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Abstract

This paper proposes a novel approach incorporating scheduling decisions into a multi-
nodal multi-period Cournot game. Through applying the Nikaido-Isoda function, market
clearing is conducted without dual values being required. Maps of Nash equilibria are obtained
through a branch-and-cut algorithm, based on tailored cutting rules. A case study of inertial
response requirements shows that these maps and the resulting range of potential player profits
can be used to analyze the impacts of policy decisions influenced by discontinuous variables.
The case study also shows the financial impact on neighboring producers to the node with
applied inertial response requirements.
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I. INTRODUCTION

Equilibrium modeling in power systems represents an established method for analyz-
ing player behavior and their reactions to system changes [1]. These methods have been
traditionally based on systems of conventional means of power production participating
in single-period games [1], [2]. Changes in system generation portfolios have, however,
led to greater integration of fluctuating renewable electricity generation such as wind
and solar power and to electricity storage facilities being added to the grid. These
developments can result in traditional market models not being fit to adequately deal
with arising problems.
To address this, several approaches have been proposed in the literature to deal with
multi-period setups: Ref. [3] implements an equilibrium model on an assumed, already
conducted hydro power scheduling, extending a single period Cournot model to a
short term time frame. Ref. [4] introduces storage operators that behave as price-
takers in a natural gas market with gas inventory holding being simplified through
a fixed overall period capacity. Ref. [5] analyzes, based on [3], the implications of
market power in a system with large shares of hydropower generation using a two stage
model that clears a Cournot market and then (re)schedules units. Another analysis of
market power in systems under hydrostorage is given by [6], which embeds hydropower
decisions into a game played within a dynamic program and solved via interpolating
the best response functions. Ref. [7] shows a leader-follower framework in a stochastic
Equilibrium Problem with Equilibrium Constraints. It circumvents reliance on Karush
Kuhn Tucker-conditions by using strong duality constraints in its bi-level problem setup
of clearing the market and maximizing profits. Ref. [8] uses the Nikadio-Isoda function
to establish an active set algorithm to clear a multi-period hydro-thermal market. The
method presented below also relies on such a Nikadio-Isoda equilibrium framework.
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Scheduling of generation units i ∈ I is incorporated in the strategic decision problem
by considering binary variables. Such scheduling over a finite time frame T creates a
finite number of possible iterations. Each iteration consists of a problem setup similar to
the one presented in [9] and each shows none or a (potentially) unique Nash equilibrium
(NE) [10] and therefore results in a finite number of potential equilibria. Multiple NE
can, as explained in [11] and [7], vary greatly in appearance. In [11] polynomial algebra
is used to define the equilibrium space and to establish the formulation presented. The
approach presented below, however, makes use of a branch-and-cut algorithm, due to
the finite number of potential ’equilibrium tuples’, with analytically derived optimality
and feasibility cuts making mapping of such tuples a possibility.
Integer problems in power systems have various applications. One is given by the
question of inertial system frequency response and its interaction with individual plants
[12]. The problem is defined by a fixed contribution of inertial response (frequently
referred to as ’inertia’) that is related to the on/off states of generators and thus is
closely related to other market problems such as the market for e.g. spinning reserves.
There are, however, no implemented remuneration schemes for inertial response that we
are aware of. Thus and to give a practical example, a case study, based on spot prices,
on inertia will be presented below.

II. NASH EQUILIBRIA

Assumed are players J that own generation units I participate in a game where they
receive a payoff(/profit) function π(x) that depends on a set of qi (quantity) decisions
x = {qi, i ∈ I}.

The set of collective actions from the perspective of a player, a generation company
j, can be described as (yj|xj) ≡ {qi∈Ij} where xj defines player j’s assumptions of
decisions on units not controlled by player j, denoted as xj = {qj,i, i /∈ Ij}. qj,i thus
specifies a single players assumption on the output of a specific unit held by a competitor.
Denoting optimal solutions with ∗ and using X as the set of viable decisions allows
the NE to be defined (similarly to [13] and [8]) as the point y∗ that fulfills:

πj(y
∗) = max

(yj |x∗
j )∈X

πj(yj|x∗j) ∀j (1)

The multivariate Nikadio-Isoda function can be defined as follows [14]:

Ψ(x, y) =
∑
j

[πj(yj|xj)− πj(x)] (2)

As shown in [9], this function is able to yield the distance to a (potentially unique) NE
for (weakly) concave profit functions.

III. A NON-COOPERATIVE, NON-CONVEX GAME

Adding additional dimensions to the game, such as a network of multiple nodes n or
several time periods, expressed through t and so leading to qi becoming qi,t, does not
necessarily change the ability of the function proposed above to find the NE distance.
Ref. [13] shows this e.g. by solving the multi-nodal example presented in [2]. However,
it should be mentioned that the complexity of the approach could increase due to the
need for techniques to extend the solution to other time periods, as later periods could
bear uncertainty.
Generation scheduling is strongly related to binary decisions, as the on/off states of
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NOMENCLATURE

Indices:
i, i2 ∈ I generation unit
ihydro, iwind hydropower/windpower

unit
j ∈ J producer
n network

node(/area/country)
ns, nd source, destination [node]
t period [h]
s ∈ S branching tuple
Variables:
yqi,n,t ∈ R+ quantity decision [MWh]
ybi,t ∈ {0, 1} scheduling decision
dn,t ∈ R+ energy demand [MWh]
qj,i,n,t ∈ R+ quantity assumption

[MWh]

Fixed Variables:
qi,n,t ∈ R+ quantity provided

[MWh]
bi,t ∈ {0, 1} dispatch decision
Functions:
pj,n,t price estimation

[AC/MWh]
ci,t generation cost [AC]
p∗n,t market clearing price

[AC/MWh]
πj profit function of pro-

ducer j [AC]

Parameters:
qmin
i , qmax

i generation capacity
[MW ]

cvari,t variable cost portion
[AC/MWh]

cfixi fixed cost portion [AC]
lns,nd
i,n line flow from ns to nd

[%]
lmax
nso,nde

line capacity [MW ]
wihydro inventory end value

[AC/MWh]
rihydro available reservoir quota

[MWh]
qcapi,t ∈
[qmin

i , qmax
i ]

available wind capacity
[MWh]

Hi inertial response constant
Hd

n inertial response require-
ment

Sets:
Ij generation units of pro-

ducer j
In generation units in node

n
SN set of branching tuples in

NE

units are factors that have to be considered in startup cost, ramp rate limits, reserve
constraints, and up and down time limits [15]. Using algorithms such as those proposed
in [16] or [17] allows the scheduling problem to be solved as a mixed integer cost
minimization problem for the optimal dispatch of thermal plants.
Adding storage technologies such as hydropower to such a game allows players to
strategically dispatch their resources. Providers with storage capabilities will actively
aim to provide in high price (i.e. peak) hours and to withhold in low price (i.e. base)
hours. Ref. [3] shows this concept for a Cournot game (a game with competition in
quantity) by binding the time stages by their marginal value of water. This concept,
which is often termed water value is used in both scheduling and in the optimization of
bidding in hydro power dominated systems [18]. Problem formulations based on water
values however often neglect the strategic impact of other players. To strengthen their
position on the market, these players might actively aim to withhold production from
peak periods in which other players aim to produce. In non-cooperative games, this
means a player might act as a leader in some time stages and as a follower in others
[19], so making the multi-period game more dynamic than single-period approaches.
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Adding (binary) integer variables to the problem setup leads to non-convex, non-continuous
payoff-functions and so breaches the definition of convex games from [14]. Ref. [8]
extends the concept of [9] by using an active set method to yield a combination of
decision variables (which we will later refer to as tuple) that define a NE. A binary
scheduling problem with I generation units, T time periods would, however, show a
possible number of 2I×T tuples, and as shown in [19], multiple equally viable tuple
equilibria - ranging from 0 to I × T (which is also discussed briefly in the appendix).
Therefore, deriving a single equilibrium tuple might give an incorrect perspective on the
existing array of equilibrium tuples. Such a misrepresentation could prove problematic,
particularly in the consideration of ancillary services/markets for reserve energy, where
the number of ”running” (i.e. committed) units is of significant importance.
We thus propose an algorithm based on the Nikaido-Isoda equilibrium algorithm that
incorporates branching and cutting based on analytical rules. The Nikaido-Isoda func-
tion, first proposed in [14] presents an auxiliary function that defines whether a given
player’s solutions yield a Nash Equilibrium. A step-wise algorithm as in [9] allows
such an equilibrium to be derived for a system with shared constraints (e.g. a network).
Based on this concept, the algorithm presented below is meant to bridge the economical
approach of determining market power effects and the technical aspect of deriving
explicit schedules for providing the commodity.

IV. SELECTIVE CUTTING

This section will briefly introduce solving a Cournot game with binary variables
using the Nikaido-Isoda function. This problem is not unique to power systems. A
more general formulation will therefore be used and will be extended in the following
sections to problems specific to electrical power systems. As discussed above, Cournot
games find broad application in power systems, as they are suitable solutions for
commodity market problems [1]. Other games such as Bertrand competition might also
be applicable. This would, however, require additional analysis of the cutting rules
presented below. Other modes of competition therefore have been excluded from this
paper. We define the profit function of a single player as:

πj(qi,n,t, bi,t) =
∑
t

∑
i∈Ij

∑
n

[pj,n,t(
∑
i∈Ij

qi,n,t

+
∑
i2 /∈Ij

qj,i2,n,t)qi,n,t − ci,t(qi,n,t, bi,t)]

where:
pj,n,t(

∑
i∈Ij

qi,n,t +
∑
i2 /∈Ij

qj,i2,n,t) = p∗n,t(dn,t)∀j, n, t

dn,t =
∑
i

qi,n,t ∀n, t

(3)

This assumption of an existing market clearing quantity dn,t requires the underlying
assumption of information symmetry on price elasticity among the competitors [1].
Thus, the expectations pj,n,t, qj,i2,n,t can be approximated as variables pj,n,t, qj,i2,n,t
from the perspective of a player. To solve this problem, we establish the Nikaido-Isoda
function in the general form as:

Ψ((qi,n,t, bi,t), (y
q
i,n,t, y

b
i,t)) =∑

j

[πj(y
q
i,n,t, y

b
i,t)− πj(qi,n,t, bi,t)] (4)
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The total set of tuples S = {s1, ..., sI×T |b1 6= ... 6= bI×T} is established by all potential
iterations of the binary variable bi,t. By fixing ybi,t := bi,t it is possible to solve every tuple
s for its equilibrium (assumed concave profit functions) through an iterative algorithm
[9]:

Algorithm 1:

0) assume starting values for (qi,n,t, bi,t)
1) solve for max

yqi,n,t

Ψ((qi,n,t, bi,t), (y
q
i,n,t, y

b
i,t))

2) is Ψ((qi,n,t, bi,t), (y
q
i,n,t, y

b
i,t)) = 0 ?

yes - end, (yqi,n,t, y
b
i,t) is the NE point (i.e. tuple is solved);

no - (qi,n,t, bi,t) := (yqi,n,t, y
b
i,t), back to 1)

Repeating this algorithm can be compared to individual players applying stepwise
(profit-)maximization, resulting in (supply-side) welfare maximization, whilst operating
under shared constraints. As mentioned before, problems in the form of (4) are non-
convex. As shown in [9], every individual tuple s therefore offers a (potentially unique)
NE as long as the set of constraints added to the problem is convex and allows a feasible
solution [10].

We define the set of viable NE SN ⊆ S as being the set of tuples for which no
player has an incentive to dispatch another unit (i.e. increase

∑
i∈Ij

bi,t). The system is

computationally efficient solved by making use of two characteristics of the Nikadio-
Isoda equilibrium algorithm presented in [8], [9]:

- solving one step of the convergence algorithm is, depending on the cost function, a
problem of linear/quadratic nature and thus solved computationally quickly using
available commercial software.

- the objective function Ψ((qi,n,t, bi,t), (y
q
i,n,t, y

b
i,t)) provides a quantitative statement

about the improvement in each step of the algorithm (as the NE is defined by
a value of 0, i.e. ’no improvement potential for any participant’). It is therefore
possible to rank tuples by their rate of convergence (lower value of the Nikaido-
Isoda function) and select the tuples s that are solved computationally more quickly
than others.

Our proposed algorithm labels all tuples s as either:
• pending - there can be no definite statement made about the tuple as the Nikaido-

Isoda function still returns a value above 0.
• solved - the NE of the tuple was found (Nikaido-Isoda function returns 0) and

might be considered to be a Nash tuple.
• sorted out - the tuple will not be a Nash tuple, irrespective of the value of the

Nikaido-Isoda function.
All tuples start as pending. Three transitions are possible:
1) pending ⇒ solved, 2) pending ⇒ sorted out, 3) solved ⇒ sorted out.
SN is the set of (Nash) tuples, for which no such transitions are possible anymore

(all tuples are thus either solved or sorted out). The proposed Nash tuple mapping
algorithm can be formulated as:

Algorithm 2:
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0) sort out tuples that do not fulfill (non-convex) constraints associated with
discontinuous variables (the preliminary cutting rules are presented later in
this paper).

1) conduct algorithm 1 on a number of (randomly) selected tuples s that are
still pending

2) use already solved tuples to sort out other tuples (i.e. apply dynamic cutting
rules)

3) are there any pending tuples left?
no - proceed | yes - back to 1).

4) were any nodes sorted out in step 2)?
yes - back to 2) | no - end (SN shows the ”map of Nash Equilibria”)

V. CUTTING RULE DESIGN

Even though the ranking of tuples heavily depends on starting values and in the
proposed framework tuples to be solved were selected randomly, generally applicable
rules can formulated to sort out unfavorable tuples. For one, they may relate to the set
of constraints and thus must be specifically tailored to the application. As such, they
mostly depend on pre-selecting iterations of the integer variable to sort out tuples that
do not fulfill given constraints. The Inertial Response Requirement Rule mentioned later
in this paper is such a type. For the other, rules can be defined, that dynamically declare
branches of tuples as infeasible or unfavorable, after a single tuple is declared as such.
The Marginal Cost Rule presented later is an example of such a rule. These rules can,
furthermore, draw dynamic conclusions based on already solved tuples. We formulate
one such rule here (referred later to as the Payoff-Function Cutting Rule) based on two
assumptions:

Assumption 1: players will not schedule units if that leads to a decrease in payoff
Assumption 2: adding additional units to the schedule will not increase any market
clearing prices

Assumption 1 is a straight forward economical decision and is valid for players that
aim to maximize their outcome. Assumption 2 is valid as long as units solely operate on
the supply side. Purchases (for example pumped hydro storage) would result in negative
supply effects and would increase dn,t and result in higher prices. The model presented
here is therefore limited to competition on the supply side. Non-concave, decreasing
market price functions are also a necessity. The assumptions presented here rely on the
concept of dominance in games [20]. No economically rational player j would choose to
commit generation units if the new equilibrium point would not dominate the previous.

To execute the proposed Payoff-Function Cutting Rule, two solved tuples denoted
as s∗ and s∗∗ are required. In addition, several conditions must be fulfilled by the
equilibrium solutions of the tuples , denoted as 〈yq∗i,n,t, yb∗i,t〉 and 〈yq∗∗i,n,t, y

b∗∗
i,t 〉 respectively:

b∗∗i,t ≥ b∗i,t ∀i, t (5a)

πj̄(y
q∗
i,n,t, y

b∗
i,t) > πj(y

q∗∗
i,n,t, y

b∗∗
i,t ) ∀j̄ (5b)∑

i∈Ij̄

∑
t

b∗∗i,t >
∑
i∈Ij̄

∑
t

b∗i,t ∀j̄ (5c)
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solved tuple s∗

j i bi,1 bi,2 bi,3
1 1 0 0 1
1 2 1 1 1
2 3 0 0 1
2 4 1 1 0
π∗1 = 1000, π∗2 = 750

solved tuple s∗∗

j i bi,1 bi,2 bi,3
1 1 0 1 1
1 2 1 1 1
2 3 0 1 1
2 4 1 1 0
π∗∗1 = 500, π∗∗2 = 1500

pending tuple s
j i bi,1 bi,2 bi,3
1 1 0 1 1
1 2 1 1 1
2 3 1 1 1
2 4 1 1 0
π1 =???, π2 =???

As π∗1 > π∗∗1 (i.e.
π∗1 dominates), player 1
does not have an
incentive to set b1,2 := 1.
Thus, both the tuple s∗∗

and its branch tuple s
can be sorted out,
independent of the
profits of player 2.

Fig. 1: Numerical Cutting Example

j̄ represents a specific player from the set of available players j̄ ∈ J . (5a) ensures,
that tuple s∗∗ is located on a branch of tuple s∗. (5b) holds where player j̄ has a negative
payoff effect from transitioning from tuple s∗ to tuple s∗∗. Fulfilling requirement (5c)
means that said player j̄ made an active decision (committing an additional unit) that
enabled this tree branch. According to assumption 1, no reasonable player j̄ would
choose such a decision. Thus, and according to assumption 2, the tree branch can be
cut entirely: {s|bi,t ≥ b∗∗i,t;∀i, t} := sorted out

As one can see, this cutting method does not require the two tuples to be adjacent
in the branching tree. The structure of the tree plays no role, as long as the stated
conditions for s∗ and s∗∗ hold for the entire time frame. If the two assumptions hold,
applicability to (Cournot) problems other than the case presented in this paper is given.

A numerical example of a cut is given by Figure 1. A practical application of the
proposed algorithm with additional tailored cutting rules will now be presented.

VI. MULTI PERIOD COURNOT MARKET CLEARING

We developed an energy market clearing model based on problem (3) with affine
cost functions:

ci,t(qi,n,t, bi,t) = cvari,t

∑
n

yqi,n,t + cfixi ybi,t (6)

This allows the formulation of the extended general form of the Nikaido-Isoda function
for a single tuple s:
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Ψ((qi,n,t, bi,t), (y
q
i,n,t, y

b
i,t)) =∑

j

∑
t

∑
i∈Ij

∑
n

[
pj,n,t(

∑
i2∈Ij

yqi2,n,t +
∑
i2 /∈Ij

qi2,n,t)y
q
i,n,t

−cvari,t

∑
n

yqi,n,t − c
fix
i ybi,t

]
−

∑
i∈Ij

[∑
n

pj,n,t(dn,t)qi,n,t

−cvari

∑
n

qi,n,t − cfixi bi,t

]
where:
dn,t =

∑
i

qi,n,t ∀n, t

ybi,t = bi,t ∀i, t

(7)

This function combines the objective functions of the players into a single opti-
mization problem that allows conjoint optimization under consideration of previous
optimization results entered in the form of previous tuple solutions 〈qi,n,t, bi,t〉. Using
this function as the objective function (8) in an optimization problem and applying the
shared constraints allows the distance to the Nash equilibrium for a specific tuple (i.e.
a tuple with similar schedules ybi,t = bi,t ∀i, t) to be found.

The generation units show minimum and maximum output restrictions based on
whether the unit is running or not. The constraint (9) therefore has to be added to the
model. Line constraints connecting the different network nodes were also implemented,
one in the positive and one in the negative direction: (10), (11). The concept proposed
here extends the formulation proposed in [2], [13] by allowing the exclusion of specific
generation units from participating in competing in certain market nodes n or using cer-
tain transfer lines lns,nd

i,n . A transmission system operator and arbitrageurs as independent
players (as e.g. displayed in [2]) were excluded from the model for two reasons: 1.)
the Nikaido-Isoda function would require additional complexity for such heterogeneous
players to be incorporated, so increasing notational complexity unnecessarily; 2.) as
shown in [9], the stepwise algorithm is capable of dealing with such shared constraints
and can thus be used to assign line capacities shared by players. This comes as a
result of the Nikaido-Isoda function allowing solving all players problems bundled
within the single objective function (7) compared to other methods from literature
such as derivation of the Karush-Kuhn-Tucker conditions. There will, however, be
no direct result for wheeling fees, which can limit the applicability of the model in
certain markets such as those found in the USA (which would require heterogeneous
players). Furthermore, higher granularity of the problem (solving small scale problems
within limited areas) would require additional technical specifications and thus additional
(shared) constraints, both omitted in the here presented model. Assumptions such as
demand curve elasticity can be considered valid assumptions for large scale problems.
The case study was therefore chosen to represent an excerpt of cross-country trading
within the European electricity market.
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max
yqi,n,t,y

b
i,t

Ψ((qi,n,t, bi,t), (y
q
i,n,t, y

b
i,t)) (8)

s.t. qmin
i ybi,t ≤

∑
n

yqi,n,t ≤ qmax
i ybi,t∀i, t (9)∑

i

∑
n

(lns,nd
i,n − lnd,ns

i,n )yqi,n,t ≥ −lmax
ns,nd
∀t, ns, nd (10)∑

i

∑
n

(lns,nd
i,n − lnd,ns

i,n )yqi,n,t ≤ lmax
ns,nd
∀t, ns, nd (11)

Solving the maximization problem (8) iteratively, as described above, would result in
a NE point (i.e. Ψ((qi,n,t, bi,t), (y

q
i,n,t, y

b
i,t)) = 0). As can be seen, this point fulfills the

price clearing condition of (3): pj,n,t(
∑
i∈Ij

qi,n,t +
∑
i2 6=i

qj,i2,n,t) = pj,n,t(dn,t) = p∗n,t(dn,t)

Different constraints and parameter specifications must be added depending on plant
type. It should be noted that this paper shows a limitation similar to the literature
sources - the equilibrium considers only a deterministic representation. Uncertainty can
affect a number of parameters including market prices, hydrological inflow, available
wind power capacity, and fuel prices. Omitting stochastic representation, which was
considered necessary to deal with model complexity - limits the model to shorter time
frames that impose less uncertainty. To give an example, wind power is simulated
through stochastic parameters in unit commitment models, see e.g. [21], [22]. Such an
approach would, however, require additional techniques (i.e. sampling, decomposition)
and therefore exceed the limits of this paper. It was therefore decided to instead use
preselected wind capacity scenarios (i.e. point forecasts as presented in [23]).

A. Hydropower Plant
Hydropower plants show low cost profiles for production. Models therefore usually

exclude the generation cost [18]. The opportunity cost of storing water is instead taken
into consideration, defining the decision to generate or store in a single time period
[24]. Due to applied formulation of the reservoir function, the approach presented in
this paper manages the transition between time periods without1 calculating the dual
values of inventory that are commonly referred to as water value. It still, however,
requires a finite set of time periods t = 1, ..., T and an assumption of end values of
variables, which are traditionally the end levels of reservoirs. This paper instead applies
assumptions of the end value of stored hydrological inventory to demonstrate a different
approach. The variable cost of the hydro units were therefore assigned the opportunity
cost of stored water: cvarihydro,t

:= wihydro∀t.
The possibility of holding inventory effectively enables arbitrage over time stages. To

incorporate this, a concept similar to [3], [4], [8] was implemented. Thus, a predeter-
mined maximum allowance of available hydropower inventory for the total time frame
being given as a parameter. This indirectly represents the hydrological inflow by ap-
proximating the state transition caused by reservoir storage as a capacity constraint over
the total time frame. To realize this, additional constraints for each of the hydropower
units are required: ∑

n

∑
t

yqihydro,n,t ≤ rihydro ∀ihydro (12)

1with the exception of an initial, fixed assumption of the value after the observed time frame
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In contrast to [3], [4], [8], the approach presented here is realized through an inequality
constraint. This is made possible by assuming an end period water value instead of
reservoir storage, whereas the storage level is now subject to player decision. In the
case study presented here, the water values were considered to be the (assumed) spot
price of electricity rounded down to 100s, in the next period after the analyzed time
frame (i.e. T + 1) within the location node of the respective plant.

Both of these changes to traditional hydropower equilibrium models, i.e. no re-
quirement for dual values and alleviation of the inventory constraints, led to gains
in computational efficiency that support the performance of the Nash tuple mapping
algorithm. Similar to [5], spillage of hydrological inventory is not considered.

B. Wind Power Plant
Wind, unlike water, which can be physically stored, is a fluctuating resource, that

cannot be transferred from time stage to time stage. Availability depends on external
factors which the players have no control of (there is no market for the ’procurement’
of wind). Wind curtailment can therefore be considered to be a parameter and requires
additional constraints for the generation units of ’wind power’ type:∑

n

yqiwind,n,t
≤ qcapi,t ∀iwind, t (13)

C. Thermal Power Plant
An introduction of CO2 caps or the ability to store coal or fossil fuels would add a

constraint similar to (12) into the mix. However, such a constraint was omitted, for the
sake of simplicity. It was considered sufficient for the case study to have higher variable
and fixed cost factors than the renewable generation forms, which implicitly forces the
players to minimize up-times and therefore CO2 emissions. The here presented case
also is focused on short term modeling. Thermal restrictions such as minimum and
maximum downtime were therefore neglected. Constraints for the contribution to nodal
inertial response were instead chosen to demonstrate a modern application which the
algorithm shown here offers. Nonetheless, we propose future extensions to the model in
the form of a more sophisticated representation of intertemporality in players’ dispatch
decisions. I.e. startup and stopping cost, maximum and minimum runtimes, etc.

D. Inertial Response Requirements
As debated in [12], evolving power systems shifting their production portfolio to

higher shares of renewable generation, increases the demand for additional security
services. One such service would be providing kinetic energy, or inertial response
capabilities. The inertia constant (in the literature commonly denoted as H) was used
to implement this characteristic in our presented market competition model and to rate
the individual impact of generation units and formulate inertia ”demand” constraints.
Defining inertial response contribution as a parameter Hi supplied at an equal level
as long as the unit is running (i.e. ybi,t = 1) and summation of those contributions to
define the nodal/system inertia was considered to be an appropriate approximation [24].
This is given to create a realistic example to showcase the capabilities of the designed
framework and is not necessarily aimed at providing a statement about quantitative
impacts of inertial response that can be considered without further analysis.
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We assumed the fictional scenario in which nodes can be assigned minimum inertia
requirements, relating to the model in the form of a nodal demand constraint:∑

i∈In
ybi,tHi ≥ Hd

n ∀t, n (14)

E. Additional Cutting Rules
As mentioned in section V, analytically derived cutting rules are an integral com-

ponent of the algorithm presented. In literature, cuts are commonly categorized into
feasibility and optimality cuts. We also use the definitions preliminary and dynamic
cuts. Preliminary refers to cuts that can be conducted before any tuple equilibria are
obtained (i.e. relate to step 0 in the tuple sorting algorithm in III). Dynamic cuts require
one or more already solved s∗(i.e. relate to step 2 in the Nash tuple mapping algorithm
in III).

1) Feasibility Cuts: Some combinations of the binary variables bi,t cause infeasibility
and thus yield no possible market equilibrium. Certain tuples therefore can and must
be sorted out before calculating the tuple NE Ψ((qi,n,t, bi,t), (y

q∗
i,n,t, y

b∗
i,t)) = 0.

- Inertial Response Requirement Cut (preliminary): Too few committed units in
a certain node n in period t will result in a breach of (14). Tuples leading to such a
situation can be sorted out before solving them. This can be formulated as:∑

i∈In
bi,tHi < Hd

n for any t, n (15)

Tuples s that fulfill rule (15) must therefore be sorted out.
- Minimum Hydropower Output Cut (preliminary): Certain tuples can, due to their

minimum outputs over the total time frame being higher than available reservoir volume,
similarly show a constellation of binary values that breach constraint (12). The cutting
rule reads: ∑

t

qmin
ihydro

bihydro,t > rihydro for any ihydro (16)

The affected s that breach (16) have to be (as for the other cuts) sorted out.
2) Optimality Cuts: One of the core aspects of the Nikaido-Isoda function is that

some tuples converge faster than others. Therefore, (dynamic) optimality cuts can be
conducted to stepwise decrease the amount of unsolved tuples.

- Payoff-Function Rule (dynamic): As explained above, two tuples are required to
be in state solved for their NE whereas s∗∗ has to be located on a branch of s∗.

- Marginal Cost Rule (dynamic): Players in Cournot competition are able to influence
prices by varying their bidding quantity. It is therefore possible for prices to end up
at a level where no production quantity could compensate for the involved cost. A
tree branch, where the Marginal Cost of a unit i exceeds the Market Clearing Price
is therefore not economically viable for the player controlling that unit. This means
choosing the maximum price of all nodes n in a single period t as a benchmark clearing
price:

for a tuple s∗ cut all tuples s where:
bi,t ≥ b∗i,t ∀i, t∑

i,t

[bi,t|pMC
i,t > max

n
p∗n,t] > 0

pMC
i,t = bi,tc

var
i,t

(17)

This shows that cuts might overlap. A tuple affected by the Marginal Cost Rule
would show qi,n,t = 0 for i and t where pMC

i,t > max
n

p∗n,t. Otherwise, the generator i
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Fig. 2: Case Study Setup

would produce at a loss. However, as the cost portion cfixi must be paid by unit i due
to bi,t = 1, then the payoff-function will inherently yield a lower result πj(qi,n,t, bi,t) for
the owner of i ∈ j. Therefore, such a case would also be cut through the payoff-function
rule presented above.

The following section introduces a case study to demonstrate a practical application
of the framework presented here.

VII. CASE STUDY

As illustrated by Figure 2, the case study is designed to relate to an excerpt of
the European power system, nodes representing the countries of Norway, Denmark
and Germany. As discussed above, a representation of areas or countries in which
little regard is paid to wheeling fees can be considered fitting for the model in the
here proposed form. Further granularity would require adequate adjustment (i.e. the
introduction of further agents). The test case resembles part of a week in late fall
with medium to high available wind capacity (especially in the North Sea) and low to
medium available hydropower capacities. The parameters can be found in the appendix.
The importance of this case study is highlighted by the lack of literature on market power
in hydrothermal competition and market power in the European system. Hydrothermal
competition is based on the technical constraints related to the state variables, whereas
analysis of market power is based on legislature aiming to hinder exercise of such
(but not strategic bidding). We argue, particularly in the light of the introduction of
new products such as commercialization of inertial response, that a careful analysis of
market robustness to such actions should be incorporated in the design process.

Different types of generation units2 (Table II) meet in a 3-bus network to conduct
trade under the assumption of similar information on market clearing price elasticity
(Table III). The power line flows lns,nd

i,n found in Table IV were assumed to be similar to
the Power Transfer Distribution Factors (PTDF) presented in [2]. A single convergence
criteria was added to the model:

Ψ((qi,n,t, bi,t), (y
q∗
i,n,t, y

b∗
i,t)) ≤ 0.00001 ≡ 0 (18)

2note that the plants are assumed to be continuously running or idle for a whole day
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(a) case #1: no requirements for inertial response (b) case #2: requirements for inertial response in
node n = D

Fig. 3: Price curves for each Nash tuple s ∈ SN

No further tolerances were added on the constraints, as they are not required due to
tuple problems being represented by quadratic optimization problems (an advantage of
the Nikaido-Isoda method compared to more traditional methods such as using Karush-
Kuhn-Tucker conditions) that can be solved by most commercial solvers.

The case study aims to analyze the impacts of applying minimum requirements
for inertial response in the wind power dominated node n = D. Therefore the case
study can be adjusted to increase computational efficiency by analyzing generation
schedules. Several plants show no fixed cost. No negative effects of the on/off states of
the generation units on the profit functions can therefore be expected. These units can
therefore be assumed to run continuously, i.e. b̄i,t := 1∀i = {1, 2, 5, 6, 8, 9, 10}, t. For
hydropower plants, this is only possible as their minimum generation is assumed to be
0. Schedules would have to be included for minimum output capacities > 0 and the
cut presented in (16) would have to be applied. However, as this is not the case, these
tuples were removed, reducing the number of total tuples from 210×7 to 23×7.
The model does not consider the possibility of shared inertial response within the
whole system but instead focuses on modeling nodal inertia demands. Thus, and as
the scheduling of the thermal plant i = 7 does not affect the inertial response in node
n = D, it was assumed to be predetermined as b̄7 := [1, 1, 1, 1, 0, 0, 0]. This led to a
reduction in tuples from 23×7 to 22×7 = 16384. This remaining set of tuples was solved
twice:
#1: no requirements for inertial response:

Hd
N = Hd

D = Hd
G = 0

#2: requirements for inertial response in Denmark:
Hd

N = Hd
G = 0, Hd

D = 1

The Nash tuple mapping algorithm required solving 629 (randomly selected) tuples for
case #1 and 385 tuples for case #2 until the mapping algorithm converged. Processing
times on an Intel i7-5600 core @2.6 GHz were below 1 second for an iteration, with
an average of 15 iterations until a single tuple converged. The resulting set of Nash
tuples SN contained 390 elements in case #1 and 128 elements in case #2. The model
does not show a large range of infeasible states. Most cuts were therefore conducted
dynamically.

Figure 3 shows a reduction in the ranges of price scenarios from case #1 to #2.
Scheduling decisions however seem to mostly affect the node of the two plants with
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(a) case #1: no requirements for inertial response (b) case #2: requirements for inertial response in
node n = D

Fig. 4: Map of Nash tuples s ∈ SN

(a) case #1: no requirements for inertial response (b) case #2: requirements for inertial response in
node n = D

Fig. 5: Firm profits for each Nash tuple s ∈ SN

variable schedules. The map of NE is displayed in Figure 4. The figure demonstrates
the importance of showing different equilibrium tuples. Every chosen schedule yields
strongly different outputs and player profits, whereas each tuple is an equilibrium and
thus represents a potential outcome. The figure shows that the range of equilibrium
results increases slightly for player j = 1, strongly for j = 2 and decreases slightly
for j = 3. This change in the range of profit scenarios is also displayed in Figure 5.
Player j = 1 profits marginally and j = 2 strongly from apparent effects of ”forced
cooperation”. This change in profit stems from that the respective owner would choose
to not schedule in order to result in an alternate optimum (i.e. it would be profitable to
shut them down, thus they would be sorted out by rule (5a) to (5c)).

Scheduling these unprofitable units however occupies transfer line capacities and thus
reduces the possibility of the hydropower player j = 3 accessing other market nodes,
resulting in lower profits across all scenarios. The effect of additional line congestion
can be observed in the increase in average capacity in line N → D, as displayed in
result Table I. It shows that increasing exports and decreasing local production leads to
lower impact of binary variables on the price ’spread’. This is shown by the wide gap of
prices in t = 1 in Figure 3 and the low spread in t = 7. The case study demonstrates that
influencing unit commitment decisions (as ancillary services such as primary reserves
or the inertial response requirements discussed here do) has an impact on otherwise
unaffected generators in the system - here represented by hydropower producer j = 3.
This negative effect, i.e. a profit decrease, comes as a result of the market share that
is shifted to generators that would choose to not schedule in the optimum, but who
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TABLE I: Transfer Results (averaged over all tuples)

line utilization case #1 case #2
line D → G 278.3 MW 330.8 MW
line G→ N -194.4 MW -191.8 MW
line N → D 60.6 MW 113.3 MW

t = day 1 day 2 day 3 day 4 day 5 day 6 day 7
Local generation [MWh]
case #1 1281 1449 1274 549 81 243 0
case #2 1283 1620 1469 549 81 243 0
Exported generation [MWh]
case #1 911 848 1048 633 823 716 1177
case #2 912 916 1055 709 907 759 1392

are, through system constraints, forced to participate in certain periods. This distorts
competition by removing market share from more competitive players such as the time
stage abitrageurs (hydro power producers) and assigning them to less competitive forms
of generation such as thermal producers. This effect comes from the inertia requirements
making certain equilibria from case #1 infeasible, thus effecting the tree and enabling
branches that support less efficient equilibria. Averaged over the tuples, case #1 results
in a generator welfare of 144MAC whereas case #2 shows 224.6MAC, a welfare increase
that would have to come at the expense of the demand side, i.e. consumers.

VIII. CONCLUSIONS

The proposed framework and case study in this paper presents a number of contri-
butions:

The main contribution is the consideration of strategic scheduling decisions in a model
with price-making generators and multiple interconnected time stages, a novelty in the
literature [25]. Furthermore, the resulting mapping of a finite pool of Nash equilibrium
tuples demonstrates a new view on discontinuous problems in energy systems, that have
traditionally been occupied with converging towards single solution tuples (e.g. [9])
whilst disregarding potential other equilibria. This allows the discontinuous decisions
of a player to relate to its market impact and vice versa, so determining the impact
players have on each others’ scheduling. In addition, the proposed cutting techniques and
adjustments to other models proposed in the literature allows for a more computational
efficient approach to model hydro-thermal(-renewable) systems. Finally, the proposed
case study itself constitutes a novelty. It shows that introducing minimum requirements
for committed units in single nodes has an effect on the profits of other participants
in the system. The reason for this is found in transmission capacities being used by
the newly committed units, occupying transmission lines that could be otherwise used
by different actors to conduct nodal price arbitrage, resulting in a worse outcome for
those arbitrageurs. This result and the framework proposed in the paper might aid
future discussions of system design options, for example the analyzed requirements for
inertial response. One limitation of the paper is demonstrated by the case study. The
requirement of in-depth problem analysis does not allow for the plug-and-play of the
solution framework. Tailored cuts and predetermining the generation units that are valid
in active scheduling decisions requires a case-by-case analysis. As mentioned above, the
problem in its current form might be applicable for similar large area applications such
as the analysis of spinning reserves. However, and as for most equilibrium problems,
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real world uncertainty and resulting forecast volatility influence the outcome and thus
provide an important starting point for future research.

REFERENCES

[1] S. A. Gabriel, A. J. Conejo, J. D. Fuller, B. F. Hobbs, and C. Ruiz, Complementarity Modeling in Energy
Markets. New York: Springer, 2013.

[2] B. F. Hobbs, “Linear Complementarity Models of Nash Cournot Competition in Bilateral and POOLCO Power
Markets,” IEEE Transactions on Power Systems, vol. 16, no. 2, pp. 194–202, 2001.

[3] J. Bushnell, “A Mixed Complementarity Model of Hydrothermal Electricity Competition in the Western United
States,” Operations Research, vol. 51, no. 1, pp. 80–93, 2003.

[4] S. A. Gabriel, S. Kiet, and J. Zhuang, “A Mixed Complementarity-Based Equilibrium Model of Natural Gas
Markets A Mixed Complementarity-Based Equilibrium Model of Natural Gas Markets,” Operation Research,
vol. 53, no. March 2017, pp. 799–818, 2005.

[5] S.-E. Fleten and T. T. Lie, “A Stochastic Game Model Applied to the Nordic Electricity Market,” in World
Scientific Series in Finance, 2013, vol. 4, pp. 421–441.

[6] G. Steeger and S. Rebennack, “Strategic bidding for multiple price-maker hydroelectric producers,” IIE
Transactions (Institute of Industrial Engineers), vol. 47, no. 9, pp. 1013–1031, 2015.

[7] D. Pozo and J. Contreras, “Finding Multiple Nash Equilibria in Pool-Based Markets : A Stochastic EPEC
Approach,” IEEE Transactions on Power Systems, vol. 26, no. 3, pp. 1744–1752, 2011.

[8] J. P. Molina, J. M. Zolezzi, J. Contreras, H. Rudnick, and M. J. Reveco, “Nash-Cournot Equilibria in
Hydrothermal Electricity Markets,” IEEE Transactions on Power Systems, vol. 26, no. 3, pp. 1089–1101,
2011.

[9] J. B. Krawczyk and S. Uryasev, “Relaxation algorithms to find Nash equilibria with economic applications,”
Environmental Modeling and Assessment, vol. 5, pp. 63–73, 2000.

[10] J. Rosen, “Existence and Uniqueness of Equilibrium Points for Concave N-Person Games,” Econometrica,
vol. 33, no. 3, pp. 520–534, 1965.

[11] R. S. Datta, “Finding all Nash equilibria of a finite game using polynomial algebra,” Economic Theory, vol. 42,
no. 1, pp. 55–96, 2009.

[12] R. Doherty, G. Lalor, and M. O’Malley, “Frequency Control in Competitive Electricity Market Dispatch,” IEEE
Transactions on Power Systems, vol. 20, no. 3, pp. 1588–1596, 2005.

[13] J. Contreras, M. Klusch, and J. B. Krawczyk, “Numerical Solutions to Nash Cournot Equilibria in Coupled
Constraint Electricity Markets,” IEEE Transactions on Power Systems, vol. 19, no. 1, pp. 195–206, 2004.

[14] H. Nikaido and K. Isoda, “Note on non-cooperative convex game,” Pacific Journal of Mathematics, vol. 5,
no. 5, pp. 807–815, 1955.

[15] G. B. Sheble and G. N. Fahd, “Unit commitment literature synopsis,” IEEE Transactions on Power Systems,
vol. 9, no. 1, pp. 128–135, 1994.

[16] M. Carrión and J. M. Arroyo, “A computationally efficient mixed-integer linear formulation for the thermal
unit commitment problem,” IEEE Transactions on Power Systems, vol. 21, no. 3, pp. 1371–1378, 2006.

[17] Y. Ye, D. Papadaskalopoulos, and G. Strbac, “Factoring Flexible Demand Non-Convexities in Electricity
Markets,” IEEE Transactions on Power Systems, vol. 30, no. 4, pp. 2090–2099, 2015.

[18] S. E. Fleten and T. K. Kristoffersen, “Stochastic programming for optimizing bidding strategies of a Nordic
hydropower producer,” European Journal of Operational Research, vol. 181, pp. 916–928, 2007.

[19] L. Arvan, “Some Examples of Dynamic Cournot Duopoly with Inventory,” The RAND Journal of Economics,
vol. 16, no. 4, pp. 569–578, 1985.

[20] D. Pozo, E. Sauma, and J. Contreras, “Basic theoretical foundations and insights on bilevel models and their
applications to power systems,” Annals of Operations Research, vol. 254, no. 1, pp. 303–334, 2017.
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APPENDIX

NOTE ON EXISTENCE OF NASH EQUILIBRIA

In the proposed framework, a stepwise Nikaido-Isoda convergence algorithm is ap-
plied to find a Nash Equilibrium for a tuple s that is defined by a fixed set of binary
variables. This transforms the original Cournot Game of players optimizing Mixed
Integer Problems into a number of individual continuous Cournot Games that are solved
via a branch-and-cut algorithm. The existence of Nash Equilibria is represented by one
of two forms: 0 Nash tuples - this situation can only occur due to infeasibility. The
preliminary cuts proposed in this model will sort out all infeasible states, leaving no
tuples that are able to transition towards the solved state. An infeasible problem also
means that no Nash Equilibrium could be found by the Nikaido-Isoda optimization
problem, thus leaving no result for the continuous problem that could represent a tuple.
≥ 1 Nash tuples - where the problem is feasible and due to the convexity of the
continuous problem, each tuple can yield (at least one) Nash equilibrium (even if the
solution is that every player produces at minimum/maximum levels) [9]. Multiple Nash
equilibria might exist within one tuple (see e.g. [6]). However the Nikaido Isoda function
is able to determine the optimal profits for a single equilibrium tuple which subsequently
allows the comparison of tuple equilibria. It can be therefore stated that a Nash tuple
represents a definite solution for the integer variables but can include a continuum of
solutions for the continuous variables that yield similar player profits.

DATA SETS

Table II lists plant types, specifications and related generation firms (i.e. players). Note
that daily values were obtained through a factor of 24 on the parameters denoted in hours
[h] as the plant is assumed to consistently run/stand idle for a whole day. The selected
data set is based on real world data from NordPool and from selected power plant data
(slightly distorted to ensure anonymity). The fuel mixes are a hydro power generator in
Norway, a representative Danish offshore wind/thermal mix and a representative slice
of German generation in form of a large thermal plant, an onshore wind farm and an
offshore wind farm. The remaining generation in the countries are expressed indirectly
by the elasticity of the price curves given in Table III. These are based on the spot
market volume obtained through NordPool. Table III shows the market price curves
during the observed week. Table IV lists the locations and the PTDF associated with
the plants adapted from the three-node case in [2]. It should be noted for lns,nd

i,n that the
superscript represents a lineflow ns → nd and the subscript represents the source unit
i and the target node n.
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TABLE III: Market Price Parameters

p∗n,t = n = N n = D n = G
t = 1 25.5− 6E−6dn,t 33.04− 10E−5dn,t 34.92− 10E−6dn,t

t = 2 25.7− 6E−6dn,t 33.63− 7E−5dn,t 35.29− 10E−6dn,t

t = 3 25.8− 5E−6dn,t 30.58− 7E−5dn,t 39.79− 8E−5dn,t

t = 4 25.4− 5E−6dn,t 27.67− 7E−5dn,t 32.42− 10E−6dn,t

t = 5 25.1− 5E−6dn,t 26.83− 8E−5dn,t 35.71− 10E−6dn,t

t = 6 23.1− 8E−6dn,t 23.5− 6E−5dn,t 27.79− 10E−6dn,t

t = 7 22.9− 7E−6dn,t 16.38− 5E−5dn,t 22.42− 10E−6dn,t

TABLE IV: Plant locations and connections

lD,G
i,G = 67%, lD,N

i,G = lN,G
i,G = 33%

i = 1, 2, 3, 4 location: n = D
lD,N
i,N = 67%,lD,G

i,N = lG,N
i,N = 33%

lG,D
i,D = 67%, lG,N

i,D = lN,D
i,D = 33%

i = 5, 6, 7 location: n = G
lG,N
i,N = 67%,lG,D

i,N = lD,N
i,N = 33%

lN,D
i,D = 67%, lN,G

i,D = lG,D
i,D = 33%

i = 8, 9, 10 location: n = N
lN,G
i,G = 67%,lN,D

i,G = lD,G
i,G = 33%

SENSITIVITY OF WATER VALUES

Expectations of water values also impact the range of equilibrium tuples of non-
hydro players. A low expectation of future prices and resulting low water values for
the hydropower players leads to a higher range of potential schedules for the thermal
players. A high price expectation furthermore leads to a reduction in potential tuples.
This is a result of the additional flexibility of a hydropower producer having to shift
production to another time stage if profitable.

This is shown by the result of setting water values to 16.67AC per hour (or 400AC per
day) which increases the total number of equilibrium tuples to 412. Another extreme
can be given by water values of 25AC per hour, which results in only a single equilibrium
tuple. This indicates that flexibility in storage creates flexibility in the schedules in a
system, even though the units do not belong to the same players.

NOTE ON PERFORMANCE

With increasing problem complexity, specifically additional actively scheduled units
and extended time periods, decreasing performance can be expected. However, addi-
tional tests indicate that resource-efficient scaling is possible and the algorithm allows
for more complex problem settings than the one presented. To provide an example,
thermal unit i = 7 was considered with flexible schedule. The result was 15 Nash
equilibrium tuples, that required solving 999 tuples (∼ 15000 seconds) for a problem
with a total of 2097152 tuples.
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