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Abstract:  Reliability-based safety factors for metallic strip flexible pipes(MSFP) subjected to external pressure are 

calibrated in this paper. The partial safety factors of such pipes are obtained by introducing a target reliability index and 

using a combination of Monte-Carlo simulation and FORM. The relationship between the safety factors and the coefficient 

of variation for key basic variables as well as the impact of different distribution types for both the resistance and load 

effect parameters on the calibrated results are investigated. Recommended design safety factor for MSFP is given similar 

to the widely used design safety factor for conventional metallic pipes. The calibration process presented in this paper is 

relatively easy to understand and to carry out. This also applies to cases with multiple components and even requiring 

complex iterations in relation to the mechanical model. The results obtained here can provide some guidance in connection 

with manufacturing procedures at the initial design stage of the MSFP. 
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1. Introduction 

 
Metallic strip flexible pipes (MSFP) represent a novel 

category of composite pipes. Similar to classic flexible 

pipes, they are composed of an inner PE layer, an outer PE 

sheath, and helical metallic layers. The difference from 

other flexible pipes is that the metallic layers in MSFP are 

of a simple type. They do not contain the complicated 

interlocked carcass layer, the pressure armour layer, and 

the tension armor layers, which are the essential 

constituents in flexible pipelines (API-RP-17B, 2008). 

Instead, the MSFP only consist of helically wound steel 

strips. This simplified configuration makes MSFP much 

more cost effective due to the convenient manufacturing 

process. Its typical cross section and manufacturing 

process are shown in Fig.1. Compared with the widely 

applied reinforced thermoplastic pipes (RTP), MSFP do 

not only possess the good properties of RTP, but they can 

also contribute a lot to improve on-bottom stability 

properties because of their relatively heavier weight. 

Therefore, for shallow water applications, where the 

operating requirements are not so demanding, MSFP may 

represent a first choice of pipe concept. Although MSFP 

are designed primarily for shallow water applications, its 

collapse capacity with respect to external overpressure is 

still a great challenge due to the lack of a carcass layer. 

During operation, MSFP might face a number of 

uncertainties that also represent a challenge. This implies 

that application of design safety factors which are adequate 

in order to ensure a sufficient reliability level is of key 

importance. Hence, the reliability level of MSFP when 

subjected to external pressure needs to be quantified and 

kept at a high enough level. Appropriate design safety 

factors should be prescribed in order to reach this target 

safety level, but also in order to avoid unnecessary 

conservatism. 

 
Fig.1. Cross section and manufacturing process of MSFP. 

 

During the last decades, comprehend amount of 

research has been performed within the area of pipeline 

reliability analysis. Babu, et al. (2010) addressed the 

reliability associated with buried flexible pipe-soil systems. 

Tee, et al (2013) investigated the reliability level 

associated with underground flexible pipes. Extensive 

analyses relating to reliability of pipelines with corrosion 

defects can also be found in the existing literature 

(Ahammed, et al., 1996; Teixeira, et al., 2008; Leira, et al., 

2016; Larin, et al., 2016). As for reliability-based safety 

factors to be applied for pipeline design, Boyer, et al. (1997) 

undertook the calibration of design safety factors for a 

composite pipe in order to illustrate the different steps of 

the procedure. Leira, et al. (2005a, 2005b) proposed a 

structural reliability-based approach for fatigue analysis of 

flexible pipes and established the relationship between the 

fatigue safety factors and the inherent failure probability. 

Based on the above method, dos Santos, et al. (2012) 

performed a calibration of safety factors to be applied for 

fatigue analysis of flexible riser tension armours. Avrithi 

and Ayyub (2010) described the development of design 

equations according to the load and resistance factor 

design (LRFD) method for loads that cause primary stress 

for different levels of piping operation and illustrated the 



partial safety factors for different values of the target 

reliability index. In the same year, Machida, et al. (2010) 

illustrated the evaluation of partial safety factors for 

parameters related to flaw evaluation of pipes, and 

proposed the important matter which should be paid 

attention to in the setup of the safety factors used in flaw 

evaluation. Fairchild, et al. (2016) described the use of the 

previous full-scale tests data to develop a safety factor for 

strain-based engineering critical assessment of pipelines. 

Likewise, in combination with experimental data, Schillo, 

et al. (2017) suggested a reliability based calibration 

method of safety factors for the unstiffened composite 

cylinder shell relying on extensive measurements 

regarding the statistical characteristics of the geometrical 

and material properties of 11 previously tested composite 

cylinders.  

As MSFP is a relatively new type of pipe concept, its 

mechanical behavior is still not fully understood, not to 

mention the inherent reliability level during operation. 

According to the best knowledge of the authors, there are 

hardly any publications dealing with calibration of safety 

factors for MSFP. As the collapse pressure is of primary 

concern for the ultimate capacity of pipelines in operation, 

the safety factors associated with design to withstand 

external pressure are calibrated in the present paper. 

A simplified mathematical model for calculating the 

collapse pressure of MSFP can be obtained from recent 

work performed by Bai, et al. (2016a). For the classic 

analytical model associated with elastic buckling of a ring 

or a cylinder, the calculation is straightforward. However, 

the plastic behavior of the PE material has a significant 

impact on the collapse pressure. The nonlinearity of the PE 

material which is taken into account in Bai’s (2016a) 

capacity model improves the accuracy of the results, but 

also introduces some challenges in relation to the 

reliability-based safety factor analysis. The purpose of this 

paper is to propose a calibration process for MSFP by using 

a combination of Monte-Carlo simulation and FORM. The 

method was referenced and extended from the reliability 

analysis of RTP in Ref. (Bai, et al., 2017). Sensitivity 

analyses are conducted with respect to the key parameters 

which influence the values of the safety factors. The design 

safety factor for MSFP is recommended at the end of the 

paper. The factor is to be seen in light of the design safety 

factor of 1.5 (Zhu, 1993) which is widely applied for 

conventional pure metallic structures(pipes).  

 

2. Calibration process for safety factors 

 
Uncertainties are always involved when conducting 

strength evaluation and structural analysis. Before starting 

the calibration, the basic variables corresponding to the 

design parameters should be determined, and the 

uncertainties related to the prediction of resistance and 

load effect should be taken into account.  

As the MSFP is composed of many layers, the basic 

variables are too many to calculate the associated 

probability exactly when using full integration or general 

reliability methods. The accuracy and feasibility of the 

well-known first and second order reliability method 

(FORM/SORM) in estimating the results can be rather 

dubious in the present case. In addition, an iterative method 

is required in order to calculate the resistance of the MSFP. 

This makes it very demanding to apply FORM/SORM 

techniques directly. Here, the Monte-Carlo method can be 

regarded as a good approach in order to estimate the 

statistical properties of the resistance term. First, groups of 

random sample values of the basic variables related to the 

resistance of the MSFP can be generated according to their 

respectively stochastic models. By introducing all those 

generated variables and uncertainty factors into the 

resistance model, a corresponding array of the collapse 

pressure can be obtained. Through the statistical analysis, 

the distribution type and the corresponding parameters of 

the resistance term can be obtained. With the statistical 

models of the resistance and load random variables R and 

S being known, it is easy to calculate the failure probability 

fP  and the corresponding reliability index  :  

( )fp prob R S 
 

(1) 

-1

fP  （- ） (2) 

where, -1（）  is the inverse of the standard normal 

distribution function. As the limit state function has a 

simple form with statistical models established through the 

above simulation steps, the well-known methods 

mentioned above can now be used to calculated the 

reliability, such as FORM, SORM, Importance sampling, 

etc. Among these methods, FORM is particularly popular 

as it is easy to understand and efficient to apply. 

Furthermore, it can provide relatively accurate result. The 

reliability index in FORM is obtained by calculating the 

shortest distance from the origin point to the limit state 

surface in the standard normal space, and the 

corresponding point in the limit state surface is referred to 

as the design point. This point is also crucial in order to 

calculate the partial safety factors. The partial safety 

factors used in the load and resistance partial safety factor 

design (LRFD) equation are expressed as: 

/ R SR S    
(3) 

where, 
R   and 

S   are the partial safety factors for 

resistance and load, respectively. In order to reach the 

given target reliability index argt , the mean value of the 

resistance force 
R   can be adjusted while both R’s 

coefficient of variation 
R   and S’s distribution 

parameters 
S  , 

S   are kept unchanged. After reaching 

the target reliability level, the final coordinates of the 

design point are obtained, i.e. *R   and *S  . The partial 

safety factors can then be calculated through the following 

equations: 
*

R KR R   (4) 

*

S KS S   (5) 

where, 
KR  and 

KS  are the specified characteristic 

values of the resistance and load effect, respectively. The 

subscript K represents the given probability of exceedance 

that is aimed at. The characteristic value can be obtained 

from the particular fractiles of the relevant density 



functions. Usually upper and lower fractiles are applied. In 

this paper, a lower fractile for the resistance where K equals 

0.025 is employed, while for the load effect, an upper 

fractile that K equals 0.975 is selected in order to ensure a 

safe design. It should also be mentioned that the 

characteristic value 
KR  changes with the adjustment of 

R  during the calibration process. By multiplying the two 

partial safety factors, the “design safety factor” k can then 

be obtained as follows: 

R Sk    (6) 

A flow-chart which represents the calculation process for 

the safety factors is illustrated in Fig.2. 

 
Fig.2. Flowchart for the calculation process. 

 

3. Calibration for MSFP under external pressure 

 

3.1. Mechanical model 

 

The collapse pressure of MSFP when subjected to external 

pressure can be obtained from the formula given by Bai, et 

al. (2016a) as: 
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(7) 

where, i   and j are the layer number for steel 

reinforcement layers and PE tubes; iN  and jN are their 

respective number of layers. As it is reasonable to regard 

the steel strips as pure elastic in the buckling analysis (Bai, 

et al., 2016a), the contribution from the steel strip layers 

can be expressed as: 
3 3

, , 4i

cr steel ste i p iP nE bh L R
 

(8) 

where, n is the number of strips in the layer; 
pL   is the 

pitch; Este,i is the elastic modulus of the steel material; b 

and h are the width and thickness of the steel strip;   is 

a factor that depends on the lay angle and the moment of 

inertia for the section; iR is the mean radius of the ith layer.  

For the PE layers, the tangent modulus method can be 

applied in order to calculate their contributions: 

,
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(9) 

where, the superscript f refers to the fth increment step; Ej,t 

is the tangent modulus of the jth layer; Ij is the equivalent 

moment of inertia and Rj is the updated mean radius of the 

tube. 

The method for calculation of the PE tube’s capacity is 

illustrated in detail in Ref. (Bai, et al., 2015). The general 

idea can be summarized as follows: The assumed radial 

deformation is applied to the outside surface of the tube 

step by step. When the deformation is given at each step, 

the radial strain of the tube can be calculated, and the radial 

stress can then be obtained from the given stress-strain 

relationship of the PE material. The tangent modulus, the 

current layer thickness and its mean radius can then be 

updated. The compressive pressure (i.e. the assumed 

external pressure) is obtained by accumulating the stress in 

the radial direction. By substituting the updated tangent 

modulus and physical dimensions at each step into Eq. (9), 

the plastic buckling pressure under the assumed 

deformation is calculated. If the calculated plastic buckling 

pressure corresponding to the assumed deformation is 

equal to the compressive pressure, this pressure is 

registered as the ultimate strength for the tube. A diagram 

which illustrates the calculation process is shown in Fig.3. 

 
Fig. 3. Determination of plastic buckling pressure 

for the PE layers (Bai, et al., 2015). 

 

By summing the contributions from all the separate layers, 

the collapse pressure of the MSFP is obtained. The pipe’s 

performance function G on bearing the collapse pressure 

can be written as: 

G = R - S (10) 
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where, R represents the resistance capacity of the pipe Pcr , 

and S refers to the external pressure that the pipe is 

subjected to. 

 

3.2. Stochastic model 

 

The stochastic models for basic random variables 

associated with the resistance term are shown in Table 1. 

The structure and geometry of the MSFP studied in the 

present paper are the same as those in Ref. (Bai, et al., 

2016a). The distribution types of the geometrical and 

material properties of the pipe are determined according to 

the recommendations of DNV (1992). The subscript i and 

o of R in Table 1 represents inner and outer radius values, 

respectively. The first subscript represents the PE layer’s 

location while the second one represents the reference 

diameter. For instance, Rii indicates the inner radius of the 

inner PE tube, while Rio is the outer radius of the inner 

PE tube. 𝛼 is the winding angle of the steel strips and 

𝜇𝑃𝐸 is the Poisson’s ratio of the PE material.  

 

Table 1. Probability models for resistance basic variables 

Variable Unit Mean value CoV Prob.dist. 

Rii mm 25 0.01 N 

Rio mm 31 0.01 N 

Roi mm 33 0.02 N 

Roo mm 37 0.02 N 

b mm 52 0.01 N 

h mm 0.5 0.01 N 

𝛼  ̊ 54.7 0.03 N 

Este GPa 199 0.06 N 

𝜇𝑃𝐸 - 0.4 0.06 N 

Note: CoV means coefficient of variation; N in the last column 

refers to the Normal distribution. 

 

In order to take the PE material’s plasticity and parameter 

uncertainty into account, its properties can be modeled 

with nonlinear material parameters. The stress–strain 

relationship can be expressed as follows (Gibson, et al., 

2000): 

0= -
E

e 


（1 ）
 

(11) 

where  and   are the stress and strain;  is a constant 

which can be determined from a given experimental curve. 

The tangent modulus derived from Eq. (11) can be 

expressed as: 

0tE E e   
(12) 

The stress-strain curve of the PE material is in accordance 

with the one given in Ref. (Bai, et al., 2016a). The 

experimental data and the fitted curve are shown in Fig.4. 

The parameter   in Eq. (11) determines the trend of the 

curve. For simplicity, the PE material’s uncertainty can be 

modeled by regarding    as a normally distributed 

variable. The mean value of   is set to be 46 from the 

fitted curve and its coefficient of variation (CoV) is 

selected as 0.05 which can give a reasonable variation 

range for the resulting material curves.  

 

 
Fig.4. Stress-strain curves for the PE material. 

 

The collapse pressure calculated based on Eq. (7) is usually 

used as a lower limit value for the MSFP. The initial ovality 

of the pipe is not taken into account in this mechanical 

model, but contributes significantly to the model 

uncertainty. The distribution parameters of the model 

uncertainty can hence be selected according to the effect of 

the uncertainty associated with the initial ovality of the 

pipe. Based on the limited amount of measured data for the 

initial ovality of the MSFP in Ref. (Bai, et al., 2016b), its 

schematic density function can be drawn with a mean value 

which is found to be around 0.5%. Through comparison 

between variation of FEM calculation results, experiments 

and the ovality model, the mean value for the model 

uncertainty variable is selected as 1.05, and its 

corresponding CoV is chosen as 0.1. Its distribution 

function is still represented by a Normal model. 

By using Monte Carlo simulation and substituting all the 

sample values of the basic variables into the mechanical 

model of the resistance, a series of random sample values 

for collapse pressure is obtained. The probability 

distribution function (PDF) of the resistance pressure can 

be acquired by using curve fitting as shown in Fig.5. The 

statistical properties of the resistance variable obtained 

from the above stochastic models are listed in Table 2.  

  
Fig.5. Histogram and probability distribution of MSFP’s 

resistance pressure. 

 

Table 2. Statistical properties of resistance pressure for the 

MSFP 

Mean value Stand.dev. CoV Prob.dist. 

3.3576MPa 0.5656 0.1685 Normal 

 

According to Ref. (DNV, 1992), a Log-normal distribution 

can be used for the load variable. The mean value can be 
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determined based on the relevant water depth which is 

about 100 meters in the present study. The distribution 

parameters for the load effect are shown in Table 3. 

 

Table 3. Statistical properties of load effect 

Mean value Stand.dev. CoV Prob.dist. 

1MPa 0.1 0.1 Log-normal  

 

3.3. Analysis and discussion of the results  

 

The safety factors are closely related to the target reliablity 

index 
t arg  , and their relationships are shown in Fig.6. 

From this graph, it can be seen that, R  increases with 

the increase of 
t arg  while the value of S   is almost 

unchanged. This is due to the fact that when increasing the 

target reliability, the mean value of the random variable R 

has to increase as well as its corresponding characteristic 

value. However, the design value calculated in this process 

does not change that much, resulting in an obvious increase 

of R . It can also be noticed that, the increasing trend of 

k and 
R  in this case exhibit a parabolic apperance, and 

the growth rate is particularly high when t arg  is large. 

Generally speaking, the larger t arg   is, the greater the 

“design safety factor” k (see Fig.6) will be, which implies 

a smaller value of the failure probablity for the pipe. The 

relationship between the design safety factor k and the 

reliability of the pipe (which is defined as 1.0 minus the 

failure probability) is shown in Fig.7. 

 

 
   Fig.6. Safety factors vs target reliablity index. 

 

 
Fig.7. Design safety factor k vs reliability (i.e. 1.0 minus 

the failure probability) of the MSFP. 

 

As the innermost PE layer gives the highest contribution to 

the collapse pressure in present pipe, the effect of the 

variation of its inner radius on the design safety factor is 

investigated further. Although the initial ovality of the 

MSFP does not play that a significant role with respect to 

the ultimate strength as it does for pure metallic pipes, it 

still has a relatively dominating effect (as compared to 

other factors). Thus, the effect of changing the CoV of the 

two above-mentioned basic variables are investigated.  

When a target reliability index is given, the design safety 

factor k would most likely increase with the CoVs of the 

basic variables related to the resistance term. In this part, 

t arg   is selected as 4.0 to study the effect. The actual 

coefficient of variation for the ultimate strength of the 

MSFP would need to be controlled during the 

manufacturing process itself. Therefore, the analysis is 

mainly focused on the CoV of the resistance (i.e.
R ), 

where values below 0.25 are considered, as the occurrence 

of a 
R  higher than 0.25 is hardly possible in reality. The 

relationship between 
R   and the CoVs for the model 

uncertainty (i.e.
mod ) and for the inner radius (i.e.

ii ) are 

shown in Fig.8.  

  

 
Fig.8. Effect of CoV representing uncertainties (related to 

model and inner radius) with respect to value of 
R . 

 

From Fig.8, it is seen that the inner radius uncertainty has 

the highest influence on 
R . Variation of the inner radius 

does not only have an effect on the mean radius of the inner 

tube, but also on its thickness, which are the two key 

aspects that determine the collapse capacity of the tube. 

The relationship between the design safety factor k and the 

CoV for both the model uncertainty and the inner radius 

are shown in Fig.9(a) and Fig.9(b). Not unexpectedly, the 

design safety factor k increases with the increase of 
mod  

and 
ii , and the curve shows an exponential format. If k 

is kept as constant while the CoV of the related uncertainty 

increases, the changing trend of the reliability index β 

can also be helpful in estimating the effect. It can be seen 

from Fig.9(a) and Fig.9(b) that with a constant k value, β 

decreases with the increase of 
mod  & 

ii .  
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Fig.9. Design safety factor k and the reliability index β 

vs CoV of uncertainty related to: (a)
mod  (b)

ii . 

 

It is of interest to study the combined effect of those two 

factors 
mod  and 

ii , so the variation of k with different 

joint CoVs for both the two variables is illustrated in Fig.10. 

As shown in the mesh plot, the design safety factor k 

increases with 
mod  and 

ii . Taking a close look on the 

graph, it is observed that an interesting phenomenon occurs: 

the design safety factor k almost pops up abruptly for the 

highest values of the coefficients of variation. This further 

shows that when 
mod  and 

ii  are both relatively large, 

the increasing speed of the design safety factor k grows 

dramatically, every subsequent small increment for either 

mod  or 
ii  will result in several times enlargement of k. 

Meanwhile, the design safety factor k is closely related to 

the production cost of the pipe. In order to lower costs, the 

coefficient of variation for the uncertainties, especially for 

the inner radius uncertainty of the pipe should be 

controlled strictly during the manufacturing process.  

 

 
Fig.10. Design safety factor k vs 

mod  and 
ii . 

 

4. Effects of different distribution types 

 

As the distribution types of the resistance and load effect 

might also have some impact on the calculated results, the 

three mostly applied distribution types are selected in order 

to study this sensitivity. The subtitles of the distribution 

types in this part are abbreviated, where N represents the 

Normal distribution while LN represents the Log-normal 

model. The first abbreviation in the subtitles refers to the 

resistance distribution while the second one refers to the 

load effect distribution.   

 

4.1. N-N distributions 

 

When the normally distributed parameters for resistance 

and load effect are known, it is easy to calculated the 

reliablity index:    

   
2 2

( ) /R S R R S S        
 

(13) 

With the target reliablity index t arg  given, which can be 

regarded as a known quantity in Eq. (13), 
R   can be 

solved out from this quadratic equation. However, there are 

two roots of this equation, and the selection of the value 

should be paid special attention. Generally, 
R  should be 

larger than that of 
S . In our case, the mean value for the 

resistance is selected as: 

    2 2 2 2 2 2

arg arg arg[ 1 1 1 1] / 1R S t R t S t R            
 

(14) 

The design point of the resistance can be calculated as: 
* 2 2 2

t arg / ( )R R R R SR          
(15) 

and the characteristic value for the normally distributed 

resistance is expressed as: 

(1 )K R R RR K    
(16) 

where, 
RK  is the parameter that determines the particular 

fractiles of the random variable. In the present case, 1.96 

is selected in order to guarantee that at least 97.5% of the 

population is expected to fall above or below this fractile. 

By substituting Eqs. (15) & (16) into Eq. (4), the partial 

safety factor for the resistance can be obtained as: 
2 2

arg(1 ) / 1- / (1 / )R R R t R S RK         
 

(17) 

By using the same method, 
S  can be expressed as: 

   2 2

arg1 / / 1 1S t S R S S SK          
 

(18) 

where 
SK  has the same meaning as that of 

RK , and the 

expression for SK is: 
(1 )K S S SS K    

(19) 

As the critical design value for R and S in this study 

actually equals to each other, the design safety factor can 

be calculated as: 

   / 1 1R S K K R R R S S Sk R S K K           
(20) 

By subsituting 
R   into the above equation, k can be 

expressed in a more straigthforward format: 

    

  

2 2 2 2

arg arg
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(21) 

The relationships between the safety factors and the target 
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reliability index are shown in Fig.11. Compared with the 

results obtained for the N-LN distributions in Part 3.3, they 

almost exhibit the same trend. This implies that, the slight 

distribution difference between the load variables might 

not make a big difference to the calibrated safety factors 

when their resistance variables are both normally 

distributed.  

 

 
Fig.11. Safety factors vs target reliability index. 

 

As the expressions for 
R  and 

S  are not as intuitive as 

that for k, and in order to have a more visual display of the 

variation as a function of 
R  and 

S , the corresponding 

mesh plots are illustrated in Figs.12, X(a) & X(b). Note 

that the target reliability index is still assumed to be 4. For 

R , it seems that 
R  does not make a big difference to its 

value, while for 
S  , it first shows an increasing trend 

when 
S   is small, and then a negative trend when 

S  

reaches a certain value. With the increase of 
S  , 

R  

increases while 
S   decreases most of the time. Even if 

S   is decreasing in a certain region, the design safety 

factor k will still remain increase as shown in Fig. 12, X(c). 

 
X(a) 

 

 
X(b) 

 

 
X(c) 

 

Fig.12. For a given value of the reliability index equal to 

4.0, X(a), X(b) and X(c) show the mesh plots of 
R , 

S  

and k vs 
R  & 

S , respectively. 

 

4.2. LN-LN distributions 

 

According to manufacturing experience, the distribution 

type of the pipe’s initial ovality is also likely to be Log-

normal. By changing the statistical model of the model 

uncertainty while keeping the other basic variables 

unchanged, the distribution type for the whole resistance 

can also be changed. In this case, R and S are both assumed 

to follow Log-normal distribution.  

When using the function lognrnd(MU,SIGMA) in Matlab 

to generate the random values, it should be paid attention 

to that, MU and SIGMA are the mean and standard 

deviation of the associated transformed normal variable. 

Therefore, with the mean value    and coefficient of 

variation    of a Log-normal distribution known, they 

should first be transformed using the following equations: 

2

ln = ln( 1 )
iX    

(22) 

2

ln ln(1 )
iX    

(23) 

where, the obtained ln iX  and ln iX   are the input 

parameters that correspond to MU and SIGMA. As the 

calibration process for LN-LN distributions is also quite 

straightforward, some derivations can be obtained directly. 

With the target reliablity argt  known, the logarithmic 

mean value of resistance ln R  can be derived as: 
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2 2 2

ln ln arg ln ln( )R S t S R      
 

(24) 

where, 
ln S , ln S  and ln R can be calculated from Eqs. 

(22) and (23) when their corresponding mean values and 

coefficients of variation are given. The relationship 

between the design safety factor k   and the target 

reliablity argt  can be expressed as: 

2 2 2

t arg ln ln ln lnexp( ( ) )S R R R S Sk K K       
 

(25) 

It can be seen from Eq. (25) that, the value increases with 

t arg   in an exponential way, and this is verified by the 

results from the calculations which are shown in Fig.13. 

 
Fig.13. Safety factors vs target reliability index. 

 

As seen from Eq. (25), ln S  and ln R , which are directly 

related to 
S  and 

R , are the key factors that affect k. In 

turn, 
R  is closely related to the CoV of the inner radius 

and model uncertainty. The relationship between the 

design safety factor k and 
mod  as well as 

ii  are shown 

in Fig.14, where the target reliability index is still kept as 

4. This mesh plot appears to be more like a portion from a 

concave surface as compared with the one in Fig.10. The 

larger 
mod  and 

ii  are, the larger the growth rate for the 

design safety factor becomes.  

 

 
Fig.14. Design safety factor k vs 

mod  and 
ii . 

 

The combined effect of 
R   and 

S   are illustrated in 

Fig.15. When there is no uncertainty associated with both 

the load effect and resistance variables, the design safety 

factor equals 1. Generally, the design safety factor 

increases for increasing values of 
R  and 

S . However, 

it is noted that the values at the left and right corner points 

are higher than the maximum point along the diagonal. 

This may seem peculiar, but it should be kept in mind that 

the reliability index is constant throughout the considered 

ranges of the coefficients of variation. This artifact is 

accordingly due to the changing positions of the 

characteristic values for the resistance being different in 

different regions of the diagram. 

 
 

Fig.15. Design safety factor k vs 
R  and 

S  for a 

given value of the reliability index equal to 4.0. 

 

4.3. LN-Gumbel distributions 

 

The Gumbel distribution is frequently used for load effects, 

in particular when extreme values are considered. For the 

Gumbel distribution, distinction should be made between 

minima and maxima extreme value distributions. In our 

case, the maxima should be modeled, and the density 

function applied during the FORM calculation process is 

expressed as: 
( )

max

( )( ; , )
x ux u e

Xf x u e
 

     
(26) 

where the two distribution parameters can be obtained 

from the following expressions: 

6    (27) 

u      (28) 

where,   is the standard deviation of the random 

variable;   is the Euler constant. The version used in 

Matlab is suitable for modeling minima, however, the 

mirror image of this distribution can be used (see Eqs. (29) 

and (30)) to obtain the inverse of the maxima cumulative 

distribution function in order to acquire its corresponding 

characteristic value SK when calculating the safety factors.  

max min
( ; , ) ( ; ,1/ )X Xf x u f x u     (29) 

max min
( ; , ) 1 ( ; ,1/ )X XF x u F x u      (30) 

The results in Fig.16 show that the variations of R  and 

S  are different from the above three cases. In this case, 

the curve for R  changes a little while the one for S  

increases significantly, which is in contrast to the other 

cases. This is due to the obvious increase for both KR  

and the design values when the target reliability index 

increases, resulting in a small change of their ratio. 

Anyhow, the design safety factor k is monotonously 

increasing as for the above three cases.  
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Fig.16. Safety factors vs target reliability index. 

 

4.4. Comparison of results 

 

Comparison between the results which are obtained by 

application of different distribution types are shown in 

Fig.17 and Fig.19. It can be observed from Fig.17 that, in 

the whole process, the design safety factors which 

correspond to the N-N distributions have the highest values, 

while the ones for the LN-Gumbel distributions have the 

lowest values. Different distribution types bring about 

different tendencies of the calibrated results, and this 

phenomenon can be explained as follows:  

Suppose the probability distribution functions for the 

resistance and load variables are fR(r) and fS(s), respectively, 

and the failure probability of the pipe is expressed as: 

0
( ) ( ) [1 ( )] ( )f R S S R

r s

P f r f s drds F r f r dr




       (31) 

where FS(ˑ) is the cumulative distribution function of the 

load effect. Based on a geometrical interpretation of Eq. 

(31) which is shown in Fig.18, the failure probability of the 

pipe equals the enclosed area under the two curves of 1- 

FS(r) and fR(r). The different distribution types can result 

in different shapes and sizes of the overlapping area for the 

curves which correspond to 1- FS(r) and fR(r). The larger 

the area is, the higher the failure probability will be. 

Accordingly, this would be reflected in higher values of the 

design safety factors which are applied in order to reach 

the same target reliability level. Taking the N-LN and LN-

LN cases as examples, the density function for normally 

distributed resistance has far higher values than that of the 

Log-normal for low resistance values (provided they have 

the same mean value and CoV), which results in a larger 

overlap area and accordingly higher values of the design 

safety factors. It should also be noticed that for low values 

of the target reliability index, the discrepancy between the 

design safety factors for the four different cases are not that 

significant. With the increase of the reliability index, the 

discrepancy gets more and more pronounced. This 

demonstrates that when the reliability level is demanding, 

the selection of the distribution types for both the 

resistance and load effect should be paid special attention 

to in order to obtain trustworthy and accurate results.  

 
Fig.17. Comparison of design safety factor k vs target 

reliability index for different distribution types. 

 

 
Fig.18. Geometrical expression for Eq. (31). 

 

Fig.19 shows the design safety factor k vs reliability (i.e. 

1.0 minus the failure probability) for the four cases. When 

the design safety factor reaches to a certain value, it will 

not make a big difference on the reliability of the pipe, as 

the failure probability of the structure reaches smaller and 

smaller values. With respect to practical engineering, this 

suggests that selecting too high values of the design safety 

factors lead to unnecessary conservatism. 

 
Fig.19. Design safety factor k vs reliability (i.e. 1.0 minus 

failure probability) for different distribution types. 

 

5. Design Safety factor for MSFP relative to 1.5 

design safety factor for metallic pipes 

 
Even though the applied statistical models are selected 

based on engineering experience and design specifications, 

the lack of statistical data for the MSFP can still make a 

difference with respect to the safety factors. In the present 
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section, the design safety factor for the MSFP which 

implies the same reliability level as for metallic pipes with 

the widely used safety factor of 1.5 (Zhu, 1993) is 

considered. 

Since the Log-normal distribution for the resistance and 

load effect are both highly recommended by the relevant 

specifications, the combination of LN-LN distributions is 

accordingly assumed at present. The load effect LN(
S ,

S  ) applied for the metallic pipe and the MSFP are 

assumed to be the same, while their resistance pressures 

are assumed to follow different Log-normal distributions, 

with LN(
0R ,

0R ) for the metallic pipe and LN(
1R ,

1R ) 

for the MSFP. With the distribution parameters given, the 

reliability index for the metallic pipe in this specified 

working condition can be obtained from the following 

equation: 

0

0

0

2
2 2

2

1
ln ln (1 )(1 )

1

R S
R S

S R

 
  

 

 
      

 

 
(32) 

The target reliability index for MSFP can then be defined 

as the one acquired from Eq. (32) in order to reach the same 

reliability level. Substituting the corresponding statistical 

parameters and the calculated reliability index into Eq. (25), 

the design safety factor k1 for the MSFP can be obtained.  

As the direct expression for k1 is complicated, the design 

safety factor for the metallic pipe k0 can be introduced into 

the expression to simplify its format and also to illustrate 

their relationship. As the target reliability index for 

metallic pipes in this specified condition is just assumed to 

be the corresponding calculated result from Eq. (32), the 

formula for k0 can be written as:  

 0

0

0

2
2 2

0 2

1
exp [ ln(1 ) ln(1 )]

1

R S
f R S

S R

k K
 

 
 


   


 

(33) 

where, KR and KS are both assumed to be equal to a 

common value Kf for simplicity. Through formula 

transformation and simplification, k1 can be expressed as: 

1 0 0exp ln ( ) 1f f

B C
k k k K A C K A B

A C

                    

(34) 
where, A, B, C are the associated variances of the normal 

variables (which represent the logarithm of the lognormal 

variables) and are expressed as: 

0

2ln(1 )RA  
 

(34a) 

1

2ln(1 )RB  
 

(34b) 

2ln(1 )SC  
 

(34c) 

The coefficient of variation for resistance of metallic pipes 

is typically selected to be 0.03 (Jones, 1978), and for load 

effects the value is usually around 0.1. The relationship 

between the CoV of the resistance of the MSFP and the 

design safety factor is shown in Fig.20. The abscissa in this 

graph starts at the value of the CoV which equals to that of 

the corresponding steel material, and it can be seen that the 

design safety factor for the MSFP increases with 
1R  in 

an exponential manner. For the MSFP, 
1R  as calculated 

according to the suggested statistical model is about 0.17. 

The corresponding design safety factor is then seen to be 

around 2. Thus, this value could be recommended as the 

one for MSFP’s design.  

 
Fig.20. Design safety factor for MSFP relative to 1.5 one 

for metallic pipe with different CoVs for resistance. 

 

6. Conclusions 

 
In this paper, safety factors for metallic strip flexible pipes 

subjected to external pressure are calibrated, and the 

calibration process is illustrated in some detail. The 

reliability-based method which is presented serves as a 

useful tool in order to calibrate the safety factors for 

composite pipes. This applies in particular to cases where 

there are a large number of random variables and where 

iterations in relation to the mathematical model are 

required. The following conclusions can be drawn: 

1. The design safety factors are closely related to the 

target reliability index and the CoV of basic variables. 

Generally, the design safety factors increase with the 

target reliability index and the CoVs of the random 

variables. For MSFP, the CoV of the pipe’s inner 

radius plays a particularly important role in affecting 

the calibrated results, and its scatter should be 

controlled carefully during the manufacturing process. 

2. When the reliability level is not that demanding, the 

distinction between the results calibrated by 

application of different distribution types are not that 

remarkable. However, when the MSFP is required to 

reach a high target reliability level, the distribution 

types of the random variables should be selected 

carefully in order to obtain a much more trustworthy 

result. 

3. A design safety factor 2 is recommended to be used 

for design of MSFP in practical engineering. This is 

found to provide the same reliability level as that for 

conventional metallic pipes for which a design safety 

factor of 1.5 is widely applied.  

The random variables selected in this paper might not be 

the optimal choice, and more data collection and more 

statistical analysis relating to the uncertainty modeling 

should be conducted. As the full statistical scatter 

associated with MSFP’s collapse pressure has not yet been 

sufficiently tested to the present day, there is still a lack of 

verified statistical models to be applied for the purpose of 

calibration. If the scatter of MSFP’s strength can be 

controlled or improved during manufacturing in the near 

future, the magnitude of the design safety factor 
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recommended above can be reduced. More suitable values 

can then be applied in order to avoid unnecessary 

conservatism. 
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