
 Energy optimization of parallel programs in a 1	

heterogeneous system by combining processor 2	

core-shutdown and dynamic voltage scaling 3	

 4	
 5	
 6	
 7	

Zhuowei Wang,1 Hao Wang, 2, * Wuqing Zhao, 3 Lianglun Cheng,1 8	
1 School of Computers, Guangdong University of Technology, Guangzhou 510006, China 9	

2Department of ICT and Natural Sciences, Norwegian University of Science and Technology, Norway 10	
3Dingxin Information Technology Co.,Ltd, Guangzhou,510006, China 11	

*Corresponding author: hawa@ntnu.no 12	

 13	

Abstract: Reducing power consumption and improving efficiency are important aspects of the development of supercomputers into 14	
large-scale systems. As a result, heterogeneous systems have become an important development trend in high-performance 15	
computing. From the perspective of heterogeneous systems, this study establishes a model for energy optimization of parallel 16	
programs (EOPP) and puts forward a method of using it. By considering the energy overheads caused by re-synchronization, voltage 17	
switching, and operations in critical sections, the model effectively combines processor core-shutdown and dynamic voltage scaling 18	
technologies, which can be applied in a heterogeneous system to guide the optimization process. The results show that the proposed 19	
model can effectively reduce the energy consumption of parallel programs. Moreover, increasing the proportion of operations in the 20	
critical section enhances the optimal frequency of a processor while decreasing the probability of conflicts in the critical section. It 21	
can thus provide optimization space for reducing the frequency of a processor which ultimately reduces the energy overhead of the 22	
system. 23	

 24	
 25	
 26	
Keywords: Energy optimization; Parallel program; Heterogeneous system; Processor core-shutdown; Dynamic voltage scaling 27	

 28	

 29	

1. Introduction 30	

Increasing growth in the demand for information is promoting 31	
a rapid development in high-performance computers. In order to 32	
enhance the performance of high-performance computer systems, 33	
and solve large-scale computing problems, the development of 34	
heterogeneous systems which integrate general-purpose 35	
processors and accelerated processing units (APUs) has been one 36	
of the important trends in high-performance computing. 37	
Although heterogeneous systems show high peak computation 38	
speeds and efficiency, the problem of high power consumption 39	
still exists. High power consumption greatly challenges various 40	
aspects of large-scale heterogeneous and parallel computer 41	
systems (including reliability and heat dissipation) and causes 42	
significant consumption of energy. In this context, the power 43	
consumption problem is causing unprecedented concern [1]. 44	

Power optimization research encompasses a broad range of 45	
approaches ranging from hardware (bottom-level) to software 46	
(upper-level) [2–3]. Hardware approaches mainly include the use 47	
of low-power optimization technologies, e.g. using low-power logic 48	
devices [4-5], interconnected power optimization [6-7], control of 49	
leakage currents [8-9] and layout packaging [10-11]. Hardware 50	
optimization methods have reached a certain level of maturity 51	
and it is hard to further tweak them to satisfy the increasing 52	
demand for power optimization. Therefore, concern has shifted to 53	
power optimization at the software level [12–15]. 54	

Dynamic voltage scaling and processor core shutdown are two 55	
commonly used technologies to reduce the energy consumption. 56	
By reducing the voltage to reduce the energy consumption, 57	
Dynamic voltage scaling technology mainly uses the relationship 58	
between the dynamic power and the square of the voltage. The 59	
processor core shutdown technology is to reduce the energy 60	
consumption by closing the processor in the idle state. In recent 61	

years, a large number of international research work focused on 1	
the low energy optimizations using the two technologies 2	
respectively. However, Combining the two technologies can get 3	
better energy optimization effect. At the same time, during the 4	
parallel program execution process, energy overheads caused by 5	
the re-synchronization, voltage switching, and operations in 6	
critical section will inevitably bring extra energy consumption. 7	

Overall, the contributions made by this study can be 8	
summarized as follows: 9	

(1) We establish an energy optimization of parallel programs 10	
(EOPP) model based on a heterogeneous system. During the 11	
modeling stage, all-round power modeling is conducted on the 12	
heterogeneous system from a program level perspective (fully 13	
considering the effect of energy overheads caused by 14	
re-synchronization, voltage switching, and operations in the 15	
critical section) to increase the accuracy of the power model. 16	

(2) Using the EOPP model, we study a strategy that combines 17	
processor core-shutdown and DVS. Processor core-shutdown is 18	
used in the serial segment of the program — the other processor 19	
cores are shut down (i.e. all but the host processor core 20	
performing the serial program) in order to reduce energy 21	
consumption. On the other hand, the parallel segments of the 22	
program are processed using DVS technology. According to the 23	
loads on various processor cores, the voltage/frequency of each 24	
processor core is scaled to reach to an ideal voltage/frequency 25	
balance. By doing so, energy wasted by performing at maximum 26	
voltage/frequency can be avoided. 27	

Section 2 presents a formalized description of the EOPP model 28	
in a heterogeneous system. Section 3 gives an analysis of the 29	
EOPP model in a heterogeneous system. On this basis, 30	
considering the influence of energy overheads caused by 31	
re-synchronization, voltage switching, and operations in the 32	
critical section, we propose a strategy for energy optimization 33	
that combines both processor core-shutdown and DVS 34	
technology. Section 4 presents the experimental results, and the 35	
last section summarizes the conclusions and future work. 36	
2. Related work 37	

A great deal of research has been carried out on technologies 38	
aimed at optimizing the power consumption of software running 39	
in a multi-core processor. Therein, processor core-shutdown [16–40	
17] and dynamic voltage scaling (DVS) [18–19] are the two main 41	
technologies aimed at optimizing the power used by software. 42	

From the perspective of complier optimization technology with 43	
multi-threading parallel and low power consumption, Zhao et al. 44	
[20] proposed a low-power optimization model integrating 45	
fine-grained multi-threading division and dynamic frequency 46	
adjustment based on two multi-thread system structures (Chip 47	
Multi-processing and Simultaneous Threading). Their model 48	
performs well in reducing the power consumption of a processor 49	
during operation as much as possible on the premise that 50	
instruction-level and thread-level parallelism is influenced little. 51	
Grochowski et al. [21] discussed the problem of trade-off between 52	
the throughput capacity of a microprocessor under speed and 53	
power constraints. These workers applied DVS, asymmetrical 54	
and sizeable processor cores, and inferential control technology to 55	
dynamically change the energy consumed during instruction 56	

execution under parallelization instruction of software. Their 57	
results indicate that the optimal choice is to comprehensively 58	
utilize DVS with asymmetrical processor cores. 59	

Kadayis et al. [22] proposed a method capable of shutting down 60	
idle processor cores to reduce the energy consumption of nested 61	
loops. However, their energy optimization method does not utilize 62	
DVS technology. In subsequent research [23], they proposed 63	
employing DVS to decrease the voltages of processor cores with 64	
lightly-loaded threads. In this way, the degree of load equilibrium 65	
of the programs can be adjusted to further save power and reduce 66	
energy consumption. However, their research only made a 67	
comparison between DVS and processor core-shutdown and 68	
failed to favorably combine the two low-power technologies. 69	

Li et al. [24–25] have advised that a two-dimensional space 70	
defined for parallel programs in a multi-core structure should be 71	
optimized (one dimension corresponding to change in number of 72	
active processors; the other to conducting DVS on each processor 73	
core). However, a parallel program tends to contain both parallel 74	
and serial segments and there are certain time and energy 75	
overheads associated with conducting DVS and processor 76	
core-shutdown. When a program progresses from a serial 77	
segment to a parallel segment, it is assumed that closing idle 78	
processor cores does not waste extra time and energy. However, 79	
when the operations in a serial segment complete and enter into 80	
the next parallel segment, it is necessary to re-activate the 81	
processor cores in the dormant state and then make the processor 82	
core recover to the normal work state. In this context, there is a 83	
re-synchronization overhead with respect to time and energy. 84	
Moreover, the voltage switching overhead in time and energy 85	
always exists during each DVS process. Thus, the associated 86	
power consumption cannot be ignored when frequently 87	
conducting DVS operations. Additionally, data must inevitably be 88	
shared during parallelization of programs. Therefore, in order to 89	
maintain data consistency, shared data need to be operated on 90	
within a critical section. Thus, the synchronization operation on 91	
the critical section has an effect on power optimization. 92	

This study establishes a model for energy optimization of 93	
parallel programs. By considering the energy overheads caused 94	
by re-synchronization, voltage switching, and operations in 95	
critical sections, the model effectively combines dynamic voltage 96	
scaling and processor core-shutdown technologies, which can 97	
effectively reduce the energy consumption of parallel programs. 98	

3. Formal description of the optimization 99	
problem 100	

3.1 Architecture of a heterogeneous system 101	
Before giving a description of the problem, the architecture of a 102	

heterogeneous system is first abstracted to establish a basis for 103	
the energy model for parallel programs. Fig. 1 shows the typical 104	
architecture of a heterogeneous parallel system. Such a system 105	
contains multiple computing resources: central processing units 106	
(CPUs), graphics processing units (GPUs), medium interface 107	
connectors (MICs), and field programmable gate arrays (FPGAs). 108	

In general, those parts used to accelerate processing (the 109	
APUs) are only charged with performing specific computing tasks 110	
and are not equipped with accomplished task management and 111	

scheduling mechanisms. Therefore, most of the APUs need to be 1	
executed under the control of a general-purpose microprocessor 2	
(host processor). The host processor is generally connected to the 3	
APU through an external bus and they have their own (off-chip) 4	
dynamic random-access memory (DRAM). In this way, the two 5	
processors can realize data communication in the form of direct 6	
memory access (DMA). 7	

CPU CPU CPU CPU

GPU MIC FPGA

DRAM DRAM DRAM

DRAM DRAM DRAM DRAM

PCI-E

 8	
Fig.1. The typical architecture of a heterogeneous parallel system. 9	

3.2 Problem description and conditional hypotheses 10	
The problem can be described as follows. Consider a 11	

heterogeneous system consisting of a host processor and an APU, 12	
and a parallel program containing 𝑁! serial and 𝑁! parallel 13	
segments. It is hypothesized that the architecture of the 14	
heterogeneous system contains 𝑃! host processor cores and 15	
𝑃! APU cores, and that the voltage and frequency allocated to the 16	
𝑚th processor at the 𝑗th stage (serial or parallel) are expressed in 17	
the form (𝑉!,!, 𝑓!,!) . We are required to find the optimal 18	
voltage/frequency of each processor core that reduces the total 19	
energy consumed by the whole parallel program to the largest 20	
extent without incurring performance loss. 21	

In order to accurately define the energy optimization problem 22	
for parallel programs executing on a heterogeneous system, some 23	
further hypotheses are made about the program, system 24	
architecture, and circuit realization: 25	

(1) The logistical behavior of the program does not change 26	
when the frequency changes. 27	

(2) The frequency of a processor is continuous and adjustable. 28	
(3) The serial and parallel parts of the parallel program are 29	

separately fulfilled by the host processor and APU. The time and 30	
energy overheads resulting from data transmission between the 31	
host processor and APU can be ignored. 32	

(4) The program flows from parallel to serial segments and 33	
there are no extra time and energy overheads caused by closing 34	
idle processors. 35	

(5) The program operates from serial to parallel segments 36	
taking into account the re-synchronization overheads in time and 37	
energy. 38	

(6) The time and energy overheads caused by converting the 39	
frequencies of the processors are considered. 40	

(7) The probability of a critical section occurring within a 41	
thread conforms to a uniform distribution while that in different 42	
thread levels is completely independent. The number of threads 43	

with competitive critical sections within unit time is in 44	
accordance with the binomial distribution. 45	

It can be considered that the assumption 1 and 2 are true and 46	
reasonable. Processor core shut-down, as well as the data 47	
transmission between the master processor and the accelerated 48	
processor will impose additional time and energy consumption. 49	
However, it is important to point out that this article focuses on 50	
the energy consumption of re-synchronization, voltage switching, 51	
and operation in critical sections, the time and energy 52	
consumption overhead caused by processor core shutdown are 53	
not the main component of the execution time and total system 54	
energy consumption, so it can be considered that the assumptions 55	
3, 4, 5, 6 are reasonable. In addition, the energy consumption 56	
analysis of operations in the critical sections is based on the 57	
literature [26], therefore the assumption 7 is also reasonable. 58	

3.3 Parameters used in the EOPP model for the 59	
heterogeneous system 60	

The following parameters are defined for the problem in the 61	
heterogeneous system: 62	
𝑁!: the number of serial segments; 63	
𝑁!: the number of parallel segments; 64	
𝑃!: the number of host processor cores; 65	
𝑃!: the number of APU cores; 66	
𝑡𝑐!: the execution time at the ith serial segment; 67	
𝐼𝐶!!: the instruction cycles of the ith serial segment; 68	
𝑡!: time of each synchronization overhead; 69	
𝑓!!"# : the maximum clock frequency of a host processor core in 70	

an active state; 71	
𝑓!!"# : the maximum clock frequency of an APU core in an 72	

active state; 73	
𝑉!!"# : the maximum voltage of a host processor core; 74	
𝑉!!"# : the maximum voltage of an APU core; 75	
𝑃!"#(𝑓): the dynamic power consumption when the frequency of 76	

the processor is f; 77	
𝑃!"#": the static power consumption of a processor core in the 78	

shutdown state; 79	
𝐸!"#: the energy overhead of each re-synchronization step; 80	
𝑡𝐺!,!: the execution time of the mth processor at the jth serial 81	

segment; 82	
𝑡𝐺!: the longest execution time of P processors at the jth parallel 83	

segment; 84	
𝐼𝐶!,!! :: (profiling data) the instruction cycles of the mth processor at 85	

the jth parallel segment; 86	
𝐸!: the energy consumption of a serial segment; 87	
𝐸!: the energy consumption of parallel segment; 88	
𝐸!"!#$: the total energy consumption before optimization; 89	
𝐸!"#: the total energy consumption after optimization; 90	
𝑡!"#(𝑉!!!,!,𝑉!,!): the time overhead due to switching voltage 91	

from 𝑉!!!,! to 𝑉!,!; 92	
𝑓!,!: the optimal clock frequency of the mth processor at the jth 93	

parallel segment; 94	
𝑉!,!: the optimal voltage of the mth processor at the jth parallel 95	

segment; 96	
𝐸!"#(𝑉!!!,!,𝑉!,!): the energy overhead when switching the voltage 97	

from 𝑉!!!,! to 𝑉!,!. 98	

4. Analysis of the EOPP model for a 1	
heterogeneous system 2	

4.1 The total energy consumed by parallel programs 3	
that are not optimized 4	

Complementary metal-oxide semiconductor (CMOS) 5	
transistors are the basic devices that make up a computer. The 6	
power consumption of a CMOS is mainly comprised of dynamic 7	
and static components and the dynamic component 𝑃!"# arises 8	
due to the changes in state of the CMOS as it performs work. 9	
Thus, we can write: 10	

𝑃!"# = 𝛼𝐶𝑉!𝑓, (1) 11	
where 𝛼, and refer to is the switching activity factor (in the 12	

range of 0–1), 𝐶 the switching capacitance, 𝑉 the supply 13	
voltage, and f the clock frequency. The static component arises 14	
due to leakage currents in the idle state and can be estimated 15	
according to a certain proportion. 16	

According to basic physics, the energy consumed (E) can be 17	
found by integrating power consumption level with respect to 18	
time. A simple calculation can therefore be made by multiplying 19	
the average power consumption (P) by time (t): 20	

𝐸 = 𝑃𝑡. (2) 21	
The parallel program is assumed to consist of 𝑁! serial 22	

segments and 𝑁! parallel segments. Therefore, the total energy 23	
consumed by running the parallel program can be expressed as 24	
the sum of the energies consumed by the serial and parallel 25	
segments: 26	

𝐸!"!#$ = 𝐸! + 𝐸! . (3) 27	

If DVS is not conducted, all the processor cores (including the 28	
host processor and APU cores) operate at maximum 29	
voltage/frequency. Therefore, according to the hypotheses in 30	
Section 2.2 (the serial and parallel parts of the parallel program 31	
are separately completed by the host processor and APU, and the 32	
time and energy overheads caused by data transmission between 33	
the host processor and APU are ignored), the total energy 34	
consumed by all the processor cores due to the 𝑁! serial and 𝑁! 35	
parallel segments is given by: 36	

𝐸!"!#$ = (𝑃! ∙ 𝑡𝑐! ∙ 𝛼𝐶𝑉!!"#
!𝑓!!"#)

!!

!!!

+

((𝑃! ∙ 𝑡𝐺! ∙ 𝛼𝐶𝑉!!"#
!𝑓!!"#)!!

!!! . (4) 37	

4.2 Combining DVS and processor core shutdown 38	
The parallel parts of the program are to be subjected to energy 39	

optimization. On the one hand, 𝑃! − 1 host processors (which 40	
are not utilized in the execution of the serial segment) are shut 41	
down. On the other hand, it is hypothesized that the optimal 42	
voltage/frequency of the mth APU core during the execution of 43	
the j th parallel segment is 𝑉!,!, 𝑓!,! . Therefore, failing to 44	
consider the time and energy overheads caused by state 45	
switching, the ideal total energy consumed by the parallel 46	
program can be expressed as: 47	

𝐸!"# =48	
𝑡𝑐! ∙ 𝛼𝐶𝑉!!"#

!𝑓!!"# + 𝑃! − 1 ∙ 𝑡𝑐! ∙
!!
!!!49	

𝑃!"#" + 𝑡𝐺! ∙ 𝛼𝐶𝑉!,!!𝑓!,!
!!
!!!

!!
!!! . (5) 50	

It is further hypothesized that the ratio of the power consumed 51	
by a processor core in the inactive state to that in the active state 52	
is 𝜀 . When 𝑃! − 1 processor cores are shut down during the 53	
execution of the serial segment, the power consumed by the 54	
processor cores in the shutdown state is given by: 55	

𝑃!"#" = ε ∙ 𝛼𝐶𝑉!!"#
!𝑓!!"# . (6) 56	

For the sake of convenience, the frequency and voltage of the 57	
processor cores can be standardized. For a parallel segment of the 58	
program, it is hypothesized that the frequency of the APU core 59	
due to DVS is 𝑓!,! and the maximum allowable frequency is 60	
𝑓!"#. The standardized frequency is now given by 61	

𝑓!,!
′ = !!,!

!!"#
. 𝑚 = 1,⋯𝑃! , 𝑗 = 1,⋯ ,𝑁! . (7) 62	

In a similar way, it can be hypothesized that the voltage of a 63	
processor core due to DVS is 𝑉!,! and the maximum allowable 64	
voltage is 𝑉!"# so that a standardized voltage can be defined as 65	

𝑉!,!
′ = !!,!

!!"#
 (𝑚 = 1,⋯𝑃! , 𝑗 = 1,⋯ ,𝑁!.). (8) 66	

According to the relationship between supply voltage and clock 67	
frequency, it can be further seen that: 68	

𝑉 ‘′ = 𝑘! + 𝑘! ∙ 𝑓′. (9) 69	
Eq. (7) conforms to industrial standards, according to the 70	

literature [27]. By analyzing the technical indices available, it can 71	
be speculated that 𝑘! and 𝑘! should be offset to make them 0.3 72	
and 0.7, respectively. 73	

For the parallel segments of the program, ignoring the 74	
synchronous waiting and intercommunication between parallel 75	
parts, the voltage/frequency of each processor core can be scaled 76	
to different levels according to the different execution times. The 77	
longest execution time 𝑡𝐺! of the processor core can be 78	
standardized to 1 so that those of the other 𝑃! − 1 processor 79	
cores all satisfy 𝑡𝐺!,! ≤ 𝑡𝐺!. According to the various different 80	
execution times, 𝑡𝐺!,!, the frequency of the mth coprocessor core 81	
is therefore scaled by 𝑓!,!′. By doing so, the following formula 82	
can be obtained. where: 83	

𝑓!,!
′ = !"!,!

!"!
. (10) 84	

The two parameters 𝑡𝐺!,! and 𝑡𝐺! in Eq. (10) can be 85	
measured using a performance test tool (data profiling) and, 86	
based on Eq.(9), the following formula can be acquired: 87	

𝑉!,!
′ = 𝑘! + 𝑘! ∙ 𝑓!,!

′. (11) 88	

4.3 Re-synchronization and voltage switching 89	
overheads 90	

Each DVS operation can cause additional time and energy 91	
overheads due to voltage switching. Therefore, the total energy 92	
consumed by the parallel program needs to have the overheads 93	
caused by re-synchronization and voltage switching to be 94	
separately taken into account. 95	

(1) Energy overhead caused by re-synchronization 96	
During the execution of the parallel program, it is necessary to 97	

re-activate the processor cores in a dormant state to put them 98	
back into the working state. This occurs when the execution 99	
process in a serial segment has completed and we return to the 100	
next parallel segment. In this context, the whole system exhibits 101	
re-synchronization overheads in terms of time and energy. Time 102	
overheads induced by re-synchronization can be avoided, 103	
however, by using a pre-activation strategy [28]. Pre-activation 104	

refers to when a processor core in a shutdown state is activated in 1	
advance before reutilization is required so that the processor core 2	
is in an active state when it is needed. This can obviously avoid 3	

any time overhead. The ideal pre-activation strategy is shown in 4	
Fig.2. 5	

... ...

Performance	loss

...

Active	state

Idle	state

Close	state
Synchronization	state

P1

P2
P3

P6

P1

P2
P3

P6

P1

P2
P3

P6

 6	
(a) (b) (c) 7	

Fig.2. The ideal pre-activation strategy showing: (a) the initial state, (b) re-synchronization overhead caused by processor core-shutdown, and (c) 8	
pre-activation to eliminate the synchronization overhead9	

The pre-activation strategy can remove the time delay but fails 10	
to avoid an energy overhead caused by re-synchronization. One 11	
purpose of this study is to take re-synchronization overheads into 12	
account when calculating the total energy overhead of the 13	
parallel program. To that end, the total energy overhead is 14	
written in the form: 15	
𝐸!"#

! = 𝑡𝑐! ∙ 𝛼𝐶𝑉!!"#
!𝑓!!"# + 𝑃! − 1 ((𝑡𝑐! − 𝑡!) ∙ 𝑃!"#" +

!!
!!!16	
𝐸!"# + 𝑡𝐺! ∙ 𝛼𝐶𝑉!,!!𝑓!,!

′!!
!!!

!!
!!! (12) 17	

(2) Energy overhead caused by voltage switching 18	
During the execution of the parallel program, each DVS step 19	

can incur a voltage switching overhead in time and energy. In 20	
this case, the time overhead can once again be avoided by, this 21	
time, using a method of pre-switching. In the CPU–GPU 22	
heterogeneous system, the parallel parts of the parallel program 23	
are completed using APUs and, therefore, DVS is generally 24	

aimed at processes going on in the APU cores. According to the 25	
various loads on each APU core, the voltages/frequencies are 26	
rescaled to ensure the different parallel parts are completed in 27	
the same amount of time, thus eliminating any null cycles. 28	

Fig.3 shows the strategy used to avoid time overheads using 29	
DVS. Fig.3(a) shows the load conditions when each processor core 30	
operates at its maximum voltage/frequency and DVS running 31	
consumes certain time. If the optimal voltage/frequency is 32	
calculated based only on the different loads, a time delay is 33	
accumulated once the paralleled intervals are increased which 34	
causes performance loss, as shown in Fig.3(b). In order to avoid a 35	
time delay, the time overhead in this part is subtracted when 36	
calculating the voltage/frequency of each processor core, as shown 37	
in Fig.3(c). 38	

...

P1

P2
P3

P6

...

P1

P2
P3

P6

Performance	loss

...

P1

P2
P3

P6

Active	state
Idle	state
Frequency	reduction
Improved	freuqency	
reduciton
State	switching	
overhead

 39	
(a) (b) (c) 40	

Fig.3. Diagram to illustrate DVS overheads: (a) without conducting DVS, (b) carrying out DVS after considering the voltage switching overhead, and (c) 41	
carrying out DVS to avoid performance loss. 42	

As a result of rescaling, the frequency of the APU core can be 43	
expressed in the form: 44	

𝑓!,!
′′ = !"!,!

!"!!!!"#(!!!!,!!!!,!)
∙ 𝑓!!"# （13） 45	

It has been shown that the time and energy overheads caused 46	
by voltage switching can be expressed via the relationships [29]: 47	

𝒕𝒔𝒘𝒊 𝑽𝒋!𝟏,𝒎 ,𝑽𝒋,𝒎 = 𝟐𝑪

𝑰𝒎𝒂𝒙
𝑽𝒋!𝟏,𝒎 − 𝑽𝒋,𝒎 , 𝒋 = 𝟐,⋯ ,𝑵𝑮（14） 48	

𝐸!"# 𝑉!!!,!,𝑉!,! = 1 − 𝑢 ∙ 𝐶 ∙ 𝑉!!!,!! − 𝑉!,!! , （15） 49	
where 𝐶 , and refer to is the capacitance, 𝑢 the energy 50	
effectiveness factor of the voltage regulator, and 𝐼!"# the 51	
maximum allowable current. Substituting Eq. (14) into Eq. (13) 52	
allows us to acquire the optimal frequencies to which each 53	
processor core needs to be scaled to using Eqs.(7)–(9):𝑓!,!′′ =54	

𝑡𝐺𝑗,𝑚∙𝑓𝐺𝑚𝑎𝑥
𝑡𝐺𝑗−

2𝐶∙𝑘2∙𝑉𝐺𝑚𝑎𝑥
𝐼𝑚𝑎𝑥∙𝑓𝐺𝑚𝑎𝑥

𝑓𝑗−1,𝑚−𝑓𝑗,𝑚
. 55	

Considering the re-synchronization overhead part of the total 56	
energy overhead of the parallel program, the total energy 57	
overhead can be calculated using: 58	

𝐸!"#! = 𝑡𝑐! ∙ 𝛼𝐶𝑉!!"#
!𝑓!!"# + 𝑃! − 1 ((𝑡𝑐! − 𝑡!) ∙ 𝑃!"#" + 𝐸!"#

!!

!!!

+ 𝑡𝐺! ∙ 𝛼𝐶𝑉!,!!𝑓!,!
!!!!

!!!
!!
!!! + 1 − 𝑢 ∙ 𝐶 ∙ 𝑉!,!! − 𝑉!!!,!!!!

!!!
!!!!
!!! .59	

（16） 60	
（3）Energy overheads due to operations in critical sections 61	
In the process of parallelizing programs, the need to share data 62	

between parallel segments becomes inevitable. In order to 63	
guarantee the consistency of the data, operations involving 64	
shared data need to be performed in a critical section. The effect 65	

of using critical sections on the power consumption of the 1	
program must therefore be accounted for. 2	

It is hypothesized that the parallel parts need to undergo 3	
parallel processing using jth class processor in which the task 4	
load, operating proportion, and probability of conflict in the 5	
critical section are 𝑆!, 𝜎, and 𝑐, respectively. The number of the 6	
jth class processor 𝑟! is recorded as 𝑁! and 𝑁!!!∈! . 7	

The work in this section is based on certain hypotheses 8	
appearing in the literature [30]. In particular, it is hypothesized 9	
that the probability that a critical section occurs within a thread 10	
conforms to a uniform distribution and that the probabilities for 11	
different threads are completely independent. The number of 12	
threads with competitive critical sections per unit time follows a 13	
binomial distribution. According to conflict models established in 14	
the literature [24], the time a processor takes to execute a critical 15	
section is composed of the time taken for execution of the local 16	
critical section and the waiting time in the critical section. The 17	
waiting time is proportional to the execution time, execution 18	
probability, and conflict probabilities of the critical sections of the 19	
other processors. Therefore, the execution time in the critical 20	
section of the jth class processor can be expressed as: 21	

𝑡!,! =
!!!

!!,!!!!!
+ 𝑁! − 1

!!!
!!,!!!!!

+ 𝑁!!!∈!! !!

!!!
!!,!!!!!

𝜎𝑐. (17) 22	

The second item in Eq.(17) represents the average waiting 23	
time of the jth class processor. Considering that the contribution 24	
made by 𝜎!𝑆!𝑐 𝑓!,!𝑣!𝑁! to 𝑡𝐺!,! is small, the execution time of 25	
the critical sections of the jth class processor can be approximated 26	
as: 27	

𝑡!,! =
!!!

!!,!!!!!
+ !!!!!

!!,!!!!!∈! . （18） 28	

When we include the overheads in the critical section, the 29	
execution time of the jth class processor is therefore given by the 30	
expression: 31	

𝑡𝐺!,! =
(!!!)!!
!!,!!!!!

+
!!!

!!,!!!!!
+ !!!!!

!!,!!!!!∈! =
!!

!!,!!!!!
+32	

!!
!!,!!!!!∈! 𝜎!𝑐. （19） 33	

Now, ∀𝑟! , 𝑟! ∈ 𝑅, 𝑡𝐺!,! = 𝑡𝐺!,! . Therefore, 𝑆! 𝑆! =; Owing 34	
to𝑓!,!𝑣!𝑁! 𝑓!,!𝑣!𝑁!. As 𝑆! = 𝑆!!∈! , it can be seen that 𝑆! =. 35	
Thus𝑓!,!𝑣!𝑁! 𝑓!,!𝑣!𝑁!!!∈! , so that, 36	
𝑡𝐺!,! =

!!
!!,!!!!!

+ !!
!!,!!!!!∈! 𝜎!𝑐 = !!!!!"

!!,!!!!!!!∈!
𝑆.（20） 37	

Therefore, according to Eq. (10), it can be seen that: 38	
𝑓!,!

′′′ = 𝑓!,! 1 + 𝜎!𝑐𝑛 . (21) 39	

Based on the foregoing analysis, the following conclusion can 40	
be drawn. For a given program, the operations in the critical 41	
section cause a fractional increase in the operating frequency of a 42	

processor of 𝜎!𝑐𝑛 (compared to the situation in which critical 43	
sections are not used). This further increases the total energy 44	
overhead of the program. 45	

5. Experiments and analysis 46	

5.1 Experimental platform 47	
A heterogeneous system consisting of an Intel Core i7 920 48	

quad-core CPU and AMD 4870 GPU was used to form an 49	
experimental platform for testing purposes. In the system, the 50	
CPU and GPU have their own separate independent memory 51	
spaces and are connected via the PCI-E bus to realize data 52	
communication. 53	

 The theoretical analysis of the energy consumption model 54	
proposed in this study suffers from certain limitations. More 55	
precisely, it fails to accurately describe some of the uncertain 56	
behavior of the processors during the execution process and to 57	
simulate the energy consumed in each part. In practical CPU–58	
GPU heterogeneous systems, the GPU does not provide perfect 59	
support for dynamic scaling of the voltage/frequency (i.e. a few 60	
frequency tuning ranges are used). This is disadvantageous when 61	
it comes to conducting theoretical research and verifying the 62	
behavior of the EOPP model under the combined effect of DVS 63	
and processor core-shutdown. Therefore, we employ a GPU 64	
power simulator, GPGPUSim, to facilitate experimental 65	
verification. 66	

GPGPUSim, however, fails to operate in a GPU environment 67	
and therefore we made modifications based on GPGPUSim for 68	
this study. A simple simulator was established in the application 69	
layer (CPU end of CUDA program) to simulate the simultaneous 70	
execution of multi-GPUs by practice driving. In addition, 71	
GPGPUSim configures the CPU by reading configuration files 72	
during operation. Therefore, the multi-GPU environment of the 73	
heterogeneous system can be simulated by dynamically 74	
modifying the configuration files of the program. 75	

The GPU power simulator used in this study was developed 76	
using the Wattch power model (based on GPGPUSim). To 77	
favorably realize scaleable dynamic voltages, the following 78	
modifications were made to the simulator: 79	

(1) The frequency of each processor core is independently 80	
scaled by changing the latency of all the functional parts in the 81	
processor cores to scale the clock frequency of each core. 82	

(2) The voltage is updated according to the scaled clock 83	
frequency. 84	

(3) The power consumption of each functional part in the 85	
Wattch model is updated based on the new clock frequency and 86	
voltage. 87	

(4) When the voltage state switches, the voltage switching 88	
overhead in time and energy are calculated according to Eqs. (14) 89	
and (15). 90	

Table 1 Parameters of the processors used in the test platform 91	
 Intel Core i7 920 CPU AMD 4870 GPU-H/GPU-L

Processor frequency (GHz) 2.67, 2.4, 2.0, 1.6 0.75, 0.65, 0.55

Memory frequency (GHz) 1.33 (DDR3) 0.9/0.7/0.5 (GDDR5)

Cache L1: I 32 KB, D 32 KB;
L2: 256 KB; L3: 8 MB –

Memory (GB) 8 1

 1	

5.2 Test cases 2	
A great deal of attention has been paid in the scientific 3	

computing field to multiplying a vector by a sparse matrix using 4	
parallel computing. For this study, we chose four sparse matrices 5	
from the Harwell11 sparse matrix set [31-32] and used them as 6	
test cases to verify the results from the EOPP model. Table 2 7	
displays details of the sparse matrices chosen. 8	

Table 2. Details of the test cases used.
Application name Scale Description

Matrix 1 1030 21*21*5 irregular grid

Matrix 2 886 21*21*5 irregular grid

Matrix 3 1080 35*11*13 grid

Matrix 4 5005 16*23*3 grid

5.3 Compiler implementation 9	
To unify the programming models of the CPU and GPU and 10	

simplify the migration of existed applications to CPU-GPU 11	
heterogeneous systems, we have extended four GPU oriented 12	
instruction commands based on the OpenMP language [33]. The 13	
commands are used to instruct the compiler to convert the 14	
OpenMP code executed on the original CPU to Brook+ code 15	
executed on the GPU. At the same time, a source-to-source 16	
compiler called MPtoStream is designed and implemented based 17	
on the GCC compiler. It can complete the aforementioned code 18	
conversion process. Fig.4 shows the MPtoStream complier 19	
framework. Firstly, the expanded OpenMP program is analysed 20	
by the Parser module, and the intermediate syntax tree is 21	
generated. Then, the OpenMP program is converted through a 22	
series of syntax trees to generate the intermediate syntax tree 23	
structure for the Brook+ language. Finally, the reverse output 24	
process is called to generate the OpenMP codes which are 25	
executed on CPU processor and Brook+ codes which are executed 26	
(separately) on a GPU processor. Based on this MPtoSteam 27	
framework, we expand the parallel loop scheduling module of 28	
sparse matrix vector multiplication (SpMV) for CPU-GPU 29	
heterogeneous system, as shown in the grey boxes in Fig. 4. 30	

 31	

5.4 Code example 32	
Fig. 5 shows that an example of parallel loop scheduling code. 33	

This program implements a sparse matrix vector multiplication 34	
algorithm (SPMV). The outermost layer loop index variable i 35	
represents the line number of the matrix, and the inlayer loop is 36	
calculated only for non-zero elements. N(i) indicates the number 37	
of non-zero elements in line i. It can be seen that the outermost 38	
layer loop is composed of TotalLine iterations. In this paper, the 39	
whole procedure is divided into one serial segment and two 40	
consecutive parallel program segments. The serial segment was 41	
mainly used to execute initialisation of the program (processed by 42	
the CPU). The parallel program segment was divided the sparse 43	
matrix into even two parts according to the row number, which 44	
were separately executed using two segments (processed by the 45	
GPU). 46	

Expanded	OpenMP	
program

Parser

Syntax	analysis	and	variables	
/Quotes/Parameter	list	conversion

Parallel	loop	scheduling	of	SPMV	algorithm

OpenMP	code	
generation

Brook+	code	
generation

OpenMP	Code Brook+Code

Insert	the	Profile	code

Obtain	the	operational	parameter

Calculate	the	optimal	voltage	and	
frequency	for	each	program	

segment

 47	
Fig. 4 MPtoStream compilation framework 48	

The first loop iteration algebra on GPU is Ngpu. Therefore, the 49	
iterative subset (1,Ngpu), (Ngpu+1,TotalLine) is allocated to the 50	
GPU as the two continuous parallel program segments, and the 51	
rest of the programs are allocated to the GPU. As shown in Fig. 5, 52	
in the left upper dashed box, the expanded compile command 53	
identity maps the parallel segment to GPU for execution. The 54	
right-hand dashed box is the CPU code that has been converted. 55	
Firstly, the GPU data flow space is declared, and the data loading 56	
process is completed. Then the iteration space which mapped on 57	
the GPU is formulated (through the spmv_kernel program 58	
implementation). Finally, the computing process is executed on 59	

the GPU. The kernel calculation process is completed on the 1	
GPU, and the output results are stored in the CPU storage space. 2	
This procedure accomplishes the parallel loop partitioning 3	
process of CPU-GPU heterogeneous parallel systems. 4	

 5	
 6	

//Extended	OpenMP
Directives
Do	i=1,TotalLine
				Do	j=1,	N(i)
				non-zero	elements
				product
			End	do
End	do

GPU CPU

Ngpu

(0,0)

The	first	
parallel	section

The	second	
parallel	section Serial	segment	

Transformed
//Insert	Frequency	scaling	code
//Load	Input	Data	to	GPU	Space
Astream.Read(A);
//Set	Kernel	Execution	Domain
KerName.spmv_kernel1(uint2(0,Ngpu));
KerName.spmv_kernel2(uint2(Ngpu,TotalLine));
//Call	GPU	Kernel
KerName(Astream,	Bstream,Cstream);
//Write	Output	Data	Computed	by	GPU	to	CPU	Space
Cstream.domain(int2(0,total)).write(C)

CPU	code

TotalLine-Ngpu

	7	

Fig. 5CPU-GPU SpMV parallel loop scheduling code example 8	

 9	

5.5 Experimental analysis 10	
(1) Analysis of the EOPP simulation results 11	
The analysis process can be divided into three stages: profiling, 12	

voltage/frequency scaling, and optimization. In the profiling 13	
stage, the parameters needed to allow the subsequent 14	
calculations (of the optimal voltages/frequencies) to be executed 15	
are acquired for each program segment according to the formulae 16	
derived for the model. During the voltage/frequency scaling stage, 17	
compiler directive commands are inserted into the source code at 18	
the appropriate locations to realize voltage scaling. In the 19	
optimization stage, during transition from a parallel stage to the 20	
next parallel node, the same voltage is allocated to the same 21	
processor core, as far as possible, in order to avoid unnecessary 22	
overheads. For example, if the frequency of processor k is 23	

𝑓!,! during the jth parallel segment, then the frequency of the 24	
processor also takes the value 𝑓!,! when we transit to the next 25	
adjacent parallel segment. In this context, the processor k is 26	
firstly selected. 27	

The test cases were simulated using the GPGPUSim simulator 28	
to acquire the relevant parameters needed for the analysis and, 29	
finally, to obtain the resulting amounts of energy saved. In each 30	
of the four test cases, the parallel program was divided into a 31	
serial program segment and two continuous parallel segments. 32	
The serial segment was mainly used to execute initialization of 33	
the program (processed by the CPU). Each parallel program 34	
segment was composed of two parts, which were separately 35	
executed using two parallel segments. Table 3 shows the profile 36	
data measured for the serial and parallel segments. 37	

Table 3. Profile data showing the number of execution cycles in each serial and parallel
segment.

Test case

Execution
cycles in

each serial

program

Execution cycles in the first/second parallel segment

 P1 P2 P3 P4 P5 P6

1 75620 531381/
521680

531743/
531916

540119/
540320

531736/
531993

531295/
531531

539931
/539572

2 90160 393208/
393354

393557/
393492

400844/
400983

393620/
393688

393480/
393688

400383/
401101

3 72590 580267/
583660

588839/
592460

580181/
583581

588839/
592078

580181/
583140

588839/
591924

4 72600 12502099/
12546222

12543121/
12547473

12544017/
12508724

12544815/
12548586

12547937/
12547808

12511428/
12549846

Table 4. The optimal scaled voltages and frequencies in each parallel segment.

Test case Parallel
segment

Optimal voltage/frequency (V/MHz).

P1 P2 P3 P4 P5 P6

1
1 2.0268/

753.82
2.0277/
754.49

2.0500/
770

2.0277/
754.48

2.0495/
769.65

2.0270/
753.66

2 2.02271/
754.02

2.0277/
754.45

2.0500/
770

2.0279/
754.59

2.0267/
753.74

2.0481/
768.63

2
1 2.0227/

750.95
2.0239/
751.82

2.0500/
770

2.0240/
751.98

2.0236/
751.63

2.0481/
768.85

2 2.0223/
750.70

2.0229/
751.08

2.0496/
769.73

2.0235/
751.35

2.0234/
751.53

2.0501/
770

3
1 2.0290/

755.33
2.0498/
769.89

2.0287/
755.19

2.0498/
769.89

2.0287/
755.19

2.0498/
769.88

2 2.0288/
755.24

2.0500/
770

2.0286/
755.11

2.0492/
769.40

2.0276/
754.40

2.0489/
769.10

4
1 2.0466/

769.26
2.0493/
769.45

2.0492/
769.78

2.0495/
769.34

2.0499/
769.90

2.0457/
767.23

2 2.0496/
769.53

2.0567/
769.65

2.0451/
766.55

2.0495/
769.82

2.0496/
769.72

2.0497/
769.86

 1	

The voltage/frequency scaling results were then obtained 2	
according to the method given in the analysis for setting the 3	
optimal voltage (Table 4). These values were then used together 4	
with the energy calculation formulae, Eqs. (4) and (16), to 5	
calculate the energy used before and after the optimization 6	
process. Thus, the resulting energy saving can be obtained taking 7	
into account the energy overheads caused by re-synchronization, 8	
voltage switching, and use of critical sections. 9	

Fig. 6 shows the energies consumed in the serial and parallel 10	
segments, as well as the total energy consumed, in the four test 11	
cases (before and after optimization). The energy savings are also 12	
shown (as percentages). It can be seen from the results that the 13	
total energy saving was as large as 10.5%. Also, the energy saved 14	
in the serial segments was significantly larger than that saved in 15	
the parallel segments. The main reason for this is that the 16	
processor cores that were not being utilized were shut down 17	
when the programs entered the serial segment which greatly 18	
reduces energy consumption. Moreover, the results obtained can 19	
be related to the degree of parallelization and parallel 20	
programming loads in the test cases. 21	

(2) Analysis of the EOPP real results 22	

The theoretical analysis of the energy consumption model 23	
proposed in this study suffers from certain limitations. More 24	
precisely, it fails to describe some of the uncertain behaviours of 25	
the processors during the execution process and to simulate the 26	
energy consumed in each part. In this section, the energy 27	
optimization methods of parallel programs are implemented 28	
under the real heterogeneous system platform, so, we can obtain 29	
more realistic energy optimization results. 30	

The test platform in this study is a system composed of an 31	
Intel Core I7 920 Quad-Core CPU and two AMD 4870 GPUs. To 32	
examine the efficiency of the algorithms proposed on this system, 33	
the frequency of the storage of one GPU kernel is adjusted from 34	
900 MHz to 700 MHz so as to obtain two different GPU kernels 35	
with different performances. Thereinto, the kernel with the 36	
higher performance is recorded as GPU-H, while that with the 37	
lower performance is designated GPU-L. The specific parameters 38	
for this test platform are listed in Table 1. 39	

The voltage/frequency information supported by the 40	
processor is obtained. The current mainstream CPU processor 41	
supports DVS technology, such as Intel’s SpeedStep [34], AMD’s 42	
PowerPlay [35] and other power management technologies. In 43	

addition, the power management modules for the specific 1	
processor are integrated in the operating system (OS). The OS in 2	
this study is OpenSUSE v10.3. The operating frequency 3	
information supported by CPU can be obtained through the 4	
ACPI [36] interface provided by the system, and the operating 5	
frequency can be dynamically adjusted. The controlled power 6	
method of the GPU is also gradually improved. AMD provides an 7	
ADL library (AMD Display Library)[37], which can dynamically 8	
access and modify the operating voltage and frequency of GPU 9	
through the ADL_Overdrive5_ODPerformanceLevels_Get and 10	
ADL_Overdrive5_ODPerfromanceLevels_Set interfaces. 11	

The power consumption of the system is measured by the 12	
external HIOKI 3344 power tester, and the power consumption is 13	
read through the RS-232 serial port mechanism. The 14	
measurement error of the instrument is within the ± 1 digit 15	
range of the measured value. 16	

It is difficult to measure the energy consumption of the serial 17	
segment and parallel segment separately in real heterogeneous 18	
systems. Therefore, this article only compares the total energy 19	
consumption of the system before and after the optimization; and 20	
presents the statistics pertaining to the total energy consumption 21	
savings, as shown in Fig.7. During the execution of parallel 22	
programs, the voltage and frequency of the CPU and GPU are set 23	
to the maximum value (2.0 V/2.67 GHz; 2.0 V/750 MHz) in the 24	
initial case. After entering the parallel section, the voltage and 25	
frequency of the GPU are adjusted respectively (750 MHz, 650 26	
MHz, 550 MHz). The experiment results show that using 27	
processor core shut-down and DVS technologies can reduce the 28	
energy consumption of parallel programs effectively, and the 29	
maximum energy saving can reach about 7.2%. The error rate in 30	
the energy saving and simulation energy saving is within ± 5%. 31	

(3) The effect of critical sections on energy consumption 32	
In order to suitably test the influence of critical sections on the 33	

frequency and consumption of energy using parallel programs, 34	
we carried out an investigation and analysis using typical 35	
parallel programming cases (Fig. 8). 36	

As can be seen from the figure, the parallel segment of the 37	
parallel program consists of a completely-paralleled parallel 38	
segment and a critical section. The operating proportion of the 39	
critical section, 𝜎 of critical section is, was scaled without 40	
changing the computing amount in the parallel segment and the 41	
results used to estimate the effect of the critical section operations 42	
on the energy optimization of the parallel segments. Once again, 43	
the Intel Core i7 920 quad-core CPU was used as the 44	
experimental platform and the program compiled using gfortran 45	
(v4.2.1). 46	

(a) Power overhead when the critical section is in a waiting 47	
state 48	

In order to avoid overheads caused by other operations, the 49	
parallel segments are formed under the operation of a critical 50	
section (𝜎 = 1) and therefore only one processor executes the 51	
effective calculation at any time. By modifying the environmental 52	
variable OMP_NUM_THREADS, the number of threads used in 53	
the concurrent execution can be adjusted. 54	

Fig. 9 shows the change in the dynamic power overhead of the 55	
processor as the thread number changes. As can be seen from the 56	
figure, the total dynamic power consumed by the processor varies 57	
insignificantly. This implies that the processor does not cause a 58	
significant power overhead in the waiting state. 59	

(b) Relationship between σ and optimal frequency 60	

By adjusting the operating proportion of the critical section, σ, 61	
used in the test cases, we can detect the subsequent changes that 62	
occur in the frequency of the processor. The execution time when 63	
the processor operates in a non-critical state (𝜎 = 0) using the 64	
lowest operating frequency is taken as the time constraint. In this 65	
work, we make a comparison of three different frequency values: 66	
(i) the ‘theoretical’ value (i.e. the frequency of the processor 67	
obtained using the analysis model), (ii) the ‘physical’ value (i.e. 68	
the actual frequency used by the processor in practice — 69	
corresponding to the lowest discrete operating frequency of the 70	
processor above the theoretical frequency), and (iii) the ‘optimal’ 71	
value (i.e. the ideal frequency according to the relationship 72	
between frequency and execution time under a discrete frequency 73	
value). 74	

As shown in Fig. 10, the optimal frequency of the processor 75	
gradually rises with increasing σ value. When σ reaches 50%, the 76	
theoretical frequency exceeds the highest frequency allowed by 77	
the processor and therefore the physical value cannot be 78	
displayed. 79	

(c) Reducing energy consumption by reducing conflict 80	
probability 81	

The above analysis has shown that, compared to not using 82	
critical sections, the operating frequency of the processor is 83	
1 + 𝜎!𝑐𝑛 times that of the original frequency (under the 84	

constraint that the execution time is the same). In this context, 85	
the effective computing time (eliminating the waiting time of the 86	
critical section) is 1 + 𝜎!𝑐𝑛 !! that of the original time. 87	
Therefore, it can be seen that decreasing the conflict probability 88	
of the critical section (c) can effectively reduce the energy 89	
overhead, assuming 𝜎 is constant. For this study, we partitioned 90	
the critical section of the test program into two critical sections 91	
that can be executed concurrently using different processors. In 92	
this case, the conflict probability of the critical section can fall to 93	
about 50% which further saves energy by allowing the operating 94	
frequency of the processor to be decreased. Fig. 11 displays the 95	
energy optimization results obtained (all results are normalized 96	
values compared to the initial amount of energy consumed). The 97	
figure shows that reducing the conflict probability provides space 98	
for optimization to be made. This allows the frequency of the 99	
processor to be lowered which subsequently reduces the energy 100	
overhead of the system. 101	

(3) Scalability of the solution 102	
A new energy optimization of parallel programs (EOPP) model 103	

is proposed in this paper and its use can be extended to 104	
large-scale heterogeneous systems with multiple processing 105	
units, eg, data center [38-40]. At present, we have applied our 106	
theoretical results to the Tianhe-2A supercomputer. Based on the 107	
system load, energy consumption distribution, and hardware 108	
features, a power optimization management system is designed. 109	
The system architecture is composed of three layers (Fig.12), 110	
which are: the energy consumption decision layer, the perception 111	
control layer, and the hardware platform layer, respectively. The 112	
energy consumption decision layer is composed of six parts: a 113	
monitoring module, a job management module, a resource 114	
management module, a low-power compiling module, a 115	
peripheral device control module, and a power management 116	
interface module. 117	

 1	

matrix1 matrix2 matirx3 matrix4
0.0044

0.0046

0.0048

0.0050

0.0052

0.0054

0.0056

	B efore	O pt	S eri	S ec 	E nergy

E
ne

rg
y(
J)

(a)	S eria l	s ec tion	energy	cons umption	before	optim ization

matrix1 matrix2 matirx3 matrix4
-1.0

-0.5

0.0

0.5

1.0

1.5

2.0
	B efore	O pt	P ara 	S ec 	E nergy

E
ne

rg
y(
J)

(b)	P arallel	s ection	energy	consumption	before	optimization

matrix1 matrix2 matirx3 matrix4
-1.0

-0.5

0.0

0.5

1.0

1.5

2.0
	B efore	O pt		T ota l	E nergy

E
ne

rg
y(
J)

(c)T otal	energy	consumption	before	optimization

matrix1 matrix2 matirx3 matrix4

0.00100

0.00105

0.00110

0.00115

0.00120

0.00125

0.00130
	A fter	O pt	S eri	S ec 	E nergy

E
ne

rg
y(
J)

(d)S erial	s ection	energy	consumption	afteroptimization

matrix1 matrix2 matirx3 matrix4
-1.0

-0.5

0.0

0.5

1.0

1.5

2.0
	A fter	O pt	P ara 	S ec 	E nergy

E
ne

rg
y(
J)

(e)	P arallel	s ection	energy	consumption	after	optimization

matrix1 matrix2 matirx3 matrix4
-1.0

-0.5

0.0

0.5

1.0

1.5

2.0
	A fter	O pt	T ota l	E nergy

E
ne

rg
y(
J)

(f)T otal	energy	consumption	after	optimization

matrix1 matrix2 matirx3 matrix4
75.0%

75.5%

76.0%

76.5%

77.0%

77.5%

78.0%
	S eri	S ec 	E nergy	S aving

S
er
i	S

ec
	E

ne
rg
y	
S
av

in
g

(g)	S erial	s ection	energy	consumption	s aving

matrix1 matrix2 matirx3 matrix4

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0% 	P ara 	S ec 	E nergy	S aving

P
ar
a	
S
ec

	E
ne

rg
y	
S
av

in
g

(h)	S erial	s ection	energy	consumption	s aving

matrix1 matrix2 matirx3 matrix4

0%

2%

4%

6%

8%

10%

12%
	T ota l	E nergy	S aving

T
ot
al
	E

ne
rg
y	
S
av

in
g

(i)	T otal	energy	consumption	s aving 2	

Fig. 6. The energy savings gained using the optimization process. 3	

matrix1 matrix2 matrix3 matrix4
-1.0

-0.5

0.0

0.5

1.0

1.5

2.0 	B efore	Opt	T ota l	E nergy

E
ne

rg
y(
J)

(a)	T ota l	energy	consumption	before	optimiz ation

matrix1 matrix2 matrix3 matrix4
-1.0

-0.5

0.0

0.5

1.0

1.5

2.0
	After	O pt	T ota l	E nergy

E
ne

rg
y(
J)

(b)	T ota l	energy	consumption	after	optimiz ation

matrix1 matrix2 matrix3 matrix4

0%

2%

4%

6%

8%

10%

12%

	E nergy	S aving£¨R eal	sys tem£©

E
ne

rg
y	
S
av

in
g£

¨R
ea

l	s
ys

te
m
£©

(c)	T ota l	energy	consumption	saving 4	

Fig. 7. Actual energy consumption optimization 5	

Initial input array A

!$omp parallel
 do i = 1, n

 //full parallel code

 update A
 //critical section

 !$omp critical
 update A

 !$omp end critical

 enddo
!$omp end parallel

Fig. 8. Code illustrating the synchronization tests carried out on the
critical sections.

 1	

1 2 3 4
12

14

16

18

20

E
ne

rg
y(
J)

T hread	number 2	
Fig. 9. The change in the power overhead with thread number. 3	

0% 10% 20% 30% 40% 50%
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

	P hys ica l	va lue
	T heoretica l	va lue
	Optimal	va lue

C ritica l	a rea 	frequency	ra tio	

P
ro
fe
ss

or
	fr
eq

ue
nc

y

0 .0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

 4	
Fig. 10. Relationship between the operating frequency of the processor and 5	

the operating proportion of the critical section. 6	

10% 20% 30% 40%
0%

2%

4%

6%

8%

10%

12%

2.0G H Z

2.0G H Z
E
ne

rg
y	
sa

vi
ng

	r
at
io

c ritica l	a rea 	frequency	ra tio

1.6G H Z

1.6G H Z

 7	
Fig. 11. Decreasing the energy consumption of the system by reducing the 8	

conflict probability of the critical section. 9	

System monitoring
module

Job management
module

Peripheral device
control module

Resource
management module

Power management
interface module

Low power
compiling module

System management controller (SMC)

node node node 搽搽 node

Energy
comsumption
decision layer

Perception
control layer

Hardware
platform layer

10	
	11	

Fig. 12 Power management system architecture 12	
The main function is to collect all data related to power 13	

consumption. The power optimization management system is 14	
integrated with monitoring, strategy making, power adjustment, 15	
and equipment control. It tries to reduce the whole system power 16	
while guaranteeing the performance, which is then combined 17	
with the methods of resource management, operation 18	

management, low-power consumption compilation, and dynamic 1	
voltage adjustment. 2	

6. Conclusions and future work 3	

This study presents an energy optimization model (EOPP) for 4	
a heterogeneous system. By jointly utilizing processor 5	
core-shutdown and DVS, the model can instruct parallel 6	
programs to conduct energy optimization taking into account the 7	
energy overheads caused by re-synchronization, voltage 8	
switching, and the operation of critical sections. 9	

Our experimental results show that the EOPP model is able to 10	
reduce the energy consumed by parallel programs, realizing a 11	
total energy saving of up to ~10.5%. Based on an experimental 12	
analysis of the effect of the operations in critical sections on 13	
energy consumption, it is speculated that increasing the 14	
proportion of the critical section causes a corresponding 15	
enhancement to be made to the optimal frequency of a processor. 16	
However, lowering the conflict probability of the critical section 17	
can provide optimization space which lowers the frequency of the 18	
processor and finally results in reduced energy overheads. 19	

Due to the parallel program exists the load imbalance and data 20	
dependency during the actual execution process， the modelling 21	
of energy optimization for parallel program becomes very 22	
complicated. In the future work, the characteristic of the program 23	
parallelization will be further investigated, and the 24	
corresponding energy analysis and optimization will be carried 25	
out. 26	
 27	
Acknowledgments 28	

This work was sponsored by National Natural Science 29	
Foundation of China (grant number 61672168, 61300029, 30	
61502110, 61672172, 61772143)， Guangzhou Major Science and 31	
Technology Projects (201604010096) 32	
 33	
References and links 34	

1. Geist A. Paving the Roadmap to Exascale. 35	
SciDACReview. 2010,16:52-59. 36	

2. Holmbacka S, Keller J, Eitschberger P, Lilius J. 37	
Accurate energy modelling for many-core static 38	
schedules. Euromicro International Conference on 39	
Parallel Distributed & Network-Based Processing, 40	
Turku, 2015:525-532 41	

3. Zhao Y, Li X, Ju L, Zong Z. Dependency-based 42	
energy-efficient scheduling for homogeneous muli-core 43	
clusters. IEEE International Conference on Trust, 44	
security and privacy in computing and 45	
communications. Melbourne, 2013:1299-1306. 46	

4. Amilifard B., Fallah F., Pedram M. Low-power fanout 47	
optimization use in multiple threshold voltage 48	
inverters.Proceedings of the international symposium 49	
on low power electronics and design. New York, NY, 50	
USA, 2015:95-98. 51	

5. Calhoun B H, Chandrakasan A. Characterizing and 52	
modeling minimum energy operation for subthreshold 53	
circuits. International Symposium on Low Power 54	
Electronics and Design. IEEE, 2004:90-95. 55	

6. Donno M, Ivaldi A, Benini L, et al. Clock-tree power 56	
optimization based on RTL clock-gating. Design 57	
Automation Conference. ACM, 2003:622-627. 58	

7. Wason V., Banerjee K. A probabilistic framework for 59	
power-optimal repeater insertion in global 60	
interconnects under parameter variations. Proceedings 61	
of the international symposium on Lowe power 62	
electronics and design. New York, NY, USA, 63	
2005:131-136. 64	

8. Kim N S, Blaauw D, Mudge T. Leakage Power 65	
Optimization Techniques for Ultra Deep Sub-Micron 66	
Multi-Level Caches. Ieee/acm International Conference 67	
on Computer-Aided Design. IEEE Computer Society, 68	
2003:627. 69	

9. Ananthan H, Kim C H, Roy K. Larger-than-Vdd 70	
Forward Body Bias in Sub-0.5V Nanoscale CMOS. 71	
International Symposium on Low Power Electronics 72	
and Design. IEEE, 2004:8-13. 73	

10. Powell M D, Schuchman E, Vijaykumar T N. Balancing 74	
Resource Utilization to Mitigate Power Density in 75	
Processor Pipelines. Ieee/acm International 76	
Symposium on Microarchitecture, 2005. Micro-38. 77	
Proceedings. IEEE, 2005:294-304. 78	

11. Jayaseelan R. Application-specific thermal 79	
management of computer systems. Singapore: National 80	
University of Singapore, 2009. 81	

12. Wang Z, Xu X, Xiong N, et al. Energy cost evaluation of 82	
parallel algorithms for multiprocessor systems. Cluster 83	
Computing, 2013, 16(1):77-90. 84	

13. Wang Z, Xiong N, Wang H, et al. Whole procedure 85	
heterogeneous multiprocessors low-power optimization 86	
at algorithm-level. Cluster Computing, 2018(1):1-17. 87	

14. Wang Z, Zhao W, Wang H, et al. Three-level 88	
performance optimization for heterogeneous systems 89	
based on software prefetching under power constraints. 90	
Future Generation Computer Systems, 2018, 86:51-58. 91	

15. Wang Z, Cheng L, Zhao W, et al. An architecture‐level 92	
graphics processing unit energy model. Concurrency & 93	
Computation Practice & Experience, 2016, 94	
28(10):2795-2810. 95	

16. Kadayif I, Kandemir M, Karakoy M. An energy saving 96	
strategy based on adaptive loop parallelization.Design 97	
Automation Conference. ACM, 2002:195-200. 98	

17. Kim H S, Vijaykrishnan N, Kandemir M, et al. 99	
Adapting instruction level parallelism for optimizing 100	
leakage in VLIW architectures. Acm Sigplan Notices, 101	
2003, 38(7):275-283. 102	

18. Hsu C H, Kremer U, Hsiao M. Compiler-directed 103	
dynamic voltage/frequency scheduling for energy 104	
reduction in microprocessors. Low Power Electronics 105	
and Design, International Symposium on. IEEE, 106	
2001:275-278. 107	

19. Kim N S, Flautner K, Blaauw D, et al. Circuit and 108	
microarchitectural techniques for reducing cache 109	
leakage power. IEEE Transactions on Very Large Scale 110	
Integration Systems, 2004, 12(2):167-184. 111	

20. Zhao R.C, Tang Z.M, Zhang Z.Q, et al. A multithreaded 112	
compiler optimization technology with low power. 113	
Journal of software, 2002, 13(1):1123-1129. 114	

21. Grochowski E, Ronen R, Shen J, et al. Best of both 115	
latency and throughput. Computer Design: VLSI in 116	

Computers and Processors, ICCD 2004. Proceedings. 1	
IEEE International Conference on. IEEE, 2	
2004:236-243. 3	

22. Kadayif I, Kandemir M, Sezer U. An integer linear 4	
programming based approach for parallelizing 5	
applications in On-chip multiprocessors. Design 6	
Automation Conference, 2002. Proceedings. IEEE, 7	
2002:703-708. 8	

23. Kadayif I, Kandemir M, Kolcu I. Exploiting Processor 9	
Workload Heterogeneity for Reducing Energy 10	
Consumption in Chip Multiprocessors. Conference on 11	
Design, Automation and Test in Europe. IEEE 12	
Computer Society, 2004:21158. 13	

24. Li N J, Martinez J F. Power-Performance Implications 14	
of Thread-level Parallelism on Chip Multiprocessors. 15	
IEEE International Symposium on PERFORMANCE 16	
Analysis of Systems and Software. IEEE Computer 17	
Society, 2005:124-134. 18	

25. Li J, Martinez J F. Dynamic power-performance 19	
adaptation of parallel computation on chip 20	
multiprocessors. In Proceedings of the International 21	
Symposium on High Performance Computer 22	
Architecture. 2006:77-87. 23	

26. Eyerman S, Eeckhout L. Modeling critical sections in 24	
Amdahl's law and its implications for multicore design. 25	
Acm Sigarch Computer Architecture News, 2010, 26	
38(3):362-370. 27	

27. Nowka K, Carpenter G, Donald E M, et al. A 0.9 V to 28	
1.95 V dynamic voltage-scalable and 29	
frequency-scalable 32 b PowerPC processor. 30	
Solid-State Circuits Conference, 2002. Digest of 31	
Technical Papers. ISSCC. IEEE International. 32	
2002(1):340-341. 33	

28. Delaluz V, Kandemir M, Vijaykrishnan N, et al. 34	
Energy-oriented compiler optimizations for partitioned 35	
memory architectures. International Conference on 36	
Compilers, Architecture, and Synthesis for Embedded 37	
Systems. ACM, 2000:138-147. 38	

29. Burd T D. Design issues for dynamic voltage scaling. In 39	
Proceedings of 2000 International Symposium on Low 40	
Power Electronics and Design, 2000:9-14. 41	

30. Stijn Eyerman, Lieven Eeckhout. Modeling critical 42	
sections in Amdahl's law and its implications for 43	
multicore design. International Symposium on 44	
Computer Architecture. ACM, 2010:362-370. 45	

31. Du I S, Grimes R G, Lewis J G, et al. User’s Guide for 46	
the Harwell-Boeing Sparse Matrix Collection. Tech. 47	
Report TR-PA-92-96. Toulouse Cedex, France, Oct 48	
1992. 49	

32. http://www.cise.ufl.edu/research/sparse/HBformat/HB/. 50	
33. Yang X J, Tang T, Wang G B, et al. MPtostream: an 51	

OpenMP compiler for CPU-GPU heterogeneous 52	
parallel systems. Science China(Information Sciences), 53	
2012, 55(9):1961-1971. 54	

34. Enhanced Intel SpeedStep Technology for the Intel 55	
Pentium M Processor, White Paper. March, 2004. 56	

35. Powerplay Technology. 57	
http://www.amd.com/us/products/technologies/ati-powe58	
r-play/Pages/ati-power-play.aspx. 59	

36. Advanced Configuration and Power Interface. 60	
http://www.acpi.info/ 61	

37. AMD Display Libray. 62	
http://developer.amd.com/GPU/ADLSDK/Pages/default63	
.aspx. 64	

38. Shuja J, Bilal K, Madani S A, et al. Survey of 65	
Techniques and Architectures for Designing 66	
Energy-Efficient Data Centers. IEEE Systems Journal, 67	
2016, 10(2):507-519. 68	

39. Shuja J, Gani A, Shamshirband S, et al. Sustainable 69	
Cloud Data Centers: A survey of enabling techniques 70	
and technologies. Renewable & Sustainable Energy 71	
Reviews, 2016, 62:195-214. 72	

40. Shuja J, Bilal K, Madani S A, et al. Data center energy 73	
efficient resource scheduling. Cluster Computing, 74	
2014, 17(4):1265-1277. 75	

