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Abstract

We propose a novel Gaussian kernel based integration model (GKIM) for anomalous entities detection and localization
in pedestrian flows. The GKIM integrates spatio-temporal features for efficient and robust motion representation to
capture the distinctive and meaningful information about the anomalous entities. We next propose a block based
detection framework by training a recurrent conditional random field (R-CRF) using the GKIM features. The trained
R-CRF model is then used to detect and localize the anomalous entities during the online testing stage. We conduct
comprehensive experiments on three benchmark datasets and compare the performance of the proposed method with
the state-of-the-art anomalous entities detection methods. Our experiments show that the proposed GKIM outperforms
the compared methods in terms of equal error rate (EER) and detection rate (DR) in both frame-level and pixel-level
comparisons. The frame-level analysis detects the presence of an anomalous entity in a frame regardless of its location.
The pixel-level analysis localizes the anomalous entity in term of its pixels.
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1. Introduction

According to Davila et al. [1], the population growth
and traffic congestion in urban areas are rapidly increas-
ing which makes the safety of pedestrians a key con-
cern. Therefore, it is important to analyze the pedestrian
flows to facilitate smart video surveillance for ensuring
pedestrian safety. For this purpose, an important task to
ensure pedestrian safety is the detection and localization
of anomalous entities in the pedestrian flows which can
be used to warn against the possible risks.

The ambiguity of the term anomalous entity sets its
own challenges in the effort to identify it. There may
have different interpretations varying significantly de-
pending on the given context. In this paper, the anoma-
lous entity refers to the moving object exhibiting mo-
tion patterns in the pedestrian flow that do not conform
to the expected behavior and may warrant special atten-
tion or action. These entities present infrequent behav-
ior compared with all other behaviors. Similar defini-
tions are presented by a number of papers that addressed
the problem in recent years [5][6][7][8][21][9]. We con-
sider that anomalous entities are rare in the pedestrian
flow and they are different from the majority. Exam-
ples of anomalous entities include a pedestrian moving
in unusual direction against general flow, a passenger

avoiding payment at bus/train station, a bicycle passing
through a crowd, a vehicle depicting illegal motion at
an intersection, two vehicles approaching within a dan-
gerously close vicinity of each other and an abandoned
object in pedestrian flows [10][11]. Moreover, sudden
changes in velocity, like an abrupt increase of magni-
tude and the dispersion of individuals in the pedestrian
flow indicates that something unusual and potentially
dangerous may have occurred. The focus of this paper is
anomalous entities detection and localization associated
with pedestrian flows only. We consider each moving
object as part of the pedestrian flows and non-moving
objects or groups of pedestrians as a background.

A number of computer visoin methods for video
surveillance [4][5][6][7][8][9] have previously ad-
dressed anomalous entities detection. Most of these
methods assume that the pedestrian flows are very con-
sistent in motion. In fact, this assumption is not real-
istic since the pedestrian flows may be scattered and
sparse. For example, the frequency and crowdedness
of the pedestrians at a certain location may be higher
in the official hours and lower during the weekends and
later hours. Furthermore, the problem of detecting and
locating anomalous entities in the pedestrian flows is
very challenging due to the appearance variations of in-
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dividual entities, temporal variations, and view angle
changes.

To address the above mentioned challenges, we
present an efficient method for anomalous entities de-
tection and localization in pedestrian flows that does not
rely on the assumption of pedestrian flow consistency.
We propose a novel Gaussian kernel based integration
model (GKIM). Our GKIM is based on a Gaussian ker-
nel based integration of local difference binary patterns
(LDBP) [12] and nested motion descriptor (NMD) [13].
We consider the LDBP since it is characterized by the
compact representation of spatial information while the
NMD is employed to encode temporal information. The
distinguishing feature of NMD is the representation of
motion information without requiring an explicit optical
flow estimate. Furthermore, we exploit both LDBP and
NMD simultaneously to integrate their strengths into a
unified model. We propose a Gaussian kernel based
approach to integrate the spatio-temporal features by
transforming the trace and the determinant of our fea-
ture Jacobian matrix into a distinctive space. There-
fore, the GKIM represents high quality description of
anomalous entities in term of most distinctive informa-
tion. GKIM models the evolving relative spatial rela-
tionships and captures a specific nuance of the underly-
ing motion considering temporal variations. Due to the
aforementioned properties, our proposed GKIM is inde-
pendent of the scattered, sparse, and dense nature of the
pedestrian flows.

The complete flow of our proposed method is shown
in Fig. 1. In order to detect and localize anoma-
lous entities, we divide each video frame into blocks of
equal size where the spatio-temporal features for each
block are extracted. To this end, the features are used
as a-priori for recurrent conditional random field (R-
CRF) [14] training which detect and localize anomalous
entities during the testing stage. We propose to use the
R-CRF since it can deal efficiently with the label bias
problem [14] by integrating the traditional conditional
random field (CRF) [15] and recurrent neural networks
(RNN) [16]. The main contributions of this paper are:

1. To the best of our knowledge, we are the first to
propose the GKIM model for anomalous entities
detection and localization. One of the major at-
traction of the GKIM is its capability to model
anomalous entities distinctively in pedestrian flows
representing different degrees of scatteredness and
sparseness. Moreover, we are the first to explore R-
CRF for entities classification in pedestrian flows.
The R-CRF has never been used before for pedes-
trian flow analysis.

2. We extensively evaluate the proposed method on
three standard datasets and compared to 10 state-
of-the art methods. Our results show that the
proposed method significantly outperforms all 10
state-of-the-art methods.

3. We categorize state-of-the-art methods and present
a comprehensive survey in this area in the next sec-
tion.

To assess the proposed GKIM model, we perform ex-
tensive experiments on three benchmark datasets and
compare the results with 10 state-of-the-art methods:
the mixture of dynamic texture (MDT) [4], the mix-
ture of optical flow (MPPCA) [17], the social force
(SF) [3], the multiple location monitors (MLM) [18],
the clustering and sparse coding (CSC) [7], the holis-
tic features (HF) [8], hierarchical feature representation
(HFR) [19], the pedestrian energy map (PEM) [20], the
statistical histograms model (SHM) [21], the change de-
tection model (CDM) [9]. Our results show that GKIM
achieves superior anomalous entities detection. More-
over, our proposed GKIM outperforms the compared
methods in both frame-level and pixel-level analysis
in terms of equal error rate (EER) and detection rate
(DR). The frame-level analysis detects the presence of
an anomalous entity in a frame regardless of its location.
The pixel-level analysis localizes the anomalous entity
in term of its pixels.

The rest of the paper is organized as follows. In Sec-
tion 2, an overview of related work is provided. The
proposed method for the detection and localization of
anomalous entities is presented in Section 3. Experi-
mental results on the benchmark datasets are shown in
Section 4 and the conclusion is presented in Section 5.

2. Related work

Anomaly detection and motion segmentation meth-
ods are often correlated with each other, therefore, we
discuss both by dividing them into three related cate-
gories. Methods considering only segmentation are cat-
egorized under the term motion segmentation and meth-
ods considering only anomaly detection are categorized
under the term anomaly detection. Similarly, methods
targeting both segmentation and anomaly are catego-
rized under the term motion segmentation and anomaly
detection.

In the motion segmentation, Devanne et al. [22] an-
alyze human behavior by decomposing the full motion
into short temporal segments representing elementary
motions. Lai et al. [23] integrate motion information
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Figure 1: Illustration of the proposed GKIM method. In the training phase, we first compute the Gaussian kernel
based integrated spatio-temporal features for distinctive representation of frame patches. An R-CRF model is then
learned in supervised manner for separating normal entity patches from anomalous ones. In the testing phase, the
learned R-CRF model is used to classify test video patches that are described by the GKIM features.

from a video sequence to construct a sparse affinity ma-
trix. Then a spectral clustering technique is applied
on the sparse affinity matrix to segment different mo-
tions. Hussain et al. [24] investigate strategies for ef-
ficient pixel wise object class segmentation of indoor
scenes. They combine both pretrained semantic features
and geometric features. Poling et al. [25] use nonlin-
ear embedding of two-view point correspondences into
a 9-dimensional space and identify the different motions
by segmenting lower-dimensional sub-spaces. Qin et al.
[26] combine the region saliency based on entropy rate
super-pixel with the affinity propagation clustering al-
gorithm to get seeds in an unsupervised manner, and
use random walks method to obtain the segmentation
results. Zhong et al. [27] perform moving objects seg-
mentation and matting by integrating a background sub-

traction and an alpha matting technique via a heuristic
seeds selection scheme. Wu et al. [28] propose a convex
texture image segmentation model by extracting Gabor
features and gray level co-occurrence matrix, which are
fused together to effectively construct a discriminative
feature space. Kumar and Bhatnagar [29] track multi-
ple objects by detecting object head considering both
colour and texture properties of videos. Li et al. [30]
deal with challenges in the motion segmentation prob-
lem, including perspective effects, missing data, and un-
known number of motions. The 3-D motion segmenta-
tion is first formulated from two perspective views as a
subspace clustering problem. Then, they combine the
point correspondence information across multiple im-
age frames via a collaborative clustering stage. Mum-
taz et al. [31] propose a motion segmentation approach
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that consists of a set of location-specific dynamic tex-
ture components, for modeling local background mo-
tion, and a set of global dynamic texture components,
for modeling consistent foreground motion. For this
purpose, an EM algorithm is derived and spatial con-
straints are applied using Markov random field.

In the anomaly detection category, Marsden et al. [8]
propose a set of new features for anomaly detection in-
cluding crowd collectiveness and mean motion speed.
Li et al. [7] propose unsupervised statistical framework
for anomaly detection. A clustering and sparse cod-
ing technique is then used to learn global activity pat-
terns and local salient behavior patterns. Mahadevan et
al. [4] detect anomaly in terms of non-pedestrian en-
tities considering mixtures of dynamic textures (MDT)
that uses joint modeling of appearance and dynamics
of the scene. Mehran et al. [3] detect abnormal events
in terms of escape panics by exploiting the social force
model (SFM). Li et al. [7] and Xu et al. [6] detect
anomalies in terms of panic situation and circulation of
non-pedestrian entities, by considering global and lo-
cal spatio-temporal patterns. Kompatsiaris et al. [33]
introduce histograms of oriented swarms combine with
histograms of oriented gradients. Li et al. [34] pro-
pose a joint detector of temporal and spatial anomalies
based on a video representation that accounts for both
appearance and dynamics, using a set of mixture of dy-
namic textures models. Spatial and temporal anomaly
maps are defined at multiple spatial scales that act as
potentials of a conditional random field that guarantees
global consistency of the anomaly judgments. Wu et al.
[35] introduce the concepts of potential destinations and
divergent centers to construct the corresponding class-
conditional probability density functions of optical flow.
The identified divergent centers indicate possible loca-
tions at which the unexpected events occur. Krausz et
al. [32] detect motion patterns based on optical flow
that characterize crowd behavior in stampedes. Kim and
Grauman [17] exploit a mixture of probabilistic PCA
models to characterize motion patterns in the local vol-
umes. Furthermore, a global inference by incorporat-
ing a Markov random field model is applied to detect
anomalies locally. Adam et al. [18] propose multiple
local monitors to collect low-level statistics for anomaly
detection. The measurements of all the monitors are
combined together to make a final decision about the
existence of an unusual event. Cheng et al. [19] de-
tect anomaly using local feature around interest points
in different scales. Yi et al. [20] exploit different energy
maps to model the behavior of pedestrians. Zhang et al.
[21] propose statistical histograms and support vector
data description to detect anomalous entities. Almeida

et al. [9] consider 2D motion histograms to identify
anomalies in different crowd scenes.

In the motion segmentation and anomaly detection
category, Ullah et al. [36] segment crowd motion by
fusing the information from a correlation technique and
a multi-label optimization technique. The orientation
information on top of the segmentation process is col-
lected to detect an abnormal situation as a deviation
from what has been observed beforehand. Mehran et
al. [37] propose streaklines to cluster coherent regions
on the basis of their pixel similarities. Then abnormal
behaviors are detected as large deviations from the ex-
pected based on the potential functions which are scalar
functions calculated from the streaklines. Ali et al. [38]
propose a Lagrangian coherent structure (LCS) to seg-
ment the flow using the finite time lyapunov exponent
(FTLE) [39]. The FTLE is used to extract the bound-
aries between different flow regions in the scene to per-
form motion segmentation. Furthermore, the rise of a
new LCS in the flow model the detection of the instabil-
ity in the flow.

Table 1 presents the methods covered in this section
in terms of category, features, and models used for rep-
resenting pedestrian motion segmentation, anomaly de-
tection, as well as the datasets on which these methods
are tested.

3. Proposed method for anomalous entities detec-
tion and localization

The proposed GKIM method consists of two main
steps namely Gaussian kernel based feature integration
and R-CRF model based classification. These steps are
explained in detail in the following sections.

3.1. Gaussian kernel based integration

We propose a Gaussian kernel based integration of
local difference binary patterns (LDBP) [12] and nested
motion descriptor (NMD) [13].

For spatial information, we exploit the local dif-
ference binary pattern (LDBP), which achieves much
higher spatial distinctiveness compared to previous bi-
nary descriptors [40][41][42]. For this purpose, both av-
erage intensity Iave and first-order gradients, Dx and Dy,
of grid blocks are used within a frame patch as depicted
in Fig. 2. The average intensity represents the direct
component of a grid block. However, the average inten-
sity is too coarse to measure the intensity changes inside
a grid block. In contrast, image gradients are more re-
silient to photometric changes than average intensities
and can also encode intensity changes inside a grid such
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Table 1: State-of-the-art methods for motion segmentation and anomaly detection. The ’Type’ column shows the type
of the anomaly that the reference methods detect. The methods with no descriptions in the ’Type’ column are targeting
only motion segmentation.

Ref. Category Features Model Type Dataset

Devanne et al. [22] depth Dynamic naive – MSRC 12
Bayes classifier Cornell activity 120

Lai et al. [23] Trajectories Spectral – Hopkins 155
clustering 62 clip

Hussain et al. [24] Semantic and CNN – NYU v2
geometric features

Poling et al. [25] Motion Subspace Global dimension – RAS
segmentation clustering minimization

Qin et al. [26] Superpixel Region – BSD300
saliency Free 1000

Mumtaz et al. [31] Dynamic Markov – FBDynScn
textures random field

Marsden et al. [8] Mean GMM Escape panic UMN
motion speed SVM violent Violent flows

Li et al. [7] Motion Clustering and Non-pedestrian entities UCSD
sparse coding escape panic UMN

Mehran et al. [3] Motion Social force Escape panic UMN
magnitudes model

Krausz et al. [32] Motion and Dense Stampedes Loveparade
orientation optical flow video footage

Mahadevan et al. [4] Dynamic Mixture Non-pedestrian entities UCSD
textures models

Li et al. [7] Anomaly Spatio-temporal Unsupervised Non-pedestrian entities UCSD
detection patterns statistical escape panic UMN

Xu et al. [6] Spatio-temporal Unsupervised Non-pedestrian UCSD
patterns statistical entities

Kaltsa et al. [33] Motion and HOS Non-pedestrian entities UCSD
appearance escape panic UMN

Li et al. [34] Dynamic Joint Non-pedestrian entities UCSD
textures detector escape panic UMN

Adam et al. [18] Low-level Optical Escape panic UMN
cues flow PETS2009

Wu et al. [35] Motion Bayesian Escape panic UMN
PETS2009

Almeida et al. [9] Motion Optical Escape panic UMN
flow

Ullah et al. [36] Motion Correlation Escape panic UCD
orientation graph cut

Mehran et al. [37] Both Streaklines Optical flow Escape panic UCF
UMN

Ali et al. [38] FTLE Optical flow Instability UCF
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Figure 2: Spatial information extraction. A frame patch
is decomposed into 3x3 equal sized blocks. The inten-
sity average Iave and gradients in both directions, Dx and
Dy, of each block is computed and compared between
every unique pair of blocks.

as the magnitude and direction of an edge. Therefore,
we incorporate the first-order gradients also in patch de-
scription. We divide each frame patch into grid blocks
and calculate Iave, Dx, and Dy as

Iave(i) =
1
P

P∑
p=1

I(p) (1)

Dx(i) = Gx(i) (2)

Dy(i) = Gy(i) (3)

where P is the total number of pixels in a grid block
i. Gx and Gy are regional gradients in the x and y di-
rections, respectively. Both regional gradients Gx and
Gy represent gradients calculated in each block of a
patch. For example, we calculate Gx and Gy, for a grid
block of size equal to 2x2 pixels, using differential ap-
proximation: Gx = I(x + 1, y, t) − I(x, y, t) and Gy =

I(x, y + 1, t) − I(x, y, t). Similarly, for a 3x3 size, using
the formulations: Gx =

[I(x+1,y,t)−I(x,y,t)]+[I(x+2,y,t)−I(x,y,t)]
2

and Gy =
[I(x,y+1,t)−I(x,y,t)]+[I(x,y+2,t)−I(x,y,t)]

2 .
We capture the spatial patterns of the frame patch

through a set of binary tests, each of which compares
the Iave, Dx and Dy of a pair of grid blocks (i and j) as in
Eq. 4,

ζ(z(i),z( j)) =

{
1, if ε > 0
0, otherwise (4)

where ε = z(i) − z( j) and ∀(i, j), i , j, ζ is defined
as a tuple ζ(i) ∈ {Iave,Dx(i),Dy(i)}. Thus comparing the
respective values for each pair of grid blocks results in 3

Figure 3: Multiple gridding. A frame patch is decom-
posed into three-level gridding that is 2x2, 3x3, and 4x4,
where each grid is a block. The Multiple-level gridding
captures information at different granularities.

bits using binary test ζ. Performing binary tests on pair-
wise grid blocks out of sxs grids results in a bit string of
3s2(s2 − 1)/2. Furthermore, to achieve high robustness
and distinctiveness, we use a multiple gridding strategy
to capture the structure at different levels of spatial gran-
ularities, as presented in Fig. 3. Coarse-level grids can
filter out high frequency noise, while fine-level grids can
encode detailed local patterns. For this purpose, each
frame patch is partitioned in multiple ways. The results
from all the partitions are combined to create the spatial
descriptor, DL.

To obtain a regularized representation of the motion,
we exploit both the spatial and temporal information.
For temporal descriptor, we propose a procedure based
on the nested motion descriptor (NMD)[13]. In fact, the
challenging problem of anomalous entities detection is
concerned with the robust representation of motion that
captures the informative and meaningful properties of
the anomalous entities, and discards irrelevant informa-
tion associated with background and pedestrians. The
distinguishing feature of our temporal descriptor is in
the representation of motion associated with anomalous
entities, without requiring an explicit optical flow esti-
mate.

More specifically, we encode motion information
considering both pooling the magnitude of edges, and
phase gradients to capture translation of edges in a
video. We exploit the complex steerable pyramid [43]
to divide each block of a frame into a set of orientation
and scale selective subbands. The complex steerable
pyramid consists of basis filters in quadrature pairs, that
estimate magnitude and phase for each subband. We
calculate the relative magnitude and relative phase for
each subband from consecutive frames. This captures
a fixed velocity tuning for a velocity parameter v that
adjusts the procedure to faster or slower motion. Addi-
tionally, phase pooling is performed by inferring the re-
lationship between phase gradients and component ve-
locity, such that pooling component velocity is equiva-
lent to pooling phase gradients. A set of pooling regions
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are defined to pool the component velocity in neighbor-
ing spatial and temporal regions, to provide invariance
to view angle changes. Each of the pooling regions is
centered at a pixel position, and the pooling regions are
uniformly distributed in angle around the pixel position.
Each pooling region is represented by a component ve-
locity, and all orientations and scales are merged into a
single temporal descriptor.

Relative phase or phase gradients are equivalent to
the salient motion of a foreground object in a block. The
motion of the anomalous entities causes pixel motion
that could be the combination of translation, rotation
and scale. Therefore, the motion field in a block is uni-
formly offset by the motion of the anomalous entities.
The relative phase is also offset by the same motion. We
can encode this by computing a phase difference with
neighbors in position and scale. Therefore, we divide
each block of a frame into orientation and scale selec-
tive subbands. The orientation subbands present an at-
tribute that the response to an arbitrary orientation is a
linear composition of basis subbands. Furthermore, a
complex steerable pyramid comprises of basis filters in
quadrature pairs.

From the above decomposition, it is simple to com-
pute a phase and magnitude response at many scale and
orientation subbands. The temporal descriptor DN is
formulated as

DN(i, j, k) =

{
1, if b̀(i, j, k) > 0
0, otherwise

(5)

b̀(i, j, k) = b(i, j, k, t−2kv)−b(i, j−1, k−1, t−2kv) (6)

b(i, j, k, t) =

∑
q∈Wn( j,k) λ

t
ik(q)∑

q∈Wn( j,k) H(q)
(7)

DN(i, j, k) represents a binarized temporal descriptor
where b(i, j, k, t) is the pooled component velocity for
the orientation subband i, lobe j, and lobe scale k at
frame t. Eq. 6 formulates the difference between com-
ponent velocities at neighboring scales and positions
within the same frame. Thus it represents the connec-
tion among the frame offset, pooling scale, and band-
pass scale. In Eq. 7, Wn( j, k), λt

ik(q), and H(q) repre-
sent the pooling regions over which the accumulation
occurs, the component velocity, and the pooled phase
stability constraint, respectively. q is the interest point
that satisfies the phase stability constraint. The compo-
nent velocity is formulated in Eq. 8

λ =
−Θt

| ~Θ |
(8)

where ~Θ = [Θx ,Θy] is the spatial phase gradient and
−Θt is the derivative of the phase with respect to time,
which comes from the modeling of the phase constancy
constraint formulated in Eq. 9.

∆Θ • ~v = 0 (9)

The phase constancy constraint encodes the phase
gradient ∆Θ(t) = [ ∂Θ

dx ,
∂Θ
dy ,

∂Θ
dt ]T and the component ve-

locity ~v = [ ∂x0
dt ,

∂yo
dt , 1]T at a pixel position (x0, y0) in a

block. Rearranging the terms formulates ∂Θ
dx vx + ∂Θ

dy vy =

− ∂Θ
dt = −Θt. The temporal descriptor, DN , and the spa-

tial descriptor, DL, are integrated to build a Jacobian ma-
trix as formulated in Eq. 10.

J =

 ∂dN
∂x

∂dN
∂y

∂dL
∂y

∂dL
∂x

 (10)

We then explore a Gaussian kernel that integrates the
spatio-temporal features as formulated in Eq. 11.

η =
1

(2π)µ
exp
− ‖ Υ − Γ ‖2 log(‖ Υ − Γ ‖)

2σ2
1σ

2
2

(11)

where Υ and Γ represent the determinant Υ = det(J)
and the trace Γ = Tr(J) of Jacobian matrix J, respec-
tively. µ, σ2

1, and σ2
2 represent the mean, variance of

the spatial descriptor, and the variance of the tempo-
ral descriptor, respectively. Gaussian kernel constructs
integrated spatio-temporal features by transforming Ja-
cobian matrix into a distinctive space. Thus a unified
and organized description is produced from the Gaus-
sian modeling by considering the determinant and trace
of Jacobian matrix. Thus, the proposed GKIM rep-
resents high quality description of anomalous entities
in term of most distinctive information. Our proposed
GKIM method avoids modeling the features both at a
level that is too fine or too coarse. At a level too fine,
one is swamped with extraneous detail. At a level too
coarse, important characteristics may be missed. Our
model mixes the advantages of both spatial and tempo-
ral features to compute distinctive and unique feature
reprsentations.

As the occurrences of the anomalous entities are
usually sparse in the pedestrian scenes and similari-
ties with the background are high, previous methods
[4][5][6][7][8] show limited discriminative ability. A
method succeeding in one pedestrian scene might fail
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in another scene with different sparsity and density. In
contrast, our proposed GKIM is highly discriminative
and efficient in detecting anomalous entities.

3.2. Learning R-CRF model for classification

For classifying the pedestrian entities into normal and
abnormal, we explore R-CRF [14]. The motivation for
considering the R-CRF comes from the observation that
R-CRF integrates the strengths of the Recurrent neu-
ral networks (RNN) and the conditional random field
(CRF). The R-CRF exploits the CRF-like sequence-
level objective function and the RNN activation as fea-
tures. Thus, it takes the advantage of the sequence-level
discrimination ability of the CRF and the feature learn-
ing ability of the RNN.

Recurrent neural networks (RNNs) have recently
shown good performance in various applications from
gesture recognition [44] to speech recognition [45].
However, the performance can be significantly en-
hanced by integrating elements of the conditional ran-
dom field (CRF) model; specifically, the explicit mod-
eling of output-label dependencies with transition fea-
tures, and its global sequence-level objective function.
An RNN maintains a representation for each feature
such that similar features tend to be close with each
other, and relationships between features are preserved.
It is worth noting that RNN produces a sequence of
locally normalized output distributions that can suffer
from the label bias [15] problem.

To cope with the problem of label bias, R-CRF [14] is
developed. The R-CRF is based on the RNN-LU model
of Yao et al. [16]. The model consists of a layer of
inputs connected to a set of hidden nodes; a fully con-
nected set of recurrent connections amongst the hidden
nodes; and a set of output nodes. Each layer repre-
sents a set of neurons, and the layers are connected with
weights. The output layer produces a probability distri-
bution over labels. The hidden layer maintains a repre-
sentation of the relationship among features. The input
vector has a dimension equal to the descriptor size η.

3.3. Training

We train an R-CRF in supervised manner to learn a
model for classifying anomalous and normal entities.
Our training data consists of labeled samples where
each sample represents a frame patch of a normal or
an anomalous entity. The anomalous entities include
patches from cyclists, skaters, vehicles, a pedestrian
walking on a lawn, a running pedestrian, a pedestrian
walking in opposite direction of dominant pedestrian
flow. The background patches are labeled as a normal

entity. All the labeled samples can be regarded as inde-
pendent samples to train the model. The details of the
R-CRF model learning are given below.

The joint probability of the output label y(t) given the
input observation vector x(t) = η of a traditional condi-
tional random field [15] is formulated as

p (y(1 : T )|x(1 : T ))) ∝ exp(A + B)

A =

T∑
t−1

∑
m

σm fm(y(t − 1), y(t))

B =

T∑
t−1

∑
k

ωkrk(y(t − 1), x(t))

(12)

where fm(y(t−1), y(t)) and rk(y(t−1), x(t)) are the fea-
ture functions. Each feature function renders the score
for any output label in terms of its relevance to the input
observation vector x, representing our descriptor. σm

and ωk are the weight parameters associated with the
feature functions fm and rk, respectively. These parame-
ters encode the relative importance of feature functions.

In the R-CRF model, an RNN is used to generate the
input features for a CRF . For the sake of simplicity, the
input-output pair with the side feature inputs is denoted
by ((x(1 : t), f (1 : t)), y(1 : t)). In the R-CRF, the weight
ωk is absorbed into the feature itself, transforming the
objective function as

exp
T∑

t=1
(ψay∗(t−1)y∗(t) + zy∗(t)t)

∑
∀y(1:T )

exp(
T∑

t=1
ψay(t−1)y(t) + zy(t)t)

(13)

where y ∗ (1 : T ) = [y ∗ (1)...y ∗ (T )] represents the
correct output labels and ψ is a real value set to 1.0.
zy(t) is the element in the output layer activity before
softmax. The objective function can be represented in a
log-scale as

U = A − log expB

A =

T∑
t=1

(ψay∗(t−1)y∗(t) + zy∗(t)t)

B =

T∑
t=1

(ψay(t−1)y(t) + zy(t)t)

(14)

During the training, the R-CRF iterates between a
forward pass and a backward pass to maximize the ob-
jective function formulated in Eq. 14.
Forward pass: The forward pass is computed using Eq.
15.
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ε(t, i) =
∑

∀y(1:t)
⋂

y(t)=i

exp
t∑

k=1

(ψay(k−1)y(k) + zy(k)k)

=
∑

j

ε(t − 1, j)exp(ψa ji + zi(t))

= exp(zi(t))
∑

j

ε(t − 1, j)exp(ψa ji)

(15)

where ε(t, i) is the sum of partial path scores ending
at position t with label i. A minor change in the for-
ward pass results in the Viterbi algorithm represented
by ε̂(t, i) = exp(zi(t))max∀ j(ε̂(t − 1, j)exp(ψa ji)).
Backward pass: The backward pass is computed using
Eq. 16.

Λ(t − 1, q) =
∑

∀y(t:T )
⋂

y(t)=q

exp
∑
k=t

(ψay(k−1)y(k) + zy(k)k)

=
∑

j

Λ(t, j)exp(ψaq j + z j(t))

(16)
The score of the backward pass is the sum of partial

path scores starting at the position t − 1 with the label
q. The gradients with respect to the feature zy(t)=k(t) can
be computed with the forward and backward scores as
formulated in Eq. 17.

∂U
∂zy(t)=kt

= δ(y(t) = y ∗ (t))

−
∑
∀y(1:T )

exp(
∑

t ψay(t−1)y(t) + zy(t)(t))δ(y(t) = k)∑
∀y(1:T ) exp(

∑
t
ψay(t−1)y(t) + zy(t)(t))

= δ(y(t) = k) −
ε(t, k)Λ(t, k)∑
j ε(t, j)Λ(t, j)

(17)

The error signal is obtained with Eq. 17. The back-
propagation procedures is subsequently reused by the
model for updating the parameters. The gradients are
computed to update the label transition weights accord-
ing to Eq. 18.

∂U
∂a ji

= ψ
∑

t

(δ(y(t − 1) = j, y(t) = i) −
A
B

)

A = ε(t − 1, j)Λ(t, i)exp(ψa ji + zi(t))

B =
∑

t

ε(t, j)Λ(t, j)

(18)

Using stochastic gradient ascent over the training
data, the model parameters are updated.

3.4. Testing

In the testing phase, the learned R-CRF model is
used to classify patches of the input video frames into
anomalous and normal entities. More specifically, we
divide each test input video frame into patches to ex-
tract spatio-temporal features which are transformed by
our proposed Gaussian kernel based feature modeling.
This is fed to the learned R-CRF model to determine if
the patch is anomalous or normal. It is worth noticing
that a background patch is considered as a normal en-
tity. In fact, all the labeled samples can be regarded as
independent samples to train the weight parameters of
the R-CRF, which can be optimized by maximizing the
likelihood of the training samples. Such assumption is
widely used for various learning methods. Gradient de-
scent is used for optimizing the parameters. Once the
parameters of the R-CRF are determined, they are used
in the objective function that classifies the patches dur-
ing the testing stage. In the testing stage, the identifi-
cation of an anomalous patch, irrespective of its loca-
tion, in a frame represents the detection of anomalous
entity. The identification of the location of an anoma-
lous entity, in term of pixels, in a frame represents the
localization of the anomalous entity.

4. Experiments

We evaluate the performance of our proposed method
for anomalous entities detection on three benchmark
datasets available publicly. These include UCSD [4],
UMN [46], and UCD [36].

4.1. Details of datasets

UCSD dataset: The UCSD dataset consists of two sub-
sets: ped1 and ped2. Both subsets represent surveillance
videos captured by a fixed camera overlooking pedes-
trian walkways. In Ped1, people are moving towards
and away from the camera, with some perspective dis-
tortion and ped2 contains video of people moving paral-
lel to the camera. The resolutions of Ped1 and Ped2 are
158x238 and 240x360, respectively. The normal event
appearing in the dataset is sequences of pedestrians on
the walkways, with a varying density from sparse to
very dense. The non-pedestrian entities include cyclists,
skaters, vehicles, people walking on a lawn. The ap-
pearance of all non-pedestrian entities occurs naturally,
i.e., they were not staged or synthesized for data set col-
lection. The video footage of each scene is divided into
clips of 120-200 frames. Ped1 consists of 34 training
video clips and 36 testing video clips; whereas ped2
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contains 16 training video clips and 12 testing video
clips.
UMN dataset: The UMN dataset consists of normal
and abnormal crowd videos from the university of Min-
nesota. It consists of three different indoor and out-
door scenes representing 11 different scenarios of es-
cape events. There are total 7739 frames of 320x240
pixels. Each video begins with the normal behaviors of
people walking and standing.
UCD dataset: The UCD dataset contains two outdoor
videos of students moving across two buildings lasting
for 12 and 5 minutes, respectively. Each sequence is
segmented into two different subsequences with people
mainly moving in a horizontal direction in the scene.
This dataset defines anomaly as the deviations from
what has been observed beforehand. This anomaly rep-
resents any pedestrian moving in the opposite direction
of the general flow of the pedestrians.

4.2. Experimental setup

For model training, we automated the patch extrac-
tion from each dataset since the manual extraction of
patches is a resource and time consuming process. We
define a set of non-overlapping patches of fixed size
equal to 20x20 pixels to cover all video frames of the
datasets. For all the datasets, the patch size is small
enough to capture anomaly location, but at the same
time large enough to extract related details of appear-
ance. For each dataset, a patch is randomly selected and
then carefully labeled as an anomalous entity or normal
patch.

The training clips of both Ped1 and Ped2 do not con-
tain anomalies, therefore, we randomly select half test-
ing clips of Ped1 and Ped2 for training the model and the
rest of the clips are used as testing samples. We extract
38,540 normal frame patches and 37,728 anomalous
frame patches from Ped1, and 32,854 normal patches
and 31,248 anomalous patches from Ped2.

In the UMN dataset, for training, we use normal
frames of one scenario from scene 1 and two scenarios
from scenes 2 and 3 to model normal pedestrian behav-
ior. We use the rest of the frames for testing. We ex-
tract 47,591 normal frame patches and 45,533 anoma-
lous frame patches from the training frames.

For the UCD dataset, we consider the frames from
subsequence 1 and subsequence 3 for the training. The
subsequence 2 and subsequence 4 are used for testing.
We extract 56,847 normal patches and 58,317 anoma-
lous patches from the training frames.

We compare the results with 10 closely related state-
of-the-art methods: the mixture of dynamic texture

(MDT) [4], the mixture of optical flow (MPPCA) [17],
the social force (SF) [3], the multiple location monitors
(MLM) [18], the clustering and sparse coding (CSC)
[7], the holistic features (HF) [8], hierarchical feature
representation (HFR) [19], the pedestrian energy map
(PEM) [20], the statistical histograms model (SHM)
[21], the change detection model (CDM) [9].

For quantitative evaluation of anomalous entities de-
tection, the equal error rate (EER) for frame-level and
the detection rate (DR) for pixel-level analysis are cal-
culated to measure the overall performance. Addition-
ally, we compute the Receiver Operating Character-
istic (ROC) curves of True-Positive Rates (TPR) ver-
sus False-Positive Rates (FPR). It is worth noting that
frame-level criterion is mostly used in the literature.
However, it only measures temporal localization accu-
racy. Therefore, it enables errors due to lucky detection
of anomalous entities. For example, it allots a perfect
score to a method that identifies an anomalous entity at
a random location of a frame. The frame level criterion
labels a frame as abnormal if it contains at least one
anomalous patch, regardless of where it is localized.

In contrast, the pixel-level criterion is much reliable
evaluation metric. Therefore, we consider both the tem-
poral and spatial accuracies to rule out lucky detection.
The pixel level criterion detects anomalous entity if at
least 40% of the truly anomalous pixels are detected.
The pixel level criterion is also used to localize the
anomalous entities.

Both frame level and pixel level criteria are based on
TPR and FPR. The presence and absence of anoma-
lous entities are represented by a positive and a neg-
ative, respectively. This is compared to the frame-
level ground-truth, to determine the number of true-
and false-positive frames. Similarly, pixels related to
the anomalous entity are compared to the pixel-level
ground-truth to determine the number of true-positive
and false-positive. For this purpose, we used the
ground-truth of the UCSD, UMN, and UCD datasets
provided by Antić et al. [47] and Ullah et al. [36][48].

4.3. Results

The qualitative performance of our proposed method
on UCSD, UMN, and UCD datasets is presented in Fig.
4, Fig. 5, and Fig. 6, respectively. In each figure, first
row presents the sample frames taken from the original
video sequences and the second row presents the results
of our proposed GKIM method.

In Fig. 4, the detection of anomalous events in terms
of non-pedestrian entities in UCSD dataset is annotated
in white for the purpose of visualization. Fig. 4 shows
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Figure 4: Results of proposed GKIM on UCSD dataset: The detection and localization of anomalous entities are
overlaid on the original frames and annotated in white for the purpose of visualization. GKIM has successfully
detected and localized cyclists, skaters and vehicles as anomalous entities.

Figure 5: Results of proposed GKIM on UMN dataset. The detection and localization of anomalous entities are
overlaid on the original frames and annotated in red for the purpose of visualization. GKIM has successfully detected
the escape panics accurately in all the four scenes.

Figure 6: Results of proposed GKIM on UCD dataset. The detection and localization of anomalous entities are over-
laid on the original frames and annotated in blue for the purpose of visualization. The pedestrian flows representing
deviations from what have been observed before are detected accurately by GKIM in all the four scenes.
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Table 2: Quantitative analysis. Equal error rate (EER) for frame-level criterion for the reference methods and our
proposed method for both subsets, Ped1 and Ped2, are presented.

Sub. MDT MPPCA SF MLM CSC HF HFR PEM SHM CDM Prop.
Ped1 25 40 31 38 20 32 25 29 19 22 16.5
Ped2 25 30 42 42 21 36 29 31 21 24 17

Avg. 25 35 36.5 40 20.5 34 27 30 20 23 16.75

Table 3: Quantitative analysis. Detection rate (DR) for pixel-level criterion for the reference methods and our proposed
method for both subsets, Ped1 and Ped2.

Sub. MDT MPPCA SF MLM CSC HF HFR PEM SHM CDM Prop.
Ped1 55 23.2 40.9 32.6 57 43 55 31 58 57 63.7
Ped2 60 22.4 27.6 22.4 55 40 51 27 56 55 66.8

Avg. 57.5 22.8 34.25 27.5 56 41.5 53 29 57 56 65.25

Table 4: UMN dataset. Equal error rate (EER) and detection rate (DR) for the reference methods and our proposed
GKIM method are presented in the first row and the second row, respectively.

Dataset MDT MPPCA SF MLM CSC HF HFR PEM SHM CDM Prop.

UMN
09 16 13 18 07 06 11 15 03 05 04
69 55 65 50 71 75 65 49 94 86 89

Table 5: UCD dataset. Equal error rate (EER) and detection rate (DR) for the reference methods and our proposed
GKIM method are presented in the first row and the second row, respectively.

Dataset MDT MPPCA SF MLM CSC HF HFR PEM SHM CDM Prop.

UCD
15 25 18 21 12 16 17 22 14 12 09
53 37 48 40 69 51 49 39 65 70 75

that our method detects and localized the cyclists accu-
rately in the first and second columns. Two skaters and
a vehicle are also detected in the third and last columns.

In Fig. 5, the detection of anomalous events in terms
of escape panics in UMN dataset is annotated in red.
Here, escape panics are detected properly in all the
video sequences. A person in the bottom of the scene
in the third column is not detected since he is walking.

Similarly, in Fig. 6, the detection and localization
of anomalous events in terms of deviations from what
has been observed before is annotated in blue. In Fig.
6, pedestrian flows are detected representing deviations
from what has been observed before. Four persons in
the bottom and three persons to the left of the third col-

umn are not detected since they are not deviating from
the regular pedestrian flows seen before.

For quantitative performance analysis, we calculated
the average Equal Error Rate (EER) and average Detec-
tion Rate (DR) for the three datasets.

The average EER and average DR for the Ped1 and
Ped2 of UCSD dataset are reported in Table 2 and Ta-
ble 3, respectively. The average EER and average DR
for UMN and UCD datasets are reported in Table 4 and
Table 5, respectively. In Table 4 and Table 5, the first
and second rows represent the average EER and aver-
age DR, respectively.

As can be seen in the tables, our proposed method
outperforms all the optical flow or tracklets based meth-
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ods: the MPPCA [17], the SF [3], the MLM [18], the
HF [8], the PEM [20], and the CDM [9], and the spatio-
temporal volumes based methods: the MDT [4], the
CSC [7], and the HFR [19]. The (SHM) [21] method
performs better in case of UMN dataset in Table 4.
However, our GKIM method performs better in case of
other datasets: UCSD and UCD in Table 2, Table 3,
and Table 5. These results show that there is a signifi-
cant advantage of our proposed GKIM model that trans-
forms the sptio-temporal features to disciminative rep-
resentation bringing forth strong capabilities. The ref-
erence methods based on optical flow cannot cope with
the adaptively changing sparse and dense nature of the
pedestrian flows where dynamic motion and occlusions
exist. Also the optical flow computes instantaneous dis-
placement without taking into account the appearance
information. Furthermore, the MDT [4] and CSC [7]
fail to capture discriminative motion patterns because
informative movements only occur in specific regions
of the videos, that depend on the type of anomalous en-
tity. Our proposed GKIM represents high quality de-
scription of anomalous entities with the spatial and tem-
poral components. Therefore, we outperform the refer-
ence methods in both frame-level and pixel-level analy-
sis. Presenting results based on both criteria reveal the
robustness of our proposed method.

We also report the ROC curves for the frame-level
analysis in addition to the EER and DR. The ROC
curves for ped1 and ped2 of UCSD dataset are presented
in the left and right columns of Fig. 7, respectively.
The ROC curves for UMN and UCD datasets are re-
ported in the left and right columns of Fig. 8, respec-
tively. The significant improvement in the performance
of our proposed GKIM method can be seen in all the
figures. In fact, the previous methods generally sim-
plify the original frames by partitioning them into vol-
umes or tracklets. This is done for efficiency but, most
importantly, for computing discriminative features with
the intention that these features will thus be more robust.
However, these partitioning inevitably merges the pixels
of anomalous entities into background. Therefore, such
features are not sufficiently discriminative for detecting
anomalous entities in pedestrian flows. Moreover, the
MDT and the CSC evaluate correlation of features us-
ing only video volumes. This might bring the advan-
tage of simplicity, when it is used as a region descriptor.
Nevertheless, as a generic representation, the capability
of modeling feature relationship using video volumes
cannot be conveniently altered to model different fea-
ture relationships in terms of anomalous entities. Our
proposed GKIM method addresses these issues by mod-
eling a Jacobian matrix as a generic feature representa-

Table 6: Only spatial and only temporal features, in-
dividually. Equal error rate (EER) and detection rate
(DR) are provided for considering only spatial, tempo-
ral, and both information, respectively. For each dataset,
the first row shows EER and the second row shows DR.
For UCSD dataset, average EER and average DR for
ped1 and ped2 are presented.

Dataset Spatial Temporal Spatio-temporal (GKIM)

UCSD
45 42 16.75
21 25 65.25

UMN
20 19 04
60 68 89

UCD
24 21 09
35 39 75

Table 7: Only RNN and only CRF classification mod-
els. Equal error rate (EER) and detection rate (DR) are
provided for considering only RNN, CRF, and both R-
CRF, respectively. For each dataset, the first row shows
EER and the second row shows DR. For UCSD dataset,
average EER and average DR for ped1 and ped2 are pre-
sented.

Dataset RNN CRF R-CRF (GKIM)

UCSD
19.5 18.3 16.75
59.8 61 65.25

UMN
06 07 04
83 80 89

UCD
13 11 09
68 73 75

tion. Each of its entries are evaluated by a Gaussian ker-
nel which is discriminative, even if features are scarce.
More importantly, this kernel transformation gives us
unlimited opportunities to model feature relationship in
an efficient manner.

4.4. Performance analysis of individual and GKIM fea-
tures

In Table 6, we provide results considering only spa-
tial, only temporal, and our Gaussian kernel based
spatio-temporal features for all the three datasets. It
is worth noticing that we are considering Gaussian ker-
nel based modeling for individual information. For this
purpose, the missing information in Jacobian matrix are
replaced with 1 instead of 0 to avoid invalid calcula-
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Figure 7: UCSD-ROC curves. For both UCSD subsets, Ped1 and Ped2, the ROC curves are reported in the first and
second columns, respectively. In both cases, our proposed GKIM method outperforms all the reference methods.
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Figure 8: UMN and UCD-ROC curves. The ROC curves for both UMN and UCD datasets are reported in the first
and second columns, respectively. In both cases, our proposed GKIM method outperforms all the reference methods.

tion. For example, when considering only spatial infor-
mation, the temporal information in Jacobian matrix are
replaced by 1. In Table 6, we can see that the impact of
considering our Gaussian kernel based spatio-temporal
features is significant. The performance of considering
only spatial information is the lowest. However, using
only temporal information shows better results than us-
ing only spatial information. In fact, the temporal infor-
mation uses the spatial information implicitly during its
calculations.

4.5. Performance analysis of RNN, CRF and R-CRF
classification models

In Table 7, we provide results considering only recur-
rent neural network (RNN) [49], only conditional ran-
dom field (CRF) [15], and R-CRF [14] for all the three

datasets. For training the RNN and CRF individually,
we use the same labeled samples to maintain consis-
tency with the training stage of the R-CRF. In a nut-
shell, the same procedure is followed for training the
RNN, CRF, and R-CRF. We can see in in Table 7 that
the R-CRF performs better than both RNN and CRF. In
fact, the R-CRF integrates the strengths of the RNN and
the CRF by taking the advantage of the discrimination
ability of the CRF and the feature learning ability of the
RNN.

4.6. Sensitivity Analysis
To demonstrate the robust performance of our pro-

posed GKIM method for the three datasets, we eval-
uated it using 25 different parameter configuration set
as listed in Table 8. These configurations are encoded
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Table 8: Configuration set. For sensitivity analysis for our proposed method, 25 different configurations are listed
based on patch gridding, the threshold ε, lobe scale k, and the parameter ψ. In the patch gridding, 1x, 2x, 3x, 4x, and
5x represent 1x1, 2x2, 3x3, 4x4, and 5x5, respectively.

PPPPPPPPParam.
Config. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Patch gridding

1x 2x 2x 2x 2x 2x 2x 2x 2x 1x 1x 2x 2x 2x 2x 1x 2x 2x 2x 2x 1x 2x 2x 2x 2x
3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x 3x

4x 4x 4x 4x 4x 4x 4x 4x 4x 4x
5x 5x 5x 5x 5x

ε 0 1 2 3 4 0 1 2 3 4 4 3 2 1 0 0 1 2 3 4 0 1 2 3 4
k 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 10 8 6 4 2 2 4 6 8 10
ψ .1 .3 .6 .9 1 .1 .3 .6 .9 1 .1 .3 .6 .9 1 .1 .3 .6 .9 1 1 .9 .6 .3 .1
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Figure 9: UCSD-equal error rate (EER) and detection rate (DR). The average EER and average DR for our proposed
method for UCSD dataset are presented in the left and right columns, respectively. The variations in the results are
not significant except from configurations 4 to 5, 6 to 7, 14 to 15, 15 to 16, 19 to 20, 20 to 21, and 24 to 25. These
changes are due to the changes in the patch gridding.
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Figure 10: UMN-equal error rate (EER) and detection rate (DR). The average EER and average DR for our proposed
method for UMN dataset are presented in the left and right columns, respectively. The variations in the results are
not significant except from configurations 4 to 5, 6 to 7, 14 to 15, 15 to 16, 19 to 20, 20 to 21, and 24 to 25. These
changes are due to the changes in the patch gridding.
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Figure 11: UCD-equal error rate (EER) and detection rate (DR). The average EER and average DR for our proposed
method for UCD dataset are presented in the left and right columns, respectively. The variations in the results are not
significant except from configurations 4 to 5, 6 to 7, 14 to 15, 15 to 16, 19 to 20, 20 to 21, and 24 to 25. These changes
are due to the changes in the patch gridding.

in the experiments using different patch gridding, the
threshold ε, the lobe scale k, and the parameters ψ. For
this purpose, five different patch gridding, the threshold
ε, the scale lobe k and the parameter ψ are taken into
account to maintain consistency in the parameter varia-
tions. In Fig. 9 we present the results for both ped1 and
ped2 of the UCSD dataset. For UMN and UCD datasets,
we present the results in Fig. 10 and Fig. 11, respec-
tively. In Figure 9, gradual changes in the performances
in terms of both average EER and average DR can be
noticed from configuration 1 to 4, 6 to 10, 11 to 14, 16 to
19, and 24 to 25. However, changes in the performances
are significant from configurations 4 to 5, 6 to 7, 14 to
15, 15 to 16, 19 to 20, 20 to 21, and 24 to 25. In Figure
10 and Figure 11, similar changes in the performances
for the same configurations can be noticed for UMN and
UCD datasets, respectively. In fact, increasing the patch
gridding from configuration 4 to 5 decrease the perfor-
mance. Similarly, decreasing the patch gridding from
configuration 6 to 8 improve the performance. The af-
fect can be noticed in the other configurations. Hence,
it is worth to increase the patch gridding from 1x1 to
4x4. However, the performance declines by considering
other patch gridding. Therefore, the performance of our
method does not change significantly by changing other
parameters except the patch gridding.

4.7. Computational overheads
To find the computational overhead, a 16GB RAM

computer with a 3.5 GHz CPU is used to carry out the
experiments. It is worth noticing that the computational
complexities can be further reduced since these imple-
mentations are not optimized. In Table 9, we presented

Table 9: Computational complexity. Time represents
the complexity of each method in term of number of
seconds required to process a video frame. Our GKIM
method shows execution time better than six reference
methods.

Methods Time Methods Time

MDT [4] 25 HFR [19] 06

MPPCA [17] .9 PEM [20] 04

SF [3] .5 SHM [21] 07

MLM [18] 01 CDM [9] 03

CSC [7] 05 Proposed

HF [8] 01 GKIM 01

the computational complexities of our GKIM method
and 10 reference methods. These complexities are pro-
vided in term of average number of seconds per frame
over all the datasets for the MDT [4], the MPPCA [17],
the SF [3], the MLM [18], the CSC [7], the HF [8],
HFR [19], PEM [20], SHM [21], the CDM [9], and
our GKIM method. Comparing to other methods, our
GKIM method executes a video frame in 01 second on
average which is better than six reference methods in-
cluding MDT [4], the CSC [7], HFR [19], PEM [20],
SHM [21], and the CDM [9]. The MLM [18] and
the HF [8] present the same computational complex-
ities. The MPPCA [17] and the SF [3] present better
execution times at the cost of significant declines in per-
formances.
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5. Conclusion

We propose a novel GKIM method for anomalous en-
tities detection and localization in pedestrian flows. The
GKIM represents high quality description of anomalous
entities in term of most distinctive information. The
performance of our proposed method is tested on three
datasets and compared to 10 closely related state-of-the-
art methods. The performance metrics EER, DR, and
ROC curves show that our method outperforms all the
reference methods in both frame-level and pixel-level
analysis.

As a future work, we would also extend our proposed
method to detect various other anomalies.
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