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Abstract. The present work investigates the unsteady pressure fluctuations in a model Francis 

turbine that are observed during steady state operation. Focus of the present study is to correlate 

pressure fluctuations between stationary and rotating components in the turbine. It is challenging 

and expensive to perform pressure measurements inside the rotating parts of the turbine. Pressure 

measurements at the runner upstream and downstream can help to understand the signature of 

pressure pulsations in the blade passages. To this end, one pressure sensor in the vaneless space, 

four pressure sensors in the runner and two pressure sensors in the draft tube cone were integrated 

to acquire pressure data. Detailed analysis of the acquired pressure data is carried out including 

statistical analysis, spectral analysis and coherence analysis. Further, stochastic and deterministic 

analysis of the pressure fluctuations in the turbine is carried out. The results showed that pressure 

data in the vaneless space and the draft tube could be used to understand the signature of pressure 

fluctuations existed in the runner. 

1.  Introduction 

Hydraulic turbines are designed for certain head and discharge conditions, where the efficiency is high, 

known as the best efficiency point (BEP) [1]. Rapid change of spot prices and the generation from the 

wind turbines often force turbines to operate at off-design conditions [2–4], starting from part load to 

the full load. This has resulted in increased cost of turbine operation and maintenance [5]. When a blade 

passes in front of a guide vane, it interacts and a momentum exchange between them takes place which 

develops waves. The interaction phenomenon is known as rotor-stator interaction (RSI). The stationary 

domains, distributor and draft tube, experience pressure fluctuations at a frequency (fb) corresponding 

to the number of rotating blades (zb) and rotational speed of the runner (n) as shown by equation (1). 

The rotating domain experience a frequency (fgv) corresponding to the number of guide vanes (zgv) and 

rotational speed of the runner (n) as shown by equation (2). 

 ( )b b      Hzf n z= ⋅  (1) 

 ( )gv gv      Hzf n z= ⋅  (2) 

In a high-head Francis turbine, a gap (vaneless space) between the runner and the guide vane is small, 

and the pressure fluctuations associated with RSI are one of the key concerns. There have been several 

failures in hydraulic turbines, a majority of which pertained to RSI [6–8]. In the last two decades, several 

studies have been conducted on Francis turbines pertaining to RSI toward enabling safe prototype design 

[9,10]. In addition to RSI, stochastic pressure fluctuations are dominant at certain locations in the turbine 
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[11]. Dynamic characteristics of a turbine are determined through pressure (also strain) and velocity 

measurements at distinct locations in the turbine [12–14]. 

Majority of the pressure measurements are conducted in model turbines. The measurements are 

aimed to investigate the frequency spectra and the fatigue cycles on the blades. Some of the studies were 

focused on velocity measurements in the vaneless space and the draft tube [15]. Flow at runner 

downstream has relatively high circumferential velocity and intricate turbulence [16]. The vortex rope 

occurs typically at the part load condition, and the unsteady motion is associated with low frequency 

pressure pulsations. The vortex rope may have a frequency of n/5 to n/3 [17]. At part load, the vortex 

rope rotates in the same direction as the runner, whereas, at high load it rotates in opposite direction due 

to change in magnitude of swirl velocity leaving the runner [18]. There may be two types of pressure 

pulsations, synchronous and/or asynchronous type during turbine operation away from BEP [19]. As 

compared to the draft tube, very few velocity measurements are conducted in the vaneless space, and 

those were aimed to investigate the effect of rotating stall in pump-turbines [20]. Measurements on the 

prototype mainly focused on unsteady pressure loading in the turbine and vortex breakdown [21]. 

Measurements in the prototype runner are conducted for exceptional cases, such as refurbishment, 

validation of guaranteed parameters during commissioning of a turbine and in case of any premature 

failure/crack in the runner [22,23]. 

Three different approaches are used to determine dynamic characteristics of a turbine: (1) statistical 

analysis, (2) spectral analysis and (3) rainflow counting [24–26]. Statistical analysis allows to determine 

similarity between pressure measurement locations in the turbine. Amplitudes of specific frequencies at 

measurement locations are computed using spectral analysis. Furthermore, spectral analysis allows to 

estimate the power spectra of stochastic and deterministic signals as well as phase between specific 

frequencies. Rainflow counting is used to estimate the fatigue cycles for the given time and specified 

frequencies [27]. For example, speed-no-load conditions, unsteady pressure loading pertained to 

stochastic pressure fluctuations is dominant and cause heavy fatigue damage to blades. In this situation, 

rainflow counting is preferable to estimate the fatigue cycles. Unsteady pressure fluctuations are 

composed of deterministic, stochastic, synchronous and asynchronous type pulsations. Decomposition 

of such fluctuations can help to understand the similarity between the stationary and rotating domains. 

Flow field either in the vaneless space or in the draft tube is affected by the flow field in the runner. 

Therefore, some extent it may be appropriate to assume that flow field in the vaneless space and the 

draft tube is representative of the flow field in the runner. Measurements in the stationary domains is 

not as expensive and time consuming as the measurements in the runner, mainly for prototype turbines. 

The present work aims to investigate unsteady pressure fluctuations in a model Francis turbine at three 

operating points, i.e., part load, BEP and high load. The focus is to analyze pressure data in the vaneless 

space, runner and draft tube, and to study the signature of pressure fluctuations at distinct locations in 

the turbine. Both statistical and spectral analysis is conducted to study common signature between 

pressure fluctuations in the stationary and rotating domains. Secondary objectives of the present study 

is: (1) How pressure fluctuations in the vaneless space and draft tube related to the pressure fluctuations 

in the runner and (2) Are pressure measurements in the stationary domains enough to predict pressure 

field in the runner. 

2.  Experimental setup 

A model Francis turbine available in the Norwegian University of Science and Technology, was used 

for the measurements. Figure 1 shows the hydraulic loop of the test rig. Water from the large reservoir 

(9) was pumped to the overhead tank (2) and flowed down to the turbine (7). Hence, the volume flow 

rate to the turbine was regulated by the guide vanes. A feed pump (1) was operated at the selected speed 

to maintain constant head. The draft tube outlet was connected to a downstream tank (8), where a 

constant head was maintained at an atmospheric pressure and the water above the runner centerline was 

returned to the basement (9). The test rig is capable of producing head up to 16 m for the open loop and 

up to 100 m (discharge ≤ 0.5 m3 s−1) for the closed loop. The open loop is used for the current 

measurements. 
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Figure 1. Open-loop hydraulic system of the model Francis turbine at the Waterpower Laboratory, 

NTNU. 1 – feed pump, 2 – overhead tank-primary, 3 – overhead tank-secondary, 4 – pressure tank, 5 – 

magnetic flowmeter, 6 – generator, 7 – Francis turbine, 8 – downstream tank and 9 – basement. 

The turbine included 14 stay vanes integrated inside the spiral casing, 28 guide vanes, a runner with 

15 blades and 15 splitters, and an elbow-type draft tube. The runner includes an alternating arrangement 

of a splitter and a blade. The runner inlet and outlet diameters were 0.63 m and 0.347 m, respectively. 

The turbine is equipped with standard instruments used to measure the head, discharge, torque, power, 

water temperature and rotational speed. The same instruments were used for the current study. An 

additional seven sensors were flush mounted to acquire pressure data from different locations. Sensor 

V1 was located in the vaneless space. Four sensors (R1, R2, R3 and R4) were of the miniature type and 

were flush mounted to the surface of the runner crown in one blade channel. A slip-ring mechanism was 

used to transmit pressure data from the runner. Sensors D1 and D2 were located in the draft tube, 0.126 

m downstream from the runner outlet and 180° circumferentially apart on the same plane. Pressure 

sensors in the runner are Entran and TE XP5 type, and the pressure measurement range was up to seven 

bar absolute. Uncertainty of the pressure sensor located in the vaneless space is 0.8% and in the runner 

is 0.2–1.2%.The natural frequencies of all the sensors were above 25 kHz, which is much higher than 

the maximum expected frequency in the test rig. Pressure data were acquired at a sampling rate of 10 

kHz. The maximum expected frequency in the turbine is 1 kHz, i.e., the 5th harmonic of the blade 

passing frequency, which is much less than the sampling rate. Hence, the acquired pressure data will not 

be affected by the aliasing effect during data acquisition. Before the measurements, calibration and 

uncertainty quantification of all measuring instruments and sensors were performed. IEC 60193 was 

followed for quantifying the uncertainties. The total uncertainty (êt) of ±0.2% includes both systematic 

(ês) and random (êr) uncertainties. 

 
2 2

t s r
ˆ ˆ ˆe e e= ± +   (3) 

The systematic uncertainty (ê
s
) is the root-sum square of the uncertainties in the volume flow rate (ê

Q
), 

head (ê
H
), torque (ê

T
), runner rotational speed (ên) and water density (êρ) measurements. BEP was 

obtained at α = 9.9°, n
ED

 = 0.18, and Q
ED

 = 0.15, and the hydraulic efficiency was 93.1±0.2%. The 

volume flow rate to the turbine at BEP is 0.199 m3 s−1 (Q
ED

 = 0.15), and the guide vane aperture is 100%. 

The runner was rotating at the synchronous speed, i.e., 5.55 revolutions per second. 

3.  Results and discussions 

Experiments were conducted at three operating conditions, BEP, part load and high load. Detailed 

analysis of all pressure sensors and operating conditions have been carried out. Time dependent pressure 

fluctuations, power spectral density, coherence and signal-to-noise-ratio (SNR) of the acquired pressure 

data are studied in the stationary and rotating domains of the turbine. Unsteady pressure fluctuations in 

the vaneless space at BEP, part load and high load conditions are shown in figure 2. The pressure is 

normalized using equation (4), i.e. factor of pressure fluctuations (p̃
E
). 
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where p̃ is the acquired pressure in Pascal, p̄ is the average pressure in Pascal, ρ is the water density in 

kg m-3, and E is the specific hydraulic energy in J kg−1. The time of successive interactions between the 

blade and guide vane can be computed using equation (5). 

 
b gv

RSI

b gv

     (s)
z z

t
n z z

−
=

⋅ ⋅
 (5) 

For the current turbine, time for the successive interaction is 4.29×10−4 s, which is equivalent to 0.857° 

of angular rotation of the runner, and the RSI occurs in sequence as runner rotates. Furthermore, for the 

given combinations of guide vanes and blades including splitters, two guide vanes and two blade interact 

at same instant of time at exactly 180° circumferentially apart. Rotational speed of the runner and the 

frequencies are normalized using equation (6). 

  

 *n t n= ⋅ , *
f

f
n

=  (6) 

where t is time in second, f is frequency in Hz and n is runner speed in revolutions per second. Pressure 

sensor V1 shows pressure fluctuations in the vaneless space with respect to runner angular movement 

for one revolution. Pressure is high when the blade leading edge is in-front of the sensor V1, and the 

pressure is low when two blade are equally apart from the sensor. Factor of pressure fluctuations is 2% 

of ρE for high load and the amplitudes of blade passing frequency (fb) 0.3% of ρE. Pressure data were 

acquired for 5 minutes and the spectral analysis was conducted using entire pressure signal. 

 
Figure 2. Pressure fluctuations and frequency spectra in the vaneless space (V1) at BEP, part load and 

high load operating conditions. 

Spectral analysis of unsteady pressure data at R1 and R4 locations for BEP, part load and high load 

conditions is shown in figure 3. High frequency stochastic fluctuations dominant at R4 location as 

compared to the R1. Two distinct frequencies, guide vane passing (fgv) and the runner rotational speed 

(fn) are obtained. Amplitudes of guide vane passing at part load and high load conditions are nearly same 

in the runner. The Amplitudes of RSI frequency are linearly decreasing along the blade channel. 

Stochastic fluctuations at R4 location are visible due to strong influence of flow field from the draft tube. 

It can be seen that the amplitude of guide vane passing frequency at R1 location is similar to the 

amplitude of blade passing frequency at V1 location in the vaneless space. Pressure field in the vaneless 

space and the runner is largely driven by size and locations of the stagnation region at the guide vane 

trailing edge and the blade leading edge. Wake behind the guide vane is also influence the flow field, 

however, if the effect of stagnation pressure and size if strong, wake effect is almost negligible. For the 

present study, sensors are locations in the middle of the blade channel. A sensor on the blade leading 

edge, in the region of stagnation point, may show high amplitudes of RSI frequency. The sensor V1 is 

located near the guide vane trailing edge where the amplitudes of RSI frequency are high as compared 

to other locations in the vaneless space. To study the pressure signal quality pertained to RSI and the 

stochastic (noise) fluctuations, SNR analysis is carried out. 
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where P is the power of the signal which is square of amplitude divided by two.  

 
Figure 3. Pressure fluctuations and frequency spectra in the runner (R1 and R4) at BEP, part load and 

high load; fn is the frequency of runner speed and fgv is the frequency of guide vane passing. 

Figure 4 shows SNR at all measurement locations in the turbine. Small difference in signal quality 

between V1 and R1 can be seen. Similarly, small difference between R4 and D1 can be seen. This indicates 

the random (including noise) fluctuations in the vaneless space and the runner are representative of 

runner up to certain extent. High load and part load show high value of SNR, which indicates the signal 

quality (amplitude) of fR and fgv is high with respect to noise content. To investigate in detail, coherence 

analysis of the pressure data is carried out. Figures 5 and 6 show coherence analysis of runner pressure 

sensors at part load and high load operating conditions. Interestingly, low frequency fluctuations show 

low coherence for both operating conditions. At part load, pressure fluctuations of high frequency (> 

150 Hz) at R2 and R3 locations show high coherence, which indicates similar flow condition. However, 

R4 shows very low coherence, which indicates rapid variation of flow field from R3 to R4. While 

comparing the coherence from part load to the high load operating condition, low coherence value R1–

R3 to R1–R4 at variation of flow field from R2 to R4 is strong in case of high load. Unsteady pressure 

fluctuations at R2 and R3 locations show high coherence, whereas sensor R4 shows coherence less than 

0.5. This indicates the source for high frequency stochastic pressure fluctuations may be from the draft 

tube and not from the upstream of R4. 

 
Figure 4. Signal-to-noise-ratio in the vaneless space, runner and draft tube at BEP, part load and high 

load. 
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Figure 5. Coherence of pressure signals from runner locations at part load operating condition. 

 
Figure 6. Coherence of pressure signals from runner locations at high load operating condition. 

 
Figure 7. Pressure fluctuations and frequency spectra in the draft tube at part load operating condition; 

fv is the frequency of vortex rope. 

In the draft tube, two pressure sensors D1 and D2 were mounted, and both were 180° circumferentially 

apart on the same plane. Figure 7 shows frequency spectra of pressure fluctuations from D1 and D2 

locations in the draft tube. From the frequency spectra, high amplitudes of vortex rope frequency (fv) 

and its harmonic are clearly visible. Two extra peaks at D1, correspond to the frequency of supplied 
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power (50 Hz) and the DC generator (300 Hz). Amplitudes of blade passing frequency in the draft tube 

are very small (< 0.01% of ρE). This has allowed to decompose pressure fluctuations related to 

synchronous and asynchronous type fluctuations in the draft tube. Coherence analysis at D1 and D2 

locations showed very low coherence for the frequencies higher than 200 Hz. That indicates the random 

pressure fluctuations and there frequencies are different at both locations. The low frequency showed 

trend similar to R4, especially 50–200 Hz, in figure 5. It is important to note that the sensor R4 is in 

rotating domain therefore direct comparison is not accurate enough. However, the trend and frequencies 

can be useful to understand the local flow field at runner outlet. Overall, measurement in the draft tube 

can help to determine the stochastic fluctuations around blade trailing edge. 

4.  Conclusions 

Unsteady pressure measurements were conducted on a model Francis turbine at three operating 

conditions, i.e., BEP, part load and high load. Total seven pressure sensors were integrated at different 

locations in the turbine. The present work is aimed to study common signature between pressure 

fluctuations in the stationary and rotating domains. Amplitude of RSI frequency were dominant at 

certain locations in the turbine; whereas, at other locations, amplitudes of stochastic pressure 

fluctuations were prevailing but smaller than the RSI frequencies. In the first half portion of blade 

channel, amplitudes of determinist frequencies were dominant. In the remaining position of the blade 

channel, especially after the trailing edge of splitter, stochastic pressure fluctuations were high. The 

source of stochastic fluctuations was unsteady vortex breakdown in the draft tube. Because, pressure 

sensors in the draft tube showed similar frequency band for the random fluctuations. Measurements in 

the draft tube, can provide information of the flow field in the runner up to some extent, especially 

random fluctuations. The draft tube pressure measurements could not provide the credible information 

on the RSI frequency because amplitudes of RSI frequencies in the draft tube were extremely small. 

From the draft tube pressure measurements, it is difficult to predict the deterministic frequency of RSI. 

From the present study, it may be concluded that the combined measurements in the vaneless space and 

the draft tube can provide information of pressure field in the blade channel up to some extent. In the 

first half part of the blade channel, deterministic frequencies prevail, which have signature similar to the 

frequencies in the vaneless space. In the second half part of the blade channel, stochastic frequencies 

prevail, which have signature similar to the draft tube flow condition. 
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