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Preface
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Engineering Cybernetics. The research was a part of the SEALS - Sea Air and Land Surveil-
lance project which was funded in part by the Research Council of Norway under grant number
159373/I40.
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Summary

THE first part of this thesis focuses on the detection part of a radar surveillance system, and
specifically derive methods for estimating the clutter density in a CFAR system from scan

to scan, by making some basic assumptions on the system configuration. It is shown how the gain
in applying a Bayesian estimator depend on the system configuration, and the gain is analyzed
for some well known CFAR configurations. As an intermediate result, the variance of the clutter
density for some CFAR configurations is derived. It is indicated how the derived variance may
be a useful tool in the analysis of CFAR systems. Empirical Bayesian estimation is introduced
as a way to apply optimal Bayesian estimation even though the prior density of the estimated
random variable is unknown. Empirical Bayesian estimators in general use past data to estimate
the prior density of the current random variable. A linear empirical Bayesian (LEB) estimator is
applied to estimate the clutter density in the CFAR case, and it is shown that the LEB estimators
converge to the corresponding linear Bayesian estimators as the set of past data gets large. The
LEB estimators use the sample mean and variance of past measurements as inputs to estimate
the current realization of the estimated random variable, or estimatee.

The second part of this thesis is related to modeling of the errors in surveillance radar po-
sition measurements, and developing estimation filters that incorporate the models into tracking
systems in an optimal manner. Monte Carlo simulations using simplified rectangular target mod-
els and simplified models of the components in radar surveillance systems are used to generate
large data sets of simulated measurements. The parameters of the proposed measurement error
models are then estimated from the data sets, using maximum likelihood estimation methods. It
is shown that there may be a correlation between the aspect angle of the target and position mea-
surement errors when the target is extended relative to the resolution of the system. In tracking
systems it is commonly assumed that no such correlation exists and that the measurement errors
in range and bearing are independent. In this thesis, two new measurement models are proposed.
One proposed model assumes that the measurement noise is independent of the bearing angle,
but dependent on the aspect angle. A second proposed model incorporates dependencies on both
aspect angle and bearing angle in the measurement equation. Several state dependent measure-
ment equations are also proposed to model biases that in some applications may be present in
surveillance radar measurements.

A discussion is given on how the standard Kalman filter fails to provide optimal estimates in
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viii Summary

cases where the measurement noise is dependent on the state vector of the target, and best linear
unbiased estimation (BLUE) filters are hence derived in order to apply optimal filtering in this
case. It is shown how higher order unscented transforms may be used to approximate the terms
of the recursive BLUE filter, and that a third order unscented transform fails to provide sufficient
accuracy. Some simulation results show how the BLUE filters in some cases has better root mean
square error (RMSE) performance than suboptimal Kalman filters that use the standard measure-
ment models. Simulations using simulated radar measurements also show that the proposed new
model that includes dependency on both bearing and aspect angle has the best performance at all
ranges, while the model assuming uncorrelated noise in range and bearing is good at long range
where the target becomes a point target.

A tool developed to generate trajectories consisting of random sequences of maneuvers is
used in the simulations to generate a large number of random trajectories. This tool proves to be
useful when analyzing the performance of the tracking filters, as it introduces the opportunity to
analyze estimation filter performance as a function of a number of different kinematic parameters
on trajectories that have dynamics that are realistic for the considered application.
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Nomenclature

The nomenclature contains a summary of the notation used in paper chapter one to four, as well
as the notation used in the papers one to four when it differs from paper one to four.

Notation Definition
P (A) Probability of event A
x Vector valued random variable
X Matrix valued random variable, random matrix
Fz (x) = P (z ≤ x) Cumulative probability function for z
fz (x) = d

dxFz (x) Probability density function (pdf) for z
fz (x|w) Conditional pdf for z given w
gz (m) Discrete probability mass function for z
E (z) = z̄ =

∫
xfz (x) dx Mean value, or expected value of z

E (z|w) =
∫
xfz (x|w) dx Conditional mean value of z given w

Cz = cov (z) = E
(
(z − z̄) (z − z̄)T

)
Covariance of z

σ2
z = var(z) = E

(
(z − z̄)2

)
Variance of one dimensional z

cov (z|w) = E
(
(z − z̄) (z − z̄)T |w

)
Conditional covariance of z given w

Cxz = cov (x, z) = E
(
(x− x̄) (z − z̄)T

)
Covariance of x and z

zk Kinematic measurement obtained at time tk
Zk = {z1, z2, ..., zk} Set of all kinematic measurements including tk
mk Number of kinematic measurements at tk
Y k = {m1,m2, ...,mk} Set of all mi including tk
x̂MMSE

k = E
(
xk|Zk

)
MMSE estimator at tk

P̂MMSE
k = cov

(
xk|Zk

)
Covariance of MMSE estimator

x̂BLUE
k BLUE estimator at tk
MSE

(
x̂BLUE

k

)
Mean Square Error of BLUE estimator at tk

x̂LEB
k LEB estimator at tk
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xiv Nomenclature

Notation Definition
N (x; x̄, Cx) Normal distribution with mean x̄ and covariance Cx

IW (Xk;n,C) Inverse Wishart distribution, n degrees of freedom,
C positive definite

W (Xk;n,C) Wishart distribution, n degrees of freedom,
C positive definite

θ Heading angle
φ Bearing angle
r Range
ψ Aspect angle
px

k x component of position in Cartesian frame at tk
vx

k x component of velocity vector at tk
py

k y component of position in Cartesian frame at tk
vy

k y component of velocity vector at tk

Notation paper one

Notation Definition
x̂LMMSE = x̂BLUE LMMSE notation used in paper one

Notation paper two

Notation Definition
mk State of Markov chain at time tk
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1
Introduction

1.1 A short introduction to target tracking

TO construct a system that can locate and track moving objects involves many challenging
tasks. Firstly, the right kind of sensor needs to be applied and deployed in the system,

sensors that can measure the properties of the objects with sufficient accuracy. Secondly, the
measurements from the sensors may be noisy, they may measure different physical properties
and they may provide measurements to the system at differing times and uneven intervals. These
noisy measurements then have to be combined, or fused, in order to obtain an estimate of the
position, velocity, acceleration, and in some cases the shape of the present objects. The objects
may be invisible for periods of time, they may change shape or appearance, and they may be
confused with other similar objects.

This multidisciplinary and complex field is called target tracking. Target tracking systems
are currently being applied in an increasing number of applications where there is a need to
locate and keep track of moving objects or targets. Many of the algorithms commonly used in
target tracking systems have been developed for military or civilian surveillance systems, like
for instance air traffic control systems. However, the emerging intelligent autonomous and semi-
autonomous systems introduce a demand for accurate and reliable sensing systems that can map
and keep track of objects in the vicinity. One example can be seen in the collision avoidance and
warning systems in modern high end cars. The methods of target tracking have also been applied
for tracking moving objects in video images. One example of such applications is to keep track
of the football on the field in 3D, using the images from a number of 2D cameras as input.

The first link in the tracking system is the physical sensors. Some examples are radars, sonars,
acoustic microphones, cameras, infrared cameras among many others. The system needs to have
accurate models of the errors in each sensor in order to combine the measurements in an optimal
manner. A measurement from an accurate sensor should be given higher credibility than one from
a less accurate sensor. In some applications the targets may cooperate with the tracking system
through a transponder system. The Automatic Identification System (AIS) in naval applications
is an example of such a system. The monitored vessels transmit their identity and position data to
a central surveillance system. This information can be combined with measurements from land

1



2 1 Introduction

based radars in a central estimation system.
The measurements are then processed by computers to estimate the state of the system. De-

pending on the application, the computer may aim to estimate a number of different parameters.
The number of targets present may be unknown and needs to be established before the kinematic
state of each target can be estimated. The kinematic state of an object may among other parame-
ters include position, velocity and acceleration. The state can be estimated using a combination
of available measurements and a model of how the target moves. The system may in addition to
kinematic state estimation also try to identify or classify the targets. Knowledge of the class of a
target may in some cases help to identify its intentions.

Many advanced statistical methods can be applied in this process, including Bayesian infer-
ence and pattern recognition algorithms. The high computational power and storage capacity in
modern computers has introduced the possibility to increase the complexity of real time target
tracking systems significantly. This trend is likely to continue in the future, and may be further
expanded with the increased use of parallel computing.

1.2 Surveillance with land based radars

The focus of this thesis is surveillance systems that apply one or more radars in order to keep
track of moving objects. Examples of such systems are air traffic control systems and coastal
surveillance systems. In these applications, the number of targets may be high and several radars
may cover the same area. Figure 1.1 shows a two dimensional radar image obtained from a
surveillance radar in harbor surveillance system. The figure shows a section of the Singapore
harbor. About 25 ships can be seen in the image in addition to reflections from the sea surface and
land structures. Radar signals reflected from the sea surface are sometimes called clutter and they
often make tracking difficult. The system has to distinguish between clutter and measurements
originating from real targets.

As mentioned previously, radar measurements can some times be combined with transponder
systems. For instance the International Maritime Organization (IMO) has agreed on a standard,
the AIS, where each ship transmits its identity and GPS measured position to land based centrals.
This could in principle function as a stand-alone system, but in practice there is a need for com-
plementary sensors in cases when vessels fail to give correct AIS data. In addition only vessels
heavier than 300 gross tonnage on international voyages, vessels at more than 500 gross tonnage
on domestic voyages, and all passenger vessels are required to carry an AIS transponder [1]. The
radar measurements can also be used by the tracking algorithm to increase the total accuracy in
the estimation algorithms.

The distance from the radars may in many cases vary from the order of meters to tens of
kilometers. The second part of the work described in this thesis examines the errors in the radar
position measurements as a function of the distance from the radar. It is shown that there is a
difference in the nature of the measurement error at long and short ranges, and it is shown how
this discovery can be used to improve the accuracy of tracking systems.

Each radar produces a large stream of data, up to several gigabytes per second. The radar
image seen in figure 1.1 needs to be processed in order to extract position of each individual
target. One possible approach is to threshold all the pixels, and group neighboring pixels into
clusters. The position measurement can then be taken to be the center of each cluster. Each
position measurement still has to be associated with the correct target. The first part of the thesis
works with a special kind of method of generating the threshold, called Constant False Alarm
Rate (CFAR) processing.



1.3 Main contributions 3

Figure 1.1: Radar image of a section of the harbor of Singapore. Displayed with permission
from Norcontrol IT.

1.3 Main contributions

The main contributions of the thesis are summarized as follows.

• The statistics of the clutter density in CFAR systems is derived in paper one, extending
analysis previously published in available literature. The derived results can be applied to
analyze and optimize CFAR systems.

• A best linear unbiased estimator (BLUE) is derived for the clutter density in paper one
under the assumption that the clutter density has a binomial distribution. The estimator
may be integrated with data association algorithms which require clutter density as an
input parameter in order to discriminate between clutter and targets. Empirical Bayesian
estimation is introduced as a an extension of Bayesian estimation to cases where the prior
distribution of the estimated variable is unknown.

• A framework for simulating radar position measurement errors for extended targets is de-
scribed in paper three and chapter 3. Target radar images are generated using the methods
described in [2]. It is demonstrated that there may be correlation between the aspect an-
gle of a target and the position measurement noise. This correlation has previously been
unknown or ignored in target tracking systems.

• Two new measurement models which incorporates the correlation between aspect angle
and measurement noise are presented in paper three, and integrated into a tracking frame-
work in paper two. One model assumes that the measurement noise is perfectly correlated
with the aspect angle of the target, while one three parameter model includes correlation
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with both aspect and bearing angle. The simulations in paper two and paper four show
that the three parameter model is the best fit.

• Optimal BLUE filters for state dependent measurement errors are derived in paper four.
The measurement equations applied in paper two are reformulated in order to derive op-
timal filters. The derived BLUE filters are demonstrated by Monte Carlo simulations to
perform better than suboptimal filters when applied on the measurement models introduced
in paper three.

• A tool for generation of random trajectories based on non linear jump Markov systems is
introduced in paper two and further developed in paper four. The simulation tool provides
a framework for generating sequences of realistic target maneuvers.

1.4 Thesis outline

This thesis is based on the work described in paper one to four, while the work in paper one is
extended with some additional analyses and results in chapter 2. A more extensive discussion
than provided in paper two on alternative methods to track extended targets is given in chapter 3.
Chapter 3 also contains more elaborate discussions on radar position error modeling than what
was provided in paper two, paper three, and paper four, and also extends the work in paper
three by containing more elaborate descriptions of the components in the applied Monte Carlo
simulations. Some additional simulation results are included in appendix A. Chapter 4 contains
a discussion of the derived methods and results. Paper one, paper two, paper three, and paper
four are then included in chapters five to eight.



2
Estimating clutter density in CFAR

systems

IN the following sections, the main results of paper one are summarized and extended with
additional analysis and discussions. Some results and figures from paper one as well as

additional background information are included for clarity.

2.1 Background

The clutter density or false alarm rate, which is the probability of obtaining a measurement
that is not originating from a target within a cell or an area, is an important parameter for the
data association algorithm. In the probabilistic data association filter (PDAF) algorithm [3] the
clutter density is used to calculate the association probabilities within a validation gate, which
is defined as the probability that each measurement within the gate originates from the target.
The false alarm rate is also an important parameter when calculating track score [4], which may
be used for track initiation, confirmation and deletion and is an important parameter in multiple
hypothesis tracking (MHT).

In the parametric version of the PDAF algorithm, the number of false alarms is assumed to
be given by a Poisson distribution

gmk
(m) = P (mk = m) =

(λkVk)m

m!
exp (−λkVk) (2.1)

where the clutter density λk is assumed to be known, and Vk is the volume of the validation
gate from which a number mk of kinematic measurements are obtained. The expected number
of false alarms at a given scan is then m̄k = λkVk. The nonparametric version of the PDAF
implicitly estimates the clutter density, by the use of a diffuse prior [3], as

λ̂k =
mk

Vk
(2.2)

The integrated PDAF algorithm (IPDAF) [5], introduced the estimator

λ̂k =
{

0
1

Vk

[
mk − PDPGP

(
Ok|Y k−1

)] (2.3)

5



6 2 Estimating clutter density in CFAR systems

TracksRaw sensor data Thresholding Measurements and tracking
Data association

Figure 2.1: Data flow in common tracking system.

where PD the probability of detection, PG is the probability that the target is found within the
validation region, and P

(
Ok|Y k−1

)
is the probability that the target exists at time tk given the

set Y k−1 = {m1,m2, ...,mk−1}. Several additional estimators were introduced in [6], all of
which include the probability that there exists a perceivable target at time tk, a target that may
provide a measurement. Several estimators were derived, including conditional mean estimators,
as well as maximum likelihood (ML) estimators and estimators based on method of moments
(MOM) approximation. Neither of these models incorporated any prior information about the
clutter density.

In paper one, the clutter density, or instantaneous false alarm rate, in Constant False Alarm
Rate (CFAR) systems were estimated using several different Bayesian estimators. The clutter
density was modeled as a random variable, and its statistical distribution was derived for some
different CFAR configurations. It was then shown how the clutter density could be estimated
from scan to scan for some systems, gaining a more accurate estimate of the clutter density than
when assuming that it is constant.

2.1.1 CFAR configurations

A graphical representation of how the raw radar or sonar data often is processed in tracking
systems is given in figure 2.1. The pixel maps provided by the sensors are preprocessed by a
CFAR algorithm, which sends a set of detections or measurements to a tracking algorithm at
each scan. The data association and tracking algorithm then use the measurements to update the
estimated states of existing tracks, initiate new tracks, and terminate tracks that no longer can
be associated with measurements. An alternative approach to what is seen in figure 2.1, is the
track before detect (TBD) approach, described for instance in [4]. In TBD algorithms, target
tracking is performed based on raw data over several scans before a detection is declared. TBD
algorithms are in general computationally expensive and thus hard to incorporate in a real time
surveillance system with high data rates.

The main principle behind all CFAR configurations is that the threshold used to determine
whether a given cell contains a target or not is calculated using a set of reference cells. The
averaging can be temporal or spatial, meaning that the reference set can be chosen over a re-
gion at a given time, or for a given set of cells over time. A generic CFAR system is shown
in figure 2.2. The cells x1, x2...xN as well as the cells yi

1, y
i
2, ..., y

i
M in each of the reference

sets D1,D2, ..., DN are random variables. The distribution of each random variable depends on
a number of different parameters. For instance, the distribution of reflections from the surface
of the ocean depends on the state of the sea surface [7]. Rayleigh, Weibull, K-distribution and
log-normal distributions are commonly used noise model in radar and sonar systems. The val-
ues in the cells may be measurements of either amplitude or intensity, which will influence the
distribution in each pixel.

The number of declared measurements is given as the sum of the indicator functions,
∑N

i=1 Ii.
The threshold Ti used to test a cell xi is calculated using using a function f on a set of reference
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={y  ,y , ... ,y }≥xi i

Ti i<x
xi ( )f DT = D 1 Mi i i

i i iIi =
1,{0,

2
T

Figure 2.2: Representation of Generic CFAR system, i = 1..N . N cells are under test,
the threshold for each cell is generated by a function on a set Di consisting of M reference
cells.

cellsDi. The reference set is usually chosen as a set of cells in the neighborhood of the cell under
test. A guard zone around the cell under test is sometimes included in order to handle the effect
of extended target images or densely spaced targets [8]. The implementation of function f (Di)
can be divided into two main classes, ordered statistics CFAR (OS-CFAR) and cell averaging
CFAR (CA-CFAR).

A CA-CFAR system is defined by the following equation

Ti = f(Di) =
α

M

∑M

k=1
yi

k (2.4)

where α is a design parameter commonly used to control the mean false alarm rate PFA. For a
scenario where all the cells have a Rayleigh distribution given as

fxi
(x) =

x

µ2
exp

(
−
(
x2

2µ2

))
(2.5)

and square law detection is applied in the system, then the mean clutter density is shown for
instance in [9] to be given by

PFA =
(
1 +

α

M

)−M

(2.6)

An OS-CFAR algorithm is based on constructing the ordered setDi′ =
{
y(1), y(2), ..., y(M)

}
by rearranging the elements of Di arranged such that yi

(1) ≤ yi
(2) ≤ ... ≤ yi

(M). The function
f(Di) is then given by the integer parameter K, 1 ≤ K ≤ M , and the parameter α and the
following equation

f(Di) = αyi
(K). (2.7)

In [8], it was shown that the mean clutter density or mean false alarm rate for a OS-CFAR system
with square law detection and cells with Rayleigh distribution was the following expression

PFA = K

(
M

K

)
(K − 1)! (α+M −K)!

(α+M)
(2.8)

[10] derived that the corresponding mean false alarm rate for a system where all the cells had a
Weibull distribution given by

fxi(x) =
γ

µ

(
x

µ

)γ−1

exp
(
−
(
x

µ

)γ)
(2.9)

and square law detection was applied on a OS-CFAR configuration. The mean false alarm rate
was then shown to be given by

PFA =
M !

(M −K)!
Γ
(
αγ/2 +M −K + 1

)
Γ
(
αγ/2 +M + 1

) (2.10)
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where γ is the shape factor of the Weibull distribution. [10] also extended CFAR to incoherent
integration over several scans. In [11], similar results were derived for K-distributed clutter in a
CA-CFAR system.

A number of different varieties of the CFAR algorithms described above has also been pro-
posed and described in the literature, as for instance the CA - greatest of - CFAR algorithm
described in [8], where the largest average from two reference sets is chosen. However, the
analysis in the present work is restricted to the most basic OS-CFAR and CA-CFAR algorithms.

Clutter density as random variable

As argued in paper one, the threshold for each cell under test, Ti, is a function of a set of random
variables at each scan, and is thus also a random variable itself. Given Ti and fxi

the probability
of false alarm in cell i is given exactly by the equation

pi = P (xi ≥ Ti|Ti) = P (Ii = 1|Ti) =

∞∫
Ti

fxi
(x)dx, (2.11)

where pi is defined on the interval [0, 1]. This was named the instantaneous false alarm rate
in paper one, but is named clutter density in this chapter in order to avoid confusion with the
commonly applied expression false alarm rate, which is often used for PFA. In paper one, the
probability density function (pdf) of pi is derived for different CFAR configurations. This is
accomplished by first deriving the pdf of the threshold Ti using the pdf of the reference cells and
the function f (Di). The pdf of pi, fpi (x), can then be derived using the function in equation
(2.11). By this approach, a pdf is derived for Rayleigh noise in a CA-CFAR system, and the
result in equation (2.6) is confirmed by calculating the mean value, p̄ =

∫ 1

0
xfpi (x) dx. An

expression for of the variance of pi is also derived,

σ2
p = var(pi) =

1∫
0

(x− E(pi))
2
fpi

(x)dx =
(

2α
M

+ 1
)−M

−
( α
M

+ 1
)−2M

(2.12)

For a OS-CFAR system where linear detection is applied on cells with Weibull noise, the cor-
responding mean and variance are derived, and the expressions are given by the following two
equations

p̄ =
Γ(M + 1)Γ(M −K + αγ + 1)
Γ(M −K + 1)Γ(M + αγ + 1)

(2.13)

σ2
p = Γ(M + 1) ·

{
Γ(M −K + 2αγ + 1)Γ(M −K + 1)Γ(M + αγ + 1)2 (2.14)

−Γ(M + 1)Γ(M −K + αγ + 1)2Γ(M + 2αγ + 1)
}
/{

Γ(M −K + 1)2Γ(M + 2αγ + 1)Γ(M + αγ + 1)2
}

The mean and variance are independent of the Weibull scale parameter µ, but depend on the
shape parameter γ and the parameters α and K.

Confirming equation (2.10), the pdf could also be derived for a OS-CFAR applying square
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law detection on Weibull noise. The variance could then be shown to be given by.

σ2
p = Γ(M + 1) ·

{
Γ(M −K + 2αγ/2 + 1)Γ(M −K + 1)Γ(M + αγ/2 + 1)2 (2.15)

−Γ(M + 1)Γ(M −K + αγ/2 + 1)2Γ(M + 2αγ/2 + 1)
}
/{

Γ(M −K + 1)2Γ(M + 2αγ/2 + 1)Γ(M + αγ/2 + 1)2
}

The mean and variance for a OS-CFAR system with Rayleigh noise can be derived by inserting
γ = 2 in equations (2.13), (2.14), and (2.15).

2.1.2 CFAR Loss

CFAR loss is often defined as the increase in SNR needed to maintain the mean probability of
detection for a given target in a CFAR system compared to that of ideal detection with a constant
threshold. In [9], a Swerling I or II target was used to derive the CFAR loss for a CA-CFAR
system and Rayleigh noise. The measure average decision threshold (ADT) was introduced
in [8], which is defined as the average detection threshold divided by the average noise power
which is independent of the distribution of the target signal. This measure is then approximated
to be proportional to the increase in SNR needed to maintain a constant probability of detection.
Variations in the parameter α needed to keep a given mean false alarm rate for a given noise
distribution was introduced as a measure of CFAR loss in [11]. This measure is independent of
the target distribution, but is not very intuitive and it is also hard to compare the measure for
different system configurations.

The variance of the false alarm rate, σ2
p, is clearly related to the ADT measure introduced

in [8], as it is a function of the distribution of the generated threshold as well as the distribution
of the cell under test. As argued in paper one, σ2

p is a useful parameter when examining the
performance of a CFAR system. It may be linked directly to CFAR loss in the same manner as
the ADT measure, but it may also be used as a measure of the variations in the expected false
alarm rate in a given CFAR configuration. An illustration is given in figure 2.3 where σ2

p is
plotted for an OS-CFAR system as a function of the parameter K. It is shown how the variance
is comparable for K = 15..20 and lowest for K = 19 in this case.

2.2 Estimation of clutter density

2.2.1 Assumptions

Several different estimators of the clutter density were introduced in paper one, all of which were
based on the assumption that the number of false alarms were given by a binomial distribution,

P (mk = k|p) =
(
M

k

)
pk (1− p)M−k (2.16)

where mk is the number of declared measurements at tk. The mean and variance of the binomial
distribution given the parameter p are given by E(mk|p) = Mp and var(mk|p) = Mp(1 −
p). The binomial distribution arise from the sum of M independent Bernoulli trials with the
probability p of success, P (Ii = 1) = p for all i. This implicitly restricts the configurations
where the estimators can be applied.

Firstly, the same random threshold has to be applied to all the cells in the volume. This
configuration is sometimes applied in radar surveillance systems. The generated threshold can
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Figure 2.3: Plot of σ2
p as function of K for OS-CFAR configuration, cells with Rayleigh

distribution. M = 20, E (pi) = PFA = 10−5. Plot K=1..20 (top), detail K=15-20 (below).

then be made statistically independent of the cells under test by generating it from another set of
cells. Secondly, the noise in each cell needs to be independent, fxixj (xi, xj) = fxi (xi) fxj (xj)
for all i and j, which means that no spatial or temporal correlation may exist. Systems where the
cell under test and reference set of cells are used as a sliding average as illustrated in figure 2.4,
where neighbor cells may appear in each other reference sets, do not fulfill these requirements.
In general the Bernoulli trials in two neighbor cells will not be independent if they use some
of the same cells as reference cells, and it is hard to derive a parameterized probability density
function for this kind of system.

2.2.2 Bayesian and classical estimation

In Bayesian estimation, the estimate is based on the posterior density f(x|z) which is obtained
using Bayes’ law and given by the following equation, where fx(x|z) is the posterior density of
the estimatee, fz(z|x) is the likelihood function for the measurements given x and fx (x) is the
prior pdf of the estimatee.

fx(x|z) =
fz(z|x)fx(x)

fz(z)
=

fz(z|x)fx(x)∫
fz(z|x)fx(x)dx

(2.17)

A prior density fx (x) thus needs to be available in order to obtain an estimate. In contrast, the
estimatee is modeled as a completely unknown constant or an unknown time varying parameter
in classical estimation, and no prior information is applied. In the application considered in this
chapter, assuming that the clutter density is constant and equal to PFA may be considered to
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Figure 2.4: Illustration of system where cell under test (CUT) is moved in range direction,
using cells on both sides as reference sets to estimate the background and calulcate the
threshold.

be a classical estimator, while the presented linear Bayesian are the Bayesian counterparts. As
discussed in paper one, the applied empirical Bayesian estimators may be considered to be a
compromise between classical and Bayesian estimation, in the sense that no prior information
about the estimatee is needed because it is estimated from past data.

2.2.3 MMSE and BLUE estimators

Based on the posterior density, an estimate of x can be obtained in several different ways. The
minimum mean square error estimator (MMSE) can be shown to minimize the square error func-
tion given by

x̂MMSE = arg min
x̂
E
(
(x̂− x)T (x̂− x)

)
(2.18)

The MMSE estimator is given by the conditional mean [12]. The MMSE estimator and its
covariance are given by the following equations.

x̂MMSE = E (x|z) =
∫
xfx(x|z)dx (2.19)

P̂MMSE = cov (x|z) =
∫

(x− E (x|z)) (x− E (x|z))T
fx(x|z)dx (2.20)

A closed form solution of equation (2.19) is often hard to obtain, and the best linear unbiased
estimator (BLUE) is hence a tractable alternative. The notation linear minimum mean square
error estimator (LMMSE) was applied in paper one, but the more widely used BLUE notation
is adapted in this thesis, also in order to be consistent with paper four. The BLUE estimator
minimizes the quadratic cost function by a linear function of the measurement z, as given by the
following equation.

x̂BLUE = arg min
x̂=Az+b

E
(
(x̂− x)T (x̂− x)

)
(2.21)

The BLUE estimator is given by [12]

x̂BLUE = x̄+ CxzC
−1
z (z − z̄) (2.22)

MSE(x̂BLUE) = Cx − CxzC
−1
z Czx (2.23)
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where x̄ is the prior mean of the estimatee, Cxz = E
(
(x− x̄) (z − z̄)T

)
= CT

zx is the covari-

ance between the estimatee and the measurements, Cz =
(
(z − z̄) (z − z̄)T

)
is the measure-

ment mean square error (MSE), and z̄ is the measurement mean. The notation MSE is applied
rather than covariance because the BLUE estimator is not a conditional mean [12].

The BLUE estimator has the advantages that it only depends on the first two moments of the
estimatee, it is unbiased E(x − x̂) = 0, and it is the best in the mean square error sense within
the class of linear estimators. Among its other beneficial properties is that for the case that x and
z are jointly Gaussian, the BLUE estimator coincides with the conditional mean, and is hence
the optimal estimator in the sense that it minimizes equation (2.18). In this case, its conditional
MSE coincides with its unconditional MSE,MSE

(
x̂BLUE |z

)
= MSE

(
x̂BLUE

)
= P̂MMSE .

The BLUE estimator for the case that the likelihood function is given by the binomial distri-
bution in equation (2.16) was derived in paper one, and is given by the two following equations,
where p and σ2

p is the prior mean and variance of the clutter density.

x̂ = x̄+ CxzC
−1
z (z − z̄)

= p̄+
σ2

p

p̄ (1− p̄) + (N − 1)σ2
p

(mk −Np̄) (2.24)

MSE(x̂) = Cx − CxzC
−1
z Czx = σ2

p

(
p̄ (1− p̄)− σ2

p

p̄ (1− p̄) + (N − 1)σ2
p

)
(2.25)

2.2.4 Gain

In paper one, the gain of estimating the clutter density at each scan was defined by G given by
the following equation.

G =

[
σ2

p

MSE(x̂BLUE)

]
dB

(2.26)

By making the assumption that the gain is constant and equal to PFA, then the error covariance
is given by E (pi − PFA)2 = σ2

p. The gain G is thus a measure of the accuracy of an estimator
which assumes that pi = PFA, compared to that of the BLUE estimator. This gain is calculated
as

G = 10 log10

(
p̄ (1− p̄) + (N − 1)σ2

p

p̄ (1− p̄)− σ2
p

)
in this chapter, as both the enumerator and denominator are squared values, while 20 log10 (A)
was used in paper one. The gain was plotted in paper one as a function of number of cells N
in an CA-CFAR system with Rayleigh noise (figure 4), as function of the parameter K in an
OS-CFAR system with N = 20 and Weibull noise (figure 5), and as function of N in an OS-
CFAR system with K = N − 3 (figure 6). Choosing linear or square law detection does not
influence these results, as PFA in equation (2.13) and (2.10) are determined by the ratio αγ and
αγ/2 respectively. The relationship between α and γ is fixed as αγ is constant for a given false
alarm rate. Assuming that α is used to keep PFA constant and solving equation (2.6) for α gives

α = N
(
P
−1/N
FA − 1

)
(2.27)
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Inserting this into equation (2.12) gives

σ2
p =

(
2α
N

+ 1
)−N

−
( α
N

+ 1
)−2N

=
(
2P−1/N

FA − 1
)−N

− P 2
FA (2.28)

Thus
lim

N→∞
σ2

p = 0 (2.29)

which is expected because when the set of reference cells becomes large, the CFAR threshold
becomes the ideal threshold. The gain can thus be written as

G =
σ2

p

MSE(x̂BLUE)
=
PFA (1− PFA) + (N − 1)

((
2P−1/N

FA − 1
)−N

− P 2
FA

)
PFA (1− PFA)−

(
2P−1/N

FA − 1
)−N

+ P 2
FA

(2.30)

Thus

lim
N→∞

G =
−PFA ln2 (PFA)− 1 + PFA

−1 + PFA
= 1 +

PFA ln2 (PFA)
1− PFA

(2.31)

This expression provides an explanation why the different curves in figure 4 of paper one con-
verged to different values, as they represented different mean false alarm rates. Also, by esti-
mating the gain of information in the sense of Fisher by using the BLUE estimator compared to
using PFA ,

∆I = MSE
(
x̂BLUE

)−1 − σ−2
p =

(
N

E (p) (1− E (p))− σ2
p

)
=

N

PFA −
(
2P−1/N

FA − 1
)−N

−−−→
N→∞

N

PFA (1− PFA)
(2.32)

The added information per cell in the sense of Fisher is thus given by approximately (PFA (1− PFA))−1

which explains the difference in the rates of convergence for the different mean false alarm rates,
as the information added in each cell is larger for a low false alarm rate.

2.2.5 Empirical Bayesian estimation

The estimator given in section 2.2.3 depended on being able to calculate the mean and variance
of the clutter density analytically or numerically. Accurate knowledge of the distribution of each
cell is in many cases unrealistic, as the distribution may vary over time and space and sufficient
knowledge about the distribution of each cell may be unavailable. This is the background of why
Empirical Bayesian estimation was introduced in paper one, in order to avoid being dependent
on exact knowledge about the distributions fxi

(x) or PFA and σ2
p.

As discussed in paper one, the term Empirical Bayes (EB) estimation was introduced by
Robbins [13], and is based on Bayesian estimation but assumes that the prior distribution of the
estimatee can be estimated from previous measurements. The prior distribution is thus modeled
as a random variable, but given a frequentist interpretation in the sense that its prior distribution
can be observed and estimated using classical estimation methods [14]. A representation of the
main principle of EB estimation is shown in table 2.1. Previous measurements z1 to zl−1 are used
to extract information about the prior distribution fx (x), and this estimate is then applied to make
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an estimate x̂l based on the measurement zl. As discussed in paper one, empirical estimators
are often divided into two classes, parametric and nonparametric, where the parametric approach
assumes that the prior distribution belongs to a given class of distributions. In the nonparametric
approach, no such assumption is made, but the prior density is estimated using the expression
f̂(z) ≈

∫
f(z|x)f̂(x)dx. In many cases, no explicit estimate of f̂(x) is needed in order to obtain

an estimate x̂l, [15]. .

Table 2.1: Organization of data in empirical Bayesian approach

Past data Current data
Realizations x1 ... xl−1 xl

Measurements z2 ... zl−1 zl

2.2.6 Linear empirical Bayesian estimation (LEB)

Linear EB estimators is a class of nonparametric EB estimators which is based on estimating
the two first moments of the measurement distribution f (z). Robbins derived a general scalar
estimator in [16], which can be generalized to a vector case by equation (2.35) [15]. If likelihood
function fz(z|x) satisfies the following two equations

E(z|x) = x (2.33)

cov(z|x) = A+ bxT + xbT + axxT (2.34)

where A, b and a are constants, then the LEB estimator can be written as

x̂LEB
k = ẑ +

1
1 + a

(
I −

(
σ̂2
)−1 (

A+ bẑT + ẑbT + aẑẑT
))
· (zk − ẑ) (2.35)

where ẑ and σ̂2 is the sample mean and covariance of the past data.

LEB estimator for binomial distribution

A derivation of a LEB estimator for the binomial distribution is given in paper one, based on [16]
and [15]. This estimator is the LEB estimator for all likelihood functions where E (mk|p) = p
and var (mk|p) = p (1− p). The estimator is given by

p̂LEB
k = ẑ +

N

N − 1

(
1− ẑ (1− ẑ)

Nσ̂2

)(mk

N
− ẑ
)

(2.36)

wheremk is number of declared measurements at time tk, and ẑ and σ̂2 are the sample mean and
variance of the past measurements divided by N . An additional scalar estimator derived in [17]
was presented in paper one, but the convergence properties of the estimator in equation (2.36)
were found to be equal or comparable to those of the estimator in [17] in the performed Monte
Carlo simulations. Equation (2.36) was thus used, as it is more computationally efficient.

It is possible to derive empirical estimators of the mean square error of the estimator in equa-
tion (2.36) which also is based on the sample mean and variance of the obtained measurements.
However, this estimator was shown to be sensitive to the variances of the sample mean and vari-
ance, and thus was demonstrated to use a large number of measurements to converge to the actual
MSE

(
p̂LEB

l

)
. This was examined through Monte Carlo analyses.
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Figure 2.5: Convergence of MSE of LEB estimator. CA-CFAR system with N = 10 and
Rayleigh noise. PFA = 10−3. Monte Carlo simulations with 106 runs.
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Figure 2.6: Convergence of MSE of LEB estimator. CA-CFAR system with N = 100 and
Rayleigh noise. PFA = 10−3. Monte Carlo simulations with 105 runs.
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Figure 2.7: Convergence of MSE of LEB estimator. CA-CFAR system with N = 10 and
Rayleigh noise. PFA = 10−2. Monte Carlo simulations with 106 runs.
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Figure 2.8: Convergence of MSE of LEB estimator. OS-CFAR system with N = 10 and
Rayleigh noise. PFA = 10−3. Monte Carlo simulations with 106 runs.
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Figure 3 in paper one shows how the MSE of the LEB estimator converges to that of the
corresponding BLUE estimator for a CA-CFAR configuration. However, the figure was gener-
ated by drawing p from a truncated Rayleigh distribution, and with a relatively large N of 103

cells. Figures 2.5, 2.6, and 2.7 show similar convergence curves for several other cases, using a
CA-CFAR configurations. The threshold in these figures was generated by a gamma distribution,
T ∼ Gamma(N, αλ

N ) using the results derived in paper one while xi were generated using the
exponential distribution xi ∼ Exponential(λ). In figure 2.8, the convergence curve for a OS-
CFAR configuration is shown. A set of reference cells was used to generate the threshold at each
scan, as it was found to be more computationally demanding to generate the thresholds from the
derived pdf of the threshold.

In general, the LEB estimators converge to the corresponding BLUE estimators [14], but
as illustrated in figures 2.5, 2.6, 2.7, and 2.8, the rate of convergence may vary for different
system configurations and needs to be examined for each case. For the CA-CFAR systems, the
point where the gain becomes larger than zero was found to depend mostly on PFA rather than
on N . For PFA = 10−2, G was positive after ~50 scans, whereas for PFA = 10−3 it was
positive around 800-1000 scans, and G was shown to be larger than 0 after ~5000 scans when
PFA = 10−4. For the SO-CFAR system with PFA = 10−3, as shown in figure 2.8, the estimator
converged faster than for the CA-CFAR estimator with the same mean false alarm rate.
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3
Extended targets in surveillance radar

applications

THIS chapter further extends the work presented in paper two, paper three, and paper four, in
the sense that the simulation setup introduced in paper three is described in further detail,

while some background material from paper two and paper three is included for clarity. Some
additional simulation results are then presented in appendix A. This chapter also contains a dis-
cussion of the applied signal processing and tracking methods compared to previously published
methods for tracking extended targets, extending the work in paper two. A justification of the
state dependent bias models proposed in paper four is also presented.

3.1 Tracking extended targets

The work described in paper three focused on deriving error models for radar surveillance sys-
tems, where the signal processing is implemented using centroid processing as outlined in papers
two and paper three. To cluster detected pixels and compute the cluster centroid as presented in
[18] is computationally efficient. This is important in a radar surveillance system where a large
amount of data needs to be processed and a high number of targets may be present. However,
information that potentially could be used to improve the accuracy of the tracking system is
discarded when the image centroid is used as the only input to the tracking algorithm. Methods
developed for group tracking could potentially be used in order to utilize information in the target
image. An extensive review of group tracking approaches as well as a classification of different
variants of group tracking can be found in [19], where group tracking is defined as tracking a
cluster of closely spaced objects. A first class of group trackers was for instance described in
[20], where the centroid of a cluster is tracked without retaining individual tracks for the objects
in the cluster. In [20], one tracking filter is implemented for the centroid using a standard track-
ing filter approach, while a separate filter is defined to track the extent of the cluster. The state
vector of the extent filter is defined as the six dimensional vector

x =
[
σ2

x, σ
2
xy, σ

2
xz, σ

2
y, σ

2
yz, σ

2
z

]T
(3.1)

19
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The target extent is then defined as given by the volume

δxTR−1δx ≤ β (3.2)

R =

 σ2
x σ2

xy σ2
xz

σ2
xy σ2

y σ2
yz

σ2
xz σ2

yz σ2
z

 (3.3)

It is argued in [20] that the same approach could be used for an extended target. This setup
could be directly adapted to the 2D tracking applications considered in this thesis, with some
restrictions. The second filter, estimating the extent of the target, would not improve the RMSE
of a single target filter, but it may be used for other purposes. The estimated target image extent
could potentially be used by the tracking algorithm to improve data association in a multi target
or cluttered environment, similar to how target amplitude was used in [21]. However, using
image extent in a multi sensor environment as outlined in [20] may prove to be problematic as
the image is a function of the target sensor geometry for each sensor. Large differences may thus
appear in the target images generated by sensors at different locations. In addition, the problem
of one group or cluster dissolving into smaller clusters is not relevant for an extended target
image, but is an important element in the group tracking approach.

In [22] and [23], the extent of the group target was modeled and estimated using random
matrices. The estimated object extension is assumed to have an inverse Wishart density given by

fXk
(Xk|Zk) = IW

(
Xk; ν̂k, X̂k

)
∝ |Xk|−

ν̂k
2 exp

(
trace

(
−1

2
X̂kX

−1
k

))
(3.4)

where νk is a parameter of the inverse Wishart distribution, and its estimate at each step is given
by ν̂k. The notation x̂k is in this thesis defined as the estimate of the random variable x at time k,
utilizing all measurements up to, and including time k. By assuming appropriate system models
forXk and νk, it is shown that the predicted density of the extension is given by a Wishart density
function, as

fXk
(Xk|Xk−1) = W

(
Xk; δ̄k,

Xk−1

δ̄k

)
(3.5)

∝ |Xk−1|−
δ̄k
2 |Xk|−

δ̄k−d−1
2 exp

(
trace

(
−1

2
δ̄kXkX

−1
k−1

))
where δ̄k is a parameter chosen as δ̄k = δ exp (T/τ), T is the sampling interval, and τ and δ are
spatial evolution parameters. The notation x̄k is in this thesis defined as the predicted variable,
or as the estimate of the variable x at time k utilizing all measurements up to and including time
k−1. The predicted kinematical state of the target is assumed to be dependent on the target state,
as

fxk
(xk|Xk, Zk−1) = N

(
xk; x̄k, P̄k ⊗Xk

)
(3.6)

⊗ indicates a Kronecker product, defined by

A⊗B =


a11 ·B a12 ·B · · · a1n ·B
a21 ·B a22 ·B

...
. . .

am1 ·B amn ·B


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The cluster or group target is assumed to be constructed by nk independent measurements
originating from the cluster, and measurements of the centroid and target extent are defined by

zk =
1
nk

∑nk

j=1
zj
k

Ek =
∑nk

j=1

(
zj
k − zk

)(
zj
k − zk

)T

Based on a derived likelihood function, the jointly posterior pdf is derived using a Bayesian
framework and shown to be given on the form

fxk,Xk

(
xk, Xk|Zk

)
= N

(
xk; x̂k, P̂k ⊗Xk

)
IW

(
Xk; ν̂k, X̂k

)
where Zk is the set of all measurements up to time k. Simple recursive equations are then derived
for the prediction and estimation for both the target extent and the kinematic state.

The methods derived in [22] and [23] could potentially be adapted to the considered applica-
tion by defining each pixel as a measurement, even though the assumptions made to derive the
likelihood function may be violated. The simple recursive structure of the derived filter would not
imply an increase in computational load compared to the methods presented in paper two and
paper four. However, the assumptions imposed on the system by assuming that the predicted
kinematic state is a function of target extent do not transfer easily to an extended target image
scenario, where the shape of the image depends on the kinematic state. This framework may
thus be more suitable for extended objects consisting of many individual objects, where it may
be possible to make considerations on the kinematics of the group objects based on the shape of
the cluster.

A second class of group tracking is also defined in [19], where tracks of individual objects in
a cluster as well as the cluster information are retained. A general formulation of this approach
can be found in [24], where a point matching algorithm is proposed in order to solve the problem
of associating measurements in the cluster with individual tracks. A similar approach based
on tracking the position of points on an object in a sequence of video images was presented
in [25]. In [26], a Bayesian multiple hypothesis approach is implemented using particle filters,
and the Bayesian particle filter approach is further investigated in [27]. For 2D surveillance
radars, experience shows that the speckle noise and other noise components present in the target
images makes it hard to identify individual features on the targets. As discussed in paper two,
surveillance systems will often be optimized to detect targets, and not to measure the amplitude
of peaks in the target image. Tracking of individual reflectors, like for instance corner reflectors,
will often be hard or impossible, as indicated in figure 1.1. This approach could, however, be
feasible for instance when considering the resolution and image quality of the ISAR images
presented in [28].

Another approach was described in [29], where it is assumed that a measurement of the
length and width of the target is available as measurements. This approach is not applicable for
the surveillance radar applications considered in this thesis, as the width and length of the target
image may differ and in worst case be uncorrelated with the dimensions of the target. There may
also be significant speckle noise in the target image from scan to scan, creating measurement
errors of large magnitudes.

The work in [30] introduced a measurement model which was applied in a track before detect
filter in [31], where measurements originated from the target are assumed to be independent and
have a spatial Poisson distribution over a target region. This approach was not considered because
of two main reasons. Firstly, the track before detect approach is extremely computationally
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expensive, which does not fit in well with a high data rate and high target number surveillance
application. Secondly, assuming that the measurements are given as clustered pixels, the spatial
Poisson distribution in general will not be correct.

3.2 Position measurement error models

In the following subsections, alternatives to the Monte Carlo simulations described in paper two
and paper four are discussed, and a justification is given for the state dependent biases proposed
in paper four.

3.2.1 Radar position error modeling

As discussed in paper two and paper three, it is common to assume that range measurement
errors are independent from bearing and elevation measurement errors when radar position mea-
surements are included in a tracking system. Assuming that the measurement consists of an angle
(bearing) and range measurement, the measurement vector at time tk and its covariance can be
written as

zk =
[
rk φk

]T
(3.7)

Cz =
[
σ2

r 0
0 σ2

φ

]
(3.8)

As shown in paper two and paper three, this assumption may fail to be true for targets that
are extended relative to the resolution of the radar. Numerical values for σ2

r and σ2
φ need to be

derived in order to apply the model in a tracking system. Models of σ2
r and σ2

φ based on matched
filtering and a given signal to noise ratio (SNR) for selected waveforms can be found for instance
in [7]. However, these models may not transfer directly to scenarios with extended targets where
the target may cover several resolution cells.

An analytical approach to modeling the error statistics of radar measurements of extended
targets can be found in [32]. The wandering of the apparent center of the target relative to its
geometric center is named glint. The phase front is defined as the plane with constant phase in the
electrical field returned from the target. The angular error of the position measurement is derived
by considering the direction of phase front reflected from the target. The apparent direction of
the target is normal to this phase front. A normalized measure of the angular error is defined by

η =
tan υ
α0/2

where υ is the difference between the apparent target direction and the center of geometry, and
α0 is the angular extent of the target. Assuming that the returned signal of the two point targets
are Rayleigh distributed, it is shown that the difference between η and its expected value, E (η),
has a student-t distribution.

The range error is defined as the group delay of the returned electromagnetic signal. By
approximating the system as linear, it is shown that the normalized range error also has a student-t
distribution and that the range and angular errors are independent. These results are also shown to
be true for more complex, but still simplified targets, where Rayleigh point targets are distributed
uniformly over a rectangular area. Barton extends these results by approximating the first lobe
of the student-t distribution by a Gaussian distribution, giving that the standard deviation of the
glint is given by σg = L/3, where L is the extent of the target [7].
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Figure 3.1: Caption of surveillance radar image of a commercial vessel showing clutter in
the wake of the vessel. The corners of the rectangular targets are marked by X. The target is
moving towards lower right corner of image. Displayed with permission from Norcontrol
IT.

The models presented in [32] can not be applied directly in the target tracking systems con-
sidered in this thesis. Firstly, the errors are normalized and need to be transformed into physical
units. Secondly, the effects of the signal form and processing need to be included in the calcu-
lations in a real system, as indicated in [7] and [2]. In addition, in this thesis targets that may
be considerably larger than the size of the range and angular resolution of the radar are stud-
ied. Depending on the range, the targets may be covered by many resolution cells. The work in
[32] does not include considerations of signal processing other than the angular response of the
receiver.

As discussed in paper three, a second approach to derive the values of σ2
r and σ2

φ is described
by [33], and [34] for systems applying centroid processing on image sensors. One underlying
assumption in this method is that the noise in the pixels is uncorrelated, which in general will not
be true for a radar image where the image may contain speckle noise. Secondly, it is assumed
that the mean and variance of the pixels in the target image are known, which in many cases
would be unreasonable. However, the assumption may in some cases be true for point targets
where the target image may be similar to a Gaussian plume, and where the SNR can be predicted
or learned from experience.

3.2.2 Measurement biases

In paper four, two state dependent biases were proposed which were functions of the velocity of
the considered target. The first proposed bias model assumes that the bias is proportional to the
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velocity vector, as
b1 = K · v = K · [vx, vy]T (3.9)

The parameter K is then a system parameter and has units s. The second proposed bias assumes
that the bias was aligned with the velocity vector, but of constant magnitude, as

b2 = K · v
|v|

= K · [cos (θ) , sin (θ)]T (3.10)

The motivation for proposing this class of target dependent biases can be seen in figure 3.1, where
a radar image at closed range is shown. The image clearly shows how a significant amount of
clutter may be induced in the wake of the target, and it is very likely that the induced clutter may
be rendered as a part of the target image by a segmentation algorithm. A bias in the backwards
direction is thus generated. The amplitude of the wake and thus also the clutter may be a function
of velocity, which is why the first bias is proposed. In other cases it may be reasonable to assume
that the bias is constant, which can be modeled by the second bias.

The radar image shown in figure 3.1 was a result of an experiment conducted in 2005, where
recorded radar images of a commercial ferry were compared to the measurements obtained from
a highly accurate differential GPS system mounted on the vessel. Two differential GPS transmit-
ters were used, each with an accuracy of ~3cm, and synchronized samples were obtained with
a frequency of 1 Hz. The position and heading of the vessel could thus be obtained with a high
degree of accuracy. The experiment provided a basis for analytical considerations based on the
raw images, but did not record enough data to allow statistical analysis of the state dependent
measurement biases. The biases seen in figure 3.1 were observed, and it was seen that clutter in
the wake of the target was more likely to appear close to the radar, where the grazing angle was
high.

Bias due to occlusion

The third bias proposed in paper four, where the bias was a function of the aspect angle, had
a more heuristic justification than the two previous ones. The target sensor geometry in the
experiment described above meant that metal structures and objects all over the target surface
were visible at all times, making the occlusion effect smaller than in other applications. However,
occlusion effects may in other cases cause significant biases in the target images. As argued in
paper four as well as in [35], the structures on the target that contribute to the target image for
a given aspect angle may be shifted from the geometrical center of the target, which may cause
a bias in the measurements for small changes in the aspect angle. In paper four, a simple bias
model was proposed that may be appropriate for cases where expected occlusion is a function of
aspect angle. The bias is proposed to be given by the following expression.

b3k = α · |cos(ψk)| · rk/ |rk| = K · |cos (θk − φk)| ·
[

cosφk sinφk

]T
(3.11)

The expression could also be extended to include elevation angle.
As discussed in paper four, it is proposed to use state dependent biases in order to handle

correlation between measurements at small aspect angles as an alternative to the approach de-
scribed in [33] and [35], where the bias between that geometrical center of the target and the
image center is estimated at each scan. The results in appendix A show that a very small change
in aspect angle may produce a completely different realization of the speckle noise and hence a
different target image. The offset may thus be difficult to estimate, especially if the aspect angle
changes rapidly. However, for cases where two different sensors with different sensing principles
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Figure 3.2: Schematics of MC simulations.

are fused as described in [33], different objects may contribute to the target images for each sen-
sor, causing offsets which need to be modeled, or estimated as proposed in [35]. A bias would
then be defined as an offset in the target image compared to the geometrical center of the target
for each sensing principle.

3.3 Monte Carlo simulations and parameter estimation

The main aims of the work described in paper two and paper three were to examine the correla-
tion between measurement errors of 2D surveillance radars and the aspect angle of a target, and
also to develop models of these linked measurement errors that can be applied in an automated
target tracking system. As discussed in paper three and in section 3.2, expressing the measure-
ment error for an extended target error in a real 2D surveillance radar system analytically as it
was done in [32] would be hard or impossible. The alternative approach applied in this thesis
was to derive the parameter of the error models using Monte Carlo simulations, where simplified
target models and system components were used to generate simulated radar images for a target
with a given position and aspect angle. These generated images were then processed into range
and bearing measurements using similar processing as commonly applied in 2D surveillance
systems.

The main flow in the simulations can be seen in figure 3.2. Simplified and idealized models
of the spatial filtering and ideal matched filtering were constructed as presented in paper three,
and further described in the following subsections. The simulations were performed with targets
consisting of a collection of point targets with fixed position relative to each other, as described
in paper three.

The sensor target geometry was varied in a systematic manner in order to investigate the
relationship between aspect angle, SNR and measurement error, as described in paper two, pa-
per three, and paper four. Section 3.3.1 contains a description of the considered sensor target
geometry, which is similar to many other 2D surveillance applications. Maximum likelihood
estimation was then applied to fit statistical models of the measurement error to large sets of sim-
ulated measurements. A summary of the applied measurement models is found in paper four.
The distance between the derived error model and the generated measurement set was calculated
using the Kullback Leibler distance, which is described in section 3.3.8. The results and meth-
ods presented here are adapted to this specific application, but may easily be adapted to other
applications by modifying the models applied in the Monte Carlo simulations.
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Figure 3.3: Sensor target geometry for single sensor system. T is the position of the target,
ψ is the aspect angle, ϕ is the elevation angle, h is the relative height of the sensor.

3.3.1 Sensor target geometry

This thesis focus mainly on maritime surveillance systems, where the considered targets will
consist mostly of ships moving at relatively low velocities. The distance between the target and
the radars may vary from less than 100 meters to tens of kilometers. A general representation
of the considered sensor target geometry can be seen in figures 3.3, 3.4, 3.5, and 3.6. The
symbols denoting aspect angle ψ, range and bearing

[
r φ

]T
, and heading angle θ, will be

used throughout this thesis.
Figure 3.3 shows the target sensor geometry for a single sensor where the sensor is located

at the point R. The aspect angle ψ is the heading of the target with respect to the sensor. It is
defined by the angle between the two planes drawn in figure 3.3. One plane is defined by the
position of the radar, R , the position of the radar projected to ground level, O, and the center
position of the target, T. The second plane is defined by the vertical plane through the center line
or the main axis of the target.

A schematic representation of a 2D sensor-target geometry can be seen in figure 3.4. Let
the sensor frame be defined in the Cartesian frame by the x and y axes, and the r and φ in polar
coordinates. Then, let the axes x’ and y’ be aligned with the main axes of the target. The aspect
angle of the target with respect to the sensor is then defined by the angle ψ and the heading angle
of the target with respect to the x axis by

θ = φ+ ψ (3.12)

The aspect angle ψ as shown in figure 3.4 is defined as < 0. For a multi sensor scenario, the
sensor target geometry is shown in figure 3.5, where the parameters of system one and two are
given superscripts 1 and 2, respectively. The axes of the coordinate system defined by the main
axes of the target are x′ and y′. If Ω = 0 and the axes of two sensors are aligned, then the heading
angle with respect to the x axis in the two systems will be equal, θ = θ2.

The radars applied in maritime surveillance applications will often be located at a height
h above the surface, as illustrated in figure 3.3 and figure 3.6. This creates a bias ∆ = ρ − r
between the assumed polar or cylindrical frame and actual range. The measured distance is given
by ρ, while the distance in the cylindrical reference frame is given by r. The bias is negligible
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Figure 3.6: Spherical frame and cilyndrical frame.

for large r. The distance to the target is given by

ρ =
√
h2 + r2 (3.13)

This bias ∆ can easily be accounted for if h is known and the targets move in a plane or surface
with constant height, by assuming that the distance to the target is ρ when r is small. In coastal
surveillance applications, the elevated position of the radars means that many structures on the
top of the ship are visible and thus reflect the electromagnetic field transmitted from the radars,
especially for short ranges.

3.3.2 Sampling in time and space

The radars in the considered applications were assumed to be surveillance radars in mono static
configurations. Electromagnetic waveforms are transmitted and received using the same antenna
element, which rotates and scans its surroundings in two dimensions. The scanning in azimuth
is discrete in the sense that electromagnetic waveforms are transmitted and received at a finite
number of azimuth angles. The received waveform at each azimuth angle is sampled in time at
discrete intervals with a frequency fr, which means that the corresponding sampling points in
range are also discrete and spaced d = c/fr, where c is the velocity of light in air. A schematic
representation of how each radar scans the two dimensional space is shown in figure 3.7.

As shown in figure 3.7, the sampling points or the position of the pixels are regularly spaced in
polar coordinates, but not in the Cartesian frame. The number of pixels per unit area is inversely
proportional to the range r. The value of each sampling point or pixel is stored in an array, and
each value is updated once per revolution of the radar. Typical revisiting time for each pixel is
somewhere in the order of one to ten seconds.

If the position of a pixel k is given in polar coordinates by (rk, φk), then its position in
Cartesian coordinates is given by [

px
k

py
k

]
=
[
rk cosφk

rk sinφk

]
(3.14)
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Figure 3.7: Sampling geometry in two dimensions

The bias caused by an antenna placed at a height h above the ground plane can easily be ac-
counted for by replacing rk by ρk, where ρk was defined in section 3.3.1.

Spatial filtering

The antenna element works as a spatial filter, by modulating the received electromagnetic field
by its angular response function. When applying an antenna with width L and a rectangular
aperture, the angular response function of the antenna is given by [7]

H (θ) =
sin
(

πL
λ sinφ

)
πL
λ sinφ

(3.15)

where λ is the wavelength of the transmitted wave, and θ is the off axis angle. A non rectangular
aperture function will often be chosen in order to reduce the side lobes of the angular response
function [7]. All antennas modeled in this thesis were assumed to be reciprocal, meaning that
the angular response functions are the same when transmitting and receiving.

A filter with frequency response function equal to the complex conjugate of the frequency
spectrum of the applied waveform is commonly applied for filtering in range. This filter is
often called the matched filter [7], [9]. The frequency response of the matched filter is given by
sin (πτf) /πτf when a rectangular waveform with pulses of duration τ is applied. The output
from the matched filter is thus given by a triangular function with SNR at the peak output given
by E/N0, where E is the signal energy and N0 is the noise power [7].

The resolution in range depends on the applied waveform as well as the sampling density.
The maximum resolution when applying a rectangular waveform is given by the applied pulse
length τ . If the resolution is defined as the smallest distance in which two point targets can be
resolved, then it is given by cτ/2.

Noise components in the sampled pixels

The noise in each pixel can be divided into two main components, thermal noise generated by the
receiving system and clutter, which are reflections or radiation from other sources than the target
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itself. The interfering objects may consist of a combination of other targets, clutter reflected
from the sea surface, rain, the ground, other radars, and many other sources. The sources of the
spurious reflections may be located close to the target or in one of the side lobes of the antenna.
Waves reflected from the target may be reflected by the sea surface or other reflectors, and in
effect interfere with waves traveling in a straight path to the radar. Cosmic radiation, waves
transmitted from other radars, and other sources of electromagnetic interference will also disturb
the measurements.

The intensity of the signal received from a single deterministic scatterer located at a distance
R can be predicted by the standard radar equation [7], as

Sr =
PtGrGtArσ

(4πR2)2
(3.16)

where Sr is the received power, Pt is the transmitted power, Gr is the gain of the receiving
antenna and Ar is the effective aperture area, Gt is the gain of the transmitting antenna and σ is
the effective radar cross section of the target. The SNR can be estimated if the noise power in the
system is known. When more than one scattering object contributes to the returned waveform,
the received signal becomes a more complex function than indicated in equation (3.16). The
waveform measured by the antenna can be modeled as a linear superposition of electromagnetic
fields returned from each individual scattering object. The target image may have considerable
fluctuations from scan to scan due to this interference and these fluctuations are frequently called
speckle noise. The speckle noise may cause the apparent target center to wander outside the
limits of the target.

Following the work in [2] where a quasi-optical simplest component method is presented, the
measured signal can be written as the sum of the signals from each individual scattering object
by the following equation.

Ė(t,L) = (p0
rec)

∗T
[∑

Ai(R0,L)U(t−∆ti) exp(−j2πf∆ti)10−QAbi/20
]
p0

tr (3.17)

Ė(t,L) is here a complex representation of the signal at time t, the magnitude of the signal is∣∣∣Ė∣∣∣. The position of the receiving antenna relative to the transmitting antenna is defined by L,
which is zero for the mono static configuration. U(t−∆ti) is the output from the matched filter
from scatterer number i, ∆ti is the delay in time from scatterer number i, QAbi is the absorption
coefficient of the material of scatterer i expressed in dB, and p0

rec and p0
tr are the polarization

of the receiving and transmitting antennas, respectively. Ai(R0,L) is the polarization scattering
matrix of scatterer number i.

Noise generated by the analog signal processing will interfere with the electromagnetic field
measured by the antenna element. Given that the linear envelope detection is applied in the
system, and that the measured signal is a sinusoidal signal with amplitude A, then the output
from the envelope detector in a given pixel is given by the Ricean distribution

fx(x|A,N) =
x

N2
exp

(
−x

2 +A2

2N2

)
I0

(
Ax

N2

)
(3.18)

where N2 is the noise power of the white noise generated by the system and I0 is the modified
Bessel function of zeroth order. This result was first derived by Rice [36] but a derivation can
also be found for instance in [9]. Given that linear envelope detection is applied, the signal so in
figure 3.8 thus has a Ricean distribution, where A is equal to the output calculated by equation
3.17, and N is the noise power of the system.
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3.3.3 Signal processing

As discussed in paper two, the raw radar measurements in 2D surveillance systems are com-
monly processed as showed in figure 3.9 due to demand for efficient real time data processing
capacity and high data rates encountered in surveillance systems. Thresholding and segmentation
of the radar image is the next step after the analog signal processing. A kind of CFAR process-
ing procedure is often applied in order to do detection, [8], [7]. The CFAR algorithm may be
modified with a buffer on each side of the cell under test to be able to handle extended targets
[7]. The pixels that have been tested and found to contain a measurement are then segmented
into clusters assumed to contain the image generated by one target. The segmentation process,
grouping of pixels that are in the image of the same target, can be done in several ways. A kind
of nearest neighbor algorithm may be the simplest and most straightforward alternative. An effi-
cient least-squares algorithm to cluster neighboring pixels in surveillance systems is proposed in
[18], [37].

In some cases, the images from two separate targets may be overlapping for a period of time.
This could be handled by the data association algorithm, as for instance described in [3]. A
measurement vector z =

[
zx zy

]T
is generated for each segment, by calculating the image

centroid . The centroid position measurement in each coordinate is given by

zx =

∑
j x

jIj∑
j I

j
(3.19)

zy =

∑
j y

jIj∑
j I

j
(3.20)

where j runs over all the pixels in pixel cluster or segment. Ij is here the measured intensity or
amplitude of pixel number j and

[
xj yj

]T
is the position of each pixel in the plane.

Equation (3.19) and (3.20) show that zx and zy never will be independent. The same intensi-
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ties or amplitudes appear in each expression,

zx = f
(
I1, I2, ..., IN

)
zy = g

(
I1, I2, ..., IN

)
The intensities Ij are in general random because of the random components in each pixel, as
discussed in section 3.3.2. Thus, the joint probability density function fxy (zx, zy) can never be
written as fx (zx) fy (zy). In some cases, the covariance may be approximately zero.

Czxzy
= E ((zx − z̄x) (zy − z̄y)) ≈ 0

The two centroids are thus uncorrelated, but not independent.

3.3.4 Target model

As presented in paper three, the target was modeled to consist of a large number of conducting
spheres randomly distributed over a given area, but with fixed positions relative to each other.
The point targets were distributed on a rectangular or ellipsoidal area, where the size and shape
of the area were chosen to resemble the shape of ships. The main aim of the simulations was to
simulate the spatial extent of the target, rather than the 3D geometric form of a real target. By
applying the conducting sphere model, the terms relating to polarization in equation (3.17) are
eliminated, as the electromagnetic field is reflected from a conducting sphere without changes
in the polarization. All multiple reflections were ignored in the simulations, and the scatterers
were mostly modeled to have equal radar cross section. An illustration of a target used in the
simulations can be seen in appendix A.

3.3.5 Radar image generation

The approach presented in [2] is based on constructing target models using simple objects with
known reflective properties. In this manner, the signal reflected from the target may be recon-
structed using equation (3.17). When the target is constructed by conducting spheres and the
polarization of the receiving antenna is assumed to be equal to that of the transmitting antenna,
the field equation (3.17) simplifies to the following equation.

Ė(t) =
∑

i
U(t−∆ti) exp(−j2πf∆ti) (3.21)

The QAbi factor could be assumed to be approximately zero, and was anyway canceled out from
the equations as only SNR was considered in this work.

The angular response of an element located at an angle (φ− φ′), where φ′ is the direction of
the main axis of the antenna, is given by equation 3.15 squared, as

H2 (φ− φ′) =

(
sin
(

πL
λ sin (φ− φ′)

)
πL
λ (φ− φ′)

)2

The equation is squared because of the reciprocity of the antenna; it is modeled to have the same
angular response for transmission and reception of the signal.

Assuming that the applied waveform is quadratic and that the matched filter can be realized
in an optimal manner, the output is given on the following form where T is the length of the
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pulse.

U ′(t) =


0
At

2AT −At
0

t < 0
0 ≤ t < T
T ≤ t < 2T

2T ≤ t

The response as a function of time can be translated to response as function of range, U(r), by
using that r = ct

2 and L = cT
2 . Thus the output from the signal processing at a range r for when

the antenna is directed at φ is given by the sum of the contribution of the individual scattering
objects as

Ė (r, φ) =
∑

j

H2
(
φj − φ

)
U
(
r − rj

)
exp(−jk

(
r − rj

)
) (3.22)

where
(
rj , φj

)
is the position of scattering object number j and k is the wave number of light in

air.
As discussed in section 3.3.2, the resolution in range and angle is finite. The effect of the

finite sampling grid, that the location of the target relative to the sampling points of the system
may generate significant variations in the target images, was discussed in paper three. This effect
was found to be larger for a high SNR. In order to compensate for this effect, the sampling grid
was moved to M x N different positions for each target image, and the image was processed
for each choice of sampling grid. The value of each separate pixel could then be calculated by
equation (3.22), and noise could be added by assuming that the value of the pixel was given by
the Ricean distribution in equation (3.18), where A = K ·

∣∣∣Ė(r, φ)
∣∣∣. The normalization factor

K is included in order to be able to define the SNR in the simulations. Only the SNR was
investigated, which meant that only the relationship A2/β2 in equation (3.18) was of interest
in each pixel. Thus, the scale factor could be adjusted in the simulations in order to obtain the
estimated SNR. The sensor geometry shown in figure 3.4 was used as basis in the simulations.
The targets were located at the x-axis, φ = 0, while the range, r, aspect angle or heading ψ = θ
and SNR were varied in order to investigate the statistical measurement error.

3.3.6 Measurement error models

The conditional forms of the measurement equations presented in paper three were used in the
Monte Carlo simulations. The measurement noises were assumed to be Gaussian, additive, and
zero mean in all of the models, as z = Hxk + wk.

Model C

As argued in paper three, the first model was named model C, as the measurement covariance is
assumed to depend on the position in Cartesian space. This is the standard equation which may
be obtained by applying a Taylor expansion on equations (3.8) and (3.7), [38].

cov (wk|φk) = E
(
wkw

T
k |φk

)
= ΦkR

C
k ΦT

k (3.23)

=
[

cosφk − sinφk

sinφk cosφk

] [
σ2

r 0
0 σ2

φ∗

] [
cosφk sinφk

− sinφk cosφk

]
(3.24)

The measurement noise thus consists of an angular and a range component, where the variance
of the angular component is σ2

φ∗ with units m2.
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Model O

The second model was named model O in paper four, as it assumes that the measurement noise
can be expressed in the reference frame of the object or target. The model was introduced in
paper two and aligns the eigenvectors of the measurement covariance matrix with the main axes
of the target. The measurement model can be expressed in a quasi linear form by the following
equations.

cov (wk|θk) = E
(
wkw

T
k |θk

)
= ΘkR

O
k ΘT

k

=
[

cos θk − sin θk

sin θk cos θk

] [
σ2

a 0
0 σ2

t

] [
cos θk sin θk

− sin θk cos θk

]
(3.25)

Model 3P

The second new proposed model is a compromise between the two previous models, and was
introduced in paper three. The measurement noise is assumed to have an angular component,
but also a component that is correlated with the aspect angle of the target. The measurement
noise is assumed to be composed of the sum of two independent Gaussian random variables,
which again is a Gaussian random variable. The measurement model can be written in a quasi
linear form as

cov (wk|θk, φk) = E
(
wkw

T
k |θk, φk

)
= ΘkR

OΘT
k + ΦkR

C∗ΦT
k

=
[

cos θk − sin θk

sin θk cos θk

] [
σ2

a 0
0 σ2

t

] [
cos θk sin θk

− sin θk cos θk

]
+
[

cosφk − sinφk

sinφk cosφk

] [
0 0
0 σ2

φ∗

] [
cosφk sinφk

− sinφk cosφk

]
(3.26)

3.3.7 Maximum likelihood estimation

The basic principle of ML estimation is to maximize a likelihood function f (Z;x), which is a
function of a set of measurements, Z, and a vector of parameters x. The likelihood function is
then maximized with respect to the parameter vector, and the estimate is given by

x̂ = arg max
x

f (Z;x)

The maximum likelihood estimate can in some cases be found by a closed form solution, while
in other cases a search algorithm has to be applied to obtain a numerical solution. When the N
independent measurements have a Gaussian distribution defined by

fz (z) = N (z; z̄, C) =
1

|2πC|
exp

(
−1

2
(z − z̄)T

C−1
z (z − z̄)

)
where zk = [zx

k , z
y
k ]T , then the ML estimates of the mean and covariance z̄ and Cz are given by

the sample mean and variance,

̂̄z =
[ ̂̄zx̂̄zy

]
=

[
1
N

∑N
k=1 z

x
k

1
N

∑N
k=1 z

y
k

]
(3.27)

Ĉz =
1
N

[ ∑N
k=1

(
zx
k − ̂̄zx)2 ∑N

k=1

(
zx
k − ̂̄zx) (

zy
k − ̂̄zy)∑N

k=1

(
zx
k − ̂̄zx) (

zy
k − ̂̄zy) ∑N

k=1

(
zy
k − ̂̄zy)2

]
(3.28)
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Replacing the factor 1
N by 1

N−1 in equation (3.28) gives an unbiased estimator [12]. This esti-
mator was applied when estimating the parameters of model C and O described in section 3.3.6.

When estimating the parameters of the model named 3P in section 3.3.6, a numerical search
algorithm was applied. The log likelihood function is proportional to the following function

log fZ (Z|x) ∼
N∑

k=1

−1
2

(z − ẑ)T
Ĉ−1 (z − ẑ)

The log likelihood function was maximized with respect to the parameters σ2
a, σ2

t and σ2
φ∗ in

order to obtain an estimate of the three parameters.

3.3.8 Distance measures

In order to obtain a measure of the distance between the generated measurements and the models,
the symmetrized Kullback Leibler Divergence (KLD) was used. The KLD was used as a relative
measure of the distance between the data set and the error models. The general symmetrized
KLD is given by [39]

IKLD (fp (x) , fq (x)) = IKL (fp (x) , fq (x)) + IKL (fq (x) , fp (x))

=
∫
fp (x) log

fp (x)
fq (x)

dx+
∫
q (x) log

fq (x)
fp (x)

dx

The general KLD was not applied in this work because of the difficulties related to evaluation.
However, the symmetrized KLD between two Gaussian distributions is given by [39]

KLD (N1 (x;µ1, P1) ,N2 (x;µ2, P2))

=
1
2
trace

(
P−1

1 P2 + P−1
2 P1

)
+

1
2

(µ2 − µ1)
T (
P−1

1 + P−1
2

)
(µ2 − µ1)− dim (x) (3.29)

This measure was used to evaluate the distance between a parameterized likelihood function and
the likelihood function constituted by a set of simulated measurements, following [40] where the
symmetrized KLD distance is used to measure the distance between two posterior distributions.
The measure KLD in equation (3.29) was used to rank the distances between the estimated error
models and the generated data set.

The performance of a tracking filter applying an estimated measurement likelihood function
was also applied as a distance measure, following the discussion in paper four. From the view
of the end user, this may be the only relevant distance or performance measure. Using the
framework described in the previous sections, a simulated target was moved around in Cartesian
space. A radar image was simulated at each position, and fed to tracking algorithms applying
error models previously derived for the same target by the methods described in this section. The
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distance measures were then given RMS position, velocity and heading errors, defined by

RMSEp =

√√√√ 1
N

N∑
k=1

(px
k − p̂x

k)2 + (py
k − p̂y

k)2 (3.30)

RMSEv =

√√√√ 1
N

N∑
k=1

(vx
k − v̂x

k)2 + (vy
k − v̂y

k)2 (3.31)

RMSEθ =

√√√√ 1
N

N∑
k=1

(
θk − θ̂k

)2

=

√√√√ 1
N

N∑
k=1

(
θk − arctan

v̂y
k

v̂x
k

)2

(3.32)

3.3.9 Simulation results

Some additional simulation results extending the results that were presented in paper two, paper
three, and paper four are presented in appendix A. The first part of the appendix includes some
illustrations where the effect of small changes in aspect angle on the measurement errors was
examined. It was illustrated how a small change in aspect angle could cause large fluctuations
in the target image due to speckle noise. Five examples are then included, which showed that
the measurement noise is a complex function of target size and shape, sampling rate, spatial
resolution, and SNR.

The first included example is similar to the work in paper three, where the SNR of the target
was kept constant while the range was varied. The KLD for each of the error models were
calculated and plotted as function of range. The next example shows results for a target at fixed
range, where the noise models were estimated as function of SNR, similar to the results shown
in Table 1 of paper three. The KLD was calculated for all three error models, and the plots are
included in the appendix.

Example three in the appendix shows results where the relationship between target size and
the parameters of the error models were examined, while the position and SNR of the target were
kept fixed. It was shown that the angular component of the 3P model is zero until the target
reached a certain size, and that the estimated parameters depended on target size.

In example four, the influence on the measurement noise from sampling density in range and
bearing as well as angular and range resolution were examined. This example is inherently linked
to example three and the example shown in paper four. The tables given in the appendix show
how the sampling rates in range and azimuth seem to have a larger influence on the measurement
errors than the lobe width and pulse length.

In example five, the relationship between the shape of the target and the measurement noise
models was examined. The area of the simulated target was kept fixed while the ratio between
the dimensions was altered. The simulations showed that the dependency on aspect angle was
zero when the ratio was one, which also was expected.
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Discussion

THE parts of this thesis reported in papers one to four, as well as in the additional results
presented in chapter 2 and 3, are all relevant for tracking in radar surveillance systems. The

first part presented in paper one and chapter 2, focused on the most low level part of the tracking
system, the detection part where measurements are extracted from raw radar data. This work
showed how clutter density or instantaneous false alarm rate can be estimated in each scan at a
given location for a CFAR system. The clutter density is an important input to the part of the
system that performs track initiation, maintenance and termination. The main topics of paper
two to four and chapter 3 were modeling the statistical error of the measurements obtained from
the detection algorithm and applying these models in tracking algorithms in an optimal manner.
A discussion on the main findings and conclusions in both parts of the thesis is given in the
following sections.

4.1 Clutter density estimation in CFAR systems

The work presented in paper one and further analyzed in chapter 2, introduced several tools that
may be used to analyze a CFAR detection system. The tools can be integrated into a tracking sys-
tem in order to increase the knowledge about the number of false alarms being fed to the tracker
at a given scan. The variance of the clutter density, σ2

p, was derived for several CFAR configu-
rations as an intermediate result, and it was shown how the variance is useful when analyzing a
CFAR system. The system parameters should be chosen in order to minimize this variance. It
was also discussed in section 2.1.2 that the derived variance can be used as a measure of CFAR
loss. This measure would then be independent of the type of target considered, in contrast to
other conventional definitions of CFAR loss. The derivation of the pdf and the variance of the
clutter density or the instantaneous false alarm rate in section 2.1.1 have not been reported pre-
viously in any known literature. Previous studies have focused mainly on the mean false alarm
rate PFA = E (p).

Linear Bayesian estimators were derived in paper one based on PFA and σ2
p in order to esti-

mate the mean clutter density, given the numbers of declared measurements as input. However,
analytical expressions of PFA and σ2

p are only possible to obtain in a few cases for some given

37
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CFAR configurations and noise distributions. Numerical values for PFA and σ2
p may be derived

if the noise distribution is known, but exact knowledge or good estimates of the background
distribution may not always be available.

Empirical Bayesian estimators were introduced in paper one in order to avoid the dependence
on knowledge of the background noise. Empirical Bayesian estimation is not well known, and it
is discussed how the method may be useful in cases where the prior distribution of the estimatee
is unknown. The results presented in chapter 2 provided further analysis of the convergence
properties of LEB estimators than presented in paper one. The plots in section 2.2.6 illustrated
that the LEB estimators converged to the corresponding BLUE estimates, and that the rate of
convergence depended on the system configuration and parameters. For CA-CFAR systems, a
relatively large number of scans were needed when the mean false alarm rate was PFA = 10−4

or smaller.
From a system point of view it may be unrealistic to acquire over 1000 scans at the same

location with the same distribution. Collecting a set of past data with the same distribution is
one of the foundations of the nonparametric EB approach. The noise distribution may change
as a result of change in weather conditions or other disturbances. Changes in the mean noise
power for Rayleigh noise would not have any effect, but changes in scale factor γ for Weibull
noise would influence the mean false alarm rate, the clutter density variance and hence also the
estimator. In a radar surveillance system, a long history may be available, and calculating the
sample mean and variance recursively is relatively inexpensive. A sliding average system may
also be applied, where M of the previous samples is used to calculate the mean and variance,
although such a system may be sensitive to abrupt change in conditions. On the other hand, the
assumed PFA would probably also be erroneous in this case.

Data obtained at the same scan could also be used to estimate the sample mean and averages,
using spatial data instead of temporal data, as history. For instance, in many ocean surveillance
radar systems one scan can hold several million of pixels. Assuming a slowly varying sea con-
dition in space, the LEB estimator could be used to improve the knowledge of clutter density at
each location.

The Bayesian estimators introduced in paper one all relied on the assumption that the number
of false alarms was given by a binomial distribution. It was argued in section 2.2.1 that this
assumption limits the number of systems where the method can be applied. Other properties of
the system may also cause the number of false alarms to deviate from the binomial distribution,
like for instance spatial or temporal correlation between the cells. Analysis of spatial correlation
is often missing in analysis of CFAR systems, with the exception of [11] where CFAR in a system
with K-distributed noise and spatial correlation was analyzed.

Provided that the binomial assumption holds, the results plotted in paper one clearly indicate
that the BLUE estimator provides a better estimate of the clutter density in each scan than the
conventional assumption that the clutter density is constant and equal to PFA. The gain is shown
to be largest for high mean false alarm rates and small sets of reference cells, when the variance
of the clutter density is relatively high. The methods are also possible to extend to other distribu-
tions, like for instance the Poisson distribution which is commonly applied as a model for false
alarms.

4.2 Monte Carlo simulations

The main aims of the performed Monte Carlo simulations were to investigate the correlation
between aspect angle and position measurement noise for extended targets, and develop mea-
surement models that could be applied in tracking filters in scenarios where this effect may
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occur. The Monte Carlo simulations applied the framework described by [2], but the position
measurement errors were investigated rather than the effective radar cross section, which is a
novel approach. The results from the simulations given in paper two, three, and four as well
as in appendix A of this thesis, show how a number of different parameters may influence the
measurement noise, such as target size, applied waveform, aspect angle, sampling resolution in
range and bearing as well as SNR. The plots included in paper four are the most relevant for a
tracking scenario, as the SNR is modeled to be a function of range. The parameters of the C,
O and 3P error models were estimated as target is moved from close range where it is extended
with respect to the angular resolution of the system and the SNR is high, to long range where it
has a low SNR and approaches a point target in bearing. The plots show how the parameters of
each model are a function of range, and that 3P and O models are equivalent at short range.

The estimated parameters of the proposed measurement noise models were demonstrated to
be sensitive to the parameters of the simulation setup, which means that to use a simulation setup
like the one described in this thesis to derive the parameters in a real system may be unrealistic.
Such predictions would require more detailed models of the signal-target geometry, the applied
antennas and waveforms as well as the analog and digital signal processing. A real system will
include nonlinearities and correlations that may be impossible to fully characterize. A discussion
of the influence of some unmodeled effects can be found in the following subsections. On the
other hand, the simulation results strongly indicate that there is a dependency between aspect
angle, target size, angular resolution and the variance of the position measurement error. The
simulations in paper four showed that the 3P which incorporates dependency on both bearing
and heading angle had better RMSE performance than the O and the C models. The only way
to fully verify the derived models directly would be from empirical data, obtaining measure-
ments from a real target at varying ranges and aspect angles, similar to previous work on radar
cross section for varying targets. This kind of experiment would first of all be costly and time
consuming and secondly the results may not be easy to generalize to other targets and sensors.
An alternative approach is therefore proposed, where the RMSE performance of a tracking filter
applying the error models is used as a measure of the goodness of the models, following the
approach applied in simulations in paper two and four. For instance, in maritime surveillance
applications data from both radar measurements and measurements from GPS transponders are
available for a large number of targets and trajectories. The performance of tracking filters with
different measurement error models using the radar measurements as inputs could be compared
to that of filters using GPS measurements as input. Care should then be taken in modeling the
temporal correlation and error in the GPS measurements, and avoid using them as ground truth.
A large number of trajectories covering all aspect angles and ranges are also needed in order to
make the parameters of the differences between the noise models observable.

A large number of measurements from a single target or a class of targets could also poten-
tially be used to tune the parameters of the measurement error models with respect to minimizing
the RMSE of the estimation filters. This setup could also be used to estimate and verify the pa-
rameters of the state dependent bias models introduced in paper four, using for instance the real
time approach described in [41] or a suitable batch approach.

A second approach could be to determine the parameters of the measurement equations based
on the parameter estimates shown in paper four, combined with the plot shown in figure A.18 in
this thesis. The angular component of the 3P model could then be set to zero until the angular
sampling distance is larger than the largest dimension of the target. The values of σa, σt, and
σφ∗ could then be selected based on a combination of analytical considerations and experience,
which often is the case when tuning a real system. An alternative solution could be to apply only
the C and the O models, switching between the models at a given range. The C and the O model
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require somewhat lower computational resources than the 3P model.
The measurement error models were developed for surveillance system applications, based

on the modeled target sensor geometries, waveforms and sampling structures. However, the
derived models may also be applicable for other applications like for instance automotive radar
systems where targets may be large compared to the resolution of the sensor, and where state
dependent biases and correlations may be present. The simulation framework may in any case
be adapted to this kind of application.

As mentioned in paper two, the derivations of the error statistics of the centroid of an optical
image proposed in [34] can be extended by deriving the measurement cross correlation Cxz =
E (zxzy). The O model introduced in paper two could thus be applied directly in this case, if the
velocity vector can be assumed to be aligned with one of the main axes of the target.

4.2.1 System model

As discussed in paper two as well as in chapter 3, simplified system models were applied in the
simulations in order to generate radar images. The components that contributed to fluctuations
in the generated measurements were simulated thermal noise, speckle noise in the radar images
and the placement of the target relative to the sampling grid in range and bearing. A number of
other sources of noise that may be present in a real system were not modeled, as for instance
multipath effects, where the reflected signal from an object gets reflected by another surface and
cause interference effects [7]. Multiple reflections within the target itself were also ignored in
the simulations. Interference from other targets, signals from other radar transmitters, either in
the main lobe or in one of the side lobes, may also effectively influence the measurements. The
expected effect of all these sources of noise would be larger fluctuations in the target images,
especially for high SNR cases. The magnitude of the variances of the noise models may thus
increase.

Clutter, spurious returns from objects or surfaces close to the target, may also influence the
target image. As discussed in paper four, clutter may become a part of the target image and hence
directly cause biases or have a scaling effect on the position measurement noise. The clutter
signal may also interfere with the target signal and hence generate speckle noise. The expected
effect of the clutter is an increase in the magnitudes of the variances of the error models, as well
as potentially causing state dependent biases if the generation of clutter depends on the state of
the target.

In the performed simulations, it was assumed that the system applied a perfect matched fil-
ter on a rectangular waveform, which is impossible to implement in a real system. However,
a suboptimal matched filter is also easily incorporated into the proposed framework; an ideal
matched filter is assumed for generality purposes. The angular response function can also easily
be adapted to any weighting function; the uniform weight function was implemented for sim-
plicity giving a sinc angular response function.

4.2.2 Target models

The target model applied in the simulations was a simplified model, following the approach sug-
gested in [32]. The method using a high number of conducting spheres simplified the calculations
to the level that they could be used to generate a high number of measurement in the Monte Carlo
simulations with reasonable computational resources. The simulations could easily be extended
by including a more complex target model, using the simplest component quasi optical approach
described in [2]. A ship or any other target could then be constructed by building a model of
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simple geometrical planes and shapes. In this manner, the occlusion effects discussed in paper
four and the correlation between measurements for small changes in aspect angles could be ex-
amined. However, a more complex target may also give a less general result, as the examination
and modeling is done for a specific target or class of targets. The main aim of the investigations
was to examine correlation between aspect angle and position measurement error for a general
extended target, and this was achieved using the simple model. As argued in paper three, the
assumption that a target consists of a large number of scattering objects uniformly distributed
over a given area may be realistic for some scenarios, for instance in surveillance applications
where the radar is elevated above the surface and the targets are large rectangular or ellipsoidal
steel structures.

Corner reflectors and other objects that have an effective radar cross section that may vary
strongly as function of aspect angle or elevation are expected to cause more fluctuations or
speckle noise in the generated images compared to a model with conducting spheres. This may
also increase the variance of the parameters of the noise models. Corner reflectors will most
likely also cause large peaks in the signal image for some aspect ratios, which may influence the
centroid position. On the other hand, this kind of peaks will often be clipped by the system am-
plifiers, which again eases this effect. Corner reflectors and similar objects may also contribute
strongly to the occlusion and correlation effects which were discussed in section 3.2.2.

4.3 Trajectory generation and benchmarking

As discussed in paper two, the selection of trajectories in a simulation of a tracking system may
have a significant effect on the performance of the algorithm under test. The presented solu-
tion was to define the system using a non linear jump Markov system, which generated random
sequences of maneuvers. The velocity was limited by configuring the system such that the prob-
ability for further acceleration was zero when the velocity was higher than a given limit. In a
similar manner, the velocity could be given a lower limit. The set of maneuvers consisted of three
subsets, one set with constant velocity and turn rate where each member had different turn rates,
one set of constant acceleration and heading where each member had different accelerations, and
one state where the target moved with constant velocity and heading. The system was defined
by the states included in the maneuver state space and the transition matrix of the non stationary
Markov chain which determined the transition probabilities at each time.

The trajectory generator was used for simulation purposes, but the main idea introduced in
paper two was to extract the Markov transition probabilities from previous data, and use the
extracted system to generate trajectories in benchmark simulations. This approach eliminates
the need to know the ground truth, as the trajectories can be extracted from noisy data. In paper
two it was proposed to generate all trajectories using relatively few maneuvers, adding process
noise in each dimension. However, when extracting the Markov chain transition probabilities,
there is likely to be cases where the real maneuver is the middle two neighbor states, causing the
extracted maneuver to toggle between the two states. This would influence the mean sojourn time
of the two states, the average number of scans the system spends in a given state. In paper four,
the setup was slightly modified, in the sense that a larger number of states was used to generate
the trajectories, and in the simulations the probability that the system would jump to a neighbor
state was higher than for other states. In this manner, less rigid maneuvers were generated, and
the result was more similar to the expected result when extracted from historical data. A single
maneuver could then be defined to last the time the system stayed in the same state or jumped to
a neighbor state.

The main disadvantage of the presented approach is that it is dependent on that the real
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trajectories can be divided into these classes of well defined maneuvers. This may be the case
for cooperative, civilian ships, but may not be the case for other scenarios and target dynamics.
Recently, the curvilinear dynamic model has been proposed for generating realistic trajectories
with colored process noise and sudden accelerations [42].

Instead of relying on interpreting the performance of a tracking filter in a few selected maneu-
vers, the presented approach introduced the possibility to perform a systematic investigation of
filter performances. As demonstrated in paper two and four, a long representative trajectory can
be used if the measurement noise is constant in Cartesian space. This trajectory will thus contain
a very large number of combinations of different maneuvers, and the RMSE performances of the
estimation filters were demonstrated to converge towards constant values. In this manner, the
average RMSE as a function velocity, turn rate, time after initialization of a new maneuver and
a number of other parameters can be estimated. The performance of different estimation filters
can also be compared using this tool, as demonstrated in paper two where the generator was used
as a benchmark tool. In the case of a non uniform measurement noise, the approach can be used
to generate a large number of trajectories within a given area, which was used to plot RMSE as
function of range in both paper two and paper four. The use of a random trajectory generator is
of course not limited to measuring RMSE performance, it could also be used in sensor fusion
systems, to measure track loss, track initialization, and other important parameters in a target
tracking system.

4.4 Estimation filter implementation

In paper two, the O and C models presented in paper three were applied in IMM estimation filters
where the conditional noise covariance matrices were used as inputs to the estimation filters. The
noise covariance then needed to be approximated based on an estimated or measured parameter,
and the discussion in paper two indicated that the approach was suboptimal in cases where this
parameter had a large variance. This problem was solved by the introduction of BLUE estima-
tion filters in paper four. The work in paper four introduced several new features. Firstly, BLUE
filters were introduced as optimal for state dependent measurement noise, where the general
assumptions of the Kalman filter do not hold. Secondly, several state dependent measurement bi-
ases were proposed, and recursive BLUE filters were derived to provide optimal estimates of the
target state in the presence of these biases. Thirdly, commonly applied measurement equations
were reformulated using state dependent random matrices in order to express the measurement
noise vector as unconditioned. Fourthly, it was shown how the commonly applied third order
unscented transform fails to approximate the innovation covariance matrix in the case of trans-
formations that involves rotation, and it was shown how the higher order, or fifth order, unscented
transform could be used to resolve this problem. The HOUT was used to approximate the terms
of the recursive BLUE filters that did not have closed form expressions. Fifthly, it was shown that
the 3P model introduced in paper three had better RMSE performance than both the O and the C
models at all ranges, using simulated radar measurements as input. Sixthly, it was demonstrated
how the random trajectory generator introduced in paper two could be used to examine RMSE
performance as a function of velocity.

It was shown how the BLUE filters had better RMSE performance than suboptimal filters
based on the conditional covariance matrix. The gain of the BLUE approach compared to sub-
optimal Kalman filters was shown to be largest when the variance of the estimated variable used
to approximate the conditional covariance was large. The simulations also revealed that the sub-
optimal filters performed equally well as the BLUE filters when the uncertainty in the estimated
variable was small. This was specifically shown to be true for the case where the velocity was
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large and the error covariance was conditioned on the predicted heading vector, which was de-
fined as the direction of the velocity vector.

The work in paper three and in chapter 3 of this thesis derived the correlation between aspect
angle and measurement error, while work presented in paper four assumed that the velocity
vector was perfectly aligned with the heading angle. It is assumed that the relationship between
heading angle and the velocity vector can be derived for cases where they fail to be parallel.

The BLUE filter is optimal in the sense that it can be shown to be the estimator which
is a linear function of the measurement, x̂ = Az + b, that minimizes the cost function J =
E
(
(x− x̂)T (x− x̂)

)
. For the case where the measurement noise is Gaussian, the BLUE esti-

mator can be shown to be the optimal estimator also in a general mean square error sense, not just
the optimal linear estimator [12]. However, for the cases where the HOUT was used to approxi-
mate the terms of the BLUE estimator as well as for the cases where random biases were present,
it can not be guaranteed that the BLUE estimator is optimal. Also, the system model used for
state prediction will never be exact, as it is impossible to model the future motion of an unknown
target, which again means that the system may be inconsistent at times. A comparison with opti-
mal Bayesian estimator implemented using Monte Carlo methods could be done for verification,
see for instance [27]. However, the Monte Carlo methods are not suited for implementation in
a high target density surveillance system because of their high computational load and the real
time demands of the surveillance system.

The framework described in paper four may be applied directly in a maritime surveillance
system, without significant increase in computational cost compared to suboptimal linear esti-
mation algorithms. Whether a BLUE filter is needed or a suboptimal filter is sufficient to handle
the correlation between bearing angle, heading angle and measurement error may be determined
dependent on the velocities of the targets, the measurement errors as well as the distance from
the sensor.

The bias models proposed in paper four may also be highly relevant for this application.
Firstly, for low grazing angles, a large part of a ship may be occluded when heading towards or
from the radar, while a large part of the structure may be visible while moving in a transverse di-
rection. Secondly, a ship may induce a significant wake which may generate clutter that becomes
rendered as a part of the target image by the segmentation algorithm, as illustrated in chapter 3.

The measurement errors will be dependent on the target state in many practical applications,
as for instance in SAR applications where the measurement error may be dependent on target
velocity. These challenges have not received proper attention in previous literature, with some
exceptions [43]. The proposed BLUE filter framework introduce a systematic manner to do
optimal estimation in these cases.
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Notation paper one

Notation Definition
x̂LMMSE = x̂BLUE LMMSE notation used in paper one, BLUE notation in rest of thesis
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Abstract— In this paper it is shown that the instantaneous
false alarm rate in a Constant False Alarm Rate (CFAR) system
fluctuates from scan to scan and that Bayesian and Empirical
Bayesian estimators can be applied to decrease the error between
the actual and the assumed false alarm rate. The instantaneous
false alarm rate is a random variable and its probability density
function is derived for different system configurations. Bayesian
estimators are applied in cases where analytical expressions of
the mean and variance of the instantaneous false alarm rate can
be derived. The mean square error in the estimated false alarm
rate is shown to be less than the mean square variations of the
instantaneous false alarm rate. Empirical Bayesian estimators are
introduced and applied to cases where statistical properties of the
false alarm rate are unknown. Empirical Bayesian estimators rely
on past data to estimate the current false alarm rate and it is
shown that they will converge asymptotically to the equivalent
Bayesian estimators as the amount of past data gets large.

I. INTRODUCTION

To have an accurate estimate of the clutter rate is important
in target tracking, as more accurate knowledge of the clutter
density can improve the performance of the tracking algorithm
significantly. The nonparametric probabilistic data association
filter (PDAF), a popular and cost-effective tracking and data
association algorithm, estimates the clutter density using a
diffuse prior [1]. In the integrated PDAF (IPDAF) [2], an
expression which includes the track probability, the volume
of the gate, the probability of a target being in the gate,
the probability of detection and the predicted track quality
is used to estimate the clutter density at each step. [3] extends
these results and presents several estimators of the false alarm
rate with both conditional mean estimation and maximum
likelihood estimation.

None of these studies take into account that the thresholded
measurements often are preprocessed by a CFAR clutter
suppression algorithm whose goal is to keep the number of
false alarm as constant as possible. This implies that the diffuse
prior assumption in [1] is too pessimistic.

The false alarm rate of a radar signal processing system
applying CFAR is well studied in the literature, an early
example being given in [4]. A novel idea in this paper is
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Fig. 1. Schematic setup of a general CFAR system

to consider the average number of false alarms at each time
as a random variable (rv), while the traditional approach has
been to consider only the mean false alarm rate, PFA =∫∞
0

∫∞
T

fx(x)fT (T )dxdT , where T is the threshold with
probability density function (pdf) fT (T ) and fx(x) is the pdf
of the measured radar signal intensity of the cell under test.

An estimate of the instantaneous false alarm rate at each
scan can be made using the number of declared measurements
from the CFAR system as input.

Section II contains background information and deriva-
tions regarding CFAR systems as well as an introduction to
Bayesian and empirical Bayesian estimators. Some results are
presented in section III while section IV concludes the study.

II. BACKGROUND

A. CFAR systems

A CFAR system is often applied in order to detect targets
in a noise background in systems where the statistics of the
background may be unknown or changing over time or space.
A schematic drawing of a general CFAR system is shown in
fig. 1. N cells are under test, whose measured radar signal
intensities are denoted x1, x2, ..., xN . These cells are random
variables with distributions f1, f2, ..., fN at each scan. The



distributions depend on the application, the radar system,
and the applied signal processing. In a radar system the
Rayleigh, Weibull, K-distribution and log-normal distributions
are common models.

Each cell xi is compared with a set of reference cells Di via
the function Ti = f(Di). If xi is larger than Ti then Ii = 1
and a measurement in cell i is declared.

The function f is often a weighted sum, which classifies the
system as a Cell Averaging CFAR (CA-CFAR). A CA-CFAR
system is characterized by

f(Di) =
α

M

∑M

k=1
yi

k (1)

where α is a design parameter commonly used to control the
mean false alarm rate PFA and y1...yM are the set of reference
cells used to generate the threshold.

An Ordered Statistics CFAR (OS-CFAR) system is charac-
terized by the ordered set Bi =

{
y(1), y(2), ..., y(M)

}
which

consists of the elements of Di arranged such that yi
(1) ≤

yi
(2) ≤ ... ≤ yi

(M). Then f(Di) is determined by an integer
parameter 1 ≤ K ≤ M and the parameter α such that

f(Di) = αyi
(K). (2)

Other variants of CFAR exist in the literature, but are not
examined in this study. The results can easily be extended to
other configurations and densities.

In systems where any structure or trends can be ignored
or has been removed from the cells such that they have
approximately similar statistical properties, the same threshold
Ti = T may be used for all i. This threshold may then be
calculated as a function of all cells X or as a function of
another set of cells with the same statistics.

1) CFAR instantaneous false alarm rate as a random vari-
able: At each scan the threshold Ti is a function of a set of
random variables and is thus itself a random variable. Given Ti

and fi the probability of false alarm in cell i is given exactly
by the equation

pi(Ti, fi(x)) =
∫ ∞

Ti

fi(x)dx

where pi ∈ [0, 1]. This means that pi = P (Ii = 1) which is
the probability for false alarm in cell i will change from time
to time and is a random variable as well. As shown in example
a) and b) below it may be possible in some cases to express
the pdf of pi analytically as fp(x).

2) The distribution of the number of false alarms: The fol-
lowing approximations and assumptions are made in order to
obtain analytical expressions of the probability mass function
(pmf) of the number of false alarms given a false alarm rate.
• The output from the N cells are independent both in time

and space.
• The same threshold is applied to all the cells, Ti = T =

f(D) for all i.
• The correlation between xi and T is zero or small enough

to be ignored, for all k and i.

• No targets are present, the inclusion of these methods
in the IPDAF algorithm is left for the future. Thus all
measurements are false alarms.

If the approximations above hold then the number of false
alarms at each scan will have a binomial distribution with
parameter pk because the sum z =

∑N
i=1 Ii of N independent

Bernoulli trials has a binomial distribution. The parameter pk

is here defined as the instantaneous false alarm rate, and is the
estimatee in this study. The index k is omitted for simplicity
in the rest of the study.

Thus given p, the number of false alarms z has the pmf

P (z = k|p) =
(

N

k

)
pk (1− p)N−k (3)

The mean and variance are given by E(z|p) = Np and
var(z|p) = Np(1− p).

a) Example: Assume that the clutter in the cells all
are Rayleigh distributed and are passed through a square law
detector, such that xi has an exponential distribution,

fi(x) = fx(x) =
1
λ

exp
(
−x

λ

)
A CA-CFAR system is then used for clutter suppression.
Using (1) and that the sum of N independent exponentially
distributed rvs has a Gamma distribution, the threshold T has
the density

fT (x) =
xN−1 exp

(
−x

(αλ
N )

)
(

αλ
N

)N
Γ(N)

and the cumulative distribution function (cdf)

FT (x) = P (T ≤ x) =
Γ
(

N, x

(αλ
N )

)
Γ(N)

where Γ(x) is the Gamma function and Γ(x, y) is the incom-
plete Gamma function. Note that

Fp(x) = P (p ≤ x) = P

(∫ ∞

Ti

fi(y)dy ≤ x

)
= P

(∫ ∞

T

1
λ

exp
(
− y

λ

)
dy ≤ x

)
= P (exp (−T/λ) ≤ x) = P (T ≥ λ lnx)

= 1−
Γ
(
N,−N

α log x
)

Γ(N)

The pdf of the rv p is the derivative of Fp(x).

fp(x) =
dFp(x)

dx
=

NN
(
log 1

x

)N−1
x−

α−N
α

αNΓ(N)
(4)

where x is defined on the interval [0, 1]. This gives

p̄ = E(p) = PFA =
∫ 1

0

xfp(x)dx =
(
1 +

α

N

)−N

(5)



σ2
p = var(p) =

∫ 1

0

(x− E(p))2 fp(x)dx

=
(

2α

N
+ 1
)−N

−
( α

N
+ 1
)−2N

(6)

Equation (5) is a well known result in the literature. Note
that the pdf fp(x) is independent of the noise power λ.

b) Example: In this example the clutter has the more
general Weibull distribution, and the signal processing apply
linear detection and an OS-CFAR configuration. The density
and distribution of the cells xi are then given by

fx(x) =
γ

µ

(
x

µ

)γ−1

exp
(
−
(

x

µ

)γ)
Fx(x) = 1− exp

(
−
(

x

µ

)γ)
Using that in an ordered set, cell number K has the pdf [5]

fy(K)(x) = K

(
N

K

)
Fx(x)K−1 (1− Fx(x))N−K

fx(x)

T = αy(K) then has pdf fT (x) = 1
αfy(K)(

x
α ). Given that

p = g(T ) =
∫∞

T
fx(x)dx and let T̃ be the solution of p =

g(T ) with respect to T , then the pdf of p is given by the
transformation

fp(x) =
fT (T̃ )
|g′(T̃ )|

=
K

αγ

(
N

K

)(
1− xα−γ

)K−1

xα−γ(N−K+1)−1

This gives

E(p) =
Γ(N + 1)Γ(N −K + αγ + 1)
Γ(N −K + 1)Γ(N + αγ + 1)

σ2
p = (Γ(N + 1)Γ(N −K + 2αγ + 1)Γ(N −K + 1) (7)

· Γ(N + αγ + 1)2 − Γ(N + 1)2Γ(N −K + αγ + 1)

·Γ(N + 2αγ + 1)) /
(
Γ(N −K + 1)2Γ(N + 2αγ + 1)2

· Γ(N + αγ + 1)2
)

See that the pdf fp(x) is independent of the scale parameter
µ, but depends on the shape parameter γ as well as the system
design parameters α and K.

c) Notes on σ2
p: As shown above the instantaneous false

alarm rate is a rv. The name Constant false alarm rate reflects
the fact that the mean false alarm rate PFA is independent of
the mean clutter power/amplitude in some applications. The
variance σ2

p can be seen as a measure of the fluctuations in
the instantaneous clutter rate from scan to scan, and could be
useful information. The larger σ2

p is the more the number of
false alarms will fluctuate from scan to scan and the system
designer of may want to control the variance in addition to
PFA.

In addition σ2
p can be used as a measure of the CFAR loss.

Previous definitions include the increase of signal to clutter

ratio needed to maintain a given PD for a specific target, and
the variations in the parameter α as defined by [6]. Using
σ2

p has the advantage of not being dependent on a specific
target and in addition being a more intuitive measure than the
variations in α.

B. Bayesian estimation

In classical estimation the estimatee is considered to be an
unknown constant which is estimated from a set of noisy data.
Bayesian estimation differs fundamentally from this in the way
that the estimatee is modeled as a random variable, with a prior
probability density function f(x). Given the estimatee x, the
measurements are then assumed to be distributed according to
a likelihood function denoted f(z|x). The estimate is based
on the the posterior density f(x|z) which is the pdf of the
estimatee given a set of measurements. This pdf can be
obtained using Bayes’ law

f(x|z) =
f(z|x)f(x)

f(z)
=

f(z|x)f(x)∫
f(z|x)f(x)dx

Once the posterior density has been calculated, an estimate can
be obtained using several different approaches. One possibility
is the conditional mean defined by

x̂MMSE = E (x|z) =
∫

xf(x|z)dx (8)

The conditional mean is called the Minimum Mean Square
Error (MMSE) because it can be shown to minimize the mean
square error of the estimator [7]. The Maximum A Posteriori
(MAP) estimator is another possible candidate and is defined
by x̂MAP = arg maxx f(x|z).

C. LMMSE estimation

The linear MMSE (LMMSE) estimator is given by [7]

x̂LMMSE = x̄ + CxzC
−1
z (z − z̄) (9)

P̂ = MSE(x̂) = Cx − CxzC
−1
z Czx (10)

x̄ = E(x) is the mean of the estimatee, Cxz =
E
(
(x− x̄) (z − z̄)T

)
is the covariance between the estimatee

and the measurements, Cz =
(
(z − z̄) (z − z̄)T

)
is the

measurement covariance, and z̄ = E(z) is the measurement
mean. MSE(x̂) is the Mean Square Error of the estimator

To obtain a closed form expression of the conditional mean
in equation (8) is often hard. The LMMSE estimator is easier
to implement because it is linear and only depends on the first
two moments of x and z. Among its important properties is
that it is unbiased E(x− x̂) = 0 and the best estimator in the
mean square error sense within the class of linear Bayesian
estimators [7].



1) Instantaneous false alarm rate LMMSE estimate: As-
sume that the instantaneous false alarm rate is a random
variable with pdf

x ∼

 0 x < 0
fx(x) 0 ≤ x ≤ 1

0 1 < x
(11)

Assume E(z|x) = Nx and var(z|x) = Nx(1− x). Then,

z̄ = E[z] = E[E(z|x)] = E[Nx] = Nx̄

E[(z − z̄)|x] = E[z|x]− z̄ = Nx−Nx̄

Czx = E[(z − z̄)(x− x̄)] = E[E[(z − z̄)(x− x̄)|x]]
= E[E[(z − z̄)|x](x− x̄)] = E[(Nx−Nx̄)(x− x̄)]
= N var(x) = NCx (12)

Using that Cz = E[var(z|x)]+var[E(z|x)] [8] gives

Cz = E[var(z|x)] + var[E(z|x)] = E[Nx(1− x)] + var[Nx]

= Nx̄−N(Cx + x̄2) + N2Cx

= N [x̄(1− x̄) + (N − 1)Cx] (13)

Inserting equation (12) and (13) into (9) and (10) gives

x̂(k) = x̄ + CxzC
−1
z (z − z̄)

= p̄ +
σ2

p

p̄ (1− p̄) + (N − 1) σ2
p

(k −Np̄) (14)

MSE(x̂) = Cx − CxzC
−1
z Czx

= σ2
p

(
p̄ (1− p̄)− σ2

p

p̄ (1− p̄) + (N − 1) σ2
p

)
(15)

Fig. 2 gives an illustration of the effect of the lineariza-
tion. The plot shows the difference between the MMSE and
LMMSE estimates of the instantaneous clutter density for a
given measurement. The MMSE estimates are obtained using
numerical integration of (8). The probability that k is greater
than 30 is on the order of 10−4, giving that the deviation
between the two estimators is relatively small within the
interval where the measurements are most likely to be found.
Note that the LMMSE estimator minimizes the average mean
square error over all possible measurements in the class of
linear estimators, not the mean square error for each possible
z.

D. Empirical Bayesian estimation

The term Empirical Bayes (EB) estimation was introduced
by Robbins [9], and can be described as a compromise
between classical and Bayesian estimation. The main classical
criticism against Bayesian estimation is that choosing a prior
distribution may be difficult, and that the choice may be highly
subjective. On the other hand classical estimation ignores the
existence of any prior information about the estimatee, and
does inference based entirely on current measurements.

The main idea behind EB estimation is to use past data to
estimate the prior density of the estimatee f(x). Assume that
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Fig. 2. Difference between LMMSE estimate and MMSE estimate, p
uniformly distributed on [0.5, 1.5]103, PFA = 103, and N = 104.

Past data Current data
Realizations x1 ... xl−1 xl

Measurements z2 ... zl−1 zl

all past data x1, x2, ..., xl−1 and the current xl are independent
and distributed according to the unknown density f(x), and
are observed through the measurements z1 to zl.

EB estimators are sometimes divided into two classes,
parametric and nonparametric [10]. The parametric approach
makes the assumption that the prior belongs to a family of
densities, and then seeks to estimate which member of this
family the prior belongs to. For example the prior can be
assumed to be a Gaussian distribution, and the mean and
variance is estimated using past data. These methods are often
attributed to Efron and Morris [11].

In the nonparametric approach, the previous realizations
x1→l−1 are often assumed to be independent and identically
distributed (i.i.d). The empirical density of the past measure-
ments f̂(z) is estimated, and then an estimate of the prior
density f̂(x) is determined such that f̂(z) ≈

∫
f(z|x)f̂(x)dx

with the property f̂(x) → f(x) as l →∞. This is usually not
easy, but in many cases it may not be necessary to obtain an
explicit expression of f̂(x) in order to obtain an estimate x̂l.

In general as the amount of data gets large, empiri-
cal Bayesian estimators will converge to the corresponding
Bayesian estimator. See for instance [12] for a discussion of
the asymptotical convergence of EB estimators.

The assumption that the past realizations of x are i.i.d,
implies that the correlation between each scan needs to be
zero and that the pdf of p needs to be constant over time.
For instance this implies that a change in the shape parameter
of the Weibull distribution means that a new set of past data
should be collected.

E. Linear empirical Bayesian estimation (LEB)

A scalar general linear nonparametric EB estimator is
described by Robbins [13]. This estimator can be extended
to the more general vector case. In cases where the likelihood



function f(z|x) satisfies

E(z|x) = x (16)

cov(z|x) = A + bxT + xbT + axT x (17)

where A, b and a are constants, then the LEB estimator is
given by

x̂LEB = ẑ +
1

1 + a

(
I −

(
σ̂2
)−1 (

A + bẑT + ẑbT + aẑT ẑ
))

· (zk − ẑ)

where ẑ and σ̂2 is the sample mean and covariance of the
past data. The LEB estimator is the empirical equivalent of
the LMMSE estimator, and the LEB estimator will converge
to the LMMSE estimator in a MSE sense as the number of
measurements gets large.

1) Instantaneous false alarm rate LEB estimation [8]:
Defining the measurements as zi = ki/N where ki is
the measured number of false alarms in each scan gives
E(z|p) = E( k

N |p) = 1
N E(k|p) = 1

N Np = p and var(z|p) =
var

(
k
N |p

)
= 1

N2 Np (1− p) = p (1− p) /N . Thus the two
conditions in equation (16) and (17) hold with A = 0,
b = 1/2N, a = −1/N . This gives

p̂LEB = ẑ +
N

N − 1

(
1− ẑ (1− ẑ)

Nσ̂2

)
(z − ẑ)

where z is the current measurement, and ẑ and σ̂2 are the
sample mean and variance of the past measurements.

Another scalar false alarm rate LEB estimator which has
better properties for small l and allows variations in the size
of the set of cells at each scan is derived in [14]. The estimator
is given by

p̂LEB = z̄+ ((
1− v

L

)
σ̂2 − vẑ(1− ẑ)

)+((
1− v

L

)
σ̂2 − vẑ(1− ẑ)

)+ + 1
Nl

(
ẑ(1− ẑ)−

(
1− 1

L

)
σ̂2
)+

· (zl − ẑ) (18)

where zi = ki, (A)+ = max (0, A), L is the number of
past measurements, Ni is the size of the set of cells, v =
1
L

∑L
i=1

1
Ni

, and ẑ and σ̂2 are the sample mean and variance.
The two estimators coincide for fixed Ni and large L.

III. RESULTS

As shown in fig. (3), the Root Mean Square Error (RMSE)
of the LEB estimator converges to the RMSE of the LMMSE
estimator. However, the rate of convergence varies with the
parameter of the system, and may have to be tested by simu-
lations for a given system, specifically the product N · PFA.
This makes intuitive sense, as it would take a long time to
obtain a good estimate of the statistics of the false alarm rate
when false alarms occur rarely.

As argued in section II-A.2.c, σ2
p can be used as a measure

of the fluctuations in the instantaneous clutter rate from scan to
scan. The mean square error of considering the instantaneous
clutter rate as a constant is thus equal to σ2

p which is given
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Fig. 3. Root Mean Square Error of the LEB estimator, where p has a
truncated Rayleigh distribution with PFA = 10−3 in a CA-CFAR system
with N = 103 cells compared with the RMSE of the LMMSE estimator.
Mean over 104 Monte Carlo runs.
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in (6) and (7) for the two system configurations previously
considered. The mean square error in the LMMSE estimator
is given by equation (15), denoted MSE(x̂LMMSE). In order
to compare the two errors, defined

G =

[
σ2

p

MSE(x̂LMMSE)

]
dB

as a measure of the gain in the system when the clutter rate
is treated as a known constant, rather than estimated by the
LMMSE estimator (or the LEB estimator with a large amount
of past data).

The results for the CA-CFAR configuration in section II-
A.2.a generates the results shown in fig. 4. The gain is seen to
depend on the mean false alarm rate, PFA, and the estimation
gives more gain for a higher PFA. It is also clear from the
figure that the gain in estimating the clutter rate gets smaller
as the number of cells increases and thus σ2

p decreases.
Fig. 5 shows an analysis of how the gain depends on the
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choice of system parameter K in an OS-CFAR system where
fx(x) is the Weibull distribution. The variance σ2

p can be
shown to be independent of the choice of the Weibull shape
parameter when PFA is kept constant by adjusting α, thus L
depends only on PFA and K.

Fig. 6 is an analysis of how L depends on the number
of cells N in a OS-CFAR system. As for the CA-CFAR
configuration in fig. 4, the gain decreases as N gets larger,
and higher for lower PFA. The parameter K is chosen to be
N−3 for a given N , but other choices of K will give different
results.

IV. CONCLUSION

The derivations in section II.A have shown that the in-
stantaneous false alarm rate in a CFAR system is a random
variable, not a constant. The mean false alarm rate may on the
other hand be constant and independent of the mean power of
the background for some configurations and distributions, for
instance a CA-CFAR system when the background has the
Rayleigh distribution.

The examples in section II.A show that it in some cases
is possible to obtain closed form expressions of the first
and second moments of the instantaneous false alarm rate,

p̄ = PFA and σ2
p. LMMSE estimators can then be applied

to decrease the error between the real and the assumed false
alarm rate. The mean square error obtained in the system when
assuming that the false alarm rate is constant and equal to
its mean PFA, is given by the variance σ2

p. It is shown that
the mean square error of the estimated instantaneous false
alarm rate is smaller than σ2

p. The gain by estimating the
instantaneous false alarm rate from scan to scan is shown to
depend on the CFAR system configuration. In general the gain
is high for large PFA and σ2

p.
In cases where PFA and σ2

p are unknown, LEB estimators
can be applied to the problem and asymptotically achieve the
same mean square error as the LMMSE estimator. PFA and σ2

p

may be unknown because the distribution of the background
fx(x) is unknown, or because it may be impossible to solve
the necessary equations analytically.

We are not aware of any previous applications of Empirical
Bayesian estimation in engineering, but it is shown here how
the method can be applied when the prior distribution of
the estimatee is unknown. Empirical Bayesian estimators in
general converges to the corresponding Bayesian estimator,
but the rate of convergence depends on the application.
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Abstract – Range and angle measurement errors may be 
correlated when centroid image processing is applied on 
radar images of extended targets. This paper describes 
how a model of the correlation between target heading 
and measurement error can be used to improve the 
accuracy of tracking filters. The performance of the 
presented tracking algorithms is tested using a 
trajectory generator based on jump Markov nonlinear 
systems.  
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1 Introduction 
The targets in a radar surveillance system may in some 
applications be located very close to the radar. The spatial 
resolution of a radar is increasing as r gets small, which 
means that a target close to the radar may be larger than 
the resolution of the sensor. A target is in this paper called 
extended if its extent covers several resolution cells both 
in range and angle.  
 A common assumption when including radar 
measurements in a tracking system is that range and angle 
measurements are uncorrelated. However the work in [1] 
shows that this assumption may fail when centroid 
processing is applied to extract a position measurement 
from raw 2D radar images. It is shown how the 
assumption is true for point targets, but may fail for 
extended targets. There may be correlation between the 
heading of the object and the measurement error statistics. 
It may in some cases be reasonable to assume that the 
eigenvectors of the measurement matrix are aligned with 
the main axes of the target.  
 In order to utilize this information in tracking filters, 
this paper introduces a new measurement model. Several 
different filters based on the IMM framework given by [2] 
are implemented with the new measurement model. The 
performance of the proposed filters is compared to that of 
filters that ignore the correlation between target heading 
and measurement error.  
 A trajectory generator which can generate realistic 
simulated target movements is developed in order to 
compare the performance of the different estimators. The 
generator is based on a jump Markov nonlinear system 

(JMNLS) and switches randomly between different modes 
of movement. 
 Section two contains descriptions of the applied 
measurement models and the proposed trajectory 
generator. It also contains background information about 
surveillance radar images and Jump Markov (JM) 
systems. Some simulation results are shown in section 
three, section four contains a discussion, while section 
five concludes the study.  

2 Background 

2.1 Surveillance radar images 

 
Figure 1 Grayscale representation of radar image of a ship 
with dimensions 40 x 9 m. Corners indicated by x. 6m 
sampling rate in range, rectangular pulse, pulse length ~25 
m. 2 4096π  sampling rate in azimuth, 0.5 deg beam 
width.  

The number of scattering points and planes that contribute 
to the electromagnetic field measured by the radar is 
determined by the resolution of the system as well as the 
geometry of the target. Figure 1 shows a 2D surveillance 
radar image of a commercial ferry located about 700 m 
from the sensor. The figure shows how the system is 
unable to resolve individual scattering objects on the 
ferry. 
 The resolution of a system which apply a rectangular 
pulse waveform is determined by the pulse length and the 
lobe width of the antenna. Figure 1 shows how the 



sampling in range and azimuth may be more spatially 
dense than the actual resolution of the system. The 
number of pixels covered by the target image is 
determined by the sampling frequency in range and 
azimuth as well as the resolution.  
 Identification of some individual strong reflectors on 
the target like for instance corner reflectors could be 
possible, given that the resolution was high enough. The 
individual objects could then be tracked as a group 
described by for instance [3]. However, in addition to the 
limitations on spatial resolution, the ability to resolve 
individual scattering objects may also be limited by the 
dynamic range of the system and poor resolution in the 
ADCs. These effects can be seen in Figure 1 where the 
dynamic range of the systems is sampled with 8 bit ADCs 
as it is commonly done in the civilian sector. Many pixels 
are saturated on the highest bit level. The dynamic range 
of the system may often be optimized with respect to 
detection of dim targets, not in order to accurately 
measure the reflected amplitude from the strongest 
reflectors on extended targets. 
 Because of the limitations described above and the 
high demand on computational efficiency often 
encountered in a surveillance system, the centroid image 
processing described in section 2.2 is a commonly chosen 
solution. 

2.2 Centroid image processing 
 An overview of the signal processing setup often 
applied in 2D surveillance radar systems [4], is shown in 
Figure 2.  
 

 
Figure 2 Signal processing chain 

 The signal measured in each pixel may have 
fluctuations from scan to scan due to interference between 
the returned fields from each scattering object in the 
resolution cell. This phenomenon is sometimes called 
speckle noise, and its distribution tends to Gaussian as the 
number of scatterers increases.  
 Each pixel also contains a contribution of thermal 
noise introduced by the analog signal processing. The 
amplitude is sometimes modeled to have a Ricean 
distribution [5]. Many other sources contribute to image 
noise as well, as for instance multi path, interfering 
reflecting objects in the side lobes, and solar/galactic 
noise.  
 The 2D centroid position measurements are given by 
 j j j

x j j
z x I I=∑ ∑  (1) 

 j j j
y j j

z y I I=∑ ∑  (2) 

where j runs over all the pixels covered by the target 
image and jI  is the value measured in pixel number j. It 
is clear from (1) and (2) that the two centroids xz  and yz  
are not independent because the non-deterministic 
intensities jI  appear in both equations. They are 
however in some cases uncorrelated.  

2.3 Error statistics of centroid 
measurements 

The work in [6] derives the statistics of the centroid of a 
random cluster under the assumption that the pixels are 
independent. It is shown that the variance of the 
measurement in each coordinate is given by 

( )
( )

( )
( ) ( )

( )
1 1

2 2

1 1

var var
var , var

N Nj j j j
j j

x y
N Nj j
j j

x I y I
z z

E I E I

= =

= =

= =
⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑
∑ ∑

(3) 

Equation (3) is derived using a Taylor expansion, 
following [7]. By doing a Taylor expansion in the same 
manner, the results in [6] could be extended with the 
following equation,  

 ( ) ( )
( )

1
2

1

var
cov ,

N j j j
j

xy x y
N j
j

x y I
C z z

E I

=

=

= =
⎛ ⎞⎜ ⎟
⎝ ⎠

∑
∑

 (4) 

 Equation (3) and (4) will in general not be valid for 
radar measurements because neighbor pixels often are 
correlated. Approximations of ( )jE I  and ( )var jI  will 

also be hard to derive in cases where the target image is 
dominated by speckle noise. 
2.3.1  Radar measurement error statistics 
 When radar measurements are included in a tracker, 
it is common to assume that range measurement errors are 
independent from angle errors [8, 9]. In 2D this can be 
written as  

 r rz vr
z vφ φφ
⎡ ⎤ ⎡ ⎤⎡ ⎤

= +⎢ ⎥ ⎢ ⎥⎢ ⎥
⎣ ⎦⎣ ⎦ ⎣ ⎦

 (5) 

where ( )2 2
r rE v σ= , ( )2 2E vφ φσ=  and ( ) 0rE v vφ = .  

 The work in [1] shows how this assumption fails 
when centroid processing is applied and the target is 
extended with respect to the resolution of the sensor. [1] 
applies Monte Carlo simulations and simplified models of 
both the target and the analog signal processing. It is 
shown how there may be correlation between the 
measurement error covariance and the heading of the 
target.  
 Figure 3 shows a set of simulated measurements 
where the target is kept fixed with respect to the radar. 
The range errors in each measurement lies on the x-axis 
with a deterministic bias of one half pulse length, while 



the errors along the y-axis are r φ⋅ Δ . The plot shows that 
there is correlation between angular and range 
measurement errors. The figure also indicates that there is 
correlation between the heading of the target and 
measurement errors. 
 

 
Figure 3 One batch of simulated position measurements. 
Radar located at origo, 40x9 m rectangular target located 
at (x,y)=(400,0) m. Range resolution 12 m. Target heading 
45°. 

 Using modeled targets with rectangular shape and a 
high numbers of reflecting scatterers distributed uniformly 
over the target, [1] shows that for short ranges when 
targets are extended in range and azimuth, the following 
equation is a good approximation. The measurement error 
covariance matrix can be approximated in Cartesian 
coordinates by  

 
( ) 0

2

2

cos sin 0 cos sin
sin cos sin cos0

T T
k k k k k

k k a k k

k k k kt

R E v v R

θ θ σ θ θ
θ θ θ θσ

= = Θ Θ

⎡ ⎤−⎡ ⎤ ⎡ ⎤
= ⎢ ⎥⎢ ⎥ ⎢ ⎥−⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

 (6) 

The matrix kΘ  is the rotation matrix defined by the 
heading of the target kθ . kv  is the additive measurement 
noise, ( )k k kz h x v= + . 

 The variances 2
aσ  and 2

tσ  can then be viewed as the 
variances along and in transverse direction of the main 
axes of the target. 2

aσ  and 2
tσ  are shown to depend on 

the distance to the target, the signal to noise ratio (SNR), 
the resolution of the system and the target geometry. For a 
square target, 2 2

a tσ σ=   
 Figure 4 shows values of aσ  and tσ  calculated 
from a series of simulation. The simulated target had 
dimensions of 40 x 9 m and the system had a range 
resolution of 6 m and an angular resolution of 0.5°. Figure 
5 shows the measurement uncertainties expressed in polar 
coordinates, based on the same data set. Notice how rσ  
increases with r, while it is commonly assumed to be 
constant.  
 As the target approaches a point target at long range, 
the work in [1] show that the correlation between target 
heading and measurement uncertainty goes to zero. This 
means that equation (5) is true as r gets large and the 
target becomes a point target in azimuth. 

 
Figure 4 Estimated standard deviations along the main 
axis and the transverse axis of the target.  

 
Figure 5 Estimated standard deviations in polar 
coordinates, where * rφ φσ σ= .  

2.4 Measurement modeling and fusion 
In some applications it is necessary to fuse radar 
measurements with other measurements, for instance with 
data from imaging sensors as described by [10]. Fusion of 
radar measurements may also be possible, when several 
radars cover the same target. Correct statistical models of 
the measurement errors are needed to do optimal 
measurement fusion. 
 Thus at short ranges, knowledge of the heading of 
the target can be used together with equation (6) to do 
better measurement fusion. The measurement uncertainty 
can be approximated by the normal distribution. As 
shown in Figure 4, the measurement uncertainties along 
and in transverse direction of the heading of the target is a 
function of range. This means that 2

aσ  and 2
tσ  in 

equation (6) should be functions of the distance from the 
sensor, ( )a rσ  and ( )t rσ .  
 Equation (5) can be used at long ranges. When r is 
large, the work in [1] show that the range and angle error 
are uncorrelated, which means that equation (5) is a good 
approximation. Note however from Figure 5 that rσ  is a 
function of r. 
 In cases where the heading is unknown, equation (6) 
can be replaced by the marginal distribution  



 ( ) ( )( ) |zf z f z f dθ θ θ= ∫  (7) 

where it is assumed that θ  is uniformly distributed 
between 0 and 2π . 

2.5 Trajectory generator 

2.5.1 Background 
Applying radar measurements in a tracking system makes 
it hard to do analytical a priori analysis of the accuracy of 
the system. This is because of the nonlinearities 
introduced by the polar measurements. Monte Carlo 
methods are needed in order compare the performance of 
different tracking algorithms. The performance of the 
estimator depends on the kinematics of the targets, it 
depends on the choice of trajectories and velocities. 
 One possible approach is described in [11]. The 
target trajectories are simulated with decoupled motion in 
x and y. The movement in each dimension is generated by 
a Singer model or by modeling the acceleration as 
integrated white noise. The performance of the tested 
algorithms tends to vary as a function of the covariance of 
the generated random acceleration. In addition this 
method generates velocities and movements that are 
unrealistic, especially in naval applications where the 
velocities are relatively small and coupled in x-and y.  
 A second approach is described and applied by for 
instance [11, 2]. One or more of deterministic maneuvers 
consisting of periods of constant velocity, constant 
acceleration, and turns is predefined. A different set of 
measurements and process noise is then generated for 
each Monte Carlo run. However the results obtained when 
using this approach tend to vary with the choice of 
predefined maneuvers.  
 The trajectory generator presented in this paper is 
based on the second approach. The trajectories are 
constructed from segments which are based on realistic 
maneuver models. The movement of many civilian 
vehicles can crudely be divided into two phases; 
straightforward motion with constant thrust, and 
movement with constant velocity and constant rudder. 
Independent of the dynamics of the targets, it seems 
reasonable to divide the motion with constant thrust into 
two phases, constant acceleration in the time after a new 
level of thrust has been set, and a phase of stable constant 
velocity. Movement with constant rudder can be 
represented by the constant turn rate model. 
 The main structure is shown in Figure 6. The idea is 
to model the movement of a simulated target as a JM 
system, a system that jumps between the different 
maneuver modes in a random manner. The transition 
probabilities can be extracted from empirical data in order 
to generate paths that are close to reality. Using this 
methodology, an unlimited number of different paths can 
be generated with dynamics that are close to what is seen 
in the considered application. The generated trajectories 
can be used to evaluate all aspects and phases of a 
tracking system. In this study it is applied to evaluate gain 

of applying the new measurement models introduced in 
[1].  
 

 
Figure 6 Main structure of trajectory generator 

2.5.2 Jump Markov systems 
A general JM system can be described as a dynamic 
system that can be formulated in state space form, where 
the system dynamics change over time and these changes 
form a Markov chain. 
 A jump Markov nonlinear system (JMNLS) can be 
defined by 
 1 ( , , , )k k k k kx f t x m w+ =  (8) 

 ( ) ( )1 |k k k ij
P m i m j M t+ ⎡ ⎤= = = ⎣ ⎦  (9) 

 ( , , , )k k k k kz h t x m v=  (10) 
where km  is a finite state Markov chain, kx is the state 
vector at time kt , kw  is process noise, and kv  is 
measurement noise.  
2.5.3  System models 
The system state at time kt  was modeled by the vector 

 
Tx x x y y y

k k k k kk k kx p h n p h n θ⎡ ⎤= ⎣ ⎦  (11) 

where kθ  was the heading of the target. The velocity of 
the system at a time was given by 

 
T Tx y x x y y

k k k kk k kv p p h n h n⎡ ⎤ ⎡ ⎤= = + +⎣ ⎦ ⎣ ⎦� �  (12) 
x
kn  and y

kn  were modeled as a piecewise constant Markov 
processes with exponential autocorrelations, such that the 
velocites in x and y direction were perturbations about a 

mean velocity vector ,
Tx yh h h⎡ ⎤= ⎣ ⎦   

 The system dynamics had three different modes, 
constant acceleration (CA), constant turn rate (CT) and 
constant velocity (CV).  
 The dynamics of the system in the CA mode were 
given by the following equations 
 1 ( ) ( , )k k k k k k kx m x m x u w+ = Φ + Λ +  (13) 
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 ( ), 0 cos 0 0 sin 0 0 T
k k k k k km x u a T θ θΛ = ⎡ ⎤⎣ ⎦ (15) 

 0 0 0 0 0
Tx y

k k kw w w⎡ ⎤= ⎣ ⎦  (16) 



The acceleration vector was chosen such that it was 
aligned with the heading of the target, kθ . When the 
system was in the CV mode, the system equation was 
equation (13) where 0ka =  in equation (15).  
 The CT mode system model was given by  
 1 ( ) ( , )k k k k k kx m x m u w+ = Φ + Λ +  (17) 
where  
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 [ ]( , ) 0 0 0 0 0 0 T
k km u TωΛ =  (19) 

 This system model means that the heading of the 
target to always be aligned with the mean velocity vector 
h., except when h=0. In some applications this may not be 
the case, but this can be compensated for if the 
relationship between the two vectors can be modeled 
deterministically.  
2.5.4 Mode selection and transition 

probabilities 
The chosen state space consisted of the following set 

 1 1, 1 2

1 1 1 2

, , , , , , ,

, , , , , , , ,
N N N

k
M M M

m S
a a a a a a CV

ω ω ω ω ω ω−

−

− − −⎧ ⎫⎪ ⎪∈ = ⎨ ⎬
− − −⎪ ⎪⎩ ⎭

… …
… …

 (20) 

The magnitudes of the maximum maneuvers Ma  and Nω  
are determined by the dynamics of the application, while 
the values of N and M can be chosen based on the amount 
of available empirical data.  
 The process of choosing the model set S and 
extracting the transition matrix M based on empirical data 
is left for the future. An important element in this process 
will be to determine M such that the mean sojourn time in 
each mode corresponds to the average time the real 
system stays in each maneuver mode.  
 The maximum and minimum velocities were 
restricted by modifying the transition matrix M(tk) such 
that  
 { }( )1 1 2 max, , , | 1k M kP m a a a v v+ ∈ − − − > =…  (21) 

 { }( )1 1 2 min, , , | 1k M kP m a a a v v+ ∈ < =…  (22) 

2.5.5 Example 
The results in Figure 7 and Figure 8 were generated using 
the model set { }, ,s sS a CVω= , where  

 { } 20.3, 0.22, 0.13, 0.05,0.05,0.13,0.22,0.3s
ma
s

= − − − − (23) 

 { } 28, 6.66, 5.33, 4, 4,5.33,6.66,8 10s
rad

s
ω −= − − − − (24) 

The mean sojourn times were chosen such that the 
average distance traveled in the constant velocity state 
was 200 m, and the mean velocity increase in the maxa  
state were chosen to be 4 m/s, and 

max| | 4 /  (m/s)i iv a aΔ =  in the other states. The mean turn 

were chosen to be max| | (3/8) /i iθ π ω ωΔ = . The velocity 
of the target was restricted by min 3m/sv =  and 

max 15m/sv = .  
 The trajectory generator could then be used to 
generate a large number of realistic trajectories within a 
restricted area as seen in Figure 7. An example of a long 
path which could be a useful tool for filter tuning in cases 
with spatially constant measurement noise is shown in 
Figure 8.  

 
Figure 7 Ten generated paths restricted to the range 

[ ]10,3000 mr ∈ .   

 
Figure 8 One long generated trajectory using the same 
system model as in Figure 7. 



2.6 Estimators 
The tracking filters applied in this study were IMM 
estimators based on different kinematic models. The 
estimators included different combinations of the 
Continuous White Noise Acceleration system model 
(CWNA) [2] and Coordinated Turn (CT) models. 
 The CWNA models were configured with low 
process noise to model movement with constant velocity 
(CV) and with high process noise to model constant 
acceleration (CA). A third order IMM estimator was 
tested consisting of a CV model, a CA model and a CT 
model (IMM-CV-CA-CT). Some second order filters 
were also tested; IMM-CA-CV and IMM-CA-CT. A first 
order Kalman filter (KF) was included for comparison.  
2.6.1 Measurement models 
Since the exact heading is not available in reality, 
equation (6) had to be approximated using the estimated 
or measured target heading. When a measurement of the 
target heading k̂θ  is available, equation (6) can be 
approximated by  
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(25) 

In other cases equation (6) can be approximated using the 
predicted target heading, kθ . The direction of the 
predicted velocity vector may also be used if it is 
approximately parallel to the heading of the target 

 arctan y
k

x

v
v

θ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 (26) 

 The second measurement model applied in filters in 
this paper was based on a first order of Taylor expansion 
of equation (5), such that 

 

( )

1
2

2*

ˆ

0cos sin cos sin
sin cos sin cos0

u T

r

R R

φ

σφ φ φ φ
φ φ φ φσ

= Φ Φ

⎡ ⎤−⎡ ⎤ ⎡ ⎤⎢ ⎥= ⎢ ⎥ ⎢ ⎥⎢ ⎥ −⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

(27) 

φ  in the equation above is the position of the target in 
polar coordinates which had to be approximated by a 
predicted or measured value.  

3 Simulations and results 
In all simulations the Root Mean Square Error in position 
and velocity were used as measures of the performance of 
the estimators. The measures are defined by   

 ( ) ( )2 2

1

1 ˆ ˆ( )
O

x x y y
k k k k

k

RMSE p p p p p
N =

⎛ ⎞= − + −⎜ ⎟
⎝ ⎠∑  (28) 

 ( ) ( )2 2

1

1 ˆ ˆ( )
O

x x y y
k k k k

k

RMSE v v v v v
N =

⎛ ⎞= − + −⎜ ⎟
⎝ ⎠∑  (29) 

where the index k runs over all trajectories in all Monte 
Carlo runs. 
 All results in this section were obtained using the 
system parameters described in section 2.5.5. 

3.1 Spatially constant measurement errors 
Some simulations were done with spatially constant 
measurement errors, which meant that aσ  and tσ  in 
equation (6) were independent of r. The performance of 
the estimators for a given target dynamic could thus be 
evaluated using one long representative trajectory as seen 
in Figure 8. In this manner the effect of filter initialization 
was minimized, and the performance measures converged 
to a scalar as the size of the trajectory increased. 
 In order to evaluate the gain of using equation (6), 
the performance was compared to that of an estimator 
which erroneously assumed that there was no correlation 
between heading and measurement errors. The 
measurement error equation was thus given by equation 
(27) with *

r vφσ σ σ= =  In order to do a fair comparison, 

vσ  was chosen such that v a tσ σ σ= . The estimators 
were either based on a measured target heading or the 
predicted target heading, as described in the two 
following subsections.  
3.1.1 Measured heading 
In these simulations it was assumed that the heading of 
the target was measured and that the measured heading 
error was normally distributed 
 ( )2,z Nθ θθ σ∼  (30) 

The results seen in Figure 9 and Figure 10 compare the 
RMSE(p) and RMSE(v) of the filters assuming correlated 
measurement error to the uncorrelated filter.  
 The IMM-CV-CA-CT filter was used for both 
models. The system parameters of the measurement 
equations were such that 2 25v a tσ σ σ= =  and 3a tσ σ= . 
The update time was T=3 s. 
3.1.2 Heading approximated by predicted 

velocity vector 
 The results in Table 1 and Table 2 compare the 
performance of filters assuming correlation ( ˆ cR R= ) and 
the uncorrelated filter ( uR R= ). The heading of the target 
was approximated by the predicted velocity vector at each 
time step. The system parameters were T=3 s and 
measurement noise of 2 9a t vσ σ σ= = . The first column 
( zC ) indicates whether the estimator assumes correlation 

between heading and measurement noise ( ˆ cR ) or 
uncorrelated ( uR ).  
 The factor /a tρ σ σ=  was used as a measure of the 
correlation between the target heading and measurement 
uncertainty.  



 
Figure 9 RMSE(p) as a function of standard deviation of 
measured heading. 

 
Figure 10 RMSE(v) as a function of error in measured 
heading. 

3.2 Measurement noise as a function of r 
In the following simulations it was assumed that aσ  and 

tσ  were a function of the distance from the radar. The 
radar was located at origo.  
 All the measurements were generated using equation 
(6) and Figure 4, while the uncorrelated filter assumed the 
models in equation (27) and Figure 5 were true. The 
RMSE(p) and RMSE(v) as a function of r were calculated 
using a histograms and are shown in Figure 11 and Figure 
12. 
 The algorithms were tested within the sector 
200m 5000mr< < . A large number of paths were 
generated within this area using the trajectory generator as 
seen in Figure 7. The trajectories were generated 
uniformly over the area and terminated when out of 
bounds.  
 Each tracker was initialized with a Gaussian 
perturbation of the true state. 

4 Discussion 
The results in section 3 show that inclusion of the 
measurement model in equation (6) can increase the 
accuracy of a tracking filter. The results are based on the 
work in [1], and are limited to systems that apply centroid  

Table 1 RMSE(p) (m) estimated using one long trajectory 
for different tracking algorithms  

zC  ρ  IMM- 
CV-CV 

IMM- 
CV-CT 

IMM- 
CA-CV- 
CT 

KF 

ˆ cR  2 3.83 3.76 3.72 3.90 
uR  2 4.09 3.88 3.78 4.15 

ˆ cR  3 4.25 4.18 4.16 4.31 
uR  3 4.65 4.44 4.33 4.71 

ˆ cR  5 5.13 5.05 5.06 5.19 
uR  5 5.70 5.50 5.39 5.76 

ˆ cR  10 7.23 7.11 7.18 7.25 
uR  10 7.77 7.56 7.48 7.86 

 

Table 2 RMSE(v) (m/s2) estimated using one long 
trajectory for different tracking algorithms. 

zC  ρ  IMM- 
CV-CV 

IMM- 
CV-CT 

IMM- 
CA-CV- 
CT 

KF- 

ˆ cR  2 1.30 1.09 1.05 1.31 
uR  2 1.44 1.17 1.09 1.45 

ˆ cR  3 1.26 1.08 1.06 1.27 
uR  3 1.50 1.24 1.14 1.52 

ˆ cR  5 1.26 1.12 1.11 1.27 
uR  5 1.64 1.40 1.30 1.68 

ˆ cR  10 1.38 1.28 1.30 1.39 
uR  10 1.99 1.76 1.67 2.06 

 
signal processing on 2D radar images. A radar tracking 
system that is able to resolve individual scattering objects 
on an extended target will most likely apply other signal 
processing methods. . 
 The JM trajectory generator described in section 2.5 
proved to be a useful tool for evaluating estimator 
performance. The generator generated random path with 
dynamics that were similar to trajectories seen in the 
considered application.  
 The JM trajectory generator could also for instance 
be used to examine estimator performance as a function of 
target maneuverability. The maneuverability of the target 
is easily adjusted by changing the transition matrix M. 
 The model and parameter selection in the JM system 
can be extracted using empirical data, or by choosing 
models and transition probabilities based on the subjective 
belief of the designer. However, the method limits the 
results to one kind of target dynamics, the estimator may 
perform different for a different class of targets. On the 
other hand, the trajectory generator can easily be modified 
to generate paths with different system dynamics.  
 The process noise added to the trajectories were 
defined as independent in x and y direction. In future 



work, the process noise will be defined in the target frame 
and other noise models will be examined. 

 
Figure 11 RMSE(p) as function of range, difference 
between filter that assumes correlation between heading 
and measurement covariance (RMSEc) and filter that 
assumes uncorrelated (RMSEu).  

 

Figure 12 RMSE(v) as function of range, difference 
between filter that assumes correlation between heading 
and measurement covariance (RMSEc) and the 
uncorrelated estimator (RMSEu). 

5 Conclusion 
The work in [1] shows how there may be correlation 
between target heading measurement uncertainty when 
centroid image processing is applied to radar images of 
extended targets. This paper shows how a model of this 
correlation can be used to increase the accuracy of target 
tracking algorithms. The gain in accuracy is verified by 
simulations.  
 A trajectory generator based on jump Markov 
nonlinear systems was introduced and applied to evaluate 
the performance of the estimators introduced in this paper. 
This trajectory generator jumps in a random manner 
between periods of movement with constant velocity, 
constant acceleration, and constant turn rate. The 

generated trajectories resemble real target trajectories in 
many applications. The trajectory generator is a flexible 
tool and can be used to evaluate the performance of many 
aspects of a target tracking system.  
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Abstract – In this paper, optimal best linear unbiased
estimation (BLUE) filters are derived for cases where
measurement errors depend on the state of the target.
The standard Kalman filter fails to provide optimal es-
timates in these cases. Previously applied measurement
models are reformulated in order to apply BLUE filters,
and two new measurement models with state dependent
biases are proposed. It is shown how the higher order un-
scented transform may be used to approximate the terms
in the BLUE filter when they are not available analyti-
cally. The BLUE filters are shown by Monte Carlo simu-
lations to have better performance than other suboptimal
filters.

Keywords: Target tracking, extended targets, mea-
surement models, BLUE filters, jump Markov models

1 Introduction
Position measurements that are converted from range

and azimuth in polar coordinates to x and y in Cartesian
coordinates is an example of measurement errors that
are dependent on the state of the targets. This prob-
lem is well studied in the literature, an overview can be
found in [1]. One approach is to estimate the mean mea-
surement and measurement covariance conditioned on
either the measurements or the predicted state. The ap-
proximated measurement mean and covariance are then
used in a standard Kalman filter. However, in [2] it was
shown how this approach violates several of the funda-
mental assumptions of the Kalman filter, which for in-
stance assumes that the measurement noise covariance
is unconditional. They proposed to apply recursive best
linear unbiased estimator (BLUE) filters to resolve these
fundamental problems.

The work in [3] proposed two new measurement mod-
els where radar position measurement errors depended
on the aspect angle as well as the position of the tar-
get. One of these models were implemented in a track-

ing framework in [4], where the measurement covariance
was approximated by the conditional covariance. This
paper extends the work in [4] by implementing recursive
BLUE filters. The measurement models proposed in [3]
are reformulated in order to express the measurement
noise as unconditional. Two additional measurement
models with biases that depend on the state of the tar-
get are proposed, and some additional results extend-
ing the work in [3] is included. It is shown how the
recursive BLUE filters have better performance than
suboptimal filters, using the Root Mean Square Error
(RMSE) of the tracking filters as performance measure.
Unscented transforms (UT) and higher order unscented
transforms (HOUT) are used to approximate the terms
of the BLUE filters in cases where they are not available
as closed form expressions. It is shown how an UT using
the symmetric set [5] provides insufficient accuracy when
the approximated nonlinear function involves rotation.
A HOUT may be used for this case. The methodology
is also applied on the system model introduced in [6],
where the process noise is state dependent.

This paper starts with a description of the different
measurement models in section 2, where several mea-
surement models that include state dependent measure-
ment errors are formulated. Section 3 then derives
BLUE filters for each of the measurement models, and
describes how UT can be used to approximate the terms
of BLUE filter that do not have a closed form expres-
sion. A description of the applied estimation filters and
simulation tools as well as some simulation results is
presented in section 4. The conclusion can be found in
section 5.

2 Measurement models

2.1 State dependent measurement noise

The work described in [3] examined the correlation
between the aspect angle of a target and measurement
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Figure 1: Multi sensor 2D target sensor geometry.
[r1,2, φ1,2] = position of the target expressed in the ref-
erence frames of sensor 1 and 2. ψ1,2= aspect angles.
Ω=rotation of the reference frame of sensor 2 with re-
spect to sensor 1.

error for radar measurements of extended targets. The
investigations were performed in a Monte Carlo simula-
tion framework. Simplified physical target and system
models were used to simulate radar images, using the
simplest component quasi optical method described in
[7]. Three measurement models were presented.

The first model was the standard model which can
be derived by a Taylor expansion of uncorrelated range
and azimuth measurements [1]. The model is in this
paper named C as the noise covariance depends on the
position of the target in Cartesian space. By introduc-
ing the variance σ2

φ∗ = (rσφ)2, the measurement noise
covariance given the bearing angle φk can be written as

cov (wk|φk) = E
(
wkw

T
k |φk

)
= Φ (xk)RC

k ΦT (xk) (1)

Φ (xk) =
[

cos (φk) − sin (φk)
sin (φk) cos (φk)

]
(2)

RC
k = E

(
wkw

T
k

)
=
[
σ2

r 0
0 σ2

φ∗

]
(3)

The angular variance σ2
φ∗ here has units m2. This mea-

surement model is frequently formulated as linear with
additive noise, zk = Hxk + wk, where the noise covari-
ance matrix is approximated by the conditional matrix
Rk = E

(
wkw

T
k

)
≈ E

(
wkw

T
k |φk

)
. Given a state vector

defined by xk =
[
px

k vx
k py

k vy
k

]T , then it is in this
paper proposed to formulate the measurement model as
nonlinear in order to avoid the conditional covariance.

zk = h (xk, wk) = Hxk + Φ (xk)wk (4)

In this expression, E
(
xkw

T
k

)
= 0, E (wk) = 0, and H is

given by

H =
[

1 0 0 0
0 0 1 0

]
(5)

Φ (xk) is then a random matrix with non Gaussian en-
tries.

The second proposed model, here named model O as
the covariance depends on the state of the object, as-
sumed that the measurement errors were perfectly cor-
related with the aspect angle of the target. Using that
the aspect angle shown as ψ in figure 1 is given as the
difference between the heading and bearing ψ = θ − φ,
the measurement noise covariance conditioned on the
heading θk can be written as

cov (wk|θk) = E
(
wkw

T
k |θk

)
= Θk (xk)RO

k ΘT (xk) (6)

Θ (xk) =
[

cos (θk) − sin (θk)
sin (θk) cos (θk)

]
(7)

RO
k = E

(
wkw

T
k

)
=
[
σ2

a 0
0 σ2

t

]
(8)

σ2
a and σ2

t are the measurement noise variances along
and in transverse direction of the main axis of the target
respectively. This model is also reformulated in this
paper by introducing the random matrix Θ (xk).

zk = h (xk, wk) = Hxk + Θ(xk)wk (9)

The simulation results presented in [4] indicated that
the first model is a better fit at long range where the tar-
get approaches a point target, while the second model is
a better fit at short ranges where the target is extended.
The two models were extended by a third model [3], 3P,
which can be viewed as a compromise between the two
previous models. This model preserves both the corre-
lation with the object heading as well as the bearing.
The covariance of the noise of this model conditioned
on heading and bearing angle is given by

R3P
k = cov (wk|θk, φk) = E

(
wkw

T
k |θk, φk

)
= Θ (xk)RO

k ΘT (xk) + Φ (xk)RC
k ΦT (xk) (10)

The random matrices Θ (xk) and Φ (xk) are defined in
equation (7) and (2) respectively, and RC

k and RO
k are

defined in equations (3) and (8). Extending the work in
[3], this can also be formulated as a nonlinear measure-
ment equation.

zk = Hxk + Θ(xk)wO
k + Φ (xk)

[
0
1

]
wC

k (11)

E
(
wC

k

(
wC

k

)T)
= σ2

φ∗, E
(
wO

k

(
wO

k

)T)
= RO

k (12)

E
(
xk

(
wO

k

)T)
= 0, E

(
xk

(
wC

k

)T)
= 0 (13)

The added measurement noise conditioned on φk and
θk is the sum of two Gaussian random variables and
hence Gaussian. However the products Θ (xk)wO

k and
Φ (xk)

[
0 1

]T
wC

k are not necessarily Gaussian.
Note that the 3P model could be reformulated as a C

model plus a component that is correlated with aspect
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angle. The conditional covariance can then be written
as

Rk = Φ(xk)RC
k ΦT (xk) + Θ (xk)RA

k ΘT (xk)

RC
k is given by equation (3) and RA

k = diag(σ2
a, 0).

The results plotted in figures 2, 3, and 4, show param-
eters estimates for each of the three models based on a
generated data set. The figures further extend the re-
sults presented in [3] by modeling the SNR of the target
as a function of range. The position of the target was
known, and the parameters of the Gaussian distribution
were estimated using maximum likelihood methods. A
rectangular target consisting of 1000 objects distributed
over a 40 m×10 m was used.

Figure 3 and 4 show how the 3P model and the O
model are equivalent up to r = 10 km, where the an-
gular component of the 3P model starts to increase.
The symmetrized Kullback Leibler Divergence (KLD)
between the data set and each of the models under a
Gaussian assumption is plotted in figure 5. The sym-
metrized KLD for two Gaussian distributions is given
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by [8]

D (N1 (µ1, P1) ,N2 (µ1, P2))

=
1
2
trace

(
P−1

1 P2 + P−1
2 P1

)
− dim (x)

+
1
2

(µ2 − µ1)
T (
P−1

1 + P−1
2

)
(µ2 − µ1) (14)

Figure 5 shows that the 3P model has the smallest KLD
for all ranges. The KLDs of the 3P and O models are
equal and smaller than the C model until r ≈ 13 km,
after which the C model has a smaller KLD than the
O model. Figures 2, 3, and 4 show how the parame-
ters in each model vary as a function of range. Exten-
sive simulations indicate that the parameter values are a
complex function of target size, target shape, SNR, spa-
tial resolution defined by lobe width and pulse length,
and sampling density defined by sampling rates in range
and bearing. For a circular or square target, σa is equal
to σt for all ranges. The angular component of the 3P
model is shown to increase firstly when the target be-



comes smaller than the lobe width and secondly when
the target becomes smaller than the angular resolution.
An extended target may be defined by the target size
relative to one of these two parameters.

At close range, the dominating noise component in
the target images was speckle noise. Speckle noise is
caused by interference between the signals from individ-
ual scattering objects. The generated measurements for
a given aspect angle or over a small range of aspect an-
gles were then far from Gaussian, and the marginalized
noise over all aspect angles was in some cases also far
from Gaussian. This may explain the trend seen in the
KLDs shown in figure 5, where the KLD for each model
declines with range. Noise effects not modeled in the
idealized simulations may add more normality to the
measurement noise, but on the other hand multipath
and reverberation effects which were not included in the
simulation may also add non Gaussian components.

2.2 Biased measurements

In some cases there may be a bias in the measure-
ments that is a function of the velocity vector of the
target. An example is tracking applications where clut-
ter generated behind a target may be included as a part
of the target image and thus cause a bias. The clutter
may be for instance induced by a wake generated by a
ship or plane, or in a bubble stream generated by a diver
[9]. Measurement errors caused by sensor biases, such as
range, bearing, and elevation biases, are also dependent
on the state of the target. However, the error obtained
by ignoring the state dependency of sensor biases can
in many cases be ignored as the range usually is much
larger than the magnitude of the biases.

Assume that a measurement bias can be approxi-
mated as a linear function of the velocity vector, as
b1k = α · vk = α ·

[
vx

k vx
k

]T where α is a known con-
stant. This bias may be handled by a standard Kalman
filter with measurement equation given by

zk = Lxk + wk (15)

L =
[

1 α 0 0
0 0 1 α

]
A similar type of bias may also be defined, where the
bias is a constant vector parallel to the velocity vector.

b2k = α · vk/ |vk| = α · 1
|vk|

[
vx

k vx
k

]T (16)

= α ·
[

cos θk sin θk

]T
A bias in range, dependent on the aspect angle of the
target is also proposed. This bias can be caused by re-
flective objects on the target being occluded by other
objects, which may for instance be the case for radar
position measurements of a ship. These kind of biases
may for some sensor target geometries be larger when

moving in a radial direction than in a transverse direc-
tion. This bias can be formulated as

b3k = α · |cos(ψk)| · rk/ |rk| (17)

= α · |cos (θk − φk)| ·
[

cosφk sinφk

]T
2.3 Marginalized noise models

If the correlation between the aspect angle ψ and the
measurement noise is unknown or unmodeled, the mea-
surement likelihood function may be expressed as the
marginal probability density function (pdf), f (z|x) =∫
f (z|ψ, x) f (ψ) dψ. It is in many cases reasonable to

assume that the aspect angle is uniformly distributed
over the interval [0, 2π]. The C model may thus be con-
sidered as the 3P model marginalized over all aspect
angles. In a similar manner, the O model may obtained
by marginalizing the azimuth angle φ of a 3P model over
[0, 2π].

The conditional 3P likelihood function is Gaussian,
with measurement covariance R3P

k defined in equation
(10). The 3P model marginalized over all aspect an-
gles can be shown by numerical integration to be zero
mean, and to have a conditional covariance given by
Φk (xk)RmC

k ΦT (xk), where

RmC =
[

1
2

(
σ2

a + σ2
t

)
0

0 1
2

(
σ2

a + σ2
t

)
+ σ2

φ∗

]
(18)

This likelihood function can thus be written as a C
model with covariance given by equation (18). In the
same manner, an O model can be obtained by marginal-
izing the 3P model over all bearing angles. The condi-
tional covariance of this marginalized O model is given
by Θk (xk)RmO

k ΘT (xk), where

RmO =
[
σ2

a + 1
2σ

2
φ∗ 0

0 σ2
t + 1

2σ
2
φ∗

]
(19)

The dependency on either aspect or bearing angle is
ignored when using a marginalized filter, which would
make the filter suboptimal. However, the marginal co-
variance may be the best option for cases where the
dependency on the state vector is unknown or unmod-
eled.

2.4 Correlated measurements

The correlation between two sequential measurements
Rk,k+1 = E

(
wkw

T
k+1

)
is in general assumed to be zero,

which is also one of the fundamental assumptions of the
standard Kalman filter. However, this may in many
cases fail to be true for a radar measurement of an ex-
tended real target. Occlusion effects may cause that a
given scattering object is visible for some aspect angles,
but invisible in other cases. This effect causes measure-
ments to be correlated. The correlation will be highly
target dependent, and there may be large variations in
the correlation for different aspect angles. This corre-
lation effect will also be state dependent in the sense



that it depends on the ratio of change in aspect angle.
Correlated measurements may be compensated for, as
for instance outlined in [10], but this requires that the
correlation is quantified. In most cases this will be hard
to derive.

In [11] this is handled by assuming that there may be
an offset between the geometric center of the target and
the center of the part of the target that contributes to
the radar image. This offset is assumed to be constant
for small changes in aspect angle, modeled as a Wiener
process and estimated at each scan. However, the sim-
ulations used to derive the error models presented in
section 2.1 also showed that changes in aspect angle as
small as 0.05◦ may induce significant speckle noise and
completely change the target image. The offset may
therefore not be observable. The proposed solution is
therefore to compensate for correlation by biases as state
dependent biases as described in section 2.2, and ignore
the correlation from scan to scan.

3 BLUE filters
As discussed in section 1, the Kalman filter assumes

that the measurement noise covariance is unconditional.
Recursive BLUE filters were thus derived and applied on
all the measurement models described in the previous
section. Consider a measurement zk with mean z̄k, and
a state vector with prior mean and covariance given by
x̄k and P̄k, The BLUE (or LMMSE) estimator is then
given by

x̂k = x̄k + CxzC
−1
z (zk − z̄k)

P̂k = P̄k − CxzC
−1
z CT

xz

Cxz = E
(
(xk − x̄k) (zk − z̄k)T

)
is the cross covariance

and Cz = E
(
(zk − z̄k) (zk − z̄k)T

)
is the innovation

mean square error (MSE) [10]. In the case that Cxz,
Cz, z̄k, P̄k x̄k are exactly available through x̂k−1 and
P̂k−1, then the BLUE filter becomes truly recursive [2].
The BLUE estimation update together with a system
model for state prediction thus provide a framework for
recursive filtering. These equations become the stan-
dard Kalman filter equations for a linear system with
white and additive noise.

3.1 BLUE filter for equation (11)

Following [4], it is in this paper assumed that the
heading vector is aligned with the velocity vector, or
that the misalignment between these vectors is known
and can be compensated for. The heading angle in equa-
tion (7) is thus given by θk = arctan(vy

k/v
x
k), and its

covariance depends on the pdf of the velocity vector.
The BLUE filters for the nonlinear measurement

equations (4) and (9) are implicitly given by devel-
oping an estimator for equation (11). Using that

E
(
xk

(
wO

k

)T) = E
(
xk

(
wC

k

)T) = 0, the state mea-
surement correlation matrix is given by

Cxz = E
(
(xk − x̄k) (zk − z̄k)T

)
= P̄kH

T

and z̄k = E (zk) = Hx̄k. In a similar manner, the in-
novation covariance matrix Cz is given by the following
equation, where the index k is left out for simplicity.

Cz = HP̄HT +B +D (20)

B = E
(
ΓΘ (x)wO

(
wO
)T

ΘT (x) ΓT
)

D = E

(
ΓΦ (x)

[
0
1

]
wC
(
wC
)T [ 0

1

]T

ΘT (x) ΓT

)

The matrices Θ (xk) and Φ (xk) are here random. In
order to derive expressions for B and D, consider the
following simple system, where ω is an angular variable.

z = h (x) = Ωx (21)

Ω =
[

cosω − sinω
sinω cosω

]
, x =

[
a b

]T (22)

E (ω) = ω̄, E (x) =
[

0 0
]T , E (xω) =

[
0 0

]T
(23)

Q = E
(
xxT

)
=
[
σ2

a 0
0 σ2

b

]
, E

(
ω2
)

= σ2
ω (24)

The measurement covariance is here given by Cz =
E
(
ΩxxT ΩT

)
. The terms of Cz are derived in the fol-

lowing paragraphs.

C1,1
z = E

(
a2 cos2 (ω) + b2

(
1− cos2 (ω)

)
− ab sin (2ω)

)
(25)

= σ2
aE
(
cos2 (ω)

)
+ σ2

bE
(
1− cos2 (ω)

)
(26)

=
1
2
(
σ2

a + σ2
b

)
+

1
2
(
σ2

a − σ2
b

)
cos (2ω̄) exp

(
−2σ2

ω

)
(27)

The expectation of cos2 (ω) is derived by assuming that
ω is Gaussian and expressing ω = ω̄ + ω̃. This gives
E
(
cos2 (ω)

)
= cos (2ω̄) exp

(
−2σ2

ω

)
. The same ap-

proach gives

C2,2
z =

1
2
(
σ2

a + σ2
b

)
+

1
2
(
σ2

a − σ2
b

)
cos (2ω̄) exp

(
−2σ2

ω

)
(28)

By deriving E (sin 2ω) in a similar manner, the following
equation can be derived.

C1,2
z = C2,1

z = E

((
a2

2
− b2

2

)
sin (2ω) + ab cos (2ω)

)
=

1
2
(
σ2

a − σ2
b

)
E (sin (2ω)) (29)

=
1
2
(
σ2

a − σ2
b

)
sin (2ω̄) exp

(
−2σ2

ω

)
(30)



The random variable ω has a rounding effect on Cz.
If σ2

ω is large, the matrix becomes the marginal matri-
ces discussed in section 2.3. This intuitively also makes
sense, as the dependency on the angle ω should be lower
if the uncertainty in ω is large. This also indicates that
the error induced by approximating cov (z) by cov (z|ω)
may be significant if σ2

ω is large.
Returning to equation (20), if σ2

θ was known, then
equations (27), (28), and (30) could be used directly to
estimate the B term. However, as discussed previously,
σ2

θ is a function of target state. The proposed solution
is thus to estimate the B term using a HOUT. The ro-
tation matrix Φ (xk) is a function of the position of the
target through φ = arctan py/px. For many tracking
applications the range will be larger than the variances
of the position errors. Φ (xk) can then be approximated
by Φ (x̄k), where φ̄k = arctan (p̄y

k/p̄
x
k). The D term

equation (20), thus becomes

D = Φ
(
φ̄k

)
RC

k ΦT
(
φ̄k

)
where RC

k is defined in equation (3). Possible exceptions
include tracking of a target close to the radar, or during
initialization of a new track, in which case the estimation
covariance may be very large.

3.1.1 UT approximations

The unscented transform using the symmetric set is
here shown to be unable to handle nonlinear transforms
in the form of rotation. Consider again the system in
equations (21)-(24), and define the augmented system
given by the following equation.

xa =

 0
0
0

 , P a =

 σ2
a 0 0
0 σ2

b 0
0 0 σ2

w


The UT applying the symmetric set can easily be shown
to give Ĉz = Q = diag

(
σ2

a, σ
2
b

)
. However, assuming

that both x and ω are Gaussian, Cz was shown by
derivations in the previous paragraph to be equal to the
matrix which entries are given by equation (27), (28),
and (30).

The proposed solution was to apply the higher or-
der unscented transform (HOUT) introduced in [12].
The HOUT consists of 2N2

x + 1 points and approxi-
mates up to the fifth order terms of the pdf. The
transform is defined by a number of sigma points that
can be divided into three classes. The first point is lo-
cated at the origin and has weight w0. One class of
points have weights w1 and are located on the axes,
at [±s1, 0, ..., 0]T , [0,±s1, ..., 0]T ,..., [0, 0, ...± s1]

T . An-
other class of points with weights w2 are located at
all possible permutations of [±s2,±s2, 0, . . . , 0]T . For
instance if Nx = 3 this set is given by [s2, s2, 0]T ,
[−s2, s2, 0]T , [−s2,−s2, 0]T , [s2,−s2, 0]T , [s2, 0, s2]

T
,

[−s2, 0, s2]T , [−s2, 0,−s2]T , [s2, 0,−s2]T , [0, s2, s2]
T
,
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Figure 6: Plot of HOUT approximation of C1,1
z and C2,2

z

of equation (27) and (28). σ2
a = 32, σ2

b = 1.

[0,−s2, s2]T , [0,−s2,−s2]T , [0, s2,−s2]T . Given a co-
variance matrix P and a mean vector m, the sigma
points of the transformation are calculated by yi =
m +

√
Pxi. The constants w0, w1, w2, s1, and s2 are

given as solutions to the equations

w0 + 2Nxw1 + 2Nx (Nx − 1)w2 = 1

2w1s
2
1 + 4 (Nx − 1)w2s

2
2 = 1

2w1s
4
1 + 4 (Nx − 1)w2s

4
2 = 3, 4w2s

4
2 = 1

The general solution to these equations is

w0 =
(N3 +N2 − 4s22N

2 − 2N + 4s22N + 4s42N − 8s42)
2(N − 4)s42

w1 =
(−N + 1 + s22)

2

2(4−N)s42
, w2 =

1
4s42

, s1 =

√
s22 (N − 4)
N − 1− s22

In [12] it is proposed to select the solution that mini-
mizes the sixth order moment∣∣2w1s

6
1 + 4 (Nx − 1)w2s

6
2 − 15

∣∣
For Nx = 3, the solution is s2 = 1

2

√
18− 2

√
21, and

Nx = 2 gives s2 =
√

6−
√

21. Note that when Nx = 4,
the only solution is given by s2 =

√
3, w0 = 1

3 , w1 = 0,
w2 = 1

36 , and the number of points then reduces to
25. For Nx = 5, the solution is s2 =

√
3. A plot of

the approximation of the system in equation (21)-(24)
is shown in figure 6. The approximation is good up
to σ2

ω = π
2 , which corresponds to ω being widely dis-

tributed on [−π, π]. The HOUT may be extended to
even higher orders to improve the approximation seen
in figure 6. The number of points would increase signifi-
cantly, but the computational load may still be lower
than that of a particle filter or similar Monte Carlo
methods.

The B term in equation (20),
E
(
ΓkΘ(xk)wO

k w
OT
k ΘT (xk) ΓT

k

)
, can be approxi-

mated in several ways. The straightforward solution



is to use the HOUT with Nx = 4, using the following
augmented system.

xa =
[
vx

k , v
y
k , w

O
k

]T
, h (xa) = Θ

(
arctan

(
vy

k

vx
k

))
wO

k

P a =
[
P

′

k 0
0 RO

k

]
, P ′

k = cov
(
[vx

k , v
y
k ]T
)

P ′
k can be extracted from the prior covariance matrix
P̄k. This solution requires 25 sigma points of dimension
4. A more computationally efficient method would be to
estimate σ2

θ at each step and insert directly into equa-
tion (27), (28), and (30). The angular variance can be
estimated using an UT on the system

xa = [vx
k , v

y
k ]T , h (x) = arctan

(
vy

k

vx
k

)
P a = cov

(
[vx

k , v
y
k ]T
)

where P a is extracted from the prior state covariance
matrix P̄k. However, the selected solution was to ap-
proximate the terms E

(
cos2 θ

)
and E (sin 2θ) in equa-

tions (26) and (29) respectively using a HOUT with
N=2. Using that cos2 arctan y/x = x2/(x2 + y2) and
sin 2y/x = 2xy/(x2 + y2), the terms E

(
cos2 (ω)

)
and

E (sin 2θ) can be estimated by a UT on the following
system

xa = [vx
k , v

y
k ]T , P a = cov

(
[vx

k , v
y
k ]T
)

h1 (x) =
v2

x

vx2
k + vy2

k

, h2 (x) =
2vx

kv
y
k

vx2
k + vy2

k

The B term can then be approximated by inserting the
estimated terms into equations (26) and (29).

3.2 Biased measurements

The treatment of the bias b1k proposed in section 2.2
is left out in this paper, as it poses no problem to the
estimator. For the biases defined in equations (16) and
(17), it was not possible to find a closed form solution of
Cxz and Cz, and the proposed solution was to approxi-
mate the nonlinear expressions in the BLUE filter using
HOUTs.

4 Simulations
4.1 Trajectory generator

The target trajectories in the MC simulations were
generated using a Jump Markov Non Linear structure,
as introduced in [4]. The main idea of the trajectory
generator is to generate random sequences of maneu-
vers with similar dynamics to what is encountered in
the considered application. The trajectories are gener-
ated by a non stationary Markov chain, and a set of
discrete system models are used to calculate the target
state during each maneuver. Following [4], the model

set consisted of a nearly constant velocity state, a set of
states with positive acceleration and a set of states with
negative acceleration, a set of states with counterclock-
wise turns, and a set of states with clockwise turns. In
this paper, the model was used mainly for simulation
purposes and was constructed without the use of real
trajectories. However, as discussed in [4] the setup could
be used to extract the dynamics of targets from histor-
ical data, for instance by using the approach described
in [13]. The extracted dynamics can then be used to
generate trajectories which can be used for benchmark
test and simulations.

The system model in the simulations was built up as
presented in [4]. However, in this paper, the transition
matrix M and the model set was modified. Firstly, the
number of possible maneuvers were higher. Secondly,
M was constructed such that the Markov chain had a
higher probability of jumping to a neighbor state than
to other states when it was in an acceleration or turn
state. A neighbor state was defined as the state with
turn rate or acceleration rate closest to the current state.
In this manner, less rigid maneuvers were generated. A
maneuver was then defined to last as long as the system
remained in the same state or jumped to a neighbor
state.

4.2 Estimation filters

The estimation filter were interacting multiple models
(IMM) filters applying different combinations of kine-
matic models. The kinematic system models applied to
generate the results shown in this paper were a nearly
constant velocity model and a coordinated turn model.
In addition, a kinematic model introduced in [6] was
implemented using BLUE filters and included into the
IMM framework. This model is described in the follow-
ing subsection.

4.2.1 State prediction

In the direct discrete nearly constant velocity kine-
matic model, the velocity in each dimension is mod-
eled as integrated white noise. In the coordinated turn
model, the turn rate is modeled as a Wiener process and
implicitly estimated at each time step. A formulation of
the equation of both these system models can also be
found for instance in [10]. The nonlinear coordinated
turn model was implemented using an HOUT, as the
coordinated turn model implicitly includes a rotation of
the state vector. Simulations showed that the HOUT
gave a significantly better approximation than the sym-
metric set, but that the symmetric set still showed better
performance than an extended Kalman filter implemen-
tation.

In [6] a system model was presented where the pro-
cess noise is defined in the reference frame of the target.
The model was applied for targets that were assumed
to have higher lateral acceleration than thrust acceler-
ation. However, for the system considered in this pa-



per, the model was applied to model constant thrust
acceleration. The coordinated turn model was shown in
simulations to have better RMSE performance during
turns than the proposed model. The model was formu-
lated for three dimensions in [6], but adapted to two in
this work. In [6], the system equation was given by the
linear equation xk+1 = Fkxk + Γkvk, but process noise
covariance was assumed to be given by

E
(
wkw

T
k

)
= Θ(xk)QkΘT (xk) (31)

where

Qk =
[
q2a 0
0 q2t

]
q2a is proportional to thrust accelerations and q2t is pro-
portional to lateral accelerations. The process noise
matrix was approximated using Θ(xk) ≈ Θ(θ̂k) where
θ̂k = arctan (vy

k/v
x
k), and the predicted covariance ma-

trix was approximated by

P̄k+1 = FkP̂kF
T
k + ΓkΘ(x̂k)QkΘT (x̂k)ΓT

k (32)

It is in this paper proposed to reformulate this system
by the following equation.

xk+1 = fk (xk, wk) = Fkxk + ΓkΘ(xk)wk (33)

The process noise is then uncorrelated with the state
vector. The predicted state and covariance is thus given
by

x̄k+1 = Fkx̂k (34)

P̄k+1 = FkP̂kF
T
k + ΓkE

(
Θ(xk) vkv

T
k ΘT (xk)

)
ΓT

k (35)

The term Q̂ = E
(
Θ(xk) vkv

T
k ΘT (xk)

)
was approxi-

mated using a HOUT. Approximating the process noise
covariance by the conditional process noise covariance
may induce errors in the system, in the same manner as
approximating the measurement covariance by its con-
ditional covariance. The effect of the HOUT approxi-
mation is to round the process noise covariance matrix.
If the uncertainty in heading angle is large, Q̂ becomes
a diagonal matrix with equal entries on the diagonal.
The model is then effectively a nearly constant velocity
model.

4.2.2 Implementation

The recursive BLUE filters were implemented us-
ing unscented transforms when necessary. The struc-
ture proposed in [5], where each term in the re-
cursive BLUE filter is estimated by unscented trans-
forms, was not implemented. For instance for the
case where the dynamic model was given by equa-
tion (33), then a HOUT was applied to estimate
E
(
Θ(xk) vkv

T
k ΘT (xk)

)
ΓT

k , while the terms FkP̂kF
T
k

and x̄k+1 were calculated directly. The predicted co-
variance P̄k+1 was then estimated as the sum of these
two terms. In the same manner, if the measurement
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Figure 7: RMS position and velocity errors for HOUT
estimation filter vs suboptimal filter plotted as function
of target velocity. Biased measurements generated by
equation (16) with α = 10.

model was given by zk = Hx + bk + wk where wk was
white additive noise and bk was a state dependent bias,
then E

(
xk

(
Hxk + bTk

))
, E

(
(Hxk + bk) (Hxk + bk)T

)
as well as z̄k was estimated using a HOUT. E

(
wkw

T
k

)
=

Rk and E
(
xkx

T
kH

T
)

= P̄kH
T could be evaluated di-

rectly. The matrices in the BLUE filter were then
estimated by Cxz = E

(
xk

(
Hxk + bTk

))
and Cz =

E
(
(Hxk + bk) (Hxk + bk)T

)
+ Rk. Using an HOUT

on the block diagonal augmented system proposed in [5]
would require 65 sigma points of dimension eight for this
case. The computational load at each step may be sig-
nificantly decreased using the approach proposed here,
which requires two HOUTs of dimension four.

4.3 Simulation results

4.3.1 Bias estimates

The setup described in section 4.1 was used to gener-
ate random trajectories. The parameters of the trajec-
tory generator were chosen such that the system spent
44% of the time in the constant velocity state, 30%
in a turn and 26% in a state of acceleration. The
mean distance traveled in the constant velocity state
was 400 m, the mean turn was ∆θ = 3π

16 , and the mean
acceleration was ∆v = 2 m / s. The system consisted
of 32 acceleration states with thrusts uniformly dis-
tributed on the interval [−0.3, 0.3] m

s2 , and 32 turn states
with turn rates uniformly distributed on the interval
[−0.08, 0.08] rad

s . The velocity was constrained to be in
the interval v ∈ [0, 25] m

s . The added process noise in
each dimension had a variance of σ2

q = 0.01. The bi-
ased measurement for the simulations were generated
using equation (16) and (17), with additive and Gaus-
sian noise with Rk = E

(
wkw

T
k

)
= diag

(
52, 52

)
. The
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Figure 8: RMS position and velocity errors for HOUT
estimation filter vs suboptimal filter plotted as function
of target velocity. Biased measurements generated by
equation (17) with α = 10.

recursive filter was implemented as an IMM filter. The
IMM filter consisted of a constant velocity model, a co-
ordinated turn model and an acceleration model. The
results in figure 7 show the RMSE errors of two estima-
tions filter plotted against velocity. The performance
of the BLUE filter was compared to a suboptimal filter
which estimated the bias at each scan using the pre-
dicted state vector. The RMSE was plotted as a func-
tion of velocity using a histogram approach, where the
mean RMSE within bins of 0.5 m / s were calculated.
The plot shows how the BLUE filter clearly has better
accuracy for low velocities, when the uncertainty in the
estimated heading angle is large. This is expected given
the discussion in section 3. Figure 8 shows an example
where the measurements were generated using the bias
model in equation (17). The plot shows the same effect
for low velocities, but not as significant as for equation
(16).

4.3.2 Correlated measurement noise and aspect
angle

In this simulation, the measurements were generated
using equation (9), where the eigenvectors of the condi-
tional measurement error covariance matrix is aligned
with, and normal to the velocity vector. A HOUT
BLUE filter was compared to a suboptimal filter, which
approximated the measurement noise covariance by the
error covariance conditioned on the predicted state vec-
tor. The plot in figure 9 shows how the BLUE filter
again outperformed the suboptimal filter at low veloci-
ties. The figure also indicates that the suboptimal filter
is approximately optimal in cases where the error in the
heading angle is low, which may be the case for scenar-
ios with large velocities and relatively low measurement
errors.
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Figure 9: Comparison between HOUT BLUE filter and
suboptimal filter plotted as function of target velocity.
State dependent measurement noise generated by equa-
tion (9) with R = diag(5, 1).

4.3.3 Tracking an extended target

In the following example, the performances of estima-
tion filters applying the measurement models in equa-
tions (4), (9) and (11) were compared. The measure-
ments were generated by the simulation framework from
[3], using the same target model that was used to gener-
ate the parameter estimates shown in figure 2, 3 and 4.
The parameter estimates were used as input to the esti-
mation filters. The dependency on range was assumed
to be small enough to be ignored, such that the measure-
ment errors in range could be conditioned on the pre-
dicted range. A large number of trajectories were gen-
erated within the range r ∈ [1, 20] km, and a simulated
radar measurement was generated at each scan. Figure
10 shows the RMSE performance of the 3P model, and
figure 11 shows how the 3P model performs better than
the two other models for all ranges. It also indicates
that the C model is a better fit than the O model for
r > 15 km. This is higher, but comparable, to 13 km
where the KLD of the O model becomes higher than
the C model.

5 Conclusion
Optimal BLUE filters have been derived for several

different measurement models. A measurement model
that assumes that the process noise error covariance is
dependent on both the position and aspect angle of the
target has been incorporated in a BLUE filter, and the
goodness of the model has been evaluated using RMS
position and velocity errors as performance measures.
Using simulated radar measurements as input to IMM
tracking filter applying the BLUE measurement models,
it is shown how the new model is best both at short and
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Figure 10: Position and velocity performance for IMM
estimation filter applying a BLUE filter on the 3P mea-
surement model.

long range. Some target dependent biases were also in-
troduced, and it is shown in simulations how the derived
BLUE filters have better performance than suboptimal
filters for state dependent measurement errors.

The work has also shown how higher order unscented
transforms may be used to approximate the terms in
the BLUE filters, and that a higher order transform
is needed for cases where the measurements or process
noise is transformed by a rotation.
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A
Additional results: Monte Carlo
simulations of extended targets

A.1 Generation of measurements

A typical target that was used in the simulations is shown in figure A.1. The targets were modeled
as a large number of scattering objects that were uniformly distributed over a given area. The
radar cross sections of the scatterers were modeled to be equal in most of the simulations. The
positions of the point scatterers were kept fixed relative to each others, while the position and
orientation of the target varied.

The methods and simplified system models described in section 3 and paper three were ap-
plied to generate high resolution target images, as shown for instance in figure A.2. The magni-
tude on the z-axis of the plot is not significant, given that noise was added to the target images to
match a specified SNR.

A target image with realistic sampling grid and noise could then be generated, by sampling
the high resolution target image and adding noise in each pixel. An image sampled from figure
A.2 is shown in figure A.3. For each generated high resolution (HR) image, the sampling grid
was located in a number of different locations in order to take the influence of the placement of

­20 ­15 ­10 ­5 0 5 10 15 20
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)

Figure A.1: Target constructed by 1000 point scatterers.
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Figure A.2: Simulated high resolution radar image. Target consisting of 4000 point targets.
Target center located at 2000 m range, with a 45◦ aspect angle.
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Figure A.3: Target image, with sampling grid of 6 m in range and 2π
4096 rad in azimuth, and

15 dB SNR.

the sampling grid into account.
A close to ideal segmentation procedure was performed before adding Ricean noise and

generating centroid measurements. Firstly, the radar image was cropped 2 lobewidths outside
the target limits in bearing. The radar image is finite in range, but is in principle infinite in
bearing because of the sidelobes of the aperture function. Secondly, the SNR input parameter
was used to calculate the noise parameter to the Ricean distribution, before a threshold was set
such that the false alarm rate was set to 10−3. The thresholded image was then used to generate
the centroid measurements. The position of each pixel was transformed to Cartesian coordinates
before a centroid was calculated.

Figure A.4 and A.5 show images generated by the same target, but with a 0.05 ◦ difference
in aspect angle. Figure A.4 is a contour plot of the data shown in figure A.2. The plots clearly
show how a very small change in sensor target geometry may induce significant changes in the
target image, which is defined as speckle noise. The figures A.6 and A.7 show 2000 generated
measurements from the corresponding figures A.4 and A.5. The measurements were generated
with an SNR of 20 dB.

The results illustrate several properties of these simulations. First and most important, they
illustrate how there is a correlation between aspect angle and measurement error, as the generated
centroids are aligned along the heading of the target. The second point which is illustrated is
how the measurement error here is the sum of a components generated by the noise in each pixel,
the influence of the placement of the sampling grid, and the speckle noise in the target images.
Measurements thus have to be generated over several aspect angles in order to obtain estimates of
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Figure A.4: Contour plot of generated radar image, aspect angle 45.00◦.

the measurement error statistics. A third point is that the measurements for a given position and
aspect angle may deviate from the commonly assumed Gaussian distribution. The simulations
showed that they were more close to a Gaussian distribution for low SNRs.

A.2 ML estimation

The following subsections contain five examples where Monte Carlo simulations were used in
order to examine the influence of one or more parameters on the estimated error models.

A.2.1 Example 1 - Parameter estimation for a target with constant
SNR

The target model used in this example consisted of 1000 point targets uniformly distributed over
a rectangular area with dimensions 40x10 m. The system was modeled as described in chapter
3, with a rectangular pulse waveform with pulse length of 12 m, and with the angular response
function given by equation (3.15). The lobewidth was 0.5◦, where the width was defined as the
interval between maximum and first zero. The sampling intervals in range and azimuth were 6
m and 2π

4096 rad respectively.
In the simulations, the target was placed on the x-axis and moved from a distance of 200 m

to 100 km. The target was rotated around its center in 360 steps, and 98000 measurements were
generated for each aspect angle. A total of 670 million simulated measurements were thus used
for parameter estimation. The SNR of the target was kept constant at 20dB for all distances.

The parameters of model C, O and 3P given in section 3.3.6 were estimated based on the set
of generated centroids. For model C, the estimation consisted of calculating the sample mean and
covariance matrix of all the generated measurements in the Cartesian frame. The corresponding
estimate for model O was obtained by rotating all the generated measurements into the reference
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Figure A.5: Contour plot of generated radar image, aspect angle 45.05◦.
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Figure A.6: One batch of generated measurements, aspect angle 45.00◦.
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Figure A.7: One batch of generated measurements, aspect angle 45.05◦.

frame of the target, and then calculating the sample mean and covariance matrix. The fmincon()
numerical search algorithm in MATLAB was used to estimate the parameters for model 3P.

The ML estimates for the parameters of the three measurement models are shown in figure
A.8, A.9 and A.10. Figures A.8 indicate that the common model applied in tracking systems,
to assume that σr is constant and that σφ∗ = rσφ where σφ is a constant may be plausible in
cases where the SNR is constant. Figure A.10 shows how the angular parameter of model 3P is
approximately linear with range.

The estimated symmetrized KLD is shown figure A.11. The KLD was estimated as a mean
value over all the 360 aspect angles for each specific distance, using equation (3.29), and by
calculating the sample mean and covariance of the measurements generated for each of the aspect
angle. The figure show how model 3P has the smallest KLD for all distances, but that it is equal
to the distance of model O at short range, and similar to model C at long range. This result
indicates that model O is a better approximation than model C at short range, while model C is a
good approximation at long range when the target approaches a point target in bearing.

A.2.2 Example 2 - Parameter estimation with fixed position and
varying SNR.

In this example, a target was located at a fixed position and the SNR was varied in order to
examine the parameters of the error models as a function of SNR. The target which was used
in the simulations was modeled to consist of 4000 point scatterers distributed uniformly over
a 120x20 m area. The target was located at r = 20 km. The target was rotated around its
geometrical center in 0.05◦ increments when the SNR was 120 dB, in 0.01◦ increments for
SNR=90 and 60 dB, and 1◦ increments for SNR≤30 dB. A set with more than one million
measurements was generated as input to the parameter estimation algorithms for each SNR value.
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Figure A.8: Maximum likelihood of the parameters of model C as function of range for a
target with constant SNR
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Figure A.10: Maximim likelihood estimates of the parameters of model 3P as function of
range for a target with constant SNR.
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Figure A.12: Parameter estimates for model C as function of SNR. Target located at fixed
position at r = 20 km.

The parameter estimates for each of the models are shown in the figures A.12, A.13 and
A.14. Figures A.13 and A.14 indicate that the measurement noise covariance is constant when
the SNR is higher than 30 dB. This indicates that the measurement noise is unaffected by the
noise generated in each pixel, but dominated by the speckle noise in the target image. The
speckle noise is independent of the SNR, which may explain the trend seen in the two graphs.
Figure A.14 also show that the angular component is a function of the SNR, which also shows a
correlation between SNR and the angular component. The estimated KLDs plotted in figure A.15
show that the models O and 3P are more close to the data than model C. Model 3P is equivalent
to model O for all SNR except for 10 dB, given that the estimate of σφ∗ is zero. The KLD is
equal to 95.7 for model O and 3P at SNR=120 dB, and they are equal with three digits precision.

A.2.3 Example 3 - Parameter estimation with target at fixed position
and SNR, with varying size

This example was included in order to illustrate the relationship between target size and measure-
ment uncertainty. The targets were rectangular areas, where the length of the target was varied,
and the ratio between the length and the width was kept fixed equal to 1

6 . The targets were located
at 20 km, and the SNR was kept constant to 80 dB. 1000 point scatterers were used to generate
the smallest target of 20 m x 3.3 m, while 25000 were used to generate the largest target with
a size of 500 m x 83.3 m. 720000 measurements for each target size were used as input to the
parameter estimation algorithms.

The results from the simulations are shown in the figures A.16, A.17 and A.18. The figures
clearly indicate that there is a correlation between target size and measurement errors. From
figure A.17 it can be seen that both parameters are increasing with length, although the σt pa-
rameter has a spike at L = 120 m. For the 3P model in figure A.18 it can be seen that the σa

parameter is increasing with size, and the increase can be crudely approximated as linear. Figure
A.18 also shows that there is a relationship between the angular component and target size in the
simulations. This relationship is further examined in the next example.
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Figure A.13: Parameter estimates for model O as function of SNR. Target located at fixed
position at r = 20 km.
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Figure A.14: Parameter estimates for model 3P as function of SNR. Target located at fixed
position at r = 20 km.
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Figure A.15: Estimated KLD between generated measurments and estimated error models
as function of SNR, Target located at fixed position at r = 20 km.
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Figure A.16: Parameter estimation as function of target size for model C.
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Figure A.17: Estimated parameters as function of target size, model O.
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Figure A.18: Estimated parameters as function of target size, model 3P.
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Table A.1: Parameters of 3P model estimated as function of system resolution, defined by
pulse length (PL) and Lobe width (LW)

LW(◦)
0.25 0.5 1 1.5 2

PL(m) σa σt σφ∗ σa σt σφ∗ σa σt σφ∗ σa σt σφ∗ σa σt σφ∗
3 3.4 0.7 0.1 4.1 0.8 0.02 4.7 1 3E-3 5.0 1.1 3E-3 5.1 1.2 4E-3

6 3.4 0.6 0.4 4.1 0.8 0.5 4.7 0.9 0.4 5.0 1 0.42 5.2 1.1 0.5

12 4.5 0.7 0.6 5.5 0.9 0.6 6.3 1.1 0.5 6.6 1.2 0.6 6.9 1.3 0.6

20 5.4 0.9 0.6 6.7 1.2 0.7 7.6 1.4 0.7 8.2 1.5 0.8 8.5 1.6 0.8

50 6.9 1.1 0.9 8.5 1.5 1.0 10.0 1.8 1.1 10.9 2.1 1.0 11.5 2.2 1.0

100 7.9 1.2 1.1 9.8 1.6 1.3 11.8 2.0 1.7 13.0 2.3 1.8 14.0 2.5 1.8

150 8.4 1.3 1.1 10.4 1.6 1.5 12.8 2.1 2.1 14.4 2.4 2.3 15.4 2.6 2.4

Table A.2: Paremeters of 3P model estimated as a function of sampling density in range
and bearing

∆φ (rad)
2π

4096
2π

2048
2π

1024
2π
512

∆r (m) σa σt σφ∗ σa σt σφ∗ σa σt σφ∗ σa σt σφ∗
6 7.75 1.7 4.8E-3 7.8 1.8 0.375 8.1 2.0 1.3 10.3 3.0 28.6

12 7.8 1.8 0.146 7.9 1.9 1.05 8.2 2.1 2.1 10.8 3.2 29.0

18 8.0 2.1 0.345 8.0 2.2 1.5 8.4 2.4 2.74 11.4 3.7 29.3

A.2.4 Example 4 - Parameter estimation as a function of resolution
and sampling density in range and bearing

In this example, the relationship between the resolution of the system and measurement errors
was examined. This was performed by using a fixed size target of 3000 point scatterers uniformly
distributed over a 60 × 10 m rectangular area, and changing the resolution of the system in the
simulations.

The resolution was altered in two different manners. First, the lobe width and pulse length
of the system model was changed, while the sampling distances in range and azimuth were kept
constant at 6 m and 2π

4096 rad. The target was placed at a distance of 4000 m, and rotated around
its axis in 360 steps in each simulation. The SNR was set to 15 dB. A lobe width of 2◦ at 4000 m
corresponds to 140 m in the Cartesian frame. Table A.1 shows the estimated angular parameter
of model 3P for the simulated resolutions. The simulation was repeated for SNR=30 dB, and the
results was similar, but with lower magnitude. The table shows how the angular component of
the measurement noise is a function of the resolution in the system.

The second approach was to keep the lobe width constant equal to 0.5◦ and the pulse length at
20 m while changing the sampling resolution in range and azimuth. The results from estimating
the parameters in model 3P is shown in table A.2. The SNR in the simulation was set to 15 dB,
and the same target model was applied as in the table A.1 while the distance was set to 10 km.
Table A.2 clearly shows that there is a strong correlation between angular sampling distance and
the angular component of the measurement accuracy.
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Figure A.19: Estimated parameters for model O as a function of k = L
W .

Example 5 - Measurement noise as function of target dimensions

This example describes simulations where the relationship between target dimensions and mea-
surement noise was examined. This was examined by changing the width W and length L of
a target, while the product W · L was kept constant. The target was constructed by 3000 point
scatterers, and the the product W · L = 1600 m2. The system was modeled in the same manner
as in example 1-4. The target was located at r = 1000 m and the SNR was set to 20 dB such that
the target was located in the region where model O is more accurate than model C. The target
was rotated around its center in 360 steps for each k = L

W , and 900000 measurements were
generated for each k.

Figure A.19 shows the estimated parameters for model O. The figure clearly shows how
σa = σt when L = W , which implies that the angular and range noise is uncorrelated in this
case. σt and σa may be approximated as be linear functions of k, and figure A.20 shows that
the product σt and σa is approximately constant. The simulations in this example thus show that
there is a relationship between the aspect ratio of the target and the ratio between σt and σa.
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Figure A.20: Product of estimated parameters for model O as a function of k = L
W .
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