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Abstract
Privacy in the context of information and data is often defined in terms of anonymity,

particularly in regulations such as the GDPR. Operationally, it is appealing to define privacy
in terms of computable data properties as this makes it possible to verify compliance. A well
known example of privacy defined as such is k-anonymity. At the same time, uncertainty
regarding real-world privacy is increasing with the amount of data collected about us all.
We present arguments for why focusing on anonymity or computable properties of data is
not very helpful in this regard. In particular, we count exploitable failures of privacy defined
in terms of computable properties of n-bit data and conclude that these counterexamples
to protection cannot be rare.

1 Introduction
Many privacy regulations, including the General Data Protection Regulation (GDPR) [1] and
the US Health Insurance Portability and Accountability Act (HIPAA) [18], have anonymity as a
decision criterion of whether they apply to the contents of dataset or not.

Now, consider a colleague showing you data and asking “Is this dataset anonymous?”,
effectively asking you if it can be shared without running afoul of privacy regulations. Ethics
and potential personal harm aside, getting the answer wrong can have financial and legal
consequences. Especially as privacy regulations grow teeth, as they are doing in Europe, where
the upcoming GDPR threatens with significant penalties. Unfortunately, relying on a positive
answer to this question is problematic.

Uncertainty about anonymization and privacy features prominently among barriers to efficient
use of information collected from individuals [16, 17]. A perhaps non-obvious reason is that
anonymity and anonymization strongly suggests a focus on prohibiting a one-to-one relation
from data to identity, while actually providing what most of us associate with privacy requires
prohibiting more general inferences. Intuitively, instead of asking “can I figure out who this data
comes from” we have to ask “what new inferences about anyone can I make using this data”. As
we will see, addressing the latter is difficult and puts additional constraints on how information
can be shared. In particular, collecting and sharing anonymized data becomes difficult.

Our goal here is to substantiate the above with simple yet somewhat formal arguments. We
also briefly present how differential privacy [9], an emerging standard for data privacy, relates to
the identified challenges. From a technical perspective, our main contribution is a quantitative
argument that failures of checkable privacy cannot be rare (Section 5.1 and Theorem 5.4).

2 Why anonymity
The distinction between the public and private was understood in Greece and China 400 BC [15].
In the early Renaissance in Europe, the notion of the home as a protected and sovereign sphere
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was documented already in 1499 [21]. This idea is also found in the Fourth Amendment of the US
Constitution, with a focus on protections from the government. In 1890, Warren and Brandeis
published the very influential “The right to privacy”, where they reacted to the newspapers’
overstepping bounds of propriety and decency, particularly with photographs becoming available.
Warren and Brandeis declared a “right to be left alone”, laying the foundation of what Ruth
Gavison much later defends as the right to hide in the crowd [13].

This view of privacy as anonymity has been widely adopted in regulations. For example, the
upcoming (May 2018) GDPR explicitly states:

“The principles of data protection should therefore not apply [. . . ] to personal data
rendered anonymous in such a manner that the data subject is not or no longer
identifiable.”

From a more technical point of view, anonymity is violated by relating a piece of information
or trait to a single identity. A way of preventing this is introducing ambiguity. For data about
people this can be stated as:

if enough people share a trait, then it is not identifying.

The beauty of this idea is that we can use data we have to establish a lower bound on how
many people share a trait, or several traits. Sweeney’s well known k-anonymity [22] parameterizes
sufficient ambiguity for anonymity as k people having to share all present combinations of values
for traits. In particular, introducing ambiguity destroys 1-to-1 relations. This was the explicit
motivation behind the definition of k-anonymity [23].

As an example, consider the data in Table 1 where the possession and absence of two traits
a and b for five people are indicated by 1 and 0, respectively.

Table 1: Two traits and five people

trait Alice Bob Graham Denise Eric
a 1 1 0 0 0
b 1 1 1 0 0

We see that for the individual traits, at least two people share both possession and absence.
In terms of k-anonymity, the data is 2-anonymous in a and b individually. We also see that
only Graham exhibits absence of a and possession of b. Consequently, his pattern of absence
and possession is not “anonymous”. If we were to remove Graham from the data, it would be
2-anonymous (in a and b jointly).

In general, definitions of privacy that we can check are called syntactic. From the perspective
of sharing data, being able to check privacy compliance avoids the burden of having to document
data provenance, which in turn could be sensitive.

In summary, anonymity represents a tradition in jurisprudence that is easy to operationalize
by syntactical means.

3 The insufficiency of prohibiting 1-to-1 relations
Consider the following story of Alice and Bob. Alice works at the local hospital as an analyst.
Lately, she has been working with researchers investigating the connection between HIV and
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diabetes. Specifically, her work has been to answer the question whether the hospital already has
sufficient patient data for a study, and whether recruiting external prospective study participants
is necessary. To accomplish this, she has been given access to counts of how many patients in
the hospital database have been diagnosed as diabetic, HIV positive and both simultaneously,
across gender and age. Last Saturday, she was invited to her neighbor Bob’s 40th birthday
BBQ. During their chat while Bob was flipping burgers, Bob mentioned that he loves Coca
Cola, but that his doctor at the local hospital had told him that he has to be more careful
about controlling his diabetes. Prompted by this comment, Alice, more of a beer drinker herself,
recalls that there were no male, age 35-40, diabetic, and HIV negative patients in the hospital
database a month ago.

The information Alice obtained through hospital data access can be described as the
implication (a =⇒ b), where a is true for males, age 35-40, that are diabetic, and b is being
HIV positive. A logically equivalent formulation of the implication is ¬(a ∧ ¬b). This means
that if (a =⇒ b) is true for all elements in the database (note that this is different from a being
true for all), then (a ∧ ¬b) is true for none. Neither allows establishing a unique relationship
with anyone in the database. Note that (a =⇒ b) holds for all people in Table 1.

It is only through Bob telling Alice that he is in the database and that a is true for him that
Alice is able to infer that Bob is HIV positive. Again, neither of the pieces of information Bob
provides represent a one-to-one relationship.

In our above example, (a ∧ ¬b) was true for none. Can we consider the information that
something does not exist (in the database), personal information or data? This question is
interesting in terms of language semantics, as the GDPR emphasizes that personal data is data
related to a real living person.

4 Privacy as protection against adversarial inference
As we have seen above, ambiguity as a privacy criterion is not sufficient. What we arguably
care about is any inference about any individual. Paraphrasing Dalenius [4], disclosure by
information v happens if we can use it to learn something about x we did not already know.
We can define this notion a little more formally using probabilities as follows.

Definition 4.1 (Disclosure). Let Mr be a randomized inference “machine” for a property r.
Disclosure of r for object x by information v happens if

P [Mr(x, v) = r(x)] > P [Mr(x) = r(x)].

Furthermore, we can think of disclosure as direct if r(x) can be determined from v alone, or
indirect if more information and inferential machinery is needed.

We can now cast anonymity of data in terms of disclosure as follows. Let property r be
identity, i.e., rid = x 7→ Identity. Then we can say that data v is anonymous if

(∀x) P [Mrid
(x, v) = rid(x)] ≤ P [Mrid

(x) = rid(x)].

Generalizing a little, we can think of r as being any sensitive information. Of course, what
sensitive information means is subjective. For example, not all HIV positive patients consider
their status as sensitive in all contexts [20].

Unfortunately, as Dalenius informally, and Dwork later formally argues [6], eliminating
disclosure while providing useful information is impossible. Intuitively, no information computed
from data about individuals can be independent of this data and reflect the contents of the
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data at the same time. Consequently, we can think of privacy as controlling disclosure, or
alternatively, controlling how much a particular piece of information aids inferences about
someone. Abandoning the prohibition of disclosure also signals a departure from thinking of
privacy as controlling access to crisply circumscribed information, a goal of information security.

The notion of indirect disclosure invites the question of what resources an adversary has at
her disposal. Knowing what information an adversary can use for inference generally requires
omniscience. In order to avoid uncertainty due to assumptions, we have to make the strongest
assumption possible. This assumption is that the adversary has enough information to reduce
her task to a choice between two alternatives. Importantly, we do not know which alternatives
those are.

Not knowing which pair of alternatives the adversary is left to decide between makes it
impossible to distinguish between sensitive and non-sensitive properties. We cannot dismiss
the possibility that a non-sensitive property allows us to rule out one of the two remaining
alternatives. An instance of this problem is deciding which attributes in a data table do not
help the adversary when linking to other tables.

One could ask whether such a strong adversary is esoteric enough to not matter in practice.
Again, this is hard to know as an adversary will manipulate the context to her advantage.
One way of doing this is in terms of an “intersection attack” where a set of a priori known
candidate hypotheses is intersected with the hypotheses corresponding to a given response [12].
Furthermore, the specter of Russian manipulation of the 2016 US election could be taken as
a cautionary tale against underestimating the resources of an adversary. In particular, this
emphasizes the importance of reducing the reliance on assumptions.

5 Syntactic privacy
Since only considering one-to-one relationships such as identity is insufficient, can we abandon
the anonymity tradition but somehow keep the operational advantage of checkable privacy?
Unfortunately, barring a definition where essentially all data is sensitive, we can always find a
formal example of privacy breach for any syntactic definition of privacy. Moreover, as we will
see, such counterexamples cannot be rare.

We will consider databases and encodings of information somewhat interchangeably as finite
bit-strings, i.e., elements from the set {0, 1}∗.

Definition 5.1 (Syntactic definition of privacy). A function σ : {0, 1}∗ → {0, 1} that returns 1
if its input is sensitive and 0 otherwise is a syntactic definition of privacy.

We will assume that all our syntactic privacy definitions are computable. Importantly,
computable σ means that syntactic privacy captures the notion of checkable privacy of data.
From a disclosure control standpoint, syntactic privacy allows for deciding whether a given
statistic (or data) causes disclosures with some likelihood.

Anna has a database that contains sensitive information and wants to answer Ben’s query,
but without sharing sensitive information. A sanitizer is a mechanism by which she can extract
the queried information from the data in a safe manner.

Definition 5.2 (Deterministic sanitizer). Given a non-constant syntactic definition of privacy
σ, an algorithm that computes function f : {0, 1}∗ → {0, 1}∗ is a deterministic sanitizer for σ if
σ(f(x)) = 0 for all x ∈ {0, 1}∗.

We will think of a sanitizer as a response algorithm for a query q on a bit-string database.
We generally want the answer that is most useful for that query, i.e., that the function f
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computed by the sanitizer approximates the function q well. This is difficult in general. For
example, finding the least generalized k-anonymous database is NP-hard and it is known that an
approximation that is not worse than O(k log k) times than needed can be computed, however
with a running time exponential in k [14].

Now consider the situation where Anna has a sensitive database s0 where s is a bit string of
length n− 1. Also, let Ben know s, meaning he knows all bits of Anna’s database except the last
one. For sanitizer f to be safe, Anna should be able to give Ben f(s0) without divulging the
value of the last bit. If f is deterministic and f(s0) 6= f(s1), then Ben can infer what Anna’s
database is by checking which of s0 and s1 yield the value f(s0) he receives from Anna. This
leads us to the following definition.

Definition 5.3 (Counterexample). Let f be a deterministic sanitizer for definition of privacy σ
on n-bit databases. Any pair of databases x and y differing in one bit such that σ(x) + σ(y) > 0
and f(x) 6= f(y) constitutes a counterexample of f . Furthermore, if (x, y) is a counterexample
for any sanitizer for σ, (x, y) is a counter-example of σ.

In terms of our discussion of adversaries in Section 4, a counterexample consists of two
specific alternative hypotheses that an adversary can reduce to a single correct hypothesis.

Unless otherwise indicated, we consider sanitizers to be deterministic. The reason for this
is that if we rely on non-determinism or randomness for privacy, we go beyond what can be
checked1. We now describe the syntactic definitions of privacy that allow counterexamples.

Definition 5.4 (Useful syntactic privacy). A non-constant syntactic definition of privacy is
useful if there are at least two non-sensitive databases.

The reason for Definition 5.4 is that a definition that is not useful, only allows sanitizers
that are constant (trivial), and therefore useless.

Variations of the Anna and Ben example above are common in presentations on theory about
disclosure control and differential privacy. The following theorem is a formalization of the idea
behind these examples, and can therefore be considered a “folklore” theorem.

Theorem 5.1 (Folklore). For any useful syntactic definition σ of privacy on n-bit databases,
there exists a counterexample.

Proof. There exists a pair (x, y) of n-bit databases for which σ yields different values since
σ is non-trivial. We can create a sequence (x0, x1, . . . , xk) such that k ≤ n, x0 = x, xk = y,
and xi+1 equals xi with a single bit inverted. Since σ(x0) 6= σ(xk), there must exist i such
that σ(xi) 6= σ(xi+1). Since σ is useful, there exists non-sensitive distinct databases u and
v. Let sanitizer f be such that u = f(xi) 6= f(xi+1) = v. The pair (xi, xi+1) is therefore a
counterexample.

5.1 Counting counterexamples
Being completely safe is trivial: respond to queries using a constant sanitizer. This is generally
not a helpful observation since sharing information is the the reason we are interested in sanitizers
in the first place. Providing utility implies the ability to distinguish between databases. But,
from the proof of Theorem 5.1, being able to discriminate between neighboring databases can
yield counterexamples. A natural question now is whether we can find a suitable syntactic
definition of privacy that allows answering many questions but only has few counterexamples. If

1more precisely, a given finite string cannot be proven random [3].
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such a definition exists, then we could argue that since the number of counterexamples is low,
Theorem 5.1 does not matter in practice. We approach this question by showing that only a
negligible fraction of syntactic definitions on n-bit databases do not exhibit a full complement
of counterexamples.

5.1.1 Syntactic privacy on the n-cube

For each n-bit database x ∈ {0, 1}n there are n other n-bit databases that differ from x in a
single bit. We denote that two databases x, y ∈ {0, 1}n differ in a single bit by x ∼ y, and call
them neighbors. If we take the set of all n bit databases and connect all the neighboring n bit
databases by an edge, we get a hypercube graph, or n-cube.

Define the weight w of a database x ∈ {0, 1}n to be the number of 1 bits in it, i.e.,
w(b1, b2, . . . , bn) =

∑n
i=1 bi. Now define the balance of x as β(x) = (−1)w(x). The balance of x

tells us whether the weight of x is odd or even with values -1 and 1, respectively.

Proposition 5.2. For any S ⊂ {0, 1}n such that ∃ u, v 6∈ S β(u) 6= β(v), there exists f :
{0, 1}n → {0, 1}n such that

∀x ∈ S, ∀y ∈ {0, 1}n(x ∼ y =⇒ f(x) 6= f(y)).

Proof. By assumption we can fix u, v ∈ {0, 1}n such that β(u) 6= β(v). Now define f : {0, 1}n →
{0, 1}n as

f(x) =
{
u if β(x) = β(u)
v otherwise,

For all x, y ∈ {0, 1}n we have

a. x ∼ y =⇒ β(x) 6= β(y)
since x ∼ y =⇒ |w(x)− w(y)| = 1.

b. β(x) = β(f(x))
by definition of f .

c. β(x) 6= β(y) =⇒ x 6= y
since β(x) 6= β(y) =⇒ w(x) 6= w(y) and w(x) 6= w(y) =⇒ x 6= y.

Combining a., b., and c., we get
x ∼ y a.=⇒ β(x) 6= β(y) b.=⇒ β(f(x)) 6= β(f(y)) c.=⇒ f(x) 6= f(y).

Recall that we have m = 2n different n-bit databases. There are 2m different subsets S
of databases, and one of them is empty, and one of them is {0, 1}n. Consequently, there are
2m − 2 non-empty proper subsets of {0, 1}n. We now turn to how many of these do not fit the
requirement for application of Proposition 5.2.

Proposition 5.3. Let m = 2n. Then there are 2 m
2 +1 − 2 non-empty sets T ⊆ {0, 1}n such that

x, y ∈ T =⇒ β(x) = β(y).

Proof. Let Uj = {x ∈ {0, 1}n|β(x) = j}. Then

a. U1 ∪ U−1 = {0, 1}n

b. U1 ∩ U−1 = ∅
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c. |Ui| = 2 m
2 for i ∈ {−1, 1}

Let T be non-empty such that x, y ∈ T =⇒ β(x) = β(y). Since this means that all elements
in T must have the same balance, we have that T ⊂ Ui, where i is this shared balance. The
converse is also trivially true. This means that T can be any non-empty subset of either U−1
or U1. From c. we have that U−1 and U1 each have 2 m

2 subsets, out of which one is empty.
Consequently, there are 2(2 m

2 − 1) = 2 m
2 +1 − 2 possible non-empty sets T ⊆ {0, 1}n such that

x, y ∈ T =⇒ β(x) = β(y).

Since each syntactic privacy definition σ is uniquely defined by its set S of sensitive databases,
we have that there are 2m − 2 non-trivial such definitions. Proposition 5.2 tells us that if
T = {0, 1}n − S contains two elements that have different balance, we can find a sanitizer that
for all elements in S discerns this element from all its neighbors. Proposition 5.3 tells us that
there are at most 2m/2+1 − 2 non-empty sets T where all elements have equal balance. Since
1/(x− 2) ≤ 2/x for x ≥ 4, and since n ≥ 1 =⇒ m ≥ 2 which in turn implies 2m ≥ 4, we get

2m/2+1 − 2
2m − 2 ≤ 2 · 2m/2 1

2m − 2

≤ 2m/2 4
2m

= 4
(
√

2)m
= 4

(
√

2)2n
. (1)

This means that the fraction of useful σ’s that Proposition 5.2 does not apply to is exponentially
small in m and doubly exponentially small in n.

We now summarize the above as follows.

Theorem 5.4. For all but a negligible fraction of possible non-trivial syntactic definitions of
privacy on n-bit databases, there exists a sanitizer such that every sensitive database is a part of
n counterexamples.

Proof. By Propositions 5.2 and 5.3, (1), that x 7→ 4(
√

2)−x is a function that decreases super-
polynomially, and the isomorphy between proper non-empty subsets of {0, 1}n and non-trivial
syntactical definitions of privacy σ.

In the above, we constrained the adversary to only consider hypotheses pairs arising from
single bit differences under a fixed encoding of n-bit data. Doing this results in a much weaker
adversary than the adversary we described in Section 4. Theorem 5.4 tells us that almost all
syntactical definitions of privacy allow at least one way of answering questions that exposes
every sensitive database to all its possible vulnerabilities for this constrained and much weaker
adversary.

6 Differential privacy and the single unknown bit
The way to avoid the above problem is to introduce uncertainty into the inference sketched above.
In other words, given bit string s and an unknown bit b, there should be uncertainty whether
f(sb) = f(s0) or f(sb) = f(s1). This means that f cannot be deterministic and consequently
must be randomized. We can think of f as a random algorithm that on input d first chooses a
probability density or mass pd and then returns a random variate according to this. Note that
we can let the choice of density or mass be deterministic so that only the returned variate is
chosen randomly.
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Now, let f be randomized and let Li(y) = P (f(si) = y) = psi(y) for i ∈ {0, 1} describe the
likelihood of b = i on receiving y = f(sb), and let

Λi(y) = Li(y)
L1−i(y) = P (f(si) = y)

P (f(s(1− i)) = y) .

From a Bayesian perspective, Λi(y) describes the degree to which we on seeing y should update
our a priori preference of b = i over b = 1−i. Alternatively, from a hypothesis testing perspective,
the likelihood ratio Λi(y) is the test statistic used to determine whether to reject hypothesis
b = i, and for simple hypotheses such as ours, the Neyman-Pearson lemma states that this test
is the most powerful. Consequently, we can interpret Λ(y) = maxi∈{0,1} Λi(y) to represent the
upper probabilistic bound on disclosure of b from y. The closer Λ(y) is to 1, the less we learn
about b from y. Differential privacy generalizes this bound to all databases and single record
differences.

Let a record be an element from a set V , and let two databases d1, d2 ∈ V n for some positive
integer n be neighbors if they differ at most in a single record.

Definition 6.1 (Differential Privacy [9]). A randomized algorithm f taking input from V n and
range W is ε-differentially private if

P (f(d1) ∈ S)
P (f(d2) ∈ S) ≤ exp(ε)

for any neighboring databases d1, d2 ∈ V n and measurable S ⊆W .

Worth noting is that in order to prove the above bound, the probabilities must be taken over
what we can control, which is the randomness in the algorithm as opposed to the randomness in
the data. Consequently, the above definition is independent of the data, and we cannot check
whether a given value was produced in a differentially private manner. Furthermore, as suggested
by the Bayesian view presented above, the differential privacy bound is valid independently of
any a priori knowledge.

If we want a particular function q computed from data d, it makes sense to choose sanitizer
f such that its output is concentrated around q(d). If we do this, f is a randomized version of
the query response algorithm for q. Much research into differential privacy goes into designing
ε-differentially private versions of query response algorithms that maximize the concentration
around q(d) for some q under the ε constraint. Consequently, the parameter ε represents a
“knob” that trades off usefulness (concentration) against the ability to infer something about an
individual, i.e., privacy.

Two further important properties that differential privacy has are: additive composition and
post-processing invariance. We restate these more formally as (for more in-depth discussion and
proofs see, e.g., [10]) follows.

Theorem 6.1 (Composition of differential privacy [8]). Let f1 and f2 be algorithms that are
differentially private with ε1 and ε2, respectively. Then, the query q(D1, D2) = (y, f2(y,D2)) for
y = f1(D1) on any two databases D1 and D2 is (ε1 + ε2)-differentially private.

The composition property means that the utility – privacy knob we have in the parameter ε
can be used to adaptively budget for accumulated privacy “expenditure” incurred over time
across different queries and databases. This is particularly important as Dinur and Nissim
showed in 2003 that there is only a finite and even small number of questions we can answer
about a database in a useful way before we start leaking potentially sensitive information [5]. A
nice example of how synergy by collaboration is achieved is given by Sarwate et al. [19].
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Theorem 6.2 (Post processing for differential privacy [10]). For any non-private randomized
algorithm g on databases, if f is ε-differentially private, then h(x) = g(f(x)) is ε-differentially
private.

The post-processing property means that we can use differentially private results in any
manner we wish without losing the privacy protection that differential privacy gives.

6.1 Revisiting Alice and Bob
Returning to the example involving Alice and Bob from Section 3, we can restrict Alice to
receive a database count (i.e., number of rows in a database for which some predicate is true)
as a variate from a Laplace distribution centered on the true count with standard deviation
proportional to ε−1. Adding carefully chosen Laplace noise to query results is known as the
Laplace Mechanism [9]. Due to the composition properties of differential privacy we can keep
track of the overall inference likelihood change that Alice accrues even when she uses multiple
queries. For Alice, the utility – privacy trade-off knob ε means that being relatively insensitive
to individuals does not imply poor population statistics.

6.2 Revisiting disclosure control
We can use the post-processing property to close the circle back to Section 4 and Definition 4.1
of disclosure in terms of an inference machine Mr for a property r.

Proposition 6.3 (Disclosure control by differential privacy). If f is ε-differentially private,
then for any neighboring databases d, d′ ∈ V n and any x, r and Mr,

P [Mr(x, f(d)) = r(x)] ≤ exp(ε)P [Mr(x, f(d′)) = r(x)].

Proof. Fix x, r, and Mr, and let g(y) = Mr(x, y). The theorem then follows directly from
Theorem 6.2.

In particular, Proposition 6.3 holds for any x such that x ∈ d but x 6∈ d′. This means that
someone wanting to recruit for a study can say that “any disclosure about you will become
at most exp(ε) more likely on you entering the study as we are only releasing ε-differentially
private computations.” Importantly, differential privacy simultaneously holds for all properties r,
including identity. Consequently, we do not need to take potentially subjective choices regarding
sensitivity of properties or attributes into account.

6.3 Limitations
While many types of questions about data can be answered well with differential privacy, there
are questions that are hard to answer with reasonable accuracy if we require differential privacy.
In general, this applies to queries q that are very sensitive to single point substitutions. Examples
of such include questions regarding connectivity in graphs; a single node deletion can change
connectivity radically. Theoretical impossibility results also exist, for example regarding useful
threshold queries on infinite domains [2]. What is not clear is whether these negative results are
exclusive to differential privacy or are inherent to a larger notion of “strong” privacy.
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7 Discussion
As we have argued above, anonymity and syntactic privacy will always leave doubt regarding
protection of privacy. This situation is not helped by empirical risk analyses in support of
syntactic approaches that implicitly only consider 1-to-1 relationships [11]. Defining privacy
in terms of randomization independent of the data avoids the problems with anonymity and
syntactic privacy, and allows answering questions regarding privacy risk quantitatively. However,
a challenge with this lies in that such definitions are incompatible with current information
exchange that depends on sharing data that has been anonymized according to some plausibly
checkable criterion. Such exchange supports the massive data broker industry and is crucial to
current secondary use of health information [24]. In this, abandoning a focus on anonymity and
syntactic privacy represents a potentially expensive paradigm shift.

The ability to quantify privacy risk is also relevant for public policy formation. It is a
requirement for making decisions based on rational risk – benefit analyses where we need to
quantify both sides reliably. Such rational support for privacy policy might become even more
important if trust in public management of population data erodes.

Worth noting when considering the above is that there is no necessary contradiction between
strong, quantifiable privacy and utility, in fact it can enable use that is otherwise difficult [7].
That said, modern approaches to data and informational privacy such as differential privacy are
not a technical panacea. It seems clear that protection of privacy will always require regulatory
and contractual means. Nevertheless, we should strive to continually identify applications and
areas where we can apply the strongest technical protections available.
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