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Receiving water quality simulation in highly urbanised areas requires the integration of several processes
occurring at different space-time scales. These integrated catchment models deliver results with a sig-
nificant uncertainty level associated. Still, uncertainty analysis is seldom applied in practice and the
relative contribution of the individual model elements is poorly understood. Often the available methods
are applied to relatively small systems or individual sub-systems, due to limitations in organisational and
computational resources. Consequently this work presents an uncertainty propagation and decompo-
sition scheme of an integrated water quality modelling study for the evaluation of dissolved oxygen
dynamics in a large-scale urbanised river catchment in the Netherlands. Forward propagation of the
measured and elicited uncertainty input-parametric distributions was proposed and contrasted with
monitoring data series. Prior ranges for river water quality-quantity parameters lead to high uncertainty
in dissolved oxygen predictions, thus the need for formal calibration to adapt to the local dynamics is
highlighted. After inferring the river process parameters with system measurements of flow and dis-
solved oxygen, combined sewer overflow pollution loads became the dominant uncertainty source along
with rainfall variability. As a result, insights gained in this paper can help in planning and directing
further monitoring and modelling efforts in the system. When comparing these modelling results to
existing national guidelines it is shown that the commonly used concentration-duration-frequency ta-
bles should not be the only metric used to select mitigation alternatives and may need to be adapted in
order to cope with uncertainties.
© 2019 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Meeting the established environmental regulations (e.g. The
Water Framework Directive, 2000/60/EC 200) of the European
Union) is still a challenge inmany densely urbanised catchments, as
it often requires the implementation of intensive investment and
regulatory plans (i.e. infrastructure construction, control systems or
user limitations). Model-based decision-making is applied more
frequently to explore and optimise the effect of different alterna-
tives, aiming towards an efficient resource allocation. Therefore
.M. Moreno-Rodenas).

ier Ltd. This is an open access artic
Integrated Catchment Modelling (ICM) has become an essential
tool in the water quality management process over the last decades
(Andr�es-Dom�enech et al., 2010; Langeveld et al., 2013b; Willems
and Berlamont, 2002). ICMs are, by definition, abstractions of
highly complex water systems, usually constituted by the joint
modelling of two or more subsystems of the urban water system
(Keupers andWillems, 2017; Rauch et al., 2002). This often involves
the joint simulation of sewer hydrodynamics, wastewater treat-
ment processes, rural hydrology and river physical-biochemical
dynamics (Benedetti et al., 2013a).

ICMs, like every other modelling process, contain various sour-
ces of uncertainty, due to the inherent system characteristics.
Complex processes are represented with limited knowledge,
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relationships are calibratedwith reduced data sets (whichmay lead
to a poorly identifiable parameterisation) and linked simulations
are carried out over a wide range of spatiotemporal scales. Also, the
stepwise process of abstraction from reality to model representa-
tion with its necessary simplifications and idealisations of the real
systems includes the unavoidable occurrence of uncertainties
(Muschalla et al., 2009).

These uncertainties encompass the errors introduced by model
parameterisation, model-forcing data (e.g. precipitation), model
input data (e.g. digital elevationmodel, soil or sewer conduit maps),
model validation data (e.g. use of incorrect water level rating
curves) and model structures (e.g. different mathematical
representations).

The definition, recognition and consideration of these un-
certainties is therefore of the utmost importance for the application
of such models and for the interpretation of the hereby obtained
results (Pappenberger and Beven, 2006; Schellart et al., 2010). At
present however, a comprehensive uncertainty analysis is mainly
applied in science and less in planning practice (Kleidorfer, 2010;
Vanrolleghem, 2011).

Several frameworks have been proposed to facilitate the quan-
tification and handling of these uncertainties in integrated urban
water systems specifically (Deletic et al., 2012; Tscheikner-Gratl
et al., 2017) or environmental modelling in general (Refsgaard
et al., 2007). The quantification of modelling statistical un-
certainties is often carried out by encoding system knowledge
through a probabilistic description (Reichert et al., 2015) and
sampling (i.e. Monte-Carlo) to describe the variability at the tar-
geted output variables. Additionally, the identification of the
contribution of each uncertainty source is essential in the system
analysis process, since it directs the modeller towards a rational
reduction of epistemic uncertainties. For instance, Willems (2012)
presented a variance decomposition methodology to quantify the
partial contribution of uncertainty by source. Reichert and
Mieleitner (2009) described the use of time-dependent parame-
ters as a proxy to detect temporal windows of structural mismatch,
pointing therefore at examining particular physical processes. Yang
et al. (2018) used GLUE to extract the sensitivity from process-
driven parameter structures. Inline with this, Gupta et al. (2008)
discussed the need of diagnosis tools to guide the model con-
ceptualisation process.

Examples of uncertainty analysis applications in integrated
catchment modelling for water quality estimation are still scarce
(Tscheickner-Gratl et al., 2019). This is partially due to the signifi-
cant amount of effort to monitor and set up large-scale modelling
studies. Also, computational constraints have severely limited the
applicability of proposed formal uncertainty analysis methodolo-
gies (see Schellart et al. (2010)). Therefore, only few examples are
available in literature which deal with relatively small systems
(Freni and Mannina, 2010) or with individual sub-systems (Dotto
et al., 2012; Radwan et al., 2004).

Consequently, this work describes the application of a formal
uncertainty analysis scheme to quantify dissolved oxygen model-
ling uncertainties in a large-scale (4400 ha of draining urban areas,
a 750,000 p.e. WWTP and a sensitive receiving water body) water
quality ICM study. The estimation of the relative contribution of
different relevant uncertainty sources is also shown, which served
towards directing further modelling and monitoring efforts in the
system.

Initially, the forward propagation of all sources of uncertainty
was proposed using the best available literature-expert-
measurement derived parametric-input probability ranges. This
will be therein referred as prior propagation. Upon analysis of the
uncertainty contribution by source, river water quality and quantity
parameters captured most of the variability of yearly dissolved
oxygen (DO) dynamics. Thus, a dedicated inference scheme was
proposed to update the river parametric distributions using local
flow and DO measurements. The propagation of all parameter-
input uncertainties and the updated parameter set for the river
submodel is here presented (referred as posterior propagation).
Comparison of the forward propagation from both prior-posterior
uncertainty distributions with system observations, along with
the current prioritisation of uncertainty sources is presented in this
study. Complementarily, the impact of modelling uncertainties in
the concentration-duration-frequency environmental assessment
metrics is discussed, highlighting the possible implications of using
such metrics in the selection of mitigation alternatives in envi-
ronmental systems.

The discussion arising from this experience also serves to put
into context the applicability of proposed uncertainty analysis
techniques in real-world scale ICM studies.

2. Materials and methods

The Dommel is a stream (discharge of 4e30m3/s) located in the
south of the Netherlands. It receives the discharge of a wastewater
treatment plant (WWTP) of 750,000 p.e. (population equivalent)
and the intermittent discharge from 192 combined sewer overflow
structures (CSOs). The water system covers and area of ~800 km2,
29 combined sewer systems (4400 ha of urban connected area) and
roughly 110 km of river tributaries. Fig. 1 provides the layout of the
system and the measurement locations. Pollution loads from the
WWTP and CSO discharges on the river are relatively common
under wet weather conditions. This causes oxygen depletion
events, which deteriorate the water quality status of the receiving
water body.

The Dommel water management authorities operate an inte-
grated catchment model aiming to better understand local pollu-
tion dynamics and to test alternatives for improving the ecological
status. This integrated model consists of: a) A set of lumped urban
drainage system models (conceptualised as in Solvi (2006)) char-
acterizing the 29 municipalities sewer gravity and pressurised
transport network. CSO structures were represented by 30 clusters
(spatially lumping structures which shared the same sewer system
section). Conceptual sewer models were derived using pre-existing
detailed hydrodynamic urban drainage models, which have been
checked on systematic errors during a prior model calibration,
using hydraulic monitoring data of the sewers. Such lumped
structures highly simplify the underlying dynamics and their use
should be justified for each application. The system under consid-
eration is nevertheless highly controlled and characterised by high
in-sewer static volumes, also the simulation of dissolved oxygen
processes at the river scale results in smoothed dynamics and are
more sensitive to the overall discharged volume than to small er-
rors in the timing and shape of the discharged hydrograph. Similar
lumped approaches have been presented which correct for
different dynamic phenomena (e.g. back-water effects or dynamic
storage, see Wolfs et al. (2013) or van Daal-Rombouts et al. (2016)).
b) A fully detailed WWTP model, including primary, secondary and
tertiary treatment with capacity for 26,000m3/h and a controlled
storm settling tank with a treatment capacity of 9,000m3/h. c) A
simplified river model consisting of a lumped conceptualisation of
well-stirred tank volumes as a 65 tank-in-series scheme which
simulates water flow, pollutant mass fluxes and conversion rates.
The physical and biochemical processes modelled at the river scale
are presented in Table B1 (Annex B), which were adapted from the
water quality module of DUFLOW. The full-integrated model was
build using WEST (DHI) simulation platform for ICMs. A detailed
description of the integrated catchment model structure and its
development and validation process can be found at Langeveld



Fig. 1. The Dommel water system location and integrated catchment model scheme.
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et al. (2013b). A description of the main spatial and temporal
characteristic scales in the Dommel system was reported in
Moreno-Rodenas et al. (2017a).

The model structure was revisited sequentially, identifying and
analysing the major uncertainty sources for each submodel inde-
pendently. This is reported in Tscheikner-Gratl et al. (2017), where
the application of the Quantifying Uncertainty in Integrated
Catchment Studies (QUICS) uncertainty framework was described
for the Dommel case-study.

2.1. Experimental data

Integrated catchment studies require extensive observational
datasets for their development (Langeveld et al., 2013a). Table 1
shows the main characteristics of the measurement series made
available by the Dommel water management authority. TheWWTP
effluent represents roughly 50% of the total river flow during dry-
weather flow in the summer period (Benedetti et al., 2013b).
WWTP and CSOs discharges have the potential to locally saturate
the river volume (up to 90% of flow contribution at different river
sections, since urban areas present a faster runoff response than
rural areas), leading to large pollutant concentration peaks under
heavy rainfall conditions (up to 10e80 gBOD/m3 peaks at several
sections of the river). These heavy urban loads result in low dis-
solved oxygen concentrations at the receiving water body (5 gO2/
m3 average during summer) and strong dissolved oxygen depletion
processes leading to temporary anoxic conditions with recovery
Table 1
Measured data characteristics.

Variable Units Location Freq. Mean Std [M

River flow m3,s�1 M_0121 hourly 6.5 3.3 [2.
River DO gO2,m�3 M_0121 hourly 6.9 2.1 [0.
WWTP flow m3,s�1 WWTP 15min 1.7 1.4 [0,
CSO sum flow m3,s�1 Distributed 15min 0.03 0.39 [0,
River Temp Co M_0121 hourly 12.2 5.3 [1.
Solar radiation W,m�2 Airport EIN hourly 118 193 [0,
Rainfall RG mm,h�1 13 locations hourly - - [0,
Rainfall Radar mm,h�1 1 km2 full hourly - - [0,
time ranging from hours to days. CSO flow data were estimated
fromdepthmeasurements at theweir structures and approximated
discharge relationships (although such estimation may contain
significant errors, see Van Daal-Rombouts et al. (2017)). Additional
details on characteristic spatial and temporal scales observed in
CSOs, WWTP and the Dommel river can be seen in Moreno-
Rodenas et al. (2017a).

Rainfall data was derived from two main sources; a) a network
of 13 rain gauges, mixing tipping buckets and weighting gauges
from the Dutch national meteorological institute (KNMI), the mu-
nicipality of Eindhoven and the Waterboard of the Dommel. b)
KNMI distributed rainfall estimations from bias-corrected single-
polarisation C-Band Radar (Overeem et al., 2009).

2.2. Parametric uncertainty

Table 2 provides the characterised parameter probability dis-
tribution for the urban drainage water flow submodel. The most
influential catchments were selected based on connected area and
discharged volume contribution (Moreno-Rodenas et al., 2017a).
Uncertainties in wetting losses (volume and availability), total
connected area, in-sewer maximum storage, wastewater genera-
tion per inhabitant and reservoir constants (of the lumped sewer
system conceptualisation) were considered. Those uncertainties
were derived from expert knowledge in physical plausible con-
strained ranges.

Table 3 presents the parameter distributions considered at the
in, Max] Characteristics

21, 22.9] Stage-discharge relationship
3, 11.6] DO probe at the flow metering structure
9.5] Magnetic flow meters at pressurised inlet
25.4] Sum of all CSO outflows derived from stage-discharge relationships
05, 23.4] Water temperature
963] KNMI weather station at the Eind. Airport
37] Described in Moreno-Rodenas et al. (2017a)
23] KNMI radar corrected products



Table 2
Urban drainage submodel water quantity parameters (~U uniform distribution (minimum, maximum), ~N normal distribution (mean, standard deviation)).

Parameter name Units Description Uncertainty distribution indicates uniform distribution, N normal
distribution) (U)

MaxDepressionStorage@c_24 mm Wetting Losses storage (Eindhoven) ~ U(1,5)
MaxDepressionStorage@c_119 mm Wetting Losses storage (Valkenswaard) ~ U(1,5)
MaxDepressionStorage@c_128 mm Wetting Losses storage (Geldrop) ~ U(1,5)
TotalArea_fact@c_24 - Connected area multiplier (Eindhoven) ~ U(0.9,1.1)
TotalArea_fact@c_119 - Connected area multiplier (Valkenswaard) ~ U(0.9,1.1)
TotalArea_fact@c_128 - Connected area multiplier (Geldrop) ~ U(0.9,1.1)
k@c_24 min Linear reservoir constant (Eindhoven) ~ N(175,0.05$175)
k@c_119 min Linear reservoir constant (Valkenswaard) ~ N(80,0.05$80)
k@c_128 min Linear reservoir constant (Geldrop) ~ N(64,0.05$64)
V_Max@pipe_ES m3 Max in-sewer Storage volume (Eindhoven) ~ N(165,000, 0.07$165,000)
V_Max@BT_119_1 m3 Max in-sewer Storage volume

(Valkenswaard_1)
~ N(7,000, 0.07$7,000)

V_Max@BT_119_2 m3 Max in-sewer Storage volume
(Valkenswaard_2)

~ N(5,000, 0.07$5,000)

V_Max@GB_119_3 m3 Max in-sewer Storage volume
(Valkenswaard_3)

~ N(14,000, 0.07$14,000)

V_Max@GB_128 m3 Max in-sewer Storage volume (Geldrop) ~ N(27,800, 0.07$27,800)
V_Max@GB_127 m3 Max in-sewer Storage volume (Mierlo) ~ N(9,000, 0.07$9,000)
WastewaterPerIE m3d�1pe�1 Waste-water production (All urban systems) ~ N(0.19, 0.1$0.19)

YearlyEvaporation mm,y�1 Average potential evaporation ~ N(657, 0.2$657)

Table 3
Urban drainage submodel water quality parameters.

Name Units Description Parameter distribution

BOD_CSO g,m�3 BOD concentration in CSO storm water ~ Copula Model
COD_CSO g,m�3 COD concentration in CSO storm water ~ Copula Model
NH4_CSO g,m�3 NH4 concentration in CSO storm water ~ Copula Model
O2_CSO g,m�3 O2 concentration in CSO storm water ~ U(3,6)
fBOD1_BOD - fast BOD in total BOD (fraction) ~ N(0.85,0.1$0.85)
fBOD1p_BODf - particulate BOD in fast BOD (fraction) ~ N(0.3,0.1$0.3)
fBOD2_CODmBOD - slow BOD in COD-BOD (fraction) ~ N(0.4,0.1$0.4)
fBOD2p_BODs - BOD particulate in the slow BOD (fraction) ~ N(0.5,0.1$0.5)
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CSO water quality generator. This contains four fractionation pa-
rameters, which were identified as a truncated Gaussian distribu-
tion (range [0, 1]) with a mean value provided by a non-formal
expert elicitation and a standard deviation of 10% the mean value.

Modelling in-sewer water quality dynamics is still a challenge
(Willems, 2006) and sufficient data was not available for a reliable
submodel calibration. The sewer transport system is characterised
by long conduits (up to 20 km mixing gravity and pressurised
sections) and it is heavily controlled, thus the measured water
quality at the WWTP influent is expected to render a low repre-
sentativity of the conditions at the CSOs, thus limiting the use of
data-driven generators (Keupers and Willems, 2015).

In order to produce a robust estimation, a mean pollutant vector
Fig. 2. Measured distribution and spearman correlation matrix
multiplier (EMC) was used to approximate CSO loads from
modelled flow dynamics. A monitoring campaign in the Dommel
system reported measured pollutant series for various water
quality variables relevant for the integrated model (BOD, COD and
NH4) at several CSO events (Moens et al., 2009). This allowed
estimating pollutant probability distributions and correlation
structures (Fig. 2). A Gaussian copula stochastic model was pro-
posed to generate random pollutant event concentrations (which
respect the non-Gaussian marginal distributions and its correlation
structure). The stochastic model was based on the following hy-
potheses; a) Pollutant mean concentration remains fairly constant
over the CSO event duration in the system of the Dommel (reported
by van Daal-Rombouts (2017)), b) The studied CSO locations have
of CSO pollutant concentrations at the Dommel system.
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comparable pollution dynamics over time (van Daal-Rombouts,
2017) and c) the instantaneous pollution concentration was
assumed to be spatially independent since we could not establish a
clear pattern from the available data. These assumptions are case
study dependent. Also, the inclusion of a by-location correlation
could be readily accounted for by the copula joint probability dis-
tribution, provided additional system measurements would prove
its existence. A comparison of the measured and copula sampled
pollutant estimation can be found in Moreno-Rodenas et al.
(2017b).

Since no onsite measurements for CSO dissolved oxygen con-
centrations were available, literature values were applied (Boomen
and Icke, 2004; Diaz-Fierros et al., 2002). Thus CSO dissolved oxy-
gen concentrations were characterised by a uniform distribu-
tion ~ U(3,6) gO2/m3.

Table A1 and Table A2 (Annex A) show the uncertainty distri-
butions associated with the WWTP submodel. Parameter distri-
butions for the WWTP influent model (Table A1) were taken from
Langeveld et al. (2017) which used several observed influent time-
series to estimate the model parameters in a Bayesian inference
scheme. These parameters were described using a normally
distributed density function (truncated between 0 and 1) with
mean, the average of each posterior sample chain of the MCMC and
standard deviation of 5% from the mean value. The full posterior
chains were not available so an estimated normal distribution was
used to represent the influent parameters around the inferred
mean values estimated from Langeveld et al. (2017). The effect of
RiðtÞ ¼
8<
:

RRad; iðtÞ,
�
1þ ε,RRad; iðtÞa

�
if

ð

12h

��RRG; i � RRad; i
��dt < 10mm

� U
�
0:9,min

�
RRG;iðtÞ;RRad;iðtÞ

�
;1:1,max

�
RRG;iðtÞ;RRad;iðtÞ

��
else

(1)
this approximation in the results of this work was nevertheless
considered negligible.

Table 4 shows the prior parameter probability distributions
assigned to the hydrologic flow and biochemical process models of
the river. Prior distributions were defined from expert knowledge
and literature. Sediment oxygen demand (SOD) was measured in
the system by the Waterboard De Dommel. The river model pa-
rameters were later inferred using a Bayesian inference scheme
from flow and DO measurements at the closing section of the
Table 4
River hydrology and biochemical parameters prior distributions.

Parameter Units Descrip

Kd1 d �1 Decay
Kd2 d �1 Decay
Vs1 m,d �1 Sedime
Vs2 m,d �1 Sedime
Knit d �1 Nitrific
TKd - Tempe
TKL - Tempe
TSOD - Tempe
SOD g,m�2d �1 Sedime
VKL - Velocit
MB g,m�2 Macrop
n s,m�1=3 Mannin
K_z - Emban
K_W_b - River e
K_h - Rural fl

a NOTE: Prior pdf's updated during the river parametric inference scheme.
catchment (between 15-Jan-2012 until 04-Aug-2012) and validated
with additional observations (05-Jan-2012 until 31-Dec-2012). A
polynomial chaos expansion emulator was used to accelerate the
sampling of the computationally expensive model during the
inference process (Moreno-Rodenas et al., 2018b). This rendered an
updated joint-parameter distribution set, which was later propa-
gated through the full ICM by drawing correlated samples from the
posterior parameter chains.

Table 5 presents the parameter distributions used for the rural-
to-river baseflow inflow pollutant loads. Values were estimated by
expert elicitation since no measurements were available.
2.3. Dynamic input uncertainty

Errors in measured or estimated time-dependent inputs were
represented as stochastic processes. Random sampling was applied
to generate input realisation ensembles. Table A3 presents the
selected most relevant input processes in the system (Tscheikner-
Gratl et al., 2017).

Rainfall uncertain realisations were sampled at the 9 largest
catchment areas (which covered 3,930 ha of a total connected area
of 4,400 ha, approx. 90%). Rainfall intensity at the spatial block-
support of each individual catchment was extracted from the
KNMI corrected radar measurements (1 km2, 5min) using hourly
accumulation (Moreno-Rodenas et al., 2017a). An additive error
model (dependent on rainfall intensity) was applied as proposed by
Freni and Mannina (2010):
in which the instantaneous estimated rainfall intensity, RRad; iðtÞ at
each urban drainage location (i) was corrected by a random
normally-distributed error ε � Nðm ¼ 0; s ¼ 0:12Þ, for a ¼ 0:2323.
This error model approximates a normal dispersion around the
measured value, which parameters were fitted by comparing radar-
rain gauge series at the same location. The comparison between
estimated rainfall from rain gauges and Radar sources showed large
differences (especially during heavy convective storm processes,
see bottom-left event at Fig. A1, Annex A). This measured difference
tion Parameter prior

rate for BOD fast ~U(0.5, 0.8)a

rate for BOD slow ~U(0.2, 0.4) a

ntation rate for BOD fast ~U(0.2, 20) a

ntation rate for BOD slow ~U(15, 50) a

ation Rate ~U(0.15, 0.4)
rature coefficient for BOD oxidation ~U(1.03, 1.09) a

rature coefficient for reaeration ~U(1.01, 1.03) a

rature coefficient for SOD ~U(1.045, 1.09) a

nt oxygen demand ~U(2.5, 3.5)
y reaeration coefficient ~U(2, 3.5) a

hyte biomass ~U(40, 80)
g's roughness ~U(0.02, 0.12) a

kment slope multiplier ~U(0.7, 1.3) a

stimated width multiplier ~U(0.7, 1.3) a

ow input multiplier ~U(0.7, 1.3) a



Table 5
Rural hydrology water quality inflow parameters.

Parameter Units Description Parameter distribution

NH4_in g,m�3 NH4 inflow from rural ~U(0.05, 1.5)
BOD1_in g,m�3 BOD1_in inflow from rural ~U(2, 4)
BOD1p_in g,m�3 BOD1p_in inflow from rural ~U(0.01, 0.5)
BOD2_in g,m�3 BOD2_in inflow from rural ~U(0.5, 1.5)
BOD2p_in g,m�3 BOD2p_in inflow from rural ~U(0.01, 0.5)
BODs_in g,m�3 BODs_in inflow from rural ~U(0.01, 0.5)
O2_in g,m�3 O2_in inflow from rural ~U(5, 9)
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could not be represented by the additive error structure alone. Thus
a miss-detection error structure was also applied. The system
characteristics cause CSOs in the area to be usually activated after
rainfall volumes larger than 8e10mm, and pumping capacities are
designed to empty in-sewer storage in 10e12 h. Therefore rainfall
estimation differences were considered large when data sources
(Radar and rain gauge inverse distance weighted interpolated
values) had a cumulative difference larger than 10mmwithin 12 h.
In such cases, the rainfall input ensemble is updated by sampling
from a uniform distribution covering both estimations (interpo-
lated rain gauge network e Radar, Equation (1)). Figs. A1 and A2
(Annex A) show the rainfall input ensemble generated at four
characteristic rainfall periods for the municipalities of Eindhoven
(2000 ha) and Bergeijk (110 ha).

Biochemical processes at the river stretch are highly influenced
bywater temperature, which results in daily and seasonal variation.
There were five temperature stations along the river section of
interest with hourly measurements. A spatially homogeneous
Gaussian Process (GP) was used to characterize the water temper-
ature input uncertainty:

TðtÞ � GP
�
TðtÞ;ST

�
; (2)

with the average temperature between the five sensors TðtÞ as the
mean of the process and covariance matrix described by a squared
exponential structure:

ST ; i; j ¼ sti,stj,e
�0:5,

�
td
24

�2

; (3)

where sti is the measured by-location temperature standard devi-
ation at time i and j and td the time-lag.

The river solar radiation input (IOmeasured) was measured at the
KNMI meteorological station at the city of Eindhoven. This
measured data were used as a spatially homogeneous and time-
dynamic input for the entire river domain. An error model con-
sisting in a normally distributed multiplier was used:

IO � IOmeasured,Nd

�
m ¼ 1;S ¼ s2Io,I

�
; (4)

Water temperature at the wastewater treatment works was
measured and used as input in the treatment process model. A
multiplicative independent Gaussian error was implemented as:

TempWWTP� TempWWTPmeasured,Nd

�
m¼1;S¼ s2TempWWTP,I

�
;

(5)

where 12ℝd is a vector of ones and I2ℝdxd the identity matrix,
being d the number of time-steps in the modelled series. The pa-
rameters sIo ¼ 0:15 and sTempWWTP ¼ 0:05 were assigned based on
expected sensor representativity.
2.4. Forward uncertainty propagation

AMonte-Carlo (MC) based forward uncertainty propagationwas
performed using measured and expert-elicited parametric-input
uncertainty probability distributions for the full year of 2012.
Parametric samples were generated from a Latin hypercube
sampler (LHS) to generate a low-discrepancy set. Dynamic inputs
were sampled independently from the proposed stochastic pro-
cesses. A first set of 600 samples was drawn from the full-
integrated model (in parallel model instances) to characterize
modelled river flow and dissolved oxygen concentration un-
certainties at the closing section of the catchment (M_0121, Fig. 1)
using the best-available prior knowledge on the system. A Bayesian
inference schemewas used to update the parametric distribution of
several hydraulic and biochemical river model parameters (Table 4)
given local observations in the system (Moreno-Rodenas et al.,
2018b). First, four river flow parameters were inferred using a
heteroscedastic, independent Gaussian log-likelihood distribution
and drawing 50,000 posterior samples. Secondly, setting the
inferred flow parameters, an independently, identically distributed
Gaussian log-likelihood was used to sample from the posterior
distribution of 8 water quality parameters (50,000 samples). The
posterior residual structure respected the assumptions of the
assumed error generating process, although a certain residual
correlation was still present.

The updated river submodel parameters was used to generate
600 additional samples from the model by drawing correlated
samples from the river submodel inferred parameter MCMC chains,
from the copula distribution at the CSO pollutant stochastic model,
ensembles from the time-dependent inputs and from a LHS for the
rest of the parameters. Both prior and posterior parameter distri-
butions were compared with monitoring data available in the
system.
2.5. Uncertainty analysis by variance decomposition

A variance decomposition scheme was proposed following
Willems (2012). This is based on defining independent groups of
submodels or parameter-input clusters and analysing its contri-
bution to the total residual error variance. Seven contributing
groups were defined by selecting each submodel most relevant
parameters-input sources (Table A4, Annex A). A period of ~2
months (05-Aug-2012 e 07-Oct-2012) was simulated which
captured several summer oxygen depletion processes representa-
tive of the dynamics of interest. 15 time-points, which were
temporally independent, and represented relevant dynamics, were
selected to perform the decomposition of variance as:

s2EY�EY 0 ¼ s2EY jrest var þ s2EY0
þ
X7
i¼1

s2EY jclusteri ; (6)

for which s2EY�EY 0
represent the variance of the model-observation

residuals (which were computed during the forward propagation
of all considered stochastic input and parametric uncertainty
sources). The total residual variance is assumed to be composed of
s2EY0

(variance of the measurement error), s2EY jclusteri the partial
variance of each selected parameter-input group (propagating the
effect of the group meanwhile fixing the rest to their average value)
and a term s2EY jrest var which represents the rest variance not
explained by measurement or input-parameters. s2EY jrest var was
computed by estimating all other terms.

All variances should be homoscedastic (a Box-Cox trans-
formation is often applied when data shows variance dependency).
A very mild heteroscedasticity was found in the DO simulated



Fig. 3. Full forward propagation of prior parameter-input distributions for flow, rainfall and dissolved oxygen at the closing section (M_0121) of the system, full 2012. Measured
(black), simulated mean (solid) and 95% interval (band).
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residuals, which was corrected using a l ¼ 0:9 (Box-Cox). A dedi-
cated data quality validation was performed to the DO measure-
ment series in this period and the quality was expected to be high.
Tolerances between 3 and 10% are often accepted in DO concen-
tration measurements. Thus, a multiplicative random Gaussian
error (sDOt

¼ DOt,0:05Þwas applied to estimate s2EY0
: Samples were

drawn from a LHS (250 samples) varying every parameter-input
cluster to characterize the partial variance (s2EY jclusteri Þ. The reader
is directed to Willems (2012) or Freni and Mannina (2010) for
further detail in the variance decomposition approach.

3. Results and discussion

Uncertainty ranges for all relevant parameters and input sources
were propagated through the full integrated model structure. Fig. 3
presents the observed series of flow and DO at the final section of
the system (M_0121, Fig. 1) along with the mean of the simulated
series and the 95% uncertainty range steming from the input-
parametric variability when using all available prior knowledge in
the system. The proposed model structure captures the flow dy-
namics in the river submodel, which are mainly driven by the
baseflow inputs from the rural hydrology and the discharges from
Fig. 4. Full forward propagation of posterior parameter-input distributions for flow, rainfall
Oct-2012). Measured (black), simulated mean (solid) and 95% interval (band).
the WWTP (c.a. 40e50% of baseflow during summer) reasonably
well (Nash-Sutcliffe efficiency of 0.82e0.86 at the inferred and
validation series respectively). The prior forward propagation of DO
dynamics resulted in a relatively large dispersion; the 95% interval
distance between model samples had a yearly average range of 3.7
gO2/m3 (s ¼ 0.76 gO2/m3). The 95% range was 3 gO2/m3 for DO
concentration lower than 2.5 gO2/m3. Using the inferred water
quality parameters, the 95% range was reduced to 1.8 gDO/m3 (s ¼
0.42 gDO/m3). Fig. 4 provides the comparison of measured and
modelled DO using the posterior forward propagation for a time-
window during the summer period (between July and October).
Figure C1 and Figure C2 (Annex C) present the simulated rainfall,
DO (measured-modelled) and the BOD dynamics at two sections of
the river. Discharged BOD can reach high concentrations (up to
10e60 gBOD/m3) at the receiving water body. Local measurements
of BODwere not available at this period, but amonitoring campaign
carried out during 2007e2008 (Moens et al., 2009) reported peaks
of the same order of magnitude (up to 10e80 gBOD/m3). Con-
sumption of high BOD loads is the dominant process in the acute
DO depletion. A fraction of the BOD load settles and degrades in the
river bed, which dominates the speed of the DO recovery process
(which can take between hours to days).
and dissolved oxygen at the closing section (M_0121) of the system (21-Jul-2012 - 13-
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The depth and recovery pattern of most DO depletion processes
are captured by the simulated and measured series (root-mean
squared error of 1.25e1.6 gO2/m3 during the inferred and validation
time-periods respectively), yet a few events show insufficient
depletion in the model (Fig. 4),. This can suggest that a certain
process might be missing in the model structure description; i.e.
insufficient WWTP loads under certain conditions or a stronger
rural contribution. However, not enough system data was available
to further validate those hypotheses.

For instance, during the timespan between the 19th and the
29th of November 2012 three acute oxygen depletion processes
occurred which were not captured by the model response in both
scenarios (Fig. 3). CSO discharges were not reported during this
time. The same depletion process was captured by an upstream DO
sensor located between the WWTP and the M_0121 sensor, but not
by other sensors distributed throughout the system. During this
period only minor inflow (c.a. 12,000m3/h) was recorded at the
influent of the WWTP (with 35,000m3/h maximum capacity).
Thus, this oxygen depletion events could only be explained either
by a major disturbance in the WWTP operations (which is not
supported by effluentWWTPmeasurements of TSS, NH4 or COD) or
a disturbance in the sediment bed of the river (i.e. dredging or
mowing, which has been confirmed to have occurred by the
Waterboard De Dommel). Those processes were not described in
the model structure and hence could not be captured by the
simulation response. This type of events were not reported in
monitoring data for previous years thus were neglected in this
study. Yet this can become a relevant source of structural uncer-
tainty and should be further investigated.

Fig. 5 presents the cumulative probability density function of
the yearly measured and modelled DO/flow series, along with the
95% ranges. When performing the posterior propagation (after
inferring the parameter distributions for the river quantity and
quality submodel parameters) the uncertainty band was signifi-
cantly reduced; the average 95% uncertainty range was reduced
from 3.7 gO2/m3 to 1.8 gO2/m3 and the two sample Kolmogorov-
Smirnov (KS) test rendered that for 99.5% of the time-steps the
null-hypothesis (both forward propagations render the same
probability distribution) is rejected with p-value< 0.001 and mean
K-S value of 0.27. This can be explained by the fact that the ranges
attributed to the river parameters prior knowledge where nar-
rowed down by the information provided in river DO-flow mea-
surements. The mean simulated series for flow in both cases
represented reasonably well the occurrence probability of high and
medium hydrographs. Yet there was a systematic overestimation of
low flows (river flow below 3e4m3/s), which is likely caused by an
overestimation of the rural dry weather contribution. Yet, this is
expected to have a limited influence in DO depletion dynamics
Fig. 5. Cumulative probability density of flow-DO measured (black dashed), simulated mean
of all prior inputs-parameters. b) The resultant parametric-input uncertainty using the upd
which occur mainly during wet weather conditions.
The model exhibited a systematic underestimation of high dis-

solved oxygen concentration. This is seen during winter months
(Fig. 3). The seasonal DO variation in the model structure was
captured by several factors; i.e. a constant sediment oxygen de-
mand (SOD, see Table B1, process number 5) and temperature
driven inhibition coefficients for oxidation rates and reaeration
patterns. SOD dynamics were estimated from system observations
and we tried to respect the reported values. The inferred proba-
bility distributions for the biochemical river parameters could still
not match the high DO concentration (Fig. 5 b) well enough. This
suggests that either the base DO inflows are underestimated in the
current version of the model (e.g. too lowWWTP DO effluent/Rural
DO for which there were not reliable measurements) or that there
is a structural process missing in the river conceptualisation (e.g. a
stronger winter-summer sediment oxygen demand variability).
Nonetheless, the accurate simulation of high DO concentration is of
little interest for the model application. On the other hand, low DO
level yearly probability was better matched as can be seen in Fig. 5.

The information from modelled-observed time-series in river
water quality assessment studies is often compressed for system
evaluation down to a low number of performance indicators. A
common reporting method for river water quality status within the
EU water framework directive compliance is the use of
concentration-duration-frequency (CDF) tables (FWR, 2012). Limit
levels are commonly extracted from an ecological assessment
study, which defines survival conditions for critical species.
Table B2 presents the environmental CDF tables for three levels of
water quality compliance (Basic, Critical and Salmonid) in the river
Dommel. Exceedance frequencies are computed and contrasted
with the tolerated ones from which five status classes are derived:

⁃ Class 1: less than 0.5 times the tolerated frequency.
⁃ Class 2: less than 1 time
⁃ Class 3: more than 1 time
⁃ Class 4: more than 1.2 times
⁃ Class 5: more than 2 times the tolerated frequency

Measured and modelled water quality status classes for three
DO CDF tables are shown in Fig. 6, where the black dot refers to the
estimated class in the measurement dataset and the histogram
shows the modelled status occurrence probability density. Low
frequency (i.e. 0.1 and 1 times/year) would require a longer time
series to be estimated reliably (3e10 years). Yet the current status of
the river presents a fairly low quality status for low frequency-high
magnitude oxygen depletion processes, which was captured in
both measured-modelled series. Low magnitude-high frequency
events with short duration had a higher degree of uncertainty. This
(black solid) and 2.5e97.5% percentiles (grey solid). a) Forward uncertainty propagation
ated river water quality-quantity parameters.



Fig. 6. Water quality status assessments for the forward posterior propagation (histogram density) and measured data status (black circle). Basic, critical and salmonid tolerated
dissolved oxygen depletion duration and yearly frequency (2012, excluded 19th-29th of November).

Fig. 7. Flow and DO variance vs. number of model samples at three representative
dynamic points.
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concurs with the hypothesis that large DO events have often a
lower degree of uncertainty associated, since the system is over-
saturated and albeit the uncertainty sources, a strong DO depletion
occurs. Yet low-medium intensity events are often more sensitive
to variability. Also, the information compression in the status
classes for CDF metrics creates a differential sensitivity. Class 5
captures a large range of system responses (>2 times the allowed
frequency), meanwhile the occurrence of Class 1 to Class 4 has a
shorter range (0e1.2 times the allowed frequency). Therefore sys-
tems with a poor environmental water quality status (Class 5) are
easier to identify than those falling between good and medium
status. This implies that environmental status (from CDF tables)
might not be the most appropriate metric to discriminate between
the effects of different correction strategies (i.e. when selecting
between a new real time control strategy or infrastructure invest-
ment to reduce DO depletion events). A modeller could argue that
the model performs well on the current systemwater quality status
(poor environmental conditions, Class 5) but stochastic predictions
of system improvements (Class 1e4) have the potential to result in
a wider uncertainty range (probably beyond the marginal gain
between alternatives).
3.1. Uncertainty source analysis by variance decomposition

A variance decomposition scheme was applied to estimate the
uncertainty contribution of different sources to the DO simulated
series. The variance decomposition method provides a picture of
the uncertainty contribution by source. However, it has certain
limitations, which should be acknowledged and carefully
addressed; first, it provides a lumped variance contribution, and
thus identification of contribution at characteristic dynamic points
proves difficult (limiting its diagnostic power). Secondly, it relies on
certain hypotheses that might not be always met, as independence
of error sources or homoscedasticity, which have the potential to
distort the outcome, thus checking their influence is recom-
mended. The design of this study tried to minimize the effect of
these characteristics (following the recommendations of Willems
(2012)).

Fig. 7 provides the relationship between the estimated variance
at DO and flow series in three representative points and the
number of simulation samples. This shows that the number of
samples selected in the uncertainty decomposition scheme (250
per cluster) was sufficient to provide a robust variance estimation.
The decomposition of the prior parameters and input uncertainty
(Fig. 8) shows that the river flow and water quality parameters are
the contributors of roughly 70% of the total uncertainty. Meanwhile
rainfall uncertainty and CSO pollution parameters accounted for
about 10% each. On the other hand, WWTP parameters and river
inputs had a negligible effect on the global DO uncertainty. This
shows that water quality and quantity river parameters captured
most of the variability, which is caused by a high sensitivity of DO
dynamics to the in-river biological processes and the relative poor
knowledge on the actual parameter distributions. Therefore we
proposed a parametric inference process for the river parameters,
updating the prior assigned pdf's using local DO and flow mea-
surements in the river. The inference process narrowed down the
prior distribution of water quantity and quality parameters in the
river, thus reducing the contribution of the parametric uncertainty
in the river section to 16%. This reduction of parametric uncertainty
was also transferred to the selected model-measurement error
model in the likelihood formulation, which was captured in the
variance decomposition scheme by the increase in the rest uncer-
tainty term (~18%).

In the posterior variance decomposition, the contribution of
rainfall uncertainty and the CSO pollution modules increased to
20e30% respectively. This shows that the DO dynamics are overall
heavily influenced by rainfall driven discharges (WWTP and CSO)
and especially by the water quality characteristics of the discharged
volumes. Modelling CSO pollution concentrations is a challenge in
urban drainage modelling and render highly uncertain results
(Sandoval et al., 2018). Thus further monitoring and modelling ef-
forts are still required in this area. Rainfall data uncertainties are
shown to be relatively influential in the DO dynamics. The selected
rainfall input error model (Equation (1)) was motivated by the
deviations found at rainfall estimations from the radar and the
interpolated rain gauge network. Nevertheless, additional efforts
should be directed to improve the quality of estimated rainfall in-
puts in the system.

The influence of the river submodel parameters is still not



Fig. 8. Variance decomposition. Mean relative contribution [%] to the total model residual variance in DO at the receiving water body (location M_0121).
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negligible (~16%), which is mostly due to the relatively uncertain
river sediment oxygen demand parameter (SOD). Urban drainage
parameters had a comparatively low contribution to the DO vari-
ance (~7%). This might be explained by the fact that UD parameters
largely influence CSO discharge timing and shape, yet have rela-
tively low effect on total discharged volume during large storm
events. DO dynamics in the receiving water body are known to be
intensively time-buffered by the nature of the process (Moreno-
Rodenas et al., 2017a), thus pollutograph timing-shape errors are
less dominant than errors in volume/mass estimation. The com-
parison between lumped and hydrodynamic sewer water quantity
modelling structures was not considered in this study. The selec-
tion of model structure and associated uncertain parameters may
affect these results, yet it is expected that uncertainties in thewater
quality routine are significantly larger than those of water quantity
for urban drainage modelling (Dotto et al., 2012). The WWTP
parameter set rendered a low contribution to the total variance
(~0.5%). WWTP is however a highly relevant process in the system
dynamics and its proper conceptualisation and calibration is of
foremost importance. Also, uncertainties associated with changes
in regulations (Dominguez and Gujer, 2006) or operational changes
can become dominant in certain scenarios and were here neglec-
ted. This study only focused on the effect of WWTP influent and
fractionation parameters, which are reported to be some of the
most relevant uncertainty sources (Belia et al., 2009) in WWTP
outputs. YetWWTP influent-fractionation parameters showed little
influence in the modelling uncertainty for receiving water body DO
concentration in the river Dommel.

Few other studies exist that deal with uncertainty analysis of DO
dynamic modelling in urbanised river catchments. For instance,
Radwan et al. (2004) presented a variance decomposition scheme
for the modelling of DO in a river catchment in Belgium. Only the
receiving water quality was modelled and CSO and rural pollution
sources were considered as model inputs. They showed that
roughly 30% of the variance of the process could be attributed to the
river water quality parameters; whereas the input pollution loads
explained ~60% of it. Also, Freni and Mannina (2010) and Freni and
Mannina (2012) performed an uncertainty analysis of a small in-
tegrated system containing two urban drainage systems (~115 ha,
9,000 inhabitants), a WWTP and a river section in Sicily, Italy. The
variance decomposition results showed that WWTP BOD discharge
uncertainties were dominated by upstream submodels (e.g. sewer
system or rainfall), whereas WWTP parameters had a lower influ-
ence. On the other hand, they reported that uncertainties in the
water quality-quantity river parameters and the rest of the
upstream submodels contributed 40% and 60% respectively to DO
uncertainty at the receiving water body. Willems (2008) also pre-
sented a small-scale integrated catchmentmodel (simulating urban
drainage and WWTP but not receiving water) in which an uncer-
tainty analysis scheme was proposed for several water quality
variables (TSS, SS, BOD and NH4) reporting that rainfall uncertainty
contribution represents 10e20% of the variance in all variables
simulated at the outlet of the WWTP. Although uncertainty
contribution is largely a case-dependent process, our results
showed a similar structure as in previously reported studies;
combined sewer overflow water quality characteristics and rainfall
variability are the most relevant sources of uncertainty in DO
simulation for the river Dommel in the studied period, provided
that a detailed study is directed to identify and calibrate the river
water quality dynamic processes.

The applicability of many uncertainty analysis techniques
(Deletic et al., 2012; Jakeman and Jakeman, 2017) is limited when
dealing with large-scale modelling applications. This is mainly due
to insufficient observational data and the computational effort
required. The example provided in this work shows as forward MC
and variance decomposition schemes can be readily applied even
for a computationally expensive systems (i.e. using code paralleli-
sation and efficient sampling schemes). Performing Bayesian
parameter inference is however prohibitive in most real-world
cases, yet if carefully selecting a reduced number of parameters,
model emulation can be used to accelerate the inference sampling
(see emulators for hydrology; Machac et al. (2016), Machac et al.
(2018) hydrodynamic modelling; Moreno-Rodenas et al. (2018a),
or for urban drainage inference; Wani et al. (2017)). In this study,
the effect of updating prior knowledge in a set of highly influential
parameters using the full ICM structure on the uncertainty contri-
bution analysis was also shown.

Nevertheless, emulation strategies can only deal with low-
dimensional parameter sets, thus inferring the full ICM para-
metric space falls beyond current data and computational capa-
bilities for most real-world scale cases. In this line, Muschalla et al.
(2009) discussed the process of abstracting ICM studies, reflecting
about the need of partially calibrating (or inferring) sections of the
full model based on intermediate measured state variables. Also,
available datasets render many processes unidentifiable. This lack
of knowledge should be accounted for during the uncertainty
analysis scheme, however, process identifiability (especially in-
sewer water quality dynamics) still represent a major obstacle in
the deployment of functional ICMs for environmental decision-
making support.
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4. Conclusions

This study presents an uncertainty analysis scheme of a large-
scale integrated catchment model. The selected ICM accounts for
urban drainage (4400 ha), WWTP (750,000 p.e.) and receiving
water processes in an intensively urbanised catchment in the south
of the Netherlands with the aim to simulate dissolved oxygen dy-
namics for ecological assessment.

An uncertainty decomposition scheme showed that the river
water quality and quantity parameters are responsible for ~70% of
the uncertainty in DO river simulations when using expert elicited-
literature based river parameter ranges. A first reduction of the
uncertainty was achieved through inferring the river parameter set
using local measurement data (which reduced its contribution to
~16%). CSO water quality parameters were themost relevant source
of uncertainty (~30%), indicating that monitoring and modelling
efforts should be directed in that direction. Rainfall uncertainty
accounted for roughly 20% of the variance in DO simulations, which
was resultant of the relative disagreement of local rain gauge and
radar rainfall estimations for the area. Our results showed simi-
larities with previous reported studies for DO uncertainty analysis
in integrated catchment systems. However, the generalisation of
these results to other cases should be performed carefully since the
structure and mechanistic relationship of the system may vary
significantly and this has the potential to influence the uncertainty
distribution by source, thus further uncertainty analysis studies in
ICMs are still necessary.

The forward uncertainty propagation showed that the model
structure lacks flexibility to accommodate seasonal winter DO
levels. A suggested approach is to propose a time-dependent
sediment oxygen demand process, yet this requires additional
system observations. Also, the study of uncertainty propagation in
concentration-duration-frequency ecological status tables showed
as low water quality status systems are easier to identify (lower
uncertainty associated) than good-moderate status. However, good
and moderate water quality status are more sensitive to low DO
variability and thus the uncertainty tends to be larger, limiting the
identifiability of correction effects. This should be acknowledged
Table A.1
Parametric Uncertainty WWTP influent model

Name Units Descript

alpha_COD_av@ES_out - Influent
alpha_CODs_av@ES_out - Influent
alpha_NH4_av@ES_out - Influent
alpha_PO4_av@ES_out - Influent
alpha_TSS_av@ES_out - Influent
beta_COD_av@ES_out - Influent
beta_CODs_av@ES_out - Influent
beta_NH4_av@ES_out - Influent
beta_PO4_av@ES_out - Influent
beta_TSS_av@ES_out - Influent
alpha_COD_av@NS_out - Influent
alpha_CODs_av@NS_out - Influent
alpha_NH4_av@NS_out - Influent
alpha_PO4_av@NS_out - Influent
alpha_TSS_av@NS_out - Influent
beta_COD_av@NS_out - Influent
beta_CODs_av@NS_out - Influent
beta_NH4_av@NS_out - Influent
beta_PO4_av@NS_out - Influent
beta_TSS_av@NS_out - Influent
alpha_COD_av@RZ_out - Influent
alpha_CODs_av@RZ_out - Influent
alpha_NH4_av@RZ_out - Influent
alpha_PO4_av@RZ_out - Influent
alpha_TSS_av@RZ_out - Influent
when reporting modelling results and should be accounted for by
decision-makers when dealing with simulation-based pollution
mitigation measure selection.
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ANNEX A: Parametric-input error models
ion Model

water quality generator parameter2 ~ tN(0.63, 0.05$0.63)I

water quality generator parameter ~ tN(0.95, 0.05$0.95)
water quality generator parameter ~ tN(0.95, 0.05$0.95)
water quality generator parameter ~ tN(0.63, 0.05$0.63)
water quality generator parameter ~ tN(0.63, 0.05$0.63)
water quality generator parameter ~ tN(0.47, 0.05$0.47)
water quality generator parameter ~ tN(0.82, 0.05$0.82)
water quality generator parameter ~ tN(0.82, 0.05$0.82)
water quality generator parameter ~ tN(0.47, 0.05$0.47)
water quality generator parameter ~ tN(0.47, 0.05$0.47)
water quality generator parameter ~ tN(0.63, 0.05$0.63)
water quality generator parameter ~ tN(0.95, 0.05$0.95)
water quality generator parameter ~ tN(0.95, 0.05$0.95)
water quality generator parameter ~ tN(0.63, 0.05$0.63)
water quality generator parameter ~ tN(0.63, 0.05$0.63)
water quality generator parameter ~ tN(0.47, 0.05$0.47)
water quality generator parameter ~ tN(0.82, 0.05$0.82)
water quality generator parameter ~ tN(0.82, 0.05$0.82)
water quality generator parameter ~ tN(0.47, 0.05$0.47)
water quality generator parameter ~ tN(0.47, 0.05$0.47)
water quality generator parameter ~ tN(0.49, 0.05$0.49)
water quality generator parameter ~ tN(0.95, 0.05$0.95)
water quality generator parameter ~ tN(0.95, 0.05$0.95)
water quality generator parameter ~ tN(0.49, 0.05$0.49)
water quality generator parameter ~ tN(0.49, 0.05$0.49)



Table A.1 (continued )

Name Units Description Model

beta_COD_av@RZ_out - Influent water quality generator parameter ~ tN(0.47, 0.05$0.47)
beta_CODs_av@RZ_out - Influent water quality generator parameter ~ tN(0.98, 0.05$0.98)
beta_NH4_av@RZ_out - Influent water quality generator parameter ~ tN(0.98, 0.05$0.98)
beta_PO4_av@RZ_out - Influent water quality generator parameter ~ tN(0.49, 0.05$0.49)
beta_TSS_av@RZ_out - Influent water quality generator parameter ~ tN(0.49, 0.05$0.49)

INOTE1: ~tN truncated ([0e1]) normal probability distribution.
2NOTE2: The influent parameters are equivalent to the proposed by Langeveld et al. (2017).

Table A.2
Parametric Uncertainty WWTP effluent fractionation model

Name Units Description Model

fBOD1p_BODf@WWTP2river - WWTP to river fractionation parameter ~ U(0.05, 0.15)
fBOD2_BOD20@WWTP2river - WWTP to river fractionation parameter ~ U(0.35, 0.45)
fBOD2p_BODs@WWTP2river - WWTP to river fractionation parameter ~ U(0.25, 0.35)
f_S_F_w@fractionation - Fraction of fermentable readily biodegradable products in COD ~ U(0.55, 0.65)
f_X_S_w@fractionation - Fraction of slowly biodegradable substrate products in COD ~ U(0.4, 0.5)

Table A.3
Dynamic Input error models

Name Units Description Model

Rain_in_13 mm=h Bergeik rainfall input Eq (1)
Rain_in_20 mm=h Valkenswaard rainfall input Eq (1)
Rain_in_26 mm=h Gestelse rainfall input Eq (1)
Rain_in_27 mm=h Veldhoven rainfall input Eq (1)
Rain_in_33 mm=h Geldrop rainfall input Eq (1)
Rain_in_34 mm=h Mierlo rainfall input Eq (1)
Rain_in_36 mm=h Eindhoven rainfall input Eq (1)
Rain_in_37 mm=h Son and Breugel rainfall input Eq (1)
Rain_in_40 mm=h Neunen rainfall input Eq (1)
Temp_WWTP Co Water temperature at the WWTP_bio lines Multiplicative ~ N(1,0.03) [Eq (5)]
I0_river W=m2 Solar radiation in the river surface Multiplicative ~ N(1,0.05) [Eq (4)]
T_river Co Water temperature in the river ~GP(T;ST ) [Eq(2) and (3)]

Table A.4
Variance decomposition parameter-input groups

Parameter-Input group Elements

Rainfall uncertainty Rain_in (all rainfall dynamic inputs in Table A3)
River baseflow input K_h (Rural input multiplier, Table 3)
River Temperature and luminosity I0_river and T_river (Table A3)
Urban drainage parameters Table 1
CSO pollution module BOD, NH4, COD and DO (x30 CSO locations, Table 2)
WWTP parameters Table A1 and Table A2
River flow and water quality param n, k_W_b, k_z, kd1, kd2, Vs1, Vs2, SOD, VKL, Knit, TKd and TKL (Table 3)

Fig. A1. Example of the rainfall error model at four different periods. Estimated rainfall input mean (1000 samples) and 95% range (blue), KNMI radar estimate (dashed black) and
interpolated (inverse-weighted-distance) value from the rain gauge network (black solid) at the urban system of Eindhoven
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Fig. A2. Example of the rainfall error model at four different periods. Estimated rainfall input mean (1000 samples) and 95% range (blue), KNMI radar estimate (dashed black) and
interpolated (inverse-weighted-distance) value from the rain gauge network (black solid) at the urban system of Bergeijk.
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ANNEX B: ICM submodels and environmental metrics

The urban drainage submodel processes are described at in
detail at Solvi (2006). Table B1 provides the process matrix for the
biochemical river water quality model. The river model represents
the degradation and sedimentation of four BOD fractions (fast-slow
and particulate-dissolved), nitrification processes, degradation of
sediment BOD, reaeration and photosynthesis of the river macro-
phyte. The process equation parameters relate to the river water
quality parameters of Table 4.

River flowwas approximated with a tank-in-series river scheme
Table B.1
Process matrix for the river water quality model structure

State Variable BOD1 BOD1p BOD2

gO2/m3 gO2/m3 gO2/m3

Process
1a. Oxidation of fast-suspended fraction (BOD1) �1

1b. Oxidation of fast-particulate fraction (BOD1p) �1

2a. Oxidation of slow-suspended fraction (BOD2) �1

2b. Oxidation of slow-particulate fraction (BOD2p)

3a. Sedimentation of BOD1p �1
3b. Sedimentation of BOD2p
4. Oxidation of organic matter in the sediment

5. Constant sediment oxygen demand

6. Nitrification

7. Photosynthesis macrophyte

8. Macrophyte oxygen consumption

9. Reaeration

Table B.2
Environmental assessment concentration-duration-frequency (CDF) tables for dissolved

DO critical Event duration DO basic E

1e5 h 6e24 h >24 h

Tolerated yearly frequency 12 5.5 6 7 Tolerated yearly frequency 1
4 4 5.5 6 4
1 3 4.5 5.5 1
0.2 1.5 2 3 0
using trapezoidal sections. The outflow at each river reach was
approximated by the Gauckler-Manning equation. Table 4 covers
the four parameters relating river flow; river roughness (n), and
three global multipliers for the estimated river bottom width
(k W b), trapezoidal bank-slope (k z) and rural baseflow input
(k h).

The WWTP submodel was represented by an ASM2d biokinetic
model (Gernaey et al., 2004), and a urban drainage to WWTP
empirical influent model (Langeveld et al., 2017), which relate to
the parameter set at Table A1.
BOD2p BODs NH4 DO rate

gO2/m3 gO2/m3 gN/m3 gO2/m3

�1
TKdTwat�20,Kd1,BOD1,

DO
KO2þ DO

�1
TKdTwat�20,Kd1,BOD1p,

DO
KO2þ DO

�1
TKdTwat�20,Kd2,BOD2,

DO
KO2þ DO

�1 �1
TKdTwat�20,Kd2,BOD2p,

DO
KO2þ DO

þ1 Vs1,BOD1p
�1 þ1 Vs2,BOD2p

�1 �1
TSODTwat�20,KBOD,

BODs
d

,
DO

KSOþ DO
�1

TSODTwat�20,
SOD
d

,
DO

KSOþ DO
�1 �4.57

TKnitTwat�20,Knit,NH4,
DO

KNO2þ DO
þ1

TKpTwat�20,kprodM,Io,
MB
d

�1
TKpTwat�20,kpcons,

MB
d

þ1 TKLTwat�20,VKL,ðCS� DOÞ

oxygen concentration in the river Dommel (DO concentration in mg/l)

vent duration DO salmon Event duration

1e5 h 6e24 h >24 h 1e5 h 6e24 h >24 h

2 3 3.5 4 Tolerated yearly frequency 12 5 5.5 6
2.5 3 3.5 4 4.5 5 5.5
2 2.5 3 1 4 4.5 5

.2 1 1.5 2
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ANNEX C: BOD simulated dynamics
Fig. C.1. System dynamics detail comparing rainfall variability (KNMI rain gauge 370, KNMI Radar at the same location and the estimated intensity at the city of Eindhoven, c_24),
measured-modelled dissolved oxygen, BOD_T (the sum of the four fractions of BOD), BOD_sed (sediment BOD concentration) at two locations of the river M_0121, and M_0002
(Fig. 1).

Fig. C.2. System dynamics during 2012 comparing rainfall variability (KNMI rain gauge 370, KNMI Radar at the same location and the estimated intensity at the city of Eindhoven,
c_24), measured-modelled dissolved oxygen, BOD_T (the sum of the four fractions of BOD), BOD_sed (sediment BOD concentration) at two locations of the river M_121, and M_0002
(Fig. 1).
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