
remote sensing

Article

A Parallel FPGA Implementation of the CCSDS-123
Compression Algorithm

Milica Orlandić 1* , Johan Fjeldtvedt 1 and Tor Arne Johansen 2

1 Department of Electronic Systems, Norwegian University of Science and Technology,
7491 Trondheim, Norway; jaffe1@gmail.com

2 Centre for Autonomous Marine Operations and Systems (NTNU-AMOS),
Department of Engineering Cybernetics, Norwegian University of Science and Technology, 7491 Trondheim,
Norway; tor.arne.johansen@ntnu.no

* Correspondence: milica.orlandic@ntnu.no

Received: 27 February 2019; Accepted: 16 March 2019; Published: 21 March 2019
����������
�������

Abstract: Satellite onboard processing for hyperspectral imaging applications is characterized
by large data sets, limited processing resources and limited bandwidth of communication links.
The CCSDS-123 algorithm is a specialized compression standard assembled for space-related
applications. In this paper, a parallel FPGA implementation of CCSDS-123 compression algorithm is
presented. The proposed design can compress any number of samples in parallel allowed by resource
and I/O bandwidth constraints. The CCSDS-123 processing core has been placed on Zynq-7035 SoC
and verified against the existing reference software. The estimated power use scales approximately
linearly with the number of samples processed in parallel. Finally, the proposed implementation
outperforms the state-of-the-art implementations in terms of both throughput and power.

Keywords: CCSDS-123 compression; parallel implementation; Field programmable gate arrays
(FPGA); hyperspectral imaging; real-time processing

1. Introduction

In recent years, space development has moved towards small-satellite (SmallSat) missions
which are characterized by capable low-cost platforms with introduced budget and schedule
flexibility. Space-related applications, such as synthetic aperture radar (SAR), multispectral and
hyperspectral imaging (HSI) require critical data processing to be performed onboard in order to
preserve transmission bandwidth. In this respect, the compression algorithms are commonly used
as a final step in onboard processing pipelines to reduce memory access and limit data transfer to
Earth. To fulfill real-time data processing requirement, hybrid processing systems with reconfigurable
hardware (FPGAs) have become the standard choice in small-satellite missions. The expansion of
logic resources in the current FPGAs allows execution of complex algorithmic tasks in parallel and
the trend for CubeSats and other SmallSat single-board computers is to use common SoC devices
with commercial FPGAs due to their superior performance in terms of power, speed and resources
compared to radiation-hardened FPGAs [1].

Hyperspectral and multispectral imaging have been both widely used in remote sensing Earth
observation missions in recent decades. Unlike multispectral sensors, such as Landsat, MSG and
MODIS [2], with a fairly limited number of discrete spectral bands, hyperspectral sensors record
a very large number of narrow spectral bands. Airborne hyperspectral sensors such as Compact
Airborne Spectrographic Imager (CASI), Airborne Visible/InfraRed Imaging Spectrometer (AVIRIS) [3],
Infrared Atmospheric Sounding Interferometer (IASI) [4] and the Hyperspectral Imager for the Coastal
Ocean (HICO) [5,6] have provided an expansion of hyperspectral research in the number of applications

Remote Sens. 2019, 11, 673; doi:10.3390/rs11060673 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0002-6304-1999
https://orcid.org/0000-0001-6057-2981
https://orcid.org/0000-0001-9440-5989
http://www.mdpi.com/2072-4292/11/6/673?type=check_update&version=1
http://dx.doi.org/10.3390/rs11060673
http://www.mdpi.com/journal/remotesensing

Remote Sens. 2019, 11, 673 2 of 19

such as environmental monitoring, coastal ecosystems, geology and land cover. A hyperspectral imager
has recently been deployed on an intellegent nano-satellite [7], where a key feature is intensive onboard
data processing including operations such as comparisons of images in subsequent orbits. However,
a mission with HSI payload to fulfill its objectives, in addition to smart onboard processing, requires
compression for downlink of the acquired data.

The Consultative Committee for Space Data Systems (CCSDS) has developed image compression
algorithms [8–11] specifically designed for space data systems. In particular, the CCSDS-123
compression standard [10,11] is an efficient prediction-based algorithm characterized by low
complexity and, thus, is suitable for real-time hardware implementation. In fact, in the recent years
several FPGA implementations of the CCSDS-123 standard are presented in the literature [12–19].
Keymeulen et al. [12] propose an on-the-fly implementation in BIP sample ordering. In the
implementation proposed by Santos et al. [13], the focus is on low complexity and low memory
footprint. The chosen BSQ sample ordering requires only one weight vector and one accumulator
to be stored. However, the repeated computations of local differences decrease the input bandwidth
efficiency. This approach requires either the non-sequential memory access pattern with potentially
reduction of streaming efficiency, or that the data is arranged in memory in the desired streaming
order. The serial CCSDS-123 implementation with BIP ordering proposed by Theodorou et al. [14]
relies on external memory to buffer samples coming from the image sensor such that the current, N
and NE neighboring samples are streamed in parallel reducing greatly on-chip memory requirements.
The downside is, however, lack of support for on-the-fly compression. Báscones et al. [15] propose
an implementation with BIP sample ordering characterized by the ability to perform compression
without relying on external memory. This is achieved by queuing incoming samples in internal FIFOs,
resulting in linear dependence of memory usage with respect to the product of width and depth of a
HSI cube. A parallel CCSDS-123 implementation proposed by Báscones et al. [16] consists of several
instances of the CCSDS-123 core that share local differences. Other than sharing local differences,
the cores operate independently by processing samples from a fixed subset of bands.

In this paper, an efficient parallel FPGA implementation of the CCSDS-123 compression algorithm
is proposed. The high throughput is achieved by the use of several optimization techniques for data
routing between parallel processing pipelines and for efficient parallel packing. In the proposed
solution, parallel processing of several samples is only constrained by the logic resources of the
chosen technology.

The paper is structured as follows: Section 2 presents an overview of the CCSDS-123 standard.
The proposed parallel hardware implementation is described in Section 3. The influence of the number
of pipelines and chosen architectural solutions on the logic use, timing and power are analyzed in
Section 4. Finally, the conclusions are given in Section 5.

2. Background

The CCSDS-123 standard for lossless data compressors is applicable to 3D HSI data cubes
produced by multispectral and hyperspectral imagers and sounders, where a 3D HSI data cube
is a three-dimensional array (Nx, Ny, Nz). A sample in the HSI cube is specified by coordinates (x, y, z),
whereas an HSI pixel is characterized by fixed (x, y) coordinates and consists of Nz components in
spectral domain. The standard supports Band Interleaved (BI) and Band Sequential (BSQ) orderings
for scanning the HSI coordinates. Special cases of BI ordering are Band Interleaved by Pixel (BIP) and
Band Interleaved by Line (BIL). BSQ ordering traverses the components band by band - (z, y, x) order.
In BIP ordering, each full pixel is accessed sequentially in (y, x, z) order. In BIL ordering, traversing is
performed frame by frame in (z, x) order.

The integer samples of the HSI cube are labeled as sz,y,x or sz(t) where t = y · Nx + x.
The sample sz,y,x is predicted by computation of a local sum σz,y,x of nearby predicted samples (sz,y,x−1,
sz,y−1,x−1, sz,y−1,x, sz,y−1,x+1) at positions (W, NW, N, NE) with respect to sample sz,y,x. The reduced
prediction mode computes central local differences dk for previously processed bands k = 0, . . . , P as

Remote Sens. 2019, 11, 673 3 of 19

dk = 4 · (sz−k,y,x) − σz−k,y,x, whereas full prediction mode includes also directional differences
[dW , dNW , dN] between neighbor samples (4 · sz,y,x−1, 4 · sz,y−1,x−1, 4 · sz,y−1,x) and local sum σz,y,x,
respectively. The created differences are then stored in the local difference vector Uz(t). Predictor
parameters such as the number of prediction bands P, the local sum type and the prediction
mode impact significantly the overall performance of the CCSDS-123 standard, and suggested
non-normative default values of these parameters provide a reasonable trade-off between performance
and complexity [10,20].

The computation of the rounded scaled predicted sample includes the dot product operation
of weight vector Wz(t) and local difference vector Uz(t) and shifting operation of local sum σz(t) by
parameter Ω which is defined as bit precision of the weight elements. The scaled predicted sample
value s̃z(t) is a version of the rounded scaled predicted sample in the range [−2D, 2D] for signed
integers, where D is a dynamic range of HSI samples. The weights are dynamically updated based on
the prediction error ez = 2sz(t)− s̃z(t) by the weight update factor ∆Wz(t) which depends on several
user-defined parameters which control convergence speed of the learning rate at which the predictor
adapts to the image statistics. The scaled predicted sample value s̃z(t) is re-normalized to the range of
the input sample (D-bit quantity) resulting in ŝz(t). Finally, the residual mapping converts the signed
predicted residual ∆z(t) = sz(t)− ŝz(t) to a D-bit unsigned integer mapped prediction residual δz(t).

In the sample-adaptive encoding, code words are generated based on the average value of the
input residuals in each band. The encoder updates an accumulator Σz(t) by storing recent sample
values and then divides the result by the counter Γ(t) which tracks the number of processed samples.

A code word generator computes quotient and residual pair, (uz, rz) from the division
δz(t)
2kz(t)

, where the

parameter kz(t) is defined as the largest non-negative integer satisfying an inequality expression
depending on relations between the accumulator Σz(t) and the counter Γ(t).

3. Implementation

The proposed parallel implementation contains Np pipelines for concurrent processing of multiple
samples and shared resources for storing intermediate data. The block diagram of the proposed
implementation for Np = 4 is shown in Figure 1.

Pipeline 3Pipeline 2Pipeline 1Pipeline 0

Central
difference

store
Weight storeSample

delay
Accumulator

store

Packer

Input samples

Output bitstream

Routing

Figure 1. Overview of the parallel CCSDS-123 implementation for Np = 4.

A number of data samples are streamed into the shared sample delay module in each clock
cycle. The samples are rearranged and sent to pipelines where a pipeline contains a chain of modules
performing the local sum and difference computation, prediction, residual mapping and sample
adaptive encoding as illustrated in Figure 2. The predicted data computed in central local differences,
the updated weight vector elements and accumulator values in sample adaptive encoding are routed

Remote Sens. 2019, 11, 673 4 of 19

to the central difference store, the weight store and accumulator store modules, respectively, which are
shared between the pipelines.

Dot
product Predictor Residual

mapping Encoding

Weight
update

Control
signal

generation

Current
and

neighbor
samples

Encoded
sample

Local
difference

Direction.
difference

Local
sum

Updated
weight
vector

Weight
vector Accumulator

Previous
local

differences

Central
local

difference

Updated
accumulator

Figure 2. Overview of pipeline architecture.

The data packages streamed into the CCSDS-123 core contain Np samples. A lane is defined
as a position of samples in the input package. Figure 3a,b show the sample placement grids for
Np = 4 lanes in the first 10 clock cycles for the number of bands is Nz = 8 and Nz = 9, respectively.
The first sample in each pixel is highlighted. When the number of bands is divisible by the number
of pipelines i.e., Nz mod Np = 0, lane i contains a fixed subset of bands for each pixel so that the
sample from band z is always streamed in the lane i = z mod Np. For Nz not divisible by Np, samples
from the same band are no longer confined to a specific lane. Instead, samples shift between lanes.
After streaming the last sample in a pixel, the input stream can be stalled so that the first sample of
the next pixel is in lane i = 0. In this manner, a fixed subset of samples is processed by each pipeline
similarly to the case when Nz is divisible by Np. The downside of the introduced stalling is reduced
throughput and additional logic. To avoid stalling, an interleaved pipeline approach is proposed.
In this approach, samples from the same bands are processed in different pipelines, requiring from
pipelines to share additional information besides local differences. For instance, a sample arriving to
the sample delay module in lane i = 0 is also sent to pipeline 2 as the neighbor of a sample arriving to
lane i = 2. Furthermore, vector W0(1) is produced by pipeline 0 when processing s0(0), but it is then
also used by pipeline 1 when processing s0(1). The advantage of the interleaved approach is a generic
implementation with maximized throughput and independent of the parameters Nz and Np.

In the proposed interleaved approach, the data shifting is introduced for moving data from
different lanes to corresponding processing pipelines. If a current sample is in lane i, then the
sample with distance n from the current sample is in lane (i + n) mod Np. The distance between
neighboring samples sz(t) in lane i and sz(t + ∆t) is given as Nz∆t, where the lane of sample sz(t + ∆t)
is computed as:

shift(i, ∆t) = (i + Nz∆t) mod Np. (1)

In Figure 3b, sample s0(5) is streamed in the lane which is computed as shift(3, 2) = 0 based on
the distance from sample s0(3) from lane i = 3. Due to the data shifting, the number of clock cycles
between samples within the same band is not constant. The number of clock cycles between two
samples is equivalent to the number of rows between them in the grid. In the edge case, when sample
sz(t) is in the left-most lane, sample sz+1(t) is streamed in the right-most lane of the next row. The time
delay between sz+1(t) and sz(t) in lane i is computed as follows:

delay(i, ∆t) =
⌊

i + Nz∆t
Np

⌋
. (2)

Remote Sens. 2019, 11, 673 5 of 19

s3(0) s2(0) s1(0) s0(0)

s7(0) s6(0) s5(0) s4(0)

s3(1) s2(1) s1(1) s0(1)

s7(1) s6(1) s5(1) s4(1)

s3(2) s2(2) s1(2) s0(2)

s7(2) s6(2) s5(2) s4(2)

s3(3) s2(3) s1(3) s0(3)

s7(3) s6(3) s5(3) s4(3)

s3(4) s2(4) s1(4) s0(4)

s7(4) s6(4) s5(4) s4(4)

Clock
Cycle 3 2 1 0

Lanes

(a)

s3(0) s2(0) s1(0) s0(0)

s7(0) s6(0) s5(0) s4(0)

s2(1) s1(1) s0(1) s8(0)

s6(1) s5(1) s4(1) s3(1)

s1(2) s0(2) s8(1) s7(1)

s5(2) s4(2) s3(2) s2(2)

s0(3) s8(2) s7(2) s6(2)

s4(3) s3(3) s2(3) s1(3)

s8(3) s7(3) s6(3) s5(3)

s3(4) s2(4) s1(4) s0(4)

Clock
Cycle 3 2 1 0

Lanes

(b)
Figure 3. Sample placement timing diagram, (a) Nz = 8, Np = 4, (b) Nz = 9, Np = 4.

3.1. Pipeline

A pipeline contains a chain of modules implemented as described in the previous work [19]
on a sequential CCSDS-123 implementation. To accommodate parallel processing, adaptation of the
sequential modules are required. This includes several modifications such as setting FIFO depths and
RAM sizes to z/Nz instead of z.

3.2. Sample Delay

The sample delay module delays incoming samples so that the current sample and the previously
predicted neighboring samples are available at its output. The proposed parallel implementation of
sample delay module is shown in Figure 4.

sz+3,y-1,x

sz+3,y,x-1

delay(0, 1)sz,y,x

delay(1, 1)

delay(2, 1)

delay(3, 1)

sz+1,y,x

sz+2,y,x

sz+3,y,x

W FIFOs
Route lane i
to shift(i, 1)

sz,y,x-1

sz+1,y,x-1

sz+2,y,x-1

0

1

2

3

0

1

2

3

delay(0, Nx-2)

delay(1, Nx-2)

delay(2, Nx-2)

delay(3, Nx-2)

NE FIFOs
Route lane i
to shift(i, Nx-2)

sz,y-1,x+1

sz+1,y-1,x+1

sz+2,y-1,x+1

sz+3,y-1,x+1

0

1

2

3

0

1

2

3

delay(0, 1)sz,y-1,x+1

delay(1, 1)

delay(2, 1)

delay(3, 1)

sz+1,y,x+1

sz+2,y-1,x+1

sz+3,y-1,x+1

N FIFOs
Route lane i
to shift(i, 1)

sz,y-1,x

sz+1,y-1,x

sz+2,y-1,x

0

1

2

3

0

1

2

3

delay(0, 1)

delay(1, 1)

delay(2, 1)

delay(3, 1)

NW FIFOs
Route lane i
to shift(i, 1)

sz,y-1,x-1

sz+1,y-1,x-1

sz+2,y-1,x-1

sz+3,y-1,x-1

0

1

2

3

0

1

2

3

W samples NE samples

N samples NW samples

Input
samples

Figure 4. Sample delay processing chain described by delay(i, ∆t) and shift(i, ∆t) functions.

For each lane i, there is a set of FIFOs with the depth determined by the delay(i, ∆t) function.
The outputs of FIFOs are then shifted according to the shift(i, ∆t) function, so that the delayed
samples are used as neighbors in (W, NW, N, NE) positions with respect to the samples which

Remote Sens. 2019, 11, 673 6 of 19

are currently processed by each pipeline. The performed sample delay operation described by
the use of the streaming grid (lanes, clock cycles) is presented in Figure 5. In the example,
W neighbors (s1(1), s0(1), s8(0), s7(0)) of samples (s1(2), s0(2), s8(1), s7(1)) are obtained by delay
and shift operations.

s3(0) s2(0) s1(0) s0(0)

s7(0) s6(0) s5(0) s4(0)

s2(1) s1(1) s0(1) s8(0)

s6(1) s5(1) s4(1) s3(1)

s1(2) s0(2) s8(1) s7(1)

s5(2) s4(2) s3(2) s2(2)

s0(3) s8(2) s7(2) s6(2)

 3 2 1 0

s2(0) s1(0) s0(0)

s3(0) s6(0) s5(0) s4(0)

s7(0) s1(1) s0(1) s8(0)

s2(1) s5(1) s4(1) s3(1)

s6(1) s0(2) s8(1) s7(1)

 3 2 1 0

s2(0) s1(0) s0(0)

s6(0) s5(0) s4(0) s3(0)

s1(1) s0(1) s8(0) s7(0)

s5(1) s4(1) s3(1) s2(1)

s0(2) s8(1) s7(1) s6(1)

 3 2 1 0

Incoming stream From W FIFO From W FIFO shifted
Clock
cycle

delay(3,1)
shift(0,1)

shift(3,1)

delay(0,1)

delay(1,1)

delay(2,1)

Figure 5. Sample delay operation for obtaining W neighbor samples for Np = 4 and Nz = 9.

3.3. Local Differences

The computed local differences are stored in the central difference store since there is a need to
share differences between the pipelines. The local difference vectors Uz for each pipeline are assembled
as a combination of local differences from lower indexed pipelines and from the central difference
store. The pipeline with the lowest index contains P differences only from the central difference store.
An example of local differences routing between pipelines and to/from the central difference store for
Np = 4 and P = 5 is illustrated in Figure 6. Pipelines 0− 3 produce local differences dz(t) to dz+3(t) for
input samples sz(t) to sz+3(t), respectively. Since each pipeline requires P previous local differences,
pipeline 3 requires differences [dz+2(t), dz+1(t), dz(t), dz−1(t), dz−2(t)] where the differences [dz+2(t),
dz+1(t), dz(t)] are produced by pipelines [2− 0] in the current clock cycle and the other two elements
[dz−1(t), dz−2(t)] are fetched from the central difference store. After using P differences from central
difference store to create Uz vectors, the differences from the bands in the range [(z − 1), (z − (P
mod Np))] are kept in the store to be used in the next clock cycle.

 Local Differences Dot Product

Uz [Pipeline 2]

Uz [Pipeline 1]

Uz [Pipeline 0]

Uz [Pipeline 3]

 Central Difference Store

dz-1

dz-3

dz-4

Pipeline 3

Pipeline 2

Pipeline 1

Pipeline 0

dz+3

dz+2

dz+1

dz

dz-5

dz-2 dz-3 dz-4 dz-5

dz-1

dz-2

dz dz-1 dz-2 dz-3 dz-4

dz+1 dz dz-1 dz-2 dz-3

dz+2 dz+1 dz dz-1 dz-2

dz+1

dz

dz-1

dz+3

dz+2

CurrentNext

Figure 6. Routing of central differences between pipelines for Np = 4 and P = 5.

When z < P, it is required to use only z previous local differences and no local differences
remaining from the previous pixel. In the serial implementation, the contents of the difference store is
set to zero when z = Nz − 1. For the parallel one, since previous local differences are used directly

Remote Sens. 2019, 11, 673 7 of 19

from the pipelines, the differences are masked based on the z coordinate. In this manner, the local
differences with index i ≤ z are included in the local difference vector and elements with index i > z
are set to zero.

3.4. Weights and Accumulators

Weights and accumulators are stored in two instances of the same module, shared store, with
different element sizes of stored vectors. Figure 7 shows the shared store implementation with Np

block RAMs of depth M = dNz/Npe. A read counter rd_cnt and a write counter wr_cnt are used for
computation of the read and write addresses in each bank. The counters are initialized as rd_cnt(i) = 0
and wr_cnt(i) = delay(0, 1). The write counter is used directly as the write address w_addr(i), whereas
the read address r_addr(i) for bank i is computed as follows:

r_addr(i) =

{
rd_cnt, i + Nz mod Np < Np

(rd_cnt− 1) mod M, i + Nz mod Np ≥ Np,
(3)

creating the initial distance between the read and write addresses equal to delay(i, 1).

Bank 3Bank 2Bank 1Bank 0

Write
address
counter

From pipeline 0
From pipeline 1
From pipeline 2
From pipeline 3

Route bank i to
pipeline shift(i, 1)

To pipeline 0
To pipeline 1
To pipeline 2
To pipeline 3

read
write

Optional
delay

Read
address
counter

Write data Read data

Read address calculation

Figure 7. Implementation of the shared store module.

The behaviour of the weight shared store for parameters Nz = 61, M = 16 and Np = 4 is
presented in Figure 8. The initial state after reset in Figure 8a shows that rd_cnt is initialized to 0 and
wr_cnt is set to delay(0, 1) = 15. For lanes 0− 2, the read addresses are equal to the counter value
(rd_cnt = 0), whereas for lane 3 the read address is 15 based on the condition (3 + 61 mod 4) ≥ 4.
However, the data read from weight shared store for the first pixel are not used since the standard
defines no prediction for the first pixel. Figure 8b shows the write operation of the first weight samples
of pixel 1 at the address of the weight store pointed to by wr_cnt. At this time stamp, counter rd_cnt is
N positions from its initial position, where the delay N corresponds to several pipeline stages from the
weight reading operation to the end of the weight update operation. The delay N is equal to 8 + S,
where parameter S is the number of pipeline stages in the dot product. In Figure 8c, the read counter
is set to position M− 1, the raddr are computed as [M− 2, M− 1, M− 1, M− 1] and the first weights
[−, W0(1), W1(1), W2(1)] are read simultaneously with samples [s60(0), s0(1), s1(1), s2(1)] at the input
of the compression core. Figure 8d shows the state of weight shared store after 15 cycles when samples
[s59(1), s60(1), s0(2), s1(2)] arrive at the input.

Remote Sens. 2019, 11, 673 8 of 19

- - -

...

-Write
counter

Read
counter

- - - -

Read data after routing to shift(i, 1)

(a)

...

W3(1) W2(1) W1(1) W0(1)

- - - -

Read data after routing to shift(i, 1)

Read
counter

N

Write
counter

(b)

W7(1) W6(1) W5(1) W4(1)

W11(1) W10(1) W9(1) W8(1)

W15(1) W14(1) W13(1) W12(1)

W19(1) W18(1) W17(1) W16(1)

...

-

W3(1) W2(1) W1(1) W0(1)

W2(1) W1(1) W0(1) -

Read data after routing to shift(i, 1)

Write
counter

Read
counter

N

(c)

W10(2) W9(2) W8(2) W7(2)

W14(2) W13(2) W12(2) W11(2)

W18(2) W17(2) W16(2) W15(2)

W19(1) W18(1) W17(1) W16(1)

...

W55(1) W54(1) W53(1) W52(1)

W59(1) W58(1) W57(1) W56(1)

W2(2) W1(2) W0(2) W60(1)

W6(2) W5(2) W4(2) W3(2)

W1(2) W0(2) W60(1) W59(1)

Read data after routing to shift(i, 1)

Write
counter

Read
counter

(d)
Figure 8. States of weight shared store for Nz = 61 and Np = 4 (a) after reset (b) during writing
operation of the first weight samples for pixel 1 (c) during reading operation of the first stored weight
samples for pixel 1 (d) after 15 cycles from the first reading operation for pixel 1.

3.5. Packing of Variable Length Words

The last stage includes packing of the variable-length encoded words W0, . . . , WNp−1 with
respective lengths L0, . . . , LNp−1 from Np pipelines into fixed-size blocks. The packing operation
for Np = 4 is illustrated in Figure 9. The packing process starts by shifting the word W0 from
the first pipeline by the number of bits from the previous cycle, Lprev. After that, word W0 is
concatenated to the bits remaining from the previous cycle, Wprev. In general, shifting of the word Wi
by Lprev + L0 + · · ·+ Li−1 positions is followed by concatenation of Wi to the chain WprevW0 . . . Wi−1.
It is observed that the number of shifts depends heavily on Np and maximum length Umax + D of each
word. On the other side, the standard defines the fixed-size output blocks of size B which is extracted
each time the sum of the words’ lengths exceeds B.

Pipeline 0 Pipeline 1 Pipeline 2 Pipeline 3

W0 W1 W2 W3

W0 W0 W1 W0 W1 W3W¨2W2

Clock
cycle

1

Variable-length words from encoders

Wprev

Wprev

Wprev

Full blocks

Full blocks

Remaining bits
register

Remaining bits
register

Remaining bits
register

2

3

Clock cycle 1

Clock cycle 2

Figure 9. Operation of the variable length word packer.

The block extraction limits the maximum word chain length to B− 1 regardless of Np or maximum
world length. Therefore, the number of bits left after block extraction and the number of extracted
blocks are introduced. The number of bits left after block extraction si is computed as follows:

si = ΣLi mod B, (4)

Remote Sens. 2019, 11, 673 9 of 19

where

ΣLi = Lprev +
i−1

∑
j=0

Lj. (5)

The extraction count ei, indicating the number of blocks to extract, is defined as:

ei =

⌊
ΣLi
B

⌋
. (6)

If ei is non-zero, the number of accumulated bits ∑ Li is greater than B.
The implementation of packer module is presented in Figure 10. In the first stage, computation of

si and ei parameters is performed for input word Wi. In the second and third stage, a combiner chain
combines input words using computed si and ei as shown in Figure 11.

Full blocks FIFO

Lprev register

Output block

read prog_full

Output ready Over threshold

Counters
(shifts and extraction counts)

L1L0 L3L2

Lprev register

W0 W1 W2 W3

Combiner chain

Output Logic

Figure 10. Implementation of variable length word packer.

W0 W1 W2 W3

>> >> >> >>

or

or

or

or

Remaining
bits

Extracted
blocks count

e3 e2 e1 e0

Extract

Extract

Extract

Extract

Wleft

Full blocks Wleft

s0 s1 s2 s3

Figure 11. Implementation of combiner chain.

Remote Sens. 2019, 11, 673 10 of 19

The shifting operation for each word is performed in parallel by using si to select among shifted
versions of Wi from a multiplexer. The last pipeline stage concatenates shifted words and extracts
full blocks based on extraction count ei. The produced full blocks are added to the chain of complete
blocks, the count of full blocks is updated and the remaining bits Wprev are stored into a register to
be combined in the next cycle. Finally, the last flag is set when the remaining bits are output as a
separate block. After combiner chain, a chain of full blocks, its length and the last flag are pushed
into an output FIFO. To output blocks sequentially, there is a need to buffer the blocks sent from the
combiner. The data word width of the FIFO is determined by the maximum number of blocks Nmax

produced in one clock cycle given as:

Nmax =

⌊
B− 1 + Np(Umax + D)

B

⌋
+ 1, (7)

where (B− 1) is the maximum number of leftover bits from the previous cycle, Np(Umax + D) is the
maximum word length produced in one clock cycle and factor 1 accounts for the last block when the
last flag is set. If the average bit rate of the encoded samples is higher than the output bus width,
there is risk for FIFO to become full. Thus, it is required to stall the data streaming into the core before
the overflow occurs by de-asserting ready signal at the input. This is done by setting a threshold Nth to
the number of data words in the FIFO. In this manner, it is ensured that all encoded samples, which are
streamed in from the cycle when de-assertion of ready signal happens, are stored. The threshold Nth is
equal to S + 15 which corresponds to the total number of pipeline stages from the core input to the
FIFO. In the on-the-fly processing, stalling of the input stream is not possible and the choice of FIFO
depth is dependant on the image statistics and speed of predictor’s ability to adapt.

The proposed serial packing of incoming words in combinatorial logic is feasible for Np < 6.
For larger Np values, the critical path in the initial pipeline stage does not meet timing requirements
due to the dependence of sum of word lengths Li on Np. For this reason, a modified version of the
packer module is presented in Figure 12. The modified packer distributes the incoming words across
several combiner chains operating in parallel. Large critical paths are then avoided by displacing each
combiner chain by one clock cycle. The generic parameter Nper_chain is introduced to define the number
of words per combiner chain where 1 ≤ Nper_chain ≤ Np. The number of combiner chains Nc is then
computed as:

Nc = dNp/Nper_chaine. (8)

Parameters si and ei are computed sequentially for each combiner chain across Nc clock cycles as
shown in Figure 12.

Since this operation takes more than one clock cycle, Lprev is not available when computation
starts. Therefore, the partial sum of word lengths are initially computed as follows:

¯ΣLi =
i−1

∑
j=0

Lj, (9)

whereas the complete length ΣLi = ¯ΣLi + Lprev is computed in the Nc-th clock cycle. Large critical paths
can be created due to existing data dependence between combiner chains. To avoid this, large delay
registers for the left-most chains are used to keep the full blocks from each chain synchronized with
the last chain Nc − 1. The proposed solution is that each combiner chain shifts its input words by Lprev

without concatenating it with the remaining bits. Instead, the concatenation is done at the output of
each combiner chain. The outputs of each combiner chain are a block set and a length of the produced
block set which is sent to a block set FIFO. The output logic controls the streaming of created blocks and
tracks which FIFO contains the packed blocks for that particular set of words. In particular, the control
FIFO monitors which block set FIFOs contain valid data. For each block set pushed to the block FIFOs,
a new word is pushed to the control FIFO with a block set mask and the last flag, where the bits in

Remote Sens. 2019, 11, 673 11 of 19

block set mask correspond to one of the combiner chains. In Figure 13, block set mask ’101.1’ for
Nc = 3 indicates that valid block sets are from combiner chains 0 and 2 and last flag is high.

Combiner chainCombiner chain

L1L0 L3L2 L5L4 L7L6

Compute length sum and
shifts

Compute length sum and
shifts

Output block
Output ready

Select block set

Current block shift
register

Output side
control logic

Adjust shifts,
calculate extraction counts

Adjust shifts,
 calculate extraction counts

W4-W7W0-W3

Block set FIFO Block set FIFO

or with first
block

Remaining
register

or

or with first
block

or

Lprev register

Control FIFO

read read

blocks valid valid blocks
remaining remaining

write write

read

 0 1 0 1

N
c c

lo
ck

 c
yc

le
s

Figure 12. Implementation of improved variable length word packer.

2

11 011,0

001,0

3

3

3 111,0

4

100,0

5

100,0

66

101,1

Block set FIFOs
Control
FIFO

Figure 13. Memory organization for block set FIFOs.

Remote Sens. 2019, 11, 673 12 of 19

4. Results

The proposed parallel architecture of the CCSDS-123 compression algorithm is described by
the VHDL language, and the Vivado tool is used for synthesis, implementation, power estimation,
testing and verification on a PicoZed board with a Zynq-7035 FPGA. The implementation supports
BIP sample ordering and both on-the-fly and offline processing. In addition, the implementation is
tested against the reference software Emporda [21] and it is fully compliant with the standard allowing
user-defined parameter selection.

The proposed core implementation is tested as a part of a larger system supported by AXI bus [22].
Since the internal stalling of output stream is not supported by the core, it is necessary to buffer the
output data in a FIFO as shown in Figure 14. Data streaming into the core is stopped when the number
of words in FIFO is larger than a certain limit. The FIFO capacity limit Nlimit is determined as follows:

Nlimit = FIFO capacity−
⌈

Nstages(Umax + D)

B

⌉
, (10)

based on the assumption that each pipeline stage has valid data and each data word has the maximum
length of Umax + D. The depth of the FIFO is a trade-off between area usage and frequency of output
stalling. It is, however, required the depth to be larger than Nlimit.

CCSDS123
core

tdata,
tvalid

tdata,
tlast,
tvalid

< limit?tready tready

Output
FIFO

count

Input
AXI Stream

Output
AXI Stream

Figure 14. CCSDS-123 IP module.

4.1. Utilization Results

The resource use is affected by several parameters such as the number of bands used for prediction
P and sample bit resolution D. As reported in [19], both LUT and register use in the dot product,
predictor and weight update modules in the pipeline scale linearly with P. However, in the proposed
implementation throughput is not affected by the choice of parameters and remains Np samples per
clock cycle for any chosen parameter configuration.

The proposed implementation of the CCSDS-123 algorithm supports the majority of the standard’s
parameter settings, including full ranges of bit resolution D, number of previous bands for prediction P
and output word size B. The implementation supports both neighbor- and column-oriented local sums,
full and reduced prediction modes. However, only the sample adaptive encoder is supported. In the
following resource use analysis for the proposed implementation, the chosen parameter configuration
is set to the configuration provided in [10] with parameters D = 16 and P = 3. Table 1 shows resource
use for the proposed implementation for a variety of different hyperspectral and multispectral image
sensors. The main factor affecting the area use results is frame size Nx · Nz which determines the
amount of memory required for storing delayed samples, weights and accumulators.

The used resources in terms of LUTs, registers and block RAM have been elaborated in more
details for core configuration set for processing available 16-bit L1b HICO data cubes [5]. Initially,
the number of block RAMs varied considerably for different number of pipelines. In particular,
weight store and sample delay block RAM use varied depending on Np. This happens due to the
synthesis tool which extends depth of an array to the closest power of 2, and by that increases
significantly used block RAM resources. To avoid this, LUT elements are used as Distributed RAMs
instead of block RAMs. Since one LUT element in 7-series FPGAs [23] can be configured as a 32× 1 bit

Remote Sens. 2019, 11, 673 13 of 19

dual port RAM, LUTs are used as RAM for storing weights, accumulators and in the one-pixel delay
FIFOs, whereas block RAMs are used in NE FIFO module. The LUT use increases then linearly with
Nx · Nz. Regarding register use, each lane has its own memory element with read data registers and
the register use in these modules scales linearly with Np. The resources in terms of LUTs, registers
and block RAMs used for the total design and the main components are presented in Tables 2 and 3,
respectively. The packer module is the largest contributor in logic use among shared modules due to
the fact that as Np grows, the size of combiner chains for Np ≤ 4 and the number of combiner chains
for Np > 4 also increase. With the larger number of combiner chains, the number of block sets to select
in the output logic also increases, requiring larger multiplexers for selection. Figure 15 shows that the
resource use for a pipeline chain for Np ≥ 4 stabilizes at 72% of total resources, whereas the ratio of
used and available resources for the complete core grows linearly with Np as presented in Figure 16.
Thus, the choice of Np for the selected set of compression parameters and image size are constrained
by available LUT resources.

Table 1. Resource use for compressing HSI images from different sensors for Np = 4.

Model D Nx Ny Nz LUTs Regs RAM

SFSI 12 496 140 240 9416 8730 46
MSG 10 3712 3712 11 7984 8133 16
MODIS 12 1354 2030 17 8859 8682 12
M3-Target 12 640 2843 260 10,824 8827 64
M3-Global 12 320 28,283 386 11,351 9086 48
Landsat 8 1024 1024 8 6583 7410 7
Hyperion 12 256 3242 242 9640 8888 28
Crism-FRT 12 640 510 545 12,882 9313 130
Crism-HRL 12 320 480 545 12,646 9130 68
Crism-MSP 12 64 2700 74 8803 8843 6
CASI 12 405 2852 72 8922 8960 16
AVIRIS 16 614 512 224 12,033 10,696 71
AIRS 14 90 135 1501 12,191 8569 68
IASI 12 66 60 8461 - - -
HICO 16 512 2000 128 11,589 10,661 35

Table 2. LUT use in various stages for different Np.

LUTS

Np Pipeline Sample Accum Weight Packer TotalStore Store Store

1 2137 468 112 504 526 3747
2 4247 672 128 366 884 6297
3 6435 866 196 566 1139 9202
4 8499 856 180 366 1665 11,566
5 10,723 1029 230 464 2263 14,709
6 12,765 1226 272 555 2513 17,331
7 15,005 1458 317 647 2826 20,253
8 16,550 1802 350 731 3238 22,671
9 19,297 2042 397 815 4131 26,682

10 21,191 1886 440 923 4668 29,108
11 23,584 2186 416 1014 5008 32,208
12 25,136 2268 454 1112 5455 34,425

Remote Sens. 2019, 11, 673 14 of 19

Table 3. Memory element use in various stages for different Np.

Registers Block RAM

Np Pipeline Samp. Acc. Weig. Packer Total Samp. Packer TotalStore Store Store Store

1 1856 156 36 152 687 2887 32 1 33
2 3532 238 56 280 1069 5175 32 2 34
3 5394 351 78 410 1255 7488 33 2 35
4 6869 440 98 546 1636 9589 32 3 35
5 8921 540 120 670 2579 12,830 32.5 4.5 37
6 10,424 648 142 814 3033 15,061 33 5.5 38.5
7 12,460 756 164 951 3358 17,689 35 5.5 40.5
8 13,455 808 184 1085 3810 19,342 32 6.5 38.5
9 15,994 909 206 1209 4094 22,412 36 7.5 43.5
10 17,311 1000 228 1332 4507 24,378 35 8.5 43.5
11 19,546 1100 250 1476 4784 27,156 33 8.5 41.5
12 20,479 1200 272 1611 5189 28,751 36 9.5 45.5

1 2 3 4 5 6 7 8 9 10 11 12
50

60

70

Np

%
of

to
ta

l

LUTs pipelines Regs pipelines

Figure 15. Resource use by pipeline logic with respect to the available resources.

1 2 3 4 5 6 7 8 9 10 11 12

5

10

15

20

25

Np

R
es

ou
rc

es
(%

)

LUTs
Registers
BRAMs

DSPs

Figure 16. Resource use on Zynq Z-7035.

The LUT use in the packer module is analyzed in terms of several words per chain Nper_chain
and block sizes B and results are presented in Figure 17. It is observed that regardless of Nper_chain,
the block size is the main factor which greatly affects area use.

Remote Sens. 2019, 11, 673 15 of 19

8 16 32 64 128
0

1,000

2,000

3,000

Block size

LU
Ts

1 per chain
2 per chain
4 per chain

Figure 17. LUT use in packer module for various B and Nper_chain, Np = 4.

4.2. Timing

The maximum operating frequency of the proposed implementation for different Np is shown in
Figure 18. It is shown that the operating frequency depends on Np with a downward trend and varies
in the range 126–157 MHz. The critical path is in the output logic which produces the last flag signal
obtained as a logical sum of the last signals from the control modules in each of the pipelines.

1 2 3 4 5 6 7 88 9 10 11 12
125

130

135

140

145

150

155

160

Np

M
ax

im
um

op
er

at
in

g
fr

eq
ue

nc
y

(M
H

z)

Figure 18. Maximum operating frequency for different number of pipelines.

4.3. Power Estimation

The power estimation has been performed in Xilinx Vivado on the post implementation design
in combination with data in post-implementation functional simulation. Figure 19 shows that power
usage increases linearly with Np in all modules for 1 ≤ Np ≤ 8. Static power consumption of 0.125 W is
mainly due to leakage in the memories in the stores, whereas dynamic power grows with respect to Np

as presented in Figure 20. The estimates for stores refer to the power sum in the weight, accumulator,
sample and local difference stores. The linear increase is due to the added logic for each pipeline
and to increasing complexity of the packer module. Fluctuations appear in the power contribution of
the stores when Np is power of 2 since inference of block RAMs in the NE FIFO of the sample delay
module is the most effective when the depth of FIFO is a power of two. For example, for HICO data
set the depth of FIFO, computed as Nx Nz/Np, is a power of two when Np is also a power of two.

Remote Sens. 2019, 11, 673 16 of 19

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

Np

Po
w

er
(W

)

Total
Packer
Stores

Pipelines

Figure 19. Power estimates for different Np.

1 2 3 4 5 6 7 8 9 10
40

60

80

Np

D
yn

am
ic

po
w

er
(%

)

Figure 20. Dynamic power as percentage of total power usage.

4.4. Comparison with State-of-the-Art Implementations

The comparison of the proposed parallel implementation of CCSDS-123 algorithm with recent
sequential [12–15,17,18] and parallel [16] FPGA implementations with regards to maximum frequency,
the throughput performance and power is presented in Table 4. The majority of implementations target
Virtex-5 FX130T FPGA which is commercial equivalent of radiation hardened Virtex-5QV. However,
the detailed power and performance analysis on parallel implementation [16] is reported for powerful
Virtex-7 FPGA device. The sensor maximum data rates for AVIRIS NG and HICO imagers, representing
real-time sensor throughput requirements, are also given. The implementations with BIP ordering have
a roughly similar architecture but with large performance differences. In the implementation proposed
by Santos et al. [13], the chosen sample ordering requires that local differences are recomputed when
needed. As a consequence, each sample is read 2(P + 1) times and the input bandwidth efficiency is
decreased. This approach requires either the non-sequential memory access pattern with potentially
reduction of streaming efficiency, or that the arrangement of the data samples in memory follows the
irregular streaming order, occupying 2(P + 1) as much storage. The implementation SHyLoC [17]
supports all three sample orderings, where a different architecture is suggested for each ordering.
The implementation by Bascones et al. [15] achieves throughput lower than 50 Msamples/s on Virtex-7
suggesting less than one sample compressed per clock cycle.

In the parallel implementation proposed by Bascones et al. [16], the throughput of 3510 Mb/s is
reported for C = 7 compression cores employed in parallel. By fixing the subset of bands processed by
each CCSDS-123 core, throughput degradation can be introduced when the number of bands is not
divisible by number of cores C since this requires stalling of several cores when processing the last
samples of each pixel. Another limitation is the serial nature of the final packing stage which creates a

Remote Sens. 2019, 11, 673 17 of 19

significant throughput bottleneck for large number of parallel cores. The paper suggests, however,
that the serial packing circuit can be clocked faster.

The proposed parallel implementation builds up on the processing chain implemented in the
previous work [19] which is characterized by a throughput of 2350 Mb/s. The CCSDS-123 processing
chain adaptation for parallel processing and the structuring of several CCSDS-123 compression chains
in parallel are introduced. The limitations of data routing between processing chains (CCSDS-123
cores) and packing operation in the work proposed by Bascones et al. [16] are successfully overcome
in the proposed implementation. In fact, the throughput is maximized by the proposed interleaved
data routing between parallel processing chains which eliminates pipeline stalling. In addition,
the proposed parallel packing provides linear scaling of the throughput when the number of pipelines
is increased. In fact, the ability to achieve high throughput for the number of spectral bands Nz which
is not an integer multiple of Np, and to pack any number of variable length words into fixed-size words
in each clock cycle are the greatest improvements of the proposed implementation. In comparison
with the state of the art, the proposed parallel implementation achieves superior performance in
terms of processing speed such as data rates of 9984 Mb/s and 12,000 Mb/s for Np = 4 and Np = 5,
respectively.

Table 4. Performance comparison of CCSDS-123 implementations.

Implementation Order P D Platform fmax Throughput Power
[MHz] [MSa/s] [Mb/s] [mW]

AVIRIS-NG [3] - - 14 Sensor Max. - 30.72 430 -
HICO [5,24] - - 14 Sensor Max. - 4.78 66.92 -
Keymeulen et al. [12] BIP 3 13 Virtex-5 (FX130T) 40 40 520 -
HyLoC, Santos et al. [13] BSQ 3 16 Virtex-5 (FX130T) 134 11.2 179 1488
Theodorou et al. [14] BIP 3 16 Virtex-5 (FX130T) 110 110 1790 -
Bascones et al. [15] BIP 0–15 16 Virtex-7 50 47.6 760 450
Bascones et al. [16]—C = 7 BIP 0–15 16 Virtex-5 (FX130T) - 179.7 3040
Bascones et al. [16]—C = 7 BIP 0–15 16 Virtex-7 - 219.4 3510.4 5300
SHyLoC, Santos et al. [17] All 0–15 16 Virtex-5 (FX130T) 140 140 2240 -
Tsigkanos et al. [18] BIP 3 16 Virtex-5 (FX130T) 213 213 3300 4720
Fjeldtvedt et al. [19] BIP 0–15 16 Zynq-7000 147 147 2350 295
Proposed work—Np = 4 BIP 0–15 16 Zynq-7000 157 624 9984 440
Proposed work—Np = 5 BIP 0–15 16 Zynq-7000 150 750 12,000 515

Future work will include an hardware implementation of emerging Issue 2 of CCSDS-123
standard [25,26] which builds up on the current version (Issue 1) of CCSDS-123 compression
standard [10]. The Issue 2 focuses on new features such as a closed-loop scalar quantizer to provide
near-lossless compression, modified hybrid entropy coder for low entropy data and support for
high-dynamic-range instruments with 32-bit signed and unsigned integer samples. The introduced
data dependencies can affect the throughput and challenge parallel processing.

5. Conclusions

In this paper, a parallel FPGA implementation of CCSDS-123 compression algorithm is proposed.
The full use of the pipelines is achieved by the proposed advance routing with shifting and delay
operations. In addition, the packing operation of variable-length words is performed fully in parallel,
providing throughput of user-defined Np samples per clock cycle. This implementation significantly
outperforms the state-of-the-art implementations in terms of throughput and power. The estimated
power use scales linearly with the number of input samples. In conclusion, the proposed core can
compress any number of samples in parallel provided that resource and I/O bandwidth constraints
are obeyed.

Remote Sens. 2019, 11, 673 18 of 19

Author Contributions: Conceptualization, M.O. and J.F.; methodology, J.F.; validation, J.F., M.O. and T.A.J.;
investigation, J.F.; writing—original draft preparation, M.O.; writing—review and editing, M.O., J.F. and T.A.J.;
visualization, M.O.; supervision, M.O. and T.A.J.; project administration, T.A.J.; funding acquisition, T.A.J.

Funding: This work was funded by the Research Council of Norway (RCN) through the MASSIVE project,
grant number 270959, and the AMOS project, grant number 223254.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. George, A.D.; Wilson, C.M. Onboard Processing With Hybrid and Reconfigurable Computing on Small
Satellites. Proc. IEEE 2018, 106, 458–470. [CrossRef]

2. NASA. Moderate Resolution Imaging Spectroradiometer (MODIS). Available online: https://modis.gsfc.
nasa.gov/ (accessed on 12 November 2018).

3. NASA. Airborne Visible InfraRed Imaging Spectrometer (AVIRIS). Available online: https://aviris.jpl.nasa.
gov/ (accessed on 12 November 2018).

4. Aires, F.; Chédin, A.; Scott, N.A.; Rossow, W.B. A regularized neural net approach for retrieval of atmospheric
and surface temperatures with the IASI instrument. J. Appl. Meteorol. 2002, 41, 144–159. [CrossRef]

5. Naval Research Laboratory. Hyperspectral Imager for the Coastal Ocean (HICO). Available online:
http://hico.coas.oregonstate.edu/ (accessed on 12 November 2018).

6. Corson, M.R.; Korwan, D.R.; Lucke, R.L.; Snyder, W.A.; Davis, C.O. The hyperspectral imager for the coastal
ocean (HICO) on the international space station. In Proceedings of the IGARSS 2008 IEEE International
Geoscience and Remote Sensing Symposium, Boston, MA, USA, 7–11 July 2008; Volume 4.

7. Soukup, M.; Gailis, J.; Fantin, D.; Jochemsen, A.; Aas, C.; Baeck, P.; Benhadj, I.; Livens, S.; Delauré, B.;
Menenti, M.; et al. HyperScout: Onboard Processing of Hyperspectral Imaging Data on a Nanosatellite.
In Proceedings of the Small Satellites, System & Services Symposium (4S) Conference, Valletta, Malta,
30 May–3 June 2016.

8. Consultative Committee for Space Data Systems. Lossless Data Compression-CCSDS 121.0-B-2. In Blue
Book; CCSDS Secretariat: Washington DC, USA, 2012.

9. Consultative Committee for Space Data Systems. Image Data Compression-CCSDS 122.0-B-1. In Blue
Book; CCSDS Secretariat: Washington DC, USA, 2005.

10. Consultative Committee for Space Data Systems. Lossless Multispectral and Hyperspectral Image
Compression-CCSDS 120.2-G-1. In Green Book; CCSDS Secretariat: Washington DC, USA, 2015.

11. Consultative Committee for Space Data Systems. Lossless Multispectral and Hyperspectral Image
Compression-CCSDS 123.0-B-1. In Blue Book; CCSDS Secretariat: Washington DC, USA, 2012.

12. Keymeulen, D.; Aranki, N.; Bakhshi, A.; Luong, H.; Sarture, C.; Dolman, D. Airborne demonstration of
FPGA implementation of Fast Lossless hyperspectral data compression system. In Proceedings of the
2014 NASA/ESA Conference on Adaptive Hardware and Systems (AHS), Leicester, UK, 14–17 July 2014;
pp. 278–284.

13. Santos, L.; Berrojo, L.; Moreno, J.; López, J.F.; Sarmiento, R. Multispectral and hyperspectral lossless
compressor for space applications (HyLoC): A low-complexity FPGA implementation of the CCSDS 123
standard. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2016, 9, 757–770. [CrossRef]

14. Theodorou, G.; Kranitis, N.; Tsigkanos, A.; Paschalis, A. High Performance CCSDS 123.0-B-1 Multispectral
& Hyperspectral Image Compression Implementation on a Space-Grade SRAM FPGA. In Proceedings of the
5th International Workshop on On-Board Payload Data Compression, Frascati, Italy, 28–29 September 2016;
pp. 28–29.

15. Báscones, D.; González, C.; Mozos, D. FPGA Implementation of the CCSDS 1.2.3 Standard for Real-Time
Hyperspectral Lossless Compression. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2017, 11, 1158–1165.
[CrossRef]

16. Báscones, D.; González, C.; Mozos, D. Parallel Implementation of the CCSDS 1.2.3 Standard for Hyperspectral
Lossless Compression. Remote Sens. 2017, 9, 973. [CrossRef]

17. University of Las Palmas de Gran Canaria, Institute for Applied Microelectronics (IUMA). SHyLoC IP Core.
Available online: http://www.esa.int/Our_Activities/Space_Engineering_Technology/Microelectronics/
SHyLoC_IP_Core (accessed on 12 November 2018).

http://dx.doi.org/10.1109/JPROC.2018.2802438
https://modis.gsfc.nasa.gov/
https://modis.gsfc.nasa.gov/
https://aviris.jpl.nasa.gov/
https://aviris.jpl.nasa.gov/
http://dx.doi.org/10.1175/1520-0450(2002)041<0144:ARNNAF>2.0.CO;2
http://hico.coas.oregonstate.edu/
http://dx.doi.org/10.1109/JSTARS.2015.2497163
http://dx.doi.org/10.1109/JSTARS.2017.2767680
http://dx.doi.org/10.3390/rs9100973
http://www.esa.int/Our_Activities/Space_Engineering_Technology/Microelectronics/SHyLoC_IP_Core
http://www.esa.int/Our_Activities/Space_Engineering_Technology/Microelectronics/SHyLoC_IP_Core

Remote Sens. 2019, 11, 673 19 of 19

18. Tsigkanos, A.; Kranitis, N.; Theodorou, G.A.; Paschalis, A. A 3.3 Gbps CCSDS 123.0-B-1 Multispectral &
Hyperspectral Image Compression Hardware Accelerator on a Space-Grade SRAM FPGA. IEEE Trans.
Emerg. Top. Comput. 2018. [CrossRef]

19. Fjeldtvedt, J.; Orlandić, M.; Johansen, T.A. An Efficient Real-Time FPGA Implementation of the CCSDS-123
Compression Standard for Hyperspectral Images. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2018,
11, 3841–3852. [CrossRef]

20. Augé, E.; Sánchez, J.E.; Kiely, A.B.; Blanes, I.; Serra-Sagristà, J. Performance impact of parameter tuning on
the CCSDS-123 lossless multi-and hyperspectral image compression standard. J. Appl. Remote Sens. 2013,
7, 074594. [CrossRef]

21. GICI Group, Universitat Autonoma de Barcelona. Emporda Software. Available online: http://www.gici.
uab.es (accessed on 12 November 2018).

22. ARM. AMBA AXI and ACE Protocol Specification; Technical Report; ARM, 2011. Avilable online: http:
//infocenter.arm.com/help/topic/com.arm.doc.ihi0022d (accessed on 12 November 2018).

23. Xilinx. 7 Series FPGAs Configurable Logic Block User Guide; Technical Report; Xilinx: San Jose, CA, USA, 2016.
24. Lewis, M.D.; Gould, R.; Arnone, R.; Lyon, P.; Martinolich, P.; Vaughan, R.; Lawson, A.; Scardino, T.; Hou, W.;

Snyder, W.; et al. The Hyperspectral Imager for the Coastal Ocean (HICO): Sensor and data processing
overview. In Proceedings of the OCEANS 2009, MTS/IEEE Biloxi-Marine Technology for Our Future: Global
and Local Challenges, Biloxi, MS, USA, 26–29 October 2009; pp. 1–9.

25. Consultative Committee for Space Data Systems. Low-Complexity Lossless and Near-lossless Multispectral
and Hyperspectral Image Compression-CCSDS 123.0-B-2. In Blue Book; CCSDS Secretariat: Washington DC,
USA, 2019.

26. Kiely, A.; Klimesh, M.; Blanes, I.; Ligo, J.; Magli, E.; Aranki, N.; Burl, M.; Camarero, R.; Cheng, M.;
Dolinar, S.; et al. The new CCSDS Standard for Low-Complexity Lossless and Near-Lossless Multispectral
and Hyperspectral Image Compression. In Proceedings of the ESA On-Board Payload Data Compression
Workshop (OBPDC), Matera, Italy, 20–21 September 2018.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TETC.2018.2854412
http://dx.doi.org/10.1109/JSTARS.2018.2869697
http://dx.doi.org/10.1117/1.JRS.7.074594
http://www.gici.uab.es
http://www.gici.uab.es
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0022d
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0022d
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background
	Implementation
	Pipeline
	Sample Delay
	Local Differences
	Weights and Accumulators
	Packing of Variable Length Words

	Results
	Utilization Results
	Timing
	Power Estimation
	Comparison with State-of-the-Art Implementations

	Conclusions
	References

