
sets the intrinsic target velocity of a non-spherical joint (only
applicable when the joint is in torque/force mode, and the dynamics
functionality and the joint motor have been enabled, and position
control is disabled), (8) simxSetVisionSensorImage2: sets the image
of a vision sensor and applies any image processing filter if specified
in the vision sensor dialog (the image is provided as an image array),
and (9) simxStopSimulation: requests a stop of the running
simulation. The regular use of simxSetVisionSensorImage2 is to
first read the data from a vision sensor with
simxSetVisionSensorImage2, then performs custom filtering or
image processing, and then writes the modified image to a passive
vision sensor.

July, 2018 Shamshiri R R, et al. Simulation software and virtual environments for acceleration of agricultural robotics Vol. 11 No.4 29

Table 3 MATLAB synopsis for some of the V-REP remote API functions used in the simulation

Remote API function MATLAB synopsis

simxStartSimulation [returnCode]=simxStartSimulation(clientID, operationMode)

simxGetVisionSensorImage2 [returnCode,resolution, image]=simxGetVisionSensorImage2(clientID,sensorHandle,options, operationMode)

simxReadProximitySensor [returnCode,detectionState,detectedPoint,detectedObjectHandle,detectedSurfaceNormalVector]
=simxReadProximitySensor(clientID, sensorHandle,operationMode)

simxReadVisionSensor [returnCode,detectionState,auxData,auxPacketInfo]=simxReadVisionSensor(clientID,sensorHandle,operationMode)

simxSetJointPosition [returnCode]=simxSetJointPosition(clientID,jointHandle,position,operationMode)

simxSetJointTargetPosition [returnCode]=simxSetJointTargetPosition(clientID,jointHandle,targetPosition,operationMode)

simxSetJointTargetVelocity [returnCode]=simxSetJointTargetVelocity(clientID,jointHandle,targetVelocity,operationMode)

simxSetVisionSensorImage2 [returnCode]=simxSetVisionSensorImage2(clientID,sensorHandle,image,operationMode)

simxStopSimulation [returnCode]=simxStopSimulation(clientID,operationMode)

V-REP implements a ROS node with a plug-in which allows
ROS to call V-REP commands via ROS services, or stream data
via ROS publishers/subscribers. Publishers/subscribers can be
enabled with a service call, and also be directly enabled within
V-REP via an embedded script command. The general ROS
functionality in V-REP is supported via a generic plugin
“libv_repExtRos.so” or “libv_repExtRos.dylib”. It should be
noted that plugins are loaded when V-REP is launched, and the
ROS plugin will be successfully loaded and initialized only if
“roscore” is running at that time. The plugin is open-source and
can be modified as much as needed in order to support a specific
feature or to extend its functionality. Three of the main ROS
package folders in the V-REP, (located in
programming/ros_packages) are the “vrep_common”,
“vrep_plugin”, and “vrep_joy”. The first package is used to
generate the services and stream messages that are needed to
implement the V-REP API functions, while the second is the actual
plugin that is compiled to a “.so” file used by V-REP. The
“vrep_joy” package enables interaction with a joystick. Having
the services and stream messages in a separate package allows for
other application to use them in order to communicate with V-REP
via ROS in a convenient way. A ROS package usually includes
the followings folders and files: bin, msg, scripts, src, srv,
CMakeLists.txt, manifest.xml. The first package is used to
generate the services and stream messages that are needed to
implement the V-REP API functions, while the second is the actual
plugin that is compiled to a “.so” file used by V-REP. The
“vrep_joy” package enables interaction with a joystick. Having
the services and stream messages in a separate package allows for
other application to use them in order to communicate with V-REP
via ROS in a convenient way. These packages were copied to the
catkin_ws/src folder. The command “$ roscd” was then used to
check whether ROS is aware of these packages (e.g., $ roscd
vrep_plugin). After navigating to the catkin_ws, the command “$
catkin_make” was used to build the packages and to generate the
plugins. The created plugins were then copied to the V-REP
installation folder to be used for image subscription and publishing.
A new terminal was opened in Ubuntu for staring the ROS master
using the command “$ roscore”. Another terminal was opened
and was navigated to the V-REP installation folder to launch the
V-REP simulator in Ubuntu by typing the command “$./vrep.sh”.
The entire procedure is summarized as these steps: (i) installing
ROS Indigo on Ubuntu and setting up the workspace folder, (ii)
copying “ros_packages” in V-REP into the “catkin_ws/src” folder,
(iii) source “setup.bash” file, (iv) run “roscore” and “./vrep.sh”.
The two available nodes, “/rosout” and “/vrep” and the three topics

“/rosout”, “/rosout_agg”, “/vrep/info” were checked using “$
rosnode list” and “$ rostopic list” commands respectively. In
addition, the command “$ rosservice list” was used to advertise all
the services. It should be noted that the only V-REP topic that
was advertised was “info” publisher that started as soon as the
plugin was launched. All other V-REP topics for publishing and
subscribing images and sensors were individually enabled using
Lua commands: “simExtROS_enablePublisher” and
“simExtROS_enableSubscriber”. Moreover, to visualize the
vision sensor stream images and data, the “$ rosrun image_view
image_view image:=/vrep/visionSensorData” and “$ rostopic echo
/vrep/visionSensorData” were used respectively. The image
subscription and publishing was performed by having V-REP ROS
enabled based on ROS Indigo and Catkin build. The general ROS
functionality in V-REP is supported via a generic plugin
“libv_repExtRos.so” or “libv_repExtRos.dylib”. It is notanle that
plugins are loaded when V-REP is launched, and the ROS plugin
will be successfully loaded and initialized only if “roscore” is
running at that time. The plugin is open-source and can be
modified as much as needed in order to support a specific feature or
to extend its functionality. Three of the main ROS package
folders in the V-REP, (located in programming/ros_packages) are
the “vrep_common”, “vrep_plugin”, and “vrep_joy”.

5 Conclusions

Increasing the speed and accuracy of robots for farming
applications are the main issues to be addressed for generalization
of robotics systems, but the lack of abundant research funding and
budgets has decelerated the process. Simulation software and
virtual environments are the two potential tools for accelerating the
design and development of agricultural robots. We provided a
brief description of the ROS along with reviewing some of the
most widely used robot simulators, including Webots, Gazebo,
Actin, ARGoS, and V-REP. The efficiency and rich modeling
and visualization features of V-REP and the strong computational
performance of Gazebo and ARGoS in complex scenes were
compared and highlighted. We concluded that V-REP offers a
higher number of useful features, such as multiple physics engine,
comprehensive robot model library, and the ability of a user to
interact with the world during simulation and, most importantly,
mesh manipulation and optimization, however it is the most CUP
resource-hungry of the simulators. ARGoS, on the other hand, is
a suitable choice for simulations of swarm robotics tasks. Gazebo
occupies the space between V-REP and ARGoS, while it is much
closer to V-REP in terms of features; its interface and default robot
models are much simpler and resemble those found in ARGoS.

30 July, 2018 Int J Agric & Biol Eng Open Access at https://www.ijabe.org Vol. 11 No.4

Various usability issues of Gazebo were also noted. We then
presented a simple case study to highlight some of the detailed
features and functionalities of V-REP as a simulator candidate for
agricultural robotics, and provided a documented guideline for
creating a reliable, cheap, safe, and fast experiment platform within
which development, testing, and validating control strategies and
algorithms can be carried out. Object identification, task planning
algorithms, digitalization and optimization of sensors were
highlighted as some of the facing challenges in the context of
digital farming. We also mentioned that for an autonomous
framework to successfully execute farming tasks, research focus
should be toward developing simple manipulators and multi-robot
systems. We discussed that a trend and research focus in
agricultural robotics is towards building a swarm of robots and
drones that collaborate together to optimize farming inputs and
reveal denied or concealed information.

Acknowledgements

The first author would like to express his appreciations to
Professor Salah Sukkarieh at the University of Sydney, Professor
Cornelia Weltzien and Professor Manuela Zude at the Leibniz
Institute for Agricultural Engineering and Bioeconomy, and Dr.
Jochen Hemming at the Wageningen UR for their insightful
meetings, lab demonstrations, and group discussions during his
visits. We also extend our deep appreciations to Dr. Wang
Yingkuan of the Chinese Academy of Agricultural Engineering and
his professional team at the International Journal of Agricultural
and Biological Engineering for reviewing the manuscript draft and
the editorial works. The consultation supports and assistance on
the economic and viability assessment of agricultural robotics
provided by Dr. Mary Sh, Ms. Mojgan, and Dr. Fatima Kalantari at
AdaptiveAgroTech are duly acknowledged.
Disclaimer

Mention of commercial products, services, trade or brand
names, organizations, or research studies in this publication does
not imply endorsement by the authors, nor discrimination against
similar products, services, trade or brand names, organizations, or
research studies not mentioned.

 [References]

[1] Shamshiri R R, Hameed I A, Karkee M, Weltzien C. Robotic harvesting
of fruiting vegetables: A simulation approach in V-REP, ROS and
MATLAB. Proceedings in Automation in Agriculture-Securing Food
Supplies for Future Generations, 2018, InTech.

[2] Quigley M, Conley K, Gerkey B, Faust J, Foote T, Leibs J, et al. ROS:
an open-source Robot Operating System. In ICRA workshop on open
source software, 2009; 3(2): 5.

[3] Michel O. Cyberbotics Ltd. WebotsTM: professional mobile robot
simulation. Int. J. Adv. Robot. Syst., 2004; 1(1): 5.

[4] Koenig N P, Howard A. Design and use paradigms for Gazebo, an
open-source multi-robot simulator. IROS, 2004; 4: 2149–2154.

[5] Montemerlo M, Roy N, Thrun S. Perspectives on standardization in
mobile robot programming: The Carnegie Mellon navigation (CARMEN)
toolkit. Proceedings of IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS 2003), 2003; 3: 2436–2441.

[6] Nesnas I A D, Wright A, Bajracharya M, Simmons R, Estlin T.
CLARAty and challenges of developing interoperable robotic software.
Proceedings of IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS 2003), 2003; 3: 2428–2435.

[7] Pivtoraiko M, Nesnas I A, Nayar H D. A reusable software framework
for rover motion control. International Symposium on Artificial
Intelligence, Robotics and Automation in Space, Los Angeles, CA, 2008.

[8] Cepeda J S, Chaimowicz L, Soto R. Exploring Microsoft Robotics

Studio as a mechanism for service-oriented robotics. Robotics
Symposium and Intelligent Robotic Meeting (LARS), Latin American,
2010; pp.7–12.

[9] Makarenko A, Brooks A, Kaupp T. Orca: Components for robotics.
International Conference on Intelligent Robots and Systems (IROS), 2006;
pp.163–168.

[10] Bruyninckx H. Open robot control software: the OROCOS project.
Proceedings of IEEE International Conference on Robotics and
Automation. (2001 ICRA), 2001; 3: 2523–2528.

[11] Gerkey B P, Vaughan R T, Stoy K, Howard A, Sukhatme G S, Mataric M
J. Most valuable player: A robot device server for distributed control.
Proceedings of IEEE/RSJ International Conference on Intelligent Robots
and Systems, 2001; 3: 1226–1231.

[12] Kuhnert K D. Software architecture of the autonomous mobile outdoor
robot AMOR. IEEE International Conference on Intelligent Vehicles
Symposium, 2008; pp.889–894.

[13] Beck A B, Andersen N A, Andersen J C, Ravn O. MobotWare–A
Plug-in Based Framework for Mobile Robots. IFAC Proc. 2010; 43(16):
127–132.

[14] Jensen K, Larsen M, Nielsen S H, Larsen L B, Olsen K S, Jørgensen R N.
Towards an open software platform for field robots in precision agriculture.
Robotics, 2014; 3(2): 207–234.

[15] Nebot P, Torres-Sospedra J, Martínez R J. A new HLA-based distributed
control architecture for agricultural teams of robots in hybrid applications
with real and simulated devices or environments. Sensors, 2011; 11(4):
4385–4400.

[16] García-Pérez L, García-Alegre M C, Ribeiro A, Guinea D. An agent of
behaviour architecture for unmanned control of a farming vehicle.
Comput. Electron. Agric., 2008; 60(1): 39–48.

[17] Blackmore S, Fountas S, Have H. Proposed system architecture to enable
behavioral control of an autonomous tractor. Proceedings of the
Conference on Automation Technology for Off-Road Equipment, 2002; p.
13.

[18] Fountas S, Blackmore B. S, Vougioukas S, Tang L, Sørensen C G,
Jørgensen R. Decomposition of agricultural tasks into robotic behaviours.
Agric. Eng. Int. CIGR J., 2007.

[19] Halavatyi A A, Nazarov P V, Medves S, Van Troys M, Ampe C, Yatskou
M, et al. An integrative simulation model linking major biochemical
reactions of actin-polymerization to structural properties of actin filaments.
Biophys. Chem., 2009; 140(1–3): 24–34.

[20] Mikhalevich S, Krinitsyn N, Manenti F, Kurochkin V, Baydali S.
Developing of KUKA youBot software for education process. Chem.
Eng. Trans., 2017; 57: 1573–1578.

[21] Lemaignan S, Echeverria G, Karg M, Mainprice J, Kirsch A, Alami R,
Human-robot interaction in the MORSE simulator. in Proceedings of the
Seventh Annual ACM/IEEE International Conference on Human-Robot
Interaction, 2012; pp.181–182.

[22] Diankov R, Kuffner J. OpenRAVE: A planning architecture for
autonomous robotics. Robot. Institute, Carnegie Mellon University
Pittsburgh, PA, Tech. Rep. C., 2008; 79p.

[23] Kanehiro F, Hirukawa H, Kajita S. OpenHRP: Open architecture
humanoid robotics platform. Int. J. Rob. Res., 2004; 23(2): 155–165.

[24] Rohmer E, Singh S P N, Freese M. V-REP: A versatile and scalable
robot simulation framework. IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2013; pp.1321–1326.

[25] Carlo Pinciroli, Vito Trianni, Rehan O’Grady, Giovanni Pini, Arne
Brutschy, Manuele Brambilla, Nithin Mathews, Eliseo Ferrante, Gianni Di
Caro, Frederick Ducatelle, Mauro Birattari, Luca Maria Gambardella,
Marco Dorigo. ARGoS: a Modular, Parallel, Multi-Engine Simulator for
Multi-Robot Systems. Swarm Intelligence, 2012; 6(4): 271-295.

[26] Bouchier P. Embedded ROS [ROS Topics]. IEEE Robot. Autom. Mag.,
2013; 20(2): 17–19.

[27] Barth R, Baur J, Buschmann T, Edan Y, Hellström T, Nguyen T, et al.
Using ROS for agricultural robotics-design considerations and experiences.
Proceedings of the Second International Conference on Robotics and
Associated High-Technologies and Equipment for Agriculture and
Forestry, 2014; pp.509–518.

[28] Ackerman E. Latest version of gazebo simulator makes it easier than
ever to not build a robot. IEEE Spectrum, 2016.
https://spectrum.ieee.org/automaton/robotics/robotics-software/latest-versi
on-of-gazebo-simulator

[29] Grimstad L, From P J. Thorvald II - a Modular and Re-configurable

July, 2018 Shamshiri R R, et al. Simulation software and virtual environments for acceleration of agricultural robotics Vol. 11 No.4 31

Agricultural Robot. IFAC-PapersOnLine, 2017; 50(1): 4588–4593.
[30] Biber P, Weiss U, Dorna M, Albert A. Navigation system of the

autonomous agricultural robot Bonirob. in Workshop on Agricultural
Robotics: Enabling Safe, Efficient, and Affordable Robots for Food
Production (Collocated with IROS 2012), Vilamoura, Portugal, 2012.

[31] Sharifi M, Young M S, Chen X, Clucas D, Pretty C. Mechatronic design
and development of a non-holonomic omnidirectional mobile robot for
automation of primary production. Cogent Eng., 2016; 3(1): 1250431.

[32] Nguyen T T, Kayacan E, De Baedemaeker J, Saeys W. Task and motion
planning for apple harvesting robot. IFAC Proc., 2013; 46(18): 247–252.

[33] Habibie N, Nugraha A M, Anshori A Z, Ma’sum M A, Jatmiko W. Fruit
mapping mobile robot on simulated agricultural area in Gazebo simulator
using simultaneous localization and mapping (SLAM). International
Symposium on Micro-NanoMechatronics and Human Science (MHS),
2017; pp.1–7.

[34] Mehta S S, Burks T F. Vision-based control of robotic manipulator for
citrus harvesting. Comput. Electron. Agric., 2014; 102: 146–158.

[35] Shamshiri R, Wan Ismail W I. Nonlinear tracking control of a two link
oil palm harvesting manipulator. Int J Agric & Biol Eng, 2012; 5(2): 9–19.

[36] Han S, Burks T F. 3D reconstruction of a citrus canopy. 2009 Reno,

Nevada, June 21- 24, 2009.
[37] Whitbrook A. Programming Mobile Robots with Aria and Player: A

Guide to C++ Object-oriented Control. Springer Science & Business
Media, 2009.

[38] Longo D, Muscato G. Design and Simulation of Two Robotic Systems
for Automatic Artichoke Harvesting. Robotics, 2013; 2(4): 217–230.

[39] Pitonakova, Lenka, Manuel Giuliani, Anthony Pipe, and Alan Winfield. 2018.
“Feature and Performance Comparison of the V-REP, Gazebo and ARGoS
Robot Simulators.” pp. 357–68 in Annual Conference Towards Autonomous
Robotic Systems. Springer.

[40] Shamshiri R, Ishak W, Ismail W. Design and Simulation of Control
Systems for a Field Survey Mobile Robot Platform. Res. J. Appl. Sci.
Eng. Technol., 2013; 6(13): 2307–2315.

[41] Wang H, Zou X, Liu C, Lu J, Liu T. Study on behavior simulation for
picking manipulator in virtual environment based on binocular stereo
vision. 7th International Conference on System Simulation and Scientific
Computing (ICSC 2008), 2008; pp.27–31.

[42] Shamshiri R, Panchapakesan R, Ruslan R, Savary S K J U, Jadhav U.
Autonomous Robotic Vehicle Design for ASABE Robotics Competition
2010, Team GATORS, University of Florida, 2009.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

