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Abstract

We summarize the background and derivation of non-equilibrium evaporation models from kinetic theory, and demon-
strate how they may be applied in the context of fluid mechanics and heat transfer problems. We find that the linearized
Boltzmann-equation Moment Method is a good trade-off between complexity and accuracy for practical purposes, and
that the use of non-equilibrium evaporation models in general has significant quantitative and qualitative impact on the
results.
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1. Introduction

When dealing with fluid mechanics problems that in-
volve heat transfer and a liquid–vapor interface, it is usu-
ally necessary to specify some relation between the state
of the continuum fluids on either side of the interface and
the resulting evaporation or condensation flux across it.
For simplicity, such phase transitions are often treated as
quasi-equilibrium processes. In practice this means that
the interface temperature is assumed to be continuous and
exactly equal to the fluid’s saturation temperature, which
allows simple energy conservation considerations to close
the problem. However, in reality phase transitions oc-
cur under non-equilibrium conditions (Carey, 1992). This
means, among other things, that the liquid interface is
in some unknown superheated state above the saturation
temperature. The introduction of this new variable neces-
sitates some new closure beyond just energy conservation,
and this is where evaporation models enter.

Evaporation model introduce additional considerations
from outside the realm of the continuum and local equi-
librium assumptions made in fluid mechanics. One such
framework is kinetic theory, which is the focus of the present
work. Specifically the purpose of this work is to compare
the different levels of model complexity, show how they
may be applied in fluid mechanics, and investigate when
they are necessary in practice.

The endeavor to apply kinetic theory to evaporation
and condensation problems was pioneered by Hertz (1882)
and Knudsen (1915). Their focus was on evaporation into
near vacuum, but many aspects of the phenomenon were
captured at least qualitatively, and the concepts were use-
ful building blocks for modeling the more general case. A

∗Corresponding author
Email address: eskil.aursand@ntnu.no (Eskil Aursand)

next step came with Schrage (1953), who introduced the
effect of molecular collisions in the Hertz-Knudsen model.
However, the theory still remained incomplete mainly be-
cause it missed the full dynamic connection between the
flow parameters at the interphase surface and those far
downstream. This gap was filled in through many later
contributions, mainly in the period from the late 1960s
and up to the turn of the century by authors who solved
the Boltzmann equation, or models thereof, for the so-
called Knudsen layer. This is a kinetic boundary layer be-
tween the evaporating surface and the external continuum
flow, of thickness on the molecular mean free path scale.
The current status has been dealt with in reviews by Ko-
gan (1992) and Ytrehus (1997), based on developments by
for instance Anisimov (1968), Shankar and Marble (1971),
Patton and Springer (1969), Pao (1971a,b), Kogan and
Makashev (1971), Cipolla Jr et al. (1974), Ytrehus (1974),
Ytrehus (1977) , Sone and Onishi (1978), Aoki and Cer-
cignani (1983), Aoki et al. (1991), Kogan and Abramov
(1991), Sone and Sugimoto (1993), Ytrehus and Østmo
(1996), to mention some of the basic contributions. A
more recent review of the matter is given by Frezzotti and
Barbante (2017).

Most of the models for evaporation and condensation
problems developed from the 1970s and onwards are based
on the fundamental Boltzmann equation of kinetic gas the-
ory. A main improvement compared to the Hertz–Knudsen
and Schrage models, which only took mass conservation
into account, is that conservation of momentum and en-
ergy is also included. Initially, linear models for weak
phase transfer rates were derived by, for instance Patton
and Springer (1969), Shankar and Marble (1971), and Pao
(1971a,b). Then, non-linear treatments for strong flow
rates were considered by Kogan and Makashev (1971),
Sone and Onishi (1978), using the BGK-collision model
for numerical solutions of the Boltzmann equation, and
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by Ytrehus (1977) using a moment method to obtain an-
alytical solutions to the Boltzmann equation for Maxwell
molecules. There is good internal agreement among the
results of these approaches, as well as with experiments
by Mager et al. (1989) and with Monte Carlo simulations
by Sibold and Urbassek (1993).

It is clear that the efforts put into the microscopic de-
scription of evaporation and condensation in the kinetic-
theory community is significant. Unfortunately, a lot of
these results remain quite inaccessible to the heat-transfer
and fluid-mechanics communities due to the context and
formalism in which they are presented. The purpose of
the present paper is to demonstrate how such models may
be applied to a relatively conventional problem with heat
transfer and evaporation. In particular, it is to show how
the choice of evaporation model matters, both between dif-
ferent kinetic-theory based models and when compared to
the typical quasi-equilibrium approximation.

The kinetic-theory evaporation models compared herein
represent a gradual increase in complexity and accuracy,
while staying within the realm of analytical models that
may reasonably be coupled to a heat-transfer or fluid-
mechanics framework. The latter point excludes some
highly advanced methods such as ones involving numerical
solving of the Boltzmann and BGK equations. The mod-
els chosen here are the classical Hertz-Knudsen (Hertz,
1882; Knudsen, 1915) and Schrage-Mills (Schrage, 1953;
Mills, 1995) models, and the more advanced Boltzmann-
equation based moment method by Ytrehus (1997), in both
its linearized and fully nonlinear form.

The macroscopic heat-transfer case used to demon-
strate the practical use and significance of these models is
deliberately chosen to be quite simple. This is to make the
demonstration of how to apply kinetic-theory evaporation
models as clear as possible, and to avoid losing track of
the important points in the complexity of the macroscopic
case itself. The case chosen herein is the evaporation of
a thin liquid film on a heated horizontal surface. Such
cases have been studied previously by authors such as Bu-
relbach et al. (1988), Oron et al. (1997) and Craster and
Matar (2009), but without any extensive discussion on the
choice of evaporation model.

This paper is presented in two distinct parts: The first
part, Sec. 2, establishes the context and formalism in which
the kinetic-theory evaporation models are derived. This
includes introducing central concepts such as the micro-
scopic Knudsen layer outside an evaporating liquid sur-
face, the temperature-jump that exists across it, and the
fundamental driving force of evaporation: a difference be-
tween the liquid’s saturation pressure and the actual ap-
plied pressure. The section then goes on to summarize
the derivation of evaporation models of increasing com-
plexity, all of which eventually make a prediction for an
evaporation mass flux as a function of the aforementioned
pressure-based driving force. In this context, which is lo-
cal to the liquid–vapor interface, the models may then be
compared in a way that is independent of any macroscopic

case they may be applied to.
The second part, Sec. 3, demonstrates how these evap-

oration models may be coupled to the macroscopic liquid-
film evaporation case. In particular, it shows the signifi-
cance of model choice, especially when compared to the
common quasi-equilibrium approximation: the assump-
tion that the temperature at the liquid–vapor interface is
continuous and equal to the saturation temperature.

2. Evaporation models

2.1. Problem description
The general practical problem is the determination of

macroscopic interface boundary conditions and mass flux
for an evaporating liquid–vapor interface. While the inter-
face is commonly treated as having zero thickness in fluid
mechanics, between the liquid bulk and the vapor bulk
there are in fact two microscopic layers (see Fig. 1):

• Interface transition: A very rapid transition from
a liquid-like density to a gas-like density across the
distance of a few molecular diameters. This transi-
tion is so rapid on the scale of Fig. 1 that it is simply
drawn as an instantaneous change at z = 0, which we
will from here on refer to as the liquid surface. Dur-
ing evaporation the temperature also changes very
rapidly across the interface, and on the scale of the
illustration this is shown as a discontinuous jump
from Tl to T0.

• Knudsen layer : A layer between the liquid surface
and the vapor bulk. Here the gas is heavily in-
fluenced by the evaporating interface and is in a
non-equilibrium state. Its thickness is denoted δKn,
and is of the order of a few molecular mean free
path lengths (λ). The Knudsen layer also involves
a change in temperature, shown as a relatively slow
change from T0 to T∞ in the illustration.

The molecular mean free path referred to above is the av-
erage distance traveled by a molecule in the gas before
colliding with another. For an equilibrium distribution of
monatomic particles, kinetic theory finds that the mean
free path is

λ =
kBT√
2pπd2

, (1)

where T is the temperature, p is the pressure, d is the
effective particle diameter and kB is the Boltzmann con-
stant. For atoms or molecules with diameters in the range
of 0.25–1 nm, Eq. (1) implies that the mean free path un-
der normal conditions is in the range of

λ ∼ 10–150 nm, (2)

In the Knudsen layer, the gas is more appropriately de-
scribed by the Boltzmann equation (Cercignani, 1988), not
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Figure 1: Illustration of an evaporating interface when zoomed in to the scale of the Knudsen layer. In this case, the heat driving the
evaporation comes from the liquid bulk. The quantities at the outer edge of the Knudsen layer are typically labeled with ∞, because they are
very far out on the scale of the molecular mean free path λ. The goal of the problem herein is to find the evaporation rate (here represented
by u∞) and total temperature difference (∆T ) that results from a driving force ∆ps.

the Navier–Stokes equation. The latter is in fact a spe-
cial case simplification of the former for larger scales and
close-to-equilibrium conditions (see Chapman–Enskog ex-
pansion (Kogan, 1992; Ytrehus, 1997)).

We wish to present evaporation models that are prac-
tically applicable to external macroscopic Navier–Stokes
type problems. Even though the Knudsen layer is effec-
tively invisible at these scales; if the problem involves
evaporation the Knudsen layer has an effect by impos-
ing boundary conditions at the seemingly zero-thickness
liquid–vapor interface in the macroscopic problem. Specif-
ically, the goal is to connect the following variables seen in
Fig. 1:

• Input from macroscopic problem:

– Tl: Temperature on liquid-side of the surface.
– p∞: Applied pressure from the vapor bulk.

• Output from evaporation model:

– u∞: Vapor velocity outside Knudsen layer, in
the frame of the interface.

– T∞: Vapor temperature outside Knudsen layer.

Given that the ideal gas law applies, we may from this
output find other interesting macroscopic properties such
as density (ρ∞) and evaporation mass flux (j),

ρ∞ =
p∞
RT∞

, (3)

j = ρ∞u∞. (4)

Here R is the gas constant per unit mass (R = R0/M),
R0 is the universal gas constant, and M is the molecular
mass. An important point to note is that when Tl and p∞
are specified, one does not get the liberty of specifying T∞
independently. Instead T∞ is an output of the evaporation
model, and becomes a boundary condition imposed on the
macroscopic problem.

The pressure in the liquid bulk is relatively close to
that of the vapor bulk, p∞, but this will depend on sur-
face curvature (surface tension) and evaporation rate (va-
por thrust). In any case, the liquid bulk pressure does
not actually enter into the following calculations. What
does enter into the calculations from the liquid side is the
temperature Tl and the corresponding saturation pressure,
ps(Tl). As we shall see, the difference between this satu-
ration pressure and the pressure imposed from the vapor
(p∞) is in fact the driving force behind evaporation.

2.2. Thermodynamic states and the saturation line
The models developed herein will make reference to the

saturation line. This is the line in pressure–temperature
space separating the liquid region and the vapor region
of a pure fluid. When a state is exactly on this line the
state is saturated. The saturation line is a property of
equilibrium thermodynamics, and an appropriate thermo-
dynamic model for the fluid in question can supply the
functions ps(T ), and its inverse Ts(p), for this line. The
slope of the saturation line at a given temperature may be
approximated through the Clausius–Clapeyron equation,

dps(T )
dT

=
Lρs(T )

T
, (5)
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Figure 2: An illustration of the actual liquid and vapor states and the unrealized reference state ps(Tl), in relation to the saturation line. For
the purposes of this sketch the liquid bulk pressure has been assumed to be very close to the vapor bulk pressure. Also, in this example the
vapor is supersaturated, but that need not always be the case.

where L is the latent heat and ρs(T ) is the saturated vapor
density.

The models herein importantly make use of a reference
state which has the same temperature as the liquid and
a pressure equal to the corresponding saturation pressure
ps = ps(Tl). Note that this state is not actually realized
anywhere in the system, but its properties will be used to
calculate the evaporation flux.

The actual states of liquid and the vapor on either side
of the Knudsen layer are not in general on the saturation
line. The liquid state is always superheated in the case of
evaporation, while the vapor state may be either super-
saturated or superheated, depending on conditions. The
relationships between the states and the saturation line are
illustrated in Fig. 2. In particular this illustration shows
the driving parameter for evaporation,

∆ps = ps(Tl)− p∞, (6)

which is not a realized pressure jump, but rather the differ-
ence between reference state pressure and actual imposed
pressure. Fig. 2 also shows the difference

∆T = Tl − T∞, (7)

which is an actual realized temperature jump, seen as a
discontinuity on the macroscopic scale due to the much
smaller scale of the Knudsen layer. Note that ∆T is the
total temperature difference from the liquid bulk (Tl) to
the vapor bulk (T∞), not just the temperature difference
across the Knudsen layer (T0 − T∞). Note also that, as
discussed in Ytrehus (1997, Sec. 6.3), the latter is only a
small fraction (≈ 8%) of the total temperature jump. The
majority of the temperature jump occurs across the very
thin interface transition at z = 0 (Tl − T0).

In order to quantify the relations between these states,
and obtain practical results such as the resulting evapora-
tion flux, it is necessary to resort to evaporation models
like the ones provided by kinetic theory.

2.3. Kinetic theory background
In kinetic theory we deal with the dynamics of velocity

distribution functions f(x, t, ξ), where x is position, t is
time, and ξ is a molecular velocity vector. The distribution
represents the number of molecules at a given point (x, t)
having a specific velocity. In technical terms, fd3ξ gives
the number density of particles within the element of ve-
locity space d3ξ. An important form of f is the (drifting)
Maxwellian distribution

fM(ξ;T, n, u) =
n

(2πRT )
3/2

exp

(
− (ξ − uẑ)2

2RT

)
, (8)

which describes how the particles in an ideal gas of total
number density (n = p/(kBT )) and bulk flow speed u along
the z-axis will distribute across the possible velocity states
if allowed to relax to equilibrium.

All the following kinetic-theory evaporation models share
a fundamental postulate that makes important use of Eq. (8).
This postulate is that the flux of evaporating particles from
the liquid surface into the Knudsen layer may be described
by the outgoing half of the Maxwellian distribution corre-
sponding to the reference state.

It will be crucial to express the total fluxes of mass,
momentum and energy associated with the Maxwellian.
We define the functions Ψi,

Ψ = (m,mξz,
1

2
mξ2), (9)
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which are the mass, z-momentum and kinetic energy of
a molecule, respectively. The net fluxes into the z > 0
half-plane due to the Maxwellian are

∫
ξz>0

ξzΨifMdξ =


ρ
√

RT
2π F+(S) , i = 1

ρRT
2 G+(S) , i = 2

2ρRT
√

RT
2π H+(S) , i = 3

(10)

and the net fluxes into the z < 0 half-plane are

∫
ξz<0

ξzΨifMdξ =


− ρ
√

RT
2π F−(S) , i = 1

ρRT
2 G−(S) , i = 2

−2ρRT
√

RT
2π H−(S) , i = 3

.

(11)

Here we have defined the dimensionless speed ratio,

S(u, T ) =
u√
2RT

, (12)

which compares the macroscopic flow speed (u) to the av-
erage molecular speed of the stationary Maxwellian (∼√
RT ). Note that since the speed-of-sound of a monatomic

ideal gas is
√
(5/3)RT , the Mach number is simply

√
(6/5)S.

The functions F±(S), G±(S) and H±(S) all approach
unity for small S, and are fully defined in Eqs. (A.1)
to (A.3) of Appendix A.

2.4. Hertz–Knudsen (HK) formula
Hertz (1882) and Knudsen (1915) considered a case of

molecular exchange between two opposing stationary sur-
faces, under high-vacuum conditions so that the exchange
is essentially free molecular flow without collisions. The
model assumes that both surfaces eject molecules accord-
ing to the inwards-facing half of the Maxwellian distribu-
tion corresponding to their temperature and some density,
and that these molecules reach the other surface undis-
turbed.

When applied to the present context shown in Fig. 1,
one surface is the liquid surface at Tl and the other surface
is the boundary of the bulk vapor outside the Knudsen
layer at T∞. This means that the liquid surface ejects
molecules according to the ξz > 0 half of the distribution

fe = fM(Tl, ne, 0), (13)

and that the outer boundary of the Knudsen layer sends
back molecules according to the ξz < 0 half of the distri-
bution

f∞ = fM(T∞, n∞, 0). (14)

Here ne and n∞ are the total number densities of the ref-
erence state and the bulk vapor state (p∞, T∞), respec-
tively. If we add these two contributions, use Eqs. (10)

and (11), and introduce an evaporation/condensation co-
efficient α ∈ [0, 1] as an unknown pre-factor, the following
net evaporation flux is found:

j = α

[∫
ξz>0

ξzΨ1fedξ +

∫
ξz<0

ξzΨ1f∞dξ
]
,

= α

[
ps(Tl)√
2πRTl

− p∞√
2πRT∞

]
. (15)

While the Hertz-Knudsen model captures some of the cor-
rect qualitative features, it is inadequate for the following
two reasons:

• The incoming Maxwellian f∞ has u∞ set to zero,
even though under realistic evaporation conditions
the state outside the Knudsen layer must have a non-
zero drift.

• The model only considers conservation of mass, and
ignores conservation of momentum and energy.

The usage of the formula in Eq. (15) requires the input of
T∞. This model is unable to make an independent pre-
diction for the downstream vapor temperature, so in order
to arrive at a practically useful model we must make an
additional ad-hoc assumptions. This is the assumption of
saturated downstream vapor, i.e.

T∞ = Ts(p∞), (16)

which for weak evaporation (small ∆ps and ∆T ) trans-
forms Eq. (15) to

j = α

[
1− 1

2

RTl

L

]
∆ps√
2πRTl

. (17)

This is a practically usable model whose inputs are the
known liquid temperature Tl, the outside pressure p∞, and
the saturation-line function ps(T ).

2.5. Schrage–Mills (SM) formula
Schrage (1953) improved on the Hertz–Knudsen model

by addressing the first of the two issues listed earlier. This
involves taking into account the nonzero u∞ in the incom-
ing Maxwellian,

f∞ = fM(T∞, n∞, u∞). (18)

Following the same argument as before, this leads to the
net evaporation flux

j = α

[∫
ξz>0

ξzΨ1fedξ +

∫
ξz<0

ξzΨ1f∞dξ
]
,

= α

[
ps(Tl)√
2πRTl

− p∞√
2πRT∞

F−(S∞)

]
, (19)

where S∞ = S(u∞, T∞). Unfortunately, Eq. (19) is ac-
tually an implicit equation for j since S∞ depends on j.
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However, we may solve for j by assuming that the evapo-
ration is weak, in the sense that

S∞ ≪ 1. (20)

This allows us to expand F−(S∞) for small S∞ according
to Eq. (A.1), which leads to the more useful Schrage-Mills
formula (Mills, 1995),

j =
αe

1− 1
2αe

[
ps(Tl)√
2πRTl

− p∞√
2πRT∞

]
. (21)

Besides having a different pre-factor, this is identical to
the main Hertz–Knudsen result in Eq. (15).

Just as with the Hertz–Knudsen model, we may further
linearize Eq. (21) and assume saturated vapor in order to
arrive at the more convenient formula

j =
αe

1− 1
2αe

[
1− 1

2

RTl

L

]
∆ps√
2πRTl

. (22)

2.6. Boltzmann Equation Moment Method (BEMM) model
Both the Hertz–Knudsen (HK) and the Schrage–Mills

(SM) models have one major issue in common: They only
consider conservation of mass, and not conservation of mo-
mentum and energy. The result of this is that they contain
insufficient information to predict the temperature of the
downstream vapor (T∞).

The Boltzmann Equation Moment Method (BEMM)
model is a way of resolving this issue by considering a
wider set of conservation laws across the Knudsen layer.
Fundamentally it only requires the general form of the
Boltzmann equation, and the knowledge that mass, mo-
mentum and energy are conserved in individual molecular
collisions, regardless of the details of the process. These
are the so-called collision invariants, which lead to three
conservation equations for the Knudsen layer that must
be solved simultaneously to find macroscopic properties
such as the evaporation mass flux. The derivation of the
BEMM equations herein is a concise summary of what is
covered in greater detail in Ytrehus (1997).

2.6.1. The Boltzmann Equation
The BEMM models are based on the 1D steady state

version of the fundamental Boltzmann equation of kinetic
theory (Cercignani, 1988) to describe the gas in the Knud-
sen layer. The equation reads

ξz
∂f

∂z
= Q(ff1), (23)

which is an integro-differential equation for the scalar ve-
locity distribution function f(z, ξ). While the left hand
side is a straightforward advection type term, the right
hand side Q(ff1) is the collisional rate of change of f .
This generally involves an integral over all possible binary
collisions that either scatters out or scatters into the ve-
locity state in question.

2.6.2. Boundary conditions of the Knudsen layer
In addition to the governing equation Eq. (23), we

also need boundary conditions for the distribution func-
tion f(z, ξ) at either side of the Knudsen layer in Fig. 1.
Generally the conditions at the liquid surface cannot be
found from within the scope of kinetic theory itself, but
requires more detailed descriptions of the dense phase and
its surface. However, as will be shown below, this issue is
resolved in the moment method by making a set of crucial
assumptions regarding the function f(z, ξ).

As before, the outer edge of the Knudsen layer (z → ∞)
has a drifting Maxwellian distribution according to the
bulk vapor state,

f(∞, ξ) ≡ f∞(ξ) = fM(ξ;T∞, n∞, u∞), (24)

where f∞(ξ) is now a shorthand for this specific Maxwellian
state. The main challenge relates to determining the va-
por state at the liquid surface (z = 0), which from now on
is denoted by the shorthand f0(ξ),

f0(ξ) ≡ f(0, ξ). (25)

In the moment method this challenge is met by making
certain assumptions regarding the form of the molecular
distribution function throughout the Knudsen layer, i.e.
how f(z, ξ) changes as a function of z. This involves rep-
resenting the incoming (ξz < 0) or outgoing (ξz > 0) parts
of full distributions, and these will generally be labeled
as f− and f+, respectively. Specifically we make the
ansatz that f(z, ξ) is a linear combination of three dis-
tributions (Ytrehus, 1977): The outgoing distribution at
the interface (f+

0 ), the outgoing distribution outside the
Knudsen layer (f+

∞) and the incoming distribution outside
the Knudsen layer (f−

∞). We write this as

f(z, ξ) = a+e (z)f
+
0 (ξ)

+a+∞(z)f+
∞(ξ)

+a−∞(z)f−
∞(ξ), (26)

with the z-dependent coefficients having the following bound-
ary conditions,

z = 0 :
a+e = 1
a+∞ = 0
a−∞ = β

z → ∞ :
a+e = 0
a+∞ = 1
a−∞ = 1

. (27)

Here β is a new parameter linked to the unknown incom-
ing distribution, which will be determined along with the
others from the ensuing moment equations based on the
Boltzmann equation. Note how Eq. (26) with Eq. (27)
satisfies Eq. (24) directly, and leads to

f0(ξ) = f+
0 (ξ) + βf−

∞(ξ), (28)

for the left-hand boundary condition.
We then assume that the outgoing distribution at the

interface is a combination of an emission part and a re-
flection part,

f+
0 (ξ) = αef

+
e (ξ) + (1− αc)f

+
r (ξ), (29)
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where fe is the same emission distribution as before, Eq. (13),
and where fr is a reflection distribution to be estimated
later. In Eq. (29) we have used an ad-hoc weighing which
introduces an evaporation-coefficient (αe ∈ [0, 1]) and a
condensation-coefficient (αc ∈ [0, 1]).

The outgoing reflection distribution f+
r in Eq. (29) is

assumed to be the outgoing part of a Maxwellian distri-
bution at the liquid temperature, but with a different un-
known number density nr,

f+
r (ξ) = f+

M(ξ;Tl, nr, 0). (30)

The number density nr can now be found through the flux-
condition, which states that the ideal (αc → 0) reflected
mass flux is equal to the incoming mass flux at the same
location. When combining this principle with Eq. (28), it
may be written as∫

ξz>0

ξzf
+
r dξ = β

∫
ξz<0

|ξz|f−
∞dξ. (31)

According to Eq. (24) and Eq. (30), both distributions in
Eq. (31) are Maxwellian distributions, and thus we may
use Eqs. (10) and (11) to evaluate the integrals. This sim-
plifies the flux-condition to a relation between the densities
nr and n∞,

nr

√
RTl

2π
= β

√
RT∞

2π
F−(S∞)n∞. (32)

By combining Eqs. (28) to (30) we finally find that the
z = 0 boundary condition may be written as

f(0, ξ) =

{(
αe + (1− αc)

nr

ne

)
f+
e ξz > 0

βf−
∞ ξz < 0

(33)

with nr given according to Eq. (32). Of course, this bound-
ary condition depends on the new unknown β that we have
introduced, in accordance with the basic requirement that
f(0, ξ) (for ξ < 0) is an outcome of the solution.

We now have both a governing equation Eq. (23) and
boundary conditions Eqs. (24) and (33) for the distribution
function f(z, ξ) in the Knudsen layer. There are several
possible ways to find a solution to this problem, but so far
only the moment method has led to (approximate) ana-
lytical results in the non-linear regime. This approach is
demonstrated in the next part.

2.6.3. The moment method
Obtaining a detailed solution of Eq. (23) across the

Knudsen layer requires the choice of a specific collision
model for Q(ff1). However, in the present case where only
boundary properties such as the speed and temperature of
the downstream vapor are of interest, this is not necessary.
Instead, it is sufficient to state that mass, z-momentum
and energy are collision-invariants. This may be formally
stated in terms of the quantities Ψi in Eq. (9) as∫

Ψi(ξ)Q(ff1)dξ = 0, (i = 1, 2, 3), (34)

and this will lead to the governing equations of the moment
method. If we multiply the Boltzmann equation Eq. (23)
by Ψi, integrate throughout velocity space, and use what
we know about collision invariants from Eq. (34), we get

∂

∂z

∫
Ψi(ξ)ξzf(z, ξ)dξ = 0, (i = 1, 2, 3). (35)

In words, this means that these integrals (moments) are
independent of z, and therefore must have the same value
of either side of the Knudsen layer. If we then use the
boundary conditions Eqs. (24) and (33) to split the inte-
grals into outgoing and ingoing parts, and use Eqs. (10)
and (11) to evaluate the half-space integrals, we get the
following conservation equations

αeZ
√
Y + (1− αc)βF

− − βF− = 2
√
πS∞ (36)

αeZ + (1− αc)

√
1

Y
βF− + βG− = 4S2

∞ + 2 (37)

αeZ + (1− αc)

√
1

Y
βF− −

√
YβH−

=
√
Y
√
πS∞

(
S2
∞ +

5

2

)
(38)

for mass, momentum and energy, respectively. Here it is
implicit that F−, G− and H− are evaluated at S = S∞,
and we have defined the dimensionless ratios

Z =
ps(Tl)

p∞
, (39)

Y =
T∞

Tl
. (40)

We now have three equations, Eqs. (36) to (38), for the four
variables S∞, Z, Y and β. Thus, we are free to impose one
of them and solve for the remaining three. In the present
case we impose a pressure-based driving force Z and solve
for the remaining three variables. Based on such a solution
the evaporation mass flow rate may be found as

j = ρ∞u∞

=
p∞√
RT∞

√
2S∞

=
p∞√
RTl

√
2

Y
S∞. (41)

The gas kinetic convection problem contained within
Eqs. (36) to (38) reflects a fundamental element in any
solution to the half-space problem of the steady 1D Boltz-
mann equation; namely that some relations must exist
between the downstream variables n∞, u∞ T∞ and the
boundary condition at the interface; in our case Eq. (33).
Furthermore, in our case these conditions do not depend
upon the specific collision model for Q(ff1), since Eqs. (36)
to (38) are derived from conservation equations only. The
results, for instance mass flux versus speed ratio S∞, have
been compared with BGK-solutions, Monte Carlo simula-
tions and experiments (Ytrehus, 1997, Fig. 10 pp. 253),
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and a maximum deviation of 2% is observed close to the
sonic point. This matter has been revisited more recently
by Frezzotti (2007), pointing out that the moment method
seems to slightly overestimate the back-scattered molecules.
This has the effect of reducing the net mass flux somewhat,
again in the vicinity of sonic downstream conditions.

2.6.4. Linearization
The nonlinear conservation equations, Eqs. (36) to (38),

must be solved numerically. It can be very convenient
to have an analytical solution instead, and this can be
achieved by linearizing in the case of weak evaporation.
We define new quantities ∆Z, ∆Y and ∆β as the devia-
tions from unity of the corresponding quantities,

Z = 1 +∆Z, (42)
Y = 1−∆Y, (43)
β = 1 +∆β, (44)

so that ∆Z = (ps(Tl)− p∞)/p∞ and ∆Y = (Tl − T∞)/Tl.
We then assume weak evaporation, in the sense that

S∞ ≪ 1, ∆Z ≪ 1, ∆Y ≪ 1, ∆β ≪ 1. (45)

By applying the common simplification (Ytrehus, 1997)

αc = αe = α, (46)

and using the expansions of F−, G− and H− for small S,
shown in Appendix A, the first-order approximate solution
may then be found as

∆Y =

√
π

4
S∞, (47)

∆β =
√
π

[
2

π
− 9

16

]
S∞, (48)

∆Z =
32π + 32α− 23πα

16
√
πα

S∞. (49)

One may solve Eq. (49) for S∞ to get the important result

S∞ =
1

2
√
π

 α

1−
(

γ−1
γ

)
α

∆Z. (50)

with the shorthand γ defined as

γ =
32π

32 + 9π
≈ 1.67. (51)

From Eq. (41) and Eq. (50) we may now find the evapo-
ration mass flux as

j =

 α

1−
(

γ−1
γ

)
α

 ∆ps√
2πRTl

(52)

which may be directly compared to the final HK and SM
results in Eqs. (17) and (22). The solutions obtained

from this linearized BEMM model will be referred to as
BEMM(L).

With the BEMM model and its linearization, as op-
posed to in the HK and SM models, we obtain predictions
for the downstream vapor temperature T∞. From the lin-
earized results Eq. (47) and Eq. (50) we may find that the
relative temperature jump is proportional to the driving
force as

Tl − T∞

Tl
= ∆Y =

1

8

 α

1−
(

γ−1
γ

)
α

∆Z. (53)

and thus also proportional to the evaporation rate.
Based on Eq. (53) we may investigate where the state

of the downstream vapor lies in relation to the satura-
tion line. According to the Clausius–Clapeyron relation,
Eq. (5), if the vapor state is on the saturation line the tem-
perature jump must be approximately ∆Y = (RTl/L)∆Z.
If the actual temperature jump is greater than this, the
vapor is supersaturated. If it is smaller, the vapor is su-
perheated. By comparing this with the result in Eq. (53)
we find that

8

[
1

γ
+

1− α

α

] {
< L

RTl
Supersaturated

> L
RTl

Superheated
. (54)

Since Trouton’s rule states that RTl/L ≈ 0.1, we may
within this approximation conclude that α > 0.6 leads to
supersaturated vapor and that α < 0.6 leads to super-
heated vapor. Since water at its atmospheric boiling point
has RTl/L ≈ 1/13, it has the transition at α ≈ 0.5 instead.

The actual value of α is subject to much debate (Persad
and Ward, 2016), but as discussed in Aursand et al. (2018)
it can likely be expected to be in the range of 0.7–1.0 for
moderate evaporation. However, the presence of impuri-
ties at the interface may lower the value significantly, all
the way down to the order of 0.1 (Ytrehus, 1997).

It is worth noting that the above results are in prin-
ciple restricted to monatomic substances only. However,
polyatomic effects in evaporation have been considered by
Cercignani (1981), and in the linearized version of his re-
sults the simple mass flow formula Eq. (52) is recovered.
Hence, internal degrees of freedom do not affect the most
basic outcome of the theory in the linear regime.

2.7. Comparison of evaporation models
In order to summarize and compare models it is useful

to have a dimensionless measure of the resulting evapora-
tion rate. One such measure is the downstream speed-ratio
S∞, as defined by Eq. (12) with S = S(u∞, T∞). This is
the bulk outgoing speed of the downstream vapor relative
to the average molecular speed of a vapor at that tempera-
ture. Within the weak evaporation limit, which they were
derived with in the first place, all the linearized models
may be written on the form

S∞ =
r(α)ϕ(Tl)√

4π
∆Z. (55)
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The pre-factors r and ϕ depend on the specific model,
according to

rHK = α, rSM =
α

1− 1
2α

, (56)

rBEMM =
α

1−
(

γ−1
γ

)
α
, (57)

and

ϕHK = ϕSM = 1− 1

2

RTl

L
, ϕBEMM = 1. (58)

The full nonlinear BEMM model obviously does not fit into
the same simple mold. Given a driving force Z = 1+∆Z,
the set of coupled nonlinear equations in Eqs. (36) to (38)
must be solved numerically for the three quantities S∞, Y
and β.

We are now in a position to compare the predictions of
four different models: HK, SM, linearized BEMM(L), and
full nonlinear BEMM. In the following comparison we treat
the pressure-based driving force ∆Z as the independent
parameter, and compare the results for evaporation rate
(S∞) and temperature jump (∆Y). The plots do not go
beyond a Mach number of Ma = 1, as it is known that
the assumed 1D evaporative flow in the Knudsen layer is
restricted to the subsonic regime (Arthur and Cercignani,
1980; Ytrehus, 1997). This is equivalent to a maximum
speed ratio of S ≈ 0.91. The evaporation–condensation
coefficient is kept at α = 1 for simplicity, and the fluid is
assumed to follow Trouton’s rule, RTl/L ≈ 0.1. The latter
parameter is only necessary for the HK and SM models.

The results for S∞ are shown in Fig. 3, together with
experimental data from Ytrehus (1977) (also shown in
Ytrehus (1997, Sec. 4.4)). This provides convincing valida-
tion for the nonlinear BEMM model, while clearly showing
that the linearization is only a good approximation in the
∆Z ≪ 1 regime. From the data and the BEMM model we
see that the supersonic regime is approached at approx-
imately ∆Z ≈ 4. Since the nonlinear BEMM model is
both the most advanced model and the model closest to
experimental data, we will from now on consider its results
as the reference for the purposes of assessing the accuracy
of the more crude models.

The results for ∆Y are shown in Fig. 4. Note that
this includes only the BEMM models, as the HK and SM
models are unable to make predictions regarding the down-
stream vapor state.

In addition to investigating the speed ratio S∞ of the
evaporation, we may also take a direct look at the evapora-
tion mass flux. For this purpose we define a dimensionless
evaporation mass flux J∗, using a scale that depends on
liquid-side properties only,

J∗ =
j

ρs(Tl)
√

RTl

2π

. (59)

Due to the fact that ρ∞ ̸= ρs(Tl) and T∞ ̸= Tl in general,
J∗ does not only depend on S∞. From Eq. (41) we find

0 1 2 3 4
∆Z

0.0

0.2

0.4

0.6

0.8

S
∞

HK

SM

BEMM(L)

BEMM

Experiment

Figure 3: Predicted speed-ratio as a function of driving force ∆Z =
∆ps(Tl)/p∞. Parameters are set to α = 1 and RTl/L = 0.1. Also
shown are experimental data from Ytrehus (1977).
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∆Z

0.0

0.2

0.4
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0.8

∆
Y

BEMM(L)

BEMM

Saturated vapor

Figure 4: Predicted interface temperature discontinuities, ∆Y =
∆T/Tl, as a function of driving force ∆Z = ∆ps(Tl)/p∞. Also
shown is the approximate relationship expected if the downstream
vapor is saturated. Parameters are set to α = 1 and RTl/L = 0.1.
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that

J∗ =

√
4π

Z
√
Y
S∞. (60)

However, for weak evaporation the linearized models yield
a simple direct relationship to the driving force ∆Z,

J∗ = r(α)ϕ(Tl)∆Z (61)

A comparison of results for J∗ in the weak evaporation
regime is shown in Fig. 5. It is clear that the full BEMM
model starts deviating from its linearization as soon as
∆Z ≪ 1 is no longer true, and that the linearization error
yields an over-prediction. We also see that the SM model
gives results quite close to the linear BEMM model, but
that the HK model under-predicts the evaporation rate by
about a factor of two.

0.00 0.05 0.10 0.15 0.20 0.25
∆Z

0.0

0.1

0.2

0.3

0.4

J
∗

HK

SM

BEMM(L)

BEMM

Figure 5: Predicted evaporation rate as a function of driving force
∆Z = ∆ps(Tl)/p∞, in the weak evaporation regime ∆Z ≪ 1. Pa-
rameters are set to α = 1 and RTl/L = 0.1.

2.8. Simplification: Linearizing the saturation line
The evaporation models summarized in Sec. 2.7 re-

quire the knowledge of the fluid’s thermodynamic satu-
ration line, in the form of the function ps(T ), in order to
evaluate the driving force ∆Z for a given case. The func-
tion ps(T ) may in practice be represented either by inter-
polating experimental data or by using a thermodynamic
equation of state. However, in cases where the evaporation
is weak it may be convenient to represent the real satura-
tion line by a linearization around a known point on the
line. Here we choose that point to be (p∞, Ts(p∞)). Note
that this state is not necessarily realized in the system,
but is merely another reference state. According to the
Clausius–Clapeyron relation, Eq. (5), the function ps(T )

may then be approximated by

ps(T ) = p∞ +
Lρs
Ts

[T − Ts] . (62)

where ρs and Ts are short-hands for ρs(p∞) and Ts(p∞),
respectively. This means that the driving force can be
approximated as a function of a single variable Tl,

∆Z =
L

RTs

[
Tl − Ts

Ts

]
. (63)

The linearized evaporation models may then to first order
in ∆Z be written on the particularly simple form

j = r(α)
ρsL√
2πRTs

[
Tl − Ts

Ts

]
, (64)

provided that the approximation ϕ ≈ 1 can be made for
the HK and SM models. This form is very useful in fluid
mechanics contexts where the liquid interface temperature
Tl is a variable. If the speed-ratio S∞ is required, one
may simple insert Eq. (63) into Eq. (55). The relation in
Eq. (64) is often written as a linear constitutive relation,

(Tl − Ts) =
K̃

r(α)
j, (65)

with the constant

K̃ =

√
2πRT

3/2
s

ρsL
. (66)

The constant K̃ depends on both fluid properties and
applied pressure, and indicates the importance of non-
equilibrium evaporation effects. In a sense K̃/r is an
interfacial resistance, indicating how much driving force
(Tl − Ts) is necessary to obtain an evaporation flux (j).
The constitutive form in Eq. (65) has been used in thin-
film flow modeling by authors such as Burelbach et al.
(1988), Panzarella et al. (2000) and Aursand et al. (2018).

3. Case: Evaporating liquid film

3.1. Problem definition
We consider a liquid thin-film that evaporates due to

contact with a heated horizontal solid surface. The posi-
tion of the liquid–vapor interface is described by the film-
thickness function h(x, t). A case is defined by fluid prop-
erties, an initial uniform film thickness h0, a wall temper-
ature (Tw) and a vapor bulk pressure (p∞). Both liquid
and vapor consist of the same pure fluid. The case is il-
lustrated in Fig. 6. Note that in this context, the origin
of the coordinate is stationary with respect to the solid
surface, and no longer follows the liquid–vapor interface.

The goal is to solve the local evaporation-problem along
the interface, which yields the two interface temperatures
on the liquid and vapor side (Tl and T∞), the resulting
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p∞

Tw

j

Tl

T∞

x̂
ẑ

h(x, t)

Figure 6: Illustration of the case of an evaporating liquid thin-film
confined between a heated solid wall and a vapor. Position is given by
the variables x and z, which are directed according to the unit vectors
x̂ and ẑ, respectively. A case is defined by the fluid properties, the
initial uniform film thickness h0, the wall temperature (Tw) and the
pressure in the vapor bulk (p∞). The dashed rectangle indicates the
domain of the evaporation-problem considered thus far, which here
couples to the evolution of the film-thickness function h(x, t).

evaporation mass flux (j), and based on this the evolu-
tion of the film-thickness. To keep consistency with the
description of the evaporation model, we continue to use
Tl and T∞ to refer to the interface temperatures on the
liquid and vapor sides, respectively. The variable temper-
ature within the liquid phase is described by the function
T without any subscript.

On the scale of Fig. 6, the entire structure of the fi-
nite interface and the Knudsen layer in Fig. 1 is hidden at
z ≈ h(x, t). However, the fact that the liquid film is very
thick compared to the Knudsen layer does not necessarily
mean that kinetic-theory effects are irrelevant at this scale.
The evaporation models from Sec. 2 couple to the macro-
scopic model by providing the necessary relations between
the evaporation mass flux, applied pressure and liquid-side
interface temperature.

Note that for the evaporation models from Sec. 2 to
be applicable to wavy interfaces like the one illustrated
in Fig. 6, it is necessary that the spatial and temporal
scales of the waves are much larger than those of the gas
molecules above. Specifically, this requires that the mean
free path is much smaller than the wavelength, and that
the mean free time is much smaller than the period.

3.2. Continuum model
Based on the case parameters we may define the char-

acteristic temperature difference across the liquid film,

∆Tw = Tw − Ts. (67)

where Ts is a shorthand for Ts(p∞), and thus constant as
long as p∞ is constant. This quantity is used to define the
dimensionless temperature (θ),

θ =
T − Ts

∆Tw
, (68)

which means that the wall has a temperature θ = 1, and
that the liquid–vapor interface has a temperature θ ≈ 0
due to it being relatively close to saturation. We use h0

as a scale for film thickness and z-position, giving dimen-
sionless equivalents H = h/h0 and Z = z/h0, respectively.
We define the dimensionless mass flux J = j/j0 according
to the latent heat and a simple quasi-equilibrium energy
balance,

j0 =
kl∆Tw

h0L
, (69)

where kl is the thermal conductivity of the liquid. Accord-
ing to Oron et al. (1997, Eq. 2.57), the energy equation in
thin liquid films may then be approximated as

∂2θ

∂Z2
= 0. (70)

Also, according to Oron et al. (1997, Eq. 2.86a), the energy
balance at the evaporating interface may be approximated
as

∂θ

∂Z

∣∣∣∣
Z=H

= −J. (71)

A combination of Eqs. (70) and (71) yields

J =
1− θl
H

, (72)

where θl is the dimensionless liquid temperature at the
interface (Z = H). The relation in Eq. (72) is a single
equation with three unknowns H, J and θl. In order to
solve the problem for a given film thickness H we need
an additional relation between these variables, and this is
provided by the evaporation model.

3.2.1. Quasi-equilibrium
As a point of comparison for the models based on ki-

netic theory, we use the quasi-equilibrium approximation.
This is an approximation commonly used in computational
fluid dynamics (CFD), and is technically only valid in the
limit of very weak evaporation. It is equivalent to assum-
ing that the interface temperature is continuous and ex-
actly equal to the saturation temperature,

θl = θ∞ = 0. (73)

When combined with Eq. (72), this means that the evap-
oration mass flux is simply given by

JQE =
1

H
. (74)

This approximation has the issue that J diverges as H
approaches zero, something which will not be the case with
the non-equilibrium models. It also locks the interface
to the saturation temperature by definition, so it is not
possible to predict the resulting interface superheat (θl).
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3.2.2. Kinetic theory models
In Sec. 2 we developed models for the evaporation rate,

in terms of S∞, given a known pressure-based driving
force, ∆Z. However, the present case illustrated in Fig. 6
does not have ∆Z as a given parameter. Instead, in this
case the evaporation is ultimately driven by the fact that
the wall temperature is above the fluid’s ambient-pressure
saturation temperature, Tw > Ts(p∞). We denote the di-
mensionless measure of this driving force by Ω,

Ω =
∆Tw

Ts
(75)

If we introduce two additional fluid constants,

K =
K̃kl
h0L

, (76)

and

Γ =
RTs

L
, (77)

we may find the two governing equations for the problem
from Eq. (41) and Eq. (72),

J =

√
4πΓ

KΩ

S∞(θl)√
(1 + Ωθl)Y(θl)

≈
√
4πΓ

KΩ
S∞(θl), (78)

and

θl = 1−HJ. (79)

Note that the last approximation in Eq. (78) is applicable
for the linearized (weak evaporation) models. For a given
film thickness H, these two equations must in general be
solved simultaneously in order to obtain J and θl. This in-
cludes using the function S∞ from the chosen evaporation
model, and having some representation of the saturation
line in order to calculate the pressure-based driving force
from a given liquid temperature.

However, if we use the highly simplified version of the
evaporation models found in Sec. 2.8, we may arrive at a
particularly simple and useful analytical form. By com-
bining Eq. (55) and Eq. (63) we find that

S∞ =
r(α)ϕ(θl)Ω√

4πΓ
θl. (80)

We may then insert Eq. (80) into the rightmost form of
Eq. (78) and assume that Γ is so small that ϕ ≈ 1 is
reasonable. This yields a simple proportionality between
the evaporation mass flux and the liquid superheat,

J =
r(α)

K
θl. (81)

When combined with Eq. (79), this gives a remarkably
simple solution for the mass flux,

J =
1

H + K
r(α)

. (82)

and liquid superheat,

θl =
1

1 +H r(α)
K

. (83)

This is the kind of model found in previous works on thin-
film flow such as Burelbach et al. (1988), Panzarella et al.
(2000) and Aursand et al. (2018), due to its ease of cou-
pling into a fluid mechanics context. Note that in this
approximation, choice of specific evaporation model only
affects the results through differences in the function r(α).

It is now worth noting the following points:

• The macroscopic driving force Ω ∝ ∆Tw has little
effect on the dimensionless evaporation rate J . This
is because the scale j0 is proportional to ∆Tw.

• Any deviation of J(H) from Eq. (74) is by definition
a non-equilibrium effect. From Eq. (82) it is then
clear that K represents the relative strength of such
effects, and that we approach the quasi-equilibrium
approximation in the limit of K → 0.

• For a given case and fluid, the value of K, and thus
the non-equilibrium effects, may be increased by re-
ducing the initial film thickness h0.

3.3. Pressure driving-force
In the context of the liquid-film case, ∆Z is an output

from the calculation, not a given parameter like it was in
Sec. 2. In general, after finding a solution to the system
Eqs. (78) and (79), the driving force may be calculated
from

∆Z =
ps(Tl)− p∞

p∞
, Tl = Ts (1 + Ωθl) . (84)

Under the approximation of linearized saturation line, where
Eq. (82) may be used, we find from Eq. (63) a very sim-
ple proportionality between driving force and liquid super-
heat,

∆Z =
Ω

Γ
θl =

Ω

Γ

(
1

1 +H r(α)
K

)
(85)

3.4. Thermodynamic state of the downstream vapor
The BEMM model also makes a prediction for the tem-

perature discontinuity ∆T = Tl−T∞. While the tempera-
ture of the vapor does not couple back into the liquid-film
evaporation problem here, it may be interesting to note the
thermodynamic state of the vapor ejected from the liquid
surface. The vapor temperature relative to the saturation
temperature can be written as

T∞

Ts
= (1 + Ωθl) (1−∆Y) , (86)

with a value above unity implying superheated vapor and
a value below unity implying supersaturated vapor. The
formulation shown in Eq. (86) nicely illustrates the two
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contributing factors: The first factor (1 + θlΩ) represents
the liquid superheating, and the second factor (1 − ∆Y)
represents the temperature-decrease from liquid to vapor.
The dimensionless vapor temperature may then be found
from

θ∞ =
1

Ω

(
T∞

Ts
− 1

)
. (87)

For the simplified form of the BEMM model where also
the saturation line is linearized, we may combine Eq. (53)
with Eq. (63) in order to find ∆Y as a function of θl, and
then insert that into Eq. (86) and Eq. (87) to find

θ∞ =

[
1− (1 + Ωθl)

r(α)

8Γ

]
θl. (88)

Once again we see that the vapor will be supersaturated if
r(α) > 8Γ. We also see that the degree of supersaturation
will approximately be proportional to the degree of liquid
superheat.

3.5. Time-evolution
If we assume that the liquid film remains uniform (i.e.

without x-gradients) and define a dimensionless time τ =
t/t0 with the evaporative time-scale

t0 =
h0

(j0/ρl)
=

ρlh
2
0L

kl∆Tw
, (89)

the film-thickness H(τ) simply evolves according to

∂H

∂τ
= −J(H), (90)

with the initial condition H(0) = 1. In general Eq. (90)
must be integrated numerically. However, for the simpli-
fied model of Eq. (82) there is an analytical solution:

H(τ) =

[(
K

r
+ 1

)2

− 2τ

]1/2
− K

r
. (91)

This implies film dry-out at the time

τdry =
1

2
+

K

r
, (92)

which shows clearly that non-equilibrium effects slow evap-
oration and delay dry-out. Note that even though the
quasi-equilibrium limit (K → 0) causes J to diverge at
dry-out, it yields a well-defined answer for the dry-out
time.

3.6. Summary of case parameters
We may summarize the case parameters as follows:

• The relative wall superheat (Ω): In order for the
case to remain as illustrated in Fig. 6 it is necessary
that Ω ≪ 1 to avoid heterogeneous nucleation at the
solid surface.

• The fluid’s saturation line (function ps(Tl)): For
a given ambient pressure p∞ this also determines the
value of Γ, since according to the Clausius–Clapeyron
relation Γ−1 is essentially the dimensionless slope of
the saturation line ps(T ). Thus, the value of Γ may
not be freely chosen if a specific saturation line is to
be used. According to Trouton’s rule we may expect
Γ ≈ 0.1.

• The non-equilibrium factor, (K): This number
depends not only on fluid parameters, but also on
the initial film thickness, K ∝ 1/h0. Thus, K may
be used as a dimensionless measure of (inverse) film
thickness. The value of K is usually quite negligible
(≈ 10−4) for liquid film thicknesses in the millime-
ter range, but grows to unity and beyond for sub-
micrometer films.

• Evaporation/condensation coefficient (α): As
seen from the approximation in Eq. (82), this mainly
acts as a modifier on the non-equilibrium factor. For
all the linearized models its effect is filtered through
the function r(α), which depends on the specific evap-
oration model. By definition we must always have
α ∈ [0, 1], but how to choose a specific value is still
the subject of much debate.

3.7. Demonstration: Evaporating water film
We will now demonstrate the use of kinetic theory

evaporation models for the specific case of an evaporat-
ing water film in contact with water vapor at atmospheric
pressure (p∞ = 101 kPa). The case parameters are as fol-
lows:

• In order to have a somewhat strong evaporation while
still staying below the nucleate boiling regime, we set
the surface temperature so that Ω = 0.05.

• The saturation line for water is represented by a
smooth interpolation of real water-data from the NIST
database (Linstrom and Mallard, 2017). Its slope at
atmospheric pressure corresponds to Γ ≈ 0.074.

• As discussed in Aursand et al. (2018, Sec. 2.2), we
may reasonably choose α = 0.85 for the evapora-
tion/condensation coefficient.

• Since the dimensionless non-equilibrium factor (K)
is dependent on film thickness scale h0, its value is
left as a variable. For water, non-equilibrium effects
start becoming significant around h0 ≈ 10 µm (K ≈
0.01), and rapidly grows in importance as the film
becomes thinner.

We will mainly compare four evaporation models. The
full nonlinear BEMM model requires numerically solving
Eqs. (78) and (79) together with Eqs. (36) to (38). The
linearized BEMM(L), HK and SM models require numer-
ically solving Eqs. (78) and (79) together with Eq. (55).
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Additionally, the combination of weak evaporation and lin-
earized saturation line led to the direct approximate ex-
pression Eq. (82). For comparison this will also be com-
puted for the three models BEMM(L), HK and SM.

We start by examining the initial evaporation rate of
a liquid water film of some given initial thickness h0. In
other words, the solution at H = 1 is plotted for increas-
ing K-values. Fig. 7 shows the evaporative driving-force
∆Z = ∆ps/p∞ resulting from the solutions. We see that
even for extremely thin films (K > 1) the evaporative
driving-force never grows very large. This means that we
stay in the leftmost part of Fig. 3, where the linearizations
are expected to work well.

The resulting interface temperatures are shown in Fig. 8.
We see that the difference temperature jump grows large
remarkably fast. For K > 1 the BEMM model shows that
θl − θ∞ > 1, which means that Tl − T∞ > ∆Tw. In other
words, the temperature jump across the interface is larger
than the wall superheat. Note that the downstream vapor,
for this choice of α, is supersaturated for all nonzero values
of K. Note also that while all the kinetic theory models
give quite similar results for the liquid interface super-
heat, they are all in stark contrast to the quasi-equilibrium
model, which by definition yields θl = θ∞ = 0.

In Fig. 9 we see that the kinetic theory models, with
the exception of the HK model, give very similar results for
the evaporation mass flux. This includes the highly simpli-
fied forms given by Eq. (82). However, they are still very
different from the predictions of the quasi-equilibrium ap-
proximation. Specifically, for K > 1 the quasi-equilibrium
approximation overpredicts the mass flux by a factor of
two and more.

In Fig. 10 we show the results of numerically integrat-
ing the ODE in Eq. (90) to zero thickness. For compari-
son, the simplified analytical solutions in Eq. (91) are also
shown, including the quasi-equilibrium case (K = 0). We
see that besides the HK model, all the kinetic theory mod-
els give approximately the same results. However, they
predict a dry-out time that is 70% longer than what the
quasi-equilibrium approximation implies.

4. Discussion

4.1. General considerations
It is clear from Fig. 3 that only the full nonlinear

BEMM model is able to make reliably accurate predictions
in the whole range of relevant evaporation rates. However,
as seen both Figs. 3 and 5, the linearized BEMM(L) model
is sufficient to predict the mass flux in the weak evapora-
tion limit. Also, despite its theoretical inadequacies re-
lated to ignoring conservation of momentum and energy,
the SM is also quite capable of predicting the mass flux.
The HK model predicts only about half of this evaporation
rate, and should not be used.

Even though the linearized BEMM(L) model has a sig-
nificantly more complicated theoretical origin compared to

the SM model, there is no reason to not use the former in
the case of weak evaporation. The application of the two
are identical, through the use of Eq. (61), besides some
trivial differences in the functions r(α) and ϕ(Tl).

While the SM model is able to decently predict the
evaporation rate, it is too simplistic to make an inde-
pendent prediction for the downstream vapor tempera-
ture T∞. This is another reason to use the BEMM(L)
model. As seen in Fig. 4, the BEMM(L) model is a suf-
ficient approximation to the full nonlinear model in the
weak-evaporation regime.

With these points considered, it seems appropriate to
recommend the BEMM model in general, including its lin-
earized form if the driving force is weak (∆Z ≪ 1).

4.2. The liquid-film case
We may use the approximation in Eq. (85) to inves-

tigate whether or not the driving force ∆Z = ∆ps/p∞
is expected to be small. In the quasi-equilibrium limit
(K → 0), we get ∆Z = 0 as expected. By investigat-
ing the other extreme of K → ∞, we see that the maxi-
mum attainable driving force is approximately ∆Z = Ω/Γ.
As discussed earlier, for liquid-film evaporation cases such
as in Fig. 6, the wall superheat must be small/moderate
(Ω ≪ 1). Since Γ ≈ 0.1 for most fluids, this implies that
the driving force will be in the region ∆Z < 1 regardless
of K-value.

We see from Fig. 7 that ∆Z remains especially small
as long as the film thickness is large enough that K < 1.
For the present test case this will only requires that the
film thickness is over 100 nm. When this is the case, we
are firmly placed in the weak-evaporation regime where
BEMM(L) is an acceptable approximation of BEMM. On
the other hand, using the HK or SM models would con-
stitute a sacrifice of accuracy with no real gain in sim-
plicity or utility compared to BEMM(L). Thus, we may
once again recommend BEMM(L), unless the film is ex-
tremely thin. In fact, under the condition that K < 1, it
appears that it is sufficient to use the further simplified
version of BEMM(L) which uses a linearized saturation
line. This means that one can directly apply Eq. (82) to
find the mass flux J , Eq. (83) to find the liquid-side in-
terface temperature θl, Eq. (88) to find the downstream
vapor temperature θv, Eq. (91) to find the time-evolution
of the film thickness H(τ).

While the linearized and simplified kinetic-theory based
models appear to be sufficient for most of the reasonable
range of K-values, it appears that K must be extremely
small for the quasi-equilibrium approximation to be ac-
curate. From Fig. 9 we see that the quasi-equilibrium
approximation significantly overpredicts the evaporation
mass flux for all values of K except the very small. The
errors of the quasi-equilibrium approach may also have
a qualitative impact on the model. A prominent exam-
ple of this may be seen from the interface temperatures
in Fig. 8. The quasi-equilibrium approximation specifies
exactly θl = 0 by definition, for all values of H. This
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Figure 7: Initial evaporative driving force ∆Z = ∆ps/p∞ as a function of film thickness in terms of K ∝ 1/h0. In addition to the four main
models, the dotted curves show the results from the corresponding simplifications from Eq. (85).
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Figure 8: Initial liquid- and vapor-side temperature (θ = (T −Ts)/∆Tw) at the interface as a function of film thickness in terms of K ∝ 1/h0.
In addition to the four main models, the dotted curves on the liquid side show the results of the corresponding simplifications from Eq. (83).
Note how only the BEMM models make a prediction for the vapor state, and that in this case the simplified prediction by Eq. (88) (dotted
line) is practically identical to the results of the full model.
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Figure 9: Initial evaporation mass flux as a function of film thickness in terms of K ∝ 1/h0. In addition to the four main models, the dotted
curves show the results from the corresponding simplifications from Eq. (82).
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Figure 10: Film thickness plotted against dimensionless time (scaled by Eq. (89)), in a case where the initial film thickness is such that
K = 0.5. In addition to the four main models, the dotted curves show corresponding simplified results from Eq. (91).
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may have a significant qualitative effect, since it eliminates
any thermocapillary effect at the evaporating interface (see
Aursand et al. (2018)).

If one is interested only in the dry-out time, we see
from Fig. 10 that every choice besides the HK or quasi-
equilibrium model gives practically the same results. Even
though the linearization behind BEMM(L) breaks down as
H approaches zero, this does not matter for the end result
because the relative time spent at these thicknesses is so
small. Compared to the quasi-equilibrium approximation
they predict a significantly longer time before dry-out. In
Fig. 10 it is about 70% longer, but the specific number
will depend on the value of K. Additionally, they show
a qualitative difference in that the evaporation rate does
not approach infinity as H approaches zero.

Finally, note that the recommendation of linearized
evaporation models herein should not be taken as general
for all cases of evaporation. They apply specifically for the
liquid-film in Fig. 6 with moderate surface superheat.

5. Conclusions

We have concisely summarized the derivation of a hand-
ful of kinetic-theory evaporation models, and shown how
they make predictions for the evaporation rate given a
fundamental driving-force based on the liquid saturation
pressure. We have also shown how these fundamental for-
mulations found in the kinetic theory literature reduce to
the highly simplified forms found in some fluid mechan-
ics literature, Eq. (64). From studying these evaporation
models we note the following:

• The liquid–vapor temperature-jump (∆T ) cannot be
considered as an independent case parameter in ad-
dition to the pressure-based driving force (∆ps). If
the latter is specified, the temperature jump is a
uniquely determined output.

• The older Hertz–Knudsen (HK) and Schrage–Mills
(SM) models are unable to make an independent
prediction for the temperature jump. In contrast,
the Boltzmann Equation Moment Method (BEMM),
both in its nonlinear and linearized form, is able to
make such a prediction.

• As long as the evaporation is weak (∆Z ≪ 1), we
recommend the linearized BEMM(L) model, Eq. (52).
For very strong evaporation (∆Z > 1) we must rec-
ommend its full nonlinear form.

We have also demonstrated how these evaporation models
may be applied in a conventional evaporation problem,
as an alternative to the commonly used quasi-equilibrium
(QE) approximation. Based on the analysis of the liquid
film evaporation case, we may conclude that:

• As shown in Fig. 9, the QE assumption should only
be used if K is very small. For a fluid like wa-
ter, this requires the film to be thicker than about

10 µm. For thinner films, the QE assumption will
significantly overpredict the evaporation rate. Also,
as seen in Fig. 8, the QE assumption completely ig-
nores a very significant temperature jump across the
interface. This may have an important qualitative
impact even for thicker films.

• When non-equilibrium evaporation models are in fact
necessary, is seems sufficient to use the BEMM(L)
model with linearized saturation line. It gives both
accurate evaporation rates and a prediction for the
vapor temperature without much unneeded complex-
ity. This means that the expressions in Eqs. (82),
(83) and (88) may be used to find the evaporation
rate, liquid-side interface temperature and vapor-
side interface temperature, respectively.

In further work it would be interesting to examine the
full implications of the non-equilibrium evaporation mod-
els for thin films. Assuming that the scale requirements
mentioned in Sec. 3.1 are satisfied, these models could be
included in stability analysis. As shown in Burelbach et al.
(1988) and Aursand et al. (2018), the evaporation model
affects many aspects of stability in both liquid and vapor
thin-films, including vapor-thrust and thermocapillary ef-
fects. In particular, making the quasi-equilibrium approx-
imation doesn’t merely cause a quantitative error in the
thermocapillary instabilities. In these evaporation cases,
it completely eliminates the thermocapillary effect from
the models.
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Appendix A. Kinetic theory details

The short-hand functions of S used in Sec. 2 are defined
as follows:

F±(S) =
√
πS (erf(S)± 1) + e−S2

= 1±
√
πS +O

(
S2
)
, (A.1)

G±(S) =
(
2S2 + 1

)
(1± erf(S))± 2√

π
Se−S2

= 1± 4√
π
S +O

(
S2
)
, (A.2)

H±(S) =

√
πS

2

(
S2 +

5

2

)
(erf(S)± 1) +

1

2
(S2 + 2)e−S2

= 1± 5
√
π

4
S +O

(
S2
)
. (A.3)
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