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Abstract

As the higher penetration of distributed generation (DG) and electri-
cal energy storage (EES) is emerging, end-users are taking a more active
role in the power grid. With an increased amount of DG and EES avail-
able, opportunities for cooperation in the operation of power exchange
arises. In cooperative game theory, for all players in a game cooperate
under joint benefits. Preliminary studies show such cooperation among
prosumers and consumers provides reduced annual electricity cost com-
pared to independent operation. Focusing on cost allocation among end-
users equipped with rooftop PV and batteries, we want to evaluate two
solution concepts from game theory; the nucleolus and the Shapley value.
By changing parameters that increase the value of the battery system in
terms of reduced cost, this paper aims to examine whether the deviation
between the cost allocations proposed by the methods increases as the
value of the battery system is changed. The simulated case is based on
data from private residences in Norway. Results from our case show that
both nucleolus and Shapley provide stable cost allocations under minor
deviations. However, results also imply that the deviation between the
methods increases with an increased battery system value.

Nomenclature

ηbat,z Charg./discharg. efficiency of battery z [%]

λEES Relative reduced cost provided by the battery system [%]

θmin(x ) Lexicographic smallest excess vector for payoff vector x [NOK]

υ(N), υ(S) Worth of coalition set N and S [NOK]

Cel(t) Total electricity cost in time step t [NOK]

Ebat,z(t) Energy capacity of battery z in time step t [kWh]

Emax
bat,z Max. energy capacity of battery z [kWh]
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Pbat,z(t) Charg./discharg. power of battery z in time step t [kW]

Pmax
bat,z, Pmin

bat,z Max. and min. charge rate of battery z [kW]

Pgrid(t) Power supplied or delivered to the grid in time step t [kWh/h]

Pload,n(t) Load demand for all n players in time step t [kWh/h]

PPV (t) Total photovoltaic power production in time step t [kWh/h]

C, Cε(N,υ) The core and the ε-core of a cooperative game

e(S,x) Excess experienced by players in S from payoff vector x [NOK]

Fk Union of previously binding coalitions in k

k Number of iterations in least cores

N, n, i Set of all players, total number of players, and their index

SOC z(t) State of charge of battery z in time step t [%]

SOCmax
z Max. battery state of charge of battery z [%]

SOCmin
z Min. battery state of charge of battery z [%]

S Subset of N

T, t, ∆t Set of all discrete time steps, total number of discrete time steps,
and time interval

Z, z Set of all batteries, total number of batteries

φ(υ) Shapley value [NOK]

φi(υ) Payoff assigned to player i by Shapley [NOK]

εk Max. excess vector in k [NOK]

1 Introduction

By 2050, solar photovoltaic (PV) and wind power might account for 52 % of the
world’s total electricity generation [1]. To support the increase of renewables,
electrical energy storage (EES) will play a crucial role.

As the costs of rooftop PV and batteries become more competitive economi-
cal, these applications are becoming more attractive for private end-users in the
distribution grid. With an increased amount of DG and EES available among
the end-users, possibilities for cooperating operation arise. In cooperative game
theory, joint benefits for all players in a game to cooperate is assumed. Results
from preliminary studies show that cooperating in bidding at a power exchange
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provides reduced electricity cost compared to independent operation. However,
as a prerequisite for rational players to cooperate, the profitability after cost al-
location for all players must exist. This, in turn, depends on the cost allocation
among them.

Historically, cooperative game theory has been a tool for investment analy-
sis, mainly focusing on power generation and transmission facilities. In [2], the
authors propose a generic framework for flexibility analysis in transmission ex-
pansion planning using the concept of Shapley value. In recent year, the interest
of applying cooperative game theory in the distribution system is increased, as
it can serve as a well-performing tool for optimizing electricity costs and avail-
able resources. In [3], the authors analyze the value of sharing storage among
consumers in a cooperative manner, and conclude that all players in a commu-
nity would benefit from such cooperation. Ref. [4] studies cooperation among
energy communities using cooperative game theory, and proves that each grid
increases their individual profit by cooperating with the other energy commu-
nities. Furthermore, [5] studies how cooperative game theory can be applied
for cost minimization within an energy community. Here, the authors propose
the Shapley value for cost allocation, and conclude that both prosumers and
consumers will obtain reduced cost when participating in the cooperative game.

In contrast to previous studies, this paper analyzes the deviation between the
cost allocations proposed by nucleolus and the Shapley value among end-users
within a single energy community. Furthermore, we want to examine whether
the deviation between the methods is related to the value of the battery system
within the energy community.

We analyze a case study consisting of four end-users as a cooperative game.
Among the end-users, there are two prosumers, whereas the two remaining end-
users are consumers. We consider both the prosumers and consumers as players
in the cooperative game. By changing the parameters: 1) demand, and 2)
electricity spot price, four different scenarios are obtained. The parameters are
changed to obtain the deviation between the nucleolus and Shapley value with
varying battery system values. The simulations are conducted by applying a
dynamic programming (DP) optimization algorithm which calculates the annual
electricity cost for all sub coalitions in each scenario. As the objective of the
paper is to evaluate the game theoretical methods on a conceptual level, perfect
foresight and deterministic input data are used for simplicity, but not applicable
to real case studies.

This paper is structured as follows. Section II presents the DP algorithm.
Section III presents the game theoretical concepts used for cost allocation. Sec-
tion IV presents the scenarios and the input data used. Results are presented in
section V, followed by a discussion in section VI. Conclusion and further work
are presented in chapter VII.
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2 Dynamic programming algorithm

To obtain the annual electricity cost for all possible coalitions S ⊆ N, a dynamic
programming (DP) optimization algorithm is utilized. The objective function
aims to minimize the annual cost of a number of cooperating end-users, by
minimizing the cost of grid imported energy. The algorithm optimizes operation
of two batteries in parallel over a year, thus minimizing the annual cost for
the end-users. By calculating the cost of every possible charge and discharge
decision in every time step within the optimization time horizon, a set of nodes
is derived which results in lowest possible costs. In this paper, the time horizon
is one year, thus t = 8 760 hours. The objective function is shown in Eq. (1).
Eq. (2a) shows the energy balance, which includes all players in the coalition
and their respective PV and batteries. For coalitions S ⊆ N where PV and
batteries are unavailable, the demand is met by buying power from the grid.
Pgrid(t) operates as a slack variable, as expressed in Eq. (2a). Eq. (2b) and
(2c) show the maximum and minimum battery state of charge (SOC), whereas
Eq. (2d) and (2e) reflect the maximum charge and discharge power1. Eq. (2f)
shows the stored energy in a given time step. Finally, Eq. (2g) shows the battery
SOC equation.

min f(Pbat) =
∑
t∈T

Cel(t)Pgrid(t) (1)

s.t.

Pgrid(t) =
∑
n∈N

Pload,n(t) +
∑
z∈Z

Pbat,z(t)− PPV (t) (2a)

SOCz(t+ 1) ≤ SOCmax
z z ∈ Z (2b)

SOCz(t+ 1) ≥ SOCmin
z z ∈ Z (2c)

Pbat,z(t) ≤ Pmax
bat,z z ∈ Z (2d)

Pbat,z(t) ≥ −Pmax
bat,z z ∈ Z (2e)

Ebat,z(t+ 1) ≥ Ebat,z(t) + ηbat,zPbat,z(t)∆t z ∈ Z (2f)

SOCz(t+ 1) =
Ebat,z(t+ 1)

Emax
bat,z

z ∈ Z (2g)

Note that
ηbat,z = ηch,z, Pbat,z(t) ≥ 0 z ∈ Z
ηbat,z = ηdis,z, Pbat,z(t) < 0 z ∈ Z

1The rated power is considered to be the continuous rated power.

4



3 Game theoretical modelling

Cooperative game theory constitutes a mathematical framework for evaluating
cooperation among a group of players. A cooperative game with transferable
utility (TU) is represented as a pair (N,υ) [6]. With n players, 2n possible
coalitions can be obtained. Further, υ denotes the characteristic function, rep-
resenting the value of a coalition. For every coalition S ⊆ N, there exists a
value υ(S). The value of the empty set, υ(∅) = 0. The coalition consisting of
all players is termed the grand coalition. Due to the concept of superadditivity2,
the υ(N) provides the highest payoff.

In this paper, each coalition formed by the players will lead to an outcome
in form annual electricity cost. The outcome of each coalition depends on the
interaction among the players. Thus, each simulated scenario satisfies the def-
inition of a cooperative game. Secondly, the players are assumed rational and
to act in their self-interest. Due to the concept of superadditivity, the grand
coalition provides the lowest electricity cost for the players. Despite this, the
players will only join the grand coalition if the proposed allocation provides the
players the highest payoff.

To satisfy the equilibrium state, it must be ensured that none of the players
want to leave the grand coalition N in order to join another sub coalition S.
Due to rationality, the players seek to form the coalition where they expect to
obtain the highest payoff. Let x = [x1,x2,...,xn] be a proposed cost allocation
of the total payoff υ(N). If x fulfills the requirements of both individual and
group rationality3, it is denoted and imputation. Furthermore, an imputation
x is stable if no alternative coalition will provide a higher payoff for any of its
players. Hence, a stable imputation is said to be in the core of the game.

In order to fairly allocate the total payoff υ(N) for the players, the concepts
of nucleolus and the Shapley value are introduced. These value concepts propose
a unique allocation x based on some fairness principles. Nucleolus and Shapley
differ in their interpretation of fairness, thus they do not necessary provide equal
cost allocations. Before presenting these methods, we introduce the concept of
the core.

2Superadditivity: The value of a union of two disjoint coalitions is equal to, or greater than
the sum of the coalitions’ separate values.

3Individual rationality: A player will only join a coalition if this leads to at least the utility
obtained by operating individually.
Group rationality: The total utility from a coalition should be divided among all the players
within the coalition.
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3.1 The Core

The core C of a TU game (N,υ) is the set consisting of all stable imputations,
mathematically expressed through Eq. (3) [7].

C =
{
xi | xi ∈ {x1, ..., xn},

∑
i∈N

xi = υ(N),

∑
i∈S

xi ≥ υ(S), ∀S ⊆ N
} (3)

To ensure that all end-users in a cooperative game want to form the grand
coalition, the proposed value allocation needs to be in the core of the game.

3.2 The Shapley Value

Lloyd Shapley proposed a solution concept whose interpretation of fairness is
in terms of each player’s individual contribution to a coalition [8]. Shapley pro-
vides a simple method for cost allocation for all the players in the game based
on four axioms. These axioms are as follows:

1. Efficiency : All utility obtained by any player should be allocated. The
total value of the players is the value of the grand coalition, hence υ(N)
=

∑
i∈N

υ(i).

2. Symmetry : Two players i and j that contribute the same to each coalition
are substitutes, hence they should be treated equally. Player i and j are
symmetric if υ(S ∪ i) = υ(S ∪ j ).

3. Null player : A player i that contributes nothing, should receive nothing.
Such a player is referred to as a null or a zero player. A player is a null if
υ(S ) = υ(S ∪ i).

4. Additivity : The sum of two independent TU games, u and v must be the
sum of the value of each game, hence φ(u + v) = φ(u) + φ(v).

For each player, there exists a unique value satisfying these axioms. This
unique value is the Shapley value, denoted φ(υ). For a TU game (N,υ) the
Shapley value for each player i is calculated by the following:

φi(υ) =
∑
i∈S

(|S| − 1)!(n− |S|)!
n!

[υ(S)− S\{i})]. (4)

Once the Shapley value for each player is calculated, the value allocation
φ = [φi,...,φn] can be obtained. However, the method does not ensure that
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the allocation is stable. Once the Shapley values for the game are calculated,
additional examination of the core is required to verify stability. Thus, φ must
fulfill the following condition:

φ ∈ C (5)

3.3 The Nucleolus

The concept of the nucleolus was first introduced in [9]. While Shapley fo-
cuses on fairness in terms of individual contribution, the nucleolus is based on
minimizing the players’ dissatisfaction with their payoff. The idea behind the
nucleolus is to minimize the maximum dissatisfaction the players in coalition S
experience from a proposed imputation x . Dissatisfaction is measured through
an excess function e(S,x), expressed in Eq. (6).

e(S,x) = υ(S)−
∑
i∈S

xi = υ(S)− x(S) (6)

A negative e(S,x) represents the additional payoff coalition S obtains from x.
Thus, an imputation x is in the core if and only if all excesses are negative or
equal to zero:

C(N, v) = {x ∈ X | e(S,x) ≤ 0 ∀S ⊆ N} (7)

A payoff vector x provides an excess vector θ(x ) = [e(S1,x ),..., e(S2n−2,x )]
for S ⊆ N \S = ∅. Different allocations provide different excess vectors. The
excess vectors are ordered lexicographically4, thus there exists an allocation
which corresponds to the lexicographic smallest excess vector θmin(x ). This
unique payoff vector is the nucleolus. The nucleolus of a cooperative game
always exist. If the game is non-empty, then nucleolus is always in the core.
In this paper, the nucleolus is obtained by finding θmin(x ) from least cores, a
method based on [10], [11]. The least core concept leads to the introduction
of the ε-core Cε(N,v), expressed through Eq. (8). By letting ε < 0, the ε-core
becomes more restrictive than the core represented in Eq. (3).

Cε(N, v) = x ∈ X | e(S,x) ≤ ε ∀S ⊆ N} (8)

By iteratively solving a linear programming (LP), the least core is obtained. The
LP problem representing the least core is expressed in Eq. (9)-(9c). For each
iteration k, constraints based on previous maximum excesses are added, thus
reducing the feasible region. The feasible region is reduced until the nucleolus
is obtained. Eq. (9a) ensures that εk does not exceed the maximum excess for
imputation x . Group rationality is fulfilled by Eq. (9b), while Eq. (9c) ensures
that the previous minimized maximum excess is still maintained. Fj represents
the set including all coalitions which the excess constraint Eq. (9a) was binding

4Lexicographic ordering means that the excesses are ordered in the same way as words are
ordered in the dictionary.
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at previous stages. Thus, Fk is the union of previously binding coalitions and
F1 = ∅.

min εk (9)

s.t. υ(S)−
∑
i∈S

xi ≤ εk ∀S ⊆ N andS /∈ Fk (9a)∑
i∈N

xi = υ(N) (9b)

υ(S)−
∑
i∈S

xi = εj ,

∀S ⊆ Fj , j ∈ {1, ..., k − 1}
(9c)

εk ∈ R, xi ∈ R ∀i ∈ N

4 The Case Study

4.1 The Scenarios

In this paper, we analyze four scenarios, each consisting of four players. Player 1
and 2 are prosumers with one rooftop PV system and one battery each, whereas
player 3 and 4 are consumers. Using two different sets of load profiles and
two different sets of electricity spot prices, nucleolus and the Shapley value are
applied to all scenarios to study their performance under different conditions.
The load profiles are denoted Load P1 and Load P2. The two sets of spot prices
are taken from Norway and Germany, denoted NO3 and GER respectively. The
simulated scenarios are presented in Tab. 1.

Table 1: The four simulated scenarios with different load profiles (Load
P1/P2) and electricity spot prices (NO3/GER).

Scenario

Parameter #1 #2 #3 #4

Load Load P1 Load P1 Load P2 Load P2

Electricity spot price NO3 GER NO3 GER

4.2 Load Demand and PV Production

Load data are based on Norwegian end-users located in Trondheim, Norway.
Key data for the total load in each load scenario are given in Tab. 2. The PV
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production for player 1 and 2 are calculated by using a PV production model
based on [12]. Irradiation and temperature data are taken from the Norwegian
weather service [13]. Fig. 1 shows the daily load in each load scenario along with
the total PV production provided by player 1 and 2, during the year. As shown
in Fig. 1, the total PV production does only exceed demand of load profile 2.

Table 2: Key data for the two load profiles.

Value Load profile 1 Load profile 2

Annual consumption 114 270 kWh 28 868 kWh

Average consumption 13.04 kWh/h 3.30 kWh

Maximum consumption 35.40 kWh/h 10.00 kWh/h

Figure 1: Daily consumption for the two load profiles, along with the daily PV
production in 2015.

4.3 Battery Specifications

Two different batteries are used for the simulations. Battery specifications are
presented in Tab. 3. Battery 1 is based on data from a Tesla Powerwall [14],
while battery 2 is based on data from a LG house battery [15].

As we want to obtain the value of the battery system, the term λEES is intro-
duced. The λEES represents the relative reduced cost for the grand coalition,
provided by the battery system consisting of both batteries. Thus, there exists
a λEES for each scenario.

Table 3: Battery specifications.

Pmax
bat,z Emax

bat,z SOCmax
z SOCmin

z ηbat,z

Battery 1 7 kW 13.5 kWh 100 % 0 % 0.95

Battery 2 7 kW 9.8 kWh 100 % 0 % 0.90
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4.4 Electricity Spot Prices

The prices used for the case studies are taken from Nordpool [16] and EPEX
spot markets [17] from 2015, both with hourly resolution. The prices are shown
in Fig. 2. The spot price in the respective EPEX area5 had an average of
0.1898 NOK/kWh with very low fluctuations, whereas the German spot price
had an average price of 0.2831 NOK/kWh and much higher fluctuations. In
addition to the electricity spot price, an obligatory green certificate cost, a
monthly fixed cost and a retailers revenue margin are added to every purchased
kWh.

Figure 2: Electricity spot price from Norway (NO3) and Germany (GER) in
2015.

4.5 Grid Tariffs

In order to capture the annual cost that the end-user actually pays, the grid
tariff from the relevant DSO is used. The current grid utility tariff structure in
Norway is energy based, and has a fixed annual cost plus an extra fee per kWh.
All cost elements in addition to the spot price are shown in Tab. 4.

Table 4: Grid, energy, tax and VAT costs for end-users. Note that all costs
shown in the table are not including VAT.

Cost element Cost

Fixed monthly cost [NOK/Month] 37.6

Grid energy cost [NOK/kWh] 0.22

Fixed grid cost [NOK/year] 1 340

Energy tax [NOK/kWh] 0.124

Green certificate fee [NOK/kWh] 0.0369

Retailer margin [NOK/kWh] 0.025

VAT [%] 25

5Region NO3 in the Nord Pool spot market.

10



5 Results

The initial question is if the core is non-empty. For each scenario, there exists
a non-empty core, thus the nucleolus is in the core. Furthermore, the Shapley
value is shown to be in the core for each scenario. Consequently, both methods
provide stable cost allocations and are suitable for comparison.

Tab. 5 shows the relative deviation in cost allocations provided by nucle-
olus and the Shapley value, along with the preferred method by each player.
As the table content shows, the deviation between the methods is modest in
all scenarios. Further, it can be seen that player 3 and 4 experience the same
deviation. Due to equal demand, they prefer the same cost allocation method
within each scenario. Cells marked with ’≈’ in Tab. 5, indicate that the devia-
tion between the method is less than 0.1 %. Deviation less than this quantity
can be considered negligible, thus both methods propose almost identical cost
allocations. Cells marked with ’(Nu)’ indicate that nucleolus is the preferred
method, whereas ’(Sh)’ correspond to the Shapley value.

Table 5: Relative deviation in [%] between nucleolus and Shapley for each
player in each scenario, along with their preferred method.

Scenario

Player #1 #2 #3 #4

1 0.02 (≈) 0.02 (≈) 0.01 (≈) 1.01 (Sh)

2 0.00 (≈) 0.04 (≈) 1.37 (Nu) 3.01 (Nu)

3 0.02 (≈) 0.03 (≈) 0.43 (Sh) 0.57 (Sh)

4 0.02 (≈) 0.03 (≈) 0.43 (Sh) 0.57 (Sh)

6 Discussion

Fig. 3 shows the deviation between the nucleolus and Shapley, for each player
plotted along with the cost reduction provided by the battery system, λEES .
As Fig. 3 shows, there is an increase in the value of the battery system for
each scenario. By changing the parameters load and electricity spot price, the
batteries’ contribution to cost reduction varies for each scenario. In scenario 1,
the total load demand is high (Load profile 1) and the fluctuations in electricity
spot prices are modest. The batteries are only able to lower the cost with
0.39 %. The value of the battery system increases in scenario 2 and 3, whereas
the highest cost reduction provided by the batteries is obtained in scenario 4.
In this scenario, there are periods where PV production exceeds the demand
(Load profile 2), as illustrated in Fig. 1. In addition, the electricity spot price
in scenario 4 is the most fluctuating (GER), which implies that the batteries
are utilized for both storing power produced by the PV system, and for buying
power when prices are low in order to store the power for high peak-periods.
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The high utilization of the batteries is reflected through a cost reduction of
of 8.84 %. With a varying λEES , we aim to examine whether the deviation
between nucleolus and Shapley is affected.

Figure 3: Relative deviation between nucleolus and Shapley for each player
along with the value of batteries, in each scenario.

As Fig. 3 shows, player 3 and 4 experience exactly the same deviation within
each scenario. Although the overall tendency for these players is a slight increase
in deviation from 0.02 % in scenario 1 to 0.57 % in scenario 4, nucleolus and
Shapley provide approximately similar cost allocations irrespective of the value
of the battery system.

In scenario 1, player 1 experiences a deviation of 0.02 %, similar to player
3 and 4. However, in scenario 4, the deviation between the methods increases
to 1.01 %. In the same scenario, player 2 experiences a deviation of 3.01 %.
Even though these values can be considered marginal, there is a weak tendency
that the prosumers experience a higher deviation in allocation method as the
value of the battery system increases. Thus, the results might imply that the
prosumers are more concerned regarding their preferred method when the value
of the battery system is high. A high λEES can be interpreted as a higher
contribution from player 1 and 2 to the energy community.

Despite this, player 1 and 2 do not necessary prefer the same allocation
method. The overall highest deviation in method is found in scenario 4. For
player 2, the cost proposed by nucleolus is over 3 % lower than the Shapley
value. In contrast, player 1 prefers the Shapley value within the same scenario.
Player 1 is equipped with the most efficient battery with largest energy capacity,
as shown in Tab. 3. Thus, battery 1 is utilized more than battery 2. In other
words, player 1 contributes more to the overall cost reduction. This difference
in individual contribution is reflected through the preferred methods. While
Shapley is preferred by player 1, player 2 prefers nucleolus within the same sce-
nario.

In this paper, nucleolus and the Shapley value propose approximately similar
cost allocations. Despite this, there is a tendency that the deviation in cost al-
location increases as the value of the battery system increases. The value of the
batteries is dependent on parameters such as renewable power production, price

12



fluctuations and load demand. Thus, it can be interpreted as if the deviation in
cost allocation method depends on these parameters. For an energy community
where the players’ available resources lead to marginal cost reduction, nucleolus
and the Shapley propose almost similar cost allocations. Hence, for the case
study presented in this paper, the players will not be concerned regarding their
preferred method. In contrast, the deviation between the methods increases
in scenarios where the available resources play a greater role in cost reduction
within the energy community. Although the deviation between the methods is
shown to be small in the presented scenarios, it might increase in larger energy
communities consisting of more diversity among the players.

In an energy community consisting of solely consumers without neither PV
production nor battery systems, there is no incentive for cooperation, as there
are no resources to operate in a cooperative manner. Thus, for an energy com-
munity to operate cooperative, it is essential to facilitate the prosumers to join
the cooperating operation. Although the consumers prefer the Shapley method
in all presented scenarios, they never experience a deviation higher than 0.57
%. In contrast, player 2 experiences a deviation of 3 % in the same scenario.
We believe that both nucleolus and the Shapley value are well-suited for cost
allocation for the set-up of our case. Further we believe that it is of high impor-
tance to evaluate what is the aim of the cooperation. In scenarios where there
are large deviations between the proposed methods, we believe that it is of high
interest to study which players that are attractive for the cooperative operation
to be beneficial. Both methods show similar fitness to solve the problem set-
ting, whereas several aspects worth considering prior to implementation. The
study shows that both methods provide solid cost allocations for local energy
communities.

7 Conclusion

In this paper we have evaluated nucleolus and the Shapley value for cost allo-
cation among a set of cooperating end-users within an energy community. As
the presented results show, both methods provide stable cost allocations. The
deviation between the methods is small, and can be even considered negligible
in some of the simulated scenarios. However, there is a tendency of a slight
increase in deviation in scenarios where the battery system is able to contribute
with a certain cost reduction. Thus, we interpret this as if the deviation in cost
allocation method is affected by externalities that are able to increase the value
of the battery system, such as renewable power production and fluctuation in
electricity spot price.

Based on the presented results, both nucleolus and Shapley value serve the
intended purpose. However, we believe that it is of importance to study how to
encourage valuable players to join the cooperation. The results also imply that
in larger systems or systems with price volatility or high use of flexibility, the

13



methods deviate slightly and should be compared.

We believe that the definition of fairness in the context of game theoretical
method in the considered case, has to be extended to consider other externalities
such as renewable generation from other sources, different grid tariff structures
and the size of the energy community. For future work, it is of interest to study
how Shapley and nucleolus perform in larger energy communities with higher
deviation between the players’ individual resources. Another interesting aspect
would be to include the grid operator as a player in the cooperative game.
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