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Abstract

We propose density independent hydrodynamics model (DIHM) which is a novel and automatic method for coherency
detection in crowded scenes. One of the major advantages of the DIHM is its capability to handle changing density
over time. Moreover, the DIHM avoids oversegmentation and thus achieves refined coherency detection. In the
proposed DIHM, we first extract a motion flow field from the input video through particle initialization and dense
optical flow. The particles of interest are then collected to retain only the most motile and informative particles. To
represent each particle, we accumulate the contribution of each particle in a weighted form, based on a kernel function.
Next, the smoothed particle hydrodynamics (SPH) is adopted to detect coherent regions. Finally, the detected coherent
regions are refined to remove the effects of oversegmentation. We perform extensive experiments on three benchmark
datasets and compare the results with 10 state-of-the-art coherency detection methods. Our results show that DIHM
achieves superior coherency detection and outperforms the compared methods in both pixel level and coherent region
level average particle error rates (PERs), average coherent number error (CNE) and F-score.
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1. Introduction

Crowd flows represent movements of group of in-
dividuals that are pervasive in many real-world envi-
ronments. Automatic coherency detection in crowded
scenes is a challenging computer vision problem
[1][2][3] and is useful in effectively decomposing
scenes into meaningful parts. These parts can be ex-
ploited for automatic anomalous events detection and
recognition.

The coherency and density of crowd are correlated.
A uniform density over time represents a coherent flow
of crowd. The coherency changes with the chang-
ing density flowing in multiple directions. Previous
works [4][5][6][19][21] assumed that the level of move-
ment remains uniform in a crowded scene. This means
that the coherency of both low-density and high-density
crowd flows remain consistent over time. However, this
assumption may not hold in many real-world scenarios
where the density of people is changing over time. For
example, high density of pedestrians on a pedestrian
pathway can be observed during office hours whereas
the same density reduces in later hours.

To address these challenges, we propose a density
independent hydrodynamics model (DIHM) to locally

model the movement of crowd without distinguishing
pedestrians individually. Our proposed DIHM is based
on smoothed particle hydrodynamics (SPH) [9], which
is extensively used to solve fluid dynamics problems
[10][11][12][13]. Our motivation for the SPH directly
comes from the observation that the crowd flows in
videos resemble fluid flows. In fact, SPH models both
compressible and incompressible liquids, which implies
that it is independent of changes in the volume. Consid-
ering these capabilities of the SPH, DIHM models co-
herent regions in the crowd and can cope with the den-
sity of people that varies over time.

We consider each moving object as part of the crowd
and non-moving objects or groups of people as a back-
ground. Our proposed DIHM method is depicted in Fig.
1. Firstly, we extract a motion flow field from the video
using the Farnebäck optical flow technique [14]. We
then incorporate the enthalpy model [15] to remove the
static particles that do not contribute to the detection of
coherency. Subsequently, the orientation information of
the particles is collected where each particle represents
the location of a pixel. Secondly, the coherent regions
in the scene are detected by employing the SPH model.
Finally, to consolidate and to refine the coherency de-
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Figure 1: Illustration of the proposed method. Each par-
ticle represents the position of a pixel. For the sake of
visualization, only a limited set of particles are over-
laid on the frame. Particle of interest collection removes
static particles associated with non-motion regions. The
retained particles are used to detect coherency in the
next steps.

tection, an unsupervised, robust and efficient multilayer
spectral clustering (MLSC) [16] is exploited to group
regions that are coherent both in appearance and mo-
tion. Thus, the overall framework renders more consis-
tent coherency detection.

Our main contributions include the development
of a novel density independent hydrodynamics model
(DIHM) in conjunction with the enthalpy model for im-
proved crowd coherency detection. One of the major at-
tractions of the DIHM is its capability to handle chang-
ing density over time. To the best of our knowledge,
we are the first to propose these models for coherency
detection. Moreover, we extensively evaluate the pro-
posed method on three benchmark datasets and com-
pare our results with 10 state-of-the art methods. Our
results show that the proposed method significantly out-
performs all 10 state-of-the-art methods both qualita-
tively and quantitatively. Preliminary results of our pro-
posed work on a few video sequences were presented
in [17][18] where we detected only traffic accident [17]
and dominant flows [18].

To evaluate the performance of the DHIM, we com-
pare the results with 10 state-of-the-art coherency detec-
tion methods including the lagrangian particle dynamics
(LPD) [4], the mixtures of dynamic textures (MDT) [5],
the motion segmentation in crowds (MSC) [19], the
spatio-temporal model (STM) [20], the local trans-

lation domain (LTD) [21], the detection of coher-
ent motion (DCM) [22], the collective motion de-
tection (CMD) [23], the segmentation based on dy-
namic system (SDS) [24], the trajectory clustering ap-
proach (TCA) [25], and the thermal diffusion process
(TDP) [6]. Our results show that the DIHM achieves
superior coherency detection. Moreover, our proposed
DIHM outperforms the compared methods in both pixel
level and coherent region level analysis in terms of aver-
age particle error rates (PERs), average coherent num-
ber error (CNE) and F-score.

The rest of the paper is organized as follows. In Sec-
tion 2, an overview of related work is provided. The
proposed method is presented in Section 3. Experimen-
tal results on the benchmark datasets are shown in Sec-
tion 4 and the conclusion is presented in Section 5.

2. Related work

Since the methods for crowd coherency detection and
anomaly detection are related to each other, we divide
both of them into three broad categories based on the
density of crowd. The methods targeting a maximum of
two individuals are categorized as individual level anal-
ysis. Similarly, the methods targeting 15 and more than
15 individuals are grouped under the terms low den-
sity flow analysis and high density flow analysis, respec-
tively. Table 1 summarizes the methods covered in this
section according to their category, features and models
used for representing coherency detection and anomaly
detection, as well as the datasets on which these meth-
ods are evaluated.

In the individual level analysis category, Poling et al.
[26] use nonlinear embedding of two-view point cor-
respondences into a 9-dimensional space and identify
the different motions by partitioning lower-dimensional
subspaces. Narayana et al. [27] use optical flow orien-
tations instead of the complete vectors and exploit the
well-known property that under camera translation, op-
tical flow orientations are independent of object depth.
They introduce a probabilistic model that automatically
estimates the number of observed independent motions
and results in a labeling that is consistent with real-
world motion in the scene. Shi et al. [28] exploit dis-
crete cosine transform and a two-stage clustering strat-
egy for tracked points to facilitate division of incom-
plete and corrupted trajectories against severe data miss-
ing and noises. Rahmati et al. [29] integrate prior
knowledge in the form of weak labeling into motion
segmentation. Using the example of Cerebral Palsy de-
tection, motion patterns of infants are segmented into
the different body parts by analyzing body movements.
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Qin et al. [30] combine the region saliency based on en-
tropy rate superpixel with the affinity propagation clus-
tering algorithm to get seeds in an unsupervised manner,
and use random walks method to obtain the coherency
results. Zhang et al. [31] use line integral convolution
and information entropy to segment the binarization im-
age where the size of the crowd is estimated by least
squares fitting to count the number of individuals in a
crowd. Wu et al. [32] propose a convex texture image
segmentation model by extracting Gabor features and
gray level co-occurrence matrix. Then, these features
are fused together to effectively construct a discrimina-
tive feature space by concatenating with each other. Li
et al. [33] deal with challenges in the motion segmen-
tation problem, including perspective effects, missing
data, and unknown number of motions. The 3-D motion
segmentation is first formulated from two perspective
views as a subspace clustering problem. It then com-
bines the point correspondence information across mul-
tiple image frames via a collaborative clustering stage.

In the low density flow analysis category, Ma et
al. [19] propose spatio-temporal framework for mo-
tion segmentation in crowds (MSC). For this purpose,
each local spatio-temporal patch is modeled as a dy-
namic texture. Huerta et al. [34] propose a tempo-
ral difference algorithm for objects segmentation. They
fuse the knowledge from the color, edge and intensity
to solve not only global and local illumination changes
but also the camouflage in intensity. Mumtaz et al.
[35] propose a motion segmentation approach that con-
sists of a set of location-specific dynamic texture com-
ponents, for modeling local background motion, and a
set of global dynamic texture components, for modeling
consistent foreground motion. For this purpose, an EM
algorithm is derived and spatial constraints are applied
using markov random field. Li et al. [20] use a spatio-
temporal model (STM) to perform group motion seg-
mentation. They analyze motion trajectories of multiple
objects to extract consistent segments. Chan et al. [5]
use the mixtures of dynamic textures (MDT) which is
a spatio-temporal generative model for modeling, clus-
tering and segmenting videos. For this purpose, video
sequences are represented as observations from a linear
dynamical system.

High density flow analysis methods treat the entire
scene as a single entity, and are usually capable of ob-
taining coarser-level information, such as the identifica-
tion of the main flow, disregarding local and finer in-
formation. In high density flow analysis for coherency
detection, Ali et al. [4] propose a lagrangian particle
dynamics (LPD) approach to detect the coherent flows.
For this purpose, they use the Finite Time Lyapunov

Exponent [36] to extract the boundaries between differ-
ent flow regions in the scene. Zhou et al. [22] pro-
pose coherent filtering for the detection of coherent mo-
tion (DCM) based on background clutters. Wu et al.
[21] propose local-translation domain model (LTD). In
this model, they transform the problem of crowd mo-
tion segmentation into a problem of scattered motion
field segmentation. The optical flow is computed at
the salient locations and is subsequently used to derive
the evolution of segment boundaries using the Gateaux
derivative of an objective function. Wu et al. [23] in-
troduce collective motion detection (CMD) approach to
characterize the global consistency for coherency detec-
tion. Zhang et al. [24] perform segmentation based on
dynamical systems (SDS). Sharma et al. [25] propose
a trajectory clustering (TCA) approach for segmenting
crowd flow patterns. The purpose of trajectories is to
capture the temporal evolution of each region. Wang et
al. [6] exploit thermal diffusion process (TDP) to cap-
ture motion correlation among particles. Then a two-
step clustering technique is used to detect the coherent
regions.

Once the coherent regions are detected, it is also
possible to detect anomalous events occurring within
the flows. Most of the methods for anomaly detection
fall under the category of high density flow analysis.
Mehran et al. [40] detect abnormal events in terms of es-
cape panics by exploiting the social force model. Wang
et al. [43] develop the high-frequency spatio-temporal
(HFST) features to detect both global and local abnor-
mal behaviors. The wavelet transform is applied to the
plane in the cuboid considering Latent Dirichlet alloca-
tion and Multiple Hidden Markov Models. Li et al. [38]
and Xu et al. [42] detect anomalies in terms of panic
situation and circulation of non-pedestrian entities, by
considering global and local spatio-temporal patterns.
A sparse reconstruction over the normal bases is pro-
posed by Cong et al. [44] to detect abnormal events.
Thida et al. [45] learn the spatial and temporal vari-
ations of local motions whereas Kaltsa et al. [37] in-
troduce histograms of oriented swarms combined with
histograms of oriented gradients. Li et al. [39] and Ma-
hadevan et al. [7] propose a joint detector of temporal
and spatial anomalies based on a video representation
that accounts for both appearance and dynamics, using
a set of mixture of dynamic textures models. Spatial
and temporal anomaly maps are defined at multiple spa-
tial scales that act as potentials of a conditional random
field that guarantees global consistency of the anomaly
judgments. Wu et al. [41] introduce the concepts of
potential destinations and divergent centers to construct
the corresponding class-conditional probability density
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Table 1: State-of-the-art methods for coherency and anomaly detection. The methods with no descriptions in the
Anomaly column are targeting only coherency detection. Methods targeting a maximum two individuals are under
the category of individual level analysis, methods targeting a maximum 15 individuals are under low density flow
analysis, and methods targeting more than 15 individuals are grouped under high-density flow analysis.

Ref. Category Features Model Anomaly Dataset

Narayana et al. [27] Motion Probabilistic – Hopkins
model SegTrack

Poling et al. [26] Subspace Global dimension – RAS
clustering minimization

Qin et al. [30] Individual Superpixel Region – BSD300
saliency Free 1000

Shi et al. [28] Trajectories Discrete cosine – Hopkins
transform Berkeley

Wu et al. [32] Gabor features Convex – Synthetic images
texture model Squirrel images

Chan et al. [5] Mixtures of Spatio- – Traffic videos
dynamic textures temporal model UCSD

Ma et al. [19] Motion Spatio-temporal – i-Lids

Huerta et al. [34] Low-density Color and Temporal – PETS2001
edge difference ATON

Li et al. [20] Motion Spatio- – GaTech
temporal model

Mumtaz et al. [35] Dynamic Markov – FBDynScn
textures random field

Ali et al. [4] FTLE Optical flow Instability UCF

Zhou et al. [22] Motion Spatio-temporal – UCF

Kaltsa et al. [37] Motion and HOS Non-pedestrian entities UCSD
appearance escape panic UMN

Wu et al. [23] Motion Clustering – UCF

Li et al. [38] High-density Spatio-temporal Unsupervised Non-pedestrian entities UCSD
patterns statistical escape panic UMN

Li et al. [39] Dynamic Joint Non-pedestrian entities UCSD
textures detector escape panic UMN

Mahadevan et al. [7] Dynamic Mixture Non-pedestrian entities UCSD
textures models

Mehran et al. [40] Motion Social force Escape panic UMN
magnitudes model

Wu et al. [41] Motion Bayesian Escape panic UMN
PETS2009

Xu et al. [42] Spatio-temporal Unsupervised Non-pedestrian UCSD
patterns statistical entities

Proposed Density Motion and DIHM – UCSD
PETS2009

independent orientation UCD
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functions of optical flow. The identified divergent cen-
ters indicate possible locations at which the unexpected
events occur. Krausz et al. [46] detect motion patterns
based on optical flow that characterize crowd behavior
in stampedes. Kim and Grauman [47] exploit a mixture
of probabilistic PCA models to characterize motion pat-
terns in the local volumes. Furthermore, a global infer-
ence by incorporating a Markov Random Field model is
applied to detect anomalies locally.

The SPH is used in different applications previously.
For example, Gloor et al. [48] consider the SPH for
pedestrian simulation. Cohen et al. [49] use the SPH
to simulate human swimming. Hieber et al. [50] use
remeshed smoothed particle hydrodynamics (rSPH) to
simulate human organs for computer aided surgery. In
the rSPH, human organs are modeled as linear vis-
coelastic solids. Raney et al. [51] describe the SPH for
the simulation of transportation. Cohen et al. [52] use
SPH based simulations to evaluate variants of the swim-
ming stroke technique. In competitive human swim-
ming the dolphin kick stroke i.e. underwater undulatory
swimming is used after dives. Unlike these methods,
we exploit the SPH model in conjunction with our novel
DIHM for crowd coherency detection.

3. Proposed Method

The proposed DIHM (Fig. 1) consists of three main
steps: particles of interest collection to remove static
particles, coherent region detection using the density in-
dependent hydrodynamics model and refining the co-
herent regions detection. These steps are explained in
detail in the following sections.

3.1. Particle of interest collection

We initialize particles over the video frame. The par-
ticle initialization represents the localization of pixel
positions uniformly spread over the video. We then
extract a motion flow field using the Farnebäck optical
flow technique [14]. For this purpose, we can use differ-
ent optical flow techniques. However, the Farnebäck op-
tical flow technique [14] does not assume the spatially
homogeneous structure of the scene. Therefore, it is ro-
bust to crowd dynamics. It is worth noticing that we are
only interested in the motile particles. To remove the
static particles associated with non-motion regions, we
explore an approach to retain only particles of interest
or motile particles.

In our proposed method, we consider crowd as a sys-
tem where the motion of the crowd scene is modeled
in terms of its energy. Therefore, we model the motion

patterns observed in a crowded scene through the en-
thalpy measure [15]. The attractive features of enthalpy
model are two-fold. Firstly, it takes into account the
motion information of the surrounding particles for the
purpose of retaining only motile particles. Secondly, a
compact threshold range between 0 − 1 is required for
removing the static particles instead of considering an
arbitrary threshold. To this end, the initialized particles
are tracked over time using the optical flow technique
[14]. Subsequently, we extract motion information from
each frame in terms of velocity magnitudes.

We employ the enthalpy model [15] to retain motile
particles that contribute to the coherency detection. In
our model, we capture the motion properties of each
particle by taking into account its neighborhood. In this
way, we treat particles as constituents (sub-populations)
of the large crowd, each having its own motion prop-
erties. We thus have the possibility to analyze the in-
teractive behavior between sub-populations, in the spa-
tial neighborhood, which have discriminative character-
istics represented by the enthalpy model:

H = U + pV (1)
where, U is the internal energy, p is the pressure, and

V is the volume of the system. The internal energy U
of a system is the energy contained within the system.
However, we use the kinetic energy ( 1

2 mv2) in term of
internal energy, since we are only interested in moving
particles. Pressure is defined as p = Force(F)/Area(A)
and Force is F = mass(m) ∗ acceleration(a). For ac-
celeration (a), we compute the average velocity 〈v〉 in
the spatial neighborhood over time. The area A repre-
sents the total number of particles in the spatial neigh-
borhood. Mass (m) and volume (V) of each particle may
be affiliated with its contribution in the corresponding
sub-population, in the spatial neighborhood. However,
we set them equal to 1 in our model to maintain consis-
tency. Thus, our enthalpy model is formulated as:

H =
1
2

mv2 +

(
∂〈v〉
∂t

) (
1
A

)
(2)

In Eq. (2), H is a threshold to remove static particles.
m, v, 〈v〉, and A are the mass, the temporal velocity, the
average velocity, and the area, respectively. We calcu-
late the temporal velocity in the consecutive frames.
Fig. 2 highlights the moving particles associated with
the motion regions using the enthalpy model.

3.2. Density independent hydrodynamics model
(DIHM) for coherency detection

Our proposed DIHM is based on the smoothed parti-
cle hydrodynamics (SPH) [9] which is a fluid dynamics
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Figure 2: Particle collection via the Enthalpy model.
Frame from a video sequence (first column). We can
clearly observe how particles that are associated with
the motion regions are preserved (second column).

based method. It has been used in many other fields in-
cluding astrophysics, volcanology, and oceanography.
The DIHM exploits a finite set of discrete particles to
represent the state of a system. This method deals with
fixed particles spatially and can evolve with the crowd
dynamics over time. Therefore, the coherency of crowd
flow can be naturally modeled using the DIHM. For this
purpose, we first collect the orientation information in
term of direction. Without loss of generality, we select
four different directions quantized with a step size of
90 degrees. We consider particles that are carried with
the crowd flow. Then we evaluate their contributions
through a weighted average based on smoothed kernel
function. Thus it allows encoding the crowd dynamics,
adaptively.

In the DIHM, we model the crowd flow into a set of
discrete elements in terms of particles. In fact, each par-
ticle is represented by its physical properties. In our
case, the physical properties of each particle are the
motion pattern and density. The former represents the
velocity magnitude and the latter represents the num-
ber of surrounding particles. Furthermore, these parti-
cles have a spatial distance, over which their properties
are smoothed by a kernel function. This means that the
physical properties of any particle can be modeled by
considering the relevant properties of all the particles
which lie within the range of the kernel. The contri-
butions of each particle are weighted according to their
distance from the particle of interest (central particle),
and their density. Mathematically, this is determined by
the kernel function K(rc−ri, λ) as formulated in Eq. (3).

K(rc − ri, λ) = |Kt(rc − ri, λ) − Kt−1(rc − ri, λ)|

Kt(rc − ri, λ) =
315

64π(λ)9 ((λ)2 − ‖rc − ri‖
2)3 (3)

where rc is the position of the central particle and ri is

the position of each surrounding particle. t and t−1 rep-
resent consecutive frames. In Eq. (3), λ is the smooth-
ing length that defines the influence area of the kernel
function K. In fact, the smoothing length λ presents
a set of neighboring particles associated with a central
particle under consideration. The kernel function is like
a basis function that is used to represent any quantity
by the summation of the quantities at the nearby points
multiplied by a weighting function. The kernel func-
tion is nonnegative, even, and monotonically decreasing
with the increase of distance from the central particle.
It determines the influence of particles on one another.
Therefore, it provides compact support that is controlled
by the influence area λ.

We model the DIHM by considering the Navier-
Stokes equation of motion as formulated in Eq. (4).

∂v
∂t

= −∇P + ρg + µ∇2V (4)

where ∇, P, ρ, g, µ, and V represent the derivative
operator, pressure, density, acceleration, viscosity, and
velocity, respectively. Temam et al. [53] designate the
three terms on the right hand side of Eq. (4) as the pres-
sure force Fpress(−∇P), the external force Fext(ρg) and
the viscous force Fvis(µ∇2V), which are formulated as:

Fpress =
∑
i∈N

miK(rc − ri, λ)

Fext =
∑
i∈N

mi∇K(rc − ri, λ)

Fvis =
∑
i∈N

miµv∇2K(rc − ri, λ)

(5)

The pressure force Fpress upholds the weighted mo-
tion pattern of all the particles in the scene. The vis-
cous force Fvis considers the contributions of spatial
correlation among the particles and the external force
Fext ensures that the particles with significant motion
magnitude receives more attention. In Eq. (5), m is
the mass of a particle, µ is the viscosity, and v is the
accumulated velocity of all the particles in the region.
We set the mass of each particle equal to 1 for consis-
tency. The viscosity at each time instant is calculated
as µ =

∑
i∈N |rc − ri| and the accumulated velocity is

calculated as v =
∑

i∈N(vrc + vri ). ∇K(rc − ri, λ) and
∇2K(rc − ri, λ) are the gradient and the Laplacian of the
kernel function K(rc − ri, λ) as formulated in Eq. (6).
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∇K(rc − ri, λ) =
−45
π(λ)6 (λ − ‖rc − ri‖)2 rc − ri

‖rc − ri‖

∇2K(rc − ri, λ) =
45
π(λ)6 (λ − ‖rc − ri‖)

(6)

Considering the three forces, Eq. (4) can be formu-
lated as

∂v
∂t

= Fpress + Fext + Fvis (7)

Eq. (7) can be rearranged as formulated in Eq. (8)

(
∂v
∂t

Fpress
− 1)K =

Fvis

Fpress
+

Fext

Fpress
K (8)

The term (
∂v
∂t

Fpress
−1)K represents the motion dynamics

that models the DIHM magnitude. Thus, to detect a
coherent region in the crowd flow, the DIHM magnitude
using the three forces is formulated in the Eq. (9)

DIHMMag =
Fvis

Fpress
+

Fext

Fpress
K (9)

The DIHM magnitude DIHMMag in Eq.(9) changes
as a function of the pressure, external and viscous
forces. Particles satisfying Eq. (9) construct coherent
regions R = [r1, r2, ..., rM]. However, the orientation
information of each particle is used as a prior. It means
that surrounding particles are considered in the coherent
region, only if their direction of motion correlate with
the direction of central particle as depicted in Fig. 3.
In fact, we consider the particles one by one starting
from the top left corner of a frame. Each particle under
consideration at a given time is the central particle. We
calculate the DIHM magnitude for each central particle.
If the DIHM magnitude for a central particle fall in the
range from 0 to 1 that means the central particle satisfies
Eq. (9). A central particle satisfying Eq. (9) would con-
struct a coherent region. If the DIHM magnitude does
not fall in this range, the central particle either belongs
to the background or it could be the neighboring particle
of any other central particle. Furthermore, once a set of
particles are determined to be the neighboring particles
of a central particle, they are not associated with any
other central particle. It means that a set of neighbor-
ing particles linked with a central particle would not be
analyzed again for another central particle.

The ease with which our proposed DIHM can cope
with the changing crowd densities, as well as an auto-
matically adaptive nature, are unmatched in other meth-
ods [4][5][6][19][21]. Our DIHM is based on the SPH

Figure 3: Synthetic example of coherent region (left col-
umn), moving particles are grouped together using the
proposed DIHM method (right column).

which is a mesh-free method. The mesh-free method is
based on interaction of each particle with all its neigh-
bors. Each particle can have variable number of neigh-
bors. Due to the mesh-free nature, SPH can easily deal
with complicated physical layout of crowd scenes and
different regions of crowd that are completely irregular
in term of densities.

To circumvent the unwanted effects of changing den-
sity, the key is to consider the correlations among parti-
cles to represent coherent regions in crowd scenes. Our
DIHM explores the correlation of structures in crowd
scenes from particle level to crowd level. This is to
mitigate the effects of the changing density for an ef-
fective crowd coherency detection. The utilization of
our modeling obviates the difficulty to segregate par-
ticles in crowd due to the variation of crowd density
over time. For this purpose, the evolution of bound-
aries of different coherent regions is derived from the
kernel function K(rc − ri, λ) of our model. Our DIHM
model acquires optimized boundary adherence of coher-
ent crowd regions due to the three forces (Fpress, Fext

and Fvis). Since our proposed DIHM is leveraging on
the kernel function and the three forces, conformation
to varying crowd densities is achieved.

3.3. Refining the detected coherent regions
To refine the coherency detection, different meth-

ods can be mulled over. However, we consider the
MLSC [16] which is an unsupervised method driven by
low computational overheads. Additionally, the method
takes into account the coherency in terms of both ap-
pearance and motion. For this purpose, the MLSC
exploits three types of neighborhood affinities namely
intra-frame, inter-layer, and inter-frame. The intra-
frame affinity means that regions sharing a common
boundary within a frame may be connected. The inter-
layer affinity means that regions from the same frame
but in adjacent layer may be neighbors as well. Sim-
ilarly, the inter-frame affinity states that regions at the
same layer but in consecutive frames may be connected
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by edges representing the temporal relation. In our case,
the MLSC is governed by the coherent regions detected
by our proposed DIHM. It means that the MLSC per-
forms on the initial coherency information. This initial
information is provided to the MLSC in terms of de-
tected coherent regions by the DIHM.

The MLSC [16] method combines both spatial and
temporal consistencies that depend on the graph struc-
ture and affinities in terms of edge weights. Moreover,
it is based on the layer extraction [54][55] that seg-
ments regions first, and matches different presegments
across the consecutive frames. Each presegment corre-
sponds to a vertex in the graph. The inter-layer affini-
ties put together coarse but stable information, and the
affinities between consecutive frames can provide lo-
cal grouping cues across temporal range. Subsequently,
the obtained affinities are used to get the coherency of
the crowd flow. Each layer corresponds to the initial
segmentation in the multi-layer graph G∗ = (V∗, E∗).
The nodes V∗ = ∪{V (l)

t }
l=1...L
t=1...T are the union of multi-

parametric presegment of a video clip, where the node
subset V (l)

t corresponds to Q(l)
t image segments of frame

t in layer l. The undirected edges in the graph G∗ are
considered based on the aforementioned three types of
neighborhood affinities. According to the intra-frame
neighborhood affinity, regions ri and r j sharing a com-
mon boundary within a frame at the same layer are con-
nected. The similarity between the regions is measured
as a Gaussian function of the χ2 distance between their
histogram features as formulated in Eq. (10),

wi j = exp(−τ·Dχ(gc(ri), gc(r j))), r j ∈ Qs(ri)) (10)

where gc(ri) and gc(r j) are the color histograms. The
τ is a constant controlling strength of the weight, and
Qs(ri) is the spatial neighborhood of region ri. Re-
gions from the same frame in the adjacent layers may
be neighbors. Therefore, the affinity between a lower-
layer region rk and its neighboring higher-layer region
rp is formulated in Eq. (11).

wkp =
| r̃k ∩ rp |

| rk |
(11)

where r̃k is the spatial correspondence region of rk

and | rk | is the number of pixels in region rk. The affin-
ity between regions at the same layer but in consecutive
frames resort to similarity between their contour shapes
[56] since neighboring region boundaries render impor-
tant information. The similarity between r j and its tem-
poral neighbor rq is formulated in Eq. (12).

w jq = exp(−β·Dχ(gs(r j), gs(rq))), rq ∈ Qt(r j)) (12)

To sum up, the edge weights in the multi-layer graph
can be formulated in Eq. (13).

w?
i j =


z1exp(−τ·Dχ(gc(ri), gc(r j))), r j ∈ Qs(ri)
z2
|r̃i∩r j |

|ri |
, r j ∈ Ql(ri)

z3(1 − 1
2 Dχ(gs(ri), gs(r j))), r j ∈ Qt(ri)

0, otherwise
(13)

where z1, z2, and z3 are parameters to balance the
weights and their sum equals to unity. τ and β vanish
away due to the redundancy with z1 and z2. The degree
matrix D of the affinity matrix W = [w∗i j] is a diagonal
matrix with d =

∑
j Wi j, and the normalized affinity ma-

trix L = D−1W. The final coherency is obtained from
the clustering result of the lowest subgraph, which is
more coherent and keeps necessary information.

4. Experimental results

We evaluate the performance of our proposed DIHM
method for coherency detection on three datasets. These
include the publicly available benchmark PETS2009
[57], UCSD [7] and our UCD [58] datasets. The
PETS2009 dataset consists of low-density to high-
density crowd sequences presenting different activities
for people tracking, flow analysis, and event recogni-
tion. We consider all the views (View1 to View4) from
both L1 and L2 subsets from PETS2009 dataset. The
UCSD dataset consists of two subsets, ped1 and ped2,
corresponding to two different views. Both subsets rep-
resent surveillance videos captured by a fixed camera
overlooking pedestrian walkways. In Ped1, people are
moving towards and away from the camera, with some
perspective distortion and ped2 contains videos of peo-
ple moving parallel to the camera. The resolutions of
Ped1 and Ped2 are 158x238 and 240x360, respectively.
The normal event appearing in the dataset is sequences
of pedestrians on the walkways, with a varying density
from sparse to very dense. The non-pedestrian entities
include cyclists, skaters, vehicles, people walking on
a lawn. The appearance of all non-pedestrian entities
occurs naturally, i.e., they were not staged or synthe-
sized for data set collection. The video footage of each
scene is divided into clips of 120-200 frames. The UCD
dataset contains four low-density video sequences rep-
resenting flows of students moving outdoors across two
buildings.
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Figure 4: Ground truth (Pixel-based). First row shows
input frames from the PETS2009, UCSD and UCD
datasets, respectively. The second row shows the corre-
sponding ground truth obtained using RATSNAKE an-
notation tool [59].

We compare the performance of our proposed DIHM
method with 10 closely related state-of-the-art ap-
proaches: the lagrangian particle dynamics (LPD) [4],
the mixtures of dynamic textures (MDT) [5], the
motion segmentation in crowds (MSC) [19], the
spatio-temporal model (STM) [20], the local trans-
lation domain (LTD) [21], the detection of coher-
ent motion (DCM) [22], the collective motion de-
tection (CMD) [23], the segmentation based on dy-
namic system (SDS) [24], the trajectory clustering ap-
proach (TCA) [25], and the thermal diffusion process
(TDP) [6]. For quantitative evaluation of coherency de-
tection, the average particle error rates (PERs) and the
average coherent number error (CNE) are calculated to
measure the overall accuracy according to the TDP ap-
proach [6]. Additionally, we also calculated the F-score
as a performance measure for comprehensive analysis.

The segmentation masks are annotated and compared
against the ground-truth mask. We have manually an-
notated individuals and coherent regions in each video,
from all three datasets, using the RATSNAKE annota-
tion tool [59]. It is worth noticing that the annotation
of all the three datasets for ground truth generation is
a subjective task. Therefore, we requested 20 partici-
pants to annotate all the three datasets for both the pixel-
level and coherent region-level analysis. For pixel-level,
we calculated the ground truth for each video sequence
by taking the intersection of all the 20 annotations. It
means that we consider a pixel in the ground truth if
it is annotated by all the 20 participants. For coher-
ent region-level, we consider the ground truth for each
video sequence where majority of the participants came
up with the same annotation. It means that a region is

Figure 5: Ground truth (Coherent region-based). First
row shows input frames from the PETS2009, UCSD and
UCD datasets, respectively. The second row shows the
corresponding ground truth obtained using RATSNAKE
annotation tool [59].

considered coherent if it is annotated by the majority of
the participants. For example, the input video frames
and the ground truth video frames (annotations of indi-
viduals for pixel-level analysis), from the PETS2009,
UCSD, and UCD datasets, are shown in the top and
bottom rows of Fig.4, respectively. Similarly, the in-
put video frames and the ground truth video frames
(annotations of coherent regions for region-level analy-
sis), from the PETS2009, UCSD, and UCD datasets, are
shown in the top and bottom rows of Fig.5, respectively.
The same annotation tool is used to generate the bi-
nary masks for the reference methods and the proposed
method. To calculate the PERs, CNE, and F-score, we
annotated each tenth frame of each video sequence since
the annotation process is very time consuming.

The qualitative performance of our proposed method
is presented in Fig. 6. Results for one sequence
from each dataset are presented. The first, second,
and third rows depict results for the reference methods
and our method for the PETS2009, UCSD, and UCD
datasets, respectively. For the purpose of visualization,
the frames are overlaid by color segmentation results.
First column presents the sample frames taken from the
original video sequences, while second to last columns
illustrate the results obtained using the LPD [4], the
MDT [5], the MSC [19], the STM [20], the LTD [21],
the DCM [22], the CMD [23], the SDS [24], the TCA
[25], the TDP [6], and the proposed approach, respec-
tively. It can be seen that our method detects coherent
regions accurately in all rows of the last column. The
LPD [4], the MDT [5], the CMD [23], the SDS [24],
and the TDP [6] resulted in over-segmentation. The
LPD [4] segments the motion also when the boundaries
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Figure 6: Comparison of DIHM with the state-of-the-art coherency detection methods: First column of each row
represents input frames (I. Frames) from PETS2009, UCSD and UCD, respectively. The proposed DIHM achieves
more refined and accurate segmentation. Moreover, the effects of oversegmentation are also minimized compared to
other methods.

in the optical flow field are not consistent. In fact, when
the optical flow computation is not accurate due to the
lack of coherence in motion, the boundaries may be dis-
continuous. Furthermore, the merge operation based on
Lyapunov divergence is mainly suitable for combining
adjacent segments, resulting also in this case in over-
segmentation when the density of crowd changes over
time. The MDT [5] and the MSC [19] cannot decom-
pose videos into coherent regions due to its inability to
take into account the dynamic nature of the underlying
motion. In fact, it is important to capture the dimensions
along which the video is statistically homogeneous to
avoid over-segmentation. The coherent filtering of the
DCM [22], the collective density clustering of the CMD
[23], and the similarity calculation method of the SDS
[24] merge inconsistent regions. Therefore irregular
segments in the crowded scenes are constituted. The
pixel-wise segmentation process of the TCA [25] can-
not cope with the temporal evolution of the coherent re-
gions. Therefore, large segments in the crowded scenes
are produced. The TDP [6] uses the diffusion process to
consolidate the motion flow field. However, the process
also merges the static or non-motion regions, thus los-
ing coherency. The LTD approach [21] and the STM ap-
proach [20] cannot handle the coherence and accuracy
of the optical flow field in case of varying crowd mo-
tion. Furthermore, the LTD [21] and the TDP [6] cannot
properly propagate consistent motion information to the
neighboring regions using the thermal diffusion process
and the local translation domain modeling, respectively.

For quantitative performance, we calculated the aver-
age PERs, CNE, and F-scores for the three datasets and
reported them in Table 2, Table 3, and Table 4, respec-
tively. We outperform all the reference methods due to
strong capability of DIHM to detect coherent regions.
Thanks also to the enthalpy model for collecting par-
ticle of interest and removing particles associated with
static regions. Our method results in smaller PERs and
CNE errors for the three datasets as shown in Table 2,
and Table 3, respectively. All the reference methods
ignore change in the crowd flow that holds only if the
flow is consistent over time. As the flow changes from
higher density to lower density or vice versa, the perfor-
mance declines. In fact, such changes result into differ-
ent disconnected regions, thus depriving of coherency.
Moreover, our method shows higher average F-scores
comparing against the reference methods for the three
datasets as shown in Table 4. The reference methods
cannot handle many-fold flows representing different
dynamic pieces in a scene. The lowest performance of
the LPD [4] is due to the the FTLE field that cannot
partition the significant differences in the coherent re-
gions. Also, the reference methods cannot handle the
condition when new flow emerges rapidly since accom-
modating the new change with the available information
does not exist.

4.1. Density independence of our proposed DIHM
In real-world scenarios the crowd density changes

over time. Therefore, it is significant to cope with the
effect of changing density to detect the coherency. The
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Table 2: Quantitative analysis. The average particle error rates (PERs) for the reference methods and our proposed
method for the three datasets, PETS2009, UCSD, and UCD, are presented.

Datasets LPD[4] MDT[5] MSC[19] STM[20] LTD[21] DCM[22] CMD[23] SDS[24] TCA[25] TDP[6] Prop. DIHM
PETS2009 37.27 13.98 22.35 35.77 19.78 15.48 34.11 21.35 22.28 33.10 10.86

UCSD 40.29 18.35 28.45 36.48 22.82 18.02 38.43 24.58 21.19 37.34 13.10
UCD 41.82 17.46 26.07 38.94 23.66 16.87 36.98 22.97 20.48 36.87 11.56

Average 39.79 16.59 25.62 37.06 22.08 16.79 36.51 22.96 21.32 35.77 11.84

Table 3: Quantitative analysis. The average coherent number error (CNE) for the reference methods and our proposed
method for the three datasets, PETS2009, UCSD, and UCD, are presented.

Datasets LPD[4] MDT[5] MSC[19] STM[20] LTD[21] DCM[22] CMD[23] SDS[24] TCA[25] TDP[6] Prop. DIHM
PETS2009 6.72 3.15 5.05 4.88 3.11 3.18 5.99 4.12 4.76 6.55 2.00

UCSD 7.81 3.74 5.66 5.01 3.89 3.79 6.07 4.64 4.59 6.96 2.63
UCD 7.96 3.63 4.98 5.74 3.56 3.44 5.87 4.96 4.09 7.48 2.44

Average 7.49 3.51 5.23 5.21 3.52 3.47 5.98 4.57 4.48 6.99 2.36

Table 4: Quantitative analysis. F-scores for the reference methods and our proposed method for the three datasets,
PETS2009, UCSD, and UCD, are presented.

Datasets LPD[4] MDT[5] MSC[19] STM[20] LTD[21] DCM[22] CMD[23] SDS[24] TCA[25] TDP[6] Prop. DIHM
PETS2009 0.27 0.40 0.29 0.28 0.38 0.37 0.26 0.30 0.28 0.32 0.44

UCSD 0.29 0.39 0.28 0.32 0.40 0.39 0.28 0.27 0.28 0.33 0.43
UCD 0.28 0.40 0.29 0.31 0.42 0.39 0.24 0.30 0.31 0.35 0.45

Average 0.28 0.39 0.29 0.30 0.40 0.38 0.26 0.29 0.29 0.33 0.44

state-of-the-art methods ignore this effect since over-
coming this effect of changing density is a challenging
problem. We propose the DIHM method that absorbs
the effect of changing density seamlessly. To illustrate
this fact, three frames (L1, View1, frame number 13, 46,
and 86) from a video sequence of PETS2009 dataset are
depicted in Fig. 7. Comparing to the first column, the
density changes in the second column. Similarly, the
density changes in the third column comparing to the
second column. We also consider three frames from a
video frame from both UCSD (ped2, video sequence 1,
frame number 10, 71, and 116) and UCD (Video se-
quence 1, frame number 146, 272, and 342) datasets.
We then calculate the PERs, CNE, and F-score for the
three frames from each video sequence and reported
them in Table 5. The PERs, CNE, and F-score are pre-
sented in the columns and the frames are presented in
the rows of each cell of the Table 5. It can be seen
that our proposed DIHM method presents significant

Figure 7: Density independence of our DIHM. A con-
sistent set of people are shown in the first column. The
density changes in the second and third column.

performance comparing against the reference methods
when the density is changing in case of second and third
frames of each video sequence for all the three datasets.

4.2. Sensitivity Analysis

To demonstrate the robust performance of our ap-
proach for the three datasets, we tested our method us-
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Table 5: Density independence of our DIHM. The PERs, CNE, and F-scores (shown in columns of each cell of
the Table) for the three frames (in rows of each cell of the Table) of each video sequence from the three datasets,
PETS2009, UCSD, and UCD, are presented.

Datasets LPD[4] MDT[5] MSC[19] STM[20] LTD[21] DCM[22] CMD[23] SDS[24] TCA[25] TDP[6] DIHM

PETS 35-6.0-.29 14-2.5-.42 22-5-.31 34-4-.30 19-2.6-.39 15-2.2-.38 33-5-.28 19-3-.31 20-4-.30 31-5.4-.34 9.5 -2-.45
2009 38-7.5-.26 16-3.7-.39 23-6-.28 37-6-.25 21-3.7-.36 17-3.3-.36 35-7-.27 22-4-.29 22-5-.28 35-6.9-.30 10 -2-.45

39-7.0-.25 15-3.9-.40 23-5-.27 38-5-.28 21-3.6-.36 19-3.6-.35 34-6-.26 21-4-.29 23-5-.27 35-7.0-.29 9.8 -2-.46

UCSD
40-7.9-.30 16-3.0-.41 26-5-.30 34-4-.34 20-3.0-.42 17-3.0-.41 36-5-.30 22-4-.29 19-4-.30 35-6-.35 12-2-.44
42-8.5-.28 19-4.1-.38 27-5-.29 36-5-.30 23-4.2-.40 19-4.3-.38 38-6-.28 25-5-.26 21-4-.29 37-7-.33 13-2-.43
43-8.9-.28 18-4.0-.38 27-4-.29 37-5-.29 23-4.3-.39 21-4.5-.37 38-6-.28 24-5-.27 22-5-.28 36-7-.32 12-2-.44

UCD
39-7.2-.31 16-3.4-.41 29-6-.29 39-5-.33 22-3.0-.42 16-2.9-.42 35-5-.26 21-4-.33 19-3-.33 33-7-.37 12-2.8-.45
43-9.1-.27 19-4.1-.39 27-6-.27 42-6-.30 25-4.2-.30 19-3.8-.39 39-6-.23 25-5-.28 21-4-.30 37-8-.33 11-2.3-.46
41-8.4-.28 17-3.9-.40 27-6-.26 41-6-.31 25-4.5-.30 19-3.7-.38 36-5-.23 24-5-.29 19-3-.30 39-8-.32 11-2.2-.45

Table 6: Configuration set. For sensitivity analysis for our proposed method, 20 different configurations are listed
based on enthalpy threshold (H), neighboring area (A), smoothing length (λ), DIHM magnitude (DM), MLSC param-
eters (z1, z2, z3), and the particle grid (PG). In the neighboring area (A) and particle grid (PG), 3x and 0x represent
3x3 and 0x0, respectively.

Param. C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20
H .1 .2 .3 .4 .5 .6 .7 .8 .9 1 1 .9 .8 .7 .6 .5 .4 .3 .2 .1
A 3x 5x 7x 9x 11x 13x 15x 17x 19x 21x 3x 5x 7x 9x 11x 13x 15x 17x 19x 21x
λ 2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20

DM .1 .2 .3 .4 .5 .6 .7 .8 .9 1 1 .9 .8 .7 .6 .5 .4 .3 .2 .1
z1 .1 .2 .3 .4 .8 .7 .6 .5 .4 .2 .2 .4 .5 .6 .7 .8 .4 .3 .2 .1
z2 .2 .3 .4 .5 .1 .2 .3 .3 .3 .4 .4 .3 .3 .3 .2 .1 .5 .4 .3 .2
z3 .7 .5 .3 .1 .1 .1 .1 .2 .3 .4 .4 .3 .2 .1 .1 .1 .1 .3 .5 .7
PG 0x 1x 2x 3x 4x 5x 6x 7x 8x 9x 9x 8x 7x 6x 5x 4x 3x 2x 1x 0x

ing 20 different parameter configuration set as listed in
Table 6. These configurations are encoded in the ex-
periments considering different enthalpy thresholds (H),
neighboring areas (A), smoothing lengths (λ), DIHM
magnitudes (DM), MLSC parameters (z1, z2, z3), and
particle grid (PG). All these parameters are indepen-
dent of each other and their values are chosen randomly.
For this purpose, 10 different neighboring areas (A) and
smoothing lengths (λ) are taken into account where the
enthalpy threshold (H) and the DIHM magnitude can be
varied in the range from 0 to 1. Additionally, 10 differ-
ent MLSC parameter configurations (each sum equals to
unity) are listed. In the neighboring area (A) and parti-
cle grid (PG), 3x and 0x represent 3x3 and 0x0, respec-
tively. We use this compact representation due to space
limitation. The PG 0x means that we are using all pixel

positions. Similarly, 1x means one pixel gap between
two consecutive particles both vertically and horizon-
tally. To this end, 0x is a dense PG and 9x is a sparse
PG.

In Figure 8, gradual improvements in the perfor-
mances in term of PERs can be noticed from configura-
tion C1 to C4, and configuration C11 to C14 for all the
three datasets. However, declines in the performances
are significant from configuration C4 to C10 and config-
uration C14 to C20. In Figure 9 and Figure 10, similar
changes in the performances for the same configurations
can be noticed for CNE and F-score for all the datasets,
respectively. In configuration C1 to C4 and configura-
tion C11 to C14, expanding the neighboring area (A)
from 3x3 to 9x9 and the smoothing length (λ) from 2 to
8 improve the performance. Hence, it is worth to con-
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Figure 8: Particle error rates. Average PERs for our proposed method for the three datasets, PETS2009, UCSD, and
UCD, are presented. The variations in the results for all the three datasets are not significant except from C4 to C5,
C10 to C11, C14 to C15. The declines in the performances from C4 to C10 and C14 to C20 are due to the changes in
the neighboring area (A), the smoothing length (λ), and the particle grid (PG).

Figure 9: Coherent number error. Average CNE for our proposed method for the three datasets, PETS2009, UCSD,
and UCD, are presented.The variations in the results for all the three datasets are not significant except from C4 to C5,
C10 to C11, C14 to C15. The declines in the performances from C4 to C10 and C14 to C20 are due to the changes in
the neighboring area (A), the smoothing length (λ), and the particle grid (PG).

sider more neighboring particles. However, the perfor-
mance declines by expanding the neighboring area (A)
from 9x9 to 11x11 and smoothing length (λ) from 8 to
10, as shown in the configuration from C4 to C5 and
C14 to C15. In fact, the particles located far away do
not influence the coherency of the central particle. Sim-
ilarly, changing the particle grid (PG) from 0x0 to 3x3
does not change the performance significantly. How-
ever, changing it from 3x3 to 9x9 declines the perfor-
mance. Therefore, the performance of our method does
not change significantly by changing other parameters
except the neighboring area (A), the smoothing length
(λ), and the particle grid (PG).

4.3. Computational complexity
The computational complexity of our DIHM method

and 10 reference methods are provided in Table 7. The
complexity in term of average number of seconds per
frame over all the datasets is calculated. It turns out that
the TDP [6] and the MDT [5] requiring 28 seconds and

26 seconds per frame are very slow due to high pro-
cessing requirements. The STM [20], the CMD [23],
and our proposed DIHM process each frame in 04 sec-
onds on average. The DCM [22] processes each frame
in 03 seconds on average at the cost of coherency detec-
tion performance. Thus, our proposed DIHM method
presents comparable performance with the DCM [22]
in term of computational complexity.

All experiments are conducted on a 16GB RAM com-
puter with a 3.5 GHz CPU, running the algorithms on
a C++ platform. It is worth noticing that these algo-
rithms are not optimized. Therefore, the computational
complexities of these methods can be reduced with op-
timized implementation.

4.4. Limitations of our method
Our proposed method performs coarse-level instead

of fine-level segmentation. The fine-level segmentation
is necessary to segment moving objects subject to their
motion in order to distinguish them. However, crowded
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Figure 10: F-score. Average F-score for our proposed method for the three datasets, PETS2009, UCSD, and UCD,
are presented. The variations in the results for all the three datasets are not significant except from C4 to C5, C10 to
C11, C14 to C15. The declines in the performances from C4 to C10 and C14 to C20 are due to the changes in the
neighboring area (A), the smoothing length (λ), and the particle grid (PG).

Table 7: Computational overheads. The computational
complexity of the reference methods and the proposed
DIHM method are listed in term of number of seconds
required to process a video frame.

Methods Sec. per frame Methods Sec. per frame

LPD [4] 21 CMD[23] 04
MDT [5] 26 SDS[24] 05
MSC[19] 19 TCA[25] 07
STM [20] 04 TDP [6] 28
LTD [21] 05 Proposed

04
DCM[22] 03 DIHM

scenes consist of different occluded objects sharing sim-
ilar movement patterns. In such situations, modeling the
movement of each individual is hard as well as worth-
less if the interest is lying in the movement of crowd
as a whole. Therefore, coarse-level segmentation in
crowded scenes renders sufficient information for fur-
ther processing, e.g., detecting sudden change in term
of anomaly identification.

5. Conclusion

We presented a novel method for crowd coherency
detection. We demonstrated the robustness of our pro-
posed method considering three benchmark datasets
namely PETS2009, UCSD, and UCD. The performance
of our method has been shown against 10 closely related
state-of-the-art methods. Furthermore, we presented the
sensitivity of our proposed approach based on 20 differ-
ent configurations which showed that the performance
of our coherency detection method is not affected by

the density changes. As a future work, we would extend
our method to detect a set of anomalies on top of the
detected coherency information.
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